Science.gov

Sample records for commercial ni-cr-mo alloys

  1. Environmentally Assisted Cracking of Commercial Ni-Cr-Mo Alloys - A Review

    SciTech Connect

    Rebak, R B

    2004-11-09

    Nickel-Chromium-Molybdenum alloys (Ni-Cr-Mo) are highly resistant to general corrosion, localized corrosion and environmentally assisted cracking (EAC). Cr acts as a beneficial element under oxidizing acidic conditions and Mo under reducing conditions. All three elements (Ni, Cr and Mo) act synergistically to provide resistance to EAC in environments such as hot concentrated chloride solutions. Ni-Cr-Mo alloys may suffer EAC in environments such as hot caustic solutions, hot wet hydrofluoric acid (HF) solutions and in super critical water oxidation (SCWO) applications. Not all the Ni-Cr-Mo alloys have the same susceptibility to cracking in the mentioned environments. Most of the available data regarding EAC is for the oldest Ni-Cr-Mo alloys such as N10276 and N06625.

  2. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    SciTech Connect

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

  3. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  4. Evaluation of high Ni-Cr-Mo alloys for the construction of sulfur dioxide scrubber plants

    NASA Astrophysics Data System (ADS)

    Rajendran, N.; Rajeswari, S.

    1996-02-01

    Corrosion in wet lime/limestone systems used for flue gas desulfurization in thermal power plants is of great concern. The frequent variations in acidity and in chloride and fluoride ion concentrations experienced by such systems pose a serious threat to the materials of construction. Currently used materials mostly type 316L stainless steel often fail to meet their life expectancy. The present study evaluates the performance of advanced Ni- Cr- Mo alloys 59 and C- 276 in a simulated sulfur dioxide scrubber environment. Accelerated tests showed that high Ni- Cr- Mo alloys have little tendency to leach metal ions such as chromium, nickel, and molybdenum at different impressed potentials. Scanning electron microscopy was used to examine the morphology of pitting attack.

  5. Localized Corrosion of a Neutron Absorbing Ni-Cr-Mo-Gd Alloy

    SciTech Connect

    R.E. Mizia; T. E. Lister; P. J. Pinhero; T. L. Trowbridge

    2005-04-01

    The National Spent Nuclear Fuel Program, located at the Idaho National Laboratory (INL), has developed a new nickel-chromium-molybdenum-gadolinium structural alloy for storage and long-term disposal of spent nuclear fuel (SNF). The new alloy will be used for SNF storage container inserts for nuclear criticality control. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section. This alloy must be resistant to localized corrosion when exposed to postulated Yucca Mountain in-package chemistries. The corrosion resistance properties of three experimental heats of this alloy are presented. The alloys performance are be compared to Alloy 22 and borated stainless steel. The results show that initially the new Ni-Cr-Mo-Gd alloy is less resistant to corrosion as compared to another Ni-Cr-Mo-Gd alloy (Alloy 22); but when the secondary phase that contains gadolinium (gadolinide) is dissolved, the alloy surface becomes passive. The focus of this work is to qualify these gadolinium containing materials for ASME code qualification and acceptance in the Yucca Mountain Repository.

  6. Electrochemical methods to detect susceptibility of Ni-Cr-Mo-W alloy 22 to intergranular corrosion

    NASA Astrophysics Data System (ADS)

    Gorhe, D. D.; Raja, K. S.; Namjoshi, S. A.; Radmilovic, Velimir; Tolly, Alfredo; Jones, D. A.

    2005-05-01

    Alloy 22 (UNS N06022), a Ni-Cr-Mo-W based alloy, is a candidate material for the outer wall of nuclear waste package (NWP) containers. Even though the alloy is highly stable at low temperatures, it could undergo microstructural changes during processing such as welding and stress relieving. Formation of topologically close-packed (TCP) phases such as μ, P, σ, etc. and Cr-rich carbides could make the material susceptible to localized corrosion. Hence, it is important to correlate the microstructural changes with the corrosion resistance of the alloy by nondestructive and rapid electrochemical tests. In this investigation, different electrochemical test solutions were used to quantify the microstructural changes associated with aging and welding of the wrought alloy 22. The results of double-loop (DL) electrochemical potentiodynamic reactivation (EPR) tests in 1 M H2SO4+0.5 M NaCl+0.01 M KSCN solution indicated Cr depletion during initial stages of aging of wrought alloy 22. Results of EPR tests in 2 M HCl+0.01 M KSCN solution at 60 °C correlated well with the Mo depletion that occurred near TCP phases formed during aging of both weld and wrought alloy 22 materials. The EPR test results were compared with standard chemical weight loss measurements specified by ASTM standard G-28 methods A and B.

  7. The Influence of Composition upon Surface Degradation and Stress Corrosion Cracking of the Ni-Cr-Mo Alloys in Wet Hydrofluoric Acid

    SciTech Connect

    Crook, P; Meck, N S; Rebak, R B

    2006-12-04

    At concentrations below 60%, wet hydrofluoric acid (HF) is extremely corrosive to steels, stainless steels and reactive metals, such as titanium, zirconium, and tantalum. In fact, only a few metallic materials will withstand wet HF at temperatures above ambient. Among these are the nickel-copper (Ni-Cu) and nickel-chromium-molybdenum (Ni-Cr-Mo) alloys. Previous work has shown that, even with these materials, there are complicating factors. For example, under certain conditions, internal attack and stress corrosion cracking (SCC) are possible with the Ni-Cr-Mo alloys, and the Ni-Cu materials can suffer intergranular attack when exposed to wet HF vapors. The purpose of this work was to study further the response of the Ni-Cr-Mo alloys to HF, in particular their external corrosion rates, susceptibility to internal attack and susceptibility to HF-induced SCC, as a function of alloy composition. As a side experiment, one of the alloys was tested in two microstructural conditions, i.e. solution annealed (the usual condition for materials of this type) and long-range ordered (this being a means of strengthening the alloy in question). The study of external corrosion rates over wide ranges of concentration and temperature revealed a strong beneficial influence of molybdenum content. However, tungsten, which is used as a partial replacement for molybdenum in some Ni-Cr-Mo alloys, appears to render the alloys more prone to internal attack. With regard to HF-induced SCC of the Ni-Cr-Mo alloys, this study suggests that only certain alloys (i.e., those containing tungsten) exhibit classical SCC. It was also discovered that high external corrosion rates inhibit HF-induced SCC, presumably due to rapid progression of the external attack front. With regard to the effects of long-range ordering, these were only evident at the highest test temperatures, where the ordered structure exhibited much higher external corrosion rates than the annealed structure.

  8. Environmentally assisted cracking of 3.5NiCrMoV low alloy steel under cyclic straining

    SciTech Connect

    Kondo, Yoshiyuki; Bodai, Masaru; Takei, Mao; Sugita, Yuji; Inagaki, Hironobu

    1997-12-01

    Environmentally assisted cracking of 3.5NiCrMoV low alloy steel under cyclic straining was investigated in water environments at 60 C. Effects of strain range, strain rate, strain hold tie and impurities in the water on the crack initiation life were investigated. The effects of long strain hold time up to 100 hours were studied and found to be especially significant. Lower strain rate, longer strain hold time and higher electric conductivity resulted in shorter crack initiation life. The corrosion current from the strained metal was measured in a simulated electrochemical system to clarify the root cause of the life reduction. Test results showed that higher strain range, lower strain rate, longer strain hold time and higher electric conductivity caused increased charge transfer, which caused shorter crack initiation life. A prediction model for the crack initiation life was proposed based on the charge transfer.

  9. Examination of Corrosion Products and the Alloy Surface After Crevice Corrosion of a Ni-Cr-Mo- Alloy

    SciTech Connect

    X. Shan; J.H. Payer

    2006-06-09

    The objective of this study is to investigate the composition of corrosion products and the metal surface within a crevice after localized corrosion. The analysis provides insight into the propagation, stifling and arrest processes for crevice corrosion and is part of a program to analyze the evolution of localized corrosion damage over long periods of time, i.e. 10,000 years and longer. The approach is to force the initiation of crevice corrosion by applying anodic polarization to a multiple crevice assembly (MCA). Results are reported here for alloy C-22, a Ni-Cr-Mo alloy, exposed to a high temperature, concentrated chloride solution. Controlled crevice corrosion tests were performed on C-22 under highly aggressive, accelerated condition, i.e. 4M NaCl, 100 C and anodic polarization to -0.15V-SCE. The crevice contacts were by either a polymer tape (PTFE) compressed by a ceramic former or by a polymer (PTFE) crevice former. Figure 1 shows the polarization current during a crevice corrosion test. After an incubation period, several initiation-stifle-arrest events were indicated. The low current at the end of the test indicated that the metal surface had repassivated.

  10. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    SciTech Connect

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  11. Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages

    SciTech Connect

    Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

    2003-09-11

    The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

  12. Modeling of Crevice Corrosion Stability of a NiCrMo Alloy and Stainless Steel

    SciTech Connect

    F.J. Presuel-Moreno; F. Bocher; J.R. Scully; R.G. Kelly

    2006-05-19

    Damage of structural significance from crevice corrosion of corrosion resistant alloys requires that at least a portion of the creviced area remain active over a sufficiently long period. Stifling results shen the aggressive chemistry required inside the crevice to keep the material depassivated, i.e., actively corroding, cannot be maintained. This loss of critical chemistry occurs when the rate of mass transport out of the crevice exceeds the rate of dissolution and subsequent hydrolysis of metal ions inside the crevice. For the treatment considered here, the mass transport conditions are constant for a given geometry and potential. What then controls the stability of the internal chemistry is the interaction between the electrochemical kinetics at the interface and the crevice chemistry composition. This work focuses on the parameters that control the stability of crevice corrosion by modeling the evolution of the chemical and electrochemical conditions within a crevice open only at one end (e.g. the mouth) in which the entire crevice is initially filled with the Critical Chemistry Solution (CCS) or filled with chemistries slightly less or more aggressive than the CCS. The crevice mouth is in contact with a weak acid solution (pH 3) that provides the boundary conditions at the crevice mouth. The potential at the mouth was held constant at +0.1 V{sub sce} in most instances with selected cases held at 0.0 V{sub sce}. The material selected was Ni-22Cr-6Mo alloy. The electrochemical kinetics at the pH values of interest have been recently characterized via potentiodynamic polarization. Figure 1 shows the polarization curves for Ni-22Cr-6Mo samples tested at room temperature in various HCl solutions. These data were used in all calculations. That is as the pH changed, a new polarization curve was applied to the position in the crevice. E, pH was calculated at each position and from this data, current at each position was determined. The effects of the crevice gap and

  13. Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels

    NASA Astrophysics Data System (ADS)

    Bodnar, R. L.; Ohhashi, T.; Jaffee, R. I.

    1989-08-01

    Three high-temperature bainitic alloy steels were evaluated in the laboratory to determine the effects of Mn, Si, and impurities ( i.e., S, P, Sn, As, and Sb) on microstructure and mechanical properties. The alloy steels were 3.5NiCrMoV and CrMoV, which are used for turbine rotors, and 2.25Cr-1Mo, which is used in pressure vessel applications. The important effects of Mn, Si, and impurities, which should control the design of these high-temperature bainitic steels, are presented. Key results are used to illustrate the influence of these variables on cleanliness, overheating, austenitizing, hardenability, tempering, ductility, toughness, temper embrittlement, creep rupture, and low-cycle fatigue. Low levels of Mn, Si, and impurities not only result in improved temper embrittlement resistance in these steels but also lead to an improvement in creep rupture properties ( i.e., improved strength and ductility). These results have produced some general guidelines for the design of high-temperature bainitic steels. Examples illustrating the implementation of the results and the effectiveness of the design guidelines are provided. Largely based on the benefits shown by this work, a high-purity 3.5NiCrMoV steel, which is essentially free of Mn, Si, and impurities, has been developed and is already being used commercially.

  14. Coupled Multi-Electrode Investigation of Crevice Corrosion of 316 Stainless Steel and NiCrMo Alloy 625

    SciTech Connect

    F. Bocher; F.J. Presuel-Moreno; J.R. Scully

    2006-06-08

    Crevice corrosion is currently mostly studied using either one of two techniques depending on the information desired. The first method involves two multicrevice formers or washers fastened on both sides of a sample plate. This technique provides exposure information regarding the severity of crevice corrosion (depth, position, frequency of attack) but delivers little or no electrochemical information. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in a model crevice solution or under a crevice former in aggressive solution where crevice corrosion may initiate and propagate and global current is recorded. However, crevice corrosion initiation and propagation behavior is highly dependent on exact position in the crevice over time. The distance from the crevice mouth will affect the solution composition, the pH, the ohmic potential drop and the true potential in the crevice. Coupled multi-electrode arrays (MEA) were used to study crevice corrosion in order to take in account spatial and temporal evolution of electrochemistry simultaneously. Scaling laws were used to rescale the crevice geometry while keeping the corrosion electrochemical properties equivalent to that of a natural crevice at a smaller length scale. one of the advantages was to be able to use commercial alloys available as wires electrode and, in the case of MEA, to spread the crevice corrosion over many individual electrodes so each one of them will have a near homogeneous electrochemical behavior. The initial step was to obtain anodic polarization curves for the relevant material in acid chloride solution which simulated the crevice electrolyte. using the software Crevicer{trademark}, the potential distribution inside the crevice as a function of the distance from the crevice mouth was determined for various crevice gaps and applied potentials, assuming constant chemistry throughout the crevice. The crevice corrosion initiation location x{sub crit} is

  15. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang

    2012-07-01

    It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.

  16. Metallographic etching and microstructure characterization of NiCrMoV rotor steels for nuclear power

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Lu, Feng-gui; Liu, Xia; Gao, Yu-lai

    2013-12-01

    The grain size of prior austenite has a distinct influence on the microstructure and final mechanical properties of steels. Thus, it is significant to clearly reveal the grain boundaries and therefore to precisely characterize the grain size of prior austenite. For NiCrMoV rotor steels quenched and tempered at high temperature, it is really difficult to display the grain boundaries of prior austenite clearly, which limits a further study on the correlation between the properties and the corresponding microstructure. In this paper, an effective etchant was put forward and further optimized. Experimental results indicated that this agent was effective to show the details of grain boundaries, which help analyze fatigue crack details along the propagation path. The optimized corrosion agent is successful to observe the microstructure characteristics and expected to help analyze the effect of microstructure for a further study on the mechanical properties of NiCrMoV rotor steels used in the field of nuclear power.

  17. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    SciTech Connect

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  18. Effects of phosphorus and molybdenum on the caustic stress corrosion cracking of NiCrMoV steels

    SciTech Connect

    Bandyopadhyay, N.; Briant, C.L.

    1984-01-01

    This paper presents a study of the effects of phosphorus and molybdenum on caustic stress corrosion cracking of 3.5NiCrMoV rotor steels. The results show that phosphorus segregation to the grain boundaries substantially lowers the resistance of the steel to caustic cracking. Removal of molybdenum provides some improvement in the resistance to caustic cracking.

  19. Stress corrosion cracking behavior of 3.5NiCrMoV steel in carbonated pure water

    SciTech Connect

    Tsuchiyama, Tomohiro; Matsumoto, Osamu; Nakayama, Takenori |

    1998-12-31

    SCC susceptibility of 3.5NiCrMoV steel in a carbonated pure water at 157 C decreased with the decrease of P content in steel. SCC susceptibility also decreased by the addition of Nb. It was also confirmed that the SCC cracks were primarily intergranular. An Auger electron spectroscopy (AES) analysis revealed that P segregation to grain boundary might play an essential role in accelerating SCC susceptibility, and Nb could suppress the P segregation to grain boundary. The role of Nb in raising resistance to SCC is thought to be attributed to the decreasing P segregation to grain boundary, resulting from increasing segregation interface due to fine NbC formation in steel. The measurement of anodic current decay in a carbonated solution with and without HPO{sub 4}{sup 2{minus}} ion showed that HPO{sub 4}{sup 2{minus}} ion accelerates the repassivation of a fresh surface, indicating that P segregation to grain boundary might be mainly attributed to the crack-sharpening effect due to repassivation by the formation of phosphate species at the crack tip.

  20. ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL

    SciTech Connect

    Ronald E. Mizia

    2011-10-01

    The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

  1. The Effect of Dilution on Microsegregation in AWS ER NiCrMo-14 Alloy Welding Claddings

    NASA Astrophysics Data System (ADS)

    Miná, Émerson Mendonça; da Silva, Yuri Cruz; Dille, Jean; Silva, Cleiton Carvalho

    2016-12-01

    Dilution and microsegregation are phenomena inherent to claddings, which, in turn, directly affect their main properties. This study evaluated microsegregation in the fusion zone with different dilution levels. The overlays were welded by the TIG cold wire feed process. Dilution was calculated from the geometric characteristics of the claddings and from the conservation of mass equation using chemical composition measurements. Microsegregation was calculated using energy dispersive X-ray spectroscopy measurements of the dendrites and the chemical composition of the fusion zone. The dilution of the claddings was increased by reducing the wire feed rate. Fe showed potential to be incorporated into the solid phase ( k > 1), and this increased with the increase of dilution. Mo, in turn, was segregated into the liquid phase ( k < 1) and also increased with the increase of dilution. However, Cr and W showed a slight decrease in their partition coefficients ( k) with the increase of dilution.

  2. The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating part 2: Erosion-corrosion behavior

    NASA Astrophysics Data System (ADS)

    Shrestha, S.; Hodgkiess, T.; Neville, A.

    2001-12-01

    In this paper, a study of the erosion-corrosion characteristics of a Ni-Cr-Mo-Si-B coating applied by the high-velocity oxy-fuel (HVOF) process on to an austenitic stainless steel (UNS S31603) substrate are reported. The coatings were studied in the as-sprayed condition, after vacuum sealing with polymer impregnation and after vacuum furnace fusion. The erosion-corrosion characteristics were assessed in an impinging liquid jet of 3.5% NaCl solution at 18 °C at a velocity of 17 m/s at normal incidence in two conditions: (1) free from added solids and (2) containing 800 ppm silica sand. The methodology employed electrochemical control and monitoring to facilitate the identification of the separate and interrelated erosion and corrosion contributions to the erosion-corrosion process. The rates of erosion-corrosion damage were drastically accelerated in the presence of the suspended solids. The application of cathodic protection significantly reduced the deterioration process. The study showed the effect of sealing with polymer impregnation did not significantly alter the erosion-corrosion behavior of the sprayed coating. However, there was a significant improvement in erosion-corrosion durability afforded by the postfusion process. The mechanisms by which the improved performance of vacuum-fused coatings is achieved are discussed.

  3. High-resolution diffraction for residual stress determination in the NiCrMoV wheel of an axial compressor for a heavy-duty gas turbine

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Török, G.; Ceschini, G. F.; Tognarelli, L.; Füzesy, I.; Rosta, L.

    2004-07-01

    The wheel of an axial compressor for a heavy-duty gas turbine has been investigated for residual stresses (RS) evaluation of the teeth-section where SANS measurements have previously been performed. Such a component can contain internal RS, either due to the manufacturing process, or to the operating cycles fatigue. The constitutive material is a NiCrMoV steel to ASTM A 471 (type 2) norms (equivalent to B50A420B10); this material is usually adopted in the manufacturing of forged components for gas turbines. Internal radial and hoop RS have been determined, whose values are under the limit of 200kPa. Hoop RS, in general, resulted in higher value than the radial ones. The present experiment represents a particularly important step in the RS determination for gas turbine components, since the measurements reveal that the fatigue of the wheel is also a lifetime limiting factor although, in the same technological field, the available data in the actual neutron techniques literature mainly concern turbine buckets.

  4. APFIM characterization of 15Kh2MFA Cr-Mo-V and 15Kh2NMFA Ni-Cr-Mo-V type steels

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Jayaram, R.; Othen, P. J.; Brauer, G.

    1994-03-01

    A microstructural characterization of 15Kh2MFA Cr-Mo-V and 15Kh2NMFA Ni-Cr-Mo-V type steels that are used in the pressure vessels of Russian VVER 440 and VVER 1000 nuclear reactors, respectively, has been performed with the use of the techniques of atom-probe field-ion microscopy (APFIM) and transmission electron microscopy. The microstructure of these materials was found to be tempered martensite and bainite. A high number density of coarse (≈ 50 to ≈ 500 nm) blocky M 7C 3 carbides and some inclusions were observed. In addition to these coarse carbides, some finer (≈ 10 nm diameter) approximately spherical MC carbides were also observed in the VVER 440 steel. Field-ion microscopy has revealed that the lath boundaries in both unirradiated VVER 440 and VVER 1000 reactor steels are decorated with an ultrathin semicontinuous film of molybdenum-carbonitride precipitates. Atom-probe analysis has revealed a high enrichment of phosphorus at the lath boundaries.

  5. Microhardness of Ni-Cr alloys under different casting conditions.

    PubMed

    Bauer, José Roberto de Oliveira; Loguercio, Alessandro Dourado; Reis, Alessandra; Rodrigues Filho, Leonardo Eloy

    2006-01-01

    This study evaluated the microhardness of Ni-Cr alloys used in fixed prosthodontics after casting under different conditions. The casting conditions were: (1-flame/air torch) flame made of a gas/oxygen mixture and centrifugal casting machine in a non-controlled casting environment; (2-induction/argon) electromagnetic induction in an environment controlled with argon; (3-induction/vacuum) electromagnetic induction in a vacuum environment; (4-induction/air) electromagnetic induction in a non-controlled casting environment. The 3 alloys used were Ni-Cr-Mo-Ti, Ni-Cr-Mo-Be, and Ni-Cr-Mo-Nb. Four castings with 5 cylindrical, 15 mm-long specimens (diameter: 1.6 mm) in each casting ring were prepared. After casting, the specimens were embedded in resin and polished for Vickers microhardness (VH) measurements in a Shimadzu HMV-2 (1,000 g for 10 s). A total of 5 indentations were done for each ring, one in each specimen. The data was subjected to two-way ANOVA and Tukey's multiple comparison tests (alpha = 0.05). The VH values of Ni-Cr-Mo-Ti (422 +/- 7.8) were statistically higher (p < 0.05) than those of Ni-Cr-Mo-Nb (415 +/- 7.6). The lowest VH values were found for Ni-Cr-Mo-Be (359 +/- 10.7). The VH values obtained in the conditions induction/argon and induction/vacuum were similar (p > 0.05) and lower than the values obtained in the conditions induction/air and flame/air torch (p < 0.05). The VH values in the conditions induction/air and flame/air were similar (p > 0.05). The microhardness of the alloys is influenced by their composition and casting method. The hardness of the Ni-Cr alloys was higher when they were cast with the induction/air and flame/air torch methods.

  6. The effects of double austenitization on the mechanical properties of a 0. 34C containing low-alloy Ni-Cr-Mo-V steel

    SciTech Connect

    Chang, E.; Chang, C.Y. . Dept. of Materials Science and Engineering); Liu, C.D. )

    1994-03-01

    This article considers five different microstructures of a tempered martensitic 0.34C, 3Ni-1.3Cr-0.4Mo-0.1V steel through various heat treatments, including double austenitization (DA) treatments, and how the impact toughnesses are influenced by microstructure. Of the four mechanisms considered to explain the beneficial effect of DA treatment, the roles of retained austenite, grain-boundary embrittlement by impurity segregation, and matrix flow stress are discounted. The 50 pct fracture appearance transition temperature (FATT) of this steel is found to be dependent on both the grain size and the carbide dissolution. The conventionally treated steel contains mainly platelike M[sub 3]C carbides. The DA treatment helps to dissolve VC carbides and coarsen and spheroidize M[sub 3]C carbides in favor of the precipitation of short rodlike M7C3 carbides with a lower aspect ratio. The improvement of impact toughness (upper shelf energy, ductile-to-brittle transition temperature (DBTT), and lower shelf energy) by DA treatment, explained in detail, is attributed to a change of this material's tensile and work-hardening behavior affected by a variation of carbide morphology.

  7. Nickel-based Gadolinium Alloy for Neutron Adsorption Application in Ram Packages

    SciTech Connect

    Gregg Wachs; James Sterbentz; William Hurt; P. E. McConnell; C. V. Robino; F. Tovesson; T. S. Hill

    2007-10-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy and chromium-nickel (Cr-Ni) stainless steel, modified by the addition of boron. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the materials at specific gadolinium and boron dopant levels. The Ni-Cr-Mo-Gd alloy is envisioned to be deployed for criticality control of highly enriched U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). For these transmission experiments, test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy and 1.16 wt% boron in stainless steel. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using total neutron cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium and boron elements and in addition, verified the measured elemental composition of the Ni-Cr-Mo-Gd alloy and borated stainless steel test samples. The good agreement also indirectly confirmed that the size and distribution of the gadolinium in both the hot-top (as-cast) and Ni-Cr-Mo-Gd converted to plate was not a discriminator related to neutron absorption. Moreover, the Evaluated Nuclear Data File (ENDF VII) total neutron cross section data were accurate.

  8. Effect of chromium additions on the mechanical and physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I

    NASA Astrophysics Data System (ADS)

    Machmeier, P.; Matuszewski, T.; Jones, R.; Ayer, R.

    1997-06-01

    The effect of chromium additions to an Fe-14Co-10Ni-0.1Mo-0.16C (AF1410 based) secondary hardening steel was evaluated by mechanical and physical properties and by microstructural examination. This unique behavior was extended to encompass a large range of aging temperatures and times that may be encountered during commercial thermal treatment and/or welding. In the aging range of 482 to 550 °C, an increase in chromium from 2 to 3% in the AF1410 based steel resulted in a substantial strength decrease concomitant with an increase in toughness. This behavior is related to a peak hardening shift, early M2C carbide coarsening, and an increase in reverted austenite for the 1 wt% Cr increase. The increased aging kinetics resulting from the 3Cr steel caused a faster dissolution of Fe3C and rapid changes in chromium partitioning in the (Mo,Cr)2C carbide resulting in a coherency loss with a corresponding decrease in lattice parameter. The kinetics of the secondary hardening reaction, for the two steels, was determined by resistivity data for changes in aging parameters (time/temperature).

  9. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    SciTech Connect

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface. The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.

  10. Commercial casting of nickel aluminide alloys

    SciTech Connect

    Orth, J.E.; Sikka, V.K.

    1995-11-01

    Commercial development of nickel aluminides has been limited in the past by a lack of technological know-how for melting and casting these alloys. However, the Exo-Melt method, a patented process previously described in AM and P (June 1995), has recently been used to successfully melt and pour commercial-sized heats of this new class of engineering materials. As of August 1995, more than 3,400 kg (7,500 lb) of nickel aluminide alloys have been successfully melted using the Exo-Melt process in an induction furnace under argon cover. This work has been performed by United Defense LP, which is the sole foundry licensed to melt and pour nickel aluminide-based alloys, in conjunction with Oak Ridge National Laboratory. This article provides a close look at the commercialization of the Exo-Melt process at United Defense LP, and at the nickel aluminide-based alloys--their physical and mechanical properties, commercial applications,and some comparisons with traditional heat-resistant alloys.

  11. The effect of alloy composition on the localized corrosion behavior of nickel-chromium-molybdenum alloys

    NASA Astrophysics Data System (ADS)

    Wong, Fariaty

    Ni-Cr-Mo alloys are one of the most versatile Ni-based alloys because they resist corrosion in a variety of environments. This versatility is due to the combination of Cr and Mo additions to the alloy. These alloying elements complement each other in producing a highly corrosion resistant alloy. The concentration of the elements in the alloy establishes the corrosion behavior of these alloys. In this study, Ni-Cr-Mo alloys with varying composition were studied using electrochemical methods. The dependency of pitting corrosion on the alloy chemistry was captured in empirical models that roughly rank the pitting susceptibility of the Ni-Cr-Mo alloys studied. The same type of model was also constructed for capturing the effect of alloy composition on the repassivation potential. It was found that these models were specific in terms of alloying element effects on the type of environments exposed to the alloys particularly, pH and temperature. The addition of chromium was shown to contribute to the higher pitting potential on the Ni-Cr-Mo alloys in neural chloride environment while molybdenum was dominant in acidified chloride solutions. In regards to the repassivation potential, both chromium and molybdenum affect the repassivation potential more or less evenly in neutral pH solutions. Under low pH high temperature conditions, molybdenum content has a greater effect on the repassivation potential value than chromium. Stabilization of localized corrosion is increasingly difficult as alloying element content increases. However, metastable pitting occurs in most alloys and the metastable pitting behavior of several Ni-Cr-Mo alloys was studied through potentiostatic analysis. Higher chromium and molybdenum contents decreased the metastable pitting incidence; although, the effect of Mo content was observed to be more dominant. Molybdenum additions were found to suppress the growth of the metastable pits. The growth rate of the fastest growing pits was also reduced by

  12. The effect of mucine, IgA, urea, and lysozyme on the corrosion behavior of various non-precious dental alloys and pure titanium in artificial saliva.

