Science.gov

Sample records for commercial ni-cr-mo alloys

  1. Environmentally Assisted Cracking of Commercial Ni-Cr-Mo Alloys - A Review

    SciTech Connect

    Rebak, R B

    2004-11-09

    Nickel-Chromium-Molybdenum alloys (Ni-Cr-Mo) are highly resistant to general corrosion, localized corrosion and environmentally assisted cracking (EAC). Cr acts as a beneficial element under oxidizing acidic conditions and Mo under reducing conditions. All three elements (Ni, Cr and Mo) act synergistically to provide resistance to EAC in environments such as hot concentrated chloride solutions. Ni-Cr-Mo alloys may suffer EAC in environments such as hot caustic solutions, hot wet hydrofluoric acid (HF) solutions and in super critical water oxidation (SCWO) applications. Not all the Ni-Cr-Mo alloys have the same susceptibility to cracking in the mentioned environments. Most of the available data regarding EAC is for the oldest Ni-Cr-Mo alloys such as N10276 and N06625.

  2. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    SciTech Connect

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

  3. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  4. Evaluation of high Ni-Cr-Mo alloys for the construction of sulfur dioxide scrubber plants

    NASA Astrophysics Data System (ADS)

    Rajendran, N.; Rajeswari, S.

    1996-02-01

    Corrosion in wet lime/limestone systems used for flue gas desulfurization in thermal power plants is of great concern. The frequent variations in acidity and in chloride and fluoride ion concentrations experienced by such systems pose a serious threat to the materials of construction. Currently used materials mostly type 316L stainless steel often fail to meet their life expectancy. The present study evaluates the performance of advanced Ni- Cr- Mo alloys 59 and C- 276 in a simulated sulfur dioxide scrubber environment. Accelerated tests showed that high Ni- Cr- Mo alloys have little tendency to leach metal ions such as chromium, nickel, and molybdenum at different impressed potentials. Scanning electron microscopy was used to examine the morphology of pitting attack.

  5. Localized Corrosion of a Neutron Absorbing Ni-Cr-Mo-Gd Alloy

    SciTech Connect

    R.E. Mizia; T. E. Lister; P. J. Pinhero; T. L. Trowbridge

    2005-04-01

    The National Spent Nuclear Fuel Program, located at the Idaho National Laboratory (INL), has developed a new nickel-chromium-molybdenum-gadolinium structural alloy for storage and long-term disposal of spent nuclear fuel (SNF). The new alloy will be used for SNF storage container inserts for nuclear criticality control. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section. This alloy must be resistant to localized corrosion when exposed to postulated Yucca Mountain in-package chemistries. The corrosion resistance properties of three experimental heats of this alloy are presented. The alloys performance are be compared to Alloy 22 and borated stainless steel. The results show that initially the new Ni-Cr-Mo-Gd alloy is less resistant to corrosion as compared to another Ni-Cr-Mo-Gd alloy (Alloy 22); but when the secondary phase that contains gadolinium (gadolinide) is dissolved, the alloy surface becomes passive. The focus of this work is to qualify these gadolinium containing materials for ASME code qualification and acceptance in the Yucca Mountain Repository.

  6. Electrochemical methods to detect susceptibility of Ni-Cr-Mo-W alloy 22 to intergranular corrosion

    NASA Astrophysics Data System (ADS)

    Gorhe, D. D.; Raja, K. S.; Namjoshi, S. A.; Radmilovic, Velimir; Tolly, Alfredo; Jones, D. A.

    2005-05-01

    Alloy 22 (UNS N06022), a Ni-Cr-Mo-W based alloy, is a candidate material for the outer wall of nuclear waste package (NWP) containers. Even though the alloy is highly stable at low temperatures, it could undergo microstructural changes during processing such as welding and stress relieving. Formation of topologically close-packed (TCP) phases such as μ, P, σ, etc. and Cr-rich carbides could make the material susceptible to localized corrosion. Hence, it is important to correlate the microstructural changes with the corrosion resistance of the alloy by nondestructive and rapid electrochemical tests. In this investigation, different electrochemical test solutions were used to quantify the microstructural changes associated with aging and welding of the wrought alloy 22. The results of double-loop (DL) electrochemical potentiodynamic reactivation (EPR) tests in 1 M H2SO4+0.5 M NaCl+0.01 M KSCN solution indicated Cr depletion during initial stages of aging of wrought alloy 22. Results of EPR tests in 2 M HCl+0.01 M KSCN solution at 60 °C correlated well with the Mo depletion that occurred near TCP phases formed during aging of both weld and wrought alloy 22 materials. The EPR test results were compared with standard chemical weight loss measurements specified by ASTM standard G-28 methods A and B.

  7. The effects of sulfate reducing bacteria on stainless steel and Ni-Cr-Mo alloy weldments

    SciTech Connect

    Petersen, T.A.; Taylor, S.R.

    1995-10-01

    Previous research in this laboratory demonstrated a direct correlation between alloy composition and corrosion susceptibility of stainless steel and Ni-Cr-Mo alloy weldments exposed to lake water augmented with sulfate reducing bacteria (SRB). It was shown that lake water containing an active SRB population reduced the polarization resistance (R{sub p}) on all alloys studied including those with 9% Mo. In addition, preliminary evidence indicated that edge preparation and weld heat input were also important parameters in determining corrosion performance. This prior research, however, looked at ``doctored`` weldments in which the thermal oxide in the heat affected zone was removed. The objectives of the research presented here are to further confirm these observations using as-received welds. The materials examined (listed in increasing alloy content) are 1/4 inch thick plates of 316L, 317L, AL6XN (6% Mo), alloy 625 clad steel, alloy 625, and alloy 686. Materials were welded using the tungsten inert gas (TIG) process in an argon purged environment. In addition, 317L was welded in air to test oxide effects. All samples were prepared for welding by grinding to a V-edge, except the 625 clad steel samples which were prepared using a J-edge. Electrochemical performance of welded samples was monitored in four glass cells which could each allow exposure of 8 samples to the same environment. Two cells contained lake water inoculated with SRS, and two cells contained sterilized lake water. The open circuit potential (E{sub oc}) and R{sub p} was used to correlate corrosion susceptibility and bacterial activity with alloy composition and welding parameters.

  8. The Influence of Composition upon Surface Degradation and Stress Corrosion Cracking of the Ni-Cr-Mo Alloys in Wet Hydrofluoric Acid

    SciTech Connect

    Crook, P; Meck, N S; Rebak, R B

    2006-12-04

    At concentrations below 60%, wet hydrofluoric acid (HF) is extremely corrosive to steels, stainless steels and reactive metals, such as titanium, zirconium, and tantalum. In fact, only a few metallic materials will withstand wet HF at temperatures above ambient. Among these are the nickel-copper (Ni-Cu) and nickel-chromium-molybdenum (Ni-Cr-Mo) alloys. Previous work has shown that, even with these materials, there are complicating factors. For example, under certain conditions, internal attack and stress corrosion cracking (SCC) are possible with the Ni-Cr-Mo alloys, and the Ni-Cu materials can suffer intergranular attack when exposed to wet HF vapors. The purpose of this work was to study further the response of the Ni-Cr-Mo alloys to HF, in particular their external corrosion rates, susceptibility to internal attack and susceptibility to HF-induced SCC, as a function of alloy composition. As a side experiment, one of the alloys was tested in two microstructural conditions, i.e. solution annealed (the usual condition for materials of this type) and long-range ordered (this being a means of strengthening the alloy in question). The study of external corrosion rates over wide ranges of concentration and temperature revealed a strong beneficial influence of molybdenum content. However, tungsten, which is used as a partial replacement for molybdenum in some Ni-Cr-Mo alloys, appears to render the alloys more prone to internal attack. With regard to HF-induced SCC of the Ni-Cr-Mo alloys, this study suggests that only certain alloys (i.e., those containing tungsten) exhibit classical SCC. It was also discovered that high external corrosion rates inhibit HF-induced SCC, presumably due to rapid progression of the external attack front. With regard to the effects of long-range ordering, these were only evident at the highest test temperatures, where the ordered structure exhibited much higher external corrosion rates than the annealed structure.

  9. Environmentally assisted cracking of 3.5NiCrMoV low alloy steel under cyclic straining

    SciTech Connect

    Kondo, Yoshiyuki; Bodai, Masaru; Takei, Mao; Sugita, Yuji; Inagaki, Hironobu

    1997-12-01

    Environmentally assisted cracking of 3.5NiCrMoV low alloy steel under cyclic straining was investigated in water environments at 60 C. Effects of strain range, strain rate, strain hold tie and impurities in the water on the crack initiation life were investigated. The effects of long strain hold time up to 100 hours were studied and found to be especially significant. Lower strain rate, longer strain hold time and higher electric conductivity resulted in shorter crack initiation life. The corrosion current from the strained metal was measured in a simulated electrochemical system to clarify the root cause of the life reduction. Test results showed that higher strain range, lower strain rate, longer strain hold time and higher electric conductivity caused increased charge transfer, which caused shorter crack initiation life. A prediction model for the crack initiation life was proposed based on the charge transfer.

  10. Examination of Corrosion Products and the Alloy Surface After Crevice Corrosion of a Ni-Cr-Mo- Alloy

    SciTech Connect

    X. Shan; J.H. Payer

    2006-06-09

    The objective of this study is to investigate the composition of corrosion products and the metal surface within a crevice after localized corrosion. The analysis provides insight into the propagation, stifling and arrest processes for crevice corrosion and is part of a program to analyze the evolution of localized corrosion damage over long periods of time, i.e. 10,000 years and longer. The approach is to force the initiation of crevice corrosion by applying anodic polarization to a multiple crevice assembly (MCA). Results are reported here for alloy C-22, a Ni-Cr-Mo alloy, exposed to a high temperature, concentrated chloride solution. Controlled crevice corrosion tests were performed on C-22 under highly aggressive, accelerated condition, i.e. 4M NaCl, 100 C and anodic polarization to -0.15V-SCE. The crevice contacts were by either a polymer tape (PTFE) compressed by a ceramic former or by a polymer (PTFE) crevice former. Figure 1 shows the polarization current during a crevice corrosion test. After an incubation period, several initiation-stifle-arrest events were indicated. The low current at the end of the test indicated that the metal surface had repassivated.

  11. Effect of Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys

    SciTech Connect

    Fix, D V; Rebak, R B

    2006-02-05

    The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. All the material used in this report were especially prepared at Allegheny Ludlum Co. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials in the range of the standards.

  12. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    SciTech Connect

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  13. Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages

    SciTech Connect

    Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

    2003-09-11

    The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

  14. Fractal study of Ni Cr Mo alloy for dental applications: effect of beryllium

    NASA Astrophysics Data System (ADS)

    Eftekhari, Ali

    2003-12-01

    Different Ni-based alloys with various compositions were prepared by varying the amounts of beryllium. Effect of the amount of beryllium added to the alloy on its corrosion in an electrolyte solution of artificial saliva was investigated. Fractal dimension was used as a quantitative factor for surface analysis of the alloys before and after storage in the artificial salvia. The fractal dimensions of the electrode surfaces were determined by means of the most reliable method in this context viz. time dependency of the diffusion-limited current for a system involving "diffusion towards electrode surface". The results showed that increase of the beryllium amount in the alloy composition significantly increases the alloy corrosion. It is accompanied by increase of the fractal dimension and roughness of the electrode surface, whereas a smooth and shiny surface is required for dentures. From the methodology point of view, the approach utilized for fractal analysis of the alloy surfaces (Au-masking of metallic surfaces) is a novel and efficient method for study of denture surfaces. Generally, this approach is of interest for corrosion studies of different metals and alloys, particularly where changes in surface structure have a significant importance.

  15. Modeling of Crevice Corrosion Stability of a NiCrMo Alloy and Stainless Steel

    SciTech Connect

    F.J. Presuel-Moreno; F. Bocher; J.R. Scully; R.G. Kelly

    2006-05-19

    Damage of structural significance from crevice corrosion of corrosion resistant alloys requires that at least a portion of the creviced area remain active over a sufficiently long period. Stifling results shen the aggressive chemistry required inside the crevice to keep the material depassivated, i.e., actively corroding, cannot be maintained. This loss of critical chemistry occurs when the rate of mass transport out of the crevice exceeds the rate of dissolution and subsequent hydrolysis of metal ions inside the crevice. For the treatment considered here, the mass transport conditions are constant for a given geometry and potential. What then controls the stability of the internal chemistry is the interaction between the electrochemical kinetics at the interface and the crevice chemistry composition. This work focuses on the parameters that control the stability of crevice corrosion by modeling the evolution of the chemical and electrochemical conditions within a crevice open only at one end (e.g. the mouth) in which the entire crevice is initially filled with the Critical Chemistry Solution (CCS) or filled with chemistries slightly less or more aggressive than the CCS. The crevice mouth is in contact with a weak acid solution (pH 3) that provides the boundary conditions at the crevice mouth. The potential at the mouth was held constant at +0.1 V{sub sce} in most instances with selected cases held at 0.0 V{sub sce}. The material selected was Ni-22Cr-6Mo alloy. The electrochemical kinetics at the pH values of interest have been recently characterized via potentiodynamic polarization. Figure 1 shows the polarization curves for Ni-22Cr-6Mo samples tested at room temperature in various HCl solutions. These data were used in all calculations. That is as the pH changed, a new polarization curve was applied to the position in the crevice. E, pH was calculated at each position and from this data, current at each position was determined. The effects of the crevice gap and

  16. Different Effect of Co on the Formation of Topologically Close-Packed Phases in Ni-Cr-Mo and Ni-Cr-Re Alloys

    NASA Astrophysics Data System (ADS)

    Shi, Qianying; An, Ning; Huo, Jiajie; Ding, Xianfei; Zheng, Yunrong; Feng, Qiang

    2017-09-01

    In current study, two sets of Ni-based alloys (Ni-Cr-Mo and Ni-Cr-Re series) containing 0 to 15 at. pct of Co addition were investigated to understand the formation behavior of TCP phases. Significant difference on the formation behavior of TCP phases and corresponding Co effect was found in two series alloys. TCP precipitates (P and µ phase) were observed in both grain interiors and boundaries in Ni-Cr-Mo series alloys. Higher levels of Co addition increased the supersaturation of Mo in the γ matrix, which explained that Co addition promoted µ phase formation. In contrast, the TCP precipitates (σ phase) formed by the manner of discontinuous precipitation transformation in the grain boundaries in Ni-Cr-Re series alloys. More Co additions suppressed the formation of σ phase, which was mainly attributed to the decreased supersaturation of Re in thermodynamically metastable γ matrix. The information obtained from simplified alloy systems in this study is helpful for the design of multicomponent Ni-based superalloys.

  17. Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels

    NASA Astrophysics Data System (ADS)

    Bodnar, R. L.; Ohhashi, T.; Jaffee, R. I.

    1989-08-01

    Three high-temperature bainitic alloy steels were evaluated in the laboratory to determine the effects of Mn, Si, and impurities ( i.e., S, P, Sn, As, and Sb) on microstructure and mechanical properties. The alloy steels were 3.5NiCrMoV and CrMoV, which are used for turbine rotors, and 2.25Cr-1Mo, which is used in pressure vessel applications. The important effects of Mn, Si, and impurities, which should control the design of these high-temperature bainitic steels, are presented. Key results are used to illustrate the influence of these variables on cleanliness, overheating, austenitizing, hardenability, tempering, ductility, toughness, temper embrittlement, creep rupture, and low-cycle fatigue. Low levels of Mn, Si, and impurities not only result in improved temper embrittlement resistance in these steels but also lead to an improvement in creep rupture properties ( i.e., improved strength and ductility). These results have produced some general guidelines for the design of high-temperature bainitic steels. Examples illustrating the implementation of the results and the effectiveness of the design guidelines are provided. Largely based on the benefits shown by this work, a high-purity 3.5NiCrMoV steel, which is essentially free of Mn, Si, and impurities, has been developed and is already being used commercially.

  18. Impact of Small Chemistry Variations in Plate and Weld Filler Metal on the Corrosion Performance of Ni-Cr-Mo Alloys

    SciTech Connect

    Fix, D V; Rebak, R B

    2006-02-05

    The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials in the range specified in the standard B 575.

  19. Effect of Small Variation in the Composition of Plates and Weld Filler Wires on the General Corrosion Rate of Ni-Cr-Mo Alloys

    SciTech Connect

    Fix, D V; Estill, J C; Rebak, R B

    2005-02-05

    The ASTM standard B 575 provides the requirements for the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo) alloys such as Alloy 22 (N06022) and Alloy 686 (N06686). The compositions of each element are given in a range. For example, the content of Mo is specified from 12.5 to 14.5 weight percent for Alloy 22 and from 15.0 to 17.0 weight percent for Alloy 686. It was important to determine how the corrosion rate of welded plates of Alloy 22 using Alloy 686 weld filler metal would change if heats of these alloys were prepared using several variations in the composition of the elements even though still in the range specified in B 575. All the material used in this report were especially prepared at Allegheny Ludlum Co. Seven heats of plate were welded with seven heats of wire. Immersion corrosion tests were conducted in a boiling solution of sulfuric acid plus ferric sulfate (ASTM G 28 A) using both as-welded (ASW) coupons and solution heat-treated (SHT) coupons. Results show that the corrosion rate was not affected by the chemistry of the materials within the range of the standards.

  20. Coupled Multi-Electrode Investigation of Crevice Corrosion of 316 Stainless Steel and NiCrMo Alloy 625

    SciTech Connect

    F. Bocher; F.J. Presuel-Moreno; J.R. Scully

    2006-06-08

    Crevice corrosion is currently mostly studied using either one of two techniques depending on the information desired. The first method involves two multicrevice formers or washers fastened on both sides of a sample plate. This technique provides exposure information regarding the severity of crevice corrosion (depth, position, frequency of attack) but delivers little or no electrochemical information. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in a model crevice solution or under a crevice former in aggressive solution where crevice corrosion may initiate and propagate and global current is recorded. However, crevice corrosion initiation and propagation behavior is highly dependent on exact position in the crevice over time. The distance from the crevice mouth will affect the solution composition, the pH, the ohmic potential drop and the true potential in the crevice. Coupled multi-electrode arrays (MEA) were used to study crevice corrosion in order to take in account spatial and temporal evolution of electrochemistry simultaneously. Scaling laws were used to rescale the crevice geometry while keeping the corrosion electrochemical properties equivalent to that of a natural crevice at a smaller length scale. one of the advantages was to be able to use commercial alloys available as wires electrode and, in the case of MEA, to spread the crevice corrosion over many individual electrodes so each one of them will have a near homogeneous electrochemical behavior. The initial step was to obtain anodic polarization curves for the relevant material in acid chloride solution which simulated the crevice electrolyte. using the software Crevicer{trademark}, the potential distribution inside the crevice as a function of the distance from the crevice mouth was determined for various crevice gaps and applied potentials, assuming constant chemistry throughout the crevice. The crevice corrosion initiation location x{sub crit} is

  1. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang

    2012-07-01

    It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.

  2. Improvement of Ni-Cr-Mo coating performance by laser cladding combined re-melting

    NASA Astrophysics Data System (ADS)

    Wang, Qin-Ying; Bai, Shu-Lin; Zhang, Yang-Fei; Liu, Zong-De

    2014-07-01

    Although being an efficient technique to produce metallic alloy coating, laser cladding may leave original unmelted particles in the coating. Further treatment is thus necessary to improve the coating quality, and laser re-melting therefore becomes a potential method. In this study, Ni-Cr-Mo alloy coatings were prepared on Q235 steel substrate by laser cladding (coating N1) and then re-melted by laser (coating N2) with the same technic parameters. The initial defect evolution and its effect on hardness and corrosion resistance of coatings were studied. The results show that there are fewer and smaller defects in coating N2 than in coating N1, which is ascribbed to the disappearance and partial melting of Cr/Cr2O3 particles. The nearly unchanged hardness of coatings N1 and N2 is justified by both Vickers tests and nanoindentation combined theoretical calculation. Coating N2 with higher positive corrosion potential and lower corrosion current density exhibits better corrosion resistance than coating N1. Above results prove that laser re-melting can refine the microstructure and improve corrosion resistance of coatings to some degree.

  3. Metallographic etching and microstructure characterization of NiCrMoV rotor steels for nuclear power

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Lu, Feng-gui; Liu, Xia; Gao, Yu-lai

    2013-12-01

    The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely characterize the grain size of prior austenite. For NiCrMoV rotor steels quenched and tempered at high temperature, it is really difficult to display the grain boundaries of prior austenite clearly, which limits a further study on the correlation between the properties and the corresponding microstructure. In this paper, an effective etchant was put forward and further optimized. Experimental results indicated that this agent was effective to show the details of grain boundaries, which help analyze fatigue crack details along the propagation path. The optimized corrosion agent is successful to observe the microstructure characteristics and expected to help analyze the effect of microstructure for a further study on the mechanical properties of NiCrMoV rotor steels used in the field of nuclear power.

  4. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    SciTech Connect

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  5. Effects of phosphorus and molybdenum on the caustic stress corrosion cracking of NiCrMoV steels

    SciTech Connect

    Bandyopadhyay, N.; Briant, C.L.

    1984-01-01

    This paper presents a study of the effects of phosphorus and molybdenum on caustic stress corrosion cracking of 3.5NiCrMoV rotor steels. The results show that phosphorus segregation to the grain boundaries substantially lowers the resistance of the steel to caustic cracking. Removal of molybdenum provides some improvement in the resistance to caustic cracking.

  6. Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb

    NASA Astrophysics Data System (ADS)

    Venkatesh, L.; Samajdar, I.; Tak, Manish; Doherty, Roger D.; Gundakaram, Ravi C.; Prasad, K. Satya; Joshi, S. V.

    2015-12-01

    Microstructural development in laser clad layers of Chromium carbide (CrxCy)-NiCrMoNb on SA 516 steel has been investigated. Although the starting powder contained both Cr3C2 and Cr7C3, the clad layers showed only the presence of Cr7C3. Microtexture measurements by electron back scattered diffraction (EBSD) revealed primary dendritic Cr7C3 with Ni rich FCC metallic phase being present in the interdendritic spaces. Further annealing of the laser clad layers and furnace melting of the starting powder confirmed that Cr7C3 is the primary as well as stable carbide phase in this multi component system. Increase in laser power and scanning speed progressively reduced carbide content in the laser clad layers. Increased scanning speed, which enhances the cooling rate, also led to reduction in the secondary arm spacing (λ2) of the Cr7C3 dendrites. The clad layer hardness increased with carbide content and with decreased dendrite arm spacing.

  7. Restoration of Obliterated Numbers on 40NiCrMo4 Steel by Etching Method: Metallurgical and Statistical Approaches.

    PubMed

    Fortini, Annalisa; Merlin, Mattia; Soffritti, Chiara; Garagnani, Gian L

    2016-01-01

    The restoration of obliterated serial numbers is a problem of common occurrence in the forensic field. Among several restoration techniques, chemical etching is the most frequently used. The present research is aimed at studying the restoration of serial numbers, stamped on 40NiCrMo4 steel plates, by means of chemical etching. Microstructural characterization was firstly carried out to study the plastically deformed regions surrounding the marks. The obliteration was performed by controlled removals of material at increasing depths of erasure, and five etching reagents were considered to analyze their sensitivity and effectiveness. Experimental results revealed that Fry's reagent was the most sensitive, able to restore erased marks up to 60 μm under the depth of the imprint. The reagent comprising 25 mL HNO3 and 75 mL H2O provided good results, recovering the major numbers of characters. A descriptive statistical analysis was conducted to study the operator's influence on the recovered marks' identification. © 2015 American Academy of Forensic Sciences.

  8. Stress corrosion cracking behavior of 3.5NiCrMoV steel in carbonated pure water

    SciTech Connect

    Tsuchiyama, Tomohiro; Matsumoto, Osamu; Nakayama, Takenori |

    1998-12-31

    SCC susceptibility of 3.5NiCrMoV steel in a carbonated pure water at 157 C decreased with the decrease of P content in steel. SCC susceptibility also decreased by the addition of Nb. It was also confirmed that the SCC cracks were primarily intergranular. An Auger electron spectroscopy (AES) analysis revealed that P segregation to grain boundary might play an essential role in accelerating SCC susceptibility, and Nb could suppress the P segregation to grain boundary. The role of Nb in raising resistance to SCC is thought to be attributed to the decreasing P segregation to grain boundary, resulting from increasing segregation interface due to fine NbC formation in steel. The measurement of anodic current decay in a carbonated solution with and without HPO{sub 4}{sup 2{minus}} ion showed that HPO{sub 4}{sup 2{minus}} ion accelerates the repassivation of a fresh surface, indicating that P segregation to grain boundary might be mainly attributed to the crack-sharpening effect due to repassivation by the formation of phosphate species at the crack tip.

  9. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  10. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings

    NASA Astrophysics Data System (ADS)

    Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho

    2016-12-01

    Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.

  11. APFIM characterization of 15Kh2MFA Cr-Mo-V and 15Kh2NMFA Ni-Cr-Mo-V type steels

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Jayaram, R.; Othen, P. J.; Brauer, G.

    1994-03-01

    A microstructural characterization of 15Kh2MFA Cr-Mo-V and 15Kh2NMFA Ni-Cr-Mo-V type steels that are used in the pressure vessels of Russian VVER 440 and VVER 1000 nuclear reactors, respectively, has been performed with the use of the techniques of atom-probe field-ion microscopy (APFIM) and transmission electron microscopy. The microstructure of these materials was found to be tempered martensite and bainite. A high number density of coarse (≈ 50 to ≈ 500 nm) blocky M 7C 3 carbides and some inclusions were observed. In addition to these coarse carbides, some finer (≈ 10 nm diameter) approximately spherical MC carbides were also observed in the VVER 440 steel. Field-ion microscopy has revealed that the lath boundaries in both unirradiated VVER 440 and VVER 1000 reactor steels are decorated with an ultrathin semicontinuous film of molybdenum-carbonitride precipitates. Atom-probe analysis has revealed a high enrichment of phosphorus at the lath boundaries.

  12. The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating part 2: Erosion-corrosion behavior

    NASA Astrophysics Data System (ADS)

    Shrestha, S.; Hodgkiess, T.; Neville, A.

    2001-12-01

    In this paper, a study of the erosion-corrosion characteristics of a Ni-Cr-Mo-Si-B coating applied by the high-velocity oxy-fuel (HVOF) process on to an austenitic stainless steel (UNS S31603) substrate are reported. The coatings were studied in the as-sprayed condition, after vacuum sealing with polymer impregnation and after vacuum furnace fusion. The erosion-corrosion characteristics were assessed in an impinging liquid jet of 3.5% NaCl solution at 18 °C at a velocity of 17 m/s at normal incidence in two conditions: (1) free from added solids and (2) containing 800 ppm silica sand. The methodology employed electrochemical control and monitoring to facilitate the identification of the separate and interrelated erosion and corrosion contributions to the erosion-corrosion process. The rates of erosion-corrosion damage were drastically accelerated in the presence of the suspended solids. The application of cathodic protection significantly reduced the deterioration process. The study showed the effect of sealing with polymer impregnation did not significantly alter the erosion-corrosion behavior of the sprayed coating. However, there was a significant improvement in erosion-corrosion durability afforded by the postfusion process. The mechanisms by which the improved performance of vacuum-fused coatings is achieved are discussed.

  13. High-resolution diffraction for residual stress determination in the NiCrMoV wheel of an axial compressor for a heavy-duty gas turbine

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Török, G.; Ceschini, G. F.; Tognarelli, L.; Füzesy, I.; Rosta, L.

    2004-07-01

    The wheel of an axial compressor for a heavy-duty gas turbine has been investigated for residual stresses (RS) evaluation of the teeth-section where SANS measurements have previously been performed. Such a component can contain internal RS, either due to the manufacturing process, or to the operating cycles fatigue. The constitutive material is a NiCrMoV steel to ASTM A 471 (type 2) norms (equivalent to B50A420B10); this material is usually adopted in the manufacturing of forged components for gas turbines. Internal radial and hoop RS have been determined, whose values are under the limit of 200kPa. Hoop RS, in general, resulted in higher value than the radial ones. The present experiment represents a particularly important step in the RS determination for gas turbine components, since the measurements reveal that the fatigue of the wheel is also a lifetime limiting factor although, in the same technological field, the available data in the actual neutron techniques literature mainly concern turbine buckets.

  14. Microhardness of Ni-Cr alloys under different casting conditions.

    PubMed

    Bauer, José Roberto de Oliveira; Loguercio, Alessandro Dourado; Reis, Alessandra; Rodrigues Filho, Leonardo Eloy

    2006-01-01

    This study evaluated the microhardness of Ni-Cr alloys used in fixed prosthodontics after casting under different conditions. The casting conditions were: (1-flame/air torch) flame made of a gas/oxygen mixture and centrifugal casting machine in a non-controlled casting environment; (2-induction/argon) electromagnetic induction in an environment controlled with argon; (3-induction/vacuum) electromagnetic induction in a vacuum environment; (4-induction/air) electromagnetic induction in a non-controlled casting environment. The 3 alloys used were Ni-Cr-Mo-Ti, Ni-Cr-Mo-Be, and Ni-Cr-Mo-Nb. Four castings with 5 cylindrical, 15 mm-long specimens (diameter: 1.6 mm) in each casting ring were prepared. After casting, the specimens were embedded in resin and polished for Vickers microhardness (VH) measurements in a Shimadzu HMV-2 (1,000 g for 10 s). A total of 5 indentations were done for each ring, one in each specimen. The data was subjected to two-way ANOVA and Tukey's multiple comparison tests (alpha = 0.05). The VH values of Ni-Cr-Mo-Ti (422 +/- 7.8) were statistically higher (p < 0.05) than those of Ni-Cr-Mo-Nb (415 +/- 7.6). The lowest VH values were found for Ni-Cr-Mo-Be (359 +/- 10.7). The VH values obtained in the conditions induction/argon and induction/vacuum were similar (p > 0.05) and lower than the values obtained in the conditions induction/air and flame/air torch (p < 0.05). The VH values in the conditions induction/air and flame/air were similar (p > 0.05). The microhardness of the alloys is influenced by their composition and casting method. The hardness of the Ni-Cr alloys was higher when they were cast with the induction/air and flame/air torch methods.

  15. The effects of double austenitization on the mechanical properties of a 0. 34C containing low-alloy Ni-Cr-Mo-V steel

    SciTech Connect

    Chang, E.; Chang, C.Y. . Dept. of Materials Science and Engineering); Liu, C.D. )

    1994-03-01

    This article considers five different microstructures of a tempered martensitic 0.34C, 3Ni-1.3Cr-0.4Mo-0.1V steel through various heat treatments, including double austenitization (DA) treatments, and how the impact toughnesses are influenced by microstructure. Of the four mechanisms considered to explain the beneficial effect of DA treatment, the roles of retained austenite, grain-boundary embrittlement by impurity segregation, and matrix flow stress are discounted. The 50 pct fracture appearance transition temperature (FATT) of this steel is found to be dependent on both the grain size and the carbide dissolution. The conventionally treated steel contains mainly platelike M[sub 3]C carbides. The DA treatment helps to dissolve VC carbides and coarsen and spheroidize M[sub 3]C carbides in favor of the precipitation of short rodlike M7C3 carbides with a lower aspect ratio. The improvement of impact toughness (upper shelf energy, ductile-to-brittle transition temperature (DBTT), and lower shelf energy) by DA treatment, explained in detail, is attributed to a change of this material's tensile and work-hardening behavior affected by a variation of carbide morphology.

  16. Nickel-based Gadolinium Alloy for Neutron Adsorption Application in Ram Packages

    SciTech Connect

    Gregg Wachs; James Sterbentz; William Hurt; P. E. McConnell; C. V. Robino; F. Tovesson; T. S. Hill

    2007-10-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy and chromium-nickel (Cr-Ni) stainless steel, modified by the addition of boron. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the materials at specific gadolinium and boron dopant levels. The Ni-Cr-Mo-Gd alloy is envisioned to be deployed for criticality control of highly enriched U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). For these transmission experiments, test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy and 1.16 wt% boron in stainless steel. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using total neutron cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium and boron elements and in addition, verified the measured elemental composition of the Ni-Cr-Mo-Gd alloy and borated stainless steel test samples. The good agreement also indirectly confirmed that the size and distribution of the gadolinium in both the hot-top (as-cast) and Ni-Cr-Mo-Gd converted to plate was not a discriminator related to neutron absorption. Moreover, the Evaluated Nuclear Data File (ENDF VII) total neutron cross section data were accurate.

  17. Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I

    NASA Astrophysics Data System (ADS)

    Machmeier, P.; Matuszewski, T.; Jones, R.; Ayer, R.

    1997-06-01

    The effect of chromium additions to an Fe-14Co-10Ni-0.1Mo-0.16C (AF1410 based) secondary hardening steel was evaluated by mechanical and physical properties and by microstructural examination. This unique behavior was extended to encompass a large range of aging temperatures and times that may be encountered during commercial thermal treatment and/or welding. In the aging range of 482 to 550 °C, an increase in chromium from 2 to 3% in the AF1410 based steel resulted in a substantial strength decrease concomitant with an increase in toughness. This behavior is related to a peak hardening shift, early M2C carbide coarsening, and an increase in reverted austenite for the 1 wt% Cr increase. The increased aging kinetics resulting from the 3Cr steel caused a faster dissolution of Fe3C and rapid changes in chromium partitioning in the (Mo,Cr)2C carbide resulting in a coherency loss with a corresponding decrease in lattice parameter. The kinetics of the secondary hardening reaction, for the two steels, was determined by resistivity data for changes in aging parameters (time/temperature).

  18. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    SciTech Connect

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface. The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.

  19. The effect of alloy composition on the localized corrosion behavior of nickel-chromium-molybdenum alloys

    NASA Astrophysics Data System (ADS)

    Wong, Fariaty

    Ni-Cr-Mo alloys are one of the most versatile Ni-based alloys because they resist corrosion in a variety of environments. This versatility is due to the combination of Cr and Mo additions to the alloy. These alloying elements complement each other in producing a highly corrosion resistant alloy. The concentration of the elements in the alloy establishes the corrosion behavior of these alloys. In this study, Ni-Cr-Mo alloys with varying composition were studied using electrochemical methods. The dependency of pitting corrosion on the alloy chemistry was captured in empirical models that roughly rank the pitting susceptibility of the Ni-Cr-Mo alloys studied. The same type of model was also constructed for capturing the effect of alloy composition on the repassivation potential. It was found that these models were specific in terms of alloying element effects on the type of environments exposed to the alloys particularly, pH and temperature. The addition of chromium was shown to contribute to the higher pitting potential on the Ni-Cr-Mo alloys in neural chloride environment while molybdenum was dominant in acidified chloride solutions. In regards to the repassivation potential, both chromium and molybdenum affect the repassivation potential more or less evenly in neutral pH solutions. Under low pH high temperature conditions, molybdenum content has a greater effect on the repassivation potential value than chromium. Stabilization of localized corrosion is increasingly difficult as alloying element content increases. However, metastable pitting occurs in most alloys and the metastable pitting behavior of several Ni-Cr-Mo alloys was studied through potentiostatic analysis. Higher chromium and molybdenum contents decreased the metastable pitting incidence; although, the effect of Mo content was observed to be more dominant. Molybdenum additions were found to suppress the growth of the metastable pits. The growth rate of the fastest growing pits was also reduced by

  20. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis.

    PubMed

    Kocijan, Aleksandra; Milosev, Ingrid; Pihlar, Boris

    2004-06-01

    The composition of the passive layers formed by electrochemical oxidation at different passivation potentials on Co-Cr-Mo and Co-Ni-Cr-Mo alloys in simulated physiological solution (SPS), with and without the complexing agent EDTA, was studied by X-ray photoelectron spectroscopy. Composition as a function of depth, cationic fraction and thickness of the passive film was determined. Chromium oxide is shown to be the major constituent of the passive layer on both Co-Cr-Mo and Co-Ni-Cr-Mo alloys. The minor constituents of the passive layers, Co- and Mo-oxide in the case of Co-Cr-Mo alloy and Ni-, Co- and Mo-oxides in the case of Co-Ni-Cr-Mo alloy, are also located in the outer part of the layer. EDTA affects the formation of the passive layer on each alloy. The content of Co-, Ni- and Mo-oxide in the passive layer is lower in the presence of EDTA, thus indicating increased solubility associated with higher stability constants for complexes of metal cations with EDTA.

  1. Commercial casting of nickel aluminide alloys

    SciTech Connect

    Orth, J.E.; Sikka, V.K.

    1995-11-01

    Commercial development of nickel aluminides has been limited in the past by a lack of technological know-how for melting and casting these alloys. However, the Exo-Melt method, a patented process previously described in AM and P (June 1995), has recently been used to successfully melt and pour commercial-sized heats of this new class of engineering materials. As of August 1995, more than 3,400 kg (7,500 lb) of nickel aluminide alloys have been successfully melted using the Exo-Melt process in an induction furnace under argon cover. This work has been performed by United Defense LP, which is the sole foundry licensed to melt and pour nickel aluminide-based alloys, in conjunction with Oak Ridge National Laboratory. This article provides a close look at the commercialization of the Exo-Melt process at United Defense LP, and at the nickel aluminide-based alloys--their physical and mechanical properties, commercial applications,and some comparisons with traditional heat-resistant alloys.

  2. The effect of mucine, IgA, urea, and lysozyme on the corrosion behavior of various non-precious dental alloys and pure titanium in artificial saliva.

    PubMed

    Bilhan, H; Bilgin, T; Cakir, A F; Yuksel, B; Von Fraunhofer, J A

    2007-11-01

    The corrosion of dental alloys has biological, functional, and aesthetic consequences. Various studies have shown that protein solutions can inhibit the corrosion of alloys. This study is planned to determine the relationship of organic constituents of saliva and the corrosion of dental alloys. The organic constituents are IgA, mucine, urea, and lysozyme which are encountered in the highest amounts in saliva and the dental materials are titanium (Ti), Co-Cr-Mo and Ni-Cr-Mo alloys, and dental amalgam, the most often used metallic components in dentistry. In particular, the interactions between the commonest salivary proteins, IgA, mucine, urea and lysozyme, and Ti, Co-Cr-Mo, Ni-Cr-Mo and dental amalgam were investigated. Each alloy was evaluated by cyclic polarization in each medium. The general anodic and cathodic behavior during forward and reverse cycles, the corrosion and passivation current densities (muA/cm2 ), and the corrosion and the pitting potentials (mV) were determined. The results have shown that Ni-Cr-Mo and dental amalgam alloys are highly susceptible to corrosion in all the investigated media. The Co-Cr-Mo alloy has shown high passive current densities in the solution of mucine and lysozyme in artificial saliva. Titanium instead, has shown a high resistance to corrosion and a stable passive behavior in all media, especially in a solution of mucine and IgA in synthetic saliva. Mucine and IgA, as well as urea and lysozyme, appeared to enhance the formation of a passive film layer on the Ti metal surface, thus inhibiting the corrosion. Based on the study findings, and especially considering the problem of nickel allergy and toxicity of mercury released from dental amalgam, the use of Co-Cr-Mo alloys and Ti to Ni-Cr-Mo alloys is recommended and alternatives to dental amalgam should be sought for patients with impaired salivary flow.

  3. NiCr M ( M = W, Mo, V) ternary alloy tapes as cube-textured substrates for second-generation superconducting cables

    NASA Astrophysics Data System (ADS)

    Rodionov, D. P.; Gervas'eva, I. V.; Khlebnikova, Yu. V.; Kazantsev, V. A.; Sazonova, V. A.

    2012-05-01

    Development of the deformation texture and recrystallization processes have been studied in some ternary nickel-based alloys of the Ni-Cr-W, Ni-Cr-Mo, and Ni-Cr-V systems. An optimum relationship between the amounts of the alloying elements upon the combined alloying of nickel has been found. Problems of the optimization of the regimes of recrystallization annealing have been considered, which are related to an increase in the temperature of the onset of primary recrystallization in ternary nickel alloys after deformation by rolling to large reductions. An analysis of mechanical and magnetic properties of all the alloys has been performed.

  4. Surface Modification of Oilfield Alloys by Ultrasonic Impact Peening: UNS N07718, N07716, G41400, and S17400

    NASA Astrophysics Data System (ADS)

    Singh, Virendra; Marya, Manuel

    2016-01-01

    Ultrasonic impact peening (UIP) is a severe plastic deformation process to induce localized surface hardening combined with compressive residual stresses which therefore extends the useful life of mechanical parts. In this investigation, UIP has been applied to four widespread alloys in use in the oilfields. These include two premium NiCrMo alloys, UNS N07718 (718) and UNS N07716 (625 Plus®), both characterized by satisfactory oilfield performance but lacking hardness and abrasive wear resistance, and two relatively low-cost alloys, UNS G41400 (4140) and UNS S17400 (17-4PH), both limited by their corrosion fatigue. To promote comparisons and determine important alloy parameters for successful UIP, all four alloys were carefully selected so that their respective yield strengths were within relative proximity (~780 to ~910 MPa), and then ultrasonically impact peened under identical conditions. Among major findings from microstructural examinations, micro-hardness indentations, and residual stress measurements, surface topological changes (roughness), alloy microstructural evolution (depth and extent of strain hardening, including mechanical twinning in the NiCrMo alloys), and compressive residual stresses were found to be well correlated. Among all four alloys, the NiCrMo alloys, in particular UNS N07716 was found to be best suited for UIP. This is explained by its FCC austenitic microstructure, relatively low stacking-fault energy (prone to mechanical twinning), and in practical terms high yield strength and high tensile-to-yield strength ratio, both related to its excellent plastic flow behavior under ultrasonic rates of plastic deformation.

  5. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  6. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  7. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    SciTech Connect

    Gdowski, G.E.

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  8. Superplastic behavior in a commercial 5083 aluminum alloy

    SciTech Connect

    Vetrano, J.S.; Lavender, C.A.; Smith, M.T.; Bruemmer, S.M. ); Hamilton, C.H. . Dept. of Mechanical and Materials Engineering)

    1994-03-01

    When considering the forming and post-forming properties required of a superplastic material, attractive candidates are commercial Al-Mg-Mn weldable alloys such as AA5083. There have been several investigations of hot deformation of 5083-type alloys in the literature. Only two studies evaluated commercial-purity 5083 and they achieved tensile elongations of 150% and 200%. Alloy modification has produced improved behavior in three 5083-type alloys developed specifically for SPF. Two were deemed high-purity 5083 (low Fe and Si) and achieved elongations of 450% and 630%. Engineering strains up to 700% were measured by Watanabe et al. in a 5083-based alloy with the addition of 0.6% Cu as a grain refiner. These results suggest that alloy modifications such as reduced Fe and Si contents or Cu additions may be required to improve superplastic response. Unfortunately, specific SPF-grade 5083 alloys are substantially more expensive than the commercial grade, and the addition of Cu decreases the corrosion resistance of the base material. The purpose of this work is to examine the effect of prior degrees of cold work on the SPF behavior of a standard-grade 5083 alloy. Superplastic behavior of this material at 510[degree]C is assessed and compared to published results for the SPF-grade alloys.

  9. CHARACTERIZATION OF AN ADVANCED GADOLINIUM NEUTRON ABSORBER ALLOY BY MEANS OF NEUTRON TRANSMISSION

    SciTech Connect

    Gregg W. Wachs

    2007-09-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the alloy at specific gadolinium dopant levels. The new alloy is to be deployed for criticality control of highly enriched DOE SNF. For the transmission experiments, alloy test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using only radiative capture cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium poison and in addition, verified the measured elemental composition of the alloy test samples. The good agreement also indirectly confirmed that the gadolinium was dispersed fairly uniformly in the alloy and the ENDF VII radiative capture cross section data were accurate.

  10. Swelling of several commercial alloys following high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Powell, R. W.; Peterson, D. T.; Zimmerschied, M. K.; Bates, J. F.

    Swelling values have been determined for a set of commercial alloys irradiated to a peak fluence of 1.8 × 10 23 n/cm 2 (E >0.1 MeV) over the temperature range of 400 to 650°C. The alloys studied fall into three classes: the ferritic alloys AISI 430F, AISI 416, EM-12, H-11 and 2 {1}/{4}Cr-1Mo; the superalloys Inconel 718 and Inconel X-750; and the refractory alloys TZM and Nb-1Zr. All of these alloys display swelling resistance far superior to cold worked AISI 316. Of the three alloy classes examined the swelling resistance of the ferritics is the least sensitive to composition.

  11. Influence of the Environment on the General Corrosion Rate of Alloy 22 (N06022)

    SciTech Connect

    Rebak, R B; Crook, P

    2004-04-19

    Nickel (Ni) can dissolve a large amount of alloying elements while still maintaining its desirable austenitic microstructure. The resulting alloys are generally divided in families depending on the type of alloying elements they contain. Each one of these families is aimed to specific applications. Corrosive environments in industrial applications are generally divided for example in reducing acids, oxidizing acids, contaminated acids, caustic environments, oxidizing salts, etc. Depending on the application and the environment (electrolyte composition and temperature) several or single alloys may be recommended to fabricate components. The Nichromium-molybdenum (Ni-Cr-Mo) series contains a balanced selection of beneficial alloying elements so it can handle a variety of aggressive environments. By design, Alloy 22 or N06022 is one of the most versatile corrosion resistant nickel alloys since it has an outstanding corrosion resistance both in reducing and oxidizing conditions.

  12. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Jiang, Shuyun; Xu, Zhong

    2008-04-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2O 3, MoO 3, SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.

  13. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  14. Development of Commercial Applications of a FAPY Alloy

    SciTech Connect

    Sikka, VK

    2001-08-24

    The Fe-16 at. (8.5 wt) % Al alloy, known as FAPY, has been identified as a superior material for heating element applications. However, while the 15-lb heats melted at the Oak Ridge National Laboratory (ORNL) could be processed into wire, the large heat melted at Hoskins Manufacturing Company (Hoskins) could not be processed under commercial processing conditions. The primary objective of the Cooperative Research and Development Agreement (CRADA) was to demonstrate that wire of the FAPY alloy could be produced under commercial conditions from air-induction-melted (AIM) heats. The specific aspects of this CRADA included: (1) Melting 15-lb heats by AIM or vacuum-induction melting (VIM) at ORNL. (2) Development of detailed processing steps including warm drawing and annealing temperature and time during cold-drawing steps. (3) Melting of 1400-lb heats at Hoskins by the Exo-Melt{trademark} process and their chemical analysis and microstructural characterization. (4) Development of tensile properties of sections of ingots from the large heats in the ascast, hot-worked, and hot- and cold-worked conditions. (5) Microstructural characterization of cast and wrought structures and the fractured specimens. (6) Successful demonstration of processing of AIM heats at Hoskins to heating element wire. The aspects of this CRADA listed above have demonstrated that the FAPY alloy of the desired composition can be commercially produced by AIM by the use of the Exo-Melt{trademark} process. Furthermore, it also demonstrated that the wire processing steps developed for 15-lb heats at ORNL can be successfully applied to the production of wire from the large AIM heats.

  15. An analysis of intergranular segregation of sulphur in a low alloy steel by stress-induced diffusion process

    SciTech Connect

    Misra, R.D.K.; Kashyap, B.P.

    1996-09-15

    Grain boundary segregation isotherms, determined through fracture experiments in a scanning Auger microprobe, have recently been employed to study interactions amongst trace and alloying elements in a low alloy steel, to elucidate alloying and microstructural effects and to describe the effects of tensile stress on grain boundary segregation of elements. It was determined from the ready applicability of grain boundary segregation isotherms, recorded for isothermally aged low alloy steels under unstressed and stressed conditions, that the application of tensile stress during aging enhances the grain boundary segregation of trace elements, in particular, sulphur. The present paper is a sequel to the earlier work concerning the influence of applied tensile stress on intergranular segregation of sulphur in 2.6NiCrMoV low alloy steel. The study attempts to corroborate the earlier viewpoint that stress-driven diffusion of impurity element, sulphur, is a transient redistribution process and is a particular manifestation of Coble creep effect.

  16. Technological features of metal-ceramic prosthesis frameworks manufactured from domestic alloys of precious and base metals.

    PubMed

    Parunov, V A; Yurkovets, P V; Lebedenko, I Yu

    2016-01-01

    The aim of the study was to examine changes in physical and mechanical properties of dental alloys depending of the initial composition at re-casting. Russianc precious alloys: Plagodent (AuPtPd) and Palladent (PdAu) and base alloys: Vitiriy-N (NiCrMo) and Vitiriy-C (CoCrMo) were used as study samples, which were divided in three groups: a primary casting from the granules; 50% of re-casting; 100% of re-casting. We investigated the yield strength in bending, coefficient of thermal expansion and hardness. Changing in the composition of the alloys has led to changes of all physical and mechanical properties.

  17. Adhesion, friction and Auger spectroscopy analysis of a commercial cobalt base aircraft turbine shroud alloy

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    A commercially used cast cobalt base alloy was investigated as a turbine shroud material which revealed a surface enriched with tungsten and carbon suggesting a surface layer of tungsten carbide. Adhesion and friction of this segregated surface layer are higher than for the bulk cobalt base alloy composition. Auger spectroscopy analysis of the segregation of tungsten in the alloy indicates that it occurs between 850 and 1000 C.

  18. Precipitation of α' in neutron irradiated commercial FeCrAl alloys

    DOE PAGES

    Field, Kevin G.; Littrell, Kenneth C.; Briggs, Samuel A.

    2017-08-17

    In this paper, Alkrothal 720 and Kanthal APMT™, two commercial FeCrAl alloys, were neutron irradiated up to damage doses of 7.0 displacements per atom (dpa) in the temperature range of 320 to 382 °C to characterize the α' precipitation in these alloys using small-angle neutron scattering. Both alloys exhibited α' precipitation. Kanthal APMT™ exhibited higher number densities and volume fraction, a result attributed to its higher Cr content compared with Alkrothal 720. Finally, trends observed as a function of damage dose (dpa) are consistent with literature trends for both FeCr and FeCrAl alloys

  19. Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys

    NASA Astrophysics Data System (ADS)

    Krishna, L. Rama; Purnima, A. Sudha; Wasekar, Nitin P.; Sundararajan, G.

    2007-02-01

    The micro arc oxidation (MAO) technique is being increasingly recognized as a novel and ecofriendly means of depositing dense ceramic oxide coatings on Al and its alloys. In the present study, the deposition kinetics, surface roughness, morphology, phase distribution and the microhardness of the MAO coatings deposited on ten different commercially available Al substrates having widely differing chemical composition has been investigated. Further, the tribological properties of the coatings obtained on different Al alloys in comparison with the bare substrates have also been evaluated using dry sand abrasion, solid-particle erosion and pin-on-disc dry sliding wear tests. The results clearly demonstrate that the alloying elements added to the Al substrate substantially influence the MAO coating deposition kinetics and coating properties. In the case of Al-Si alloys, the coating deposition kinetics is non-linear and the Al6Si2O13 (mullite) is observed to form. With increasing Si content, the corresponding mullite phase also increases. Increasing mullite content in the coating adversely affects the tribological performance. Excepting Al-Si alloys, all other alloys investigated including commercial purity Al exhibit linear coating deposition kinetics. Of all the alloys investigated, Al-Li alloy exhibits the highest coating deposition rate and the 6061 T6 Al alloy exhibits the best coating properties.

  20. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori

    2017-06-01

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.

  1. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-03-28

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less

  2. High temperature corrosion behavior of commercial high temperature alloys under deposits of alkali salts

    SciTech Connect

    Kloewer, J.

    1995-12-31

    Corrosive deposits containing high amounts of alkali sulphates, chlorides and/or carbonates are encountered by heat exchanger tubes in a variety of industrial processes. Due to their low melting point the alkali salts can cause basic or acidic dissolution of the subjacent material, which results in rapid wastage of the tube. In order to select appropriate materials for application in heat recovery systems eight commercial high temperature materials (alloy 800H, Alloy 31, Alloy AC66, alloy 45-TM, Alloy 625, Alloy 59 and Alloy C-4) were investigated in sulphate, sulphate/chloride and sulphate/chloride/carbonate salt mixtures. The temperature range was between 550 and 750 C. In agreement with field tests the corrosion attack was high for most of the alloys tested with the corrosion rate depending sensitively on salt composition, test temperature and alloy composition. High molybdenum contents were found to be detrimental. Chromium did not effect the corrosion behavior significantly, whereas silicon had a beneficial effect on the corrosion resistance in molten alkali salts.

  3. Reactive Commercial Ni/Al Nanolayers for Joining Lightweight Alloys

    NASA Astrophysics Data System (ADS)

    Simões, Sónia; Viana, Filomena; Vieira, Manuel F.

    2014-05-01

    Reactive nanoscale multilayer foils for use in joining techniques have attracted a great deal of attention. A common feature of these nanolayers is the large amount of heat released during the reaction between the layers to form a new phase. In this study, films of alternated Ni and Al nanolayers (NanoFoil® made by the Indium Corporation) with period (bilayer thickness) close to 54 nm and with a thickness of 60 μm were used as local heat sources to bond lightweight alloys. The as-deposited Ni and Al alternated nanolayers evolve into NiAl nanometric grains when the multilayer, ignited by an electrical discharge, reacts. Joining of lightweight alloys was performed at room temperature under pressures of 10-80 MPa. The ability of the nanolayers to join these alloys by high temperature diffusion bonding was also investigated. The microstructural and chemical characterizations of the interfaces were performed on cross-sections of the joints by scanning electron microscopy and energy dispersive x-ray spectroscopy. Ni/Al nanolayers are an effective means of joining titanium alloys at room temperature. A sound interface, mainly composed by NiAl grains, is obtained in joints of TiAl/TiAl and TiAl/Inconel, produced with NanoFoil® by annealing at 700 ºC, during 60 min under a pressure of 10 MPa. The low shear strength revealed a weak adhesion of the nanofoil to the base materials.

  4. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  5. Development and commercialization status of Fe{sub 3}Al-based intermetallic alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; McKamey, C.G.

    1993-06-01

    The Fe{sub 3}Al-based intermetallic alloys offer unique benefits of excellent oxidation and sulfidation resistance, limited by poor room-temperature (RT) ductility and low high-temperature strength. Recent understanding of environmental effects on RT ductility of these alloys has led to progress toward taking commercial advantage of Fe{sub 3}Al-based materials. Cause of low ductility appears to be related to hydrogen formed from reaction with moisture. The environmental effect has been reduced in these intermetallic alloys by two methods. The first deals with producing a more hydrogen-resistant microstructure through thermomechanical processing, and the second dealed with compositional modification. The alloys showing reduced environmental effect have been melted and processed by many different methods. Laboratory and commercial heats have been characterized. Tests have been conducted in both air and controlled environments to quantify environmental effects on these properties. These materials were also tested for aqueous corrosion and resistance to stress corrosion cracking. Oxidation and sulfidation data were generated and effects of minor alloying elements on were also investigated. Several applications have been identified for the newly developed iron aluminides. Commercialization status of these alloys is described.

  6. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    SciTech Connect

    Li, Bingtao

    2003-01-01

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  7. Corrosion behavior of experimental and commercial nickel-base alloys in HCl and HCl containing Fe3+

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    The effects of ferric ions on the corrosion resistance and electrochemical behavior of a series of Ni-based alloys in 20% HCl at 30ºC were investigated. The alloys studied were those prepared by the Albany Research Center (ARC), alloys J5, J12, J13, and those sold commercially, alloys 22, 242, 276, and 2000. Tests included mass loss, potentiodynamic polarization, and linear polarization.

  8. Characterization by thermoelectric power of a commercial aluminum-iron-silicon alloy (8011) during isothermal precipitation

    SciTech Connect

    Luiggi A., N.J.

    1998-11-01

    The author has characterized a commercial 8011 (Al-Fe-Si) alloy by studying samples under different initial states of strain hardening and iron and silicon supersaturation using thermoelectric power as a measurement technique. Isothermal kinetics of precipitation are obtained in the temperature range between 225 C and 600 C. He has determined the atom fraction precipitated for each microstructural condition, identifying the dominant alloying additions and evaluating the typical parameters of the precipitated phases, such as, for example, the apparent activation energy. Finally, he determined the time-temperature-transformation (TTT) diagrams. These results prove that iron is the alloying addition that controls the precipitation kinetics of the 8011 alloy in the temperature range studied.

  9. Microstructure of a commercial W-1% La2O3 alloy

    NASA Astrophysics Data System (ADS)

    Shen, Yinzhong; Xu, Zhiqiang; Cui, Kai; Yu, Jie

    2014-12-01

    W-1% La2O3 alloy is considered as the most promising material for plasma-facing components of fusion reactors. The microstructure of a commercial W-1% La2O3 alloy was investigated using optical and transmission electron microscopes. The microstructure of pure tungsten can be improved significantly by fabrication of W-1% La2O3 alloys. W-1% La2O3 alloys can be produced with no porosities and cracks, and with various oxide phases dispersed in alloy matrix. La2O3 with different crystal structures, La6W2O15, WO2, WO3 and W3O8 phases were identified in as-forged W-1% La2O3 alloy. Long strip-like La2O3 has a very large size, whereas spherical La6W2O15, navicular WO3, hexagonal W3O8 and short rod-like La2O3 are smaller particles. Most identified phases have a heterogeneous distribution. Forging leads to a more dispersive distribution of large-sized La2O3 particles but not of fine WO3 particles compared with rolling. The mechanical properties of the alloys are also discussed.

  10. Effect of temperature variation on the cytotoxicity of cast dental alloys and commercially pure titanium.

    PubMed

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Antunes, Rossana Pereira de Almeida; de Mattos, Maria da Gloria Chiarello; Rosa, Adalberto Luiz; Ribeiro, Ricardo Faria

    2009-01-01

    Cell culture system has been used to evaluate alloy cytotoxicity under different environments, testing the extracts, but the effect of temperature variation on the cytotoxicity of dental alloys has not been analyzed. The aim of the present study was to investigate if temperature variation could affect dental alloy cytotoxicity, testing alloy extracts in an epithelial cell culture system. Discs of Ni-Cr, Co-Cr-Mo, Ni-Cr-Ti, Ti-6Al-4V and commercially pure titanium (cp Ti) were cast by arc melting, under argon atmosphere, injected by vacuum-pressure. Discs were immersed in artificial saliva and subjected to different temperatures: 37 degrees C and thermocycling (37 degrees C/5 degrees C/37 degrees C/55 degrees C/37 degrees C). After thermocycling, extracts were put in a subconfluent culture during 6 h, and the number of cells and their viability were used to evaluate cytotoxicity in these temperatures. For each alloy, data from temperature conditions were compared by Student's t-test (alpha=0.05). The cytotoxicity tests with alloy/metal extracts showed that Ni-Cr, Co-Cr-Mo, Ti-6Al-4V and cp Ti extracts (p>0.05) did not affect cell number or cell viability, while Ni-Cr-Ti (p<0.05) extract decreased cell number and viability when the alloy was subjected to thermocycling. Within the limitations of the present study, the Ni-Cr-Ti alloy had cell number and viability decreased when subjected to temperature variation, while the other alloys/metal extracts did not show these results.

  11. EFFECT OF TEMPERATURE VARIATION ON THE CYTOTOXICITY OF CAST DENTAL ALLOYS AND COMMERCIALLY PURE TITANIUM

    PubMed Central

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Antunes, Rossana Pereira de Almeida; de Mattos, Maria da Gloria Chiarello; Rosa, Adalberto Luiz; Ribeiro, Ricardo Faria

    2009-01-01

    Cell culture system has been used to evaluate alloy cytotoxicity under different environments, testing the extracts, but the effect of temperature variation on the cytotoxicity of dental alloys has not been analyzed. Objective: The aim of the present study was to investigate if temperature variation could affect dental alloy cytotoxicity, testing alloy extracts in an epithelial cell culture system. Material and methods: Discs of Ni-Cr, Co-Cr-Mo, Ni-Cr-Ti, Ti-6Al-4V and commercially pure titanium (cp Ti) were cast by arc melting, under argon atmosphere, injected by vacuum-pressure. Discs were immersed in artificial saliva and subjected to different temperatures: 37°C and thermocycling (37°C/5°C/37°C/55°C/37°C). After thermocycling, extracts were put in a subconfluent culture during 6 h, and the number of cells and their viability were used to evaluate cytotoxicity in these temperatures. For each alloy, data from temperature conditions were compared by Student's t-test (α=0.05). Results: The cytotoxicity tests with alloy/metal extracts showed that Ni-Cr, Co-Cr-Mo, Ti-6Al-4V and cp Ti extracts (p>0.05) did not affect cell number or cell viability, while Ni-Cr-Ti (p<0.05) extract decreased cell number and viability when the alloy was subjected to thermocycling. Conclusion: Within the limitations of the present study, the Ni-Cr-Ti alloy had cell number and viability decreased when subjected to temperature variation, while the other alloys/metal extracts did not show these results. PMID:19936519

  12. Fabrication of structural components from commercial aluminum alloys using superplastic forming

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Bales, T. T.; Shinn, J. M.; James, W. F.

    1990-01-01

    SPF technology was used to fabricate structural components from the 7475 Al and 8090 Al-Li commercial alloys. Gas-pressurization cycles were established for SPF three-hat stiffener configurations on the basis of uniaxial data and component-geometry considerations. It is established that higher forming rates than the optimum strain rates selected from the uniaxial data for each alloy could be used in the later stages of forming without reducing SPF components' dimensional conformity. Cavitation was precluded through the use of back pressure during forming.

  13. Fabrication of structural components from commercial aluminum alloys using superplastic forming

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Bales, T. T.; Shinn, J. M.; James, W. F.

    1990-01-01

    SPF technology was used to fabricate structural components from the 7475 Al and 8090 Al-Li commercial alloys. Gas-pressurization cycles were established for SPF three-hat stiffener configurations on the basis of uniaxial data and component-geometry considerations. It is established that higher forming rates than the optimum strain rates selected from the uniaxial data for each alloy could be used in the later stages of forming without reducing SPF components' dimensional conformity. Cavitation was precluded through the use of back pressure during forming.

  14. Laboratory galling tests of several commercial cobalt-free weld hardfacing alloys

    SciTech Connect

    Cockeram, B.V.; Buck, R.F.; Wilson, W.L.

    1997-04-01

    Since the mechanical properties of most wear materials are generally insufficient for structural applications, hardfacing alloys have been traditionally weld deposited to provide a wear resistance surface for a base material. An important attribute of a hardfacing alloy that is subjected to high load sliding contact is the resistance to adhesive (galling) damage. Although Co-base hardfacing alloys generally possess excellent galling wear resistance, there is interest in developing cobalt-free replacement hardfacings to reduce radiation exposure costs. A laboratory galling test has been developed for weld hardfacing deposits that is a modification of the standardized ASTM G98-91 galling test procedure. The procedure for testing a weld hardfacing deposit on a softer base metal using a button-on-block configuration is described. The contact stresses for the initiation of adhesive galling damage were measured to rank the galling resistance of several commercial Fe-base, Ni-base and Co-base hardfacing alloys. Although the galling resistance of the Fe-base alloys was generally superior to the Ni-base alloys, neither system approached the excellent galling resistance of the Co-base alloys. Microstructure examinations were used to understand the micro-mechanisms for the initiation and propagation of galling damage. A physical model for the initiation and propagation of adhesive wear is used to explain the lower galling resistance for the Ni-base hardfacings and to understand the influence of composition on the galling resistance of Ni-base alloys. The composition of some Ni base hardfacings was modified in a controlled manner to quantify the influence of specific elements on the galling resistance.

  15. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    NASA Astrophysics Data System (ADS)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  16. Thermal fatigue resistance of NASA WAZ-20 alloy with three commercial coatings

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Oldrieve, R. E.

    1975-01-01

    Screening tests using three commercial coatings (Jocoat, HI-15, and RT-1A) on the nickel-base alloy NASA WAZ-20 were performed by cyclic exposure in a Mach 1 burner facility. These tests showed Jocoated WAZ-20 to have the best cracking resistance. The thermal fatigue resistance of Jocoated WAZ-20 in both the random polycrystalline and directionally solidified polycrystalline forms relative to that of other superalloys was then evaluated in a fluidized-bed facility. This investigation showed that Jocoated random polycrystalline WAZ-20 ranked approximately in midrange in thermal fatigue life. The thermal fatigue life of directionally solidified Jocoated WAZ-20 was shorter than that of other directionally solidified alloys but still longer than that of all alloys in the random polycrystalline form.

  17. Fracture toughness testing and toughening mechanisms of some commercial cobalt-free hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1998-04-27

    Hardfacing alloys are weld deposited to provide a wear resistant surface for structural base materials. Commercial low cobalt hardfacing alloys are being evaluated to reduce plant activation levels. Since hardfacing alloys typically must be resistant to cracking to assure adequate in service performance, fracture toughness is a critical material property. Fracture toughness (K{sub IC}) measurements of Fe base, Ni-base, and Co-base hardfacing were performed in accordance with ASTM E399-90 procedure in an effort to identify a tough cobalt-free alternative. Reduced scatter in K{sub IC} data was observed for the Fe base hardfacing, and the 95% lower bound K{sub IC} values were generally higher than the Ni-base Hardfacing alloys. Preliminary crack growth data obtained during precracking indicate that the Ni-base hardfacing possess better fatigue crack growth resistance. However, none of the Fe-base or Ni-base hardfacing have K{sub IC} values that are comparable to the reference Co-base hard facing. The test specimens were machined from thick (0.5 inches) weld deposits, and the microstructures of the test specimens are compared with the more prototypic, thinner deposits. Microstructural and fractographic examinations are used to characterize the fracture mechanisms and delineate the operative toughening mechanisms. Crack deflection and crack bridging toughening mechanisms are shown to be relevant for most of the commercial hardfacing.

  18. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  19. Subtask 12F1: Effect of neutron irradiation on swelling of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effects of neutron irradiation on the density change, void distribution, and microstructural evolution of vanadium-base alloys. Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420-600{degrees}C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti{sub 5}Si{sub 3} promotes good resistance to swelling of the Ti-containing alloys, and it was concluded that Ti of >3 wt.% and 400-1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. 18 refs., 6 figs., 1 tab.

  20. Electrochemical comparison and biological performance of a new CoCrNbMoZr alloy with commercial CoCrMo alloy.

    PubMed

    Andrei, M; Galateanu, B; Hudita, A; Costache, M; Osiceanu, P; Calderon Moreno, J M; Drob, S I; Demetrescu, I

    2016-02-01

    A new CoCrNbMoZr alloy, with Nb and Zr content is characterized from the point of view of surface features, corrosion resistance and biological performance in order to be proposed as dental restorative material. Its properties are discussed in comparison with commercial Heraenium CE alloy based on Co, Cr and Mo as well. The microstructure of both alloys was revealed by scanning electron microscopy (SEM). The composition and thickness of the alloy native passive films were identified by X-ray photoelectron spectroscopy (XPS). The surface characteristics were analyzed by atomic force microscopy (AFM) and contact angle techniques. The quantity of ions released from alloys in artificial saliva was evaluated with inductively coupled plasma-mass spectroscopy (ICP-MS) measurements. The electrochemical stability was studied in artificial Carter-Brugirard saliva, performing open circuit potentials, polarization resistances and corrosion currents and rates. The biological performance of the new alloy was tested in vitro in terms of human adipose stem cells (hASCs) morphology, viability and proliferation status. The new alloy is very resistant to the attack of the aggressive ions from the artificial saliva. The surface properties, the roughness and wettabiliy sustain the cell behavior. The comparison of the new alloy behavior with that of existing commercial CoCrMo alloy showed the superior properties of the new metallic biomaterial.

  1. Marginal and internal adaptation of commercially pure titanium and titanium-aluminum-vanadium alloy cast restorations.

    PubMed

    Al Wazzan, Khalid A; Al-Nazzawi, Ahmad A

    2007-01-01

    The purpose of this in vitro study was to investigate the marginal accuracy and internal fit of complete cast crowns and three-unit fixed partial dentures (FPDs) cast with commercially pure titanium (CPTi) and Titanium-Aluminum-Vanadium alloy (Ti-6Al-4V). CPTi and Ti-6Al-4V alloy were used to cast twelve single crowns and twelve three-unit FPDs. A traveling microscope was used to measure marginal gap and discrepancies in internal fit. Two and one-way analysis of variance (ANOVA) analyses were used to determine the effects of the marginal and internal fit discrepancies. The Ti-6Al-4V alloy demonstrated a significantly smaller marginal gap than CPTi (P<0.0001). The recorded marginal discrepancies for both metals were within a clinically accepted range (<100 microm). The single crown fit discrepancy was significantly smaller than the three-unit FPD for both the CPTi and the Ti-6Al-4V alloy (P<0.0001). For the internal fit discrepancy, the occlusal surface showed the greatest gaps. The Ti-6Al-4V alloy demonstrated a better fit than CPTi. Single crowns showed an improved fit when compared with the three-unit FPD. Mid-occlusal internal gap demonstrated greater values than the axial internal gap. This in vitro study suggested marginal fit of complete crowns and three-unit FPDs cast by CPTi or Ti-6Al-4V alloy were within the range of what is clinically acceptable for longevity of restorations.

  2. Behavior of Dental/Implant Alloys in Commercial Mouthwash Solution Studied by Electrochemical Techniques

    NASA Astrophysics Data System (ADS)

    Mareci, Daniel; Strugaru, Sorin Iacob; Iacoban, Sorin; Bolat, Georgiana; Munteanu, Corneliu

    2013-03-01

    This study investigates the electrochemical behavior of the various dental materials: Paliag (Ag-Pd based), Wiron 99 (Ni-Cr based), Cp-Ti (commercial pure titanium), and experimental Ti12Mo5Ta alloy in commercial mouthwash solution with 500 ppm F- (Oral B®) and compares it with the behavior of the same dental materials in artificial saliva. Linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) are the electrochemical procedures of investigation. The passivation of all dental samples in artificial saliva and mouthwash solution occurred spontaneously at open circuit potential. The corrosion current density of all tested dental materials in mouthwash solution were low (1-2 μA/cm2). The results suggest a non-predominant fluoride effect on the passive layer formed on all samples at open circuit potential. No passivation could be established with Paliag alloy when polarized in mouthwash solution. The EIS results confirm that all dental sample exhibit passivity in mouthwash solution at open circuit potential (polarization resistance was around 5 × 105 Ω cm2). For Paliag alloy after LPP in mouthwash solution the protectiveness passive layer was no more present. The corrosion resistances of four dental materials in mouthwash solution are in the following order: Ti12Mo5Ta > Cp-Ti > Wiron 99 > Paliag.

  3. Laser surface alloying of commercially pure titanium with boron and carbon

    NASA Astrophysics Data System (ADS)

    Makuch, N.; Kulka, M.; Dziarski, P.; Przestacki, D.