    PubMed

    Bilhan, H; Bilgin, T; Cakir, A F; Yuksel, B; Von Fraunhofer, J A

    2007-11-01

    The corrosion of dental alloys has biological, functional, and aesthetic consequences. Various studies have shown that protein solutions can inhibit the corrosion of alloys. This study is planned to determine the relationship of organic constituents of saliva and the corrosion of dental alloys. The organic constituents are IgA, mucine, urea, and lysozyme which are encountered in the highest amounts in saliva and the dental materials are titanium (Ti), Co-Cr-Mo and Ni-Cr-Mo alloys, and dental amalgam, the most often used metallic components in dentistry. In particular, the interactions between the commonest salivary proteins, IgA, mucine, urea and lysozyme, and Ti, Co-Cr-Mo, Ni-Cr-Mo and dental amalgam were investigated. Each alloy was evaluated by cyclic polarization in each medium. The general anodic and cathodic behavior during forward and reverse cycles, the corrosion and passivation current densities (muA/cm2 ), and the corrosion and the pitting potentials (mV) were determined. The results have shown that Ni-Cr-Mo and dental amalgam alloys are highly susceptible to corrosion in all the investigated media. The Co-Cr-Mo alloy has shown high passive current densities in the solution of mucine and lysozyme in artificial saliva. Titanium instead, has shown a high resistance to corrosion and a stable passive behavior in all media, especially in a solution of mucine and IgA in synthetic saliva. Mucine and IgA, as well as urea and lysozyme, appeared to enhance the formation of a passive film layer on the Ti metal surface, thus inhibiting the corrosion. Based on the study findings, and especially considering the problem of nickel allergy and toxicity of mercury released from dental amalgam, the use of Co-Cr-Mo alloys and Ti to Ni-Cr-Mo alloys is recommended and alternatives to dental amalgam should be sought for patients with impaired salivary flow.

  13. Surface Modification of Oilfield Alloys by Ultrasonic Impact Peening: UNS N07718, N07716, G41400, and S17400

    NASA Astrophysics Data System (ADS)

    Singh, Virendra; Marya, Manuel

    2016-01-01

    Ultrasonic impact peening (UIP) is a severe plastic deformation process to induce localized surface hardening combined with compressive residual stresses which therefore extends the useful life of mechanical parts. In this investigation, UIP has been applied to four widespread alloys in use in the oilfields. These include two premium NiCrMo alloys, UNS N07718 (718) and UNS N07716 (625 Plus®), both characterized by satisfactory oilfield performance but lacking hardness and abrasive wear resistance, and two relatively low-cost alloys, UNS G41400 (4140) and UNS S17400 (17-4PH), both limited by their corrosion fatigue. To promote comparisons and determine important alloy parameters for successful UIP, all four alloys were carefully selected so that their respective yield strengths were within relative proximity (~780 to ~910 MPa), and then ultrasonically impact peened under identical conditions. Among major findings from microstructural examinations, micro-hardness indentations, and residual stress measurements, surface topological changes (roughness), alloy microstructural evolution (depth and extent of strain hardening, including mechanical twinning in the NiCrMo alloys), and compressive residual stresses were found to be well correlated. Among all four alloys, the NiCrMo alloys, in particular UNS N07716 was found to be best suited for UIP. This is explained by its FCC austenitic microstructure, relatively low stacking-fault energy (prone to mechanical twinning), and in practical terms high yield strength and high tensile-to-yield strength ratio, both related to its excellent plastic flow behavior under ultrasonic rates of plastic deformation.

  14. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    Rebak, R B; Payer, J H

    2006-01-10

    Alloy 22 (N06022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nanometers per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  15. Passive Corrosion Behavior of Alloy 22

    SciTech Connect

    R.B. Rebak; J.H. Payer

    2006-01-20

    Alloy 22 (NO6022) was designed to stand the most aggressive industrial applications, including both reducing and oxidizing acids. Even in the most aggressive environments, if the temperature is lower than 150 F (66 C) Alloy 22 would remain in the passive state having particularly low corrosion rates. In multi-ionic solutions that may simulate the behavior of concentrated ground water, even at near boiling temperatures, the corrosion rate of Alloy 22 is only a few nano-meters per year because the alloy is in the complete passive state. The corrosion rate of passive Alloy 22 decreases as the time increases. Immersion corrosion testing also show that the newer generation of Ni-Cr-Mo alloys may offer a better corrosion resistance than Alloy 22 only in some highly aggressive conditions such as in hot acids.

  16. Survey of degradation modes of four nickel-chromium-molybdenum alloys

    SciTech Connect

    Gdowski, G.E.

    1991-03-01

    This report examines the degradation modes of four Ni-Cr-Mo alloys under conditions relevant to the Yucca Mountain Site Characterization Project (YMP). The materials considered are Alloys C-276, C-4, C-22, and 625 because they have desirable characteristics for the conceptual design (CD) of the high-level radioactive-waste containers presented in the YMP Site Characterization Plan (SCP). The types of degradation covered in this report are general corrosion; localized corrosion, including pitting and crevice corrosion; stress corrosion cracking in chloride environments; hydrogen embrittlement (HE); and undesirable phase transformations due to a lack of phase stability. Topics not specifically addressed are welding concerns and microbiological corrosion. The four Ni-Cr-Mo alloys have excellent corrosion resistance in chloride environments such as seawater as well as in more aggressive environments. They have significantly better corrosion resistance than the six materials considered for the CD waste container in the YMP SCP. (Those six materials are Types 304L and 3161L stainless steels, Alloy 825, unalloyed copper, Cu(70)-Ni(30), and 7% aluminum bronze.) In seawater, the Ni-Cr-Mo alloys have negligible general corrosion rates and show little evidence of localized corrosion. The four base materials of these alloys are expected to have nearly indistinguishable corrosion resistance in the YMP environments. The strength requirements of the SCP-CD waste container are met by these materials in the annealed condition; in this condition, they are highly resistant to HE. Historically, HE has been noted when these materials have been strengthened (cold-worked) and used in sour gas (H{sub 2}S and CO{sub 2}) well service -- conditions that are not expected for the YMP. Metallurgical phase stability may be a concern under conditions favoring (1) the formation of intermetallics and carbides, and (2) microstructural ordering.

  17. Superplastic behavior in a commercial 5083 aluminum alloy

    SciTech Connect

    Vetrano, J.S.; Lavender, C.A.; Smith, M.T.; Bruemmer, S.M. ); Hamilton, C.H. . Dept. of Mechanical and Materials Engineering)

    1994-03-01

    When considering the forming and post-forming properties required of a superplastic material, attractive candidates are commercial Al-Mg-Mn weldable alloys such as AA5083. There have been several investigations of hot deformation of 5083-type alloys in the literature. Only two studies evaluated commercial-purity 5083 and they achieved tensile elongations of 150% and 200%. Alloy modification has produced improved behavior in three 5083-type alloys developed specifically for SPF. Two were deemed high-purity 5083 (low Fe and Si) and achieved elongations of 450% and 630%. Engineering strains up to 700% were measured by Watanabe et al. in a 5083-based alloy with the addition of 0.6% Cu as a grain refiner. These results suggest that alloy modifications such as reduced Fe and Si contents or Cu additions may be required to improve superplastic response. Unfortunately, specific SPF-grade 5083 alloys are substantially more expensive than the commercial grade, and the addition of Cu decreases the corrosion resistance of the base material. The purpose of this work is to examine the effect of prior degrees of cold work on the SPF behavior of a standard-grade 5083 alloy. Superplastic behavior of this material at 510[degree]C is assessed and compared to published results for the SPF-grade alloys.

  18. CHARACTERIZATION OF AN ADVANCED GADOLINIUM NEUTRON ABSORBER ALLOY BY MEANS OF NEUTRON TRANSMISSION

    SciTech Connect

    Gregg W. Wachs

    2007-09-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the alloy at specific gadolinium dopant levels. The new alloy is to be deployed for criticality control of highly enriched DOE SNF. For the transmission experiments, alloy test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using only radiative capture cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium poison and in addition, verified the measured elemental composition of the alloy test samples. The good agreement also indirectly confirmed that the gadolinium was dispersed fairly uniformly in the alloy and the ENDF VII radiative capture cross section data were accurate.

  19. Swelling of several commercial alloys following high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Powell, R. W.; Peterson, D. T.; Zimmerschied, M. K.; Bates, J. F.

    Swelling values have been determined for a set of commercial alloys irradiated to a peak fluence of 1.8 × 10 23 n/cm 2 (E >0.1 MeV) over the temperature range of 400 to 650°C. The alloys studied fall into three classes: the ferritic alloys AISI 430F, AISI 416, EM-12, H-11 and 2 {1}/{4}Cr-1Mo; the superalloys Inconel 718 and Inconel X-750; and the refractory alloys TZM and Nb-1Zr. All of these alloys display swelling resistance far superior to cold worked AISI 316. Of the three alloy classes examined the swelling resistance of the ferritics is the least sensitive to composition.

  20. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    SciTech Connect

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  1. Development of Commercial Applications of a FAPY Alloy

    SciTech Connect

    Sikka, VK

    2001-08-24

    The Fe-16 at. (8.5 wt) % Al alloy, known as FAPY, has been identified as a superior material for heating element applications. However, while the 15-lb heats melted at the Oak Ridge National Laboratory (ORNL) could be processed into wire, the large heat melted at Hoskins Manufacturing Company (Hoskins) could not be processed under commercial processing conditions. The primary objective of the Cooperative Research and Development Agreement (CRADA) was to demonstrate that wire of the FAPY alloy could be produced under commercial conditions from air-induction-melted (AIM) heats. The specific aspects of this CRADA included: (1) Melting 15-lb heats by AIM or vacuum-induction melting (VIM) at ORNL. (2) Development of detailed processing steps including warm drawing and annealing temperature and time during cold-drawing steps. (3) Melting of 1400-lb heats at Hoskins by the Exo-Melt{trademark} process and their chemical analysis and microstructural characterization. (4) Development of tensile properties of sections of ingots from the large heats in the ascast, hot-worked, and hot- and cold-worked conditions. (5) Microstructural characterization of cast and wrought structures and the fractured specimens. (6) Successful demonstration of processing of AIM heats at Hoskins to heating element wire. The aspects of this CRADA listed above have demonstrated that the FAPY alloy of the desired composition can be commercially produced by AIM by the use of the Exo-Melt{trademark} process. Furthermore, it also demonstrated that the wire processing steps developed for 15-lb heats at ORNL can be successfully applied to the production of wire from the large AIM heats.

  2. Technological features of metal-ceramic prosthesis frameworks manufactured from domestic alloys of precious and base metals.

    PubMed

    Parunov, V A; Yurkovets, P V; Lebedenko, I Yu

    2016-01-01

    The aim of the study was to examine changes in physical and mechanical properties of dental alloys depending of the initial composition at re-casting. Russianc precious alloys: Plagodent (AuPtPd) and Palladent (PdAu) and base alloys: Vitiriy-N (NiCrMo) and Vitiriy-C (CoCrMo) were used as study samples, which were divided in three groups: a primary casting from the granules; 50% of re-casting; 100% of re-casting. We investigated the yield strength in bending, coefficient of thermal expansion and hardness. Changing in the composition of the alloys has led to changes of all physical and mechanical properties.

  3. Kinetics and Properties of Micro Arc Oxidation Coatings Deposited on Commercial Al Alloys

    NASA Astrophysics Data System (ADS)

    Krishna, L. Rama; Purnima, A. Sudha; Wasekar, Nitin P.; Sundararajan, G.

    2007-02-01

    The micro arc oxidation (MAO) technique is being increasingly recognized as a novel and ecofriendly means of depositing dense ceramic oxide coatings on Al and its alloys. In the present study, the deposition kinetics, surface roughness, morphology, phase distribution and the microhardness of the MAO coatings deposited on ten different commercially available Al substrates having widely differing chemical composition has been investigated. Further, the tribological properties of the coatings obtained on different Al alloys in comparison with the bare substrates have also been evaluated using dry sand abrasion, solid-particle erosion and pin-on-disc dry sliding wear tests. The results clearly demonstrate that the alloying elements added to the Al substrate substantially influence the MAO coating deposition kinetics and coating properties. In the case of Al-Si alloys, the coating deposition kinetics is non-linear and the Al6Si2O13 (mullite) is observed to form. With increasing Si content, the corresponding mullite phase also increases. Increasing mullite content in the coating adversely affects the tribological performance. Excepting Al-Si alloys, all other alloys investigated including commercial purity Al exhibit linear coating deposition kinetics. Of all the alloys investigated, Al-Li alloy exhibits the highest coating deposition rate and the 6061 T6 Al alloy exhibits the best coating properties.

  4. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  5. Development and commercialization status of Fe{sub 3}Al-based intermetallic alloys

    SciTech Connect

    Sikka, V.K.; Viswanathan, S.; McKamey, C.G.

    1993-06-01

    The Fe{sub 3}Al-based intermetallic alloys offer unique benefits of excellent oxidation and sulfidation resistance, limited by poor room-temperature (RT) ductility and low high-temperature strength. Recent understanding of environmental effects on RT ductility of these alloys has led to progress toward taking commercial advantage of Fe{sub 3}Al-based materials. Cause of low ductility appears to be related to hydrogen formed from reaction with moisture. The environmental effect has been reduced in these intermetallic alloys by two methods. The first deals with producing a more hydrogen-resistant microstructure through thermomechanical processing, and the second dealed with compositional modification. The alloys showing reduced environmental effect have been melted and processed by many different methods. Laboratory and commercial heats have been characterized. Tests have been conducted in both air and controlled environments to quantify environmental effects on these properties. These materials were also tested for aqueous corrosion and resistance to stress corrosion cracking. Oxidation and sulfidation data were generated and effects of minor alloying elements on were also investigated. Several applications have been identified for the newly developed iron aluminides. Commercialization status of these alloys is described.

  6. Long-Term Cyclic Oxidation Behavior of Wrought Commercial Alloys at High Temperatures

    SciTech Connect

    Li, Bingtao

    2003-01-01

    The oxidation resistance of a high-temperature alloy is dependent upon sustaining the formation of a protective scale, which is strongly related to the alloying composition and the oxidation condition. The protective oxide scale only provides a finite period of oxidation resistance owing to its eventual breakdown, which is especially accelerated under thermal cycling conditions. This current study focuses on the long-term cyclic oxidation behavior of a number of commercial wrought alloys. The alloys studied were Fe- and Ni-based, containing different levels of minor elements, such as Si, Al, Mn, and Ti. Oxidation testing was conducted at 1000 and 1100 C in still air under both isothermal and thermal cycling conditions (1-day and 7-days). The specific aspects studied were the oxidation behavior of chromia-forming alloys that are used extensively in industry. The current study analyzed the effects of alloying elements, especially the effect of minor element Si, on cyclic oxidation resistance. The behavior of oxide scale growth, scale spallation, subsurface changes, and chromium interdiffusion in the alloy were analyzed in detail. A novel model was developed in the current study to predict the life-time during cyclic oxidation by simulating oxidation kinetics and chromium interdiffusion in the subsurface of chromia-forming alloys.

  7. Characterization by thermoelectric power of a commercial aluminum-iron-silicon alloy (8011) during isothermal precipitation

    SciTech Connect

    Luiggi A., N.J.

    1998-11-01

    The author has characterized a commercial 8011 (Al-Fe-Si) alloy by studying samples under different initial states of strain hardening and iron and silicon supersaturation using thermoelectric power as a measurement technique. Isothermal kinetics of precipitation are obtained in the temperature range between 225 C and 600 C. He has determined the atom fraction precipitated for each microstructural condition, identifying the dominant alloying additions and evaluating the typical parameters of the precipitated phases, such as, for example, the apparent activation energy. Finally, he determined the time-temperature-transformation (TTT) diagrams. These results prove that iron is the alloying addition that controls the precipitation kinetics of the 8011 alloy in the temperature range studied.

  8. Fabrication of structural components from commercial aluminum alloys using superplastic forming

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Bales, T. T.; Shinn, J. M.; James, W. F.

    1990-01-01

    SPF technology was used to fabricate structural components from the 7475 Al and 8090 Al-Li commercial alloys. Gas-pressurization cycles were established for SPF three-hat stiffener configurations on the basis of uniaxial data and component-geometry considerations. It is established that higher forming rates than the optimum strain rates selected from the uniaxial data for each alloy could be used in the later stages of forming without reducing SPF components' dimensional conformity. Cavitation was precluded through the use of back pressure during forming.

  9. Laboratory galling tests of several commercial cobalt-free weld hardfacing alloys

    SciTech Connect

    Cockeram, B.V.; Buck, R.F.; Wilson, W.L.

    1997-04-01

    Since the mechanical properties of most wear materials are generally insufficient for structural applications, hardfacing alloys have been traditionally weld deposited to provide a wear resistance surface for a base material. An important attribute of a hardfacing alloy that is subjected to high load sliding contact is the resistance to adhesive (galling) damage. Although Co-base hardfacing alloys generally possess excellent galling wear resistance, there is interest in developing cobalt-free replacement hardfacings to reduce radiation exposure costs. A laboratory galling test has been developed for weld hardfacing deposits that is a modification of the standardized ASTM G98-91 galling test procedure. The procedure for testing a weld hardfacing deposit on a softer base metal using a button-on-block configuration is described. The contact stresses for the initiation of adhesive galling damage were measured to rank the galling resistance of several commercial Fe-base, Ni-base and Co-base hardfacing alloys. Although the galling resistance of the Fe-base alloys was generally superior to the Ni-base alloys, neither system approached the excellent galling resistance of the Co-base alloys. Microstructure examinations were used to understand the micro-mechanisms for the initiation and propagation of galling damage. A physical model for the initiation and propagation of adhesive wear is used to explain the lower galling resistance for the Ni-base hardfacings and to understand the influence of composition on the galling resistance of Ni-base alloys. The composition of some Ni base hardfacings was modified in a controlled manner to quantify the influence of specific elements on the galling resistance.

  10. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    NASA Astrophysics Data System (ADS)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  11. Thermal fatigue resistance of NASA WAZ-20 alloy with three commercial coatings

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Oldrieve, R. E.

    1975-01-01

    Screening tests using three commercial coatings (Jocoat, HI-15, and RT-1A) on the nickel-base alloy NASA WAZ-20 were performed by cyclic exposure in a Mach 1 burner facility. These tests showed Jocoated WAZ-20 to have the best cracking resistance. The thermal fatigue resistance of Jocoated WAZ-20 in both the random polycrystalline and directionally solidified polycrystalline forms relative to that of other superalloys was then evaluated in a fluidized-bed facility. This investigation showed that Jocoated random polycrystalline WAZ-20 ranked approximately in midrange in thermal fatigue life. The thermal fatigue life of directionally solidified Jocoated WAZ-20 was shorter than that of other directionally solidified alloys but still longer than that of all alloys in the random polycrystalline form.

  12. Fracture toughness testing and toughening mechanisms of some commercial cobalt-free hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1998-04-27

    Hardfacing alloys are weld deposited to provide a wear resistant surface for structural base materials. Commercial low cobalt hardfacing alloys are being evaluated to reduce plant activation levels. Since hardfacing alloys typically must be resistant to cracking to assure adequate in service performance, fracture toughness is a critical material property. Fracture toughness (K{sub IC}) measurements of Fe base, Ni-base, and Co-base hardfacing were performed in accordance with ASTM E399-90 procedure in an effort to identify a tough cobalt-free alternative. Reduced scatter in K{sub IC} data was observed for the Fe base hardfacing, and the 95% lower bound K{sub IC} values were generally higher than the Ni-base Hardfacing alloys. Preliminary crack growth data obtained during precracking indicate that the Ni-base hardfacing possess better fatigue crack growth resistance. However, none of the Fe-base or Ni-base hardfacing have K{sub IC} values that are comparable to the reference Co-base hard facing. The test specimens were machined from thick (0.5 inches) weld deposits, and the microstructures of the test specimens are compared with the more prototypic, thinner deposits. Microstructural and fractographic examinations are used to characterize the fracture mechanisms and delineate the operative toughening mechanisms. Crack deflection and crack bridging toughening mechanisms are shown to be relevant for most of the commercial hardfacing.

  13. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  14. Subtask 12F1: Effect of neutron irradiation on swelling of vanadium-base alloys

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effects of neutron irradiation on the density change, void distribution, and microstructural evolution of vanadium-base alloys. Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420-600{degrees}C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti{sub 5}Si{sub 3} promotes good resistance to swelling of the Ti-containing alloys, and it was concluded that Ti of >3 wt.% and 400-1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. 18 refs., 6 figs., 1 tab.

  15. Electrochemical comparison and biological performance of a new CoCrNbMoZr alloy with commercial CoCrMo alloy.

    PubMed

    Andrei, M; Galateanu, B; Hudita, A; Costache, M; Osiceanu, P; Calderon Moreno, J M; Drob, S I; Demetrescu, I

    2016-02-01

    A new CoCrNbMoZr alloy, with Nb and Zr content is characterized from the point of view of surface features, corrosion resistance and biological performance in order to be proposed as dental restorative material. Its properties are discussed in comparison with commercial Heraenium CE alloy based on Co, Cr and Mo as well. The microstructure of both alloys was revealed by scanning electron microscopy (SEM). The composition and thickness of the alloy native passive films were identified by X-ray photoelectron spectroscopy (XPS). The surface characteristics were analyzed by atomic force microscopy (AFM) and contact angle techniques. The quantity of ions released from alloys in artificial saliva was evaluated with inductively coupled plasma-mass spectroscopy (ICP-MS) measurements. The electrochemical stability was studied in artificial Carter-Brugirard saliva, performing open circuit potentials, polarization resistances and corrosion currents and rates. The biological performance of the new alloy was tested in vitro in terms of human adipose stem cells (hASCs) morphology, viability and proliferation status. The new alloy is very resistant to the attack of the aggressive ions from the artificial saliva. The surface properties, the roughness and wettabiliy sustain the cell behavior. The comparison of the new alloy behavior with that of existing commercial CoCrMo alloy showed the superior properties of the new metallic biomaterial.

  16. Behavior of Dental/Implant Alloys in Commercial Mouthwash Solution Studied by Electrochemical Techniques

    NASA Astrophysics Data System (ADS)

    Mareci, Daniel; Strugaru, Sorin Iacob; Iacoban, Sorin; Bolat, Georgiana; Munteanu, Corneliu

    2013-03-01

    This study investigates the electrochemical behavior of the various dental materials: Paliag (Ag-Pd based), Wiron 99 (Ni-Cr based), Cp-Ti (commercial pure titanium), and experimental Ti12Mo5Ta alloy in commercial mouthwash solution with 500 ppm F- (Oral B®) and compares it with the behavior of the same dental materials in artificial saliva. Linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) are the electrochemical procedures of investigation. The passivation of all dental samples in artificial saliva and mouthwash solution occurred spontaneously at open circuit potential. The corrosion current density of all tested dental materials in mouthwash solution were low (1-2 μA/cm2). The results suggest a non-predominant fluoride effect on the passive layer formed on all samples at open circuit potential. No passivation could be established with Paliag alloy when polarized in mouthwash solution. The EIS results confirm that all dental sample exhibit passivity in mouthwash solution at open circuit potential (polarization resistance was around 5 × 105 Ω cm2). For Paliag alloy after LPP in mouthwash solution the protectiveness passive layer was no more present. The corrosion resistances of four dental materials in mouthwash solution are in the following order: Ti12Mo5Ta > Cp-Ti > Wiron 99 > Paliag.

  17. Laser surface alloying of commercially pure titanium with boron and carbon

    NASA Astrophysics Data System (ADS)

    Makuch, N.; Kulka, M.; Dziarski, P.; Przestacki, D.

    2014-06-01

    Laser surface alloying with boron and carbon was applied to produce the composite layers, reinforced by the hard ceramic phases (titanium borides and titanium carbides), on commercially pure titanium. The external cylindrical surface of substrate material was coated by paste containing boron, boron and graphite, or graphite. Then, the laser re-melting was carried out with using the continuous-wave CO2 laser. This enabled the formation of laser-borided, laser-borocarburized, and laser-carburized layers. The microstructure or the re-melted zone consisted of the hard ceramic phases (TiB+TiB2, TiB+TiB2+TiC, or TiC) located in the eutectic mixture of Tiα'-phase with borides, borides and carbides, or carbides, respectively. All the composite layers were characterized by the sufficient cohesion. The significant increase in microhardness and in wear resistance of all the laser-alloyed layers was observed in comparison with commercially pure titanium. The percentage of hard ceramic phases in more plastic eutectic mixture influenced the measured microhardness values. The dominant wear mechanism (abrasive or adhesive) depended on the method of laser alloying, and the type of test used. The wear tests for longer duration, without the change in the counter specimen, created the favourable conditions for adhesive wear, while during the shorter tests the abrasive wear dominated, as a rule.

  18. Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants

    PubMed Central

    Bortagaray, Manuel Alberto; Ibañez, Claudio Arturo Antonio; Ibañez, Maria Constanza; Ibañez, Juan Carlos

    2016-01-01

    Objective: To determine whether the Noble Bond® Argen® alloy was electrochemically suitable for the manufacturing of prosthetic superstructures over commercially pure titanium (c.p. Ti) implants. Also, the electrolytic corrosion effects over three types of materials used on prosthetic suprastructures that were coupled with titanium implants were analysed: Noble Bond® (Argen®), Argelite 76sf +® (Argen®), and commercially pure titanium. Materials and Methods: 15 samples were studied, consisting in 1 abutment and one c.p. titanium implant each. They were divided into three groups, namely: Control group: five c.p Titanium abutments (B&W®), Test group 1: five Noble Bond® (Argen®) cast abutments and, Test group 2: five Argelite 76sf +® (Argen®) abutments. In order to observe the corrosion effects, the surface topography was imaged using a confocal microscope. Thus, three metric parameters (Sa: Arithmetical mean height of the surface. Sp: Maximum height of peaks. Sv: Maximum height of valleys.), were measured at three different areas: abutment neck, implant neck and implant body. The samples were immersed in artificial saliva for 3 months, after which the procedure was repeated. The metric parameters were compared by statistical analysis. Results: The analysis of the Sa at the level of the implant neck, abutment neck and implant body, showed no statistically significant differences on combining c.p. Ti implants with the three studied alloys. The Sp showed no statistically significant differences between the three alloys. The Sv showed no statistically significant differences between the three alloys. Conclusion: The effects of electrogalvanic corrosion on each of the materials used when they were in contact with c.p. Ti showed no statistically significant differences. PMID:27733875

  19. Microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique

    NASA Astrophysics Data System (ADS)

    Li, M.; Tamura, T.; Omura, N.; Murakami, Y.; Tada, S.

    2016-03-01

    This paper examines the microstructure refinement of commercial 7xxx aluminium alloys solidified by the electromagnetic vibration technique (EMV) as a function of vibration frequency, f. The microstructure evolution reveals that at the low frequency of f = 62.5 Hz, the solidified microstructure is coarse and with the increase of vibration frequency to f = 500 Hz, the grain size becomes the finest and further increase of frequency to f = 2000 Hz results in coarsening of microstructures. The refinement mechanism is clarified when considering the significant difference in electrical resistivities of the solid and the liquid in mushy zone, in which both phases coexist and subject to vibration. The frequency-dependent refinement behaviour is revealed when the displacement of the mobile solid and sluggish liquid is taken into account during solidification. In contrast to 3xxx aluminium alloys, no giant compounds have been discerned in the present 7xxx alloy regardless of the solidification condition. The formation of crystalline twin is briefly discussed when considering the vibration condition.

  20. Comparison of isothermal and cyclic oxidation behavior of twenty-five commercial sheet alloys at 1150 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1975-01-01

    Twenty-five commercial nickel-, iron-, and cobalt-base sheet alloys incorporating chromium or chromium and aluminum additions for oxidation resistance were tested at 1150 C in air for 100 hr in both isothermal and 1-hr cyclic furnace exposures. The alloys were evaluated by sample specific weight change, by type of scale formed, by amount and type of spall, and by sample thickness change and microstructure.-

  1. Part A - low-aluminum-content iron-aluminum alloys. Part B - commercial-scale melting and processing of FAPY alloy

    SciTech Connect

    Sikka, V.K.; Howell, C.R.; Hall, F.; Valykeo, J.

    1996-06-01

    The FAPY is a Fe-16 at. % Al alloy of nominal composition. The aluminum content of the alloy is such that it remains single phase ({alpha}) without the formation of an ordered phase (DO{sub 3}). The alloy has good oxidation resistance at temperatures up to 1000{degrees}C and has shown significantly superior performance as heating elements as compared to the commonly used nickel-based alloy, Nichrome. Although wire for the heating elements has been fabricated from small (15-1b) laboratory heats, for its commercial applications, the wire needs to be producible from large (1200 to 1500-1b) air-melted heats. The purpose of this study was to produce commercial size heats and investigate their mechanical properties and microstructure in the as-cast, hot-worked, and cold-worked conditions. The results of this study are expected to provide: (1) insight into processing steps for large heats into wire under commercial conditions, and (2) the mechanical properties data on commercial size heats in various product forms.

  2. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-03-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  3. Age-hardening mechanisms in a commercial dental gold alloy containing platinum and palladium.

    PubMed

    Tani, T; Udoh, K; Yasuda, K; Van Tendeloo, G; Van Landuyt, J

    1991-10-01

    The age-hardening mechanism of a commercial dental gold alloy containing platinum and palladium (in wt.%, 15 Cu, 6 Ag, 5 Pt, 3 Pd, 3 Zn, with the balance as gold) was elucidated by means of electrical resistivity, hardness tests, x-ray and electron diffraction and electron microscopy, as well as high-resolution electron microscopy. The sequence of phase transformations during isothermal aging below the critical temperature, Tc = 825 K, was described as follows: disordered solid solution alpha 0 (FCC)----metastable AuCu I' ordered phase (FCT)----metastable alpha 2 disordered phase (FCC) equilibrium AuCu I ordered phase (FCT) + equilibrium alpha 2 disordered phase (FCC). The hardening was due to the introduction of coherency strain at the interface between the AuCu I' platelet and the matrix. These ordered platelets had mutually perpendicular c-axes to compensate for the strain introduced by their tetragonality. A loss of coherency at the interface brought about softening of the alloy, i.e., over-aging.