    2014-06-01

    Laser surface alloying with boron and carbon was applied to produce the composite layers, reinforced by the hard ceramic phases (titanium borides and titanium carbides), on commercially pure titanium. The external cylindrical surface of substrate material was coated by paste containing boron, boron and graphite, or graphite. Then, the laser re-melting was carried out with using the continuous-wave CO2 laser. This enabled the formation of laser-borided, laser-borocarburized, and laser-carburized layers. The microstructure or the re-melted zone consisted of the hard ceramic phases (TiB+TiB2, TiB+TiB2+TiC, or TiC) located in the eutectic mixture of Tiα'-phase with borides, borides and carbides, or carbides, respectively. All the composite layers were characterized by the sufficient cohesion. The significant increase in microhardness and in wear resistance of all the laser-alloyed layers was observed in comparison with commercially pure titanium. The percentage of hard ceramic phases in more plastic eutectic mixture influenced the measured microhardness values. The dominant wear mechanism (abrasive or adhesive) depended on the method of laser alloying, and the type of test used. The wear tests for longer duration, without the change in the counter specimen, created the favourable conditions for adhesive wear, while during the shorter tests the abrasive wear dominated, as a rule.

  4. Effect of al on Microstructure and Properties of In718 Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Yang, Shulin; Sun, Wenru; Guo, Shouren; Hu, Zhuangqi

    Compared with the conventional In718 alloy, the addition of Al at the level of 1.24% and 1.50% greatly increases the precipitation of γ‧ phase and the compact form of γ″/γ‧/γ″ structure, which has been demonstrated in previous studies. The δ phase precipitation at the grain boundaries is noticeably suppressed. Large amount of Laves phase ((Fe, Ni, Cr)2(Nb, Mo)), small amount of M7C3 carbide and σ phase ((Fe, Ni)(Cr, Mo, Nb)) are precipitated at the grain boundaries. After aging at 680°C, the grain boundary precipitates are increased significantly. Large amount needle-like σ phase is precipitated at the grain boundary in the alloy with 1.50% Al. After aging at 680°C for 1000h, the grain boundary precipitates are worsened further, but the coarsening of the compact form γ″/γ‧/γ″ is lighter than the γ″ phase in the normal In718 alloy. The tensile strength at room temperature and 680°C are increased due to Al increasing. While the tensile ductility and impact toughness of the alloy decrease significantly, and a sharp decrease has been found during the long term aging at 680°C. The mechanism by which Al influencing the microstructure and mechanical properties of In718 alloy is to be discussed.

  5. Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants

    PubMed Central

    Bortagaray, Manuel Alberto; Ibañez, Claudio Arturo Antonio; Ibañez, Maria Constanza; Ibañez, Juan Carlos

    2016-01-01

    Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences. PMID:27733875

  6. Microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique

    NASA Astrophysics Data System (ADS)

    Li, M.; Tamura, T.; Omura, N.; Murakami, Y.; Tada, S.

    2016-03-01

    This paper examines the microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique (EMV) as a function of vibration frequency, f. The microstructure evolution reveals that at the low frequency of f = 62.5 Hz, the solidified microstructure is coarse and with the increase of vibration frequency to f = 500 Hz, the grain size becomes the finest and further increase of frequency to f = 2000 Hz results in coarsening of microstructures. The refinement mechanism is clarified when considering the significant difference in electrical resistivities of the solid and the liquid in mushy zone, in which both phases coexist and subject to vibration. The frequency-dependent refinement behaviour is revealed when the displacement of the mobile solid and sluggish liquid is taken into account during solidification. In contrast to 3xxx aluminium alloys, no giant compounds have been discerned in the present 7xxx alloy regardless of the solidification condition. The formation of crystalline twin is briefly discussed when considering the vibration condition.

  7. Final Report for the Study on S-Implanted Alloy 22 in 1 M NaCl Solutions

    SciTech Connect

    Windisch, Charles F.; Baer, Donald R.; Jones, R. H.; Engelhard, Mark H.

    2005-11-01

    The objective of this study was to examine the effects of high levels of S in the near-surface region on the passivity of Alloy 22, a corrosion resistant Ni-Cr-Mo alloy, in deaerated 1 M NaCl solution. Near-surface concentrations of S up to 2 at.% were achieved in Alloy 22 test specimens by implanting them with S. The S-implanted samples were then evaluated in short-term electrochemical tests in the salt solution and subsequently analyzed with X-ray Photoelectron Spectroscopy (XPS) for film thickness and composition. Specimens tested included non-implanted and annealed Alloy 22 samples, samples implanted with S, and “blanks” implanted with Ar as an ion that would simulate the “damage” of S implantation without the chemical effect. A sample of S-implanted Alloy 22 was also exposed to solution for 29 days and analyzed for evidence of S accumulation at the surface over longer times.

  8. Performance Comparison of Al-Ti Master Alloys with Different Microstructures in Grain Refinement of Commercial Purity Aluminum.

    PubMed

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun

    2014-05-07

    Three types of Al-5Ti master alloys were synthesized by a method of thermal explosion reaction in pure molten aluminum. Performance comparison of Al-5Ti master alloy in grain refinement of commercial purity Al with different additions (0.6%, 1.0%, 1.6%, 2.0%, and 3.0%) and holding time (10, 30, 60 and 120 min) were investigated. The results show that Al-5Ti master alloy with blocky TiAl₃ particles clearly has better refining efficiency than the master alloy with mixed TiAl₃ particles and the master alloy with needle-like TiAl₃ particles. The structures of master alloys, differing by sizes, morphologies and quantities of TiAl₃ crystals, were found to affect the pattern of the grain refining properties with the holding time. The grain refinement effect was revealed to reduce markedly for master alloys with needle-like TiAl₃ crystals and to show the further significant improvement at a longer holding time for the master alloy containing both larger needle-like and blocky TiAl₃ particles. For the master alloy with finer blocky particles, the grain refining effect did not obviously decrease during the whole studied range of the holding time.

  9. Performance Comparison of Al–Ti Master Alloys with Different Microstructures in Grain Refinement of Commercial Purity Aluminum

    PubMed Central

    Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun

    2014-01-01

    Three types of Al–5Ti master alloys were synthesized by a method of thermal explosion reaction in pure molten aluminum. Performance comparison of Al–5Ti master alloy in grain refinement of commercial purity Al with different additions (0.6%, 1.0%, 1.6%, 2.0%, and 3.0%) and holding time (10, 30, 60 and 120 min) were investigated. The results show that Al–5Ti master alloy with blocky TiAl3 particles clearly has better refining efficiency than the master alloy with mixed TiAl3 particles and the master alloy with needle-like TiAl3 particles. The structures of master alloys, differing by sizes, morphologies and quantities of TiAl3 crystals, were found to affect the pattern of the grain refining properties with the holding time. The grain refinement effect was revealed to reduce markedly for master alloys with needle–like TiAl3 crystals and to show the further significant improvement at a longer holding time for the master alloy containing both larger needle–like and blocky TiAl3 particles. For the master alloy with finer blocky particles, the grain refining effect did not obviously decrease during the whole studied range of the holding time. PMID:28788642

  10. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?

    PubMed

    Cordeiro, Jairo M; Barão, Valentim A R

    2017-02-01

    The development of Ti alloys to manufacture dental implants has emerged in recent years due to the increased failure of commercially pure titanium (cpTi) implants. Thus, this study reviews existing information about the mechanical, chemical, electrochemical, and biological properties of the main Ti alloys developed over the past few years to provide scientific evidence in favor of using Ti-based alloys as alternative to cpTi. Ti alloys may be considered viable substitutes in the fabrication of dental implants. Such evidence is given by the enhanced properties of alloys, such as a low elastic modulus, high tensile strength, satisfactory biocompatibility, and good corrosion and wear resistances. In addition, Ti alloys may be modified at the structural, chemical, and thermomechanical levels, which allows the development of materials in accordance with the demands of several situations encountered in clinical practice. Although several in vitro studies have established the superiority of Ti alloys over cpTi, mainly in terms of their mechanical properties, there is no scientific evidence that supports the total replacement of this material in vivo. This review demonstrates the superiority of β-type alloys. However, it is evident that in vivo studies are encouraged to test new alloys to consolidate their use as substitutes for cpTi.

  11. Comparison of isothermal and cyclic oxidation behavior of twenty-five commercial sheet alloys at 1150 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1975-01-01

    Twenty-five commercial nickel-, iron-, and cobalt-base sheet alloys incorporating chromium or chromium and aluminum additions for oxidation resistance were tested at 1150 C in air for 100 hr in both isothermal and 1-hr cyclic furnace exposures. The alloys were evaluated by sample specific weight change, by type of scale formed, by amount and type of spall, and by sample thickness change and microstructure.-

  12. Part A - low-aluminum-content iron-aluminum alloys. Part B - commercial-scale melting and processing of FAPY alloy

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1996-06-01

    The FAPY is a Fe-16 at. % Al alloy of nominal composition. The aluminum content of the alloy is such that it remains single phase ({alpha}) without the formation of an ordered phase (DO{sub 3}). The alloy has good oxidation resistance at temperatures up to 1000{degrees}C and has shown significantly superior performance as heating elements as compared to the commonly used nickel-based alloy, Nichrome. Although wire for the heating elements has been fabricated from small (15-1b) laboratory heats, for its commercial applications, the wire needs to be producible from large (1200 to 1500-1b) air-melted heats. The purpose of this study was to produce commercial size heats and investigate their mechanical properties and microstructure in the as-cast, hot-worked, and cold-worked conditions. The results of this study are expected to provide: (1) insight into processing steps for large heats into wire under commercial conditions, and (2) the mechanical properties data on commercial size heats in various product forms.

  13. Effects of Co and Al Contents on Cryogenic Mechanical Properties and Hydrogen Embrittlement for Austenitic Alloys

    SciTech Connect

    Li, X.Y.; Ma, L.M.; Li, Y.Y.

    2004-06-28

    The effects of Co and Al content on ambient and cryogenic mechanical properties, microstructure and hydrogen embrittlement of a high strength precipitate-strengthened austenitic alloy (Fe-Ni-Cr-Mo system) had been investigated with temperature range from 293K to 77 K. Hydrogen embrittlement tests were conducted using the method of high pressure thermal hydrogen charging. It was found that increasing Co content can cause increasing in ambient and cryogenic ductility, but has less effect on ultimate tensile strength. When Co content is 9.8%, obvious decrease was found in cryogenic yield strength. Increasing Al content can result in decreasing ambient and cryogenic ductility and severe hydrogen embrittlement, but slight increase in cryogenic yield strength. Increasing Co content, reducing Al content, and decreasing test temperature tend to decrease the hydrogen embrittlement tendency for the alloys. This work showed that the alloy with composition of Fe-31%Ni-15%Cr-5%Co-4.5%Mo-2.4%Ti-0.3%Al-0.3%Nb-0.2%V has the superior cryogenic mechanical properties and lower hydrogen embrittlement tendency, is a good high strength cryogenic hydrogen-resistant material.

  14. Effects of Co and Al Contents on Cryogenic Mechanical Properties and Hydrogen Embrittlement for Austenitic Alloys

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Ma, L. M.; Li, Y. Y.

    2004-06-01

    The effects of Co and Al content on ambient and cryogenic mechanical properties, microstructure and hydrogen embrittlement of a high strength precipitate-strengthened austenitic alloy (Fe-Ni-Cr-Mo system) had been investigated with temperature range from 293K to 77 K. Hydrogen embrittlement tests were conducted using the method of high pressure thermal hydrogen charging. It was found that increasing Co content can cause increasing in ambient and cryogenic ductility, but has less effect on ultimate tensile strength. When Co content is 9.8%, obvious decrease was found in cryogenic yield strength. Increasing Al content can result in decreasing ambient and cryogenic ductility and severe hydrogen embrittlement, but slight increase in cryogenic yield strength. Increasing Co content, reducing Al content, and decreasing test temperature tend to decrease the hydrogen embrittlement tendency for the alloys. This work showed that the alloy with composition of Fe-31%Ni-15%Cr-5%Co-4.5%Mo-2.4%Ti-0.3%Al-0.3%Nb-0.2%V has the superior cryogenic mechanical properties and lower hydrogen embrittlement tendency, is a good high strength cryogenic hydrogen-resistant material.

  15. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-05-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  16. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-03-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  17. Age-hardening mechanisms in a commercial dental gold alloy containing platinum and palladium.

    PubMed

    Tani, T; Udoh, K; Yasuda, K; Van Tendeloo, G; Van Landuyt, J

    1991-10-01

    The age-hardening mechanism of a commercial dental gold alloy containing platinum and palladium (in wt.%, 15 Cu, 6 Ag, 5 Pt, 3 Pd, 3 Zn, with the balance as gold) was elucidated by means of electrical resistivity, hardness tests, x-ray and electron diffraction and electron microscopy, as well as high-resolution electron microscopy. The sequence of phase transformations during isothermal aging below the critical temperature, Tc = 825 K, was described as follows: disordered solid solution alpha 0 (FCC)----metastable AuCu I' ordered phase (FCT)----metastable alpha 2 disordered phase (FCC) equilibrium AuCu I ordered phase (FCT) + equilibrium alpha 2 disordered phase (FCC). The hardening was due to the introduction of coherency strain at the interface between the AuCu I' platelet and the matrix. These ordered platelets had mutually perpendicular c-axes to compensate for the strain introduced by their tetragonality. A loss of coherency at the interface brought about softening of the alloy, i.e., over-aging.

  18. An Industrial Perspective on Environmentally Assisted Cracking of Some Commercially Used Carbon Steels and Corrosion-Resistant Alloys

    NASA Astrophysics Data System (ADS)

    Ashida, Yugo; Daigo, Yuzo; Sugahara, Katsuo

    2017-08-01

    Commercial metals and alloys like carbon steels, stainless steels, and nickel-based super alloys frequently encounter the problem of environmentally assisted cracking (EAC) and resulting failure in engineering components. This article aims to provide a perspective on three critical industrial applications having EAC issues: (1) corrosion and cracking of carbon steels in automotive applications, (2) EAC of iron- and nickel-based alloys in salt production and processing, and (3) EAC of iron- and nickel-based alloys in supercritical water. The review focuses on current industrial-level understanding with respect to corrosion fatigue, hydrogen-assisted cracking, or stress corrosion cracking, as well as the dominant factors affecting crack initiation and propagation. Furthermore, some ongoing industrial studies and directions of future research are also discussed.

  19. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  20. Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    Three heats of commercially heat-treated alloy 718 were tensile tested over the temperature range from room temperature to 816{degree}C and at nominal strain rates from 6.7 {times} 10{sup {minus}6} to 6.7 {times} 10{sup {minus}3}/s. We examined data for yield strength, ultimate tensile strength, uniform elongation, total elongation, and reduction in area and also inspected tensile stress-strain behavior. Yield and ultimate tensile strengths for commercially heat-treated alloy 718 decrease very gradually with temperature from room temperature up to about 600{degree}C for a strain rate of 6.7 {times} 10{sup {minus}5}/s or to about 700{degree}C for a strain rate of 6.7 {times} 10{sup {minus}4}/s. Above these temperatures the strength drops off fairly rapidly. Reduction in area and total elongation data show minimum around 700{degree}C, with each ductility measure falling to 10% or less at the minimum. This minimum is more pranced and occurs at lower temperatures as strain rate decreases. Up to about 600{degree}C the ductility is typically around 30%. As the temperature reaches 816{degree}C the ductility again increases to perhaps 60%. The uniform elongation (plastic strain at peak load) decreases only slightly with temperature to about 500{degree}C then drops off rapidly and monotonically with temperature, reaching values less than 1% at 816{degree}C. At the highest test temperatures the load maximum may result, not from necking of the specimen, but from overaging of the precipitation-hardened microstructure. Stress-strain curves showed serrated deformations in the temperature range from 316 to 649{degree}C, although they occur only for the faster strain rates at the supper end of this temperature range. The serrations can be quite large, involving load drops of perhaps 40 to 80 MPa. The serrations typically begin within the first 2% of deformation and continue until fracture, although exceptions were noted. 16 refs., 14 figs., 3 tabs.

  1. Polarization-corrosion behavior of commercial gold- and silver-base casting alloys in Fusayama solution.

    PubMed

    Johnson, D L; Rinne, V W; Bleich, L L

    1983-12-01

    Based on polarization measurements, high Au alloys are highly corrosion-resistant and exhibit the lowest corrosion rates; intermediate Au, Ag, and Pd alloys with Cu are passive but exhibit higher corrosion rates. Twenty weight percent (w/o) In-Ag alloys exhibit active corrosion behavior at potentials only 100 mV noble to the corrosion potential.

  2. 3D microband boundary alignments and transitions in a cold rolled commercial purity aluminum alloy

    SciTech Connect

    George, C.; Soe, B.; King, K.; Quadir, M.Z.; Ferry, M.; Bassman, L.

    2013-05-15

    In the study of microband formation during plastic deformation of face centered cubic metals and alloys, two theories have been proposed regarding the orientations of their boundaries: (i) they are aligned parallel to crystallographic planes associated with dislocation glide (i.e. (111) planes in FCC metals), or (ii) they are aligned in accordance with the macroscopic stress state generated during deformation. In this study, high resolution 3D electron backscatter diffraction (3D EBSD) was used to investigate the morphology and crystallographic nature of microband boundaries within a 19 × 9 × 8.6 μm volume of a deformed grain in commercial purity aluminum cold rolled to 22% reduction. It was found that microband boundaries correspond to both theories of orientation. Additionally, a single surface may contain both crystallographic and non-crystallographic alignments. Misorientations across boundaries in the regions of microband triple junctions have been identified for both boundary alignments. - Highlights: ► Reconstruction of a 3D volume of crystallographic orientations from EBSD data ► Subgrain features accurately reconstructed using specially designed strategies. ► Microband boundaries contain crystallographic and non-crystallographic alignments. ► Boundaries form by crystallographic process but rotate to non-crystallographic.

  3. The behaviour of entrainment defects formed in commercial purity Mg alloy cast under a cover gas of SF6

    NASA Astrophysics Data System (ADS)

    Li, T.; Griffiths, W. D.

    2016-03-01

    In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.

  4. Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy

    DOE PAGES

    Unocic, Kinga A.; Yamamoto, Yukinori; Pint, Bruce A.

    2017-03-09

    To develop the next generation of accident-tolerant fuel cladding for light-water nuclear reactors, wrought FeCrAlY alloys with varying amounts of Cr and Al and commercial Kanthal APMT alloy were evaluated for short-term (4 h) oxidation resistance in steam and air at 1200–1475 °C. Model alloys with lower Cr contents and higher Al contents were evaluated in this paper as lower Cr contents are desirable for radiation damage resistance during operation. As expected, a synergistic effect was found between the Cr and Al contents to enable protective Al2O3 formation under these conditions. Characterization of the alumina scales formed in steam foundmore » that the scale morphology was affected by the alloy Y content and detailed scanning transmission electron microscopy (STEM) detected Y segregation along scale grain boundaries at 1200 °C. However, after 4 h at 1475 °C, Y and Hf were not segregated to the oxide grain boundaries formed on APMT and the scale had a single layer structure. Finally, compared to oxidation in air, STEM characterization of the outer scale showed differences in the Fe and Cr distributions in steam.« less

  5. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  6. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    SciTech Connect

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundaries on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.

  7. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; ...

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less

  8. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2017-01-01

    FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a<100> dislocation loops, a/2<111> dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2<111> dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a<100> dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.

  9. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  10. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  11. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  12. Advanced characterization study of commercial conversion and electrocoating structures on magnesium alloys AZ31B and ZE10A

    DOE PAGES

    Brady, Michael P.; Leonard, Donovan N.; Meyer, III, Harry M.; ...

    2016-03-31

    The local metal-coating interface microstructure and chemistry formed on commercial magnesium alloys Mg–3Al–1Zn (AZ31B) and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A, ZEK100 type) were analyzed as-chemical conversion coated with a commercial hexafluoro-titanate/zirconate type + organic polymer based treatment (Bonderite® 5200) and a commercial hexafluoro-zirconate type + trivalent chromium Cr3 + type treatment (Surtec® 650), and after the same conversion coatings followed by electrocoating with an epoxy based coating, Cathoguard® 525. Characterization techniques included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cross-section scanning transmission electron microscopy (STEM). Corrosion behavior was assessed in room temperature saturated aqueous Mg(OH)2 solution with 1 wt.% NaCl. Themore » goal of the effort was to assess the degree to which substrate alloy additions become enriched in the conversion coating, and how the conversion coating was impacted by subsequent electrocoating. Key findings included the enrichment of Al from AZ31B and Zr from ZE10A, respectively, into the conversion coating, with moderate corrosion resistance benefits for AZ31B when Al was incorporated. Varying degrees of increased porosity and modification of the initial conversion coating chemistry at the metal-coating interface were observed after electrocoating. These changes were postulated to result in degraded electrocoating protectiveness. As a result, these observations highlight the challenges of coating Mg, and the need to tailor electrocoating in light of potential degradation of the initial as-conversion coated Mg alloy surface.« less

  13. Advanced characterization study of commercial conversion and electrocoating structures on magnesium alloys AZ31B and ZE10A

    SciTech Connect

    Brady, Michael P.; Leonard, Donovan N.; Meyer, III, Harry M.; Song, Guang -Ling; Kitchen, Kris; Davis, Bruce; Thompson, J. K.; Unocic, K. A.; Elsentriecy, H. H.

    2016-03-31

    The local metal-coating interface microstructure and chemistry formed on commercial magnesium alloys Mg–3Al–1Zn (AZ31B) and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A, ZEK100 type) were analyzed as-chemical conversion coated with a commercial hexafluoro-titanate/zirconate type + organic polymer based treatment (Bonderite® 5200) and a commercial hexafluoro-zirconate type + trivalent chromium Cr3 + type treatment (Surtec® 650), and after the same conversion coatings followed by electrocoating with an epoxy based coating, Cathoguard® 525. Characterization techniques included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cross-section scanning transmission electron microscopy (STEM). Corrosion behavior was assessed in room temperature saturated aqueous Mg(OH)2 solution with 1 wt.% NaCl. The goal of the effort was to assess the degree to which substrate alloy additions become enriched in the conversion coating, and how the conversion coating was impacted by subsequent electrocoating. Key findings included the enrichment of Al from AZ31B and Zr from ZE10A, respectively, into the conversion coating, with moderate corrosion resistance benefits for AZ31B when Al was incorporated. Varying degrees of increased porosity and modification of the initial conversion coating chemistry at the metal-coating interface were observed after electrocoating. These changes were postulated to result in degraded electrocoating protectiveness. As a result, these observations highlight the challenges of coating Mg, and the need to tailor electrocoating in light of potential degradation of the initial as-conversion coated Mg alloy surface.

  14. Localized Corrosion of Alloy 22 -Fabrication Effects-

    SciTech Connect

    Rebak, R B

    2005-11-05

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale: The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo

  15. Crestal remodelling and osseointegration at surface-modified commercially pure titanium and titanium alloy implants in a canine model.

    PubMed

    Lee, Jaebum; Hurson, Steve; Tadros, Hatem; Schüpbach, Peter; Susin, Cristiano; Wikesjö, Ulf M E

    2012-08-01

    Ti-6Al-7Nb alloys exhibit enhanced mechanical properties and corrosion resistance and may represent an improvement to present commercially pure (CP) titanium oral implant technology. To evaluate crestal remodelling and osseointegration at CP titanium compared with Ti-6Al-7Nb alloy oral implants using a canine model. Two threaded anodized CP titanium and two Ti-6Al-7Nb alloy anodized oral implants (ø4.5 × 6.1 mm) were placed into each jaw quadrant in the edentulated posterior mandible in six adult male Hound Labrador mongrel dogs. Abutments were placed onto the implants, and the mucogingival flaps were adapted and sutured for transmucosal wound healing. Block biopsies were collected for histometric analysis following an 8-week healing interval. Healing was uneventful. Bone density outside and within the root of the threads averaged (± SE) 49.0 ± 4.5% and 38.7 ± 5.1% for CP titanium implants and 43.2 ± 3.6% and 34.2 ± 4.8% for Ti-6Al-7Nb alloy implants. Mean osseointegration reached 68.0 ± 4.4% and 62.8 ± 2.5% for CP titanium and Ti-6Al-7Nb alloy implants, respectively. Although crestal resorption at lingual sites averaged 0.2 ± 0.1 mm for both technologies, crestal resorption at buccal sites averaged 0.9 ± 0.2 and 1.0 ± 0.6 mm for CP titanium and Ti-6Al-7Nb alloy implants, respectively. There were no statistically significant differences between implant technologies for any parameter assessed. Notably, advanced/advancing buccal crestal resorption exposing the implant threads was observed in 50% of the implants (four of six animals) regardless of implant technology; osteoclastic resorption still observed at 8 weeks following implant placement. Within the limitations of study, anodized Ti-6Al-7Nb alloy implants may represent a feasible alternative to benchmark anodized CP titanium implants. Remodelling of the buccal crestal plate resulting in advanced bone loss appears a major impediment to oral implant osseointegration and possibly, in extension, implant

  16. An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys

    SciTech Connect

    Gao, M.; Feng, C.R.; Wei, R.P.

    1998-04-01

    To better understand the role of constituent particles in pitting corrosion, analytical electron microscopic studies were performed on the constituent particles in commercial 7075-T6 and 2024-T3 alloys. Five phases, namely, Al{sub 23}CuFe{sub 4} and amorphous SiO{sub 2} in 7075-T6 and Al{sub 2}CuMg, Al{sub 2}Cu, and (Fe,Mn){sub x}Si(Al,Cu){sub y} in 2024-T3, were identified. The crystal structure and chemistry of the Al{sub 23}CuFe{sub 4}, Al{sub 2}CuMg, and Al{sub 2}Cu phases in these alloys are in good agreement with the published data. Small deviations from their stoichiometric compositions were observed and are attributed to the influence of alloy composition on the phase chemistry. For the (Fe,Mn){sub x}Si(Al,Cu){sub y} (approximately, x = 3 and y = 11) phase, a rhombohedral structure, with lattice parameter a = b = c = 1.598 nm and {alpha} = {beta} = {gamma} = 75 deg, was identified and is believed to be a modified form of either Al{sub 8}Fe{sub 2}Si or Al{sub 10}Mn{sub 3}Si. Information from this study provided technical support for studying the electrochemical interactions between the individual particles (or phases) and the matrix. The corrosion results are reported in a companion article.

  17. Dynamic reverse phase transformation induced high-strain-rate superplasticity in low carbon low alloy steels with commercial potential.

    PubMed

    Cao, Wenquan; Huang, Chongxiang; Wang, Chang; Dong, Han; Weng, Yuqing

    2017-08-23

    Superplastic materials are capable of exhibiting large tensile elongation at elevated temperature, which is of great industrial significance because it forms the basis of a fabrication method to produce complex shapes. Superplasticity with elongation larger than 500% has been widely realized in many metals and alloys, but seldomly been succeeded in low carbon low alloy steel, even though it is commercially applied in the largest quantity. Here we report ultrahigh superplastic elongation of 900-1200% in the FeMnAl low carbon steels at high strain rate of 10(-2)-10(-3) s(-1). Such high-strain-rate superplasticity was attributed to dynamic austenite reverse phase transformation from a heavily cold rolled ferrite to fine-grained ferrite/austenite duplex microstructure and subsequent limited dynamic grain coarsening, under which a large fraction of high angle boundaries can be resulted for superplastic deformation. It is believed that this finding of the low carbon low alloy steel with ultrahigh superplasticity and relative low cost would remarkably promote the application of superplastic forming technique in automobile, aeronautical, astronautical and other fields.

  18. Strain localization during tensile Hopkinson bar testing of commercially pure titanium and Ti6Al4V titanium alloy

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold; Brodecki, Adam

    2015-09-01

    The goal of the analysis was to determine the strain localization for various specimen shapes (type A and type B according to PN-EN ISO 26203-1 standard) and different loading conditions, i.e. quasi- static and dynamic. Commercially pure titanium (Grade 2) and titanium alloy Ti6Al4V (Grade 5) were selected for the tests. Tensile loadings were applied out using servo-hydraulic testing machine and tensile Hopkinson bar with pre-tension. The results were recorded using ARAMIS system cameras and fast camera Phantom V1210, respectively at quasi-static and dynamic loading conditions. Further, specimens outline was determined on the basis of video data using TEMA MOTION software. The strain distribution on the specimen surface was estimated using digital image correlation method. The larger radius present in the specimen of type B in comparison to specimen of type A, results in slight increase of the elongation for commercially pure titanium at both quasi-static and dynamic loading conditions. However this effect disappears for Ti6Al4V alloy. The increase of the elongation corresponds to the stronger necking effect. Material softening due to increase of temperature induced by plastic work was observed at dynamic loading conditions. Moreover lower elongation at fracture point was found at high strain rates for both materials.

  19. Enhancement and Commercialization of the Alloy Selection System for Elevated Temperatures - ASSET

    SciTech Connect

    Randy C. John

    2005-11-05

    A corrosion engineering information system was created to manage, correlate and predict corrosion of alloys and also to use thermochemical calculations to predict the occurrence of dominant corrosion mechanisms in hot gases found in many different chemical processes and other related industrial processes.

  20. Quasi-steady-state creep crack growth in a 3.5NiCrMoV steel

    SciTech Connect

    Ryu, S.H.; Yu, J.; Hong, S.H.

    1997-03-01

    Creep crack growth rate ({dot a}) is usually characterized in terms of macroscopic load parameters, such as C*, C{sub t} and C(t), through the constant load test. However, load parameters are continuously changing during the test, and so is {dot a}. Here, by conducting constant C{sub t} and constant {dot {Delta}} tests, quasi-steady-state crack growth was obtained where {dot a} remained almost constant. Results indicate the {dot a} {approximately} [C{sub t}]{sup 0.76} correlation, which differ from the {dot a} {approximately} [C{sub t}]{sup 0.96} correlation of the constant load test. Discrepancies can be ascribed to the inclusion of the stage II data, which showed no correlation between {dot a} and C{sub t}, in the constant load analysis. Finally, the crack growth rate was well predicted using the Monkmam-Grant analysis in creep crack growth.

  1. Thermomechanical Processing and Texture Development in Ni-Cr-Mo and Mn-Mo-B Armor Steels

    DTIC Science & Technology

    1984-04-01

    bainite transformations; and (3) 900*F (482 0 C), a temperature which corresponds roughly to the nose of upper bainite trans- formation. Various...also indi- cated by the amounts of upper bainite formation, although to a lesser degree, in these two steels. These observations are con- sistent with...grain boundaries. 1 3 ) The some- what lesser retarding effect for upper bainite transformation is also consistent with the above interpretation

  2. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    SciTech Connect

    Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; Busby, Jeremy T.

    2015-08-24

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In this paper, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lack of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. Also, the cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.

  3. Oxidation behavior of three commercial ODS alloys at 1200{degrees}C

    SciTech Connect

    Turker, M.; Hughes, T.A.

    1995-12-01

    The isothermal-oxidation behavior of three oxide-dispersion-strengthened (ODS) alloys, viz., MA 956, ODM 751, and PM 2000, has been examined in air at 1200{degrees}C for exposure times up to 4800 hr. During exposure all the alloys formed an external scale of alpha alumina ({alpha}-Al{sub 2}O{sub 3}). The growth rate of alumina on MA 956 was significantly faster than that formed on ODM 751 resulting in an oxide layer which was about twice as thick after 4800 hr. The oxide-grain morphology on MA 956 was essentially equiaxed containing irregularly shaped, titanium-rich particles, whereas the oxide formed on ODM 751 was slightly finer, distinctly columnar and contained elongated yttrium-rich particles. Spalling of the oxide layer occurred after approximately 2400 hr on MA 956, whereas only slight spalling occurred on ODM 751 even after the longest exposure time. Experiments revealed that the initial surface roughness of PM 2000 can contribute significantly to spalling by enabling the growth of highly convoluted scale layers which are mechanically unstable under compressive stresses (buckling). Internal porosity is also observed in all three alloys after exposure. The pores were generally spherical with small Ti-, Al-, Y-rich particles distributed over their internal surfaces. The amount of porosity increases to a maximum and then slowly decreases.

  4. New multicomponent solder alloys of low melting pointfor low-cost commercial electronic assembly

    NASA Astrophysics Data System (ADS)

    Al-Ganainy, G. S.; Sakr, M. S.

    2003-09-01

    The requirements of the telecommunications, automobile, electronics and aircraft industries for non-toxic solders with melting points close to that of near-eutectic Pb-Sn alloys has led to the development of new Sn-Zn-In solder alloys. Differential thermal analysis (DTA) shows melting points of 198, 195, 190 and 185 +/- 2 °C for the alloys Sn-9Zn, Sn-9Zn-2In, Sn-9Zn-4In and Sn-9Zn-6In, respectively. An equation that fits the data relating the melting point to the In content in the solders is derived. The X-ray diffraction patterns are analyzed to determine the phases that exist in each solder. The stress-strain curves are studied in the temperature range from 90 to 130 °C for all the solders except for those that contain 4 wt% of In, where the temperature range continues to 150 °C. The work-hardening parameters, y (the yield stress), f (the fracture stress), and the parabolic work-hardening coefficient X, increase with increasing indium content in the solders at all working temperatures. They decrease with increasing working temperature for each solder, and show two relaxation stages only for the Sn-9Zn-4In solder around a temperature of 120 °C. (

  5. In vitro study on the corrosion behavior of three commercial Ag-Pd-Cu-Au alloys in Ringer's and 0.1%Na2S solutions.

    PubMed

    Endo, K; Araki, Y; Kawashima, I; Yamane, Y; Ohno, H; Matsuda, K

    1989-12-01

    The corrosion resistance of three commercial Ag-Pd-Cu-Au alloys was estimated in Ringer's and 0.1% Na2S solutions by electrochemical techniques and surface analyses. In Ringer's solution, the three alloys showed high corrosion resistance and there was no significant difference in the anodic polarization characteristics of the three alloys. In the 0.1% Na2S solution, the Alloy A which had the lowest noble metal content (Au + Pd) exhibited the highest anodic reactivity with the largest amount of corrosion product on the alloy surface. It was determined that the Ag-rich phase of Ag-Pd-Cu-Au alloy was preferentially attacked to form Ag2S corrosion product. The polarization resistance data showed that the corrosion rate for Alloy A in 0.1% Na2S solution was determined to be 500 times higher than that in Ringer's solution. The corrosion rate of the alloy in the freely corroded condition can be estimated quantitatively and precisely by measuring the polarization resistance.

  6. Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants.

    PubMed

    Elias, Carlos Nelson; Fernandes, Daniel Jogaib; Resende, Celso R S; Roestel, Jochen

    2015-02-01

    Commercially pure titanium (cp Ti) and Ti-6Al-4V (Ti G5) alloy have limitations for biomedical application, due to lower mechanical strength and the possibility of ion release, respectively. The purpose of this work was to compare the properties of a modified cp Ti grade 4 (Ti G4 Hard) with those of available cp Ti and Ti G5 alloys. Bars, discs and dental implants made with Ti G2, G4, G5 and G4 Hard were used. Mechanical tests (tension, compression, hardness and torque) and roughness measurements were performed. Clinical trials were used to evaluate the biological behavior of dental implants made with Ti G4 Hard and Ti G4. The results of the mechanical tests showed that the mechanical strength of modified Ti G4 is higher than that of Ti G2, G4 and G5. Scanning electron microscopy analysis showed that modified Ti G4 after etching has better surface morphological features than conventional cp Ti and Ti G5. The clinical performances of Ti G4 and Ti G4 Hard were similar. The improvement of the mechanical properties of modified Ti G4 means that Ti G5 can be safely replaced by Ti G4 Hard without compromising the fracture resistance, with the advantage of not releasing toxic ions. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    DOE PAGES

    Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; ...

    2015-08-24

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In this paper, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lackmore » of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. Also, the cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.« less

  8. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl₃ Particles.

    PubMed

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-10-26

    A series of Al-4Ti master alloys with various TiAl₃ particles were prepared via pouring the pure aluminum added with K₂TiF₆ or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl₃ particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl₃ particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl₃ particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl₃ particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl₃ particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl₃ particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl₃ particles prepared through different processes was almost identical.