  4. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  5. Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    Three heats of commercially heat-treated alloy 718 were tensile tested over the temperature range from room temperature to 816{degree}C and at nominal strain rates from 6.7 {times} 10{sup {minus}6} to 6.7 {times} 10{sup {minus}3}/s. We examined data for yield strength, ultimate tensile strength, uniform elongation, total elongation, and reduction in area and also inspected tensile stress-strain behavior. Yield and ultimate tensile strengths for commercially heat-treated alloy 718 decrease very gradually with temperature from room temperature up to about 600{degree}C for a strain rate of 6.7 {times} 10{sup {minus}5}/s or to about 700{degree}C for a strain rate of 6.7 {times} 10{sup {minus}4}/s. Above these temperatures the strength drops off fairly rapidly. Reduction in area and total elongation data show minimum around 700{degree}C, with each ductility measure falling to 10% or less at the minimum. This minimum is more pranced and occurs at lower temperatures as strain rate decreases. Up to about 600{degree}C the ductility is typically around 30%. As the temperature reaches 816{degree}C the ductility again increases to perhaps 60%. The uniform elongation (plastic strain at peak load) decreases only slightly with temperature to about 500{degree}C then drops off rapidly and monotonically with temperature, reaching values less than 1% at 816{degree}C. At the highest test temperatures the load maximum may result, not from necking of the specimen, but from overaging of the precipitation-hardened microstructure. Stress-strain curves showed serrated deformations in the temperature range from 316 to 649{degree}C, although they occur only for the faster strain rates at the supper end of this temperature range. The serrations can be quite large, involving load drops of perhaps 40 to 80 MPa. The serrations typically begin within the first 2% of deformation and continue until fracture, although exceptions were noted. 16 refs., 14 figs., 3 tabs.

  6. Polarization-corrosion behavior of commercial gold- and silver-base casting alloys in Fusayama solution.

    PubMed

    Johnson, D L; Rinne, V W; Bleich, L L

    1983-12-01

    Based on polarization measurements, high Au alloys are highly corrosion-resistant and exhibit the lowest corrosion rates; intermediate Au, Ag, and Pd alloys with Cu are passive but exhibit higher corrosion rates. Twenty weight percent (w/o) In-Ag alloys exhibit active corrosion behavior at potentials only 100 mV noble to the corrosion potential.

  7. The behaviour of entrainment defects formed in commercial purity Mg alloy cast under a cover gas of SF6

    NASA Astrophysics Data System (ADS)

    Li, T.; Griffiths, W. D.

    2016-03-01

    In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.

  8. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  9. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2017-01-01

    FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a<100> dislocation loops, a/2<111> dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2<111> dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a<100> dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.

  10. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; ...

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less

  11. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    SciTech Connect

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundaries on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.

  12. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA structural materials engineers at Marshall Space Flight Center (MSFC) in Huntsville, Alabama developed a high-strength aluminum alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard, 40-90 horsepower, engine line. The alloy pistons make the outboard motor quieter and cleaner, while improving fuel mileage and increasing engine durability. The engines comply with California Air resources Board emissions standards, some of the most stringent in the United States. (photo credit: Bombardiier Recreational Products)

  13. Advanced characterization study of commercial conversion and electrocoating structures on magnesium alloys AZ31B and ZE10A

    DOE PAGES

    Brady, Michael P.; Leonard, Donovan N.; Meyer, III, Harry M.; ...

    2016-03-31

    The local metal-coating interface microstructure and chemistry formed on commercial magnesium alloys Mg–3Al–1Zn (AZ31B) and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A, ZEK100 type) were analyzed as-chemical conversion coated with a commercial hexafluoro-titanate/zirconate type + organic polymer based treatment (Bonderite® 5200) and a commercial hexafluoro-zirconate type + trivalent chromium Cr3 + type treatment (Surtec® 650), and after the same conversion coatings followed by electrocoating with an epoxy based coating, Cathoguard® 525. Characterization techniques included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cross-section scanning transmission electron microscopy (STEM). Corrosion behavior was assessed in room temperature saturated aqueous Mg(OH)2 solution with 1 wt.% NaCl. Themore » goal of the effort was to assess the degree to which substrate alloy additions become enriched in the conversion coating, and how the conversion coating was impacted by subsequent electrocoating. Key findings included the enrichment of Al from AZ31B and Zr from ZE10A, respectively, into the conversion coating, with moderate corrosion resistance benefits for AZ31B when Al was incorporated. Varying degrees of increased porosity and modification of the initial conversion coating chemistry at the metal-coating interface were observed after electrocoating. These changes were postulated to result in degraded electrocoating protectiveness. As a result, these observations highlight the challenges of coating Mg, and the need to tailor electrocoating in light of potential degradation of the initial as-conversion coated Mg alloy surface.« less

  14. Advanced characterization study of commercial conversion and electrocoating structures on magnesium alloys AZ31B and ZE10A

    SciTech Connect

    Brady, Michael P.; Leonard, Donovan N.; Meyer, III, Harry M.; Song, Guang -Ling; Kitchen, Kris; Davis, Bruce; Thompson, J. K.; Unocic, K. A.; Elsentriecy, H. H.

    2016-03-31

    The local metal-coating interface microstructure and chemistry formed on commercial magnesium alloys Mg–3Al–1Zn (AZ31B) and Mg–1Zn–0.25Zr–<0.5Nd (ZE10A, ZEK100 type) were analyzed as-chemical conversion coated with a commercial hexafluoro-titanate/zirconate type + organic polymer based treatment (Bonderite® 5200) and a commercial hexafluoro-zirconate type + trivalent chromium Cr3 + type treatment (Surtec® 650), and after the same conversion coatings followed by electrocoating with an epoxy based coating, Cathoguard® 525. Characterization techniques included scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cross-section scanning transmission electron microscopy (STEM). Corrosion behavior was assessed in room temperature saturated aqueous Mg(OH)2 solution with 1 wt.% NaCl. The goal of the effort was to assess the degree to which substrate alloy additions become enriched in the conversion coating, and how the conversion coating was impacted by subsequent electrocoating. Key findings included the enrichment of Al from AZ31B and Zr from ZE10A, respectively, into the conversion coating, with moderate corrosion resistance benefits for AZ31B when Al was incorporated. Varying degrees of increased porosity and modification of the initial conversion coating chemistry at the metal-coating interface were observed after electrocoating. These changes were postulated to result in degraded electrocoating protectiveness. As a result, these observations highlight the challenges of coating Mg, and the need to tailor electrocoating in light of potential degradation of the initial as-conversion coated Mg alloy surface.

  15. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  16. Localized Corrosion of Alloy 22 -Fabrication Effects-

    SciTech Connect

    Rebak, R B

    2005-11-05

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale: The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo

  17. An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys

    SciTech Connect

    Gao, M.; Feng, C.R.; Wei, R.P.

    1998-04-01

    To better understand the role of constituent particles in pitting corrosion, analytical electron microscopic studies were performed on the constituent particles in commercial 7075-T6 and 2024-T3 alloys. Five phases, namely, Al{sub 23}CuFe{sub 4} and amorphous SiO{sub 2} in 7075-T6 and Al{sub 2}CuMg, Al{sub 2}Cu, and (Fe,Mn){sub x}Si(Al,Cu){sub y} in 2024-T3, were identified. The crystal structure and chemistry of the Al{sub 23}CuFe{sub 4}, Al{sub 2}CuMg, and Al{sub 2}Cu phases in these alloys are in good agreement with the published data. Small deviations from their stoichiometric compositions were observed and are attributed to the influence of alloy composition on the phase chemistry. For the (Fe,Mn){sub x}Si(Al,Cu){sub y} (approximately, x = 3 and y = 11) phase, a rhombohedral structure, with lattice parameter a = b = c = 1.598 nm and {alpha} = {beta} = {gamma} = 75 deg, was identified and is believed to be a modified form of either Al{sub 8}Fe{sub 2}Si or Al{sub 10}Mn{sub 3}Si. Information from this study provided technical support for studying the electrochemical interactions between the individual particles (or phases) and the matrix. The corrosion results are reported in a companion article.

  18. Enhancement and Commercialization of the Alloy Selection System for Elevated Temperatures - ASSET

    SciTech Connect

    Randy C. John

    2005-11-05

    A corrosion engineering information system was created to manage, correlate and predict corrosion of alloys and also to use thermochemical calculations to predict the occurrence of dominant corrosion mechanisms in hot gases found in many different chemical processes and other related industrial processes.

  19. Thermomechanical Processing and Texture Development in Ni-Cr-Mo and Mn-Mo-B Armor Steels

    DTIC Science & Technology

    1984-04-01

    Homestead plant of Mon Valley Works (contract No. DAAG46-82-C-0029). During this past year, work has been con- ducted on the 2-inch-thick plates...of these two grades of conven- tional armor have been produced routinely at the U. S. Steel Homestead plant for many years. By the introduction of a...similar. Large, discrete Fe3C particles were formed on lath boundaries and in ferrite grains. This extensive carbide precipitation and particle growth were

  20. Quasi-steady-state creep crack growth in a 3.5NiCrMoV steel

    SciTech Connect

    Ryu, S.H.; Yu, J.; Hong, S.H.

    1997-03-01

    Creep crack growth rate ({dot a}) is usually characterized in terms of macroscopic load parameters, such as C*, C{sub t} and C(t), through the constant load test. However, load parameters are continuously changing during the test, and so is {dot a}. Here, by conducting constant C{sub t} and constant {dot {Delta}} tests, quasi-steady-state crack growth was obtained where {dot a} remained almost constant. Results indicate the {dot a} {approximately} [C{sub t}]{sup 0.76} correlation, which differ from the {dot a} {approximately} [C{sub t}]{sup 0.96} correlation of the constant load test. Discrepancies can be ascribed to the inclusion of the stage II data, which showed no correlation between {dot a} and C{sub t}, in the constant load analysis. Finally, the crack growth rate was well predicted using the Monkmam-Grant analysis in creep crack growth.

  1. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    SciTech Connect

    Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; Busby, Jeremy T.

    2015-08-24

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In this paper, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lack of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. Also, the cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.

  2. New multicomponent solder alloys of low melting pointfor low-cost commercial electronic assembly

    NASA Astrophysics Data System (ADS)

    Al-Ganainy, G. S.; Sakr, M. S.

    2003-09-01

    The requirements of the telecommunications, automobile, electronics and aircraft industries for non-toxic solders with melting points close to that of near-eutectic Pb-Sn alloys has led to the development of new Sn-Zn-In solder alloys. Differential thermal analysis (DTA) shows melting points of 198, 195, 190 and 185 +/- 2 °C for the alloys Sn-9Zn, Sn-9Zn-2In, Sn-9Zn-4In and Sn-9Zn-6In, respectively. An equation that fits the data relating the melting point to the In content in the solders is derived. The X-ray diffraction patterns are analyzed to determine the phases that exist in each solder. The stress-strain curves are studied in the temperature range from 90 to 130 °C for all the solders except for those that contain 4 wt% of In, where the temperature range continues to 150 °C. The work-hardening parameters, y (the yield stress), f (the fracture stress), and the parabolic work-hardening coefficient X, increase with increasing indium content in the solders at all working temperatures. They decrease with increasing working temperature for each solder, and show two relaxation stages only for the Sn-9Zn-4In solder around a temperature of 120 °C. (

  3. In vitro study on the corrosion behavior of three commercial Ag-Pd-Cu-Au alloys in Ringer's and 0.1%Na2S solutions.

    PubMed

    Endo, K; Araki, Y; Kawashima, I; Yamane, Y; Ohno, H; Matsuda, K

    1989-12-01

    The corrosion resistance of three commercial Ag-Pd-Cu-Au alloys was estimated in Ringer's and 0.1% Na2S solutions by electrochemical techniques and surface analyses. In Ringer's solution, the three alloys showed high corrosion resistance and there was no significant difference in the anodic polarization characteristics of the three alloys. In the 0.1% Na2S solution, the Alloy A which had the lowest noble metal content (Au + Pd) exhibited the highest anodic reactivity with the largest amount of corrosion product on the alloy surface. It was determined that the Ag-rich phase of Ag-Pd-Cu-Au alloy was preferentially attacked to form Ag2S corrosion product. The polarization resistance data showed that the corrosion rate for Alloy A in 0.1% Na2S solution was determined to be 500 times higher than that in Ringer's solution. The corrosion rate of the alloy in the freely corroded condition can be estimated quantitatively and precisely by measuring the polarization resistance.

  4. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    DOE PAGES

    Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; ...

    2015-08-24

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In this paper, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lackmore » of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. Also, the cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.« less

  5. Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects

    PubMed Central

    Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj

    2012-01-01

    The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated.

  6. Some observations on cyclic deformation structures in the high-strength commercial aluminum alloy AA 7150

    SciTech Connect

    Hanlon, D.N.; Rainforth, W.M.

    1998-11-01

    Load-controlled fatigue testing of the aluminum alloy AA 7150 has been conducted using four-point bending with an R ratio of + 0.1 over a range of maximum stress levels from 60 to 120% of the 0.2% proof stress. The alloy, in the form of 12.5-mm rolled plate, was investigated in underaged (UA), peak-aged (PA), and overaged (OA) conditions, corresponding to a change in average precipitate sizes from 5 nm in the UA condition to 21 nm in the OA condition. Three orientations of the plate were investigated. Orientation and aging condition influenced the degree of surface topographical development but not fatigue life. Detailed transmission electron microscopy (TEM) of the fatigued surface indicated that deformation in all aging conditions occurred by planar slip. Slip was generally restricted to a single slip system within each grain, and subgrain boundaries offered little resistance to dislocation movement facilitating long slip line lengths (measured up to 310 {micro}m) between adjacent high-angle grain boundaries. Planar slip observed in the OA condition is attributed to shearing of large strengthening precipitates, which is promoted by long slip line lengths. No evidence of surface specific changes in slip character was observed.

  7. Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2015-12-01

    As a consequence of the March 2011 events at the Fukushima site, the U.S. congress asked the Department of Energy (DOE) to concentrate efforts on the development of nuclear fuels with enhanced accident tolerance. The new fuels had to maintain or improve the performance of current UO2-zirconium alloy rods during normal operation conditions and tolerate the loss of active cooling in the core for a considerably longer time period than the current system. DOE is funding cost-shared research to investigate the behavior of advanced steels both under normal operation conditions in high-temperature water [ e.g., 561 K (288 °C)] and under accident conditions for reaction with superheated steam. Current results show that, under accident conditions, the advanced ferritic steels (1) have orders of magnitude lower reactivity with steam, (2) would generate less hydrogen and heat than the current zirconium alloys, (3) are resistant to stress corrosion cracking under normal operation conditions, and (4) have low general corrosion in water at 561 K (288 °C).

  8. A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Roberts, Christopher E.; Bourell, David; Watt, Trevor; Cohen, Julien

    Aluminum 6061 is of great commercial interest due to its ubiquitous use in manufacturing, advantageous mechanical properties, and its successful certification in aerospace applications. However, as an off-eutectic with accompanying large freezing range, attempts to process the material by additive manufacturing have resulted in part cracking and diminished mechanical properties. A unique approach using mixed powders is presented to process this historically difficult-to-process material. Expansion of this combined-powder approach to other materials systems not typically compatible with additive manufacturing is possible. Dense parts without solidification cracking have been produced by the SLM process, as verified using SEM and EDS. An overview of this approach is presented along with test results using an Al-Si mixture.

  9. The Passive Film on Alloy 22

    SciTech Connect

    Orme, C A

    2005-09-09

    metal components (e.g., Ni, Cr, Mo, W) form distinct oxides, each of which may be stable under somewhat different environmental conditions. For one set of conditions, the oxide layer may be dominated by one or more of these metals, for another, by a different set. Furthermore, the oxide ''layer'' itself may consist of sub-layers of different composition. The purpose of this report is to characterize the oxide layer obtained from Alloy 22 over a range of environmental conditions and to demonstrate that the oxide shows passive behavior. Section 2 provides background information and theoretical predictions describing the role of pH and applied potential in oxide formation and stability. It includes a review of pertinent data on similar alloys. Section 3 presents data characterizing the oxide over a range applied potential and pH. Section 4 evaluates the oxide obtained from Alloy 22 samples aged for time periods extending from one month to over five years. Section 5 presents data showing that the oxide growth rate is logarithmic in time. Section 6 discusses the stability of the oxide as determined by short-term electrochemical tests. Section 7 describes the oxide scale that forms due to thermal processing (solution annealing and in air). Taken together, the various sections in this report present an understanding of the oxide layer obtained using a variety of methodologies, techniques, and testing conditions. An Appendix provides additional information regarding surface analysis techniques and electrochemical testing.

  10. Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti-Nb-Ta-Zr alloys

    NASA Astrophysics Data System (ADS)

    Miura-Fujiwara, Eri; Mizushima, Keisuke; Watanabe, Yoshimi; Kasuga, Toshihiro; Niinomi, Mitsuo

    2014-11-01

    In this study, the relationships among oxidation condition, color tone, and the cross-sectional microstructure of the oxide layer on commercially pure (CP) Ti and Ti-36Nb-2Ta-3Zr-0.3O were investigated. “White metals” are ideal metallic materials having a white color with sufficient strength and ductility like a metal. Such materials have long been sought for in dentistry. We have found that the specific biomedical Ti alloys, such as CP Ti, Ti-36Nb-2Ta-3Zr-0.3O, and Ti-29Nb-13Ta-4.6Zr, form a bright yellowish-white oxide layer after a particular oxidation heat treatment. The brightness L* and yellowness +b* of the oxide layer on CP Ti and Ti-36Nb-2Ta-3Zr-0.3O increased with heating time and temperature. Microstructural observations indicated that the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O was dense and firm, whereas a piecrust-like layer was formed on CP Ti. The results obtained in this study suggest that oxide layer coating on Ti-36Nb-2Ta-3Zr-0.3O is an excellent technique for dental applications.

  11. Effects of long-term thermal aging on the tensile and creep properties of commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.

    1984-01-01

    Alloy 718 is a structure material widely used in elevated-temperature applications. In particular, it was extensively used in the design of the upper internal system and control rod drive line of the proposed Clinch River Breeder Reactor. Its popularity is due to several excellent behavioral features, including high creep and creep-rupture strength, good oxidation resistance, and exceptional high-cycle fatigue strength. However, alloy 718 is extremely complex, and its microstructure can be significantly modified by thermal treatment. The stability of the alloy in long-term elevated-temperature service is therefore a substantial concern in any such application. This report presents tensile and creep data obtained on three heats of alloy 718 after thermal aging for up to 27,000 h from 593 to 76{degree}C. Implications of these results in terms of long-term stability of the alloy are discussed. 5 refs., 13 figs., 6 tabs.

  12. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    PubMed

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  13. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys

    PubMed Central

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-01-01

    Conventional fusion welding of brass (Cu–Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints. PMID:26793745

  14. Localized Corrosion of Alloy 22 -Fabrication Effects-FY05 Summary Report

    SciTech Connect

    Rebak, R B

    2005-10-06

    general and localized corrosion behavior both in the wrought and annealed condition and in the as-welded condition. The specimens for testing were mostly prepared from flat plates of material. It was important to determine if the process of fabricating a full diameter Alloy 22 container will affect the corrosion performance of this alloy. Specimens were prepared directly from a fabricated container and tested for corrosion resistance. Results show that both the anodic corrosion behavior and the localized corrosion resistance of specimens prepared from a welded fabricated container were the same as from flat welded plates. That is, rolling and welding plates using industrial practices do not hinder the corrosion resistant of Alloy 22. (3) Effect of Black Annealing Oxide Scale--The resistance of Alloy 22 to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. This was done mostly using freshly polished specimens. At this time it was important to address the effect an oxide film or scale that forms during the high temperature annealing process or solution heat treatment (SHT) and its subsequent water quenching. Electrochemical tests such as cyclic potentiodynamic polarization (CPP) have been carried out to determine the repassivation potential for localized corrosion and to assess the mode of attack on the specimens. Tests have been carried out in parallel using mill annealed (MA) specimens free from oxide on the surface. The comparative testing was carried out in six different electrolyte solutions at temperatures ranging from 60 to 100 C. Results show that the repassivation potential of the specimens containing the black anneal oxide film on the surface was practically the same as the repassivation potential for oxide-free specimens. (4) Heat-to-Heat Variability--Testing of Ni-Cr-Mo Plates with varying heat chemistry: The ASTM standard B 575 provides the range of the chemical composition of Nickel-Chromium-Molybdenum (Ni-Cr-Mo

  15. Comparison of isothermal and cyclic oxidation behavior of twenty-five commercial sheet alloys at 1150 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1974-01-01

    The cyclic and isothermal oxidation resistance of 25 high-temperature Ni-, Co-, and Fe-base sheet alloys after 100 hours in air at 1150 C was compared. The alloys were evaluated in terms of their oxidation, scaling, and vaporization rates and their tendency for scale spallation. These values were used to develop an oxidation rating parameter based on effective thickness change, as calculated from a mass balance. The calculated thicknesses generally agreed with the measured values, including grain boundary oxidation, to within a factor of 3. Oxidation behavior was related to composition, particularly Cr and Al content.

  16. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys.

    SciTech Connect

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A. H.; Paulikas, A. P.; Veal, B. W.

    2007-12-01

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys.

  17. Investigation of the stability and 1.0 MeV proton radiation resistance of commercially produced hydrogenated amorphous silicon alloy solar cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters or fluences below 1(exp 14) cm(exp -2); fluences above 1(exp 14) cm(exp -2) require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  18. Investigation of the Stability and 1.0 MeV Proton Radiation Resistance of Commercially Produced Hydrogenated Amorphous Silicon Alloy Solar Cells

    NASA Technical Reports Server (NTRS)

    Lord, Kenneth R., II; Walters, Michael R.; Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys is reported. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below 1E14 sq cm fluences above 1E14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed In dark I-V measurements. The current mechanism were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  19. Effect of argon purity on mechanical properties, microstructure and fracture mode of commercially pure (cp) Ti and Ti-6Al-4V alloys for ceramometal dental prostheses.

    PubMed

    Bauer, José; Cella, Suelen; Pinto, Marcelo M; Filho, Leonardo E Rodrigues; Reis, Alessandra; Loguercio, Alessandro D

    2009-12-01

    Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey's test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.

  20. Implementation of Finite Strain-Based Constitutive Formulation in LLLNL-DYNA3D to Predict Shockwave Propagation in Commercial Aluminum Alloys AA7010

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.; Ma'at, N.; Kamarudin, K. A.; Ismail, A. E.

    2016-11-01

    The constitutive models adopted to represent dynamic plastic behaviour are of great importance in the current design and analysis of forming processes. Many have studied this topic, leading to results in various technologies involving analytical, experimental and computational methods. Despite of this current status, it is generally agreed that there is still a need for improved constitutive models. There are still many issues relating to algorithm implementation of the proposed constitutive model in the selected code to represent the proposed formulation. Using this motivation, the implementation of a new constitutive model into the LLNL-DYNA3D code to predict the deformation behaviour of commercial aluminium alloys is discussed concisely in this paper. The paper initially explains the background and the basic structure of the LLNL-DYNA3D code. This is followed by a discussion on the constitutive models that have been chosen as the starting point for this work. The initial stage of this implementation work is then discussed in order to allow all the required material data and the deformation gradient tensor F to be read and initialised for the main analysis. Later, the key section of this implementation is discussed, which mainly relates to subroutine f3dm93 including equation of state (EOS) implementation. The implementation of the elastic-plastic part with isotropic plastic hardening, which establishes the relationship between stress and strain with respect to the isoclinic configuration Ω¯ i in the new deviatoric plane, is then presented before the implemented algorithm is validated against Plate Impact test data of the Aluminium Alloy 7010. A good agreement is obtained in each test.

  1. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants - Is one truly better than the other?

    PubMed

    Shah, Furqan A; Trobos, Margarita; Thomsen, Peter; Palmquist, Anders

    2016-05-01

    Commercially pure titanium (cp-Ti) and titanium alloys (typically Ti6Al4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally, influenced material selection for different clinical applications: predominantly Ti6Al4V in orthopaedics while cp-Ti in dentistry. This paper attempts to address three important questions: (i) To what extent do the surface properties differ when cp-Ti and Ti6Al4V materials are manufactured with the same processing technique?, (ii) Does bone tissue respond differently to the two materials, and (iii) Do bacteria responsible for causing biomaterial-associated infections respond differently to the two materials? It is concluded that: (i) Machined cp-Ti and Ti6Al4V exhibit similar surface morphology, topography, phase composition and chemistry, (ii) Under experimental conditions, cp-Ti and Ti6Al4V demonstrate similar osseointegration and biomechanical anchorage, and (iii) Experiments in vitro fail to disclose differences between cp-Ti and Ti6Al4V to harbour Staphylococcus epidermidis growth. No clinical comparative studies exist which could determine if long-term, clinical differences exist between the two types of bulk materials. It is debatable whether cp-Ti or Ti6Al4V exhibit superiority over the other, and further comparative studies, particularly in a clinical setting, are required.

  2. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments.

    PubMed

    Zavanelli, R A; Guilherme, A S; Pessanha-Henriques, G E; de Arruda Nóbilo, M Antônio; Mesquita, M F

    2004-10-01

    This study evaluated the corrosion-fatigue life of laser-repaired specimens fabricated from commercially pure titanium (CP Ti) and Ti-6Al-4V alloy, tested under different storage conditions. For each metal, 30 dumbbell rods with a central 2.3 mm diameter were prepared by lost-wax casting with the Rematitan System. Simulating the failure after service, corrosion-fatigue life in different media at room temperature (air, synthetic saliva and fluoride synthetic saliva) was determined at a testing frequency of 10 Hz for intact specimens and after laser repairing, using a square waveform with equal maximum tensile and compressive stress that was 30% lower than the 0.2% offset yield strength. For laser welding, the fractured specimens were rejoined using a jig to align the sections invested in type-IV dental stone. The adjacent areas of the gap was air-abraded with 100 microm aluminum oxide, laser welded and retested under the same conditions as the initial intact specimens. The number of cycles at failure was recorded, and the fracture surface was examined with a scanning electron microscope (SEM). The number of cycles for failure of the welded and intact specimens was compared by anova and the Tukey test at a 5% probability level. Within the limitations of this study, the number of cycles required for fracture decreased in wet environments and the laser repairing process adversely affected the life of both metals under the corrosion-fatigue conditions.

  3. Formation of TiO2 layers on commercially pure Ti and Ti-Mo and Ti-Nb alloys by two-step thermal oxidation and their photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sado, Shota; Ueda, Takatoshi; Ueda, Kyosuke; Narushima, Takayuki

    2015-12-01

    Anatase-containing TiO2 layers were formed on commercially pure (CP) Ti and Ti-25mass%Mo (Ti-25Mo) and Ti-25mass%Nb (Ti-25Nb) alloys by two-step thermal oxidation. The first-step treatment was conducted in an Ar-1%CO atmosphere at 1073 K for 3.6 ks, and the second-step treatment was conducted in air at 673-1073 K for 10.8 ks. The second-step temperature range for anatase formation was wider in the Ti alloys than in CP Ti. Photo-induced superhydrophilicity under UV irradiation was observed for the TiO2 layers with anatase fractions ≥0.6 on CP Ti and the Ti-25Mo alloy, and with anatase fractions ≥0.18 on the Ti-25Nb alloy. The TiO2 layers on the Ti-25Nb alloy exhibited excellent photocatalytic activity in the low anatase fraction region, which is considered to be caused by the incorporation of 1-3 at% Nb into the TiO2 layers. The rate constant of methylene blue degradation showed maxima at anatase fractions of 0.6-0.9.

  4. Commercialization of nickel and iron aluminides

    SciTech Connect

    Sikka, V.K.

    1996-12-31

    Metallurgists are taught that intermetallics are brittle phases and should be avoided in alloys of commercial interest. This education is so deeply rooted that irrespective of significant advances made in ductilization of aluminides,the road to their acceptance commercialization is extremely difficult. This paper identifies the requirements for commercialization of any new alloys and reports the activities carried out to commercialize Ni and Fe aluminides. The paper also identifies areas which meet the current commercialization requirements and areas needing additional effort.

  5. Production of aluminum-silicon alloy and ferrosilicon and commercial-purity aluminum by the direct-reduction process. Third annual technical report, 1980 January 1-1980 December 31

    SciTech Connect

    Bruno, M.J.

    1981-01-01

    Progress on the program to demonstrate the technical feasibility of a pilot-sized Direct Reduction Process for producing aluminium and aluminium-silicon alloy is reported for Phase C. Progress is reported on reduction including the following tasks: supply burden material; burden beneficiation; effects of pilot operating parameters; pilot modifications; reactor scale-up design; calculating heat and mass balance; processing mathematical modeling; effects of process variables; information on supportive analytical, phase identification, and mechanical engineering data. Progress on alloy purification is reported in the following tasks: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; and supportive mechanical engineering. Progress on purification to commercial grade aluminum is reported on: pilot unit installation; effects of pilot operating parameters; pilot unit modifications; support pilot operations; and supportive expended man-hours. Plans for Phase D are noted. (MCW)

  6. Improving the toughness of ultrahigh strength steel

    SciTech Connect

    Soto, Koji

    2002-01-01

    The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the toughening mechanism of the Fe/Co/Ni/Cr/Mo/C steel, AerMet 100, which has the highest toughness/strength combination among all commercial ultrahigh strength steels. The possibility of improving the toughness of this steel was examined by considering several relevant factors.

  7. Effect of shot peening and grain refinement on the fatigue life and strength of commercially pure Al and two of its alloys: Al-2024-T3 and Al-7075-T6

    NASA Astrophysics Data System (ADS)

    Qandil, A.; Zaid, Adnan I. O.

    2016-08-01

    Aluminum and its alloys are widely used materials in automobile, aircraft and space craft industries due to their high strength- to- weight ratio and corrosion resistance beside their other useful properties. They are the second materials in use after steel alloys. Most of the failures in parts of aircrafts and space vehicles are mainly caused by fatigue and stress corrosion cracking. In this paper, the effect of shot peening on the fatigue life of commercially pure aluminumand two of its alloys namely:Al-2024 and Al-7075-T6 is presented and discussed. Furthermore, the effect of addition of vanadium to Al and Al grain refined by Ti and Ti+Bon Its fatigue life and strengthis also presented and discussed using scanning electron microscope, SEM. It was that shot peening and the addition of V toAl and Al onAl grain refined by Ti and Ti+B have resulted in enhancement of the fatigue life and strength. Ffinally, the effect of shot peening on the surface quality of the peened parts is also presented and discussed.

  8. Corrosion of Stainless-Steel Tubing in a Spacecraft Launch Environment

    NASA Technical Reports Server (NTRS)

    Barile, Ronald G.; MacDowell, Louis G.; Curran, Joe; Calle, Luz Maria; Hodge, Timothy

    2001-01-01

    This is a report of exposure of various metal tubing to oceanfront launch environments. The objective is to examine various types of corrosion-resistant tubing for Space Shuttle launch sites. The metals were stainless steels (austenitic, low-carbon, Mo-alloy, superaustenitic, duplex, and superferritic), Ni-Cr-Mo alloy, Ni-Mo-Cr-Fe-W alloy, and austenitic Ni-base superalloy.

  9. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase D, January 1-March 31, 1981

    SciTech Connect

    Bruno, M.J.

    1981-04-01

    Operation of the bench AF-reactor on burden with all reducing carbon exterior to the ore pellet resulted in low metal alloy product yields and prematurely terminated runs, indicating the need for intimate contact between alumina and carbon to produce oxycarbide liquid prior to reaction with solid silicon carbide. Carbon solubility tests made on 60Al-40Si alloys at 2200/sup 0/C in graphite crucibles indicated continued reaction to form SiC for one hour. Efficiency of reduction to SiC ranged from 68 to 100%. The A-C two-electrode submerged arc reactor pilot, SAR-II, was successfully operated on both alumina-clay-coke and alumina-silicon carbide-coke (from the VSR prereduction) burdens. Metal alloy was produced and tapped in each of four runs. The pilot crystallizer was operated to evalute the two-stage (stop and go) crystallization technique on obtaining high yields of Al in Al-Si eutectic, with a limit of 1.0% Fe and 0.1% Ti in the alloy product. 18 figures, 19 tables. (DLC)

  10. Environmental degradation and life time prediction of low alloy steam turbine rotor steels

    SciTech Connect

    Magdowski, R.; Speidel, M.O.

    1995-12-31

    The effect of stress intensity, yield strength and temperature on the growth rates of stress corrosion cracks in 3.5NiCrMoV and other steam turbine rotor steels has been reassessed. It is shown that from 60 C to 170 C the upper limit of laboratory test results in deaerated water coincides with the upper limit of stress corrosion service experience with steam turbine rotors in the field. This permits a conservative estimate of the residual lifetime of cracked components on the basis of laboratory test results.

  11. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  12. Aluminum and its light alloys

    NASA Technical Reports Server (NTRS)

    Merica, Paul D

    1920-01-01

    Report is a summary of research work which has been done here and abroad on the constitution and mechanical properties of the various alloy systems with aluminum. The mechanical properties and compositions of commercial light alloys for casting, forging, or rolling, obtainable in this country are described.

  13. Study of Magnetic Alloys: Critical Phenomena.

    DTIC Science & Technology

    MAGNETIC ALLOYS, TRANSPORT PROPERTIES), ELECTRICAL RESISTANCE, SEEBECK EFFECT , MAGNETIC PROPERTIES, ALUMINUM ALLOYS, COBALT ALLOYS, GADOLINIUM ALLOYS, GOLD ALLOYS, IRON ALLOYS, NICKEL ALLOYS, PALLADIUM ALLOYS, PLATINUM ALLOYS, RHODIUM ALLOYS

  14. Effect of Concurrent Precipitation on Recrystallization and Evolution of the P-Texture Component in a Commercial Al-Mn Alloy

    NASA Astrophysics Data System (ADS)

    Tangen, S.; Sjølstad, K.; Furu, T.; Nes, E.

    2010-11-01

    The recrystallization behavior of a cold-rolled Al-Mn alloy was investigated, focusing on the effect of concurrent precipitation on nucleation and growth of recrystallization and the formation of the P- left( {left\\{ {011} right\\}left< {111} rightrangle } right) and ND-rotated cube left( {left\\{ {001} right\\}left< {310} rightrangle } right) texture components. It was observed that if precipitation took place prior to or simultaneously with recovery and recrystallization processes, i.e., by concurrent precipitation, this resulted in a delayed recrystallization, a coarse and elongated grain structure, and an unusually sharp P-texture component. The P-texture component sharpened with increasing initial cold rolling reduction, increasing initial supersaturation of Mn, and decreasing annealing temperature. The P- and ND-rotated cube nucleation sites have an initial growth advantage compared to the particle-stimulated nucleation (PSN) sites due to their 40 deg left< {111} rightrangle -rotation relationship to the Cu component of the deformation texture. The boundaries between such sites and the surrounding matrix will be of the Σ7 type, and it is assumed that such highly perfect boundaries will be less affected by solute segregation and precipitation, resulting in early growth advantage. It was further observed that dispersoids present prior to cold rolling and annealing had a weaker effect on the recrystallized grain size and texture compared to concurrent precipitation, even though the average dispersoid density was higher in the pre-precipitation cases. The finer grain size was explained by the wider dispersoid free zones surrounding the large constituent particles compared to the concurrent precipitation cases. Subsequent growth of the nucleated grains, however, was more hindered due to the Zener drag, consistent with the higher dispersoid densities.

  15. European Conference on Advanced Materials and Processes Held in Aachen, Federal Republic of Germany on November 22-24 1989. Abstracts

    DTIC Science & Technology

    1989-11-24

    properties. The pyrolitic carbon and others turbostratic forms, are, with no doubt, going to play an increasing role in future developments of the implantology ...i____________________________________________ See programe, page 29. EFFECT OF MO-CONTENT AND PH ON PITTING CORROSION OF NI-CR-MO DENTAL ...which PITTING have been measured for 4 the mouth, that the pitting potential EP of 2 dental alloys should not lie under 0.3 95% ilo-al of confldenc V

  16. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  17. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    SciTech Connect

    Kad, Bimal; Dryepondt, Sebastien N; Jones, Andy R.; Vito, Cedro III; Tatlock, Gordon J; Pint, Bruce A; Tortorelli, Peter F; Rawls, Patricia A.

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  18. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  19. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  20. Magnesium and magnesium alloys

    SciTech Connect

    Avedesian, M.; Baker, H.

    1998-12-31

    This new handbook is the most comprehensive publication of engineering information on commercial magnesium alloys under one cover in the last sixty years. Prepared with the cooperation of the International Magnesium Association, it presents the industrial practices currently used throughout the world, as well as the properties of the products critical to their proper application. Contents include: general characteristics; physical metallurgy; melting, refining, alloying, recycling, and powder production; casting; heat treatment; forging, rolling, and extrusion; semisolid processing; forming; joining; cleaning and finishing; selection, application, and properties of grades and alloys; design considerations; mechanical behavior and wear resistance; fatigue and fracture-mechanics; high-temperature strength and creep; corrosion and stress-corrosion cracking; specification.

  1. Commercial Crew

    NASA Video Gallery

    Phil McAlister delivers a presentation by the Commercial Crew (CC) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to...

  2. Space Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  3. Damping in Ferrous Shape Memory Alloys

    DTIC Science & Technology

    1993-08-01

    time it has been proposed that the solution lies in the approach of energy dissipation by using metallic structural materials which have inherent...and automotive manufacturing plants, has never achieved commercial producton . 1-b. Ferromagnetic alloys, such as Fe-Cr alloys High damping Fe-Cr alloys...Pre-exsiring mar~en-si,ýe worms orwie treenred orieL a ion ! A Lr cow s SL AL 14- L AL Figure 26. Schematic illustration of various processes involved

  4. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  5. Electrochemical Corrosion Testing of Neutron Absorber Materials

    SciTech Connect

    Tedd Lister; Ron Mizia; Arnold Erickson; Tammy Trowbridge

    2007-05-01

    This report summarizes the results of crevice-corrosion tests for six alloys in solutions representative of ionic compositions inside the Yucca Mountain waste package should a breech occur. The alloys in these tests are Neutronit A978a (ingot metallurgy, hot rolled), Neutrosorb Plus 304B4 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B5 Grade Ab (powder metallurgy, hot rolled), Neutrosorb Plus 304B6 Grade Ab (powder metallurgy, hot rolled), Ni-Cr-Mo-Gd alloy2 (ingot metallurgy, hot rolled), and Alloy 22 (ingot metallurgy, hot rolled).

  6. Environmentally Assisted Cracking of Nickel Alloys - A Review

    SciTech Connect

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  7. Casting alloys.

    PubMed

    Wataha, John C; Messer, Regina L

    2004-04-01

    Although the role of dental casting alloys has changed in recent years with the development of improved all-ceramic materials and resin-based composites, alloys will likely continue to be critical assets in the treatment of missing and severely damaged teeth. Alloy shave physical, chemical, and biologic properties that exceed other classes of materials. The selection of the appropriate dental casting alloy is paramount to the long-term success of dental prostheses,and the selection process has become complex with the development of many new alloys. However, this selection process is manageable if the practitioner focuses on the appropriate physical and biologic properties, such as tensile strength, modulus of elasticity,corrosion, and biocompatibility, and avoids dwelling on the less important properties of alloy color and short-term cost. The appropriate selection of an alloy helps to ensure a longer-lasting restoration and better oral health for the patient.

  8. Commercial Fishing.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational Education.

    This document is a curriculum framework for a program in commercial fishing to be taught in Florida secondary and postsecondary institutions. This outline covers the major concepts/content of the program, which is designed to prepare students for employment in occupations with titles such as net fishers, pot fishers, line fishers, shrimp boat…

  9. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  10. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  11. Determination of hydrogen permeability in commercial and modified superalloys

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1983-01-01

    The results of hydrogen permeability measurements on several iron- and cobalt-base alloys as well as on two long-ranged ordered alloys over the range of 705 to 870 C (1300 to 1600 F) are summarized. The test alloys included wrought alloys N-155, IN 800, A-286, 19-9DL, and 19-9DL modifications with aluminum, niobium, and misch metal. In addition, XF-818, CRM-6D, SA-F11, and HS-31 were evaluated. Two wrought long-range ordered alloys, Ni3Al and (Fe,Ni)3(V,Al) were also evaluated. All tests were conducted at 20.7 MPa pressure in either pure and/or 1% CO2-doped H2 for test periods as long as 133 h. Detailed analyses were conducted to determine the relative permeability rankings of these alloys and the effect of doping, exit surface oxidation, specimen design variations, and test duration on permeability coefficient, and permeation activation energies were determined. The two long-range ordered alloys had the lowest permeability coefficients in pure H2 when compared with the eight commercial alloys and their modifications. With CO2 doping, significant decrease in permeability was observed in commercial alloys--no doped tests were conducted with the long-range ordered alloys.

  12. PILOT EVALUATION OF VANADIUM ALLOYS.

    DTIC Science & Technology

    ARCS, SHEETS, ROLLING(METALLURGY), HIGH TEMPERATURE, SCIENTIFIC RESEARCH, COMPRESSIVE PROPERTIES, DUCTILITY, CREEP, OXIDATION, COATINGS , SILICIDES , HARDNESS, WELDING, EXTRUSION, TANTALUM ALLOYS, MOLYBDENUM ALLOYS....VANADIUM ALLOYS, * NIOBIUM ALLOYS, MECHANICAL PROPERTIES, MECHANICAL PROPERTIES, TITANIUM ALLOYS, ZIRCONIUM ALLOYS, CARBON ALLOYS, MELTING, ELECTRIC

  13. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  14. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  15. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  16. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  17. Commercial Capaciflector

    NASA Astrophysics Data System (ADS)

    Vranish, John M.

    1991-12-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  18. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  19. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. First interim technical report, Phase C for the period 1980 January 1-1980 March 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    Pilot reactor VSR-3 was operated with 75 to 120 SCFH O/sub 2/ to supply part of the process heat requirements by combustion of coke. No alloy was made and burden bridging persistently stopped operations. Burning larger coke particles, -3/8 in. +6 mesh, with O/sub 2/ injected through a larger diameter tuyere orifice resulted in oxygen attack on the reactor graphite liner. Updated thermochemical data for Al/sub 2/O/sub 3/ significantly changed the calculated reflux loading for a one-atm blast furnace, predicting almost total reflux and no alloy recovery. Based on these calculations and the experimental problems with combustion heated operation, VSR-3 was modified to study an alternate reduction concept - the blast-arc - which utilizes combustion heat to reduce SiO/sub 2/ to SiC at 1600/sup 0/C, and electrical heat to complete the reduction of Al/sub 2/O/sub 3/ and the production of alloy. Design, fabrication, and installation of most of the pilot crystallizer sytem was completed.

  20. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  1. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  2. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  3. Processing, properties, and applications of Ni{sub 3}Al-based alloys

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Liu, C.T.

    1997-06-01

    The Ni{sub 3}Al-based alloys represent a quantum jump in advanced alloys for structural applications at elevated temperatures. These alloys offer benefits of oxidation, carburization, and chlorination resistance, and significantly higher strength than many commercially used alloys. The commercial applications of the Ni{sub 3}Al-based alloys have begun to occur because of their comprehensive development This paper is to provide a review of. (1) alloy development, (2) melting, casting, and processing of alloys, (3) property data, (4) welding process and weldment properties, and (5) case histories of current applications. It is concluded that the cast alloy IC-221M is on its way to commercialization. 22 refs., 8 figs., 2 tabs.

  4. Corrosion of candidate container materials by Yucca Mountain bacteria

    SciTech Connect

    Horn, J; Jones, D; Lian, T; Martin, S; Rivera, A

    1999-12-10

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  5. Corrosion of dental copper, nickel, and gold alloys in artificial saliva and saline solutions.

    PubMed

    Johansson, B I; Lemons, J E; Hao, S Q

    1989-09-01

    The purpose of this investigation was to study the tarnish and corrosion of three commercial copper alloys, three experimental copper alloys, two nickel alloys, and one high-gold alloy by exposing the specimens for four weeks to artificial saliva and saline solutions. Half of the specimens were brushed, and the solutions were changed regularly. The copper-based and the beryllium-containing nickel alloys exhibited significant surface alterations after exposure to either solution. The potential of elevated release of ions to the oral cavity and to the target organs by some of the investigated alloys should be considered if dental usage of these alloys is to be extended.

  6. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  7. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  8. Development and Processing Improvement of Aerospace Aluminum Alloys-Development of AL-Cu-Mg-Ag Alloy (2139)

    NASA Technical Reports Server (NTRS)

    Cho, Alex; Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report supplement in presentation format describes a comprehensive multi-tasked contract study to continue the development of the silver bearing alloy now registered as aluminum alloy 2139 by the Aluminum Association. Two commercial scale ingots were processed into nominal plate gauges of two, four and six inches, and were extensively characterized in terms of metallurgical and crystallographic structure, and resulting mechanical properties. This report includes comparisons of the property combinations for this alloy and 2XXX and 7XXX alloys more widely used in high performance applications. Alloy 2139 shows dramatic improvement in all combinations of properties, moreover, the properties of this alloy are retained in all gauge thicknesses, contrary to typical reductions observed in thicker gauges of the other alloys in the comparison. The advancements achieved in this study are expected to result in rapid, widespread use of this alloy in a broad range of ground based, aircraft, and spacecraft applications.

  9. Commercial applications

    NASA Astrophysics Data System (ADS)

    The near term (one to five year) needs of domestic and foreign commercial suppliers of radiochemicals and radiopharmaceuticals for electromagnetically separated stable isotopes are assessed. Only isotopes purchased to make products for sale and profit are considered. Radiopharmaceuticals produced from enriched stable isotopes supplied by the Calutron facility at ORNL are used in about 600,000 medical procedures each year in the United States. A temporary or permanent disruption of the supply of stable isotopes to the domestic radiopharmaceutical industry could curtail, if not eliminate, the use of such diagnostic procedures as the thallium heart scan, the gallium cancer scan, the gallium abscess scan, and the low radiation dose thyroid scan. An alternative source of enriched stable isotopes exist in the USSR. Alternative starting materials could, in theory, eventually be developed for both the thallium and gallium scans. The development of a new technology for these purposes, however, would take at least five years and would be expensive. Hence, any disruption of the supply of enriched isotopes from ORNL and the resulting unavailability of critical nuclear medicine procedures would have a dramatic negative effect on the level of health care in the United States.

  10. Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy (Preprint)

    DTIC Science & Technology

    2012-03-01

    occurred during oxidation. The alloy has a better combination of mechanical properties and oxidation resistance than commercial Nb alloys and earlier...properties and oxidation resistance than commercial Nb alloys and earlier reported developmental Nb-Si-Al-Ti and Nb-Si-Mo alloys. Keywords: Refractory...made from Ni-based superalloys, as these alloys have the best combination of required properties, such as creep resistance , temperature capability

  11. Rapidly Solidified Oxidation Resistant Niobium Base Alloys

    DTIC Science & Technology

    1992-03-01

    107 Figure 4.25 Graph showing the weight change / area versus time for Nb-Ti alioys, commercial Nb alloys and Rene ’ 41 during the 800’C...properties with better oxidation resistance than Nb alloys ............................. J09 Figure 4.29 Cross sectional optical micrographs of Rene ’ 41 ...186 Figure 5.58 Optical cross sectional micrographs of etched Rene ’ 41 after 760*C cyclic oxidation and hardness testing. A

  12. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Second annual technical report for the period 1978 September 1-1979 December 31

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    A new computer program was developed for simultaneously solving heat and mass balance at steady state for a flowing one-dimensional chemical reactor. Bench scale reactor results confirmed that minimum final stage reaction temperature is 1950 to 2000/sup 0/C, depending on the Fe/sub 2/O/sub 3/ concentration in the burden. Additions of Fe/sub 2/O/sub 3/ to the charge produced significant increase in metallic yield. A new bench reactor was designed, built, and operated to facilitate semi-continuous operation, using O/sub 2/ injection to burn coke supporting the burden, resulting in burden movement. Validity of the equipment and test procedures was demonstrated by successfully operating the reactor as an iron blast furnace at 1500/sup 0/C. Bench scale fractional crystallizer runs were continued to determine the impurity effects of Fe up to 6.9% and Ti up to 1.25% on alloy product purity and yield. High initial impurity concentrations resulted in less pure Al-Si product and product yield below 50% due to Al and Si losses as Fe-Si-Al and Ti-Si-Al intermetallics. Long term testing was continued in the large bench scale membrane cell to evaluate woven cloth membrane and other construction materials, operating procedures, and effects of operating parameters on cell performance. Included in the latter were starting alloy composition, current density, anode-cathode spacing, and electrolyte composition.

  13. Recent advances and developments in refractory alloys

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.

    1993-11-01

    Refractory metal alloys based on Mo, W, Re, Ta, and Nb (Cb) find applications in a wide range of aerospace applications because of their high melting points and high-temperature strength. This paper, presents recent progress in understanding and applications of these alloys. Recent studies to improve the oxidation and mechanical behavior of refractory metal alloys, and particularly Nb alloys, are also discussed. Some Re structures, for extremely high temperature applications (> 2000C), made by CVD and P/M processes, are also illustrated. Interesting work on the development of new W alloys (W-HfC-X) and the characterization of some commercial refractory metals, e.g., K-doped W, TZM, and Nb-1%Zr, continues. Finally, recent developments in high temperature composites reinforced with refractory metal filaments, and refractory metal-based intermetallics, e.g., Nb{sub 3}Al, Nb{sub 2}Be{sub 17}, and MoSi{sub 2}, are briefly described.

  14. Development of Advanced Alloys using Fullerenes

    NASA Technical Reports Server (NTRS)

    Sims, J.; Wasz, M.; O'Brien, J.; Callahan, D. L.; Barrera, E. V.

    1994-01-01

    Development of advanced alloys using fullerenes is currently underway to produce materials for use in the extravehicular mobility unit (EMU). These materials will be directed toward commercial usages as they are continually developed. Fullerenes (of which the most common is C(sub 60)) are lightweight, nanometer size, hollow molecules of carbon which can be dispersed in conventional alloy systems to enhance strength and reduce weight. In this research, fullerene interaction with aluminum is investigated and a fullerene-reinforced aluminum alloy is being developed for possible use on the EMU. The samples were manufactured using standard commercial approaches including powder metallurgy and casting. Alloys have been processed having 1.3, 4.0 and 8.0 volume fractions of fullerenes. It has been observed that fullerene dispersion is related to the processing approach and that they are stable for the processing conditions used in this research. Emphasis will be given to differential thermal analysis and wavelength dispersive analysis of the processed alloys. These two techniques are particularly useful in determining the condition of the fullerenes during and after processing. Some discussion will be given as to electrical properties of fullerene-reinforced materials. Although the aluminum and other advanced alloys with fullerenes are being developed for NASA and the EMU, the properties of these materials will be of interest for commercial applications where specific Dual-Use will be given.

  15. Initial cytotoxicity of novel titanium alloys.

    PubMed

    Koike, M; Lockwood, P E; Wataha, J C; Okabe, T

    2007-11-01

    We assessed the biological response to several novel titanium alloys that have promising physical properties for biomedical applications. Four commercial titanium alloys [Super-TIX(R) 800, Super-TIX(R) 51AF, TIMETAL(R) 21SRx, and Ti-6Al-4V (ASTM grade 5)] and three experimental titanium alloys [Ti-13Cr-3Cu, Ti-1.5Si and Ti-1.5Si-5Cu] were tested. Specimens (n = 6; 5.0 x 5.0 x 3.0 mm(3)) were cast in a centrifugal casting machine using a MgO-based investment and polished to 600 grit, removing 250 mum from each surface. Commercially pure titanium (CP Ti: ASTM grade 2) and Teflon (polytetrafluoroethylene) were used as positive controls. The specimens were cleaned and disinfected, and then each cleaned specimen was placed in direct contact with Balb/c 3T3 fibroblasts for 72 h. The cytotoxicity [succinic dehydrogenase (SDH) activity] of the extracts was assessed using the MTT method. Cytotoxicity of the metals tested was not statistically different compared to the CP Ti and Teflon controls (p > 0.05). These novel titanium alloys pose cytotoxic risks no greater than many other commonly used alloys, including commercially pure titanium. The promising short-term biocompatibility of these Ti alloys is probably due to their excellent corrosion resistance under static conditions, even in biological environments.

  16. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  17. Thermal aging effects in refractory metal alloys

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  18. Microstructure Development and Characteristics of Semisolid Aluminum Alloys

    SciTech Connect

    Merton Flemings; srinath Viswanathan

    2001-05-15

    A drop forge viscometer was employed to investigate the flow behavior under very rapid compression rates of A357, A356 diluted with pure aluminum and Al-4.5%Cu alloys. The A357 alloys were of commercial origin (MHD and SIMA) and the rheocast, modified A356 and Al-4.5Cu alloys were produced by a process developed at the solidification laboratory of MIT.

  19. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

  20. Metallography of Aluminum and Its Alloys : Use of Electrolytic Polishing

    NASA Technical Reports Server (NTRS)

    Jacquet, Pierre A

    1955-01-01

    Recent methods are described for electropolishing aluminum and aluminum alloys. Numerous references are included of electrolytic micrographic investigations carried out during the period 1948 to 1952. A detailed description of a commercial electrolytic polishing unit, suitable for micrographic examination of aluminum and its alloys, is included.

  1. Oxidation of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1982-01-01

    Four high temperature alloys: U-700, Mar M-247, Waspaloy and PM/HIP U-700 were modified with various cobalt levels ranging from 0 percent to their nominal commercial levels. The alloys were then tested in cyclic oxidation in static air at temperatures ranging from 1000 to 1150 C at times from 500 to 100 1 hour cycles. Specific weight change with time and X-ray diffraction analyses of the oxidized samples were used to evaluate the alloys. The alloys tend to be either Al2O3/aluminate spinel or Cr2O3/chromite spinel formers depending on the Cr/Al ratio in the alloy. Waspaloy with a ratio of 15:1 is a strong Cr2O3 former while this U-700 with a ratio of 3.33:1 tends to form mostly Cr2O3 while Mar M-247 with a ratio of 1.53:1 is a strong Al2O3 former. The best cyclic oxidation resistance is associated with the Al2O3 formers. The cobalt levels appear to have little effect on the oxidation resistance of the Al2O3/aluminate spinel formers while any tendency to form Cr2O3 is accelerated with increased cobalt levels and leads to increased oxidation attack.

  2. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.

  3. Method for producing La/Ce/MM/Y base alloys, resulting alloys and battery electrodes

    SciTech Connect

    Gschneidner, Jr., Karl A.; Schmidt, Frederick A.

    2016-12-20

    A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels, cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.

  4. Comparison of the Fatigue Behavior of Copper Alloys

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Ellis, David

    2006-01-01

    This presentation is about the development of advanced copper alloys with high thermal conductivity, good creep strength, and adequate fatigue strength for rocket engine applications. It also focuses on the commercial availability of the advanced alloy-GRCop-84 developed at NASA-GRC. The presentation's conclusions are that GRCop-84 has equivalent or better isothermal fatigue lives compared to other commercially available copper alloys, that GRCop-84 can be fabricated in various forms with minimal change in the fatigue lives, that it is equivalent in sothermal, fatigue to AMZIRC at moderate temperatures, and that Narloy-Z is equivalent in fatigue capabilities to GRCop-84 at 400C and below.

  5. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  6. Commercial nickel-metal hydride (Ni-MH) technology evaluation

    SciTech Connect

    Erbacher, J.K.; Vukson, S.P.

    1997-12-01

    Available cylindrical and prismatic commercial Ni-MH batteries using AB{sub 5} and AB{sub 2} cathodes were evaluated for possible application to military aircraft batteries. Commercial AB{sub 5} technology is further advanced than AB{sub 2} technology and would require less alloy, electrolyte and single cell/battery development for near term (3--5 years) applications. Tested AB{sub 2} technology appears inadequate to meet the near term military requirements and would require a major development in the alloy to overcome the irreversible capacity loss at temperatures above 49 C.

  7. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  8. Fatigue - corrosion of endoprosthesis titanium alloys.

    PubMed

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  9. An electrochemical and multispectroscopic study of corrosion of Ag-Pd-Cu-Au alloys.

    PubMed

    Niemi, L; Minni, E; Ivaska, A

    1986-06-01

    Corrosion of a multi-phase Ag-Pd-Cu-Au-based commercial dental casting alloy and a Cu-Pd-rich and Ag-rich single-phase alloy was studied by open-circuit potential measurements, atomic absorption spectrometry, and electron spectroscopy. The alloys were immersed in an artificial saliva solution for 24 hr while the open-circuit potentials of the alloys were measured. The potentials were found to stabilize at certain levels after a steep rise during the first hours of the experiment. Cu was found to dissolve considerably from the Cu-Pd-rich alloy, with simultaneous enrichment of Pd in the surface layer of the alloy. Ag dissolved slightly from the Ag-rich alloy, but both Cu and Ag were found to dissolve from the multi-phase alloy. Neither Pd nor Au dissolved from any of the alloys studied.

  10. Commercial Buildings Characteristics, 1992

    SciTech Connect

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  11. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  12. Noble metal alloys for metal-ceramic restorations.

    PubMed

    Anusavice, K J

    1985-10-01

    A review of the comparative characteristics and properties of noble metal alloys used for metal-ceramic restorations has been presented. Selection of an alloy for one's practice should be based on long-term clinical data, physical properties, esthetic potential, and laboratory data on metal-ceramic bond strength and thermal compatibility with commercial dental porcelains. Although gold-based alloys, such as the Au-Pt-Pd, Au-Pd-Ag, and Au-Pd classes, may appear to be costly compared with the palladium-based alloys, they have clearly established their clinical integrity and acceptability over an extended period of time. Other than the relatively low sag resistance of the high gold-low silver content alloys and the potential thermal incompatibility with some commercial porcelain products, few clinical failures have been observed. The palladium-based alloys are less costly than the gold-based alloys. Palladium-silver alloys require extra precautions to minimize porcelain discoloration. Palladium-copper and palladium-cobalt alloys may also cause porcelain discoloration, as copper and cobalt are used as colorants in glasses. The palladium-cobalt alloys are least susceptible to high-temperature creep compared with all classes of noble metals. Nevertheless, insufficient clinical data exist to advocate the general use of the palladium-copper and palladium-cobalt alloys at the present time. One should base the selection and use of these alloys in part on their ability to meet the requirements of the ADA Acceptance Program. A list of acceptable or provisionally acceptable alloys is available from the American Dental Association and is published annually in the Journal of the American Dental Association. Dentists have the legal and ethical responsibility for selection of alloys used for cast restorations. This responsibility should not be delegated to the dental laboratory technician. It is advisable to discuss the criteria for selection of an alloy with the technician and the

  13. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    PubMed Central

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-01-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections. PMID:27897182

  14. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.