  9. Grain Refinement Efficiency in Commercial-Purity Aluminum Influenced by the Addition of Al-4Ti Master Alloys with Varying TiAl3 Particles

    PubMed Central

    Zhao, Jianhua; He, Jiansheng; Tang, Qi; Wang, Tao; Chen, Jing

    2016-01-01

    A series of Al-4Ti master alloys with various TiAl3 particles were prepared via pouring the pure aluminum added with K2TiF6 or sponge titanium into three different molds made of graphite, copper, and sand. The microstructure and morphology of TiAl3 particles were characterized and analyzed by scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). The microstructure of TiAl3 particles in Al-4Ti master alloys and their grain refinement efficiency in commercial-purity aluminum were investigated in this study. Results show that there were three different morphologies of TiAl3 particles in Al-4Ti master alloys: petal-like structures, blocky structures, and flaky structures. The Al-4Ti master alloy with blocky TiAl3 particles had better and more stable grain refinement efficiency than the master alloys with petal-like and flaky TiAl3 particles. The average grain size of the refined commercial-purity aluminum always hereditarily followed the size of the original TiAl3 particles. In addition, the grain refinement efficiency of Al-4Ti master alloys with the same morphology, size, and distribution of TiAl3 particles prepared through different processes was almost identical. PMID:28773987

  10. Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2015-12-01

    As a consequence of the March 2011 events at the Fukushima site, the U.S. congress asked the Department of Energy (DOE) to concentrate efforts on the development of nuclear fuels with enhanced accident tolerance. The new fuels had to maintain or improve the performance of current UO2-zirconium alloy rods during normal operation conditions and tolerate the loss of active cooling in the core for a considerably longer time period than the current system. DOE is funding cost-shared research to investigate the behavior of advanced steels both under normal operation conditions in high-temperature water [ e.g., 561 K (288 °C)] and under accident conditions for reaction with superheated steam. Current results show that, under accident conditions, the advanced ferritic steels (1) have orders of magnitude lower reactivity with steam, (2) would generate less hydrogen and heat than the current zirconium alloys, (3) are resistant to stress corrosion cracking under normal operation conditions, and (4) have low general corrosion in water at 561 K (288 °C).

  11. Some observations on cyclic deformation structures in the high-strength commercial aluminum alloy AA 7150

    SciTech Connect

    Hanlon, D.N.; Rainforth, W.M.

    1998-11-01

    Load-controlled fatigue testing of the aluminum alloy AA 7150 has been conducted using four-point bending with an R ratio of + 0.1 over a range of maximum stress levels from 60 to 120% of the 0.2% proof stress. The alloy, in the form of 12.5-mm rolled plate, was investigated in underaged (UA), peak-aged (PA), and overaged (OA) conditions, corresponding to a change in average precipitate sizes from 5 nm in the UA condition to 21 nm in the OA condition. Three orientations of the plate were investigated. Orientation and aging condition influenced the degree of surface topographical development but not fatigue life. Detailed transmission electron microscopy (TEM) of the fatigued surface indicated that deformation in all aging conditions occurred by planar slip. Slip was generally restricted to a single slip system within each grain, and subgrain boundaries offered little resistance to dislocation movement facilitating long slip line lengths (measured up to 310 {micro}m) between adjacent high-angle grain boundaries. Planar slip observed in the OA condition is attributed to shearing of large strengthening precipitates, which is promoted by long slip line lengths. No evidence of surface specific changes in slip character was observed.

  12. Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

    PubMed Central

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2012-01-01

    The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated.

  13. Growth of Cr-Nitrides on Commercial Ni-Cr and Fe-Cr Base Alloys to Protect PEMFC Bipolar Plates

    SciTech Connect

    Brady, Michael P; Wang, Heli; Yang, Bing; Turner, John; Bordignon, Melanie; Molins, Regine; Abdelhamid, Mahmoud; Lipp, Ludwig; Walker, Larry R

    2007-01-01

    Nitridation of Cr-bearing alloys can yield low interfacial contact resistance (ICR), electrically- conductive and corrosion-resistant CrN or Cr2N base surfaces of interest for a range of electrochemical devices, including fuel cells, batteries, and sensors. This paper presents results of exploratory studies of the nitridation of two high Cr (30-35 wt%) commercially available Ni-Cr alloys and a ferritic high Cr (29 wt.%) stainless steel for proton exchange membrane fuel cell (PEMFC) bipolar plates. A high degree of corrosion resistance in sulfuric acid solutions designed to simulate bipolar plate conditions and low ICR values were achieved via nitridation. Oxygen impurities in the nitriding environment were observed to play a significant role in the nitrided surface structures that formed, with detrimental effects for the Ni-Cr base alloys, but beneficial effects for the stainless steel alloy. Results of single-cell fuel cell testing are also presented.

  14. Growth of Cr-Nitrides on commercial Ni–Cr and Fe–Cr base alloys to protect PEMFC bipolar plates

    SciTech Connect

    BRADY, M.; WANG, H.; YANG, B.; TURNER, J.; BORDIGNON, M.; MOLINS, R.; ABDELHAMID, M.; LIPP, L.; WALKER, L.

    2007-11-01

    Nitridation of Cr-bearing alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant CrN or Cr2N base surfaces of interest for a range of electrochemical devices, including fuel cells, batteries, and sensors. This paper presents results of exploratory studies of the nitridation of commercially available, high Cr (30–35 wt%) Ni–Cr alloys and a ferritic high Cr (29 wt%) stainless steel for proton exchange membrane fuel cell (PEMFC) bipolar plates. A high degree of corrosion resistance in sulfuric acid solutions designed to simulate bipolar plate conditions and low ICR values were achieved. Oxygen impurities in the nitriding environment were observed to play a significant role in the nitrided surface structures that formed, with detrimental effects for the Ni–Cr base alloys, but beneficial effects for the stainless steel alloy. Positive results from single-cell fuel cell testing are also presented.

  15. The influence of commercially pure titanium and titanium-aluminum-vanadium alloy on the final shade of low-fusing porcelain.

    PubMed

    Al Wazzan, Khalid A; Al Hussaini, Ibrahim S

    2007-02-01

    The aims of this study were to investigate the influence of commercially pure titanium (PTi) and titanium-aluminum-vanadium (Ti-6Al-4V) alloys (TiA) on the final shade of low-fusing porcelain bonded to them and to compare the shade changes with those of three conventional metal-ceramic systems. A titanium casting unit was used to cast PTi and Ti-6Al-4V alloy specimens followed by A3 shade low-fusing porcelain (Noritake) being bonded to them. Gold-based (AuA), palladium-based (PdA), and nickel-chromium (Ni-Cr) alloys were cast with an automatic centrifugal casting machine, then A3 shade conventional porcelain material (Vita, VMK 95) was applied to them. Ten specimens of each metal were then fabricated. The CIE L* a* b* color coordinates of the specimens were measured with a spectrophotometer. All alloys had significant color changes when compared with A3 shade tabs. The color differences from the shade tabs were 5.79 for the Ti-6Al-4V group, 6.46 for PdA alloy, 8.12 for AuA alloy, 8.15 for Ni-Cr alloy, and 12.58 for PTi. The specimens differed from the shade tabs primarily because of the differences in a* and b* coordinate values. Predictable shade reproduction of metal-ceramic restorations (MCRs) may be impaired by the underlying metal. The PTi had the greatest color differences among all the tested metal when compared with the shade tabs, whereas the Ti-6Al-4V alloy had the lowest. PTi is more likely to affect the final shade of low-fusing porcelain than Ti-6Al-4V alloy.

  16. Corrosive and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy.

    PubMed

    Ristic, Ljubisa; Vucevic, Dragana; Radovic, Ljubica; Djordjevic, Snezana; Nikacevic, Milutin; Colic, Miodrag

    2014-04-01

    Nickel-chromium (Ni-Cr) dental alloys have been widely used in prosthodontic practice, but there is a permanent concern about their biocompatibility due to the release of metal ions. This is especially important when Ni-Cr metal microparticles are incorporated into gingival tissue during prosthodontic procedures. Therefore, the aim of this study was to examine and compare the corrosion and cytotoxic properties of compact specimens and microparticles of Ni-Cr dental alloy. Ni-Cr alloy, Remanium CSe bars (4 mm diameter), were made by the standard casting method and then cut into 0.5-mm-thick disks. Metal particles were obtained by scraping the bars using a diamond instrument for crown preparation. The microstructure was observed by an optical microscope. Quantitative determination and morphological and dimensional characterization of metal particles were carried out by a scanning electron microscope and Leica Application Suite software for image analysis. Corrosion was studied by conditioning the alloy specimens in the RPMI 1640 medium, containing 10% fetal calf serum in an incubator with 5% CO2 for 72 hours at 37°C. Inductively coupled plasma-optical emission spectrometry was used to assess metal ion release. The cytotoxity of conditioning medium (CM) was investigated on L929 cells using an MTT test. One-way ANOVA was used for statistical analysis. After casting, the microstructure of the Remanium CSe compact specimen composed of Ni, Cr, Mo, Si, Fe, Al, and Co had a typical dendritic structure. Alloy microparticles had an irregular shape with a wide size range: from less than 1 μm to more than 100 μm. The release of metal ions, especially Ni and Mo from microparticles, was significantly higher, compared to the compact alloy specimen. The CM prepared from compact alloy was not cytotoxic at any tested dilutions, whereas CM from alloy microparticles showed dose-dependent cytotoxicity (90% CM and 45% CM versus control; p < 0.005). Ni-Cr microparticles showed less

  17. The Passive Film on Alloy 22

    SciTech Connect

    Orme, C A

    2005-09-09

    metal components (e.g., Ni, Cr, Mo, W) form distinct oxides, each of which may be stable under somewhat different environmental conditions. For one set of conditions, the oxide layer may be dominated by one or more of these metals, for another, by a different set. Furthermore, the oxide ''layer'' itself may consist of sub-layers of different composition. The purpose of this report is to characterize the oxide layer obtained from Alloy 22 over a range of environmental conditions and to demonstrate that the oxide shows passive behavior. Section 2 provides background information and theoretical predictions describing the role of pH and applied potential in oxide formation and stability. It includes a review of pertinent data on similar alloys. Section 3 presents data characterizing the oxide over a range applied potential and pH. Section 4 evaluates the oxide obtained from Alloy 22 samples aged for time periods extending from one month to over five years. Section 5 presents data showing that the oxide growth rate is logarithmic in time. Section 6 discusses the stability of the oxide as determined by short-term electrochemical tests. Section 7 describes the oxide scale that forms due to thermal processing (solution annealing and in air). Taken together, the various sections in this report present an understanding of the oxide layer obtained using a variety of methodologies, techniques, and testing conditions. An Appendix provides additional information regarding surface analysis techniques and electrochemical testing.

  18. A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Roberts, Christopher E.; Bourell, David; Watt, Trevor; Cohen, Julien

    Aluminum 6061 is of great commercial interest due to its ubiquitous use in manufacturing, advantageous mechanical properties, and its successful certification in aerospace applications. However, as an off-eutectic with accompanying large freezing range, attempts to process the material by additive manufacturing have resulted in part cracking and diminished mechanical properties. A unique approach using mixed powders is presented to process this historically difficult-to-process material. Expansion of this combined-powder approach to other materials systems not typically compatible with additive manufacturing is possible. Dense parts without solidification cracking have been produced by the SLM process, as verified using SEM and EDS. An overview of this approach is presented along with test results using an Al-Si mixture.

  19. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  20. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols.

    PubMed

    Guilherme, Aderico Santana; Henriques, Guilherme Elias Pessanha; Zavanelli, Ricardo Alexandre; Mesquita, Marcelo Ferraz

    2005-04-01

    Surface quality of cast metal is directly related to service performance under fatigue stress. Surface heterogeneities resulting from either finishing or polishing processes or by corrosive agents such as fluoridated solutions, can negatively affect fatigue life. Cast titanium frameworks are difficult to polish, and an accepted polishing protocol has not been established. This study evaluated and compared surface roughness of cast commercially pure titanium (CP Ti) and Ti-6Al-4V alloy submitted to conventional or electrolytic polishing, correlating the results with corrosion-fatigue strength testing performed in artificial fluoridated saliva. Specimens were also tested in air at room temperature to evaluate the effectiveness of the corrosion-fatigue test model. For each metal, 40 dumb-bell-shaped rods, 2.3 mm in diameter at the central segment, were cast. Conventional polishing was performed on 20 specimens of each metal following the manufacturer's instructions. A source of continuous electrical current was used for electrolytic polishing of the other 20 specimens of each metal, which were immersed in an electrolytic solution containing 5% fluoridric acid, 35% nitric acid, and 60% distilled water. Surface roughness, Ra (microm), was measured with a profilometer, and fatigue tests were carried out with a universal testing machine using a load 30% lower than the 0.2% offset yield strength. After failure, the fractured surfaces were examined using scanning electron microscopy. Surface roughness means were analyzed with a 2-way analysis of variance and the Tukey multiple comparisons test (alpha=.05). Electrolytic polishing (0.24 +/- 0.05 microm) provided significantly (P <.05) lower surface roughness values than conventional polishing (0.32 +/- 0.06 microm). Regardless of the polishing protocol, surface roughness of Ti-6Al-4V alloy (0.25 +/- 0.06 microm) was significantly lower (P <.05) than that of CP Ti (0.31 +/- 0.05 microm), and the fluoridated environment did not

  1. Effects of long-term thermal aging on the tensile and creep properties of commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.

    1984-01-01

    Alloy 718 is a structure material widely used in elevated-temperature applications. In particular, it was extensively used in the design of the upper internal system and control rod drive line of the proposed Clinch River Breeder Reactor. Its popularity is due to several excellent behavioral features, including high creep and creep-rupture strength, good oxidation resistance, and exceptional high-cycle fatigue strength. However, alloy 718 is extremely complex, and its microstructure can be significantly modified by thermal treatment. The stability of the alloy in long-term elevated-temperature service is therefore a substantial concern in any such application. This report presents tensile and creep data obtained on three heats of alloy 718 after thermal aging for up to 27,000 h from 593 to 76{degree}C. Implications of these results in terms of long-term stability of the alloy are discussed. 5 refs., 13 figs., 6 tabs.

  2. The effect of thermal cycling on the bond strength of low-fusing porcelain to commercially pure titanium and titanium-aluminium-vanadium alloy.

    PubMed

    Tróia, Manoel G; Henriques, Guilherme E P; Nóbilo, Mauro A A; Mesquita, Marcelo F

    2003-12-01

    Titanium-ceramic restorations are currently used in spite of the pending problem of titanium-ceramic bonding, which has only been partially solved. In addition, some titanium-ceramic systems appear to be susceptible to thermal cycling, which can cause weaker bond strength. The objective of this study was to evaluate the bonding characteristics of titanium porcelain bonded to commercially pure titanium (Ti-Cp) or titanium-aluminum-vanadium (Ti-6Al-4V) alloy as well as the effect of thermal cycling on bond strength. A three-point-flexure-test was used to evaluate the bond strength of titanium porcelain bonded to commercially pure titanium and Ti-6Al-4V alloy according to DIN 13.927. To evaluate the effect of thermal cycling on the samples, half were thermal cycled in temperatures ranging from 4 degrees C (+/-2 degrees C) to 55 degrees C (+/-2 degrees C). Results were compared with palladium-silver (Pd-Ag) alloy bonded to conventional porcelain (control). Scanning electron microscope (SEM) photomicrographs were taken to characterize the failed surfaces in the metal-ceramic interface. Anova and Tukey's multiple comparison tests were used to analyze the data at a 5% probability level. Thermal cycling did not significantly weaken the bond strength of porcelain to titanium interfaces. There was no significant difference in bond strength between commercially pure titanium (23.60 MPa for thermal cycled group and 24.99 MPa for non-thermal cycled group) and Ti-6Al-4V groups (24.98 and 25.60 MPa for thermal cycled and non-thermal cycled groups, respectively). Bond strength values for the control group (47.98 and 45.30 MPa, respectively) were significantly greater than those for commercially pure titanium and Ti-6Al-4V combinations. The bond strength of low fusing porcelain bonded to cast pure titanium or Ti-6Al-4V alloy was significantly lower than the conventional combination of porcelain-Pd-Ag alloy. Thermal cycling did not affect the bond strength of any group.

  3. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    PubMed

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  4. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys

    PubMed Central

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-01-01

    Conventional fusion welding of brass (Cu–Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints. PMID:26793745

  5. In vitro evaluation of cytotoxicity and corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy for dental implants.

    PubMed

    Chandar, Sanchitha; Kotian, Ravindra; Madhyastha, Prashanthi; Kabekkodu, Shama Prasada; Rao, Padmalatha

    2017-01-01

    The aim of this study was to investigate the cytotoxicity in human gingival fibroblast by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and corrosion behavior by potentiodynamic polarization technique of commercially pure titanium (Ti 12) and its alloy Ti-6Al-4V (Ti 31). In the present in vitro study, cytotoxicity of Ti 12 and Ti 31 in human gingival fibroblast by MTT assay and the corrosion behavior by potentiodynamic polarization technique in aqueous solutions of 0.1 N NaCl, 0.1 N KCl, and artificial saliva with and without NaF were studied. The independent t-test within materials and paired t-test with time interval showed higher cell viability for Ti 12 compared to Ti 31. Over a period, cell viability found to stabilize in both Ti 12 and Ti 31. The effects of ions of Ti and alloying elements aluminum and vanadium on the cell viability were found with incubation period of cells on samples to 72 h. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO2 and additional metal oxides. The multiphase alloy Ti-6Al-4V showed more surface pitting. The commercially pure Ti showed better cell viability compared to Ti 31. Less cell viability in Ti 31 is because of the presence of aluminum and vanadium. A significant decrease in cytotoxicity due to the formation of TiO2 over a period of time was observed both in Ti 12 and Ti 31. The electrochemical behavior of Ti 12 and Ti 31 in different experimental solutions showed a general tendency for the immersion potential to shift steadily toward nobler values indicated formation of TiO2 and additional metal oxides. Ti 31 alloy showed surface pitting because of its multiphase structure.

  6. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    SciTech Connect

    Rebak, R B

    2005-10-06

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale--The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo

  7. Comparison of isothermal and cyclic oxidation behavior of twenty-five commercial sheet alloys at 1150 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1974-01-01

    The cyclic and isothermal oxidation resistance of 25 high-temperature Ni-, Co-, and Fe-base sheet alloys after 100 hours in air at 1150 C was compared. The alloys were evaluated in terms of their oxidation, scaling, and vaporization rates and their tendency for scale spallation. These values were used to develop an oxidation rating parameter based on effective thickness change, as calculated from a mass balance. The calculated thicknesses generally agreed with the measured values, including grain boundary oxidation, to within a factor of 3. Oxidation behavior was related to composition, particularly Cr and Al content.

  8. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys.

    SciTech Connect

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A. H.; Paulikas, A. P.; Veal, B. W.

    2007-12-01

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys.

  9. Characterizing precipitate evolution of an Al–Zn–Mg–Cu-based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring

    SciTech Connect

    Jiang, Fulin; Zurob, Hatem S.; Purdy, Gary R.; Zhang, Hui

    2016-07-15

    In situ electrical resistivity monitoring technique was employed to continuously evaluate the precipitate evolution of an Al–Zn–Mg–Cu-based commercial alloy during typical artificial aging treatments. The effects of artificial aging on the precipitates stability during non-isothermal heat treatments were also explored. Conventional hardness test, transmission electron microscopy and differential scanning calorimetry were also adopted to verify the electrical resistivity results. The results indicated that both the precipitation process and its timely rate could be followed by the monitored electrical resistivity during artificial aging treatments. The electrical resistivity results gave overall information on continuous precipitation and dissolution processes, especially under high heating rates. Samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h presented more stable state and coarser precipitates than the samples only artificial aging heat treated at 120 °C for 24 h or triple artificial aging heat treated at 120 °C/24 h + 195 °C/15 min + 120 °/24 h. While the incoherent η precipitates in the samples artificial aging heat treated at 120 °C for 24 h followed by aging at 150 °C for 24 h were more easiness to coarsening and dissolve during non-isothermal heat treatments as well. - Highlights: • In situ electrical resistivity monitoring technique was employed on an Al-Zn-Mg-Cu alloy. • The precipitate evolution during typical artificial aging treatments was studied. • The precipitate stability during non-isothermal heat treatments was explored. • The electrical resistivity wonderfully monitored continuous precipitation and dissolution. • The alloy submitted to a T7 treatment presents a more stable state during heating due to incoherent η precipitates.

  10. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  11. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  12. Effect of argon purity on mechanical properties, microstructure and fracture mode of commercially pure (cp) Ti and Ti-6Al-4V alloys for ceramometal dental prostheses.

    PubMed

    Bauer, José; Cella, Suelen; Pinto, Marcelo M; Filho, Leonardo E Rodrigues; Reis, Alessandra; Loguercio, Alessandro D

    2009-12-01

    Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey's test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.

  13. A study on the relationships between corrosion properties and chemistry of thermally oxidised surface films formed on polished commercial magnesium alloys AZ31 and AZ61

    NASA Astrophysics Data System (ADS)

    Feliu, Sebastián; Samaniego, Alejandro; Barranco, Violeta; El-Hadad, A. A.; Llorente, Irene; Serra, Carmen; Galván, J. C.

    2014-03-01

    This paper studies the changes in chemical composition of the thin oxide surface films induced by heating in air at 200 °C for time intervals from 5 min to 60 min on the freshly polished commercial AZ31 and AZ61 alloys with a view to better understanding their protective properties. This thermal treatment resulted in the formation of layers enriched in metallic aluminium at the interface between the outer MgO surface films and the bulk material. A strong link was found between the degree of metallic Al enrichment in the subsurface layer (from 10 to 15 at.%) observed by XPS (X-ray photoelectron spectroscopy) in the AZ61 treated samples and the increase in protective properties observed by EIS (electrochemical impedance spectroscopy) in the immersion test in 0.6 M NaCl. Heating for 5-60 min in air at 200 °C seems to be an effective, easy to perform and inexpensive method for increasing the corrosion resistance of the AZ61 alloy by approximately two or three times.

  14. Comparative analysis of the fit of 3-unit implant-supported frameworks cast in nickel-chromium and cobalt-chromium alloys and commercially pure titanium after casting, laser welding, and simulated porcelain firings.

    PubMed

    Tiossi, Rodrigo; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Glória Chiarello; Ribeiro, Ricardo Faria

    2008-01-01

    This study compared the vertical misfit of 3-unit implant-supported nickel-chromium (Ni-Cr) and cobalt-chromium (Co-Cr) alloy and commercially pure titanium (cpTi) frameworks after casting as 1 piece, after sectioning and laser welding, and after simulated porcelain firings. The results on the tightened side showed no statistically significant differences. On the opposite side, statistically significant differences were found for Co-Cr alloy (118.64 microm [SD: 91.48] to 39.90 microm [SD: 27.13]) and cpTi (118.56 microm [51.35] to 27.87 microm [12.71]) when comparing 1-piece to laser-welded frameworks. With both sides tightened, only Co-Cr alloy showed statistically significant differences after laser welding. Ni-Cr alloy showed the lowest misfit values, though the differences were not statistically significantly different. Simulated porcelain firings revealed no significant differences.

  15. Effect of Native Oxide Film on Commercial Magnesium Alloys Substrates and Carbonate Conversion Coating Growth and Corrosion Resistance

    PubMed Central

    Feliu, Sebastián; Samaniego, Alejandro; Bermudez, Elkin Alejandro; El-Hadad, Amir Abdelsami; Llorente, Irene; Galván, Juan Carlos

    2014-01-01

    Possible relations between the native oxide film formed spontaneously on the AZ31 and AZ61 magnesium alloy substrates with different surface finish, the chemistry of the outer surface of the conversion coatings that grows after their subsequent immersion on saturated aqueous NaHCO3 solution treatment and the enhancement of corrosion resistance have been studied. The significant increase in the amount of aluminum and carbonate compounds on the surface of the conversion coating formed on the AZ61 substrate in polished condition seems to improve the corrosion resistance in low chloride ion concentration solutions. In contrast, the conversion coatings formed on the AZ31 substrates in polished condition has little effect on their protective properties compared to the respective as-received surface. PMID:28788582

  16. Implementation of Finite Strain-Based Constitutive Formulation in LLLNL-DYNA3D to Predict Shockwave Propagation in Commercial Aluminum Alloys AA7010

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.; Ma'at, N.; Kamarudin, K. A.; Ismail, A. E.

    2016-11-01

    The constitutive models adopted to represent dynamic plastic behaviour are of great importance in the current design and analysis of forming processes. Many have studied this topic, leading to results in various technologies involving analytical, experimental and computational methods. Despite of this current status, it is generally agreed that there is still a need for improved constitutive models. There are still many issues relating to algorithm implementation of the proposed constitutive model in the selected code to represent the proposed formulation. Using this motivation, the implementation of a new constitutive model into the LLNL-DYNA3D code to predict the deformation behaviour of commercial aluminium alloys is discussed concisely in this paper. The paper initially explains the background and the basic structure of the LLNL-DYNA3D code. This is followed by a discussion on the constitutive models that have been chosen as the starting point for this work. The initial stage of this implementation work is then discussed in order to allow all the required material data and the deformation gradient tensor F to be read and initialised for the main analysis. Later, the key section of this implementation is discussed, which mainly relates to subroutine f3dm93 including equation of state (EOS) implementation. The implementation of the elastic-plastic part with isotropic plastic hardening, which establishes the relationship between stress and strain with respect to the isoclinic configuration Ω¯ i in the new deviatoric plane, is then presented before the implemented algorithm is validated against Plate Impact test data of the Aluminium Alloy 7010. A good agreement is obtained in each test.

  17. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments.

    PubMed

    Zavanelli, R A; Guilherme, A S; Pessanha-Henriques, G E; de Arruda Nóbilo, M Antônio; Mesquita, M F

    2004-10-01

    This study evaluated the corrosion-fatigue life of laser-repaired specimens fabricated from commercially pure titanium (CP Ti) and Ti-6Al-4V alloy, tested under different storage conditions. For each metal, 30 dumbbell rods with a central 2.3 mm diameter were prepared by lost-wax casting with the Rematitan System. Simulating the failure after service, corrosion-fatigue life in different media at room temperature (air, synthetic saliva and fluoride synthetic saliva) was determined at a testing frequency of 10 Hz for intact specimens and after laser repairing, using a square waveform with equal maximum tensile and compressive stress that was 30% lower than the 0.2% offset yield strength. For laser welding, the fractured specimens were rejoined using a jig to align the sections invested in type-IV dental stone. The adjacent areas of the gap was air-abraded with 100 microm aluminum oxide, laser welded and retested under the same conditions as the initial intact specimens. The number of cycles at failure was recorded, and the fracture surface was examined with a scanning electron microscope (SEM). The number of cycles for failure of the welded and intact specimens was compared by anova and the Tukey test at a 5% probability level. Within the limitations of this study, the number of cycles required for fracture decreased in wet environments and the laser repairing process adversely affected the life of both metals under the corrosion-fatigue conditions.

  18. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other?

    PubMed

    Shah, Furqan A; Trobos, Margarita; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Formation of TiO2 layers on commercially pure Ti and Ti-Mo and Ti-Nb alloys by two-step thermal oxidation and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sado, Shota; Ueda, Takatoshi; Ueda, Kyosuke; Narushima, Takayuki

    2015-12-01

    Anatase-containing TiO2 layers were formed on commercially pure (CP) Ti and Ti-25mass%Mo (Ti-25Mo) and Ti-25mass%Nb (Ti-25Nb) alloys by two-step thermal oxidation. The first-step treatment was conducted in an Ar-1%CO atmosphere at 1073 K for 3.6 ks, and the second-step treatment was conducted in air at 673-1073 K for 10.8 ks. The second-step temperature range for anatase formation was wider in the Ti alloys than in CP Ti. Photo-induced superhydrophilicity under UV irradiation was observed for the TiO2 layers with anatase fractions ≥0.6 on CP Ti and the Ti-25Mo alloy, and with anatase fractions ≥0.18 on the Ti-25Nb alloy. The TiO2 layers on the Ti-25Nb alloy exhibited excellent photocatalytic activity in the low anatase fraction region, which is considered to be caused by the incorporation of 1-3 at% Nb into the TiO2 layers. The rate constant of methylene blue degradation showed maxima at anatase fractions of 0.6-0.9.

  20. Commercialization of nickel and iron aluminides

    SciTech Connect

    Sikka, V.K.

    1996-12-31

    Metallurgists are taught that intermetallics are brittle phases and should be avoided in alloys of commercial interest. This education is so deeply rooted that irrespective of significant advances made in ductilization of aluminides,the road to their acceptance commercialization is extremely difficult. This paper identifies the requirements for commercialization of any new alloys and reports the activities carried out to commercialize Ni and Fe aluminides. The paper also identifies areas which meet the current commercialization requirements and areas needing additional effort.

  1. Production of aluminum-silicon alloy and ferrosilicon and commercial-purity aluminum by the direct-reduction process. Third annual technical report, 1980 January 1-1980 December 31

    SciTech Connect

    Bruno, M.J.

    1981-01-01

    Progress on the program to demonstrate the technical feasibility of a pilot-sized Direct Reduction Process for producing aluminium and aluminium-silicon alloy is reported for Phase C. Progress is reported on reduction including the following tasks: supply burden material; burden beneficiation; effects of pilot operating parameters; pilot modifications; reactor scale-up design; calculating heat and mass balance; processing mathematical modeling; effects of process variables; information on supportive analytical, phase identification, and mechanical engineering data. Progress on alloy purification is reported in the following tasks: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; and supportive mechanical engineering. Progress on purification to commercial grade aluminum is reported on: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; support pilot operations; and supportive expended man-hours. Plans for Phase D are noted. (MCW)

  2. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  3. Some observations of the influence of δ-ferrite content on the hardness, galling resistance, and fracture toughness of selected commercially available iron-based hardfacing alloys

    NASA Astrophysics Data System (ADS)

    Cockeram, B. V.

    2002-11-01

    Iron-based weld hardfacing deposits are used to provide a wear-resistant surface for a structural base material. Iron-based hardfacing alloys that are resistant to corrosion in oxygenated aqueous environments contain high levels of chromium and carbon, which results in a dendritic microstructure with a high volume fraction of interdendrite carbides which provide the needed wear resistance. The ferrite content of the dendrites depends on the nickel content and base composition of the iron-based hardfacing alloy. The amount of ferrite in the dendrites is shown to have a significant influence on the hardness and galling wear resistance, as determined using ASTM G98 methods. Fracture-toughness ( K IC) testing in accordance with ASTM E399 methods was used to quantify the damage tolerance of various iron-based hardfacing alloys. Fractographic and microstructure examinations were used to determine the influence of microstructure on the wear resistance and fracture toughness of the iron-based hardfacing alloys. A crack-bridging toughening model was shown to describe the influence of ferrite content on the fracture toughness. A higher ferrite content in the dendrites of an iron-based hardfacing alloy reduces the tendency for plastic stretching and necking of the dendrites, which results in improved wear resistance, high hardness, and lower fracture-toughness values. A NOREM 02 hardfacing alloy has the most-optimum ferrite content, which results in the most-desired balance of galling resistance and high K IC values.

  4. Effect of shot peening and grain refinement on the fatigue life and strength of commercially pure Al and two of its alloys: Al-2024-T3 and Al-7075-T6

    NASA Astrophysics Data System (ADS)

    Qandil, A.; Zaid, Adnan I. O.

    2016-08-01

    Aluminum and its alloys are widely used materials in automobile, aircraft and space craft industries due to their high strength- to- weight ratio and corrosion resistance beside their other useful properties. They are the second materials in use after steel alloys. Most of the failures in parts of aircrafts and space vehicles are mainly caused by fatigue and stress corrosion cracking. In this paper, the effect of shot peening on the fatigue life of commercially pure aluminumand two of its alloys namely:Al-2024 and Al-7075-T6 is presented and discussed. Furthermore, the effect of addition of vanadium to Al and Al grain refined by Ti and Ti+Bon Its fatigue life and strengthis also presented and discussed using scanning electron microscope, SEM. It was that shot peening and the addition of V toAl and Al onAl grain refined by Ti and Ti+B have resulted in enhancement of the fatigue life and strength. Ffinally, the effect of shot peening on the surface quality of the peened parts is also presented and discussed.

  5. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering.

    PubMed

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-03-06

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.

  6. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering

    PubMed Central

    Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora

    2013-01-01

    In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed. PMID:28809344

  7. Corrosion of Stainless-Steel Tubing in a Spacecraft Launch Environment

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; MacDowell, Louis G.; Curran, Joe; Calle, Luz Maria; Hodge, Timothy

    2001-01-01

    This is a report of exposure of various metal tubing to oceanfront launch environments. The objective is to examine various types of corrosion-resistant tubing for Space Shuttle launch sites. The metals were stainless steels (austenitic, low-carbon, Mo-alloy, superaustenitic, duplex, and superferritic), Ni-Cr-Mo alloy, Ni-Mo-Cr-Fe-W alloy, and austenitic Ni-base superalloy.

  8. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase D, January 1-March 31, 1981

    SciTech Connect

    Bruno, M.J.

    1981-04-01

    Operation of the bench AF-reactor on burden with all reducing carbon exterior to the ore pellet resulted in low metal alloy product yields and prematurely terminated runs, indicating the need for intimate contact between alumina and carbon to produce oxycarbide liquid prior to reaction with solid silicon carbide. Carbon solubility tests made on 60Al-40Si alloys at 2200/sup 0/C in graphite crucibles indicated continued reaction to form SiC for one hour. Efficiency of reduction to SiC ranged from 68 to 100%. The A-C two-electrode submerged arc reactor pilot, SAR-II, was successfully operated on both alumina-clay-coke and alumina-silicon carbide-coke (from the VSR prereduction) burdens. Metal alloy was produced and tapped in each of four runs. The pilot crystallizer was operated to evalute the two-stage (stop and go) crystallization technique on obtaining high yields of Al in Al-Si eutectic, with a limit of 1.0% Fe and 0.1% Ti in the alloy product. 18 figures, 19 tables. (DLC)

  9. Environmental degradation and life time prediction of low alloy steam turbine rotor steels

    SciTech Connect

    Magdowski, R.; Speidel, M.O.

    1995-12-31

    The effect of stress intensity, yield strength and temperature on the growth rates of stress corrosion cracks in 3.5NiCrMoV and other steam turbine rotor steels has been reassessed. It is shown that from 60 C to 170 C the upper limit of laboratory test results in deaerated water coincides with the upper limit of stress corrosion service experience with steam turbine rotors in the field. This permits a conservative estimate of the residual lifetime of cracked components on the basis of laboratory test results.

  10. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  11. The Solidification of Multicomponent Alloys

    PubMed Central

    Boettinger, William J.

    2017-01-01

    Various topics taken from the author’s research portfolio that involve multicomponent alloy solidification are reviewed. Topics include: ternary eutectic solidification and Scheil-Gulliver paths in ternary systems. A case study of the solidification of commercial 2219 aluminum alloy is described. Also described are modifications of the Scheil-Gulliver analysis to treat dendrite tip kinetics and solid diffusion for multicomponent alloys. PMID:28819348

  12. Welding high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Parks, P. G.; Hoppes, R. V.; Hasemeyer, E. A.; Masubuchi, K.

    1974-01-01

    Handbook has been published which integrates results of 19 research programs involving welding of high-strength aluminum alloys. Book introduces metallurgy and properties of aluminum alloys by discussing commercial alloys and heat treatments. Several current welding processes are reviewed such as gas tungsten-arc welding and gas metal-arc welding.

  13. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  14. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  15. Solutions to corrosion problems of FGD systems providing functional reliability and cost effectiveness

    SciTech Connect

    Agarwal, D.C.

    1986-01-01

    Extensive research programs at various utilities and institutions to find better materials of construction led to higher alloys up the ladder of Ni-Cr-Mo family and new non-metallic coatings. One result of this was the development of the ''wallpaper concept solution'' of lining with thin sheets of highly corrosion-resistant alloy of the Ni-Cr-Mo family which over the last six years has provided maintenance free performance in a very cost effective manner. This paper will describe the simplicity of the wallpaper concept solution, economics as compared to other alternatives, and case histories where maintenance free service is being provided to many utilities in the critical areas of their FGD systems.

  16. Effect of Concurrent Precipitation on Recrystallization and Evolution of the P-Texture Component in a Commercial Al-Mn Alloy

    NASA Astrophysics Data System (ADS)

    Tangen, S.; Sjølstad, K.; Furu, T.; Nes, E.

    2010-11-01

    The recrystallization behavior of a cold-rolled Al-Mn alloy was investigated, focusing on the effect of concurrent precipitation on nucleation and growth of recrystallization and the formation of the P- left( {left\\{ {011} right\\}left< {111} rightrangle } right) and ND-rotated cube left( {left\\{ {001} right\\}left< {310} rightrangle } right) texture components. It was observed that if precipitation took place prior to or simultaneously with recovery and recrystallization processes, i.e., by concurrent precipitation, this resulted in a delayed recrystallization, a coarse and elongated grain structure, and an unusually sharp P-texture component. The P-texture component sharpened with increasing initial cold rolling reduction, increasing initial supersaturation of Mn, and decreasing annealing temperature. The P- and ND-rotated cube nucleation sites have an initial growth advantage compared to the particle-stimulated nucleation (PSN) sites due to their 40 deg left< {111} rightrangle -rotation relationship to the Cu component of the deformation texture. The boundaries between such sites and the surrounding matrix will be of the Σ7 type, and it is assumed that such highly perfect boundaries will be less affected by solute segregation and precipitation, resulting in early growth advantage. It was further observed that dispersoids present prior to cold rolling and annealing had a weaker effect on the recrystallized grain size and texture compared to concurrent precipitation, even though the average dispersoid density was higher in the pre-precipitation cases. The finer grain size was explained by the wider dispersoid free zones surrounding the large constituent particles compared to the concurrent precipitation cases. Subsequent growth of the nucleated grains, however, was more hindered due to the Zener drag, consistent with the higher dispersoid densities.

  17. Commercial lumber

    Treesearch

    Kent A. McDonald; David E. Kretschmann

    1999-01-01

    In a broad sense, commercial lumber is any lumber that is bought or sold in the normal channels of commerce. Commercial lumber may be found in a variety of forms, species, and types, and in various commercial establishments, both wholesale and retail. Most commercial lumber is graded by standardized rules that make purchasing more or less uniform throughout the country...

  18. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  19. The Impact of Force Transmission on Narrow-Body Dental Implants Made of Commercially Pure Titanium and Titanium Zirconia Alloy with a Conical Implant-Abutment Connection: An Experimental Pilot Study.

    PubMed

    Nelson, Katja; Schmelzeisen, Rainer; Taylor, Thomas D; Zabler, Simon; Wiest, Wolfram; Fretwurst, Tobias

    2016-01-01

    The purpose of this study was to visualize the mode and impact of force transmission in narrowdiameter implants with different implant-abutment designs and material properties and to quantify the displacement of the abutment. Narrow-diameter implants from two manufacturers were examined: Astra 3.0-mm-diameter implants (Astra OsseoSpeed TX; n = 2) and Straumann Bone Level implants with a 3.3-mm diameter made of commercially pure titanium (cpTi) Gr. 4 (n = 2) and 3.3-mm TiZr-alloy (n = 2; Bone Level, Straumann) under incremental force application using synchrotron radiography (absorption and inline x-ray phase-contrast) and tomography. During loading (250 N), Astra 3.0 and Bone Level 3.3- mm implants showed a deformation of the outer implant shoulder of 61.75 to 95 μm independent of the implant body material; the inner implant diameter showed a deformation of 71.25 to 109.25 μm. A deformation of the implant shoulder persisted after the removal of the load (range, 42.75 to 104.5 μm). An angulated intrusion of the abutment (maximum, 140 μm) into the implant body during load application was demonstrated; this spatial displacement persisted after removal of the load. This study demonstrated a deformation of the implant shoulder and displacement of the abutment during load application in narrow-diameter implants.

  20. Histomorphological and Histomorphometric Analyses of Grade IV Commercially Pure Titanium and Grade V Ti-6Al-4V Titanium Alloy Implant Substrates: An In Vivo Study in Dogs.

    PubMed

    Ribeiro da Silva, Jonathan; Castellano, Arthur; Malta Barbosa, João Pedro; Gil, Luiz F; Marin, Charles; Granato, Rodrigo; Bonfante, Estevam A; Tovar, Nick; Janal, Malvin N; Coelho, Paulo G

    2016-10-01

    To evaluate the bone response to grade IV commercially pure titanium (G4) relative to Ti-6Al-4V (G5). Implant surface topography was characterized by optical interferometry and scanning electron microscopy (SEM). Thirty-six implants (Signo Vinces, n = 18 per group) were installed in the radius of 18 dogs. The animals were killed at 1, 3, and 6 weeks, resulting in 6 implants per group and time in vivo for bone morphology, bone-to-implant contact (BIC), and bone area fraction occupancy (BAFO) evaluation. SEM depicted a more uniform topography of G4 than G5. Surfaces were statistically homogeneous for Sa, Sq, and Sdr. At 1 week, new bone formation was observed within the healing connective tissue in contact with the implant surface. At 3 weeks, new bone in direct contact with the implant surface was observed at all bone regions. At 6 weeks, the healing chambers filled with woven bone depicted an onset of replacement by lamellar bone. No significant effect of substrate was detected. Time presented an effect on BIC and BAFO (P < 0.001). Both titanium substrates were biocompatible and osseoconductive at the bone tissue level.

  1. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  2. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  3. Structure of dental gallium alloys.

    PubMed

    Herø, H; Simensen, C J; Jørgensen, R B

    1996-07-01

    The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.

  4. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  5. Magnesium and magnesium alloys

    SciTech Connect

    Avedesian, M.; Baker, H.

    1998-12-31

    This new handbook is the most comprehensive publication of engineering information on commercial magnesium alloys under one cover in the last sixty years. Prepared with the cooperation of the International Magnesium Association, it presents the industrial practices currently used throughout the world, as well as the properties of the products critical to their proper application. Contents include: general characteristics; physical metallurgy; melting, refining, alloying, recycling, and powder production; casting; heat treatment; forging, rolling, and extrusion; semisolid processing; forming; joining; cleaning and finishing; selection, application, and properties of grades and alloys; design considerations; mechanical behavior and wear resistance; fatigue and fracture-mechanics; high-temperature strength and creep; corrosion and stress-corrosion cracking; specification.

  6. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  7. Damping in Ferrous Shape Memory Alloys

    DTIC Science & Technology

    1993-08-01

    time it has been proposed that the solution lies in the approach of energy dissipation by using metallic structural materials which have inherent...and automotive manufacturing plants, has never achieved commercial producton . 1-b. Ferromagnetic alloys, such as Fe-Cr alloys High damping Fe-Cr alloys...Pre-exsiring mar~en-si,ýe worms orwie treenred orieL a ion ! A Lr cow s SL AL 14- L AL Figure 26. Schematic illustration of various processes involved

  8. Electrochemical Corrosion Testing of Neutron Absorber Materials

    SciTech Connect

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  9. Environmentally Assisted Cracking of Nickel Alloys - A Review

    SciTech Connect

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  10. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  11. Commercial Crew

    NASA Image and Video Library

    Phil McAlister delivers a presentation by the Commercial Crew (CC) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to...

  12. Space Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  13. The effect of aluminium on the metallography of a nickel base removable partial denture casting alloy.

    PubMed

    Lewis, A J

    1978-12-01

    Three special nickel-chromium alloys were prepared in which the aluminum levels were adjusted both above and below that of a commercial nickel base dental casting alloy. Tensile and metallographic evaluation of representative samples of the alloys were made and the changes in the properties of the alloys are reported.

  14. The Delayed Fracture of Aluminum Alloys, End of Year Report.

    DTIC Science & Technology

    1982-03-01

    these commercial alloys is not significantly influenced by the composition of the oxide. In these 7 alloys, the insoluble constituent particles...boundary microstructure, but not to oxide film composition . Accession For 14TTS ’& DTIC T’B ju-tific i ’ Distributon/ Availability Codns *Avi! anl/or * I...Mg-free film for commercial 7 alloys. This latter work was undertaken to further elucidate the effect of film composition on SCC initiation and to

  15. Mechanically alloyed Ni-base alloys for heat-resistant applications

    SciTech Connect

    Wilson, R.K.; Fischer, J.J.

    1995-12-31

    INCONEL alloys MA 754 and MA 758 are nickel-base oxide dispersion-strengthened (ODS) alloys made by mechanical alloying (MA). Commercial use of Ma Ni-base alloys to date has been predominantly in aerospace applications of alloy MA 754 as turbine engine vanes. Both alloys are suitable for industrial heat treating components and other heat resistant alloy applications. Field trials and commercial experience in such applications of MA alloys are being gained while high temperature property characterization and new product form development continue. Hot isostatic pressing (HIP) is the standard consolidation method for billets from which large bar and plate are produced for industrial applications of MA. This paper describes production of standard mill shapes from HIP billets, and it presents information on current and potential uses of MA alloys in applications such as: skid rails for use in high temperature walking beam furnaces, heat treating furnace components, components for handling molten glass, and furnace tubes. The paper includes comparison of the properties obtained in alloy MA 754 (20% Cr) and alloy MA 758 (30% Cr).

  16. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  17. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  18. Commercial Fishing.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational Education.

    This document is a curriculum framework for a program in commercial fishing to be taught in Florida secondary and postsecondary institutions. This outline covers the major concepts/content of the program, which is designed to prepare students for employment in occupations with titles such as net fishers, pot fishers, line fishers, shrimp boat…

  19. Commercial Fishing.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational Education.

    This document is a curriculum framework for a program in commercial fishing to be taught in Florida secondary and postsecondary institutions. This outline covers the major concepts/content of the program, which is designed to prepare students for employment in occupations with titles such as net fishers, pot fishers, line fishers, shrimp boat…

  20. Commercial applications

    NASA Technical Reports Server (NTRS)

    Togai, Masaki

    1990-01-01

    Viewgraphs on commercial applications of fuzzy logic in Japan are presented. Topics covered include: suitable application area of fuzzy theory; characteristics of fuzzy control; fuzzy closed-loop controller; Mitsubishi heavy air conditioner; predictive fuzzy control; the Sendai subway system; automatic transmission; fuzzy logic-based command system for antilock braking system; fuzzy feed-forward controller; and fuzzy auto-tuning system.

  1. Materials data handbooks prepared for aluminum alloys 2014, 2219, and 5456, and stainless steel alloy 301

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Materials data handbooks summarize all presently known properties of commercially available structural aluminum alloys 2014, 2219, and 5456 and structural stainless steel alloy 301. The information includes physical and mechanical property data and design data presented in tables, illustrations, and text.

  2. X-ray photoelectron spectroscopy study of the passive films formed on thermally sprayed and wrought Inconel 625

    NASA Astrophysics Data System (ADS)

    Bakare, M. S.; Voisey, K. T.; Roe, M. J.; McCartney, D. G.

    2010-11-01

    There is a well known performance gap in corrosion resistance between thermally sprayed corrosion resistant coatings and the equivalent bulk materials. Interconnected porosity has an important and well known effect, however there are additional relevant microstructural effects. Previous work has shown that a compositional difference exists between the regions of resolidified and non-melted material that exist in the as-sprayed coatings. The resolidified regions are depleted in oxide forming elements due to formation of oxides during coating deposition. Formation of galvanic cells between these different regions is believed to decrease the corrosion resistance of the coating. In order to increase understanding of the details of this effect, this work uses X-ray photoelectron spectroscopy (XPS) to study the passive films formed on thermally sprayed coatings (HVOF) and bulk Inconel 625, a commercially available corrosion resistant Ni-Cr-Mo-Nb alloy. Passive films produced by potentiodynamic scanning to 400 mV in 0.5 M sulphuric acid were compared with air-formed films. The poorer corrosion performance of the thermally sprayed coatings was attributed to Ni(OH) 2, which forms a loose, non-adherent and therefore non-protective film. The good corrosion resistance of wrought Inconel 625 is due to formation of Cr, Mo and Nb oxides.

  3. PILOT EVALUATION OF VANADIUM ALLOYS.

    DTIC Science & Technology

    ARCS, SHEETS, ROLLING(METALLURGY), HIGH TEMPERATURE, SCIENTIFIC RESEARCH, COMPRESSIVE PROPERTIES, DUCTILITY, CREEP, OXIDATION, COATINGS , SILICIDES , HARDNESS, WELDING, EXTRUSION, TANTALUM ALLOYS, MOLYBDENUM ALLOYS....VANADIUM ALLOYS, * NIOBIUM ALLOYS, MECHANICAL PROPERTIES, MECHANICAL PROPERTIES, TITANIUM ALLOYS, ZIRCONIUM ALLOYS, CARBON ALLOYS, MELTING, ELECTRIC

  4. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  5. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  6. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  7. Determination of hydrogen permeability in commercial and modified superalloys

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1983-01-01

    The results of hydrogen permeability measurements on several iron- and cobalt-base alloys as well as on two long-ranged ordered alloys over the range of 705 to 870 C (1300 to 1600 F) are summarized. The test alloys included wrought alloys N-155, IN 800, A-286, 19-9DL, and 19-9DL modifications with aluminum, niobium, and misch metal. In addition, XF-818, CRM-6D, SA-F11, and HS-31 were evaluated. Two wrought long-range ordered alloys, Ni3Al and (Fe,Ni)3(V,Al) were also evaluated. All tests were conducted at 20.7 MPa pressure in either pure and/or 1% CO2-doped H2 for test periods as long as 133 h. Detailed analyses were conducted to determine the relative permeability rankings of these alloys and the effect of doping, exit surface oxidation, specimen design variations, and test duration on permeability coefficient, and permeation activation energies were determined. The two long-range ordered alloys had the lowest permeability coefficients in pure H2 when compared with the eight commercial alloys and their modifications. With CO2 doping, significant decrease in permeability was observed in commercial alloys--no doped tests were conducted with the long-range ordered alloys.

  8. Titanium Alloys and Processing for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  9. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  10. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  11. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  12. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  13. Effects of copper dental alloys on HuT-78 T-cells

    SciTech Connect

    Bumgardner, J.D.; Tilden, A.B.; Lucas, L.C. )

    1991-03-15

    Copper based dental alloys currently being used are known to exhibit high corrosion rates. Canine studies with these Cu alloys reported enhanced levels of Cu ions associated with a chronic inflammatory response in adjacent gingiva. Due to the accumulation of Cu ions in the local gingiva and the potential for adversely affecting cellular immunity, the HuT-78 T-cell line was exposed to the commercial Cu dental alloys, Goldent and Trindium, and a brass alloy for 24 hr. Goldent is a 76%Cu-Al-Zn alloy, and Trindium is a 87% Cu-Al alloy. The brass alloy is based on an alloy no longer commercially available. The commercial Cu alloys decreased viability of the cells by only 20%, while the brass alloy decreased viability of the cells by only 20%, while the brass alloy decreased viability by 67%. All 3 alloys increased the amount of {sup 3}H-thymidine incorporated by the cells by more than 36% as compared to controls. Only the brass alloy caused statistically higher production of IL-2 per number of viable HuT-78 cells as compared to controls. The potential for continued release of Cu and other metallic ions from either Goldent or Trindium raises the concern that these alloys may also reduce cellular viability and elicit higher IL-2 production. Immune function can be altered by changes in cation concentrations. Therefore, if these alloys are used, they have the potential to alter the activity and function of the cellular immune response.

  14. Commercial Capaciflector

    NASA Astrophysics Data System (ADS)

    Vranish, John M.

    1991-12-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  15. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  16. Application of modern aluminum alloys to aircraft

    NASA Astrophysics Data System (ADS)

    Starke, E. A., Jr.; Staley, J. T.

    Aluminum alloys have been the primary material of choice for structural components of aircraft since about 1930. Although polymer matrix composites are being used extensively in high-performance military aircraft and are being specified for some applications in modern commercial aircraft, aluminum alloys are the overwhelming choice for the fuselage, wing, and supporting structure of commercial airliners and military cargo and transport. Well known performance characteristics, known fabrication costs, design experience, and established manufacturing methods and facilities, are just a few of the reasons for the continued confidence in aluminum alloys that will ensure their use in significant quantities for the rest of this century and likely well into the next one. But most significantly, there have been major advances in aluminum aircraft alloys that continue to keep them in a competitive position. In the early years aluminum alloys were developed by trial and error, but over the past thirty years there have been significant advances in our understanding of the relationships among composition, processing, microstructural characteristics and properties. This knowledge base has led to improvements in properties that are important to aircraft applications. This review covers the performance and property requirements for airframe components in current aircraft and describes aluminum alloys and product forms which meet these requirements. It also discusses the structure/property relationships of aluminum aircraft alloys and describes the background and drivers for the development of modern aluminum alloys to improve performance. Finally, technologies under development for future aircraft are discussed.

  17. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase C for the period 1980 January 1-1980 March 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    Pilot reactor VSR-3 was operated with 75 to 120 SCFH O/sub 2/ to supply part of the process heat requirements by combustion of coke. No alloy was made and burden bridging persistently stopped operations. Burning larger coke particles, -3/8 in. +6 mesh, with O/sub 2/ injected through a larger diameter tuyere orifice resulted in oxygen attack on the reactor graphite liner. Updated thermochemical data for Al/sub 2/O/sub 3/ significantly changed the calculated reflux loading for a one-atm blast furnace, predicting almost total reflux and no alloy recovery. Based on these calculations and the experimental problems with combustion heated operation, VSR-3 was modified to study an alternate reduction concept - the blast-arc - which utilizes combustion heat to reduce SiO/sub 2/ to SiC at 1600/sup 0/C, and electrical heat to complete the reduction of Al/sub 2/O/sub 3/ and the production of alloy. Design, fabrication, and installation of most of the pilot crystallizer sytem was completed.

  18. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  19. Processing, properties, and applications of Ni{sub 3}Al-based alloys

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Liu, C.T.

    1997-06-01

    The Ni{sub 3}Al-based alloys represent a quantum jump in advanced alloys for structural applications at elevated temperatures. These alloys offer benefits of oxidation, carburization, and chlorination resistance, and significantly higher strength than many commercially used alloys. The commercial applications of the Ni{sub 3}Al-based alloys have begun to occur because of their comprehensive development This paper is to provide a review of. (1) alloy development, (2) melting, casting, and processing of alloys, (3) property data, (4) welding process and weldment properties, and (5) case histories of current applications. It is concluded that the cast alloy IC-221M is on its way to commercialization. 22 refs., 8 figs., 2 tabs.

  20. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  1. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  2. Corrosion of candidate container materials by Yucca Mountain bacteria

    SciTech Connect

    Horn, J; Jones, D; Lian, T; Martin, S; Rivera, A

    1999-12-10

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  3. Corrosion of dental copper, nickel, and gold alloys in artificial saliva and saline solutions.

    PubMed

    Johansson, B I; Lemons, J E; Hao, S Q

    1989-09-01

    The purpose of this investigation was to study the tarnish and corrosion of three commercial copper alloys, three experimental copper alloys, two nickel alloys, and one high-gold alloy by exposing the specimens for four weeks to artificial saliva and saline solutions. Half of the specimens were brushed, and the solutions were changed regularly. The copper-based and the beryllium-containing nickel alloys exhibited significant surface alterations after exposure to either solution. The potential of elevated release of ions to the oral cavity and to the target organs by some of the investigated alloys should be considered if dental usage of these alloys is to be extended.

  4. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  5. Development of Creep Resistant Mg-Al-Sr Alloys

    NASA Astrophysics Data System (ADS)

    Pekguleryuz, Mihriban O.; Baril, Eric

    There have been attempts since in the 70's to develop creep resistant magnesium diecasting alloys for automotive applications such as automatic-transmission case and engine components. The earliest die casting alloys developed as a result of these activities were the Mg-Al- RE and Mg-Al-Si systems (AE and AS alloys). The shortcomings of these two alloy systems related to high cost or borderline properties have led to renewed activity in the 90's in the development of magnesium alloys with improved elevaied-temperature properties. This paper presents the development of a new family of creep-resistant Mg alloys based on the Mg-Al-Sr system. Creep resistance, the tensile yield strength and the bolt-load-retention of these alloys at 150°C and 175°C show improvement over Mg-Al-RE and Mg-Al-Si system. The microstructure of the alloys is characterized by Al-Sr-(Mg) containing intermetallic second phases. The absence of the Mg17Al12 phase in the microstructure, either creep-induced or as-cast, is one of the factors that contribute to improved creep-resistance of these alloys over the Mg-Al based diecasting alloys. Furthermore, the alloys exhibit better salt-spray corrosion resistance (0.09-0.15mg/cm2/day) than other commercial magnesium diecasting alloys such as AM60B, AS41, AE42 and the aluminum diecasting alloy A380.

  6. Commercial applications

    NASA Astrophysics Data System (ADS)

    The near term (one to five year) needs of domestic and foreign commercial suppliers of radiochemicals and radiopharmaceuticals for electromagnetically separated stable isotopes are assessed. Only isotopes purchased to make products for sale and profit are considered. Radiopharmaceuticals produced from enriched stable isotopes supplied by the Calutron facility at ORNL are used in about 600,000 medical procedures each year in the United States. A temporary or permanent disruption of the supply of stable isotopes to the domestic radiopharmaceutical industry could curtail, if not eliminate, the use of such diagnostic procedures as the thallium heart scan, the gallium cancer scan, the gallium abscess scan, and the low radiation dose thyroid scan. An alternative source of enriched stable isotopes exist in the USSR. Alternative starting materials could, in theory, eventually be developed for both the thallium and gallium scans. The development of a new technology for these purposes, however, would take at least five years and would be expensive. Hence, any disruption of the supply of enriched isotopes from ORNL and the resulting unavailability of critical nuclear medicine procedures would have a dramatic negative effect on the level of health care in the United States.

  7. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  8. Experimental titanium alloys for dental applications.

    PubMed

    Faria, Adriana C L; Rodrigues, Renata C S; Rosa, Adalberto L; Ribeiro, Ricardo F

    2014-12-01

    Although the use of titanium has increased, casting difficulties limit routine use. The purpose of the present study was to compare the mechanical properties and biocompatibility of the experimental titanium alloys titanium-5-zirconium, titanium-5-tantalum, and titanium-5-tantalum-5-zirconium (in wt%) with those of commercially pure titanium. Specimens of titanium alloys and commercially pure titanium were cast by using plasma. Their modulus of elasticity and ultimate tensile strength were determined in a universal testing machine. Biocompatibility was evaluated with SCC9 cells. In periods of 1, 4, 7, 10, and 14 days, cell proliferation was evaluated by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay, and cell viability was evaluated in the 7-day period. Cell morphology was evaluated at 2, 12, and 24 hours. Modulus of elasticity, ultimate tensile strength, and cell viability were analyzed by 1-way ANOVA and the Bonferroni test; cell proliferation data were compared by 2-way ANOVA (alloy versus time) and by the Bonferroni test; and the cell morphology data were analyzed by split-plot design. All statistical tests were performed at the 95% confidence level (P<.05). Titanium-5-tantalum presented the lowest modulus of elasticity and ultimate tensile strength, whereas titanium-5-zirconium and titanium-5-tantalum-5-zirconium were statistically similar to commercially pure titanium. Cell proliferation and viability were not affected by any alloy being similar to those observed for commercially pure titanium. No noticeably differences were found in the morphology of cells cultured on any alloy and commercially pure titanium. Experimental alloys, especially titanium-5-zirconium and titanium-5-tantalum-5-zirconium, presented promising mechanical results for future studies and clinical applications. In addition, these alloys, evaluated by cell proliferation, viability, and morphology, were found to be biocompatible in vitro

  9. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  10. Dental Alloy Sorting By the Thermoelectric Method

    PubMed Central

    Kikuchi, Masafumi

    2010-01-01

    Objectives: A nondestructive, rapid, and practical method of dental alloy sorting is desirable. In this study, the hypothesis to be tested is that dental alloys show significantly different and high thermoelectric power values, on the basis of which alloy sorting is possible. Methods: Six silver-colored commercial dental casting alloys are used in this study: two silver alloys, one gold-silver-palladium alloy, one cobalt-chromium alloy, one nickel-chromium alloy, and one titanium alloy. The thermoelectric power of their castings was determined against constantan using a simple apparatus developed in a previous study. Linear least square fitting was applied to the measured thermal-EMF-temperature curve to determine the thermoelectric power for the temperature ranges of 298–303 K (temperature difference Δt = 5 K), 298–308 K (Δt=10 K), 298–313 K (Δt=15 K), and 298–318 K (Δt=20 K). The results were analyzed using one-way ANOVA and by the Scheffé’s test at a significance level of α=0.01. Results: When the temperature difference was 10 K or less, the difference in the thermoelectric powers of the alloys was not always statistically significant. However, when the temperature difference was 15 K or more, the thermoelectric powers of the six alloys differed significantly. Conclusions: The results indicated the feasibility of rapid sorting of specific dental alloys by the thermoelectric method, provided a sufficiently large temperature difference is achieved. PMID:20046482

  11. Initial cytotoxicity of novel titanium alloys.

    PubMed

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments.

  12. Development of Advanced Alloys using Fullerenes

    NASA Technical Reports Server (NTRS)

    Sims, J.; Wasz, M.; O'Brien, J.; Callahan, D. L.; Barrera, E. V.

    1994-01-01

    Development of advanced alloys using fullerenes is currently underway to produce materials for use in the extravehicular mobility unit (EMU). These materials will be directed toward commercial usages as they are continually developed. Fullerenes (of which the most common is C(sub 60)) are lightweight, nanometer size, hollow molecules of carbon which can be dispersed in conventional alloy systems to enhance strength and reduce weight. In this research, fullerene interaction with aluminum is investigated and a fullerene-reinforced aluminum alloy is being developed for possible use on the EMU. The samples were manufactured using standard commercial approaches including powder metallurgy and casting. Alloys have been processed having 1.3, 4.0 and 8.0 volume fractions of fullerenes. It has been observed that fullerene dispersion is related to the processing approach and that they are stable for the processing conditions used in this research. Emphasis will be given to differential thermal analysis and wavelength dispersive analysis of the processed alloys. These two techniques are particularly useful in determining the condition of the fullerenes during and after processing. Some discussion will be given as to electrical properties of fullerene-reinforced materials. Although the aluminum and other advanced alloys with fullerenes are being developed for NASA and the EMU, the properties of these materials will be of interest for commercial applications where specific Dual-Use will be given.

  13. Development of Advanced Alloys using Fullerenes

    NASA Technical Reports Server (NTRS)

    Sims, J.; Wasz, M.; O'Brien, J.; Callahan, D. L.; Barrera, E. V.

    1994-01-01

    Development of advanced alloys using fullerenes is currently underway to produce materials for use in the extravehicular mobility unit (EMU). These materials will be directed toward commercial usages as they are continually developed. Fullerenes (of which the most common is C(sub 60)) are lightweight, nanometer size, hollow molecules of carbon which can be dispersed in conventional alloy systems to enhance strength and reduce weight. In this research, fullerene interaction with aluminum is investigated and a fullerene-reinforced aluminum alloy is being developed for possible use on the EMU. The samples were manufactured using standard commercial approaches including powder metallurgy and casting. Alloys have been processed having 1.3, 4.0 and 8.0 volume fractions of fullerenes. It has been observed that fullerene dispersion is related to the processing approach and that they are stable for the processing conditions used in this research. Emphasis will be given to differential thermal analysis and wavelength dispersive analysis of the processed alloys. These two techniques are particularly useful in determining the condition of the fullerenes during and after processing. Some discussion will be given as to electrical properties of fullerene-reinforced materials. Although the aluminum and other advanced alloys with fullerenes are being developed for NASA and the EMU, the properties of these materials will be of interest for commercial applications where specific Dual-Use will be given.

  14. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  15. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  16. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  17. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  18. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    SciTech Connect

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  19. Infrared gold alloy brazing on titanium and Ti-6Al-4V alloy surfaces and its application to removable prosthodontics.

    PubMed

    Wakabayashi, N; Ai, M; Iijima, K; Takada, Y; Okuno, O

    1999-09-01

    This study investigated the area size of the flow of a gold braze alloy on commercially pure titanium and Ti-6Al-4V alloy plates, and elemental composition at the interface was determined. In the second part of this study, the tensile strengths of titanium plates brazed using a gold alloy were investigated. Chips of Type IV gold alloy and silver braze alloys were melted onto commercially pure titanium and Ti-6Al-4V surfaces in a dental infrared radiation unit. Flow area of each braze alloy was measured using a digital image analyzer. Tensile specimens (n = 5) were also prepared by infrared brazing using the braze alloys. Five specimens for each combination of the two titanium plates and the two braze alloys were subjected to tensile loading using a Universal testing machine. Electronprobe microanalysis of x-rays at cross-section of the brazed joints to determine elemental composition across the interface, as well as scanning electron microscopic observation at the fracture surfaces, were also conducted. The braze alloys flowed well and spread over the Ti and Ti-6Al-4V plates. Braze alloy type significantly influenced flow, and the gold alloy flowed less on the titanium materials. The mean tensile strengths of Ti and Ti-6Al-4V plates brazed using the gold braze alloy were 219 MPa and 417 MPa, respectively. The fracture surfaces of Ti-6Al-4V specimens with the gold braze alloy exhibited typical ductile behavior. Ti with the same braze alloy showed brittle surfaces. A greater concentration of Cu was found at the Ti with gold braze interface. The flow and the tensile strength of the gold alloy coating on titanium surface by means of an infrared brazing is adequate for dental use.

  20. Orthodontic silver brazing alloys.

    PubMed

    Brockhurst, P J; Pham, H L

    1989-10-01

    Orthodontic silver brazing alloys suffer from the presence of cadmium, excessive flow temperatures, and crevice corrosion on stainless steel. Seven alloys were examined. Two alloys contained cadmium. The lowest flow temperature observed was 629 degrees C for a cadmium alloy and 651 degrees C for two cadmium free alloys. Three alloys had corrosion resistance superior to the other solders. Addition of low melting temperature elements gallium and indium reduced flow temperature in some cases but produced brittleness in the brazing alloy.

  1. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

  2. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  3. Effects of hydrogen on iron/nickel/cobalt/alloy

    NASA Technical Reports Server (NTRS)

    Harris, J. A.; Mucci, J.

    1977-01-01

    Commercially available alloy, Incoloy 903, is candidate for various high-pressure, high-temperature applications. Recent study of properties in hydrogen and helium atmospheres under extreme environments indicates that alloy can be degraded by gaseous hydrogen, particularly at elevated temperatures. Study also reports that water vapor added to hydrogen environments causes reductions in low-cycle fatigue life of material.

  4. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  5. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.

  6. Longitudinal shear behavior of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1978-01-01

    Two commercial oxide dispersion strengthened (ODS) alloys, MA-753 and MA-754, and three experimental ODS alloys, MA-757E, MA-755E, and MA-6000E, were tested in shear at 760 C. Comparisons were made with other turbine blade and vane alloys. All of the ODS alloys exhibited less shear strength than directionally solidified Mar-M 200 = Hf or then conventionally cast B-1900. The strongest ODS alloy tested, MA-755E, was comparable in both shear and tensile strength to the lamellar directionally solidified eutectic alloy gamma/gamma prime - delta. Substantial improvements in shear resistance were found for all alloys tested when the geometry of the specimen was changed from one generating a transverse tensile stress in the shear area to one generating a transverse compressive stress. Finally, 760 C shear strength as a fraction of tensile strength was found to increase linearly with the log of the transverse tensile ductility.

  7. Commercial use of materials processing in space

    NASA Technical Reports Server (NTRS)

    Zoller, L. K.; Brown, R. L.

    1979-01-01

    The paper examines the scientific and commercial aspects of Materials Processing in the Space program. The elimination of gravity driven convection in molten materials can preclude undesirable stirring and mixing during crystal growth, and improve the casting of alloys and composites, chemical reactions, and the separation of biological materials. The elimination of hydrostatic pressure will allow alloy heat-treatment without distortion and growth of heavy crystals, such as thorium oxide, and containerless processing of liquids and molten materials. On the other hand, more sophisticated process control and diagnostic methods in sample preparation and temperature control must be developed, concluding that space made products of commercial interest are likely to be low volume, high value items.

  8. Method for producing La/Ce/MM/Y base alloys, resulting alloys and battery electrodes

    DOEpatents

    Gschneidner, Jr., Karl A.; Schmidt, Frederick A.

    2016-12-20

    A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.

  9. Comparison of the Fatigue Behavior of Copper Alloys

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Ellis, David

    2006-01-01

    This presentation is about the development of advanced copper alloys with high thermal conductivity, good creep strength, and adequate fatigue strength for rocket engine applications. It also focuses on the commercial availability of the advanced alloy-GRCop-84 developed at NASA-GRC. The presentation's conclusions are that GRCop-84 has equivalent or better isothermal fatigue lives compared to other commercially available copper alloys, that GRCop-84 can be fabricated in various forms with minimal change in the fatigue lives, that it is equivalent in sothermal, fatigue to AMZIRC at moderate temperatures, and that Narloy-Z is equivalent in fatigue capabilities to GRCop-84 at 400C and below.

  10. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  11. Simulating weld-fusion boundary microstructures in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kostrivas, Anastasios D.; Lippold, John C.

    2004-02-01

    A fundamental study of weld-fusion boundary microstructure evolution in aluminum alloys was conducted in an effort to understand equiaxed grain zone formation and fusion boundary nucleation and growth phenomena. In addition to commercial aluminum alloys, experimental Mg-bearing alloys with Zr and Sc additions were studied along with the widely used Cu- and Licontaining alloy 2195-T8. This article describes work conducted to clarify the interrelation among composition, base metal substrate, and temperature as they relate to nucleation and growth phenomena at the fusion boundary.

  12. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  13. Fatigue - corrosion of endoprosthesis titanium alloys.

    PubMed

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  14. Biocompatibility of dental casting alloys.

    PubMed

    Geurtsen, Werner

    2002-01-01

    Most cast dental restorations are made from alloys or commercially pure titanium (cpTi). Many orthodontic appliances are also fabricated from metallic materials. It has been documented in vitro and in vivo that metallic dental devices release metal ions, mainly due to corrosion. Those metallic components may be locally and systemically distributed and could play a role in the etiology of oral and systemic pathological conditions. The quality and quantity of the released cations depend upon the type of alloy and various corrosion parameters. No general correlation has been observed between alloy nobility and corrosion. However, it has been documented that some Ni-based alloys, such as beryllium-containing Ni alloys, exhibit increased corrosion, specifically at low pH. Further, microparticles are abraded from metallic restorations due to wear. In sufficient quantities, released metal ions-particularly Cu, Ni, Be, and abraded microparticles-can also induce inflammation of the adjacent periodontal tissues and the oral mucosa. While there is also some in vitro evidence that the immune response can be altered by various metal ions, the role of these ions in oral inflammatory diseases such as gingivitis and periodontitis is unknown. Allergic reactions due to metallic dental restorations have been documented. Ni has especially been identified as being highly allergenic. Interestingly, from 34% to 65.5% of the patients who are allergic to Ni are also allergic to Pd. Further, Pd allergy always occurrs with Ni sensitivity. In contrast, no study has been published which supports the hypothesis that dental metallic materials are mutagenic/genotoxic or might be a carcinogenic hazard to man. Taken together, very contradictory data have been documented regarding the local and systemic effects of dental casting alloys and metallic ions released from them. Therefore, it is of critical importance to elucidate the release of cations from metallic dental restorations in the oral

  15. An electrochemical and multispectroscopic study of corrosion of Ag-Pd-Cu-Au alloys.

    PubMed

    Niemi, L; Minni, E; Ivaska, A

    1986-06-01

    Corrosion of a multi-phase Ag-Pd-Cu-Au-based commercial dental casting alloy and a Cu-Pd-rich and Ag-rich single-phase alloy was studied by open-circuit potential measurements, atomic absorption spectrometry, and electron spectroscopy. The alloys were immersed in an artificial saliva solution for 24 hr while the open-circuit potentials of the alloys were measured. The potentials were found to stabilize at certain levels after a steep rise during the first hours of the experiment. Cu was found to dissolve considerably from the Cu-Pd-rich alloy, with simultaneous enrichment of Pd in the surface layer of the alloy. Ag dissolved slightly from the Ag-rich alloy, but both Cu and Ag were found to dissolve from the multi-phase alloy. Neither Pd nor Au dissolved from any of the alloys studied.