    PubMed

    Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F

    2016-11-29

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  15. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  16. Characterization of the sodium corrosion behavior of commercial austenitic steels

    SciTech Connect

    Shiels, S.A.; Bagnall, C.; Keeton, A.R.; Witkowski, R.E.; Anantatmula, R.P.

    1980-01-01

    During the course of an on-going evaluation of austenitic alloys for potential liquid metal fast breeder reactor (LMFBR) fuel pin cladding application, a series of commercial alloys was selected for study. The data obtained led to the recognition of an underlying pattern of behavior and enabled the prediction of surface chemistry changes. The changes in surface topographical development from alloy to alloy are shown and the important role played by the element molybdenum in this development is indicated. The presentation also illustrates how a total damage equation was evolved to encompass all aspects of weight loss and metal/sodium interactions: wall thinning ferrite layer formation and intergranular attack. The total damage equation represents a significant departure from the classical description of sodium corrosion in which weight loss is simply translated into wall thinning.

  17. Bond strength of binary titanium alloys to porcelain.

    PubMed

    Yoda, M; Konno, T; Takada, Y; Iijima, K; Griggs, J; Okuno, O; Kimura, K; Okabe, T

    2001-06-01

    The purpose of this study was to investigate the bond strength between porcelain and experimental cast titanium alloys. Eleven binary titanium alloys were examined: Ti-Cr (15, 20, 25 wt%), Ti-Pd (15, 20, 25 wt%), Ti-Ag (10, 15, 20 wt%), and Ti-Cu (5, 10 wt%). As controls, the bond strengths for commercially pure titanium (KS-50, Kobelco, Japan) and a high noble gold alloy (KIK, Ishifuku, Japan) were also examined. Castings were made using a centrifugal casting unit (Ticast Super R, Selec Co., Japan). Commercial porcelain for titanium (TITAN, Noritake, Japan) was applied to cast specimens. The bond strengths were evaluated using a three-point bend test according to ISO 9693. Since the elastic modulus value is needed to evaluate the bond strength, the modulus was measured for each alloy using a three-point bend test. Results were analyzed using one-way ANOVA/S-N-K test (alpha = 0.05). Although the elastic moduli of the Ti-Pd alloys were significantly lower than those of other alloys (p = 0.0001), there was a significant difference in bond strength only between the Ti-25Pd and Ti-15Ag alloys (p = 0.009). The strengths determined for all the experimental alloys ranged from 29.4 to 37.2MPa, which are above the minimum value required by the ISO specification (25 MPa).

  18. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  19. Commercial Banking Industry Survey.

    ERIC Educational Resources Information Center

    Bright Horizons Children's Centers, Cambridge, MA.

    Work and family programs are becoming increasingly important in the commercial banking industry. The objective of this survey was to collect information and prepare a commercial banking industry profile on work and family programs. Fifty-nine top American commercial banks from the Fortune 500 list were invited to participate. Twenty-two…

  20. Commercialization of Nanotechnology

    DTIC Science & Technology

    2007-03-01

    NATO LECTURES M. Meyyappan Commercialization of Nanotechnology Abstract Nanotechnology is an enabling technology and as such, will have an...years), medium term (10 years) and long term (> 15 years) prospects. In addition, the challenges currently being faced to commercialize nanotechnology...will be discussed in detail. A summary outlining efforts across the world in terms of commercialization , startup activities, participation of major

  1. Commercial Radio as Communication.

    ERIC Educational Resources Information Center

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  2. COMMERCIAL FOODS, MATHEMATICS - I.

    ERIC Educational Resources Information Center

    DORNFIELD, BLANCHE E.

    THE UNDERSTANDING AND MASTERY OF FUNDAMENTAL MATHEMATICS IS A NECESSARY PART OF COMMERCIAL FOODS WORK. THIS STUDENT HANDBOOK WAS DESIGNED TO ACCOMPANY A COMMERCIAL FOODS COURSE AT THE HIGH SCHOOL LEVEL FOR STUDENTS WITH APPROPRIATE APTITUDES AND COMMERCIAL FOOD SERVICE GOALS. THE MATERIAL, TESTED IN VARIOUS INTERESTED CLASSROOMS, WAS PREPARED BY…

  3. NOREM wear-resistant, iron-based hard-facing alloys: Final report

    SciTech Connect

    Grobner, P.; Ohriner, E.K.; Wada, T.; Whelan, E.P.

    1989-07-01

    Wear-resistance cobalt-free hardfacing alloys are needed to replace the cobalt-base alloys used to hardface nuclear valves in order to reduce the exposure of maintenance personnel. Some thirty heats of cast iron-base alloys were prepared and characterized. Selected heats were prepared and applied as hardfacing overlays on austenitic steel substrates using both GTA and PTA welding processes. Some of the iron-base alloys exhibited galling wear resistance as high as that of cobalt-base standards both in the cast condition and in the PTA overlays. Hardness, mechanical properties, and galling wear resistance were determined on weld overlays and on cast alloys. Dilution and thermal expansivity were determined for weld overlays. X-ray diffraction and scanning electron microscopy were used to determine the alloys' microstructures. Other commercially available alloys were tested for galling wear resistance and compared to iron-base alloys. 7 refs., 2 figs., 2 tabs.

  4. Laser Surface Alloying of Copper, Manganese, and Magnesium with Pure Aluminum Substrate

    NASA Astrophysics Data System (ADS)

    Jiru, Woldetinsay G.; Sankar, M. Ravi; Dixit, Uday S.

    2016-03-01

    Laser surface alloying is one of the recent technologies used in the manufacturing sector for improving the surface properties of the metals. Light weight materials like aluminum alloys, titanium alloys, and magnesium alloys are used in the locomotive, aerospace, and structural applications. In the present work, an experimental study was conducted to improve the surface hardness of commercially pure aluminum plate. CO2 laser is used to melt pre-placed powders of pure copper, manganese, and magnesium. Microstructure of alloyed surface was analyzed using optical microscope. The best surface alloying was obtained at the optimum values of laser parameters, viz., laser power, scan speed, and laser beam diameter. In the alloyed region, microhardness increased from 30 HV0.5 to 430 HV0.5, while it was 60 HV0.5 in the heat-affected region. Tensile tests revealed some reduction in the strength and total elongation due to alloying. On the other hand, corrosion resistance improved.

  5. Effectivity of fluoride treatment on hydrogen and corrosion product generation in temporal implants for different magnesium alloys.

    PubMed

    Trinidad, Javier; Arruebarrena, Gurutze; Marco, Iñigo; Hurtado, Iñaki; Sáenz de Argandoña, Eneko

    2013-12-01

    The increasing interest on magnesium alloys relies on their biocompatibility, bioabsorbility and especially on their mechanical properties. Due to these characteristics, magnesium alloys are becoming a promising solution to be used, as temporary implants. However, magnesium alloys must overcome their poor corrosion resistance. This article analyses the corrosion behaviour in phosphate-buffered saline solution of three commercial magnesium alloys (AZ31B, WE43 and ZM21) as well as the influence of fluoride treatment on their corrosion behaviour. It is shown that the corrosion rate of all the alloys is decreased by fluoride treatment. However, fluoride treatment affects each alloy differently.

  6. Controllable galvanic synthesis of triangular Ag-Pd alloy nanoframes for efficient electrocatalytic methanol oxidation.

    PubMed

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Yu, Sijia; Chen, Junze; Liao, Yusen; Xue, Can

    2015-06-08

    Triangular Ag-Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag-Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag-Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag-Pd composition as well as the hollow-framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems.

  7. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.

    PubMed

    Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E

    2012-11-01

    The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained.

  8. Corrosion behavior of novel Ti-24Nb-4Zr-7.9Sn alloy for dental implant applications in vitro.

    PubMed

    Cheng, Yicheng; Hu, Jiang; Zhang, Chunbao; Wang, Zhongyi; Hao, Yulin; Gao, Bo

    2013-02-01

    Ti-24Nb-4Zr-7.9Sn (TNZS) alloy is a newly developed β-titanium alloy considered suitable for dental implant applications due to its low elastic modulus and high strength. The aim of this study was to investigate the corrosion behavior of TNZS alloy through a static immersion test in various simulated physiological solutions, namely, artificial saliva, lactic acid solution, fluoridated saliva, and fluoridated acidified saliva for 7 days. The corrosion behavior of commercially pure titanium and Ti-6Al-4V alloy were also examined for comparison. The elemental release was measured with inductively coupled plasma mass spectroscopy, and the changes of alloy surface were observed with scanning electron microscopy (SEM). The test results showed that the quantity of each metal element released from TNZS alloy into fluoridated solutions was much higher than the solutions without fluoride ions. It was highest in fluoridated acidified saliva and lowest in artificial saliva (p < 0.01). The total elemental release from TNZS alloy was lower than commercially pure titanium and Ti-6Al-4V alloy in the same solution (p < 0.01). SEM micrographs indicated that TNZS alloy possessed better corrosion resistant performance. It can be concluded that fluoridated solutions have a negative influence on the corrosion behavior of TNZS alloy. Compared with commercially pure titanium and Ti-6Al-4V alloy, TNZS alloy demonstrates better corrosion resistance in various simulated physiological solutions, so it has greater potential for dental implant applications.

  9. High Performance Commercial Fenestration Framing Systems

    SciTech Connect

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  10. Surface modification by alkali and heat treatments in titanium alloys.

    PubMed

    Lee, Baek-Hee; Do Kim, Young; Shin, Ji Hoon; Hwan Lee, Kyu

    2002-09-05

    Pure titanium and titanium alloys are normally used for orthopedic and dental prostheses. Nevertheless, their chemical, biological, and mechanical properties still can be improved by the development of new preparation technologies. This has been the limiting factor for these metals to show low affinity to living bone. The purpose of this study is to improve the bone-bonding ability between titanium alloys and living bone through a chemically activated process and a thermally activated one. Two kinds of titanium alloys, a newly designed Ti-In-Nb-Ta alloy and a commercially available Ti-6Al-4V ELI alloy, were used in this study. In this study, surface modification of the titanium alloys by alkali and heat treatments (AHT), alkali treated in 5.0M NaOH solution, and heat treated in vacuum furnace at 600 degrees C, is reported. After AHT, the effects of the AHT on the bone integration property were evaluated in vitro. Surface morphologies of AHT were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Chemical compositional surface changes were investigated by X-ray diffractometry (XRD), energy dispersive spectroscopy (EDS), and auger electron spectroscopy (AES). Titanium alloys with surface modification by AHT showed improved bioactive behavior, and the Ti-In-Nb-Ta alloy had better bioactivity than the Ti-6Al-4V ELI alloy in vitro.

  11. On The Creep Behavior Of Niobium-Modified Zirconium Alloys

    SciTech Connect

    Charit, I.; Murty, K.L.

    2006-07-01

    Zr alloys remain the main cladding materials in most water reactors. Historically, a series of Zircaloys were developed, and two versions, Zircaloy-2 and -4, are still employed in many reactors. The recent trend is to use the Nb-modified zirconium alloys where it has been shown that Nb addition improves cladding performance in various ways, most significant being superior long-term corrosion resistance. Hence, new alloys with Nb additions have recently been developed, such as Zirlo{sup TM(i)} and M5TM{sup (ii)}. Although it is known that creep properties improve, there have been very few data available to precisely evaluate the creep characteristics of new commercial alloys. However, the creep behavior of many Nb-modified zirconium alloys has been studied in several occasions. In this study, we have collected the creep data of these Nb-modified alloys from the open literature as well as our own study over a wide range of stresses and temperatures. The data have been compared with those of conventional Zr and Zircaloys to determine the exact role Nb plays. It has been argued that Nb-modified zirconium alloys would behave as a Class-A alloy (stress exponent of 3) with the Nb atoms forming solute atmospheres around dislocations and thus, impeding dislocation glide under suitable conditions. On the other hand, zirconium and Zircaloys behave as Class-M alloys with a stress exponent of {>=} 4, attesting to the dislocation climb-controlled deformation mode. (authors)

  12. Alloy NASA-HR-1

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Mitchell, Michael

    2005-01-01

    NASA-HR-1 is a high-strength Fe-Ni-base superalloy that resists high-pressure hydrogen environment embrittlement (HEE), oxidation, and corrosion. Originally derived from JBK-75, NASA-HR-1 has exceptional HEE resistance that can be attributed to its gamma-matrix and eta-free (Ni3Ti) grain boundaries. The chemistry was formulated using a design approach capable of accounting for the simultaneous effects of several alloy additions. This approach included: (1) Systematically modifying gamma-matrix compositions based on JBK-75; (2) Increasing gamma (Ni3(Al,Ti)) volume fraction and adding gamma-matrix strengthening elements to obtain higher strength; and (3) Obtaining precipitate-free grain boundaries. The most outstanding attribute of NASA-HR-1 is its ability to resist HEE while showing much improved strength. NASA-HR-1 has approximately 25% higher yield strength than JXK-75 and exhibits tensile elongation of more than 20% with no ductility loss in a hydrogen environment at 5 ksi, an achievement unparalleled by any other commercially available alloy. Its Cr and Ni contents provide exceptional resistance to environments that promote oxidation and corrosion. Microstructural stability was maintained by improved solid solubility of the gamma-matrix, along with the addition of alloying elements to retard eta (Ni3Ti) precipitation. NASA-HR-1 represents a new system that greatly extends the compositional ranges of existing HEE-resistant Fe-Ni-base superalloys.

  13. Potential of an Al-Ti-MgAl2O4 Master Alloy and Ultrasonic Cavitation in the Grain Refinement of a Cast Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sreekumar, V. M.; Babu, N. H.; Eskin, D. G.

    2017-02-01

    A new grain refining master alloy containing MgAl2O4 and Ti was synthesized by in situ reaction of TiO2 particles in an Al-Mg melt. MgAl2O4 particles formed were distributed in the melt by ultrasonic cavitation processing. The obtained master alloy showed considerable (50 pct) grain refining ability in a commercial A357-type Al-Si alloy. Ultrasonication contributed further to 25 pct in the grain refinement. In comparison with a commercial Al-5 pct Ti-1 pct B master alloy, the efficiency of the new master alloy is less at a lower addition rate. Nevertheless, both master alloys performed similarly at higher additions. The strength and ductility of the inoculated and ultrasonicated alloy showed at least a 10 pct and a 50 pct increase, respectively, as compared with non-grain-refined alloy and a similar mechanical performance in comparison with the alloy inoculated with Al-5 pct Ti-1 pct B master alloy.

  14. Thermo-Mechanical Processing Parameters for the INCONEL ALLOY 740

    SciTech Connect

    Ludtka, G.M.; Smith, G.

    2007-11-19

    In 2000, a Cooperative Research and Development Agreement (CRADA) was undertaken between the Oak Ridge National Laboratory (ORNL) and the Special Metals Corporation (SMC) to determine the mechanical property response of the IN740 alloy to help establish thermo-mechanical processing parameters for the use of this alloy in supercritical and ultra-critical boiler tubes with the potential for other end uses. SMC had developed an alloy, commercially known as INCONEL alloy 740, which exhibited various beneficial physical, mechanical, and chemical properties. As part of SMC's on-going efforts to optimize this alloy for targeted boiler applications there was a need to develop an understanding of the thermo-mechanical response of the material, characterize the resulting microstructure from this processing, and possibly, utilize models to develop the appropriate processing scheme for this product.

  15. Development Program for Natural Aging Aluminum Casting Alloys

    SciTech Connect

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  16. The role of metal nanoparticles and nanonetworks in alloy degradation.

    PubMed

    Zeng, Z; Natesan, K; Cai, Z; Darling, S B

    2008-08-01

    Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

  17. Cellular response of titanium and its alloys as implants.

    PubMed

    Bhola, Rahul; Bhola, Shaily M; Mishra, Brajendra; Ayers, Reed; Olson, David L; Ohno, Timothy

    2011-08-01

    The cellular response of osteocytes to commercially pure titanium (α) and its alloys (α + β and β) has been tested in a culture media, and the results have been supplemented by analyses from various techniques such as inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis, X-ray photoemission spectroscopy (XPS), scanning electron microscopy (SEM), metallography, and electrochemical measurements. These results have been correlated with respect to the presence of various alloying elements in these alloys to qualify them for human application. The newer β alloys have been examined for their potential use as implants. These results serve as a preliminary baseline to characterize the best alloy system for a comprehensive long-term investigation.

  18. Casting behavior of titanium alloys in a centrifugal casting machine.

    PubMed

    Watanabe, K; Miyakawa, O; Takada, Y; Okuno, O; Okabe, T

    2003-05-01

    Since dental casting requires replication of complex shapes with great accuracy, this study examined how well some commercial titanium alloys and experimental titanium-copper alloys filled a mold cavity. The metals examined were three types of commercial dental titanium [commercially pure titanium (hereinafter noted as CP-Ti), Ti-6Al-4V (T64) and Ti-6Al-7Nb (T67)], and experimental titanium-copper alloys [3%, 5% and 10% Cu (mass %)]. The volume percentage filling the cavity was evaluated in castings prepared in a very thin perforated sheet pattern and cast in a centrifugal casting machine. The flow behavior of the molten metal was also examined using a so-called "tracer element technique." The amounts of CP-Ti and all the Ti-Cu alloys filling the cavity were similar; less T64 and T67 filled the cavity. However, the Ti-Cu alloys failed to reach the end of the cavities due to a lower fluidity compared to the other metals. A mold prepared with specially designed perforated sheets was effective at differentiating the flow behavior of the metals tested. The present technique also revealed that the more viscous Ti-Cu alloys with a wide freezing range failed to sequentially flow to the end of the cavity.

  19. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2008-01-01

    This slide presentation describes the goals and rules of the workshop on Lunar Commercialization. The goal of the workshop is to explore the viability of using public-private partnerships to open the new space frontier. The bulk of the workshop was a team competition to create a innovative business plan for the commercialization of the moon. The public private partnership concept is reviewed, and the open architecture as an infrastructure for potential external cooperation. Some possible lunar commercialization elements are reviewed.

  20. Regulating Commercial Telephone Solicitations,

    DTIC Science & Technology

    1978-03-01

    also proposed that telephone subscribers be given the right to indicate if they do not want to receive commercial advertising calls , whether from...federal government should prohibit all commercial advertising calls. Advertisers have rights to free speech , and some consumers, I am told , don ’t...of the same arguments against giving subscribers the right to refuse commercial advertising calls that they made in 1965. They have stated that placing

  1. A review of magnetostrictive iron-gallium alloys

    NASA Astrophysics Data System (ADS)

    Atulasimha, Jayasimha; Flatau, Alison B.

    2011-04-01

    A unique combination of low hysteresis, moderate magnetostriction at low magnetic fields, good tensile strength, machinability and recent progress in commercially viable methods of processing iron-gallium alloys make them well poised for actuator and sensing applications. This review starts with a brief historical note on the early developments of magnetostrictive materials and moves to the recent work on FeGa alloys and their useful properties. This is followed by sections addressing the challenges specific to the characterization and processing of FeGa alloys and the state of the art in modeling their actuation and sensing behavior.

  2. Optical and electron microscopy of WC-Co alloys

    SciTech Connect

    Yust, C S; Long, Jr, E L

    1982-02-01

    The microstructures of three commercial cobalt-bonded tungsten carbide alloys have been characterized by optical and electron microscopy and compared with a specially formulated reference alloy composed of tungsten carbide bonded by 6 wt % Co. The first alloy contained additions of chromium as chromium carbides, was similar in microstructure to the reference alloy, and contained secondary carbide grains retained from the chromium addition. An alloy containing metallic chromium also contained grains of the ternary carbide Co/sub 3/W/sub 3/C, or eta phase, which can be rationalized as having formed by reaction of the molten cobalt-chromium binder phase with the tungsten carbide matrix at the processing temperature. The third commercial alloy examined contained a coarse dendritic structure identified as a mixture of eta (Co/sub 3/W/sub 3/C) and chi (Co/sub 3/W/sub 9/C/sub 4/) phases. The reactions responsible for formation of the eta and chi phases in this alloy have not yet been determined.

  3. Corrosion evaluation of gold-based dental alloys.

    PubMed

    Corso, P P; German, R M; Simmons, H D

    1985-05-01

    Three commercial gold-based dental alloys and three constant-nobility ternary alloys (Au-Ag-Cu) were evaluated for corrosion using a quantitative test battery. Integration of the current density, in a de-aerated solution of 1% NaCl along the approximate potential range found in the mouth (-300 mV to +300 mV vs. SCE), yields a quantitative rank ordering of the test alloys. The results are combined with prior findings on other commercial alloys to demonstrate the interaction of nobility and microstructure. Nobility determines the overall corrosion resistance for gold-based alloys. However, because of mutual insolubility, alloying with copper induces silver segregation, resulting in a higher corrosion rate at a given nobility. Thus, microstructure has an influence on corrosion, but heat treatments are largely ineffective in altering the basic corrosion characteristics. The test techniques, in combination with tarnish evaluations, provide a quantitative battery for alloy evaluation. The results indicate the combinations of nobility, microstructure, and environment most likely to avoid corrosion difficulties.

  4. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  5. Weldability of intermetallic alloys

    SciTech Connect

    David, S.A. )

    1990-01-01

    Ordered intermetallic alloys are a unique class of material that have potential for structural applications at elevated temperatures. The paper describes the welding and weldability of these alloys. The alloys studied were nickel aluminide (Ni[sub 3]Al), titanium aluminide (Ti[sub 3]Al), and iron aluminide.

  6. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  7. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  8. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  9. Isothermal Diagrams of Precipitation of Silicide and Aluminide Phases in Refractory Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Popov, A. A.; Popova, M. A.

    2017-03-01

    Processes of precipitation of silicides and aluminides in commercial titanium alloys under different modes of heat treatment are studied. The effect of alloying on the types of precipitating particles is considered. The temperature ranges of formation of intermetallics are determined and the possible mechanisms of transformation of particles of different types are discussed. A schematic isothermal diagram of decomposition of metastable phases in refractory titanium alloys is suggested.

  10. Rhenium alloying of tungsten heavy alloys

    SciTech Connect

    German, R.M.; Bose, A.; Jerman, G.

    1989-01-01

    Alloying experiments were performed using rhenium additions to a classic 90 mass % tungsten heavy alloy. The mixed-powder system was liquid phase sintered to full density at 1500 C in 60 min The rhenium-modified alloys exhibited a smaller grain size, higher hardness, higher strength, and lower ductility than the unalloyed system. For an alloy with a composition of 84W-6Re-8Ni-2Fe, the sintered density was 17, 4 Mg/m{sup 3} with a yield strength of 815 MPa, tensile strength of 1180 MPa, and elongation to failure of 13%. This property combination results from the aggregate effects of grain size reduction and solid solution hardening due to rhenium. In the unalloyed system these properties require post-sintering swaging and aging; thus, alloying with rhenium is most attractive for applications where net shaping is desired, such as by powder injection molding.

  11. Metalworking Techniques Unlock a Unique Alloy

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Approached by West Hartford, Connecticut-based Abbot Ball Company, Glenn Research Center agreed to test an intriguing alloy called Nitinol 60 that had been largely unused for a half century. Using powdered metallurgy, the partners developed a method for manufacturing and working with the material, which Abbott Ball has now commercialized. Nitinol 60 provides a unique combination of qualities that make it an excellent material for ball bearings, among other applications.

  12. Development of a high strength hot isostatically pressed /HIP/ disk alloy, MERL 76

    NASA Technical Reports Server (NTRS)

    Evans, D. J.; Eng, R. D.

    1980-01-01

    A nickel-based powder metal disk alloy developed for use in advanced commercial gas turbines is described. Consideration is given to final alloy chemistry modifications made to achieve a desirable balance between tensile strength and stress rupture life and ductility. The effects of post-consolidation heat treatment are discussed, the preliminary mechanical properties obtained from full-scale turbine disks are presented.

  13. Processing and alloying of tungsten heavy alloys

    SciTech Connect

    Bose, A.; Dowding, R.J.

    1993-12-31

    Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

  14. Lunar Commercialization Workshop

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2009-01-01

    This slide presentation outlines a competition that has as its goal to explores the viability of using public-private partnerships to open space frontier for commercial uses. The teams have the objective of designing a business plan to open the space frontier to commercial interests.

  15. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  16. Extrusion of aluminium alloys

    SciTech Connect

    Sheppard, T.

    1999-01-01

    In recent years the importance of extruded alloys has increased due to the decline in copper extrusion, increased use in structural applications, environmental impact and reduced energy consumption. There have also been huge technical advances. This text provides comprehensive coverage of the metallurgical, mathematical and practical features of the process. The contents include: continuum principles; metallurgical features affecting the extrusion of Al-alloys; extrusion processing; homogenization and extrusion conditions for specific alloys; processing of 6XXX alloys; plant utilization; Appendix A: specification of AA alloys and DIN equivalents; Appendix B: chemical compositions; and Appendix C: typical properties.

  17. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  18. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  19. Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin

    2001-01-01

    During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.

  20. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].

    PubMed

    Wang, Xiaoping; Cui, Fuzhai; Li, Jianguo; Zhao, Xingshan

    2009-04-01

    Biodegradable magnesium-alloy stents have been employed in animal experiments and clinical researches in recent years. Magnesium-alloy stents have been reported to be biocompatible, and degradable due to corrosion after being implanted into blood vessel. However, magnesium alloy is brittle compared with stainless steel. This may cause strut break under large deformation. In this paper, a finite element model of magnesium-alloy stent was set up, with reference to pictures from Biotronik Corporation, to simulate the expanding and bending processes. The results of analysis show that the maximum strain during expanding reaches 20%, being greater than the elongation limit of the commercially available magnesium alloys. Therefore, to avoid strut breakage during expanding, the magnesium alloys should be custom-made. The plasticity of the material should be improved by grain refinement processes before practicable magnesium-alloy stents could be developed.

  1. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  2. Gamma titanium aluminide alloys

    SciTech Connect

    Yamaguchi, M.; Inui, H.; Kishida, K.; Matsumuro, M.; Shirai, Y.

    1995-08-01

    Extensive progress and improvements have been made in the science and technology of gamma titanium aluminide alloys within the last decade. In particular, the understanding of their microstructural characteristics and property/microstructure relationships has been substantially deepened. Based on these achievements, various engineering two-phase gamma alloys have been developed and their mechanical and chemical properties have been assessed. Aircraft and automotive industries arc pursuing their introduction for various structural components. At the same time, recent basic studies on the mechanical properties of two-phase gamma alloys, in particular with a controlled lamellar structure have provided a considerable amount of fundamental information on the deformation and fracture mechanisms of the two-phase gamma alloys. The results of such basic studies are incorporated in the recent alloy and microstructure design of two-phase gamma alloys. In this paper, such recent advances in the research and development of the two-phase gamma alloys and industrial involvement are summarized.

  3. Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Kamaraj, M.; Murty, B. S.

    2010-10-01

    Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys ( e.g., Stellite, which is 4.94 GPa).

  4. Development of cobalt-free hard-facing alloys for nuclear applications: 1984 progress

    SciTech Connect

    Ohriner, E.W.; Whelan, E.P.

    1985-09-01

    Cobalt-free hardfacing alloys are needed to replace cobalt-base Alloy No. 6, used in nuclear valves, in order to reduce the radiation exposure of service personnel that is associated with cobalt 60. An analysis of the property requirements of nuclear hardfacing materials indicates that galling resistance is a critical property which is generally not associated with cobalt-free alloys. A series of cobalt-free alloys was selected for evaluation based on the available knowledge of wear and galling behavior of austenitic iron-base alloys. The experimental alloys were evaluated for galling resistance and for adhesive wear resistance in a crossed cylinder wear test in both air and deionized water environments at room ambient temperature. Tensile, impact, hardness and weldability properties of the alloys were also evaluated. An iron-base alloy has been identified with galling resistance properties equivalent to those of the Alloy No. 6 in tests in deionized water and in tests in air at loads up to 275 MPa (40 ksi). The effects of variations in Mn, Si, Ni and N contents on the wear, mechanical, and welding properties, and on the alloy microstructure have been determined. Galling tests have also been performed on many commercially produced low-cobalt and cobalt-free alloy hardfacings as well as laser remelted Alloy No. 156. 34 refs., 12 figs., 22 tabs.