  16. Commercial nickel-metal hydride (Ni-MH) technology evaluation

    SciTech Connect

    Erbacher, J.K.; Vukson, S.P.

    1997-12-01

    Available cylindrical and prismatic commercial Ni-MH batteries using AB{sub 5} and AB{sub 2} cathodes were evaluated for possible application to military aircraft batteries. Commercial AB{sub 5} technology is further advanced than AB{sub 2} technology and would require less alloy, electrolyte and single cell/battery development for near term (3--5 years) applications. Tested AB{sub 2} technology appears inadequate to meet the near term military requirements and would require a major development in the alloy to overcome the irreversible capacity loss at temperatures above 49 C.

  17. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  18. Effect of alloy recasting on the color of opaque porcelain applied on different dental alloy systems.

    PubMed

    Yilmaz, Burak; Ozcelik, Tuncer B; Johnston, William M; Kurtulmus-Yilmaz, Sevcan; Company, Andrea M

    2012-12-01

    The effect of different proportions of recast dental alloys on the color of overlying opaque porcelain (OP) is unknown. The purpose of this study was to compare the color of OP applied on 2 different proportions (50% and 100%) of recast alloys with the color of commercially available shade tabs of OP. Six different metal alloy systems (2 base: Metalloy CC, Cr-Co [B-MCC]; Heraenium NA, Ni-Cr [B-HNA]; 3 noble: Cerapall 2, Pd-Au [N-CP2]; Triumph, Pd-Ag [N-T]; V-Deltaloy, Au-Pd [N-VD]; and 1 high-noble: V-Gnathos Plus, Au-Pt [HN-GP]) were selected for the fabrication of disk-shaped specimens (10 mm in diameter, 1 mm in thickness). Each alloy was divided into 2 subgroups: 50% new alloy with 50% recast alloy (n=3) and 100% recast alloy (n=3). OP (B1) was applied (0.1 mm) to all specimens. The color coordinates (L*, a*, b*) of each specimen and the corresponding commercially available OP shade tab (control) were measured with a spectroradiometer, and color differences between specimens and control group were calculated. Data were statistically analyzed (2-way ANOVA, Ryan-Einot-Gabriel-Welsch multiple range test, α=.05). For each alloy, ΔL*(L(control)(-)L(recastalloy)) values for the 2 subgroups were not statistically different from each other. The Δa* and Δb* of different proportions of N-CP2, B-HNA, N-VD, and HN-GP were not statistically different within the alloys. However, the a* values of 100% recast N-T and B-MCC were significantly closer to the a* values of the control group, and the b* values of 50% recast B-MCC were significantly closer to the b* values of the control group (P<.05). Delta E(control-recast) alloy values for different proportions of alloys were not statistically different. However, color differences did not meet the criterion of clinical acceptability (ΔE=3.46). According to the results of this study, the different proportions (50% and 100%) of recast alloys used have similar effects on the color of OP. Differences between the final color of OP

  19. The role of dispersoids in maintaining the corrosion resistance of mechanically alloyed oxide dispersion strengthened alloys

    SciTech Connect

    Cama, H.; Hughes, T.A.

    1995-05-15

    Amongst the various commercial mechanically alloyed (MA) oxide dispersion strengthened (ODS) alloys available, ferritic alloys are most suitable for use at temperatures exceeding 1,100 C, since {gamma}{prime} particle dissolution results in the loss of strength of nickel based MA ODS alloys. In commercial MA ODS alloys, yttria particles are commonly added in the starting powers, and it is well known that they are not retained in the final product because they react with aluminum and oxygen present in the system during thermomechanical processing and form mixed (Y,Al) oxide particles. In this paper the role of (Y,Al) oxide particles in maintaining the overall aluminum concentration in the matrix necessary to repair the outer oxide scale is discussed. It is well known that during exposure in air, aluminum is lost from the bulk of MA ODS alloys to the growth of a surface alumina film. The extent of aluminum lost is dependent on the section thickness and can significantly affect the volume fraction of the aluminum rich dispersoids. Coarsening of the dispersoids at temperatures up to 1,200 C in the thick MA 956 bar occurs without significant aluminum loss, while their volume fraction increases continuously. However, coarsening of the dispersoids in the thinner ODM 751 tube at 1,200 and 1,300 C is accompanied by dissolution of the dispersoid particles in order to maintain the aluminum concentration in the matrix.

  20. Noble metal alloys for metal-ceramic restorations.

    PubMed

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  1. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  2. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    PubMed Central

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-01-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections. PMID:27897182

  3. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.

    PubMed

    Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F

    2016-11-29

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  4. Commercial Buildings Characteristics, 1992

    SciTech Connect

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  5. Bond strength of binary titanium alloys to porcelain.

    PubMed

    Yoda, M; Konno, T; Takada, Y; Iijima, K; Griggs, J; Okuno, O; Kimura, K; Okabe, T

    2001-06-01

    The purpose of this study was to investigate the bond strength between porcelain and experimental cast titanium alloys. Eleven binary titanium alloys were examined: Ti-Cr (15, 20, 25 wt%), Ti-Pd (15, 20, 25 wt%), Ti-Ag (10, 15, 20 wt%), and Ti-Cu (5, 10 wt%). As controls, the bond strengths for commercially pure titanium (KS-50, Kobelco, Japan) and a high noble gold alloy (KIK, Ishifuku, Japan) were also examined. Castings were made using a centrifugal casting unit (Ticast Super R, Selec Co., Japan). Commercial porcelain for titanium (TITAN, Noritake, Japan) was applied to cast specimens. The bond strengths were evaluated using a three-point bend test according to ISO 9693. Since the elastic modulus value is needed to evaluate the bond strength, the modulus was measured for each alloy using a three-point bend test. Results were analyzed using one-way ANOVA/S-N-K test (alpha = 0.05). Although the elastic moduli of the Ti-Pd alloys were significantly lower than those of other alloys (p = 0.0001), there was a significant difference in bond strength only between the Ti-25Pd and Ti-15Ag alloys (p = 0.009). The strengths determined for all the experimental alloys ranged from 29.4 to 37.2MPa, which are above the minimum value required by the ISO specification (25 MPa).

  6. Super High Strength Aluminum Alloy Processed by Mechanical Alloying and Hot Extrusion

    NASA Astrophysics Data System (ADS)

    Zheng, Ruixiao; Yang, Han; Wang, Zengjie; Wen, Shizhen; Liu, Tong; Ma, Chaoli

    Nanostructure strengthened aluminum alloy was prepared by powder metallurgic technology. The rapid solidification Al-Cu-Mg alloy powder was used in this study. To obtain nanostructure, the commercial powder was intensely milled under certain ball milling conditions. The milled powder was compacted first by cold isostatic pressing (CIP) at a compressive pressure of 300MPa, and then extruded at selected temperature for several times to obtain near full density material. Microstructure and mechanical properties of the extruded alloy were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and mechanical tests. It is revealed that the compressive strength of extruded alloy is higher than 800MPa. The strengthening mechanism associated with the nanostructure is discussed.

  7. NOREM wear-resistant, iron-based hard-facing alloys: Final report

    SciTech Connect

    Grobner, P.; Ohriner, E.K.; Wada, T.; Whelan, E.P.

    1989-07-01

    Wear-resistance cobalt-free hardfacing alloys are needed to replace the cobalt-base alloys used to hardface nuclear valves in order to reduce the exposure of maintenance personnel. Some thirty heats of cast iron-base alloys were prepared and characterized. Selected heats were prepared and applied as hardfacing overlays on austenitic steel substrates using both GTA and PTA welding processes. Some of the iron-base alloys exhibited galling wear resistance as high as that of cobalt-base standards both in the cast condition and in the PTA overlays. Hardness, mechanical properties, and galling wear resistance were determined on weld overlays and on cast alloys. Dilution and thermal expansivity were determined for weld overlays. X-ray diffraction and scanning electron microscopy were used to determine the alloys' microstructures. Other commercially available alloys were tested for galling wear resistance and compared to iron-base alloys. 7 refs., 2 figs., 2 tabs.

  8. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  9. Superconductivity in Metals and Alloys.

    DTIC Science & Technology

    LEAD(METAL), LIQUEFIED GASES, LOW TEMPERATURE RESEARCH, METAL FILMS, METALLIC SOAPS, NIOBIUM ALLOYS, PHASE STUDIES, RESISTANCE (ELECTRICAL), SAMARIUM...SYNTHESIS, TANTALUM ALLOYS, TIN, TIN ALLOYS, TRANSITION TEMPERATURE, VANADIUM ALLOYS

  10. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.

    PubMed

    Trinidad, Javier; Arruebarrena, Gurutze; Marco, Iñigo; Hurtado, Iñaki; Sáenz de Argandoña, Eneko

    2013-12-01

    The increasing interest on magnesium alloys relies on their biocompatibility, bioabsorbility and especially on their mechanical properties. Due to these characteristics, magnesium alloys are becoming a promising solution to be used, as temporary implants. However, magnesium alloys must overcome their poor corrosion resistance. This article analyses the corrosion behaviour in phosphate-buffered saline solution of three commercial magnesium alloys (AZ31B, WE43 and ZM21) as well as the influence of fluoride treatment on their corrosion behaviour. It is shown that the corrosion rate of all the alloys is decreased by fluoride treatment. However, fluoride treatment affects each alloy differently.

  11. Characterization of the sodium corrosion behavior of commercial austenitic steels

    SciTech Connect

    Shiels, S.A.; Bagnall, C.; Keeton, A.R.; Witkowski, R.E.; Anantatmula, R.P.

    1980-01-01

    During the course of an on-going evaluation of austenitic alloys for potential liquid metal fast breeder reactor (LMFBR) fuel pin cladding application, a series of commercial alloys was selected for study. The data obtained led to the recognition of an underlying pattern of behavior and enabled the prediction of surface chemistry changes. The changes in surface topographical development from alloy to alloy are shown and the important role played by the element molybdenum in this development is indicated. The presentation also illustrates how a total damage equation was evolved to encompass all aspects of weight loss and metal/sodium interactions: wall thinning ferrite layer formation and intergranular attack. The total damage equation represents a significant departure from the classical description of sodium corrosion in which weight loss is simply translated into wall thinning.

  12. The influence of Mg-Zr master alloy microstructure on the corrosion of Mg

    NASA Astrophysics Data System (ADS)

    Gandel, D. S.; Easton, M. A.; Gibson, M. A.; Abbott, T.; Birbilis, N.

    In this study, sixteen Mg-Zr alloys were produced to investigate the role of Zr on corrosion of Mg. Alloys were produced using two different commercial Mg-Zr master alloys commonly used for grain refining Mg, but which contain different Zr particle size distributions. It is seen that the master alloy with a smaller Zr particle size leads to an alloy containing more Zr in solid solution. The ratio of Zr in solid solution and in particle form was observed to have a marked effect on the corrosion of Mg.

  13. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-11-01

    The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained.

  14. Treatment of multiple ceramic alloys before recasting.

    PubMed

    Lin, Honglei; Zhang, Hai; Li, Xiurong; Cheng, Hui

    2013-07-01

    Dental laboratories often reuse dental casting alloys by recasting them, but the processing methods before recasting require further research. The purpose of the study was to determine the treatment methods to remove the surface contamination of the previously melted alloys before recasting. Cobalt-chromium (Co-Cr), commercially pure titanium (CP Ti), palladium-copper-gallium (Pd-Cu-Ga), and gold-platinum (Au-Pt) ceramic alloys were investigated in the present study. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy (EDAX), and x-ray photoelectron spectroscopy (XPS) were used to evaluate the changes in the surface structures and compositions of Co-Cr, CP Ti, Pd-Cu-Ga, and Au-Pt ceramic alloys after airborne-particle abrasion and immersion in various chemical solutions for different time periods. The data obtained by EDAX and XPS were statistically analyzed by Kruskal-Wallis and Nemenyi tests (α=.05). By using appropriate mechanical and chemical treatment procedures, the contamination content of previously cast ceramic alloys was found to be below the detection limits of EDAX and XPS. The statistical results showed that, compared to the control group (new alloys after polishing), the impurity element was not detected after being treated with these methods, which was not statistically different to control group. The surface contamination of ceramic alloys was effectively removed by using certain mechanical and/or chemical treatment methods. Within the limitations of the present study, the most appropriate ways to treat ceramic alloys before recasting were as follows: (1) for Co-Cr ceramic alloys: Al2O3 airborne-particle abrasion and immersion in aqua regia for 15 min; (2) for CP Ti ceramic alloys: Al2O3 airborne-particle abrasion and immersion in 65% HNO3 and 40% HF 1:7 (V/V) for 60 min; (3) for Pd-Cu-Ga ceramic alloys: glass bead airborne-particle abrasion and immersion in 40% HF solution for 30 min; and (4) for Au-Pt ceramic alloys

  15. Cytotoxicity of alloying elements and experimental titanium alloys by WST-1 and agar overlay tests.

    PubMed

    Song, Yo-Han; Kim, Min-Kang; Park, Eun-Jin; Song, Ho-Jun; Anusavice, Kenneth J; Park, Yeong-Joon

    2014-09-01

    This study was performed to evaluate the biocompatibility of nine types of pure metals using 36 experimental prosthetic titanium-based alloys containing 5, 10, 15, and 20wt% of each substituted metal. The cell viabilities for pure metals on Ti alloys that contain these elements were compared with that of commercially pure (CP) Ti using the WST-1 test and agar overlay test. The ranking of pure metal cytotoxicity from most potent to least potent was: Co>Cu>In>Ag>Cr>Sn>Au>Pd>Pt>CP Ti. The cell viability ratios for pure Co, Cu, In, and Ag were 13.9±4.6%, 21.7±10.4%, 24.1±5.7%, and 24.8±6.0%, respectively, which were significantly lower than that for the control group (p<0.05). Pure Pd and Pt demonstrated good biocompatibility with cell viabilities of 93.8±9.6% and 97.2±7.1%, respectively. The Ti-5Pd alloy exhibited the highest cell viability (128.4±21.4%), which was greater than that of CP Ti. By alloying pure Co or Cu with Ti, the cell viabilities for the Ti-xCo and Ti-xCu alloys increased significantly up to 10wt% of the alloying element followed by a gradual decrease with a further increase in the concentration of the alloying element. Based on the agar overlay test, pure Ag, Co, Cr, Cu, and In were ranked as 'moderately cytotoxic', whereas all Ti alloys were ranked as 'noncytotoxic'. The cytotoxicity of pure Ag, Co, Cr, Cu, and In suggests a need for attention in alloy design. The cytotoxicity of alloying elements became more biocompatible when they were alloyed with titanium. However, the cytotoxicity of titanium alloys was observed when the concentration of the alloying element exceeded its respective allowable limit. The results obtained in this study can serve as a guide for the development of new Ti-based alloy systems. Copyright © 2014 Academy of Dental Materials. All rights reserved.

  16. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  17. Corrosion behavior of novel Ti-24Nb-4Zr-7.9Sn alloy for dental implant applications in vitro.

    PubMed

    Cheng, Yicheng; Hu, Jiang; Zhang, Chunbao; Wang, Zhongyi; Hao, Yulin; Gao, Bo

    2013-02-01

    Ti-24Nb-4Zr-7.9Sn (TNZS) alloy is a newly developed β-titanium alloy considered suitable for dental implant applications due to its low elastic modulus and high strength. The aim of this study was to investigate the corrosion behavior of TNZS alloy through a static immersion test in various simulated physiological solutions, namely, artificial saliva, lactic acid solution, fluoridated saliva, and fluoridated acidified saliva for 7 days. The corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy were also examined for comparison. The elemental release was measured with inductively coupled plasma mass spectroscopy, and the changes of alloy surface were observed with scanning electron microscopy (SEM). The test results showed that the quantity of each metal element released from TNZS alloy into fluoridated solutions was much higher than the solutions without fluoride ions. It was highest in fluoridated acidified saliva and lowest in artificial saliva (p < 0.01). The total elemental release from TNZS alloy was lower than commercially pure titanium and Ti-6Al-4V alloy in the same solution (p < 0.01). SEM micrographs indicated that TNZS alloy possessed better corrosion resistant performance. It can be concluded that fluoridated solutions have a negative influence on the corrosion behavior of TNZS alloy. Compared with commercially pure titanium and Ti-6Al-4V alloy, TNZS alloy demonstrates better corrosion resistance in various simulated physiological solutions, so it has greater potential for dental implant applications.

  18. Commercialization of Nanotechnology

    DTIC Science & Technology

    2007-03-01

    NATO LECTURES M. Meyyappan Commercialization of Nanotechnology Abstract Nanotechnology is an enabling technology and as such, will have an...years), medium term (10 years) and long term (> 15 years) prospects. In addition, the challenges currently being faced to commercialize nanotechnology...will be discussed in detail. A summary outlining efforts across the world in terms of commercialization , startup activities, participation of major

  19. Commercial Radio as Communication.

    ERIC Educational Resources Information Center

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  20. Commercial Banking Industry Survey.

    ERIC Educational Resources Information Center

    Bright Horizons Children's Centers, Cambridge, MA.

    Work and family programs are becoming increasingly important in the commercial banking industry. The objective of this survey was to collect information and prepare a commercial banking industry profile on work and family programs. Fifty-nine top American commercial banks from the Fortune 500 list were invited to participate. Twenty-two…

  1. COMMERCIAL FOODS, MATHEMATICS - I.

    ERIC Educational Resources Information Center

    DORNFIELD, BLANCHE E.

    THE UNDERSTANDING AND MASTERY OF FUNDAMENTAL MATHEMATICS IS A NECESSARY PART OF COMMERCIAL FOODS WORK. THIS STUDENT HANDBOOK WAS DESIGNED TO ACCOMPANY A COMMERCIAL FOODS COURSE AT THE HIGH SCHOOL LEVEL FOR STUDENTS WITH APPROPRIATE APTITUDES AND COMMERCIAL FOOD SERVICE GOALS. THE MATERIAL, TESTED IN VARIOUS INTERESTED CLASSROOMS, WAS PREPARED BY…

  2. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-05

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  3. On The Creep Behavior Of Niobium-Modified Zirconium Alloys

    SciTech Connect

    Charit, I.; Murty, K.L.

    2006-07-01

    Zr alloys remain the main cladding materials in most water reactors. Historically, a series of Zircaloys were developed, and two versions, Zircaloy-2 and -4, are still employed in many reactors. The recent trend is to use the Nb-modified zirconium alloys where it has been shown that Nb addition improves cladding performance in various ways, most significant being superior long-term corrosion resistance. Hence, new alloys with Nb additions have recently been developed, such as Zirlo{sup TM(i)} and M5TM{sup (ii)}. Although it is known that creep properties improve, there have been very few data available to precisely evaluate the creep characteristics of new commercial alloys. However, the creep behavior of many Nb-modified zirconium alloys has been studied in several occasions. In this study, we have collected the creep data of these Nb-modified alloys from the open literature as well as our own study over a wide range of stresses and temperatures. The data have been compared with those of conventional Zr and Zircaloys to determine the exact role Nb plays. It has been argued that Nb-modified zirconium alloys would behave as a Class-A alloy (stress exponent of 3) with the Nb atoms forming solute atmospheres around dislocations and thus, impeding dislocation glide under suitable conditions. On the other hand, zirconium and Zircaloys behave as Class-M alloys with a stress exponent of {>=} 4, attesting to the dislocation climb-controlled deformation mode. (authors)

  4. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  5. Ballistic Evaluation of Magnesium Alloy AZ31B

    DTIC Science & Technology

    2007-04-01

    References 7 Distribution List 8 iv List of Figures Figure 1. Specific strength of magnesium versus aluminum alloy armor plate (2...1 Figure 2. Specific stiffness of magnesium versus aluminum alloy armor plate (2). ..................... 2 Figure 3. 0.30-cal APM2 armor...magnesium is approximately 35% lower than aluminum and approximately 77% lower than steel (1). The moderate strength of commercially available wrought

  6. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  7. Potential of an Al-Ti-MgAl2O4 Master Alloy and Ultrasonic Cavitation in the Grain Refinement of a Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sreekumar, V. M.; Babu, N. H.; Eskin, D. G.

    2017-02-01

    A new grain refining master alloy containing MgAl2O4 and Ti was synthesized by in situ reaction of TiO2 particles in an Al-Mg melt. MgAl2O4 particles formed were distributed in the melt by ultrasonic cavitation processing. The obtained master alloy showed considerable (50 pct) grain refining ability in a commercial A357-type Al-Si alloy. Ultrasonication contributed further to 25 pct in the grain refinement. In comparison with a commercial Al-5 pct Ti-1 pct B master alloy, the efficiency of the new master alloy is less at a lower addition rate. Nevertheless, both master alloys performed similarly at higher additions. The strength and ductility of the inoculated and ultrasonicated alloy showed at least a 10 pct and a 50 pct increase, respectively, as compared with non-grain-refined alloy and a similar mechanical performance in comparison with the alloy inoculated with Al-5 pct Ti-1 pct B master alloy.

  8. Development Program for Natural Aging Aluminum Casting Alloys

    SciTech Connect

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  9. Cellular response of titanium and its alloys as implants.

    PubMed

    Bhola, Rahul; Bhola, Shaily M; Mishra, Brajendra; Ayers, Reed; Olson, David L; Ohno, Timothy

    2011-08-01

    The cellular response of osteocytes to commercially pure titanium (α) and its alloys (α + β and β) has been tested in a culture media, and the results have been supplemented by analyses from various techniques such as inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), metallography, and electrochemical measurements. These results have been correlated with respect to the presence of various alloying elements in these alloys to qualify them for human application. The newer β alloys have been examined for their potential use as implants. These results serve as a preliminary baseline to characterize the best alloy system for a comprehensive long-term investigation.

  10. The role of metal nanoparticles and nanonetworks in alloy degradation.

    PubMed

    Zeng, Z; Natesan, K; Cai, Z; Darling, S B

    2008-08-01

    Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

  11. Thermo-Mechanical Processing Parameters for the INCONEL ALLOY 740

    SciTech Connect

    Ludtka, G.M.; Smith, G.

    2007-11-19

    In 2000, a Cooperative Research and Development Agreement (CRADA) was undertaken between the Oak Ridge National Laboratory (ORNL) and the Special Metals Corporation (SMC) to determine the mechanical property response of the IN740 alloy to help establish thermo-mechanical processing parameters for the use of this alloy in supercritical and ultra-critical boiler tubes with the potential for other end uses. SMC had developed an alloy, commercially known as INCONEL alloy 740, which exhibited various beneficial physical, mechanical, and chemical properties. As part of SMC's on-going efforts to optimize this alloy for targeted boiler applications there was a need to develop an understanding of the thermo-mechanical response of the material, characterize the resulting microstructure from this processing, and possibly, utilize models to develop the appropriate processing scheme for this product.

  12. Advanced Cast Aluminum Alloys

    DTIC Science & Technology

    2009-02-01

    microstructure of the Al - Zn -Mg- Cu alloys was similar to the as-cast microstructure ...Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing complex castings with...wrought 2519 alloy . Further, new research has been initiated on ultra-high strength, microalloyed Al - Zn -Mg- Cu alloys with the goal of producing

  13. Casting behavior of titanium alloys in a centrifugal casting machine.

    PubMed

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity.

  14. High Performance Commercial Fenestration Framing Systems

    SciTech Connect

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  15. A review of magnetostrictive iron-gallium alloys

    NASA Astrophysics Data System (ADS)

    Atulasimha, Jayasimha; Flatau, Alison B.

    2011-04-01

    A unique combination of low hysteresis, moderate magnetostriction at low magnetic fields, good tensile strength, machinability and recent progress in commercially viable methods of processing iron-gallium alloys make them well poised for actuator and sensing applications. This review starts with a brief historical note on the early developments of magnetostrictive materials and moves to the recent work on FeGa alloys and their useful properties. This is followed by sections addressing the challenges specific to the characterization and processing of FeGa alloys and the state of the art in modeling their actuation and sensing behavior.

  16. Semisolid Processing and Its Application to Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank

    Since its discovery over thirty years ago, semisolid processing is mainly applied to alloys with relatively low melting temperatures, particularly aluminum. Although historically an interest in magnesium reaches back to the early 1970's, compared with aluminum, investigations of semisolid magnesium alloys are still scarce. This report presents the origin of semisolid processing, rheological behaviour of semisolid slurries and the key technologies, available in today's industry, based on thixo- and rheo-routes. Particular attention is being paid to emerging techniques of injection molding. The major requirements imposed on potential alloys and typical components, manufactured commercially, are characterized.

  17. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  18. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  19. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  20. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  1. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  2. Corrosion evaluation of gold-based dental alloys.

    PubMed

    Corso, P P; German, R M; Simmons, H D

    1985-05-01

    Three commercial gold-based dental alloys and three constant-nobility ternary alloys (Au-Ag-Cu) were evaluated for corrosion using a quantitative test battery. Integration of the current density, in a de-aerated solution of 1% NaCl along the approximate potential range found in the mouth (-300 mV to +300 mV vs. SCE), yields a quantitative rank ordering of the test alloys. The results are combined with prior findings on other commercial alloys to demonstrate the interaction of nobility and microstructure. Nobility determines the overall corrosion resistance for gold-based alloys. However, because of mutual insolubility, alloying with copper induces silver segregation, resulting in a higher corrosion rate at a given nobility. Thus, microstructure has an influence on corrosion, but heat treatments are largely ineffective in altering the basic corrosion characteristics. The test techniques, in combination with tarnish evaluations, provide a quantitative battery for alloy evaluation. The results indicate the combinations of nobility, microstructure, and environment most likely to avoid corrosion difficulties.

  3. Optical and electron microscopy of WC-Co alloys

    SciTech Connect

    Yust, C S; Long, Jr, E L

    1982-02-01

    The microstructures of three commercial cobalt-bonded tungsten carbide alloys have been characterized by optical and electron microscopy and compared with a specially formulated reference alloy composed of tungsten carbide bonded by 6 wt % Co. The first alloy contained additions of chromium as chromium carbides, was similar in microstructure to the reference alloy, and contained secondary carbide grains retained from the chromium addition. An alloy containing metallic chromium also contained grains of the ternary carbide Co/sub 3/W/sub 3/C, or eta phase, which can be rationalized as having formed by reaction of the molten cobalt-chromium binder phase with the tungsten carbide matrix at the processing temperature. The third commercial alloy examined contained a coarse dendritic structure identified as a mixture of eta (Co/sub 3/W/sub 3/C) and chi (Co/sub 3/W/sub 9/C/sub 4/) phases. The reactions responsible for formation of the eta and chi phases in this alloy have not yet been determined.

  4. Laser Coating Technology; A Commercial Reality

    NASA Astrophysics Data System (ADS)

    Blake, Andrew G.; Mangaly, A. A.; Everett, M. A.; Hammeke, A. H.

    1988-10-01

    Commercial acceptance of laser coating technology suffered for many years due to questions about its economic viability. During this period, however, many companies, universities, and government research groups were busy developing the technology to overcome these questions. Today, laser coating technology is having a major impact as a high quality, economical method of hardfacing for wear and corrosion resistance in several key industries. This has occurred because of advances in five key areas: 1. High power laser design 2. Method of alloy deposition, and associated hardware 3. In-process feed back control system hardware/software development 4. Alloy systems 5. Marketing/sales sophistication High power lasers have improved in mode stability, power conversion efficiency, and optical flexibility (reflective vs. transmissive materials). This has enabled the process engineer to increase deposition efficiency, and maintain flexibility on the use of optics specifically designed for a user application. Improvements in the method of alloy deposition have led to developments such as the DPF system with specialized nozzles developed for specific user applications. Another effective technique includes the use of pre-fabricated cast alloy chips that are welded to the component surface on the specific area requiring protection. The development of feedback control systems that integrate process control software with hard tooling, the laser, and the alloy delivery system are greatly improving process reliability and product quality. Because of this, "in-process" quality control is becoming a viable alternative to traditional methods of quality control. Metallurgical evaluations of some of the most widely used hardfacing alloys and base materials have been investigated by numerous researchers. Analysis has confirmed that laser applied coatings are of high metallurgical quality, extremely low in dilution, and distort less due to low heat input. The technology can also be used to

  5. Isothermal Diagrams of Precipitation of Silicide and Aluminide Phases in Refractory Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Popov, A. A.; Popova, M. A.

    2017-03-01

    Processes of precipitation of silicides and aluminides in commercial titanium alloys under different modes of heat treatment are studied. The effect of alloying on the types of precipitating particles is considered. The temperature ranges of formation of intermetallics are determined and the possible mechanisms of transformation of particles of different types are discussed. A schematic isothermal diagram of decomposition of metastable phases in refractory titanium alloys is suggested.

  6. Rhenium alloying of tungsten heavy alloys

    SciTech Connect

    German, R.M.; Bose, A.; Jerman, G.

    1989-01-01

    Alloying experiments were performed using rhenium additions to a classic 90 mass % tungsten heavy alloy. The mixed-powder system was liquid phase sintered to full density at 1500 C in 60 min The rhenium-modified alloys exhibited a smaller grain size, higher hardness, higher strength, and lower ductility than the unalloyed system. For an alloy with a composition of 84W-6Re-8Ni-2Fe, the sintered density was 17, 4 Mg/m{sup 3} with a yield strength of 815 MPa, tensile strength of 1180 MPa, and elongation to failure of 13%. This property combination results from the aggregate effects of grain size reduction and solid solution hardening due to rhenium. In the unalloyed system these properties require post-sintering swaging and aging; thus, alloying with rhenium is most attractive for applications where net shaping is desired, such as by powder injection molding.

  7. Processing and alloying of tungsten heavy alloys

    SciTech Connect

    Bose, A.; Dowding, R.J.

    1993-12-31

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

  8. Metalworking Techniques Unlock a Unique Alloy

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Approached by West Hartford, Connecticut-based Abbot Ball Company, Glenn Research Center agreed to test an intriguing alloy called Nitinol 60 that had been largely unused for a half century. Using powdered metallurgy, the partners developed a method for manufacturing and working with the material, which Abbott Ball has now commercialized. Nitinol 60 provides a unique combination of qualities that make it an excellent material for ball bearings, among other applications.

  9. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities.

    PubMed

    Yuan, Qiang; Zhou, Zhiyou; Zhuang, Jing; Wang, Xun

    2010-03-07

    Monodisperse, highly-selective sub-10 nm Pd-Pt random alloy nanocubes have been successfully synthesized in aqueous solution, and the electrocatalytic activity of these Pd-Pt alloys towards formic acid oxidation was investigated and compared with the activity of Pd sub-10 nm nanocubes, and the commercial Pd and Pt black.

  10. Development of a high strength hot isostatically pressed /HIP/ disk alloy, MERL 76

    NASA Technical Reports Server (NTRS)

    Evans, D. J.; Eng, R. D.

    1980-01-01

    A nickel-based powder metal disk alloy developed for use in advanced commercial gas turbines is described. Consideration is given to final alloy chemistry modifications made to achieve a desirable balance between tensile strength and stress rupture life and ductility. The effects of post-consolidation heat treatment are discussed, the preliminary mechanical properties obtained from full-scale turbine disks are presented.

  11. Castability of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Bowles, A. L.; Han, Q.; Horton, J. A.

    There is intense research effort into the development of high pressure die cast-able creep resistant magnesium alloys. One of the difficulties encountered in magnesium alloy development for creep resistance is that many additions made to improve the creep properties have reportedly resulted in alloys that are difficult to cast. It is therefore important to have an understanding of the effect of alloying elements on the castability. This paper gives a review of the state of the knowledge of the castability of magnesium alloys.

  12. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  13. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  14. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  15. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    This slide presentation describes the goals and rules of the workshop on Lunar Commercialization. The goal of the workshop is to explore the viability of using public-private partnerships to open the new space frontier. The bulk of the workshop was a team competition to create a innovative business plan for the commercialization of the moon. The public private partnership concept is reviewed, and the open architecture as an infrastructure for potential external cooperation. Some possible lunar commercialization elements are reviewed.

  16. Regulating Commercial Telephone Solicitations,

    DTIC Science & Technology

    1978-03-01

    also proposed that telephone subscribers be given the right to indicate if they do not want to receive commercial advertising calls , whether from...federal government should prohibit all commercial advertising calls. Advertisers have rights to free speech , and some consumers, I am told , don ’t...of the same arguments against giving subscribers the right to refuse commercial advertising calls that they made in 1965. They have stated that placing

  17. Aerospace applications of beta titanium alloys

    NASA Astrophysics Data System (ADS)

    Boyer, Rodney R.

    1994-07-01

    Beta alloys are beginning to play a significant role in both military and commercial aircraft. Ti-10V-2Fe-3Al forgings, for example, play major roles in the McDonnell Douglas C-17 and the Boeing 777. The attractive properties of Beta-C are increasing the use of titanium, rather than steel, in aircraft springs. Ti-15V-3Cr-3Al-3Sn is subject to increasing usage primarily because of its strip producibility and formability. Beta-21S is gaining importance for high-temperature applications. New alloys such as β-CEZ, SP-700, and Timetal® LCB could become important because of advantageous costs, processing, and/or properties. In the past, the use of beta alloys has largely been driven by their superior properties and weight-savings potential. In the future, cost will become more important. As a result, a greater emphasis will be placed on lower cost alloys and/or taking advantage of the improved processing capabilities of these alloys to minimize final component costs.

  18. Commercialization of space

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1988-01-01

    Space-commercialization activities are grouped into five categories: private sector development from existing technology for private sector use; pure privatization; private sector development for U.S. government use; private sector development from novel technology for private sector use; and, finally, full commercialization. The commercialization of space categories is defined, and the key issues in each are highlighted. A description of key NASA actions is included for each category. It is concluded that NASA and other government agency involvement is a common thread across the spectrum of space commercialization activities.

  19. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  20. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  1. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].

    PubMed

    Wang, Xiaoping; Cui, Fuzhai; Li, Jianguo; Zhao, Xingshan

    2009-04-01

    Biodegradable magnesium-alloy stents have been employed in animal experiments and clinical researches in recent years. Magnesium-alloy stents have been reported to be biocompatible, and degradable due to corrosion after being implanted into blood vessel. However, magnesium alloy is brittle compared with stainless steel. This may cause strut break under large deformation. In this paper, a finite element model of magnesium-alloy stent was set up, with reference to pictures from Biotronik Corporation, to simulate the expanding and bending processes. The results of analysis show that the maximum strain during expanding reaches 20%, being greater than the elongation limit of the commercially available magnesium alloys. Therefore, to avoid strut breakage during expanding, the magnesium alloys should be custom-made. The plasticity of the material should be improved by grain refinement processes before practicable magnesium-alloy stents could be developed.

  2. Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Kamaraj, M.; Murty, B. S.

    2010-10-01

    Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys ( e.g., Stellite, which is 4.94 GPa).

  3. Effect of Alloy Composition, Surface Preparation and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr-X Alloy

    SciTech Connect

    Meier, G H; Mu, N; Yanar, N M; Pettit, F S; Piron Abellan, J; Olszewski, T; Quadakkers, W J; Holcomb, G R

    2010-09-01

    Abstract Selective oxidation behavior of ferritic martensitic Fe–Cr base alloys, exposed in various atmospheres containing combinations of O2, CO2, and H2O, were studied at various temperatures relevant to oxy-fuel combustion. This paper begins with a discussion of the required Cr content to form a continuous external chromia scale on a simple binary Fe–Cr alloy exposed in oxygen or air based on experiments and calculations using the classic Wagner model. Then, the effects of the exposure environment and Cr content on the selective oxidation of Fe–Cr alloys are evaluated. Finally, the effects produced by alloying additions of Si, commonly present in various groups of commercially available ferritic steels, are described. The discussion compares the oxide scale formation on simple binary and ternary Fe–Cr base model alloys with that on several commercially available ferritic steels.

  4. Development of cobalt-free hard-facing alloys for nuclear applications: 1984 progress

    SciTech Connect

    Ohriner, E.W.; Whelan, E.P.

    1985-09-01

    Cobalt-free hardfacing alloys are needed to replace cobalt-base Alloy No. 6, used in nuclear valves, in order to reduce the radiation exposure of service personnel that is associated with cobalt 60. An analysis of the property requirements of nuclear hardfacing materials indicates that galling resistance is a critical property which is generally not associated with cobalt-free alloys. A series of cobalt-free alloys was selected for evaluation based on the available knowledge of wear and galling behavior of austenitic iron-base alloys. The experimental alloys were evaluated for galling resistance and for adhesive wear resistance in a crossed cylinder wear test in both air and deionized water environments at room ambient temperature. Tensile, impact, hardness and weldability properties of the alloys were also evaluated. An iron-base alloy has been identified with galling resistance properties equivalent to those of the Alloy No. 6 in tests in deionized water and in tests in air at loads up to 275 MPa (40 ksi). The effects of variations in Mn, Si, Ni and N contents on the wear, mechanical, and welding properties, and on the alloy microstructure have been determined. Galling tests have also been performed on many commercially produced low-cobalt and cobalt-free alloy hardfacings as well as laser remelted Alloy No. 156. 34 refs., 12 figs., 22 tabs.

  5. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  6. Multi-functional magnesium alloys containing interstitial oxygen atoms

    PubMed Central

    Kang, H.; Choi, H. J.; Kang, S. W.; Shin, S. E.; Choi, G. S.; Bae, D. H.

    2016-01-01

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design. PMID:26976372

  7. Multi-functional magnesium alloys containing interstitial oxygen atoms

    NASA Astrophysics Data System (ADS)

    Kang, H.; Choi, H. J.; Kang, S. W.; Shin, S. E.; Choi, G. S.; Bae, D. H.

    2016-03-01

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design.

  8. Property Criteria for Automotive Al-Mg-Si Sheet Alloys.

    PubMed

    Prillhofer, Ramona; Rank, Gunther; Berneder, Josef; Antrekowitsch, Helmut; Uggowitzer, Peter J; Pogatscher, Stefan

    2014-07-04

    In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented.

  9. Property Criteria for Automotive Al-Mg-Si Sheet Alloys

    PubMed Central

    Prillhofer, Ramona; Rank, Gunther; Berneder, Josef; Antrekowitsch, Helmut; Uggowitzer, Peter J.; Pogatscher, Stefan

    2014-01-01

    In this study, property criteria for automotive Al-Mg-Si sheet alloys are outlined and investigated in the context of commercial alloys AA6016, AA6005A, AA6063 and AA6013. The parameters crucial to predicting forming behavior were determined by tensile tests, bending tests, cross-die tests, hole-expansion tests and forming limit curve analysis in the pre-aged temper after various storage periods following sheet production. Roping tests were performed to evaluate surface quality, for the deployment of these alloys as an outer panel material. Strength in service was also tested after a simulated paint bake cycle of 20 min at 185 °C, and the corrosion behavior was analyzed. The study showed that forming behavior is strongly dependent on the type of alloy and that it is influenced by the storage period after sheet production. Alloy AA6016 achieves the highest surface quality, and pre-ageing of alloy AA6013 facilitates superior strength in service. Corrosion behavior is good in AA6005A, AA6063 and AA6016, and only AA6013 shows a strong susceptibility to intergranular corrosion. The results are discussed below with respect to the chemical composition, microstructure and texture of the Al-Mg-Si alloys studied, and decision-making criteria for appropriate automotive sheet alloys for specific applications are presented. PMID:28788119

  10. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    PubMed Central

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  11. Alloy 10: A 1300F Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2000-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 13000 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, Allied Signal's Alloy 10, is a promising candidate for gas turbine engines to be used on smaller, regional aircraft. For this application, compressor/turbine disks must withstand temperatures of 1300 F for several hundred hours over the life of the engine. In this paper, three key properties of Alloy 10--tensile, 0.2% creep, and fatigue crack growth--will be assessed at 1300 F.

  12. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  13. Commercialism in Intercollegiate Athletics.

    ERIC Educational Resources Information Center

    Delany, James E.

    1997-01-01

    Outlines the history of intercollegiate athletics and the evolution of commercialization in college sports, particularly through television. Argues that few Division I programs could be self-sufficient; the issue is the degree to which sports are commercialized for revenue, and the challenge to balance schools' needs, private sector interests, and…

  14. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2009-01-01

    This slide presentation outlines a competition that has as its goal to explores the viability of using public-private partnerships to open space frontier for commercial uses. The teams have the objective of designing a business plan to open the space frontier to commercial interests.

  15. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  16. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  17. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  18. Analytical electron microscopy of grain boundaries in high-strength steels

    SciTech Connect

    Skogsmo, J.; Atrens, A. . Dept. of Mining and Metallurgical Engineering)

    1994-04-01

    Phosphorus could be detected at prior austenite grain boundaries (PAGB) in high-strength alloy steels quenched and tempered at 500 C when using a VG's HB 501 dedicated field emission STEM but not with a conventional JEOL 4000FX STEM. No phosphorus was detected at PAGB's in the as-quenched materials or away from PAGB's in tempered materials of either type. The grain boundary coverage of phosphorus was, assuming a specimens thickness of 80nm, 0.7 monolayers for the 3.5NiCrMoV rotor steel and 0.4 monolayers for the AISI 4340 steel. The grain boundary concentration of phosphorus, assuming a specimens thickness of 80 nm and a segregated layer thickness of 1 nm, for the 3.5NiCrMoV rotor steel was 6 wt% and for AISI 4340 4 wt%. Compared to the bulk concentration of about 0.01 wt% this means that the enrichment factor of P to the grain boundaries was several hundred times (610 respectively 370). The measurements showed no correlation between the stress corrosion crack growth rate and the grain boundary phosphorus concentration. The yield strength, however, decreased after tempering while the phosphorus concentration at the grain boundaries increased.

  19. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  20. Effect of Iron Impurity on the Phase Composition, Structure and Properties of Magnesium Alloys Containing Manganese and Aluminum

    NASA Astrophysics Data System (ADS)

    Volkova, E. F.

    2017-07-01

    Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.

  1. Surface alloying of Mg alloys after surface nanocrystallization.

    PubMed

    Zhang, Ming-Xing; Shi, Yi-Nong; Sun, Haiqing; Kelly, Patrick M

    2008-05-01

    Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process with the solution treatment for this type of alloy. After surface alloying, the hardness of the alloyed layer is 3 to 4 times higher than that of the substrate and this may significantly improve the wear resistance of magnesium alloys.

  2. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  3. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  4. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  5. Commercial considerations for immunoproteomics.

    PubMed

    Ferguson, Scott M

    2013-01-01

    The underlying drivers of scientific processes have been rapidly evolving, but the ever-present need for research funding is typically foremost amongst these. Successful laboratories are embracing this reality by making certain that their projects have commercial value right from the beginning of the project conception. Which factors to be considered for commercial success need to be well thought out and incorporated into a project plan with similar levels of detail as would be the technical elements. Specific examples of commercial outcomes in the field of Immunoproteomics are exemplified in this discussion.

  6. Commercialization Assistance Program (CAP)

    SciTech Connect

    Jenny C. Servo, Ph.D.

    2004-07-12

    In order to fulfill the objective of Small Business Innovation Research Program (SBIR), the Department of Energy funds an initiative referred to as the Commercialization Assistance Program (CAP). The over-arching purpose of the CAP is to facilitate transition of the SBIR-funded technology to Phase III defined as private sector investment or receipt of non-sbir dollars to further the commercialization of the technology. Phase III also includes increased sales. This report summarizes the stages involved in the implementation of the Commercialization Assistance Program, a program which has been most successful in fulfilling its objectives.

  7. Commercial Biomedical Experiments Payload

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  8. Commercial Biomedical Experiments Payload

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  9. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High-Temperature Strength and Creep-Resistance

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.

    2001-06-15

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation - Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metal. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815 C (1500 C) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800 H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  10. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  11. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  12. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  13. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  14. Improvement of hydrogen storage properties of magnesium alloys by cold rolling and forging

    NASA Astrophysics Data System (ADS)

    Huot, Jacques; Amira, Sofiene; Lang, Julien; Skryabina, Nataliya; Fruchart, Daniel

    2014-08-01

    In this talk we show that cold rolling (CR) could be used to enhance hydrogen sorption properties of magnesium and magnesium alloys. In particular, cold rolling could reduce the first hydrogenation time, the so-called activation. Pure magnesium, commercial AZ91D alloy, and an experimental creep resistant magnesium alloy MRI153 in the as-cast and die-cast states were investigated. We found that both MRI and AZ91 alloys present faster activation kinetic than pure magnesium. This could be explained by the texture, higher number of defects, and nanostructure in CR materials but also precipitates at the grain boundaries. The effect of filing was also investigated.

  15. Applications of high-temperature powder metal aluminum alloys to small gas turbines

    NASA Technical Reports Server (NTRS)

    Millan, P. P., Jr.

    1982-01-01

    A program aimed at the development of advanced powder-metallurgy (PM) aluminum alloys for high-temperature applications up to 650 F using the concepts of rapid solidification and mechanical alloying is discussed. In particular, application of rapidly solidified PM aluminum alloys to centrifugal compressor impellers, currently used in auxiliary power units for both military and commercial aircraft and potentially for advanced automotive gas turbine engines, is examined. It is shown that substitution of high-temperature aluminum for titanium alloy impellers operating in the 360-650 F range provides significant savings in material and machining costs and results in reduced component weight, and consequently, reduced rotating group inertia requirements.

  16. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  17. The Osprey preform process and its application to light alloys and composites

    NASA Astrophysics Data System (ADS)

    Leatham, A. G.; Ogilvy, A. J. W.; Elias, L. G.

    The Osprey process eliminates the problem of oxide film formation by means of an integrated inert-gas atomization and deposition operation in which the alloy being processed exists in a particulate form for only a few millisecs. It is presently reported that this process is ready for commercial-scale application to Al alloys and composites; in addition to markedly reducing the number of processing operations, safety problems associated with conventional P/M are avoided. Results are presented from tests conducted on novel, high-strength/high-temperature Al alloys, hypereutectic Al-Si and Al-Li alloys, and metal-matrix composites produced by means of the Osprey process.

  18. Promising CuNi&.sbnd;CrSi alloy for first wall ITER applications

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-10-01

    Precipitation-hardened CuNiCrSi alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of CuNiCrSi alloy at 250-300°C is observed. Mechanical properties of CuNiCrSi alloy neutron irradiated to a dose of ˜0.2 dpa at 293°C are investigated. Embrittlement of CuNiCrSi alloy can be avoided by annealing.

  19. ELECTROCHEMICAL IMPEDANCE ANALYSIS OF beta-TITANIUM ALLOYS AS IMPLANTS IN RINGERS LACTATE SOLUTION

    SciTech Connect

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-22

    Commercially pure titanium and two beta-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better beta-alloy as compared to TNZT.

  20. Measurement of the density of liquid aluminum-319 alloy by an x-ray attenuation technique

    SciTech Connect

    Smith, P.M.; Gallegos, G.F.

    1994-11-01

    This study was made for assisting in casting simulations. A relatively simple apparatus was constructed for measuring the density of Al-based alloys in the solid and liquid states up to 900 C. One of the more important physical properties of a casting alloy, solidification shrinkage, was measured for a commercial Al alloy (Al-319). It was found that while the thermal expansion of Al-319 in both solid and liquid phases is similar to that of pure Al, the density of the liquid alloy is lower than estimated by averaging the atomic volumes of the pure liquid components. The densities were measured by x-ray attenuation.

  1. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  2. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  3. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  4. Comparing Commercial WWW Browsers.

    ERIC Educational Resources Information Center

    Notess, Greg R.

    1995-01-01

    Four commercial World Wide Web browsers are evaluated for features such as handling of WWW protocols and different URLs: FTP, Telnet, Gopher and WAIS, and e-mail and news; bookmark capabilities; navigation features; file management; and security support. (JKP)

  5. Commercial Float Zone Furnace

    NASA Image and Video Library

    1996-05-25

    S77-E-5094 (25 May 1996) --- Astronaut Marc Garneau, mission specialist representing the Canadian Space Agency (CSA), stands at the Commercial Float Zone Furnace (CFZF) in the Spacehab Module onboard the Earth-orbiting Space Shuttle Endeavour.

  6. Comparing Commercial WWW Browsers.

    ERIC Educational Resources Information Center

    Notess, Greg R.

    1995-01-01

    Four commercial World Wide Web browsers are evaluated for features such as handling of WWW protocols and different URLs: FTP, Telnet, Gopher and WAIS, and e-mail and news; bookmark capabilities; navigation features; file management; and security support. (JKP)

  7. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  8. In vitro biocompatibility of novel Au-Pt-based metal-ceramic alloys.

    PubMed

    Johnson, Anthony; Shiraishi, Takanobu; Hurrell-Gillingham, Kathryn

    2011-09-01

    The aim of this research was to evaluate the effect of individual metallic elements within experimental Au-Pt-based metal-ceramic alloys on in vitro biocompatibility. A binary Au-10 at.% Pt alloy (AP10) was designed as a parent alloy. Six ternary AP10-X (X = In/Fe/Sn/Zn) alloys and four quaternary (AP10-In2)-Y (Y = Fe/Sn/Zn) with different compositions were cast into square plates with size 10X10X0.5 mm(3) and subjected to porcelain-firing thermal cycling. A commercial alloy was used as a control. In vitro biocompatibility was investigated using L929 murine aneuploid fibrosarcoma cell line. The test samples and cells were incubated at 37°C in a 5% CO(2) atmosphere for 72 h. Alamar™ Blue Assay was carried out to determine the respiratory viability of cultures maintained in the presence of the different materials. The cell only control showed significantly higher levels of cell viability than all six of the ternary alloys and two of the four quaternary alloys, (AP10-In2)-Zn2.1 and (AP10-In2)-Sn1.0 (P < 0.05). The quaternary alloys showed slightly higher levels of cell viability than the ternary alloys, with the exception of AP10-Sn0.9. No statistical differences were seen between the ternary and quaternary alloy groups. Acceptable cell viability was observed on the surfaces of all the alloys.

  9. Low temperature embrittlement behaviour of different ferritic-martensitic alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.

    1996-10-01

    In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.

  10. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  11. Technology Commercialization Program 1991

    SciTech Connect

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  12. Microfissuring in Electron-Beam-Welded Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr

    1985-01-01

    Mathematical model developed for microfissuring of commercial nickel alloy during electron-beam welding. Number of measured microfissures per unit length of weld plotted against excess power calculated by computer model. Excess power that above level likely to produce microfissures. In agreement with model, measured microfissures increase at rate of 4.5 per inch (1.8 per centimeter) per excess kilowatt.

  13. Characteristics of aluminum alloy microplastic deformation in different structural states

    SciTech Connect

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  14. Corrosion of copper, nickel, and gold dental casting alloys: an in vitro and in vivo study.

    PubMed

    Johansson, B I; Lucas, L C; Lemons, J E

    1989-12-01

    The corrosion behavior of commercially available copper, nickel, and gold alloys for dental castings was investigated. The alloys investigated included: three copper alloys (76-87Cu, 6-11A1, 0-12Zn, 1-5Ni, 0-4Fe, 0.5-1.2Mn), two nickel alloys (68-78Ni, 12-16Cr, 4-14Mo, 0-1.7Be), and one gold alloy (77Au, 14Ag, 8Cu, 1Pd). Anodic and cathodic polarization curves, long-term immersion tests in saline and artificial saliva solutions, and dog crown studies were conducted to evaluate both the in vitro and in vivo corrosion characteristics of the alloys. All evaluations conducted demonstrated that the copper alloys were highly susceptible to corrosion attack. High corrosion currents were observed in the in vitro tests, and SEM of the alloys specimens showed significantly altered surfaces. The anodic polarization curves predicted that the beryllium-containing nickel alloy should be susceptible to localized corrosion and SEM revealed an etched surface with corrosion of certain microstructural features. No significant corrosion was predicted or observed for the non-beryllium nickel alloy and the gold alloy. The in vitro corrosion evaluations predicted the in vivo corrosion behavior for the alloys. Since the three copper alloys and the beryllium-containing nickel alloy demonstrated significant corrosion under the tested conditions, the use of these alloys for restorative procedures is questionable due to the release of significant levels of selected ions to the oral cavity.

  15. ERC commercialization activities

    SciTech Connect

    1995-08-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MW power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full-sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MW Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  16. ERC commercialization activities

    SciTech Connect

    Maru, H.C.

    1995-12-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MR power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full- sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, and (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MR Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  17. Complex metallic alloys as new materials for additive manufacturing.

    PubMed

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  18. Complex metallic alloys as new materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Kenzari, Samuel; Bonina, David; Dubois, Jean Marie; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  19. Tensile and toughness assessment of the procured advanced alloys

    SciTech Connect

    Tan, Lizhen; Sokolov, Mikhail A.; Hoelzer, David T.; Busby, Jeremy T.

    2015-09-11

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications by 2021 to a new advanced alloy with superior degradation resistance by 2024 in light water reactor (LWR)-relevant environments

  20. Complex metallic alloys as new materials for additive manufacturing

    PubMed Central

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-01-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal–matrix composites or of polymer–matrix composites with improved properties. Functional parts using these alloys are now commercialized. PMID:27877661

  1. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  2. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  3. Strengthening in Thermomechanically Processed Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Mansoor, B.; Decker, R. F.; LeBeau, S. E.

    Commercial Mg alloys, compared to other engineering materials such as steels or aluminum materials have inferior strengths (Y.S. = 120 MPa), limited ductility and poor formability. Furthermore, due to high costs their use in structural applications for transportation industry is still rather limited. Therefore, there is significant interest in developing microstructure modification routes to produce novel Mg base alloys with an attractive combination of strength and ductility at room temperature as-well as warm temperature formability. In order to promote use of such microstructurally engineered Mg materials, better understanding of the relationship between microstructure, texture etc. with mechanical properties must be developed for a range of different alloys. In this work, microstructure evolution and mechanical response of two thermomechanically processed Mg alloys AZ61L and AZ70-TH were investigated. Initial findings of this work are presented here. The processed materials exhibited a good combination of strength and tensile ductility at room temperature that was further enhanced (Y.S. > 250 MPa, El. % > 10%) by low temperature (180°C) annealing treatment for 1 hr. The ductility and in-plane anisotropy in mechanical property was found to be related to basal texture formation in the sheet plane. In addition to the Hall-Petch strengthening due to near ultrafine grain size, β-particles from as-molded microstructure, complement strengthening by sub-dividing and possibly solutionizing/re-precipitating into nano-sized, well-dispersed, obstacles to dislocation motion and grain growth.

  4. Modern Sparingly Alloyed Titanium Alloys: Application and Prospects

    NASA Astrophysics Data System (ADS)

    Nochovnaya, N. A.; Panin, P. V.; Alekseev, E. B.; Bokov, K. A.

    2017-01-01

    Comparative analysis of the properties of domestic and foreign sparingly alloyed titanium alloys is preformed, and the main tendencies and prospects of their development are considered. Recent works of FGUP "VIAM" in the field of creation and approbation of various-purpose low-alloy titanium alloys are reviewed.

  5. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  6. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  7. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  8. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  9. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  10. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  11. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  12. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  13. Ductile transplutonium metal alloys

    SciTech Connect

    Conner, W.V.

    1983-04-19

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  14. Television Commercials' Effects on Children.

    ERIC Educational Resources Information Center

    Quisenberry, James D.

    1982-01-01

    Discusses research focused on characteristics of children's TV commercials, the relationship between commercials and children's learning and reasoning, and effects of commercials on children's language, attitudes, and beliefs. (Author/RH)

  15. Effects of Zn-In-Sn elements on the electric properties of magnesium alloy anode materials.

    PubMed

    Yu, Zhan; Ju, Dongying; Zhao, Hongyang; Hu, Xiaodong

    2011-06-01

    A new magnesium alloy anode is based on an environmentally friendly electrode that contains none of mercury, lead and chromate, but it can enhance the electric properties of alloy significantly. Magnesium alloy adding eco-friendly elements Zn-In-Sn which was developed by orthogonal design were obtained by two casting methods. The effect of additive elements on performance of electrode material was studied. The effects of elements addition and casting method on electric properties and corrosive properties of Mg-Zn-In-Sn alloys were investigated by using electrochemical measurements, corrosive tests and observation of surface structure. The results show that Mg-Zn-In-Sn alloy anode has higher electromotive force and more stable work potential than that commercial magnesium alloy AZ91. It is suitable for anode material of magnesium battery for its small hydrogen evolution, less self-corrosion rate and easy to shed corrosive offspring off.

  16. Solidification Microstructure and Mechanical Properties of Cast Magnesium-Aluminum-Tin Alloys

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Fu, Penghuai; Peng, Liming; Kang, Xiaoyu; Li, Zhenzhen; Zhu, Tianyu

    2012-01-01

    The solidification microstructure and mechanical properties of as-cast Mg-Al-Sn alloys have been investigated using computational thermodynamics and experiments. The as-cast microstructure of Mg-Al-Sn alloys consists of α-Mg, Mg17Al12, and Mg2Sn phases. The amount of Mg17Al12 and Mg2Sn phases formed increases with increasing Al and Sn content and shows good agreement between the experimental results and the Scheil solidification calculations. Generally, the yield strength of as-cast alloys increases with Al and Sn content, whereas the ductility decreases. This study has confirmed an early development of Mg-7Al-2Sn alloy for structural applications and has led to a promising new Mg-7Al-5Sn alloy with significantly improved strength and ductility comparable with commercial AZ91 alloy.

  17. On the growth of small fatigue cracks in aluminum-lithium alloy 2090

    SciTech Connect

    Venkatesward-Rao, K.T.; Yu, W.; Ritchie, R.O.

    1986-01-01

    It is the objective of this article to examine the behavior of small (2 to 1000 ..mu..m) fatigue cracks in a commercial Al-Li-Cu-Zr alloy, and to compare results with those determined on conventional long (greater than or equal to 20 mm) crack samples. The development of ultra-lightweight aluminum-lithium alloys has aroused much interest in the aerospace industry with the prospect of the design of aircraft with alloys of lower density and increased modulus. Moreover, although Li additions can cause low ductility and toughness properties, Al-Li-X alloys generally show far superior fatigue crack growth resistance to traditional aluminum alloys, such as 2124 and 7050. However, the latter observations are based exclusively on long (greater than or equal to 10 mm) crack studies; to date little information is available on the behavior of small fatigue cracks in these alloys.

  18. Effect of recasting on the oxidation layer of a palladium-silver porcelain alloy

    SciTech Connect

    Hong, J.M.; Razzoog, M.E.; Lang, B.R.

    1988-04-01

    The oxidation zone of a commercial palladium-silver porcelain alloy was compared after repeated casting with and without the addition of new alloy. The intensity of palladium, silver, tin, indium, and O K-alpha near the oxidation zone was analyzed with XMA. The intensity curves of tin, silver, and oxygen increased progressively through each generation despite the addition of new alloy. The thickness of the oxidation zone and the microporosities at the internal oxidation zone increased through each generation without the addition of new alloy. Although the findings indicated that the oxidation zone was favorably formed by adding new alloy, 50% by weight, for four generations, the silver and metallic oxides of the oxidation zone increased through each generation. The reuse of the palladium-silver porcelain alloy remains questionable.

  19. Commercialization of animal biotechnology.

    PubMed

    Faber, D C; Molina, J A; Ohlrichs, C L; Vander Zwaag, D F; Ferré, L B

    2003-01-01

    Commercialization of animal biotechnology is a wide-ranging topic for discussion. In this paper, we will attempt to review embryo transfer (ET) and related technologies that relate to food-producing mammals. A brief review of the history of advances in biotechnology will provide a glimpse to present and future applications. Commercialization of animal biotechnology is presently taking two pathways. The first application involves the use of animals for biomedical purposes. Very few companies have developed all of the core competencies and intellectual properties to complete the bridge from lab bench to product. The second pathway of application is for the production of animals used for food. Artificial insemination (AI), embryo transfer, in vitro fertilization (IVF), cloning, transgenics, and genomics all are components of the toolbox for present and future applications. Individually, these are powerful tools capable of providing significant improvements in productivity. Combinations of these technologies coupled with information systems and data analysis, will provide even more significant change in the next decade. Any strategies for the commercial application of animal biotechnology must include a careful review of regulatory and social concerns. Careful review of industry infrastructure is also important. Our colleagues in plant biotechnology have helped highlight some of these pitfalls and provide us with a retrospective review. In summary, today we have core competencies that provide a wealth of opportunities for the members of this society, commercial companies, producers, and the general population. Successful commercialization will benefit all of the above stakeholders. Copyright 2002 Elsevier Science Inc.

  20. PtMo Alloy and MoOx@Pt Core-Shell Nanoparticles as Highly CO-Tolerant Electrocatalysts

    SciTech Connect

    Liu, Z.; Hu, J; Wang, Q; Gaskell, K; Frenkel, A; Jackson, G; Eichhorm, B

    2009-01-01

    PtMo alloy and MoOx Pt core-shell nanoparticles (NPs) were successfully synthesized by a chemical coreduction and sequential chemical reduction method, respectively. Both the carbon-supported alloy and core-shell NPs show substantially higher CO tolerance, compared to the commercialized E-TEK PtRu alloy and Pt catalyst. These novel nanocatalysts can be potentially used as highly CO-tolerant anode electrocatalysts in proton exchange membrane fuel cells.

  1. Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy

    DTIC Science & Technology

    2014-04-01

    better combination of mechanical properties and oxidation resistance than commercial Nb alloys and earlier reported developmental Nb–Si–Al–Ti and Nb...The alloy has a better combination of mechanical properties and oxidation resistance than com- mercial Nb alloys and earlier reported developmental Nb...damage, is dif- ficult to achieve [2]. Thus, new metallic systems with higher melting points and a good balance of structural properties at high

  2. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  3. Alloys in energy development

    SciTech Connect

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  4. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-03-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  5. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-12-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  6. Commercialization of NESSUS: Status

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Millwater, Harry R.

    1991-01-01

    A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.

  7. Commercial space services

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1984-01-01

    An overview of space service opportunities as identified by a Wyle Laboratories' research team is given. Through the use of a baseline space scenario, a variety of space hardware, services, and commercial activities are identified and related on a time-phased basis. A model is presented to relate the potential functions of government and the private sector in a commercialized space environment during the period 1984 to 2004. Barriers, incentives and key issues are likewise identified and addressed to aid in the implementation of private sector activities for spacerelated programs. Broader awareness, legislative actions, incentive development and benefit analyses are considered in the presentation. The time-phased plan provides a useful planning and management tool, allows broader communication, and supports overall space commercialization program assessment.

  8. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    PubMed Central

    Lin, Bao; Kong, Lingxue; Hodgson, Peter D.; Dumée, Ludovic F.

    2014-01-01

    Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30) and white gold (Au50Ag50) foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA) parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM). Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB) milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD) and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested. PMID:28344253

  9. The 100,000-hour cyclic oxidation behavior at 815C (1500 F) of 33 high-temperature alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1977-01-01

    Commercial high-temperature Fe-, Ni-, and Co-base alloys were oxidized in air at 815 deg C for ten 1000-hour cycles. Specific weight change versus time curves were derived and the 10,000-hour surface oxides were analyzed by X-ray diffraction. The alloys were ranked by a combination of appearance and metal loss estimates derived from gravimetric data.

  10. Commercialization of biobanks.

    PubMed

    Evers, Kathinka; Forsberg, Joanna; Hansson, Mats

    2012-02-01

    Biobank policy and regulations profoundly vary between different societies. One area with profound differences in culture and tradition concerns commercialization, and the possibility of using the human body as a capital resource. In the United States there is acceptance of this possibility, whereas European law is based on principles that categorically prohibit selling parts of the human body. We suggest that questions of commercialization in the area of biobanking must be considered in relation to different ethical values, notably the principle of best possible use of collected biobank materials for the benefit of vital patient interests.

  11. Commercial Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  12. Commercial Fisheries Surveys

    USGS Publications Warehouse

    Fabrizio, Mary C.; Richards, R. Anne; Murphy, Brian R.; Willis, David W.

    1996-01-01

    In this chapter, we describe methods for sampling commercial fisheries and identify factors affecting the design of sampling plans. When sampled properly, commercial fisheries can provide important information on the response of aquatic organisms to exploitation; such information can be used by management agencies to develop regulations for ensuring long-term production of the resource and long-term economic benefit. Fishery statistics are typically used to estimate abundance, mortality, recruitment, growth, and other vital characterisitcs of populations. Fishery statistics can also be used to study changes in fish community composition resulting from differential exploitation of species.

  13. Commercial Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  14. Biocompatibility of Ti-alloys for long-term implantation.

    PubMed

    Abdel-Hady Gepreel, Mohamed; Niinomi, Mitsuo

    2013-04-01

    The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation.

  15. A Novel Surface Treatment for Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  16. Preparation and characterization of alloys of the Ti-15Mo-Nb system for biomedical applications.

    PubMed

    Martins Júnior, J R S; Matos, A A; Oliveira, R C; Buzalaf, M A R; Costa, I; Rocha, L A; Grandini, C R

    2017-03-09

    In the development of new metallic biomaterials, the Ti-15Mo alloy has great prominence because of its excellent corrosion resistance and good combination of mechanical properties. In this study, the element niobium was added to the Ti-15Mo alloy, forming the Ti-15Mo-Nb system for the purpose of improving their properties and promoting its application as a biomaterial. These alloys are very promising to use as biomedical implants, because they integrate a new class of titanium alloys without the presence of aluminum and vanadium, which may cause cytotoxic effects. The alloys were produced by arc-melting and characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, elastic modulus, corrosion, and cytotoxicity assays. The developed alloys have β phase predominance (with bcc crystalline structure). The addition of niobium decreases the microhardness and elastic modulus, with values around 80 GPa, which is well below that of the metallic alloys used commercially for this type of application. Very low passive current densities were found for all alloys studied showing that the passive film on these alloys is highly protective. In vitro cytotoxicity tests revealed that the introduction of niobium did not cause cytotoxic effects in the studied alloys. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  17. Utilizing various test methods to study the stress corrosion behavior of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    Recently, much attention has been given to aluminum-lithium alloys because of rather substantial specific-strength and specific-stiffness advantages offered over commercial 2000and 7000-series aluminum alloys. An obstacle to Al-Li alloy development has been inherent limited ductility. In order to obtain a more refined microstructure, powder metallurgy (P/M) has been employed in alloy development programs. As stress corrosion (SC) of high-strength aluminum alloys has been a major problem in the aircraft industry, the possibility of an employment of Al-Li alloys has been considered, taking into account a use of Al-Li-Cu alloys. Attention is given to a research program concerned with the evaluation of the relative SC resistance of two P/M processed Al-Li-Cu alloys. The behavior of the alloys, with and without an addition of magnesium, was studied with the aid of three test methods. The susceptibility to SC was found to depend on the microstructure of the alloys.

  18. Heat treatment effects on electrochemical corrosion parameters of high-Pd alloys.

    PubMed

    Berzins, D W; Kawashima, I; Graves, R; Sarkar, N K

    2008-01-01

    This research determined the effect oxidation, as that occurs during porcelain firing, has upon the corrosion parameters of Pd-based ceramic alloys and how it may relate to Pd allergy. The 20 h open circuit potential (OCP), 20 h corrosion rate (Icorr), and anodic polarization (E-i) curves of 11 commercial Pd alloys were measured in a phosphate buffered saline solution. The alloys were divided into the following four groups based upon composition: PdGa(Ag), PdCu, PdAg, and AuPd and tested in both as-cast and oxidized conditions. In both the as-cast and oxidized conditions, the OCP of Ag-containing Pd alloys is significantly lower than non Ag-containing high-Pd alloys. The OCP of all alloys increased after oxidation. With regard to corrosion rate, the Ag-containing alloys showed a decrease in Icorr with oxidation. In contrast, three of the four non Ag-containing high-Pd (>or=74 wt%) alloys exhibited a higher Icorr. A comparison of the anodic polarization curves showed only the alloys containing larger amounts (>or=16 wt%) of Ag displayed a notable difference between as-cast and oxidized states. Oxidation as required during porcelain-fused-to-metal device preparation alters the electrochemical characteristics of the alloys studied. This alteration may be of importance with regard to their potential for Pd allergy.

  19. Utilizing various test methods to study the stress corrosion behavior of Al-Li-Cu alloys

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    Recently, much attention has been given to aluminum-lithium alloys because of rather substantial specific-strength and specific-stiffness advantages offered over commercial 2000and 7000-series aluminum alloys. An obstacle to Al-Li alloy development has been inherent limited ductility. In order to obtain a more refined microstructure, powder metallurgy (P/M) has been employed in alloy development programs. As stress corrosion (SC) of high-strength aluminum alloys has been a major problem in the aircraft industry, the possibility of an employment of Al-Li alloys has been considered, taking into account a use of Al-Li-Cu alloys. Attention is given to a research program concerned with the evaluation of the relative SC resistance of two P/M processed Al-Li-Cu alloys. The behavior of the alloys, with and without an addition of magnesium, was studied with the aid of three test methods. The susceptibility to SC was found to depend on the microstructure of the alloys.

  20. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  1. Commercialization of multijunction a-Si modules

    NASA Astrophysics Data System (ADS)

    Carlson, D. E.; Arya, R. R.; Chen, L.-F.; Oswald, R.; Newton, J.; Rajan, K.; Romero, R.; Willing, F.; Yang, L.

    1997-02-01

    Solarex has just completed building a plant in James City County, Virginia that has the capacity to produce 10 MW per year of multijunction amorphous silicon PV modules. The plant will start commercial production of 8.6 ft2 tandem modules in early 1997. The tandem device structure consists of two stacked p-i-n junctions, a front junction containing amorphous silicon and a back junction containing an amorphous silicon germanium alloy. All amorphous silicon alloys are deposited using plasma-enhanced chemical vapor deposition, and the large-area monolithic modules are interconnected using computerized laser scribing coupled with a machine vision system. The principle products will be monolithic modules (26″×48″) with nominal stabilized power ratings of 56, 50 and 43 peak watts. All modules will be fabricated using a glass-EVA-glass encapsulation to ensure long-term reliability. These products are expected to be widely used in both remote and grid-tied applications.

  2. Commercializing Biological Control

    ERIC Educational Resources Information Center

    LeLeu, K. L.; Young, M. A.