  5. Structural Investigations of Nanocrystalline Cu-Cr-Mo Alloy Prepared by High-Energy Ball Milling

    NASA Astrophysics Data System (ADS)

    Kumar, Avanish; Pradhan, Sunil Kumar; Jayasankar, Kalidoss; Debata, Mayadhar; Sharma, Rajendra Kumar; Mandal, Animesh

    2017-02-01

    Cu-Cr-Mo alloy could be a suitable candidate material for collector electrodes in high-power microwave tube devices. An attempt has been made to synthesize ternary Cu-Cr-Mo alloys by mechanical alloying of elemental Cu, Cr, and Mo powders, to extend the solid solubility of Cr and Mo in Cu, using a commercial planetary ball mill. For the first ternary alloy, a mixture of 80 wt.% Cu, 10 wt.% Cr, and 10 wt.% Mo was mechanically milled for 50 h. For the second ternary alloy, a mixture of 50 wt.% Cr and 50 wt.% Mo was mechanically milled for 50 h to obtain nanocrystalline Cr(Mo) alloy, which was later added to Cu powder and milled for 40 h to obtain Cu-20 wt.%Cr(Mo) alloy. Both nanocrystalline Cu-Cr-Mo ternary alloys exhibited crystallite size below 20 nm. It was concluded that, with addition of nanocrystalline Cr(Mo) to Cu, it was possible to extend the solid solubility of Cr and Mo in Cu, which otherwise was not possible by mechanical alloying of elemental powders. The resulting microstructure of the Cu-20 wt.%Cr(Mo) alloy comprised a homogeneous distribution of fine and hard (Cr, Mo) particles in a copper matrix. Furthermore, Cu-20 wt.%Cr(Mo) alloy showed better densification compared with Cu-10 wt.%Cr-10 wt.%Mo alloy.

  6. Multi-functional magnesium alloys containing interstitial oxygen atoms

    PubMed Central

    Kang, H.; Choi, H. J.; Kang, S. W.; Shin, S. E.; Choi, G. S.; Bae, D. H.

    2016-01-01

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design. PMID:26976372

  7. Multi-functional magnesium alloys containing interstitial oxygen atoms

    NASA Astrophysics Data System (ADS)

    Kang, H.; Choi, H. J.; Kang, S. W.; Shin, S. E.; Choi, G. S.; Bae, D. H.

    2016-03-01

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (<300 nm) surrounding the larger grains (~15 μm). The metal/non-metal interstitial alloys are expected to open a new paradigm in commercial alloy design.

  8. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    PubMed Central

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  9. Alloy 10: A 1300F Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2000-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 13000 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, Allied Signal's Alloy 10, is a promising candidate for gas turbine engines to be used on smaller, regional aircraft. For this application, compressor/turbine disks must withstand temperatures of 1300 F for several hundred hours over the life of the engine. In this paper, three key properties of Alloy 10--tensile, 0.2% creep, and fatigue crack growth--will be assessed at 1300 F.

  10. Commercial Biomedical Experiments Payload

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  11. Commercial considerations for immunoproteomics.

    PubMed

    Ferguson, Scott M

    2013-01-01

    The underlying drivers of scientific processes have been rapidly evolving, but the ever-present need for research funding is typically foremost amongst these. Successful laboratories are embracing this reality by making certain that their projects have commercial value right from the beginning of the project conception. Which factors to be considered for commercial success need to be well thought out and incorporated into a project plan with similar levels of detail as would be the technical elements. Specific examples of commercial outcomes in the field of Immunoproteomics are exemplified in this discussion.

  12. Analytical electron microscopy of grain boundaries in high-strength steels

    SciTech Connect

    Skogsmo, J.; Atrens, A. . Dept. of Mining and Metallurgical Engineering)

    1994-04-01

    Phosphorus could be detected at prior austenite grain boundaries (PAGB) in high-strength alloy steels quenched and tempered at 500 C when using a VG's HB 501 dedicated field emission STEM but not with a conventional JEOL 4000FX STEM. No phosphorus was detected at PAGB's in the as-quenched materials or away from PAGB's in tempered materials of either type. The grain boundary coverage of phosphorus was, assuming a specimens thickness of 80nm, 0.7 monolayers for the 3.5NiCrMoV rotor steel and 0.4 monolayers for the AISI 4340 steel. The grain boundary concentration of phosphorus, assuming a specimens thickness of 80 nm and a segregated layer thickness of 1 nm, for the 3.5NiCrMoV rotor steel was 6 wt% and for AISI 4340 4 wt%. Compared to the bulk concentration of about 0.01 wt% this means that the enrichment factor of P to the grain boundaries was several hundred times (610 respectively 370). The measurements showed no correlation between the stress corrosion crack growth rate and the grain boundary phosphorus concentration. The yield strength, however, decreased after tempering while the phosphorus concentration at the grain boundaries increased.

  13. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  14. Comparing Commercial WWW Browsers.

    ERIC Educational Resources Information Center

    Notess, Greg R.

    1995-01-01

    Four commercial World Wide Web browsers are evaluated for features such as handling of WWW protocols and different URLs: FTP, Telnet, Gopher and WAIS, and e-mail and news; bookmark capabilities; navigation features; file management; and security support. (JKP)

  15. Manufacture and engine test of advanced oxide dispersion strengthened alloy turbine vanes. [for space shuttle thermal protection

    NASA Technical Reports Server (NTRS)

    Bailey, P. G.

    1977-01-01

    Oxide-Dispersion-strengthened (ODS) Ni-Cr-Al alloy systems were exploited for turbine engine vanes which would be used for the space shuttle thermal protection system. Available commercial and developmental advanced ODS alloys were evaluated, and three were selected based on established vane property goals and manufacturing criteria. The selected alloys were evaluated in an engine test. Candidate alloys were screened by strength, thermal fatigue resistance, oxidation and sulfidation resistance. The Ni-16Cr (3 to 5)Al-ThO2 system was identified as having attractive high temperature oxidation resistance. Subsequent work also indicated exceptional sulfidation resistance for these alloys.

  16. Technology Commercialization Program 1991

    SciTech Connect

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  17. ERC commercialization activities

    SciTech Connect

    1995-08-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MW power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full-sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MW Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  18. ERC commercialization activities

    SciTech Connect

    Maru, H.C.

    1995-12-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MR power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full- sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, and (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MR Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  19. Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method

    NASA Technical Reports Server (NTRS)

    Yu, H.; Granger, D. A.

    1984-01-01

    A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.

  20. Surface alloying of Mg alloys after surface nanocrystallization.

    PubMed

    Zhang, Ming-Xing; Shi, Yi-Nong; Sun, Haiqing; Kelly, Patrick M

    2008-05-01

    Surface nanocrystallization using a surface mechanical attrition treatment effectively activates the surface of magnesium alloys due to the increase in grain boundary diffusion channels. As a result, the temperature of subsequent surface alloying treatment of pure Mg and AZ91 alloy can be reduced from 430 degrees C to 380 degrees C. Thus, it is possible to combine the surface alloying process with the solution treatment for this type of alloy. After surface alloying, the hardness of the alloyed layer is 3 to 4 times higher than that of the substrate and this may significantly improve the wear resistance of magnesium alloys.

  1. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High-Temperature Strength and Creep-Resistance

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.

    2001-06-15

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation - Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metal. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815 C (1500 C) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800 H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  2. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  3. Promising CuNi&.sbnd;CrSi alloy for first wall ITER applications

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Abramov, V.; Rodin, M.

    1996-10-01

    Precipitation-hardened CuNiCrSi alloy, a promising material for ITER applications, is considered. Available commercial products, chemical composition, physical and mechanical properties are presented. Embrittlement of CuNiCrSi alloy at 250-300°C is observed. Mechanical properties of CuNiCrSi alloy neutron irradiated to a dose of ˜0.2 dpa at 293°C are investigated. Embrittlement of CuNiCrSi alloy can be avoided by annealing.

  4. Improvement of hydrogen storage properties of magnesium alloys by cold rolling and forging

    NASA Astrophysics Data System (ADS)

    Huot, Jacques; Amira, Sofiene; Lang, Julien; Skryabina, Nataliya; Fruchart, Daniel

    2014-08-01

    In this talk we show that cold rolling (CR) could be used to enhance hydrogen sorption properties of magnesium and magnesium alloys. In particular, cold rolling could reduce the first hydrogenation time, the so-called activation. Pure magnesium, commercial AZ91D alloy, and an experimental creep resistant magnesium alloy MRI153 in the as-cast and die-cast states were investigated. We found that both MRI and AZ91 alloys present faster activation kinetic than pure magnesium. This could be explained by the texture, higher number of defects, and nanostructure in CR materials but also precipitates at the grain boundaries. The effect of filing was also investigated.

  5. Measurement of the density of liquid aluminum-319 alloy by an x-ray attenuation technique

    SciTech Connect

    Smith, P.M.; Gallegos, G.F.

    1994-11-01

    This study was made for assisting in casting simulations. A relatively simple apparatus was constructed for measuring the density of Al-based alloys in the solid and liquid states up to 900 C. One of the more important physical properties of a casting alloy, solidification shrinkage, was measured for a commercial Al alloy (Al-319). It was found that while the thermal expansion of Al-319 in both solid and liquid phases is similar to that of pure Al, the density of the liquid alloy is lower than estimated by averaging the atomic volumes of the pure liquid components. The densities were measured by x-ray attenuation.

  6. Evaluation of Sc-Bearing Aluminum Alloy C557 for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Dicus, Dennis L.

    2002-01-01

    The performance of the Al-Mg-Sc alloy C557 was evaluated to assess its potential for a broad range of aerospace applications, including airframe and launch vehicle structures. Of specific interest were mechanical properties at anticipated service temperatures and thermal stability of the alloy. Performance was compared with conventional airframe aluminum alloys and with other emerging aluminum alloys developed for specific service environments. Mechanical properties and metallurgical structure were evaluated for commercially rolled sheet in the as-received H116 condition and after thermal exposures at 107 C. Metallurgical analyses were performed to de.ne grain morphology and texture, strengthening precipitates, and to assess the effect of thermal exposure.

  7. ELECTROCHEMICAL IMPEDANCE ANALYSIS OF beta-TITANIUM ALLOYS AS IMPLANTS IN RINGERS LACTATE SOLUTION

    SciTech Connect

    Bhola, Rahul; Bhola, Shaily M.; Mishra, Brajendra; Olson, David L.

    2010-02-22

    Commercially pure titanium and two beta-titanium alloys, TNZT and TMZF, have been characterized using various electrochemical techniques for their corrosion behavior in Ringers lactate solution. The variation of corrosion potential and solution pH with time has been discussed. Electrochemical Impedance Spectroscopy has been used to fit the results into a circuit model. The stability of the oxides formed on the surface of these alloys has been correlated with impedance phase angles. Cyclic Potentiodynamic Polarization has been used to compute the corrosion parameters for the alloys. TMZF is found to be a better beta-alloy as compared to TNZT.

  8. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  9. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  10. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  11. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  12. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  13. Low temperature embrittlement behaviour of different ferritic-martensitic alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dafferner, B.

    1996-10-01

    In the last few years a lot of different low activation CrWVTa steels have been developed world-wide. Without irradiation some of these alloys show clearly a better low temperature embrittlement behaviour than commercial CrNiMoV(Nb) alloys. Within the MANITU project a study was carried out to compare, prior to the irradiation program, the embrittlement behaviour of different alloys in the unirradiated condition performing instrumented Charpy impact bending tests with sub-size specimens. The low activation materials (LAM) considered were different OPTIFER alloys (Forschungszentrum Karlsruhe), F82H (JAERI), 9Cr2WVTa (ORNL), and GA3X (PNL). The modified commercial 10-11% CrNiMoVNb steels were MANET and OPTIMAR. A meaningful comparison between these alloys could be drawn, since the specimens of all materials were manufactured and tested under the same conditions.

  14. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  15. Supersaturated Aluminum Alloy Powders.

    DTIC Science & Technology

    1981-07-15

    shown in Fig. 18 . It .an be clearly seen that most of the iron is concentrated in the precipitates (Fig. 18 ), X-ray mapping immage for the chromium...At 232°C our alloys are comparable to 2� and 2618 in their tensile properties, and except for alloy #1 which at t i temperature has elongation of...demonstrate better yield strength and UTS than the 2219, 2618 and are comparable to the ALCOA alloy. They show however higher ductility than the ALCOA alloy

  16. In vitro biocompatibility of novel Au-Pt-based metal-ceramic alloys.

    PubMed

    Johnson, Anthony; Shiraishi, Takanobu; Hurrell-Gillingham, Kathryn

    2011-09-01

    The aim of this research was to evaluate the effect of individual metallic elements within experimental Au-Pt-based metal-ceramic alloys on in vitro biocompatibility. A binary Au-10 at.% Pt alloy (AP10) was designed as a parent alloy. Six ternary AP10-X (X = In/Fe/Sn/Zn) alloys and four quaternary (AP10-In2)-Y (Y = Fe/Sn/Zn) with different compositions were cast into square plates with size 10X10X0.5 mm(3) and subjected to porcelain-firing thermal cycling. A commercial alloy was used as a control. In vitro biocompatibility was investigated using L929 murine aneuploid fibrosarcoma cell line. The test samples and cells were incubated at 37°C in a 5% CO(2) atmosphere for 72 h. Alamar™ Blue Assay was carried out to determine the respiratory viability of cultures maintained in the presence of the different materials. The cell only control showed significantly higher levels of cell viability than all six of the ternary alloys and two of the four quaternary alloys, (AP10-In2)-Zn2.1 and (AP10-In2)-Sn1.0 (P < 0.05). The quaternary alloys showed slightly higher levels of cell viability than the ternary alloys, with the exception of AP10-Sn0.9. No statistical differences were seen between the ternary and quaternary alloy groups. Acceptable cell viability was observed on the surfaces of all the alloys.

  17. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    NASA Technical Reports Server (NTRS)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  18. Microfissuring in Electron-Beam-Welded Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr

    1985-01-01

    Mathematical model developed for microfissuring of commercial nickel alloy during electron-beam welding. Number of measured microfissures per unit length of weld plotted against excess power calculated by computer model. Excess power that above level likely to produce microfissures. In agreement with model, measured microfissures increase at rate of 4.5 per inch (1.8 per centimeter) per excess kilowatt.

  19. Characteristics of aluminum alloy microplastic deformation in different structural states

    SciTech Connect

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    1995-07-01

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  20. Corrosion of copper, nickel, and gold dental casting alloys: an in vitro and in vivo study.

    PubMed

    Johansson, B I; Lucas, L C; Lemons, J E

    1989-12-01

    The corrosion behavior of commercially available copper, nickel, and gold alloys for dental castings was investigated. The alloys investigated included: three copper alloys (76-87Cu, 6-11A1, 0-12Zn, 1-5Ni, 0-4Fe, 0.5-1.2Mn), two nickel alloys (68-78Ni, 12-16Cr, 4-14Mo, 0-1.7Be), and one gold alloy (77Au, 14Ag, 8Cu, 1Pd). Anodic and cathodic polarization curves, long-term immersion tests in saline and artificial saliva solutions, and dog crown studies were conducted to evaluate both the in vitro and in vivo corrosion characteristics of the alloys. All evaluations conducted demonstrated that the copper alloys were highly susceptible to corrosion attack. High corrosion currents were observed in the in vitro tests, and SEM of the alloys specimens showed significantly altered surfaces. The anodic polarization curves predicted that the beryllium-containing nickel alloy should be susceptible to localized corrosion and SEM revealed an etched surface with corrosion of certain microstructural features. No significant corrosion was predicted or observed for the non-beryllium nickel alloy and the gold alloy. The in vitro corrosion evaluations predicted the in vivo corrosion behavior for the alloys. Since the three copper alloys and the beryllium-containing nickel alloy demonstrated significant corrosion under the tested conditions, the use of these alloys for restorative procedures is questionable due to the release of significant levels of selected ions to the oral cavity.

  1. Television Commercials' Effects on Children.

    ERIC Educational Resources Information Center

    Quisenberry, James D.

    1982-01-01

    Discusses research focused on characteristics of children's TV commercials, the relationship between commercials and children's learning and reasoning, and effects of commercials on children's language, attitudes, and beliefs. (Author/RH)

  2. Complex metallic alloys as new materials for additive manufacturing

    PubMed Central

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-01-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal–matrix composites or of polymer–matrix composites with improved properties. Functional parts using these alloys are now commercialized. PMID:27877661

  3. Complex metallic alloys as new materials for additive manufacturing.

    PubMed

    Kenzari, Samuel; Bonina, David; Marie Dubois, Jean; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  4. Complex metallic alloys as new materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Kenzari, Samuel; Bonina, David; Dubois, Jean Marie; Fournée, Vincent

    2014-04-01

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal-matrix composites or of polymer-matrix composites with improved properties. Functional parts using these alloys are now commercialized.

  5. Tensile and toughness assessment of the procured advanced alloys

    SciTech Connect

    Tan, Lizhen; Sokolov, Mikhail A.; Hoelzer, David T.; Busby, Jeremy T.

    2015-09-11

    Life extension of the existing nuclear reactors imposes irradiation of high fluences to structural materials, resulting in significant challenges to the traditional reactor materials such as type 304 and 316 stainless steels. Advanced alloys with superior radiation resistance will increase safety margins, design flexibility, and economics for not only the life extension of the existing fleet but also new builds with advanced reactor designs. The Electric Power Research Institute (EPRI) teamed up with Department of Energy (DOE) to initiate the Advanced Radiation Resistant Materials (ARRM) program, aiming to develop and test degradation resistant alloys from current commercial alloy specifications by 2021 to a new advanced alloy with superior degradation resistance by 2024 in light water reactor (LWR)-relevant environments

  6. Development and quality assessments of commercial heat production of ATF FeCrAl tubes

    SciTech Connect

    Yamamoto, Yukinori

    2015-09-01

    Development and quality assessment of the 2nd generation ATF FeCrAl tube production with commercial manufacturers were conducted. The manufacturing partners include Sophisticated Alloys, Inc. (SAI), Butler, PA for FeCrAl alloy casting via vacuum induction melting, Oak Ridge National Laboratory (ORNL) for extrusion process to prepare the master bars/tubes to be tube-drawn, and Rhenium Alloys, Inc. (RAI), North Ridgeville, OH, for tube-drawing process. The masters bars have also been provided to Los Alamos National Laboratory (LANL) who works with Century Tubes, Inc., (CTI), San Diego, CA, as parallel tube production effort under the current program.

  7. Commercial space services

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1984-01-01

    An overview of space service opportunities as identified by a Wyle Laboratories' research team is given. Through the use of a baseline space scenario, a variety of space hardware, services, and commercial activities are identified and related on a time-phased basis. A model is presented to relate the potential functions of government and the private sector in a commercialized space environment during the period 1984 to 2004. Barriers, incentives and key issues are likewise identified and addressed to aid in the implementation of private sector activities for spacerelated programs. Broader awareness, legislative actions, incentive development and benefit analyses are considered in the presentation. The time-phased plan provides a useful planning and management tool, allows broader communication, and supports overall space commercialization program assessment.

  8. Commercial Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  9. Effects of Zn-In-Sn elements on the electric properties of magnesium alloy anode materials.

    PubMed

    Yu, Zhan; Ju, Dongying; Zhao, Hongyang; Hu, Xiaodong

    2011-06-01

    A new magnesium alloy anode is based on an environmentally friendly electrode that contains none of mercury, lead and chromate, but it can enhance the electric properties of alloy significantly. Magnesium alloy adding eco-friendly elements Zn-In-Sn which was developed by orthogonal design were obtained by two casting methods. The effect of additive elements on performance of electrode material was studied. The effects of elements addition and casting method on electric properties and corrosive properties of Mg-Zn-In-Sn alloys were investigated by using electrochemical measurements, corrosive tests and observation of surface structure. The results show that Mg-Zn-In-Sn alloy anode has higher electromotive force and more stable work potential than that commercial magnesium alloy AZ91. It is suitable for anode material of magnesium battery for its small hydrogen evolution, less self-corrosion rate and easy to shed corrosive offspring off.

  10. Solidification Microstructure and Mechanical Properties of Cast Magnesium-Aluminum-Tin Alloys

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Fu, Penghuai; Peng, Liming; Kang, Xiaoyu; Li, Zhenzhen; Zhu, Tianyu

    2012-01-01

    The solidification microstructure and mechanical properties of as-cast Mg-Al-Sn alloys have been investigated using computational thermodynamics and experiments. The as-cast microstructure of Mg-Al-Sn alloys consists of α-Mg, Mg17Al12, and Mg2Sn phases. The amount of Mg17Al12 and Mg2Sn phases formed increases with increasing Al and Sn content and shows good agreement between the experimental results and the Scheil solidification calculations. Generally, the yield strength of as-cast alloys increases with Al and Sn content, whereas the ductility decreases. This study has confirmed an early development of Mg-7Al-2Sn alloy for structural applications and has led to a promising new Mg-7Al-5Sn alloy with significantly improved strength and ductility comparable with commercial AZ91 alloy.

  11. Effect of recasting on the oxidation layer of a palladium-silver porcelain alloy

    SciTech Connect

    Hong, J.M.; Razzoog, M.E.; Lang, B.R.

    1988-04-01

    The oxidation zone of a commercial palladium-silver porcelain alloy was compared after repeated casting with and without the addition of new alloy. The intensity of palladium, silver, tin, indium, and O K-alpha near the oxidation zone was analyzed with XMA. The intensity curves of tin, silver, and oxygen increased progressively through each generation despite the addition of new alloy. The thickness of the oxidation zone and the microporosities at the internal oxidation zone increased through each generation without the addition of new alloy. Although the findings indicated that the oxidation zone was favorably formed by adding new alloy, 50% by weight, for four generations, the silver and metallic oxides of the oxidation zone increased through each generation. The reuse of the palladium-silver porcelain alloy remains questionable.

  12. Oxidation Behavior of a Refractory NbCrMo0.5Ta0.5TiZr Alloy

    DTIC Science & Technology

    2014-04-01

    better combination of mechanical properties and oxidation resistance than commercial Nb alloys and earlier reported developmental Nb–Si–Al–Ti and Nb...The alloy has a better combination of mechanical properties and oxidation resistance than com- mercial Nb alloys and earlier reported developmental Nb...have the best combina- tion of required properties, such as creep resistance , tem- perature capability, environmental resistance , and damage tolerance

  13. PtMo Alloy and MoOx@Pt Core-Shell Nanoparticles as Highly CO-Tolerant Electrocatalysts

    SciTech Connect

    Liu, Z.; Hu, J; Wang, Q; Gaskell, K; Frenkel, A; Jackson, G; Eichhorm, B

    2009-01-01

    PtMo alloy and MoOx Pt core-shell nanoparticles (NPs) were successfully synthesized by a chemical coreduction and sequential chemical reduction method, respectively. Both the carbon-supported alloy and core-shell NPs show substantially higher CO tolerance, compared to the commercialized E-TEK PtRu alloy and Pt catalyst. These novel nanocatalysts can be potentially used as highly CO-tolerant anode electrocatalysts in proton exchange membrane fuel cells.

  14. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  15. Ductile transplutonium metal alloys

    SciTech Connect

    Conner, W.V.

    1983-04-19

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  16. Neutron Absorbing Alloys

    SciTech Connect

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  17. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  18. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  19. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  20. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  1. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  2. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  3. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-03-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  4. Double Glow Plasma Surface Alloying Antibacterial Silver Coating on Pure Titanium

    NASA Astrophysics Data System (ADS)

    Lin, Naiming; Guo, Junwen; Hang, Ruiqiang; Zou, Jiaojuan; Tang, Bin

    2014-12-01

    In order to endow the commercial pure titanium dental implant material with antibacterial property and aimed at avoiding the invalidation that is caused by bacterial adhesion on the surface, a silver coating was fabricated via double glow plasma surface alloying. The antibacterial property of the silver coating was assessed via in vitro estimation. The results showed that a continuous and compact coating was formed. The silver coating had absolute superiority in antibacterial property to raw commercial pure titanium. Double glow plasma surface alloying with silver on commercial pure titanium dental implant material could be considered as a potentially effective method for preventing bacterial adhesion.

  5. Alloys in energy development

    SciTech Connect

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  6. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.; Walker, L.R.

    1997-12-01

    A new family of Cr-Cr{sub 2}X based alloys with fabricability, mechanical properties, and oxidation resistance superior to previously developed Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys has been identified. The new alloys can be arc-melted/cast without cracking, and exhibit excellent room temperature and high-temperature tensile strengths. Preliminary evaluation of oxidation behavior at 1100 C in air indicates that the new Cr-Cr{sub 2}X based alloys form an adherent chromia-based scale. Under similar conditions, Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr based alloys suffer from extensive scale spallation.

  7. Commercializing Biological Control

    ERIC Educational Resources Information Center

    LeLeu, K. L.; Young, M. A.

    1973-01-01

    Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

  8. Kids vs. commercials.

    PubMed

    Lewis, M A; Lewis, C E

    1975-11-01

    A game show with fifth and sixth graders effectively demonstrated their ability to critically evaluate television commercials about health-related products. While the family physician is in a unique position to affect future drug utilization patterns of children by counseling parents, a more active role, such as this exercise in the evaluation of TV messages, may be even more effective.

  9. Commercial Baking. Final Report.

    ERIC Educational Resources Information Center

    Booth, Nancy

    A project filmed three commercial baking videotapes for use by secondary and adult students in food service programs. The three topics were basic dinner rolls, bread making, and hard breads and rolls. Quick-rise dough recipes were developed, written down, and explained for use with the videotapes. A pretest, posttest, and student guide were…

  10. The Commercial Speech Doctrine.

    ERIC Educational Resources Information Center

    Luebke, Barbara F.

    In its 1942 ruling in the "Valentine vs. Christensen" case, the Supreme Court established the doctrine that commercial speech is not protected by the First Amendment. In 1975, in the "Bigelow vs. Virginia" case, the Supreme Court took a decisive step toward abrogating that doctrine, by ruling that advertising is not stripped of…

  11. Estolides - Ready for commercialization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estolides have shown great promise as a bio-based lubricant and are ready for commercialization. Estolides are nontoxic and biodegradable. Testing has shown estolides have increased oxidative stability over vegetable oil based lubricants and have a relatively low pour point, allowing them to be use...

  12. Commercial applications of telemedicine

    NASA Technical Reports Server (NTRS)

    Natiello, Thomas A.

    1991-01-01

    Telemedicine Systems Corporation was established in 1976 and is a private commercial supplier of telemedicine systems. These systems are various combinations of communications and diagnostic technology, designed to allow the delivery of health care services to remote facilities. The technology and the health care services are paid for by the remote facilities, such as prisons.

  13. Commercial Crew Medical Ops

    NASA Technical Reports Server (NTRS)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  14. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  15. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  16. Commercial Carpentry: Instructional Units.

    ERIC Educational Resources Information Center

    Diehl, Donald W.; Penner, Wayman R.

    This manual contains instructional materials which measure student performance on commercial carpentry behavioral objectives; criterion-referenced evaluation instruments are also included. Each of the manual's eleven sections consists of one or more units of instruction. Each instructional unit includes behavioral objectives, suggested activities…

  17. The 100,000-hour cyclic oxidation behavior at 815C (1500 F) of 33 high-temperature alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1977-01-01

    Commercial high-temperature Fe-, Ni-, and Co-base alloys were oxidized in air at 815 deg C for ten 1000-hour cycles. Specific weight change versus time curves were derived and the 10,000-hour surface oxides were analyzed by X-ray diffraction. The alloys were ranked by a combination of appearance and metal loss estimates derived from gravimetric data.

  18. Lunar Commercial Mining Logistics

    NASA Astrophysics Data System (ADS)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

    2008-01-01

    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  19. Commercialization of multijunction a-Si modules

    NASA Astrophysics Data System (ADS)

    Carlson, D. E.; Arya, R. R.; Chen, L.-F.; Oswald, R.; Newton, J.; Rajan, K.; Romero, R.; Willing, F.; Yang, L.

    1997-02-01

    Solarex has just completed building a plant in James City County, Virginia that has the capacity to produce 10 MW per year of multijunction amorphous silicon PV modules. The plant will start commercial production of 8.6 ft2 tandem modules in early 1997. The tandem device structure consists of two stacked p-i-n junctions, a front junction containing amorphous silicon and a back junction containing an amorphous silicon germanium alloy. All amorphous silicon alloys are deposited using plasma-enhanced chemical vapor deposition, and the large-area monolithic modules are interconnected using computerized laser scribing coupled with a machine vision system. The principle products will be monolithic modules (26″×48″) with nominal stabilized power ratings of 56, 50 and 43 peak watts. All modules will be fabricated using a glass-EVA-glass encapsulation to ensure long-term reliability. These products are expected to be widely used in both remote and grid-tied applications.

  20. Impact of the De-Alloying Kinetics and Alloy Microstructure on the Final Morphology of De-Alloyed Meso-Porous Metal Films

    PubMed Central

    Lin, Bao; Kong, Lingxue; Hodgson, Peter D.; Dumée, Ludovic F.

    2014-01-01

    Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30) and white gold (Au50Ag50) foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA) parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM). Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB) milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD) and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested. PMID:28344253

  1. A Novel Surface Treatment for Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Lowther, S. E.; Park, C.; SaintClair, T. L.

    2004-01-01

    High-speed commercial aircraft require a surface treatment for titanium (Ti) alloy that is both environmentally safe and durable under the conditions of supersonic flight. A number of pretreatment procedures for Ti alloy requiring multi-stages have been developed to produce a stable surface. Among the stages are, degreasing, mechanical abrasion, chemical etching, and electrochemical anodizing. These treatments exhibit significant variations in their long-term stability, and the benefits of each step in these processes still remain unclear. In addition, chromium compounds are often used in many chemical treatments and these materials are detrimental to the environment. Recently, a chromium-free surface treatment for Ti alloy has been reported, though not designed for high temperature applications. In the present study, a simple surface treatment process developed at NASA/LaRC is reported, offering a high performance surface for a variety of applications. This novel surface treatment for Ti alloy is conventionally achieved by forming oxides on the surface with a two-step chemical process without mechanical abrasion. This acid-followed-by-base treatment was designed to be cost effective and relatively safe to use in a commercial application. In addition, it is chromium-free, and has been successfully used with a sol-gel coating to afford a strong adhesive bond after exposure to hot-wet environments. Phenylethynyl containing adhesives were used to evaluate this surface treatment with sol-gel solutions made of novel imide silanes developed at NASA/LaRC. Oxide layers developed by this process were controlled by immersion time and temperature and solution concentration. The morphology and chemical composition of the oxide layers were investigated using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES). Bond strengths made with this new treatment were evaluated using single lap shear tests.

  2. Biocompatibility of Ti-alloys for long-term implantation.

    PubMed

    Abdel-Hady Gepreel, Mohamed; Niinomi, Mitsuo

    2013-04-01

    The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation.

  3. Heat treatment effects on electrochemical corrosion parameters of high-Pd alloys.

    PubMed

    Berzins, D W; Kawashima, I; Graves, R; Sarkar, N K

    2008-01-01

    This research determined the effect oxidation, as that occurs during porcelain firing, has upon the corrosion parameters of Pd-based ceramic alloys and how it may relate to Pd allergy. The 20 h open circuit potential (OCP), 20 h corrosion rate (Icorr), and anodic polarization (E-i) curves of 11 commercial Pd alloys were measured in a phosphate buffered saline solution. The alloys were divided into the following four groups based upon composition: PdGa(Ag), PdCu, PdAg, and AuPd and tested in both as-cast and oxidized conditions. In both the as-cast and oxidized conditions, the OCP of Ag-containing Pd alloys is significantly lower than non Ag-containing high-Pd alloys. The OCP of all alloys increased after oxidation. With regard to corrosion rate, the Ag-containing alloys showed a decrease in Icorr with oxidation. In contrast, three of the four non Ag-containing high-Pd (>or=74 wt%) alloys exhibited a higher Icorr. A comparison of the anodic polarization curves showed only the alloys containing larger amounts (>or=16 wt%) of Ag displayed a notable difference between as-cast and oxidized states. Oxidation as required during porcelain-fused-to-metal device preparation alters the electrochemical characteristics of the alloys studied. This alteration may be of importance with regard to their potential for Pd allergy.

  4. Preparation and characterization of alloys of the Ti-15Mo-Nb system for biomedical applications.

    PubMed

    Martins Júnior, J R S; Matos, A A; Oliveira, R C; Buzalaf, M A R; Costa, I; Rocha, L A; Grandini, C R

    2017-03-09

    In the development of new metallic biomaterials, the Ti-15Mo alloy has great prominence because of its excellent corrosion resistance and good combination of mechanical properties. In this study, the element niobium was added to the Ti-15Mo alloy, forming the Ti-15Mo-Nb system for the purpose of improving their properties and promoting its application as a biomaterial. These alloys are very promising to use as biomedical implants, because they integrate a new class of titanium alloys without the presence of aluminum and vanadium, which may cause cytotoxic effects. The alloys were produced by arc-melting and characterized by density, X-ray diffraction, scanning electron microscopy, microhardness, elastic modulus, corrosion, and cytotoxicity assays. The developed alloys have β phase predominance (with bcc crystalline structure). The addition of niobium decreases the microhardness and elastic modulus, with values around 80 GPa, which is well below that of the metallic alloys used commercially for this type of application. Very low passive current densities were found for all alloys studied showing that the passive film on these alloys is highly protective. In vitro cytotoxicity tests revealed that the introduction of niobium did not cause cytotoxic effects in the studied alloys. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  5. THORIUM-SILICON-BERYLLIUM ALLOYS

    DOEpatents

    Foote, F.G.

    1959-02-10

    Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.

  6. Commercial jet transport crashworthiness

    NASA Technical Reports Server (NTRS)

    Widmayer, E.; Brende, O. B.

    1982-01-01

    The results of a study to identify areas of research and approaches that may result in improved occupant survivability and crashworthiness of transport aircraft are given. The study defines areas of structural crashworthiness for transport aircraft which might form the basis for a research program. A 10-year research and development program to improve the structural impact resistance of general aviation and commercial jet transport aircraft is planned. As part of this program parallel studies were conducted to review the accident experience of commercial transport aircraft, assess the accident performance of structural components and the status of impact resistance technology, and recommend areas of research and development for that 10-year plan. The results of that study are also given.

  7. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  8. European commercial aeronautics

    NASA Technical Reports Server (NTRS)

    Van Zandt, J Parker

    1925-01-01

    During the months of June to September, 1924, I personally visited the principal airports of Europe and traveled as a passenger some 6500 air miles on English, French, Romanian, Polish, German and Dutch air lines in order to investigate the development of commercial aviation abroad. The results of the investigation are embodied in a series of reports, of which a summary of the general findings is given below.

  9. Commercial Parts Radiation Testing

    DTIC Science & Technology

    2015-01-13

    AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSE/Keith Avery 1 cy ... AFRL -RV-PS- AFRL -RV-PS- TR-2014-0172 TR-2014-0172 COMMERCIAL PARTS RADIATION TESTING Craig J. Kief COSMIAC at UNM 2350 Alamo Avenue SE Suite 300...Vehicles Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE

  10. Commercialization of nanotechnology.

    PubMed

    Hobson, David W

    2009-01-01

    The emerging and potential commercial applications of nanotechnologies clearly have great potential to significantly advance and even potentially revolutionize various aspects of medical practice and medical product development. Nanotechnology is already touching upon many aspects of medicine, including drug delivery, diagnostic imaging, clinical diagnostics, nanomedicines, and the use of nanomaterials in medical devices. This technology is already having an impact; many products are on the market and a growing number is in the pipeline. Momentum is steadily building for the successful development of additional nanotech products to diagnose and treat disease; the most active areas of product development are drug delivery and in vivo imaging. Nanotechnology is also addressing many unmet needs in the pharmaceutical industry, including the reformulation of drugs to improve their bioavailability or toxicity profiles. The advancement of medical nanotechnology is expected to advance over at least three different generations or phases, beginning with the introduction of simple nanoparticulate and nanostructural improvements to current product and process types, then eventually moving on to nanoproducts and nanodevices that are limited only by the imagination and limits of the technology itself. This review looks at some recent developments in the commercialization of nanotechnology for various medical applications as well as general trends in the industry, and explores the nanotechnology industry that is involved in developing medical products and procedures with a view toward technology commercialization.

  11. EVALUATING COMMERCIALLY AVAILABLE DERMAL ...

    EPA Pesticide Factsheets

    As the Human Exposure Program focuses on the exposure of children to pesticides, there are concerns about the effect, or perceived effect, of components of the sampling procedure on the health and well-being of the infant and the ability to collect pesticide residues. One concern involves the materials in wipes used to collect pesticide residues or other contact materials on the skin. In recent studies (e.g., National Human Exposure Assessment Survey; NHEXAS), isopropyl alcohol has been used as a solvent in conjunction with a cloth wipe to obtain samples from the hands of adults and children. Although isopropyl alcohol is generally considered innocuous, the use of commercially available products could eliminate concerns about exposure to alcohol. A few studies have evaluated the potential of commercially available baby wipes to collect personal exposure samples for metals research, but not for the area of pesticide research (Millson et al., 1994; Campbell et al., 1993; Lichtenwalner et al., 1993). Therefore, there is a need to evaluate the potential for using commercially available baby wipes for collecting pesticide samples from skin and other surfaces. Another concern involves establishing a convenient and safe method for assessing overall dermal exposure for children, especially for those in crawling stage. One route that the U .S. Environmental Protection Agency (EPA) would like to investigate is the use of cotton body suits (infant sleepers) as an indicator

  12. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  13. Electrical Resistivity of Ten Selected Binary Alloy Systems.

    DTIC Science & Technology

    1981-04-01

    alloys --* Aluminum Alloys --*Copper alloys --*Gold alloys --*Nickel Alloys --*Silver alloys --*Iron alloys --*Palladium alloys ... aluminum -magnesium, and copper-zinc) are given for 27 compositions: 0 (pure element).* For aluminum -copper, aluninu.-eagnes tur, end copper-zinc alloy ...available data and infor- mation. The ten binary alloy systems selected are the systems of aluminum - copper, aluminum -magnesium, copper-gold,

  14. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Hamilton, M.L. ); Huang, F.H.; Hu, Wan-Liang )

    1992-06-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were re-examined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9.

  15. Mechanical properties of martensitic alloy AISI 422

    SciTech Connect

    Huang, F.H.; Hu, W.L. ); Hamilton, M.L. )

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs.

  16. Sample preparation of metal alloys by electric discharge machining

    NASA Technical Reports Server (NTRS)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  17. Moessbauer study of amorphous (FeTM){sub 80}B{sub 20}

    SciTech Connect

    Orue, I.; Plazaola, F.; Fernandez-Gubieda, M.L.; Gutierrez, J.; Barandiaran, J.M.

    1994-03-01

    As-cast ferromagnetic amorphous alloys of nominal composition (FeTM){sub 80}B{sub 20} have been studied by Moessbauer Spectroscopy, being TM one transition metal atom, Ni, Cr, Mo or Pd. A detailed analysis of the isomer shift, IS, and hyperfine field distribution, HFD, at Fe sites is reported in order to achieve some conclusions about the Chemical Short Range Order and the electronic structure in these alloys. HFD changes found in (FeNi)B for Ni rich concentrations suggest the existence of Fe atoms strongly interacting with Ni. Small amounts of Cr and Mo shift the HFD to lower values of hyperfine field, B{sub hf}, while Pd enhances the B{sub hf}.

  18. Studies of Corrosion Resistant Materials Being Considered for High-Level Nuclear Waste Containment in Yucca Mountain Relevant Environments

    SciTech Connect

    McCright, R.D.; Ilevbare, G.; Estill, J.; Rebak, R.

    2001-12-09

    Containment of spent nuclear fuel and vitrified forms of high level nuclear waste require use of materials that are highly corrosion resistant to all of the anticipated environmental scenarios that can occur in a geological repository. Ni-Cr-Mo Alloy 22 (UNS N60622) is proposed for the corrosion resistant outer barrier of a two-layer waste package container at the potential repository site at Yucca Mountain. A range of water compositions that may contact the outer barrier is under consideration, and a testing program is underway to characterize the forms of corrosion and to quantify the corrosion rates. Results from the testing support models for long term prediction of the performance of the container. Results obtained to date indicate a very low general corrosion rate for Alloy 22 and very high resistance to all forms of localized and environmentally assisted cracking in environments tested to date.

  19. Effect of a metal alloy fuel catalyst on bacterial growth.

    PubMed

    Ghosh, Ruma; Koerting, Claudia; Suib, Steven L; Best, Michael H; Berlin, Alvin J

    2005-11-08

    Many microorganisms have been demonstrated to utilize petroleum fuel products to fulfill their nutritional requirement for carbon. As a result, the ability of these microbes to degrade fuel has both a deleterious affect as well as beneficial applications. This study focused on the undesired ability of bacteria to grow on fuel and the potential for some metal alloys to inhibit this biodegradation. The objective of this study was to review the pattern of growth of two reference strains of petroleum-degrading bacteria, Pseudomonas oleovorans and Rhodococcus rhodocrous, in a specific hydrocarbon environment in the presence of a commercially available alloy. The alloy formulated and supplied by Advanced Power Systems International Inc. (APSI) is sold for fuel reformulation and other purposes. The components of the alloy used in the study were antimony, tin, lead, and mercury formulated as pellets. Surface characterization also showed the presence of tin oxide and lead amalgam phases. Hydrocarbon used for the study was primarily 87-octane gasoline. The growth of the bacteria in the water and mineral-supplemented gasoline mixture over 6-8 weeks was monitored by the viable plate count method. While an initial increase in bacteria occurred in the first week, overall bacterial growth was found to be suppressed in the presence of the alloy. Results also indicate that the alloy surface characteristics that convey the catalytic activity may also contribute to the observed antibacterial activity.

  20. New Ni-free superelastic alloy for orthodontic applications.

    PubMed

    Arciniegas, M; Manero, J M; Espinar, E; Llamas, J M; Barrera, J M; Gil, F J

    2013-08-01

    A potential new Ni-free Ti alloy for biomedical applications was assessed in order to investigate the superelastic behavior, corrosion resistance and the biocompatibility. The alloy studied was Ti19.1Nb8.8Zr. The chemical composition was determined by X-ray microanalysis, the thermoelastic martensitic transformation was characterized by high sensitivity calorimeter. The critical stresses were determined by electromechanical testing machine and the corrosion behavior was analyzed by potentiostatic equipment in artificial saliva immersion at 37°C. The results were compared with six different NiTi orthodontic archwire brands. The biocompatibility was studied by means of cultures of MG63 cells. Ni-free Ti alloy exhibits thermoelastic martensitic transformation with Ms=45°C. The phase present at 37°C was austenite which under stress can induce martensite. The stress-strain curves show a superelastic effect with physiological critical stress (low and continuous) and a minimal lost of the recovery around 150 mechanical cycles. The corrosion resistance improves the values obtained by different NiTi alloys avoiding the problem of the Ni adverse reactions caused by Ni ion release. Cell culture results showed that adhered cell number in new substrate was comparable to that obtained in a commercially pure Ti grade II or beta-titanium alloy evaluated in the same conditions. Consequently, the new alloy presents an excellent in-vitro response.

  1. Processing of Refractory Metal Alloys for JOYO Irradiations

    SciTech Connect

    RF Luther; ME Petrichek

    2006-02-21

    This is a summary of the refractory metal processing experienced by candidate Prometheus materiats as they were fabricated into specimens destined for testing within the JOYO test reactor, ex-reactor testing at Oak Ridge National Laboratory (ORNL), or testing within the NRPCT. The processing is described for each alloy from the point of inception to the point where processing was terminated due to the cancellation of Naval Reactor's involvement in the Prometheus Project. The alloys included three tantalum-base alloys (T-111, Ta-10W, and ASTAR-811C), a niobium-base alloy, (FS-85), and two molybdenum-rhenium alloys, one containing 44.5 w/o rhenium, and the other 47.5 w/o rhenium. Each of these alloys was either a primary candidate or back-up candidate for cladding and structural applications within the space reactor. Their production was intended to serve as a forerunner for large scale production ingots that were to be procured from commercial refractory metal vendors such as Wah Chang.

  2. Electroplating on titanium alloy

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1971-01-01

    Activation process forms adherent electrodeposits of copper, nickel, and chromium on titanium alloy. Good adhesion of electroplated deposits is obtained by using acetic-hydrofluoric acid anodic activation process.

  3. Alloy Selection System

    SciTech Connect

    2001-02-01

    Software will Predict Corrosion Rates to Improve Productivity in the Chemical Industry. Many aspects of equipment design and operation are influenced by the choice of the alloys used to fabricate process equipment.

  4. The use of amorphous boron powder enhances mechanical alloying in soft magnetic FeNbB alloy: A magnetic study

    SciTech Connect

    Ipus, J. J.; Blazquez, J. S.; Franco, V.; Conde, A.

    2013-05-07

    Saturation magnetization and magnetic anisotropy have been studied during mechanical alloying of Fe{sub 75}Nb{sub 10}B{sub 15} alloys prepared using crystalline and commercial amorphous boron. The evolution of saturation magnetization indicates a more efficient dissolution of boron into the matrix using amorphous boron, particularly for short milling times. The magnetization of the crystalline phase increases as boron is incorporated into this phase. Two milling time regimes can be used to describe the evolution of magnetic anisotropy: a first regime governed by microstrains and a second one mainly governed by crystal size and amorphous fraction.

  5. Semiconductor Alloy Theory.

    DTIC Science & Technology

    1986-01-14

    ftoc*o~ow7 and Idenify’ by block nam. bor) Electron mobility , Lattice Relaxation, Bond Length, Bond Energy, Mixing Enthalpies, Band Structure, Core...including: (1) generalization of Brooks’ formula for alloy-scattering limited electron mobility to including multiple bands and indirect gaps, (2...calculation of SiGe alloys band structure, electron mobility and core-exciton binding energy and • :linewidth, (3) comprehensive calculation of bond

  6. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  7. Options for commercial tokamaks

    SciTech Connect

    Dabiri, A.E.; Keeton, D.C.; Thomson, S.L.

    1986-07-01

    Systems studies have been performed at the Fusion Engineering Design Center (FEDC) to assess commercial tokamak options. One study investigates the economics of high-beta operation and determines an optimum operating range of 10 to 20% beta, with a corresponding neutron wall loading of 6 to 8 MW/m/sup 2/. A second study determines conditions under which small, low-power tokamaks can be economically combined into a 1200-MW(electric) multiplex power plant. The results of these studies have directed future efforts at the FEDC toward a high-beta, tokamak design using a modular maintenance configuration.

  8. Accelerating Commercial Remote Sensing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Visiting Investigator Program (VIP) at Stennis Space Center, Community Coffee was able to use satellites to forecast coffee crops in Guatemala. Using satellite imagery, the company can produce detailed maps that separate coffee cropland from wild vegetation and show information on the health of specific crops. The data can control coffee prices and eventually may be used to optimize application of fertilizers, pesticides and irrigation. This would result in maximal crop yields, minimal pollution and lower production costs. VIP is a mechanism involving NASA funding designed to accelerate the growth of commercial remote sensing by promoting general awareness and basic training in the technology.

  9. Ultrahigh temperature intermetallic alloys

    SciTech Connect

    Brady, M.P.; Zhu, J.H.; Liu, C.T.; Tortorelli, P.F.; Wright, J.L.; Carmichael, C.A.

    1998-11-01

    A new family of Cr-Cr{sub 2}Ta intermetallic alloys based on Cr-(6--10)Ta (at.%) is under development for structural use in oxidizing environments in the 1,000-1,300 C (1,832--2,372 F) temperature range. Development objectives relate to high temperature strength and oxidation resistance and room temperature fracture toughness. The 1,200 C (2,192 F) strength goals have been met: yield and fracture strengths of 275 MPa (40 ksi) and 345 MPa (50 ksi), respectively, were achieved. Progress in attaining reasonable fracture toughness of Cr-Cr{sub 2}Ta alloys has been made; current alloys exhibit room-temperature values of about 10--12 MPa{radical}m (1.1 MPa{radical}m = 1 ksi{radical}in.). Oxidation rates of these alloys at 950 C (1,742 F) in air are in the range of those reported for chromia-forming alloys. At 1,100 C (2,012 F) in air, chromia volatility was significant but, nevertheless, no scale spallation and positive weight gains of 1--5 mg/cm{sup 2} have been observed during 120-h, 6-cycle oxidation screening tests. These mechanical and oxidative properties represent substantial improvement over Cr-Cr{sub 2}Nb and Cr-Cr{sub 2}Zr alloys previously developed.

  10. Progress toward a tungsten alloy wire/high temperature alloy composite turbine blade

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Dreshfield, R. L.

    1992-01-01

    A tungsten alloy wire reinforced high temperature alloy composite is being developed for potential application as a hollow turbine blade for advanced rocket engine turbopumps. The W-24Re-HfC alloy wire used for these composite blades provides an excellent balance of strength and wire ductility. Preliminary fabrication, specimen design, and characterization studies were conducted by using commercially available W218 tungsten wire in place of the W-24Re-Hfc wire. Subsequently, two-ply, 50 vol pct composite panels using the W-24Re-HfC wire were fabricated. Tensile tests and metallographic studies were performed to determine the material viability. Tensile strengths of a Waspaloy matrix composite at 870 C were 90 pct of the value expected from rule-of-mixtures calculations. During processing of this Waspaloy matrix composite, a brittle phase was formed at the wire/matrix interface. Circumferential wire cracks were found in this phase. Wire coating and process evaluation efforts were performed in an attempt to solve the reaction problem. Although problems were encountered in this study, wire reinforced high temperature alloy composites continue to show promise for turbopump turbine blade material improvement.

  11. Hydrogen pickup mechanism of zirconium alloys

    NASA Astrophysics Data System (ADS)

    Couet, Adrien

    Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes

  12. Accelerating advanced-materials commercialization

    NASA Astrophysics Data System (ADS)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  13. Overview of Commercial Buildings, 2003

    EIA Publications

    2008-01-01

    The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States.

  14. Corrosion and in vitro biocompatibility properties of cryomilled-spark plasma sintered commercially pure titanium.

    PubMed

    Dheda, Shehreen S; Kim, Yoon Kyung; Melnyk, Christopher; Liu, Wendy; Mohamed, Farghalli A

    2013-05-01

    Ti alloys, such as Ti6Al4V, are currently used in biomedical and dental implant applications. Ti alloys are used because they are stronger than commercially pure (CP) Ti due to the presence of alloying elements. However, toxicity of alloying elements during long-term use of implants is of concern. Another means of increasing the strength of materials is grain size refinement. In this study, ultrafine-grained (UFG, ~250 nm to 1 μm) CP Ti was produced by cryomilling followed by spark plasma sintering (SPS). Electrochemical impedance spectroscopy (EIS) and cell culture experiments were performed to compare the corrosion and biocompatibility properties of coarse grained (CG) Ti and UFG Ti. It was found that UFG Ti exhibited corrosion resistance comparable to CG Ti in Ringers solution. In addition, UFG Ti exhibited a reduced inflammatory response and enhanced cell adhesion compared to CG Ti. Investigation of surface roughness provided an explanation for enhanced cell adhesion.

  15. MPRS (URBOT) commercialization

    NASA Astrophysics Data System (ADS)

    Ciccimaro, Donny; Baker, William; Hamilton, Ian; Heikkila, Leif; Renick, Joel

    2003-09-01

    The Man Portable Robotic System (MPRS) project objective was to build and deliver hardened robotic systems to the U.S. Army"s 10 Mountain Division in Fort Drum, New York. The system, specifically designed for tunnel and sewer reconnaissance, was equipped with visual and audio sensors that allowed the Army engineers to detect trip wires and booby traps before personnel entered a potentially hostile environment. The MPRS system has shown to be useful in government and military supported field exercises, but the system has yet to reach the hands of civilian users. Potential users in Law Enforcement and Border Patrol have shown a strong interest in the system, but robotic costs were thought to be prohibitive for law enforcement budgets. Through the Center for Commercialization of Advanced Technology (CCAT) program, an attempt will be made to commercialize the MPRS. This included a detailed market analysis performed to verify the market viability of the technologies. Hence, the first step in this phase is to fully define the marketability of proposed technologies in terms of actual market size, pricing and cost factors, competitive risks and/or advantages, and other key factors used to develop marketing and business plans.

  16. Commercial nuclear power 1990

    SciTech Connect

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  17. Aerocapacitor commercialization plan

    SciTech Connect

    1995-09-12

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  18. TV Commercials Can Teach Nutrition

    ERIC Educational Resources Information Center

    Brent, Catherine

    1974-01-01

    In California non-commercial "commercials" short spots of pantomime and bilingual messages fitted into and around television's entertainment programs, are used as a means of providing nutrition education to urban and rural low-income people. As revealed by audience requests for nutritional information offered, the commercials are popular…

  19. The mechanism of corrosion of palladium-silver binary alloys in artificial saliva.

    PubMed

    Joska, L; Marek, M; Leitner, J

    2005-05-01

    Palladium dental casting alloys are alternatives to gold alloys. The aim of this study was to determine the electrochemical behaviour and the corrosion mechanism of binary silver-palladium alloys. Seven binary silver-palladium alloys and pure palladium and silver were tested in a model saliva solution. Electrochemical tests included corrosion potential, polarization resistance, and potentiodynamic polarization measurements. The corrosion products, which may be theoretically formed, were determined by thermodynamic calculation. The behaviour of silver and silver-rich alloys was dominated by the preferential formation of a thiocyanate surface layer, which controlled the free corrosion potential. Palladium dissolved in the form of a thiocyanate complex, but the surface became passivated by either palladium oxide or solid palladium thiocyanate layer, the thermodynamic calculations indicating preference for the oxide. Palladium-rich alloys showed evidence of silver depletion of the surface, resulting in behaviour similar to palladium. Examination of binary silver-palladium alloys has made possible determination of the role of the components of the alloys and model saliva in the corrosion behaviour. The findings are applicable to the more complex commercial dental alloys containing silver and palladium as major components.

  20. Corrosion properties of Ag-Au-Cu-Pd system alloys containing indium.

    PubMed

    Hattori, Masayuki; Tokizaki, Teruhiko; Matsumoto, Michihiko; Oda, Yutaka

    2010-01-01

    In this study, the corrosion resistance of Ag-Au-Cu-Pd system alloys consisting of 5 or 10 mass% indium was evaluated. Levels of element release and tarnish were determined and electrochemical measurements performed. Results were compared with those for commercial silver-palladium-gold alloy. In terms of electrochemical behavior, the transpassive potential of these experimental alloys was 168-248mV. Experimental alloys with 25 mass% Au showed similar corrosion resistance to control gold-silver-palladium alloy. Amount of released elements was 14-130microg/cm(2) at 7 days, which is in the allowable range for dental alloys. Addition of indium to Ag-Au-Cu-10mass%Pd system alloys was effective in increasing resistance to tarnish and alloys containing 10 mass% of indium showed a minimal decrease in L(*) values after immersion. These findings indicate that 25Au-37.5Ag-15Cu-10Pd-2Zn-10In-0.5Ir alloy is applicable in dental practice.

  1. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    SciTech Connect

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  2. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings

    SciTech Connect

    Van Weele, S. )

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  3. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings. Final report

    SciTech Connect

    Van Weele, S.

    1991-08-01

    Fireside corrosion, caused by liquid alkali-iron trisulfates, has been an obstacle to higher steam temperatures and to efficient utilization of high-sulfur coals. Tests simulating the environment in the superheater bank of a pulverized-coal-fired boiler were conducted on several promising new alloys and claddings. Alloys were exposed to a variety of synthetic ash and simulated flue gas compositions at 650 and 700{degrees}C for times ranging up to 800 hours. Included in the testing program were new high-chromium/high-nickel alloys, modified commercial alloys, lean stainless steels (modified Type 316) clad with high-chromium/high-nickel alloys, and intermetallic aluminides. Thickness loss measurements indicated that resistance to attach improved with increasing chromium level. Silicon and aluminum were also helpful in resisting attack, while molybdenum was detrimental to the resistance of the alloys to attack. Three different attack modes were observed on the alloys tested. Alloys with low resistance to attack exhibited uniform wastage, while pitting was observed in more resistant alloys. In addition to surface fluxing by molten alkali-iron trisulfates, subsurface sulfur penetration and intergranular attack also occurred.

  4. [The electrochemical behavior of TiTa30 and TiNb30 alloys for implantology].

    PubMed

    Hildebrand, H F; Ralison, A; Traisnel, M; Breme, J

    1997-11-01

    The electrochemical behavior in artificial saliva of TiNb30 and TiTa30 alloys were compared with that of commercial pure titanium. The anodic potential, the current density, the passivation potential and the galvanic corrosion vs. Au were determined. Both alloys have a similar behavior to that of pure titanium. Crevace corrosion, which is very weak in pure Ti, is completely inhibited by the addition of Nb or Ta.

  5. Assessment of Zr-Fe-V getter alloy for gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Prina, M.; Kulleck, J. G.; Bowman, R. C., Jr.

    2000-01-01

    A commercial Zr-V-Fe alloy (i.e., SAES Getters trade name alloy St-172) has been assessed as reversible hydrogen storage material for use in actuators of gas gap heat switches. Two prototype actuators containing the SAES St-172 material were built and operated for several thousand cycles to evaluate performance of the metal hydride system under conditions simulating heat switch operation.

  6. Hot corrosion of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  7. Wear and friction properties of experimental Ti-Si-Zr alloys for biomedical applications.

    PubMed

    Tkachenko, Serhii; Datskevich, Oleg; Kulak, Leonid; Jacobson, Staffan; Engqvist, Håkan; Persson, Cecilia

    2014-11-01

    Titanium alloys are widely used in biomedical applications due to their higher biocompatibility in comparison to other metallic biomaterials. However, they commonly contain aluminum and vanadium, whose ions may be detrimental to the nervous system. Furthermore, they suffer from poor wear resistance, which limits their applications. The aim of this study was to evaluate the tribological performance of experimental Ti-1.25Si-5Zr, Ti-2.5Si-5Zr, Ti-6Si-5Zr and Ti-2.5Si-5Zr-0.2Pd alloys as compared to that of control Ti-6Al-4V, CoCr F75 and CoCr F799 alloys. Friction and wear tests were performed using a standard ball-on-disc rig in serum solution at ambient temperature with Si3N4-balls as counterparts. The alloys microstructure and hardness were investigated using optical microscopy, XRD, scanning electron microscopy (SEM) and Vickers indentation. The coefficients of friction of the experimental Ti-Si-Zr alloys were generally lower than the commercial ones with Ti-6Si-5Zr presenting the lowest value (approx. 0.1). Their wear rates were found to be 2-7 times lower than that of the commercial Ti-6Al-4V alloy, but still higher than those of the CoCr alloys. SEM analysis of worn surfaces showed that abrasion was the predominant wear mechanism for all studied materials. Wear and friction were influenced by the formation and stability of transfer layers, and while commercial Ti-6Al-4V as well as the experimental Ti-Si-Zr alloys demonstrated extensive material transfer to the ceramic counterparts, the CoCr alloys did not show such material transfer.

  8. The commercialization of migration.

    PubMed

    Abrera-mangahas, M A

    1989-01-01

    International migration is not new to the Philippines. In the recent outflow of contract workers to the Middle East, there is a shift from individual and family initiated migrations to the more organized, highly commercial variety. While profit-taking intermediaries have played some role in the past, the increase in the number and influence of these intermediaries has altered the story of migration decision-making. In 1975, the signing of the bilateral labor agreement between the governments of Iran and the Philippines signalled the rising demand for Filipino contract workers. From 1970 to 1975, the number of Asian migrant workers in the Gulf countries rose from about 120,000 to 370,000. These figures rose dramatically to 3.3 million in 1985. The growing share of organized and commercialized migration has altered migration decision making. Primarily, intermediaries are able to broaden access to foreign job and high wage opportunities. Commercialization effectively raises the transaction costs for contract migration. Studies on recruitment costs and fees show that self-solicited foreign employment costs less than employment obtained through recruitment agents and intermediaries. The difference in the 2 prices is due, not only to overhead costs of intermediation, but more importantly to the rent exacted by agents from having job information and placement rights. In the Philippines in October 1987 the average placement fee was P8000, greatly exceeding the mandated maximum fee level of P5000. This average is understated because the computation includes the 17% who do not pay any fees. The widespread and popular view of recruitment intermediaries is negative, dominated by images of abuses and victims. Private intermediaries and the government bureaucracy need each other. Intermediaries need government; their consistent demand for incentives and protection is indicative. On the other hand, government expands its supervision of control of overseas employment via the

  9. Utilization of Copper Alloys for Marine Applications

    NASA Astrophysics Data System (ADS)

    Drach, Andrew

    copper alloys is investigated through a series of uniaxial tension tests on virgin and weathered (after one-year deployment in the ocean) specimens. The changes in mechanical properties are quantified in terms of differences in Young's modulus, Poisson's ratio, ultimate strength, and ultimate strain. The obtained stress-strain data is used for numerical modeling of the mechanical behavior of chain-link nets. The simulations are compared with the experimental data on stiffness and strength of the nets. The available information on seawater performance of copper alloys (corrosion, biofouling, mechanics) and copper alloy nets (hydrodynamics) is used to develop engineering procedures for marine aquaculture fish cage systems with copper alloy netting. The design, analysis, and fabrication procedures are illustrated on a commercial size gravity-type offshore fish cage deployed in the Pacific Ocean near Isla Italia (Patagonia, Chile). The funding for this work was provided by the International Copper Association. This work was also supported through two UNH Fellowships: CEPS UNH Graduate Fellowship to Outstanding PhD Program Applicants and Dissertation Year Fellowship.

  10. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    SciTech Connect

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A; Terrani, Kurt A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanical characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.

  11. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability.

    PubMed

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-02

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  12. Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments

    SciTech Connect

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Singh, P.; Windisch, C.F.; Johnson, C.D.; Schaeffer, C.

    2004-11-01

    Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230.

  13. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    NASA Astrophysics Data System (ADS)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  14. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction.

    PubMed

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-10-21

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag(+)/Pd(2+) is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.

  15. The unexpected role of metal nanoparticles and nanonetworks in alloy degradation.

    SciTech Connect

    Zeng, Z.; Natesan, K.; Cai, Z.; Darling, S. B.

    2008-08-01

    Oxide scale, which is essential to protect structural alloys from high-temperature degradation such as oxidation, carburization and metal dusting, is usually considered to consist simply of oxide phases. Here, we report on a nanobeam X-ray and magnetic force microscopy investigation that reveals that the oxide scale actually consists of a mixture of oxide materials and metal nanoparticles. The metal nanoparticles self-assemble into nanonetworks, forming continuous channels for carbon transport through the oxide scales. To avoid the formation of these metallic particles in the oxide scale, alloys must develop a scale without spinel phase. We have designed a novel alloy that has been tested in a high-carbon-activity environment. Our results show that the incubation time for carbon transport through the oxide scale of the new alloy is more than an order of magnitude longer compared with commercial alloys with similar chromium content.

  16. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  17. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    PubMed Central

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-01-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance. PMID:28150732

  18. Industrial Experience on the Caustic Cracking of Stainless Steels and Nickel Alloys - A Review

    SciTech Connect

    Rebak, R B

    2005-10-09

    Caustic environments are present in several industries, from nuclear power generation to the fabrication of alkalis and alumina. The most common material of construction is carbon steel but its application is limited to a maximum temperature of approximately 80 C. The use of Nickel (Ni) alloys is recommended at higher temperatures. Commercially pure Ni is the most resistant material for caustic applications both from the general corrosion and the stress corrosion cracking (SCC) perspectives. Nickel rich alloys also offer a good performance. The most important alloying elements are Ni and chromium (Cr). Molybdenum (Mo) is not a beneficial alloying element and it dissolves preferentially from the alloy in presence of caustic environments. Austenitic stainless steels such as type 304 and 316 seem less resistant to caustic conditions than even plain carbon steel. Experimental evidence shows that the most likely mechanism for SCC is anodic dissolution.

  19. The history of development of molybdenum alloys for structural applications

    SciTech Connect

    Wadsworth, J.; Wittenauer, J.P.

    1993-02-01

    Molybdenum was first isolated as an element in 1893 and found initial commercial application as a filament support for incandescent lamps in 1910. The advent of arc melting practice in the 1940s led to an increase in availability of Mo sheet, bar, and plate products. Alloy development programs were heavily supported starting in the 1950s and several key alloys emerged over the next twenty years that remain in use to the present time such as Mo-TZM, unalloyed Mo, and Mo-Re. In recent years, improved understanding of the role of oxygen and carbide distributions at grain boundaries have led to increased reliability and use of Mo in aerospace products. Current developmental programs in areas of propulsion and energy conversion will ensure the prominent position of Mo as a high-temperature structural material. This paper highlights some of these key developments in the evolution of Mo alloys.

  20. Palladium alloys for biomedical devices.

    PubMed

    Wataha, John C; Shor, Kavita

    2010-07-01

    In the biomedical field, palladium has primarily been used as a component of alloys for dental prostheses. However, recent research has shown the utility of palladium alloys for devices such as vascular stents that do not distort magnetic resonance images. Dental palladium alloys may contain minor or major percentages of palladium. As a minor constituent, palladium hardens, strengthens and increases the melting range of alloys. Alloys that contain palladium as the major component also contain copper, gallium and sometimes tin to produce strong alloys with high stiffness and relatively low corrosion rates. All current evidence suggests that palladium alloys are safe, despite fears about harmful effects of low-level corrosion products during biomedical use. Recent evidence suggests that palladium poses fewer biological risks than other elements, such as nickel or silver. Hypersensitivity to palladium alone is rare, but accompanies nickel hypersensitivity 90-100% of the time. The unstable price of palladium continues to influence the use of palladium alloys in biomedicine.

  1. Hot Microfissuring in Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Nunes, A.

    1984-01-01

    Experiments in intergranular cracking of nickel alloy near solidus temperature discussed in contractor report. Purpose of investigation development of schedule for welding, casting, forging, or other processing of alloy without causing microfissuring.

  2. Commercializing solar hydrogen production

    SciTech Connect

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  3. Commercial aircraft noise

    NASA Astrophysics Data System (ADS)

    Smith, M. J.

    The history of aircraft noise control development is traced with an eye to forecasting the future. Noise control became imperative with the advent of the first generation of commercial jet aircraft, which were extremely loud. The steady increases in the size of turbofans have nearly matched the progress in noise reduction capabilities in recent years. Only 5 dB of reduction in fleet noise has been achieved since early standards were met. Current engine design is concentrated on increasing fuel efficiency rather than lowering noise emissions. Further difficulties exist because of continued flights with older aircraft. Gains in noise reduction have been made mainly by decreasing exhaust velocities from 600-700 m/sec to 300-400 m/sec. New techniques being explored comprise mixing the core and bypass flows, interaction tone control, reduction of broadband sources, development of acoustic liner technology and alterations in the number of fan blades and stage spacing.

  4. Endotoxins in commercial vaccines.

    PubMed Central

    Geier, M R; Stanbro, H; Merril, C R

    1978-01-01

    Twenty samples of commercial vaccines intended for administration to humans were assayed for the presence of bacterial endotoxins by using the Limulus amebocyte lysate test. Sixteen of the vaccines contained more than 0.1 ng of endotoxin per ml (which corresponds to 103 bacterial cell wall equivalents per ml in the undiluted vaccines). These results suggest that at some stage of preparation, the vaccines have contained varying amounts of gram-negative bacteria and may indicate the presence of other bacterial products as well. It might be useful to list the level of endotoxins, phage, and other contaminants on each vaccine lot to facilitate studies on any side effects of these contaminants. Selection of vaccine lots with the least endotoxin might reduce some of the adverse effects of vaccinations. PMID:727776

  5. Whither Commercial Nanobiosensors?

    SciTech Connect

    Achyuthan, Komandoor

    2011-01-01

    The excitement surrounding the marriage of biosensors and nanotechnology is palpable even from a cursory examination of the scientific literature. Indeed, the word “nano” might be in danger of being overused and reduced to a cliché, although probably essential for publishing papers or securing research funding. The biosensor literature is littered with clever or catchy acronyms, birds being apparently favored (“CANARY”, “SPARROW”), quite apart from “electronic tongue,” “electronic nose,” and so on. Although biosensors have been around since glucose monitors were commercialized in the 1970s, the transition of laboratory research and innumerable research papers on biosensors into the world of commerce has lagged. There are several reasons for this phenomenon including the infamous “valley of death” afflicting entrepreneurs emerging from academic environment into the industrial world, where the rules for success can be radically different. In this context, musings on biosensors and especially nanobiosensors in an open access journal such as Journal of Biosensors and Bioelectronics is topical and appropriate especially since market surveys of biosensors are prohibitively expensive, sometimes running into thousands of dollars for a single copy. The contents and predictions of market share for biosensors in these reports also keep changing every time a report is published. Not only that, the market share projections for biosensors differs considerably amongst various reports. An editorial provides the opportunity to offer personal opinions and perhaps stimulate debate on a particular topic. In this sense, editorials are a departure from the rigor of a research paper. This editorial is no exception. With this preamble, it is worthwhile to stop and ponder the status of commercial biosensors and nanobiosensors.

  6. The Evolution of the Segregation Behavior of Alloying Elements in a Low-Alloy Steel

    SciTech Connect

    A.J. Papworth; D.B. Knorr; D.B. Williams

    2002-08-21

    The segregation of alloying and impurity elements to prior austenite grain boundaries (PAGBs) in low-alloy steels controls temper-embrittlement although the precise microchemical and microstructural interactions are, as yet, unclear because of the many variables involved. Competing segregation and de-segregation phenomena are observed. For example, Auger analyses of fracture surfaces indicate that brittle fracture is caused by the segregation of P to the PAGB. The addition of small amounts ({approx} 0.5 wt%) of Mo appears to regard, but not stop, temper-embrittlement, possibly due to Mo{sub 2}C precipitates that form at elevated temperatures causing de-segregation of Mo from the PAGB. The relationship between segregation and temper embrittlement is further complicated in commercial alloys by both the number of segregating elements and the complex, multi-stage heat treatments. Auger analysis pre-selects the most embrittled boundaries and so the complete distribution of segregants across all PAGBs cannot be determined by this technique. Previous work has shown how X-ray mapping (XRM) in a field-emission gun scanning transmission electron microscope (FEG-STEM) offers a more complete view of the distribution of segregants on both non-embrittled and embrittled PAGBs. XRM was used to observe the evolution of the segregation and desegregation of five elements during four successive heat-treatment stages of commercial low-alloy steel forging. In the last and crucial temper-embrittlement stage, increases in the degree and frequency of Ni segregation occur while other elements either segregate, remain constant or desegregate from the PAGBs.

  7. Selective dissolution in binary alloys

    NASA Astrophysics Data System (ADS)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  8. Evaluation of alloys and coatings for use in automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Oldrieve, R. E.

    1974-01-01

    Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were evaluated in cyclic engine dynamometer tests with a peak temperature of 1040 C (1900 F). Two developmental ferritic-iron alloys, GE-1541 and NASA-18T, exhibited the best overall performance by lasting at least 60 percent of the life of test engine. Four of the alloys evaluated warrant consideration for reactor use. They are GE-1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.

  9. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  10. The coupled effect of grain size and solute on work hardening of Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shadkam, A.; Sinclair, C. W.

    2015-12-01

    A modified grain size-dependent model developed to capture the combined effects of solute and grain size on the work hardening behaviour of fine-grained Cu-Ni alloys is provided. This work builds on a recent model that attributes the grain size-dependent work hardening of fine-grained Cu to backstresses. In the case of Cu-Ni alloys, unlike commercially pure Cu, a grain size-dependent separation between the Kocks-Mecking curves develops, this being explained here based on an extra contribution from geometrically necessary dislocations in the solid solution alloy. This is corroborated by strain-rate sensitivity experiments.

  11. An evaluation of alloys and coatings for use in automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Oldrieve, R. E.

    1974-01-01

    Several candidate alloys and coatings were evaluated for use in automobile thermal reactors. Full-size reactors of the candidate materials were analyzed in cyclic engine dynamometer tests with peak temperature of 1900 F (1040 C). Two developmental ferritic iron alloys GE1541 and NASA-18T - exhibited the best overall performance lasting at least 60% of the life of the test engine. Four of the alloys evaluated warrant consideration for reactor use. They include GE1541, Armco 18 SR, NASA-18T, and Inconel 601. None of the commercial coating substrate combinations evaluated warrant consideration for reactor use.-

  12. Tissue Response to Base-Metal Dental Alloys.

    DTIC Science & Technology

    RESPONSE(BIOLOGY), *CASTING ALLOYS, *BASE METAL, * DENTAL PROSTHESES, TISSUES(BIOLOGY), COMPATIBILITY, NICKEL ALLOYS, BERYLLIUM, DENTISTRY, CANCER, HISTOLOGY, DENTAL IMPLANTOLOGY , COBALT ALLOYS, CHROMIUM ALLOYS.

  13. Finding the Alloy Genome

    NASA Astrophysics Data System (ADS)

    Hart, Gus L. W.; Nelson, Lance J.; Zhou, Fei; Ozolins, Vidvuds

    2012-10-01

    First-principles codes can nowadays provide hundreds of high-fidelity enthalpies on thousands of alloy systems with a modest investment of a few tens of millions of CPU hours. But a mere database of enthalpies provides only the starting point for uncovering the ``alloy genome.'' What one needs to fundamentally change alloy discovery and design are complete searches over candidate structures (not just hundreds of known experimental phases) and models that can be used to simulate both kinetics and thermodynamics. Despite more than a decade of effort by many groups, developing robust models for these simulations is still a human-time-intensive endeavor. Compressive sensing solves this problem in dramatic fashion by automatically extracting the ``sparse model'' of an alloy in only minutes. This new paradigm to model building has enabled a new framework that will uncover, automatically and in a general way across the periodic table, the important components of such models and reveal the underlying ``genome'' of alloy physics.

  14. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High Temperature Strenth and Creep-Resistance

    SciTech Connect

    Maziasz, PJ

    2004-09-30

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation-Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metals. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815EC (1500EC) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  15. Microstructure evolution and tensile mechanical properties of thixoformed high performance Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Chen, Qiang; Wang, Bo; Du, Zhi-ming

    2015-09-01

    Al-Zn-Mg-Cu alloys are the strongest aluminum alloys which have been widely used for aerospace applications. They are usually machined from the wrought state usually with a high waste percentage. To reduce waste, it is important to thixoform these alloys in near net shape. In this work, the thixoformability of a commercial high performance Al-Zn-Mg-Cu alloy 7075 was studied. A novel multistep reheating regime was developed in recrystallization and partial melting (RAP) route to obtain spheroidal semi-solid microstructures. The as-extruded 7075 alloy was fully recrystallized for a short holding time using the multistep reheating regime. Semi-solid microstructures with fine and spherical solid grains with a grain size of 40-50 μm embedded in liquid matrix were obtained. The advantage of the multistep reheating regimes over those conventional routes was also discussed. Some wheel-shaped components were thixoformed from the as-received 7075 alloy. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed component based on multistep reheating regime, are 510 MPa, 446 MPa and 17.5% respectively. These values are superior to those of the products manufactured with the conventional RAP route. As the results indicated, thixoforming could be conducted based on commercial extruded Al-Zn-Mg-Cu alloys, which has important practical significance.

  16. Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Luo, Zhimin; Fan, Zhanxi; Zhang, Xiao; Tan, Chaoliang; Li, Hai; Zhang, Hua; Xue, Can

    2014-09-01

    We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems.We report the generation of triangular Ag-Pd alloy nanoprisms through a rationally designed synthetic strategy based on silver nanoprisms as sacrificial templates. The galvanic replacement between Ag nanoprisms and H2PdCl4 along with co-reduction of Ag+/Pd2+ is responsible for the formation of final prismatic Ag-Pd alloy nanostructures. Significantly, these Ag-Pd alloy nanoprisms exhibited superior electrocatalytic activity for the oxygen reduction reaction (ORR) as compared with the commercial Pd/C catalyst. Such a high catalytic activity is attributed to not only the alloyed Ag-Pd composition but also the dominant {111} facets of the triangular Ag-Pd nanoprisms. This work demonstrates the rational design of bimetallic alloy nanostructures with control of selective crystal facets that are critical to achieve high catalytic activity for fuel cell systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03600j

  17. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  18. Aluminum alloys with improved strength

    NASA Technical Reports Server (NTRS)

    Deiasi, R.; Adler, P.

    1975-01-01

    Mechanical strength and stress corrosion of new BAR and 7050 alloys that include Zn instead of Cr have been studied and compared with those of 7075 aluminum alloy. Added mechanical strength of new alloys is attributed to finer grain size of 5 to 8 micrometers, however, susceptibility to stress corrosion attack is increased.

  19. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  20. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  1. Polyhedral Palladium–Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction

    PubMed Central

    Fu, Geng-Tao; Liu, Chang; Zhang, Qi; Chen, Yu; Tang, Ya-Wen

    2015-01-01

    Polyhedral noble–metal nanocrystals have received much attention and wide applications as electrical and optical devices as well as catalysts. In this work, a straightforward and effective hydrothermal route for the controllable synthesis of the high-quality Pd–Ag alloy polyhedrons with uniform size is presented. The morphology, composition and structure of the Pd–Ag alloy polyhedrons are fully characterized by the various physical techniques, demonstrating the Pd–Ag alloy polyhedrons are highly alloying. The formation/growth mechanisms of the Pd–Ag alloy polyhedrons are explored and discussed based on the experimental observations and discussions. As a preliminary electrochemical application, the Pd–Ag alloy polyhedrons are applied in the formic acid oxidation reaction, which shows higher electrocatalytic activity and stability than commercially available Pd black due to the “synergistic effects” between Pd and Ag atoms. PMID:26329555

  2. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  3. Slag remelt purification of irradiated vanadium alloys

    SciTech Connect

    Carmack, W.J.; Smolik, G.R.; McCarthy, K.A.; Gorman, P.K.

    1995-07-01

    This paper describes theoretical and scoping experimental efforts to investigate the decontamination potential of a slag remelting process for decontaminating irradiated vanadium alloys. Theoretical calculations, using a commercial thermochemical computer code HSC Chemistry, determined the potential slag compositions and slag-vanadium alloy ratios. The experiment determined the removal characteristics of four surrogate transmutation isotopes (Ca, Y - to simulate Sc, Mn, and Ar) from a V-5Ti-5Cr alloy with calcium fluoride slag. An electroslag remelt furnace was used in the experiment to melt and react the constituents. The process achieved about a 90 percent removal of calcium and over 99 percent removal of yttrium. Analyses indicate that about 40 percent of the manganese may have been removed. Argon analyses indicates that 99.3% of the argon was released from the vanadium alloy in the first melt increasing to 99.7% during the second melt. Powder metallurgy techniques were used to incorporate surrogate transmutation products in the vanadium. A powder mixture was prepared with the following composition: 90 wt % vanadium, 4.7 wt % titanium, 4.7 wt % chromium, 0.35 wt % manganese, 0.35 wt % CaO, and 0.35 wt % Y{sub 2}O{sub 3}. This mixture was packed into 2.54 cm diameter stainless steel tubes. Argon was introduced into the powder mixture by evacuating and backfilling the stainless steel containers to a pressure of 20 kPa (0.2 atm). The tubes were hot isostatically pressed at 207 MPa (2000 atm) and 1473 K to consolidate the metal. An electroslag remelt furnace (crucible dimensions: 5.1 cm diameter by 15.2 cm length) was used to process the vanadium electrodes. Chemical analyses were performed on samples extracted from the slags and ingots. Ingot analyses results are shown below. Values are shown in percent removal of the four targeted elements of the initial compositions.

  4. Evaluation of alloys for fuel cell heat exchanges

    NASA Astrophysics Data System (ADS)

    Perkins, R. A.; Vonk, S. J.

    1981-04-01

    The results are presented of an investigation to evaluate the behavior of commercial stainless steels, superalloys, and aluminide coatings in both clean (sulfur-free) and raw (1% H2S) gas representative of the Texaco slagging gasifier atmosphere are 1400 to 18000 F (1033 to 12550 K). The goal was to determine which, if any, of these materials is suitable for use in a high temperature heat exchanger operating on intermediate Btu coal gasification atmospheres. It has been found that none of the commercially available alloys or coatings are suitable for use in the raw (1% H2S) gas, even at temperatures as low as 14000 F (10330 K). Materials that are resistant to attack either have a limited life ( 5000 h) or cannot be fabricated as large size heat exchanger components. It is concluded that structural high temperature alloys must be coated for use in the raw gas and that the best coating or cladding materials are Ni-46Cr (IN671 type alloy) and MCrAl with 25 to 40% Cr and 30 to 40% Al (where M is Ni, Co, or Fe or some combination thereof). Heat exchanger components can be clad with Ni-46Cr but the alloy must be modified to improve its reliability and performance in coal conversion atmospheres.

  5. Metallurgy and deformation of electron beam welded similar titanium alloys

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Sabol, J. C.; Misiolek, W. Z.; Mitchell, R.; Short, A. B.; Littlefair, G.

    2012-04-01

    Butt welded joins were produced between commercially pure titanium and various titanium alloys using an electron beam welding technique. The materials used represent commercially pure grade, α-β alloy and β alloy. They were CP Ti, Ti-6Al-4V (Ti64) and Ti-5Al-5V-5Mo-3Cr (Ti5553), respectively. Grains were largest in the FZs of the different weldments, decreasing in size towards the heat affected zones (HAZs) and base metals. Hardness measurements taken across the traverse cross-sections of the weldments were constant from base metal-to-weld-to-base metal for CP Ti/CP Ti and Ti64/Ti64 welds, while the FZ of Ti5553/Ti5553 had a lower hardness compared with the base metal. During tensile testing the CP Ti/CP Ti weldments fractured at the base metal, whereas both the Ti64/Ti64 and Ti5553/Ti5553 broke at the weld zones. Fracture surface analysis suggested microvoid coalescence as the failure mechanism. The compositional analysis showed a relatively uniform distribution of solute elements from base metal-to-weld-to-base metal. CP Ti has always been known for its excellent weldability, Ti64 has good weldability and, preliminary results indicated that Ti5553 alloy is also weldable.

  6. Hydrogen in titanium alloys

    SciTech Connect

    Wille, G W; Davis, J W

    1981-04-01

    The titanium alloys that offer properties worthy of consideration for fusion reactors are Ti-6Al-4V, Ti-6Al-2Sn-4Zr-2Mo-Si (Ti-6242S) and Ti-5Al-6Sn-2Zr-1Mo-Si (Ti-5621S). The Ti-6242S and Ti-5621S are being considered because of their high creep resistance at elevated temperatures of 500/sup 0/C. Also, irradiation tests on these alloys have shown irradiation creep properties comparable to 20% cold worked 316 stainless steel. These alloys would be susceptible to slow strain rate embrittlement if sufficient hydrogen concentrations are obtained. Concentrations greater than 250 to 500 wppm hydrogen and temperatures lower than 100 to 150/sup 0/C are approximate threshold conditions for detrimental effects on tensile properties. Indications are that at the elevated temperature - low hydrogen pressure conditions of the reactors, there would be negligible hydrogen embrittlement.

  7. Commercializing medical technology.

    PubMed

    Scanlon, Kevin J; Lieberman, Mark A

    2007-04-01

    As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880's, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930's-1970's) because the German scientists fled Hitler's government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980's. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore

  8. Commercializing medical technology

    PubMed Central

    Lieberman, Mark A.

    2007-01-01

    As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880’s, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930’s–1970’s) because the German scientists fled Hitler’s government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980’s. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain

  9. Surface modification of high temperature iron alloys

    DOEpatents

    Park, J.H.

    1995-06-06

    A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.

  10. Surface modification of high temperature iron alloys

    DOEpatents

    Park, Jong-Hee

    1995-01-01

    A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.

  11. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  12. Commercial users panel

    NASA Technical Reports Server (NTRS)

    Byrd, Joseph S.; Flatau, Carl; Hodge, David C.; Hollis, Ralph; Leach, Eugene F.; Gilbert, Ray; Cleland, John; Leifer, Larry; Naser, Joseph; Schmuter, Samson D.

    1987-01-01

    The discussions of motives and requirements for telerobotics application demonstrated that, in many cases, lack of progress was a result not of limited opportunities but of inadequate mechanisms and resources for promoting opportunities. Support for this conclusion came from Telerobotics, Inc., one of the few companies devoted primarily to telerobot systems. They have produced units for such diverse applications as nuclear fusion research, particle accelerators, cryogenics, firefighting, marine biology/undersea systems and nuclear mobile robotics. Mr. Flatau offered evidence that telerobotics research is only rarely supported by the private sector and that it often presents a difficult market. Questions on the mechanisms contained within the NASA technology transfer process for promoting commercial opportunities were fielded by Ray Gilbert and Tom Walters. A few points deserve emphasis: (1) NASA/industry technology transfer occurs in both directions and NASA recognizes the opportunity to learn a great deal from industry in the fields of automation and robotics; (2) promotion of technology transfer projects takes a demand side approach, with requests to industry for specific problem identification. NASA then proposes possible solutions; and (3) comittment ofmotivated and technically qualified people on each end of a technology transfer is essential.

  13. Microstructural influences on the dynamic response of tungsten heavy alloys

    SciTech Connect

    Ramesh, K.T.; Coates, R.S.

    1992-09-01

    The influence of tungsten content, swaging, and grain size on the dynamic behavior of commercially available tungsten-nickel-iron (W-Ni-Fe) alloys has been examined using the compression Kolsky bar. The observed flow stresses increase with increasing tungsten content and with degree of swaging but are essentially independent of grain size for these compressive deformations. Further, the flow stresses sustained by these materials have a distinct dependence on strain rate, in that the flow stress increases by at least 20 pct over a range from 10(exp {minus}4)/s to 7 x 10(exp 3)/s. The rate sensitivity itself increases with increasing tungsten content. The rate sensitivity of the alloy with the highest tungsten content (97 pct W) appears to be essentially the same as that of pure polycrystalline tungsten. In addition to showing greater strain hardening, the unswaged alloy also shows a much higher rate dependence than the swaged alloys, with the flow stress almost doubling when the rate of deformation increases from quasistatic to 5 x 1O(exp 3)/s. The rate-hardening mechanism within the composite appears to be essentially that associated with the tungsten grains; however, the matrix contribution is significant in the case of an unswaged alloy.

  14. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires

    PubMed Central

    Jiang, Kezhu; Zhao, Dandan; Guo, Shaojun; Zhang, Xu; Zhu, Xing; Guo, Jun; Lu, Gang; Huang, Xiaoqing

    2017-01-01

    The common knowledge is that Pt and Pt alloy nanoparticles (NPs) less than 2 nm are not desirable for oxygen reduction reaction (ORR). However, whether the same trend is expected in Pt-based nanowires (NWs) and nanoplates remains questionable because there is no scalable approach to make such Pt nanostructures. We report a general approach for preparing subnanometer Pt alloy NWs with a diameter of only 4 to 5 atomic layer thickness, ranging from monometallic Pt NWs to bimetallic PtNi and PtCo NWs and to trimetallic PtNiCo NWs. In a sharp contrast to Pt alloy NPs, the subnanometer Pt alloy NWs demonstrate exceptional mass and specific activities of 4.20 A/mg and 5.11 mA/cm2 at 0.9 V versus reversible hydrogen electrode (RHE), respectively, 32.3 and 26.9 times higher than those of the commercial Pt/C. Density functional theory simulations reveal that the enhanced ORR activities are attributed to the catalytically active sites on high-density (111) facets in the subnanometer Pt alloy NWs. They are also very stable under the ORR condition with negligible activity decay over the course of 30,000 cycles. Our work presents a new approach to maximize Pt catalytic efficiency with atomic level utilization for efficient heterogeneous catalysis and beyond. PMID:28275723

  15. Functionally Graded Al Alloy Matrix In-Situ Composites

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Subramaniya Sarma, V.; Murty, B. S.

    2010-01-01

    In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.

  16. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires.

    PubMed

    Jiang, Kezhu; Zhao, Dandan; Guo, Shaojun; Zhang, Xu; Zhu, Xing; Guo, Jun; Lu, Gang; Huang, Xiaoqing

    2017-02-01

    The common knowledge is that Pt and Pt alloy nanoparticles (NPs) less than 2 nm are not desirable for oxygen reduction reaction (ORR). However, whether the