    1973-01-01

    Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

  3. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  4. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  5. Commercial Float Zone Furnace

    NASA Image and Video Library

    1996-05-25

    S77-E-5093 (25 May 1996) --- Astronaut Marc Garneau, mission specialist representing the Canadian Space Agency (CSA), makes a visual check of the Commercial Float Zone Furnace (CFZF), a single-rack-mounted facility in the Spacehab Module onboard the Earth-orbiting Space Shuttle Endeavour. The scene was recorded with an Electronic Still Camera (ESC).

  6. Frameworks for commercial success

    NASA Astrophysics Data System (ADS)

    2016-11-01

    Taking chemical technology from the bench to the consumer is a formidable challenge, but it is how research can ultimately benefit wider society. Companies are now beginning to incorporate metal-organic frameworks into commercial products, heralding a new era for the field.

  7. Commercial applications of telemedicine

    NASA Technical Reports Server (NTRS)

    Natiello, Thomas A.

    1991-01-01

    Telemedicine Systems Corporation was established in 1976 and is a private commercial supplier of telemedicine systems. These systems are various combinations of communications and diagnostic technology, designed to allow the delivery of health care services to remote facilities. The technology and the health care services are paid for by the remote facilities, such as prisons.

  8. Estolides - Ready for commercialization

    USDA-ARS?s Scientific Manuscript database

    Estolides have shown great promise as a bio-based lubricant and are ready for commercialization. Estolides are nontoxic and biodegradable. Testing has shown estolides have increased oxidative stability over vegetable oil based lubricants and have a relatively low pour point, allowing them to be use...

  9. Kids vs. commercials.

    PubMed

    Lewis, M A; Lewis, C E

    1975-11-01

    A game show with fifth and sixth graders effectively demonstrated their ability to critically evaluate television commercials about health-related products. While the family physician is in a unique position to affect future drug utilization patterns of children by counseling parents, a more active role, such as this exercise in the evaluation of TV messages, may be even more effective.

  10. Commercial Crew Medical Ops

    NASA Technical Reports Server (NTRS)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  11. Commercial Baking. Final Report.

    ERIC Educational Resources Information Center

    Booth, Nancy

    A project filmed three commercial baking videotapes for use by secondary and adult students in food service programs. The three topics were basic dinner rolls, bread making, and hard breads and rolls. Quick-rise dough recipes were developed, written down, and explained for use with the videotapes. A pretest, posttest, and student guide were…

  12. Commercial Science and Technology

    DTIC Science & Technology

    2000-06-01

    blank) 9 Naval Research Advisory Committee ABB Helsinki, Finland ALCATEL Paris, France ALSTOM Rugby, England Nokia Helsinki, Finland Siemens Erlangen...DON CTO Telecommunications Siemens Telecommunications Nokia Telecommunications Alcatel Power Electronics ABB Marine Power Electronics Alstom Power...panel received many briefs, including presentations on commercial research issues from multiple speakers at Siemens, Nokia, Alcatel, ABB and Alstom . To

  13. Commercializing Biological Control

    ERIC Educational Resources Information Center

    LeLeu, K. L.; Young, M. A.

    1973-01-01

    Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

  14. Commercial Baking. Final Report.

    ERIC Educational Resources Information Center

    Booth, Nancy

    A project filmed three commercial baking videotapes for use by secondary and adult students in food service programs. The three topics were basic dinner rolls, bread making, and hard breads and rolls. Quick-rise dough recipes were developed, written down, and explained for use with the videotapes. A pretest, posttest, and student guide were…

  15. The Commercial Speech Doctrine.

    ERIC Educational Resources Information Center

    Luebke, Barbara F.

    In its 1942 ruling in the "Valentine vs. Christensen" case, the Supreme Court established the doctrine that commercial speech is not protected by the First Amendment. In 1975, in the "Bigelow vs. Virginia" case, the Supreme Court took a decisive step toward abrogating that doctrine, by ruling that advertising is not stripped of…

  16. Commercial Carpentry: Instructional Units.

    ERIC Educational Resources Information Center

    Diehl, Donald W.; Penner, Wayman R.

    This manual contains instructional materials which measure student performance on commercial carpentry behavioral objectives; criterion-referenced evaluation instruments are also included. Each of the manual's eleven sections consists of one or more units of instruction. Each instructional unit includes behavioral objectives, suggested activities…

  17. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  18. Lunar Commercial Mining Logistics

    NASA Astrophysics Data System (ADS)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

    2008-01-01

    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  19. Analysis of niobium alloys.

    PubMed

    Ferraro, T A

    1968-09-01

    An ion-exchange method was applied to the analysis of synthetic mixtures representing various niobium-base alloys. The alloying elements which were separated and determined include vanadium, zirconium, hafnium, titanium, molybdenum, tungsten and tantalum. Mixtures containing zirconium or hafnium, tungsten, tantalum and niobium were separated by means of a single short column. Coupled columns were employed for the resolution of mixtures containing vanadium, zirconium or titanium, molybdenum, tungsten and niobium. The separation procedures and the methods employed for the determination of the alloying elements in their separate fractions are described.

  20. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  1. COP, a new alloy for surgical implants.

    PubMed

    Sunami, Y; Ishikawa, E

    1977-02-01

    Today Vitallium is used for surgical implants. It is a casting alloy which, with advances in casting technology, is also used commercially for making instruments of fairly complex shape. Because of its expense, however, it is not widely used in Japan. Instead, a series of 18-8 Mo alloys are used in Japan even though of insufficient strength. Used over a long period of time in the body, especially for the purpose of preserving structual functions as part of the human skeleton, it often corrodes, resulting in either abnormalities in tissue cells or, because of its insufficient strength, danger of bending and breaking with aging. In spite of a marked advance in fracture treatment, we have hardly any suitable materials for making instruments appropriate to the internal fixation of fractures in Japan. We, therefore, conducted various experiments to develop an alloy with sufficient corrosive resistance and strength that could be formed into a complex shape to take the place of Vitallium alloy, finally succeeding in developing an alloy we call "COP". The characteristic properties of COP may be summarized as follows: 1. The main components are 20% Cr, 20% Ni, 20% Co and 4% Mo aside from 0.2% P. 2. As it contains "P", it shows a marked age-hardening. In its molten state its machinability is excellent, and later it can readily be hardened by heat-treatment. 3. It has not only a marked yield point and tensile strength but also has toughness in elongation and reduction of area, showing a strength which surpasses Vitallium. 4. Its corrosive resistance is great. 5. Its cost is far cheaper than Vitallium.

  2. Electrical Resistivity of Ten Selected Binary Alloy Systems.

    DTIC Science & Technology

    1981-04-01

    alloys --* Aluminum Alloys --*Copper alloys --*Gold alloys --*Nickel Alloys --*Silver alloys --*Iron alloys --*Palladium alloys ... aluminum -magnesium, and copper-zinc) are given for 27 compositions: 0 (pure element).* For aluminum -copper, aluninu.-eagnes tur, end copper-zinc alloy ...available data and infor- mation. The ten binary alloy systems selected are the systems of aluminum - copper, aluminum -magnesium, copper-gold,

  3. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  4. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Hamilton, M.L. ); Huang, F.H.; Hu, Wan-Liang )

    1992-06-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were re-examined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9.

  5. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Huang, F.H.; Hu, W.L. ); Hamilton, M.L. )

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs.

  6. Sample preparation of metal alloys by electric discharge machining

    NASA Technical Reports Server (NTRS)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  7. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  8. Brazing dissimilar aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dalalian, H.

    1979-01-01

    Dip-brazing process joins aluminum castings to aluminum sheet made from different aluminum alloy. Process includes careful cleaning, surface preparation, and temperature control. It causes minimum distortion of parts.

  9. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  10. Mechanical properties of cast Ti-Hf alloys.

    PubMed

    Sato, Hideki; Kikuchi, Masafumi; Komatsu, Masashi; Okuno, Osamu; Okabe, Toru

    2005-02-15

    This study examined the mechanical properties of a series of Ti-Hf alloys. Titanium alloys with 10 to 40 mass % Hf were made with titanium and hafnium sponge in an argon-arc melting furnace. Specimens cast into magnesia-based investment molds were tested for yield strength, tensile strength, percentage elongation, and modulus of elasticity. Vickers microhardness was determined at 25 to 600 microm from the cast surface. X-ray diffractometry was also performed. Commercially pure Ti (CP Ti) and pure Ti prepared from titanium sponge were used as controls. The data (n = 5) were analyzed with a one-way ANOVA and the Student-Newman-Keuls test (alpha = 0.05). The diffraction peaks of all the metals matched those for alpha Ti; no beta phase peaks were found. Alloys with Hf > or = 25% had significantly (p < 0.05) higher yield and tensile strength compared to the CP Ti and pure Ti. There were no significant differences (p > 0.05) in elongation among all the Ti-Hf alloys and CP Ti, whereas the elongation of alloys with Hf > or = 30% was significantly (p < 0.05) lower than that of the pure Ti. The cast Ti-Hf alloys tested can be considered viable alternatives to CP Ti because they were stronger than CP Ti and had similar elongation.

  11. Processing of Refractory Metal Alloys for JOYO Irradiations

    SciTech Connect

    RF Luther; ME Petrichek

    2006-02-21

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang.

  12. New Ni-free superelastic alloy for orthodontic applications.

    PubMed

    Arciniegas, M; Manero, J M; Espinar, E; Llamas, J M; Barrera, J M; Gil, F J

    2013-08-01

    A potential new Ni-free Ti alloy for biomedical applications was assessed in order to investigate the superelastic behavior, corrosion resistance and the biocompatibility. The alloy studied was Ti19.1Nb8.8Zr. The chemical composition was determined by X-ray microanalysis, the thermoelastic martensitic transformation was characterized by high sensitivity calorimeter. The critical stresses were determined by electromechanical testing machine and the corrosion behavior was analyzed by potentiostatic equipment in artificial saliva immersion at 37°C. The results were compared with six different NiTi orthodontic archwire brands. The biocompatibility was studied by means of cultures of MG63 cells. Ni-free Ti alloy exhibits thermoelastic martensitic transformation with Ms=45°C. The phase present at 37°C was austenite which under stress can induce martensite. The stress-strain curves show a superelastic effect with physiological critical stress (low and continuous) and a minimal lost of the recovery around 150 mechanical cycles. The corrosion resistance improves the values obtained by different NiTi alloys avoiding the problem of the Ni adverse reactions caused by Ni ion release. Cell culture results showed that adhered cell number in new substrate was comparable to that obtained in a commercially pure Ti grade II or beta-titanium alloy evaluated in the same conditions. Consequently, the new alloy presents an excellent in-vitro response.

  13. Effect of a metal alloy fuel catalyst on bacterial growth.

    PubMed

    Ghosh, Ruma; Koerting, Claudia; Suib, Steven L; Best, Michael H; Berlin, Alvin J

    2005-11-08

    Many microorganisms have been demonstrated to utilize petroleum fuel products to fulfill their nutritional requirement for carbon. As a result, the ability of these microbes to degrade fuel has both a deleterious affect as well as beneficial applications. This study focused on the undesired ability of bacteria to grow on fuel and the potential for some metal alloys to inhibit this biodegradation. The objective of this study was to review the pattern of growth of two reference strains of petroleum-degrading bacteria, Pseudomonas oleovorans and Rhodococcus rhodocrous, in a specific hydrocarbon environment in the presence of a commercially available alloy. The alloy formulated and supplied by Advanced Power Systems International Inc. (APSI) is sold for fuel reformulation and other purposes. The components of the alloy used in the study were antimony, tin, lead, and mercury formulated as pellets. Surface characterization also showed the presence of tin oxide and lead amalgam phases. Hydrocarbon used for the study was primarily 87-octane gasoline. The growth of the bacteria in the water and mineral-supplemented gasoline mixture over 6-8 weeks was monitored by the viable plate count method. While an initial increase in bacteria occurred in the first week, overall bacterial growth was found to be suppressed in the presence of the alloy. Results also indicate that the alloy surface characteristics that convey the catalytic activity may also contribute to the observed antibacterial activity.

  14. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    SciTech Connect

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-12-09

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date.

  15. Moessbauer study of amorphous (FeTM){sub 80}B{sub 20}

    SciTech Connect

    Orue, I.; Plazaola, F.; Fernandez-Gubieda, M.L.; Gutierrez, J.; Barandiaran, J.M.

    1994-03-01

    As-cast ferromagnetic amorphous alloys of nominal composition (FeTM){sub 80}B{sub 20} have been studied by Moessbauer Spectroscopy, being TM one transition metal atom, Ni, Cr, Mo or Pd. A detailed analysis of the isomer shift, IS, and hyperfine field distribution, HFD, at Fe sites is reported in order to achieve some conclusions about the Chemical Short Range Order and the electronic structure in these alloys. HFD changes found in (FeNi)B for Ni rich concentrations suggest the existence of Fe atoms strongly interacting with Ni. Small amounts of Cr and Mo shift the HFD to lower values of hyperfine field, B{sub hf}, while Pd enhances the B{sub hf}.

  16. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  17. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  18. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  19. Commercial jet transport crashworthiness

    NASA Technical Reports Server (NTRS)

    Widmayer, E.; Brende, O. B.

    1982-01-01

    The results of a study to identify areas of research and approaches that may result in improved occupant survivability and crashworthiness of transport aircraft are given. The study defines areas of structural crashworthiness for transport aircraft which might form the basis for a research program. A 10-year research and development program to improve the structural impact resistance of general aviation and commercial jet transport aircraft is planned. As part of this program parallel studies were conducted to review the accident experience of commercial transport aircraft, assess the accident performance of structural components and the status of impact resistance technology, and recommend areas of research and development for that 10-year plan. The results of that study are also given.

  20. Effect of vanadium carbide on commercial pure aluminum

    NASA Astrophysics Data System (ADS)

    Sun, Hua-ping; Wu, Jun; Tang, Tian; Fan, Bo; Tang, Zheng-hua

    2017-07-01

    The effect of vanadium carbide (VC) on the grain size of commercial pure aluminum was experimentally investigated by varying the content of VC, the holding time, and casting temperature. The refining efficiencies of VC and Al5Ti1B were also compared. The refined samples of commercial pure aluminum were examined using optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results suggest that VC is a good refiner of commercial pure aluminum. The addition of only 0.3wt% VC can decrease the grain size of aluminum to 102 μm, whereas the casting temperature and holding time have little effect on the grain size. The refining efficiency of VC is better than that of Al5Ti1B. The VC particles in molten aluminum act as nuclei and the grain refinement of aluminum alloys by VC particles is achieved via heterogeneous nucleation.

  1. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  2. Semiconductor Alloy Theory.

    DTIC Science & Technology

    1986-01-14

    ftoc*o~ow7 and Idenify’ by block nam. bor) Electron mobility , Lattice Relaxation, Bond Length, Bond Energy, Mixing Enthalpies, Band Structure, Core...including: (1) generalization of Brooks’ formula for alloy-scattering limited electron mobility to including multiple bands and indirect gaps, (2...calculation of SiGe alloys band structure, electron mobility and core-exciton binding energy and • :linewidth, (3) comprehensive calculation of bond

  3. Opportunities for commercial organizations

    NASA Technical Reports Server (NTRS)

    Vardaman, W. K.; Atkins, H.; Taylor, K. R.

    1984-01-01

    The possible applications of technology of materials processing in low gravity is discussed. A special office established by NASA to familiarize commercial organizations with materials processing in low gravity is described. This office provides information on present research and will, if requested, hold a seminar to present the technological and business aspects of joint investigations and joint endeavors to interested organizations. Arrangements can be made for visits to laboratories where ground based research is in progress.

  4. Commercialization of microfluidic devices.

    PubMed

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. European commercial aeronautics

    NASA Technical Reports Server (NTRS)

    Van Zandt, J Parker

    1925-01-01

    During the months of June to September, 1924, I personally visited the principal airports of Europe and traveled as a passenger some 6500 air miles on English, French, Romanian, Polish, German and Dutch air lines in order to investigate the development of commercial aviation abroad. The results of the investigation are embodied in a series of reports, of which a summary of the general findings is given below.

  6. Commercialization of nanotechnology.

    PubMed

    Hobson, David W

    2009-01-01

    The emerging and potential commercial applications of nanotechnologies clearly have great potential to significantly advance and even potentially revolutionize various aspects of medical practice and medical product development. Nanotechnology is already touching upon many aspects of medicine, including drug delivery, diagnostic imaging, clinical diagnostics, nanomedicines, and the use of nanomaterials in medical devices. This technology is already having an impact; many products are on the market and a growing number is in the pipeline. Momentum is steadily building for the successful development of additional nanotech products to diagnose and treat disease; the most active areas of product development are drug delivery and in vivo imaging. Nanotechnology is also addressing many unmet needs in the pharmaceutical industry, including the reformulation of drugs to improve their bioavailability or toxicity profiles. The advancement of medical nanotechnology is expected to advance over at least three different generations or phases, beginning with the introduction of simple nanoparticulate and nanostructural improvements to current product and process types, then eventually moving on to nanoproducts and nanodevices that are limited only by the imagination and limits of the technology itself. This review looks at some recent developments in the commercialization of nanotechnology for various medical applications as well as general trends in the industry, and explores the nanotechnology industry that is involved in developing medical products and procedures with a view toward technology commercialization.

  7. EVALUATING COMMERCIALLY AVAILABLE DERMAL ...

    EPA Pesticide Factsheets

    As the Human Exposure Program focuses on the exposure of children to pesticides, there are concerns about the effect, or perceived effect, of components of the sampling procedure on the health and well-being of the infant and the ability to collect pesticide residues. One concern involves the materials in wipes used to collect pesticide residues or other contact materials on the skin. In recent studies (e.g., National Human Exposure Assessment Survey; NHEXAS), isopropyl alcohol has been used as a solvent in conjunction with a cloth wipe to obtain samples from the hands of adults and children. Although isopropyl alcohol is generally considered innocuous, the use of commercially available products could eliminate concerns about exposure to alcohol. A few studies have evaluated the potential of commercially available baby wipes to collect personal exposure samples for metals research, but not for the area of pesticide research (Millson et al., 1994; Campbell et al., 1993; Lichtenwalner et al., 1993). Therefore, there is a need to evaluate the potential for using commercially available baby wipes for collecting pesticide samples from skin and other surfaces. Another concern involves establishing a convenient and safe method for assessing overall dermal exposure for children, especially for those in crawling stage. One route that the U .S. Environmental Protection Agency (EPA) would like to investigate is the use of cotton body suits (infant sleepers) as an indicator

  8. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    SciTech Connect

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A.

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  9. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  10. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  11. Furnace alloys update

    SciTech Connect

    Vervalin, C.H.

    1984-12-01

    The principal share of the cast heat resistant alloy market has long been held by HK-40, a 25Cr/20Ni steel with an average carbon content of 0.40 percent. HK-40 alloy has done a commendable job, especially after its limitations in the various processes were better understood, by designers and operators alike. Presently, and in the future, the materials performance demands of new reformers, ethylene pyrolysis, coal gasification, iron ore reduction and other thermally intensive processes will require alloy capabilities frequently beyond those of HK-40. This article presents an update of the capabilities and limitations of HK-40 and describes a group of higher nickel 25Cr/35Ni alloys of the HP-base, mostly modified by various additions such as columbian, tungsten, titanium, zirconium, cobalt, chromium, molybdenum, silicon and/or aluminum. A number of these alloys are proprietary. Data on the 24Cr/24Ni and 30Cr/30Ni alloys are presented as they have proven, reliable performance at an economical price.

  12. Progress toward a tungsten alloy wire/high temperature alloy composite turbine blade

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Dreshfield, R. L.

    1992-01-01

    A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hollow turbine blade for advanced rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite blades provides an excellent balance of strength and wire ductility. Preliminary fabrication, specimen design, and characterization studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-Hfc wire. Subsequently, two-ply, 50 vol pct composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and metallographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix composite at 870 C were 90 pct of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for turbopump turbine blade material improvement.

  13. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes

  14. Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.

    SciTech Connect

    Mills, Bernice E.

    2007-11-01

    A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

  15. Development of binary and ternary titanium alloys for dental implants.

    PubMed

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-08-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Space Station Freedom commercial infrastructure

    NASA Technical Reports Server (NTRS)

    Barquinero, Kevin

    1990-01-01

    Several approaches to initiating the provision of the Space Station Freedom (SSF) commercial infrastructure are discussed, including proposals from the private sector, the commercial development of infrastructure, and the commercial operation of infrastructure. Specific options for SSF commercial infrastructure which are currently being studied by NASA are described. One candidate for commercial service is the supplemental power for SSF beyond the Assembly Complete phase. The methods which a company could use in providing supplemental power are discussed, with special attention given to the use of solar dynamic power elements attached ot the SSF evolution structure. Another option under evaluation is commercial provision of SSF logistics services using ELVs.

  17. Effects of recasting on the biocompatibility of a Ni-Cr alloy.

    PubMed

    Zhang, Chang Yuan; Cheng, Hui; Lin, Dong Hong; Zheng, Ming; Ozcan, Mutlu; Zhao, Wei; Yu, Hao

    2012-01-01

    To evaluate the effects of recasting on the biocompatibility of a commercially available Ni-Cr alloy. The alloy tested was cast and subsequently recast four more times. For each cast condition, 24 disk shaped specimens were fabricated (5 mm in diameter, 0.5 mm in thickness). All the recasting was performed without adding new alloy. After the first cast and following each recast, the surface composition and microstructure of the alloy were determined using an X-ray fluorescence spectrometer and optical microscope, respectively. The in vitro cytotoxicity and in vivo mucous irritation potential of the cast and recast Ni-Cr alloy were investigated. The results were statistically analysed at the significance level of 0.05. Recasting neither yielded to cytotoxicity or to changes in the surface composition of the Ni-Cr alloy tested. However, an increase in impurities and porosity of the surface structure was observed with recasting. Also, the segregation of the impurities to grain boundaries was evident after multiple castings. After the fourth recast, the alloys showed significantly greater mucosal irritation than the control. After fourth recast, the alloy of this type may contribute to mucosal inflammation. Furthermore, there is a need for diverse methods addressing different biological endpoints for the evaluation of dental alloys.

  18. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    SciTech Connect

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  19. The mechanism of corrosion of palladium-silver binary alloys in artificial saliva.

    PubMed

    Joska, L; Marek, M; Leitner, J

    2005-05-01

    Palladium dental casting alloys are alternatives to gold alloys. The aim of this study was to determine the electrochemical behaviour and the corrosion mechanism of binary silver-palladium alloys. Seven binary silver-palladium alloys and pure palladium and silver were tested in a model saliva solution. Electrochemical tests included corrosion potential, polarization resistance, and potentiodynamic polarization measurements. The corrosion products, which may be theoretically formed, were determined by thermodynamic calculation. The behaviour of silver and silver-rich alloys was dominated by the preferential formation of a thiocyanate surface layer, which controlled the free corrosion potential. Palladium dissolved in the form of a thiocyanate complex, but the surface became passivated by either palladium oxide or solid palladium thiocyanate layer, the thermodynamic calculations indicating preference for the oxide. Palladium-rich alloys showed evidence of silver depletion of the surface, resulting in behaviour similar to palladium. Examination of binary silver-palladium alloys has made possible determination of the role of the components of the alloys and model saliva in the corrosion behaviour. The findings are applicable to the more complex commercial dental alloys containing silver and palladium as major components.

  20. Corrosion properties of Ag-Au-Cu-Pd system alloys containing indium.

    PubMed

    Hattori, Masayuki; Tokizaki, Teruhiko; Matsumoto, Michihiko; Oda, Yutaka

    2010-01-01

    In this study, the corrosion resistance of Ag-Au-Cu-Pd system alloys consisting of 5 or 10 mass% indium was evaluated. Levels of element release and tarnish were determined and electrochemical measurements performed. Results were compared with those for commercial silver-palladium-gold alloy. In terms of electrochemical behavior, the transpassive potential of these experimental alloys was 168-248mV. Experimental alloys with 25 mass% Au showed similar corrosion resistance to control gold-silver-palladium alloy. Amount of released elements was 14-130microg/cm(2) at 7 days, which is in the allowable range for dental alloys. Addition of indium to Ag-Au-Cu-10mass%Pd system alloys was effective in increasing resistance to tarnish and alloys containing 10 mass% of indium showed a minimal decrease in L(*) values after immersion. These findings indicate that 25Au-37.5Ag-15Cu-10Pd-2Zn-10In-0.5Ir alloy is applicable in dental practice.

  1. Nanocrystalline Al-based alloys - lightweight materials with attractive mechanical properties

    NASA Astrophysics Data System (ADS)

    Latuch, J.; Cieslak, G.; Dimitrov, H.; Krasnowski, M.; Kulik, T.

    2009-01-01

    In this study, several ways of bulk nanocrystalline Al-based alloys' production by high-pressure compaction of powders were explored. The effect of chemical composition and compaction parameters on the structure, quality and mechanical properties of the bulk samples was studied. Bulk nanocrystalline Al-Mm-Ni-(Fe,Co) alloys were prepared by ball-milling of amorphous ribbons followed by consolidation. The maximum microhardness (540 HV0.1) was achieved for the samples compacted at 275 °C under 7.7 GPa (which resulted in an amorphous bulk) and nanocrystallised at 235 °C for 20 min. Another group of the produced materials were bulk nanocrystalline Al-Si-(Ni,Fe)-Mm alloys obtained by ball-milling of nanocrystalline ribbons and consolidation. The hardness of these samples achieved the value five times higher (350HV) than that of commercial 4xxx series Al alloys. Nanocrystalline Al-based alloys were also prepared by mechanical alloying followed by hot-pressing. In this group of materials, there were Al-Fe alloys containing 50-85 at.% of Al and ternary or quaternary Al-Fe-(Ti, Si, Ni, Mg, B) alloys. Microhardness of these alloys was in the range of 613 - 1235 HV0.2, depending on the composition.

  2. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings. Final report

    SciTech Connect

    Van Weele, S.

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  3. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings

    SciTech Connect

    Van Weele, S. )

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  4. Corrosion and in vitro biocompatibility properties of cryomilled-spark plasma sintered commercially pure titanium.

    PubMed

    Dheda, Shehreen S; Kim, Yoon Kyung; Melnyk, Christopher; Liu, Wendy; Mohamed, Farghalli A

    2013-05-01

    Ti alloys, such as Ti6Al4V, are currently used in biomedical and dental implant applications. Ti alloys are used because they are stronger than commercially pure (CP) Ti due to the presence of alloying elements. However, toxicity of alloying elements during long-term use of implants is of concern. Another means of increasing the strength of materials is grain size refinement. In this study, ultrafine-grained (UFG, ~250 nm to 1 μm) CP Ti was produced by cryomilling followed by spark plasma sintering (SPS). Electrochemical impedance spectroscopy (EIS) and cell culture experiments were performed to compare the corrosion and biocompatibility properties of coarse grained (CG) Ti and UFG Ti. It was found that UFG Ti exhibited corrosion resistance comparable to CG Ti in Ringers solution. In addition, UFG Ti exhibited a reduced inflammatory response and enhanced cell adhesion compared to CG Ti. Investigation of surface roughness provided an explanation for enhanced cell adhesion.

  5. Hot corrosion of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  6. Effect of Neutron Irradiation on Nanoclusters in MA957 Ferritic Alloys

    SciTech Connect

    Miller, Michael K; Hoelzer, David T

    2011-01-01

    The effects of neutron irradiation to a dose of 3 dpa at 600 C and creep for 38,555 h at 800 C on the microstructure of a commercial MA957 alloy were investigated by atom probe tomography. The size, number density and composition of the 2-nm-diameter Ti-, Y-, O-enriched nanoclusters were similar in the unirradiated, crept and neutron irradiated conditions indicating that the microstructure of this nanostructured ferritic alloy has remarkable tolerance to radiation damage.

  7. Assessment of Zr-Fe-V getter alloy for gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Prina, M.; Kulleck, J. G.; Bowman, R. C., Jr.

    2000-01-01

    A commercial Zr-V-Fe alloy (i.e., SAES Getters trade name alloy St-172) has been assessed as reversible hydrogen storage material for use in actuators of gas gap heat switches. Two prototype actuators containing the SAES St-172 material were built and operated for several thousand cycles to evaluate performance of the metal hydride system under conditions simulating heat switch operation.

  8. [The electrochemical behavior of TiTa30 and TiNb30 alloys for implantology].

    PubMed

    Hildebrand, H F; Ralison, A; Traisnel, M; Breme, J

    1997-11-01

    The electrochemical behavior in artificial saliva of TiNb30 and TiTa30 alloys were compared with that of commercial pure titanium. The anodic potential, the current density, the passivation potential and the galvanic corrosion vs. Au were determined. Both alloys have a similar behavior to that of pure titanium. Crevace corrosion, which is very weak in pure Ti, is completely inhibited by the addition of Nb or Ta.

  9. Options for commercial tokamaks

    SciTech Connect

    Dabiri, A.E.; Keeton, D.C.; Thomson, S.L.

    1986-07-01

    Systems studies have been performed at the Fusion Engineering Design Center (FEDC) to assess commercial tokamak options. One study investigates the economics of high-beta operation and determines an optimum operating range of 10 to 20% beta, with a corresponding neutron wall loading of 6 to 8 MW/m/sup 2/. A second study determines conditions under which small, low-power tokamaks can be economically combined into a 1200-MW(electric) multiplex power plant. The results of these studies have directed future efforts at the FEDC toward a high-beta, tokamak design using a modular maintenance configuration.

  10. Process economics and commercialization

    SciTech Connect

    Katzen, R.; Doncheck, J.

    1995-12-31

    This session has been organized to present new developments in biomass conversion that could improve process economics and lead toward commercialization of such novel technology. Papers in this session will cover such matters as design and testing of pilot facilities for new biomass conversion technology. The technical and economic evaluation approach will also be covered for traditional and unique reactors, as well as for overall installations for conversion of cellulosic wastes to fuels and chemicals. papers will cover not only the major current interest in ethanol, but also other products, such as acetic and lactic acids, which can be produced by bioconversion of biomass.

  11. Commercialization Assistance Program

    SciTech Connect

    Jenny C Servo, Ph D

    2008-02-15

    The Commercialization Assistance Program (CAP) is offered to Phase II awardees of the Department of Energy's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. The purpose of this program is to increase both the likelihood and speed of technology transition to Phase III of technologies which DOE has funded. This program has been offered to DOE SBIR firms since 1990 and has resulted in significant and well documented return on investment. This final report decribes the results of the CAP that was offered to participants during the last cycle.

  12. Management: Commercial Activities Program

    DTIC Science & Technology

    1997-10-01

    or agreements with commercial sources, state and local governments, and federal agencies outside the Department of Defense. This regu- lation...s t a n d o b t a i n H Q D A a p p r o v a l t h r o u g h MACOM before transferring contracted work to a MTOE unit . When the unit departs the...the Department of Labor . The contracting officer will request a wage determination from Department of Labor no earlier than 120 calen- dar days, and no

  13. Commercial television bladder dysfunction.

    PubMed

    Vande Walle, J; Theunis, M; Renson, C; Raes, A; Hoebeke, P

    1995-05-01

    Bladderdysfunction seems to have an increasing frequency in infancy, and especially in children without obvious congenital organic or functional bladderdysfunction. The disorder seems is related with changes in our behaviour, that are stimulated by familial and social pseudo-reasons. Commercial interests and marketing play a major role. This leads to wrong dry-training, an exaggerated hygienic education, prudisheness, wrong toilet-posture, lack of time to void, post-poning, wrong drink- and void-pattern, wrong food-pattern and increasing constipation. Prevention is necessary by an adapted reeducation of parents ans society.

  14. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  15. Effects of V Addition on Microstructure and Hardness of Fe-C-B-Ni-V Hardfacing Alloys Cast on Steel Substrates

    NASA Astrophysics Data System (ADS)

    Rovatti, L.; Lemke, J. N.; Emami, A.; Stejskal, O.; Vedani, M.

    2015-12-01

    Fe-based hardfacing alloys containing high volume fraction of hard phases are a suitable material to be deposited as wear resistant thick coatings. In the case of alloys containing high amount of interstitial alloying elements, a key factor affecting the performance is dilution with the substrate induced by the coating process. The present research was focused on the analysis of V-bearing Fe-based alloys after calibrated carbon and vanadium additions (in the range from 3 to 5 wt.%) to a commercial Fe-C-B-Ni hardfacing alloy. Vanadium carbides with a petal-like morphology were observed in the high-V hypereutectic alloys allowing to reach hardness values above 700 HV. The solidification range shifted to higher temperatures with increasing amount of vanadium addition and in the case of hypereutectic alloys, the gap remains close to that of the original alloy. In the last step of the research, the microstructural evolution after dilution was analyzed by casting the V-rich alloys on a steel substrate. The dilution, caused by the alloying element diffusion and the local melting of the substrate, modified the microstructure and the hardness for a relevant volume fraction of the hardfacing alloys. In particular, the drop of interstitial elements induced the transition from the hypereutectic to the hypoeutectic microstructure and the formation of near-spherical V-rich carbides. Even after dilution, the hardness of the new alloys remained higher than that measured in the original Fe-C-B-Ni alloy.

  16. Utilization of Copper Alloys for Marine Applications

    NASA Astrophysics Data System (ADS)

    Drach, Andrew

    copper alloys is investigated through a series of uniaxial tension tests on virgin and weathered (after one-year deployment in the ocean) specimens. The changes in mechanical properties are quantified in terms of differences in Young's modulus, Poisson's ratio, ultimate strength, and ultimate strain. The obtained stress-strain data is used for numerical modeling of the mechanical behavior of chain-link nets. The simulations are compared with the experimental data on stiffness and strength of the nets. The available information on seawater performance of copper alloys (corrosion, biofouling, mechanics) and copper alloy nets (hydrodynamics) is used to develop engineering procedures for marine aquaculture fish cage systems with copper alloy netting. The design, analysis, and fabrication procedures are illustrated on a commercial size gravity-type offshore fish cage deployed in the Pacific Ocean near Isla Italia (Patagonia, Chile). The funding for this work was provided by the International Copper Association. This work was also supported through two UNH Fellowships: CEPS UNH Graduate Fellowship to Outstanding PhD Program Applicants and Dissertation Year Fellowship.

  17. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.

    PubMed

    Tkachenko, Serhii; Datskevich, Oleg; Kulak, Leonid; Jacobson, Staffan; Engqvist, Håkan; Persson, Cecilia

    2014-11-01

    Titanium alloys are widely used in biomedical applications due to their higher biocompatibility in comparison to other metallic biomaterials. However, they commonly contain aluminum and vanadium, whose ions may be detrimental to the nervous system. Furthermore, they suffer from poor wear resistance, which limits their applications. The aim of this study was to evaluate the tribological performance of experimental Ti-1.25Si-5Zr, Ti-2.5Si-5Zr, Ti-6Si-5Zr and Ti-2.5Si-5Zr-0.2Pd alloys as compared to that of control Ti-6Al-4V, CoCr F75 and CoCr F799 alloys. Friction and wear tests were performed using a standard ball-on-disc rig in serum solution at ambient temperature with Si3N4-balls as counterparts. The alloys microstructure and hardness were investigated using optical microscopy, XRD, scanning electron microscopy (SEM) and Vickers indentation. The coefficients of friction of the experimental Ti-Si-Zr alloys were generally lower than the commercial ones with Ti-6Si-5Zr presenting the lowest value (approx. 0.1). Their wear rates were found to be 2-7 times lower than that of the commercial Ti-6Al-4V alloy, but still higher than those of the CoCr alloys. SEM analysis of worn surfaces showed that abrasion was the predominant wear mechanism for all studied materials. Wear and friction were influenced by the formation and stability of transfer layers, and while commercial Ti-6Al-4V as well as the experimental Ti-Si-Zr alloys demonstrated extensive material transfer to the ceramic counterparts, the CoCr alloys did not show such material transfer.

  18. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  19. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  20. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine.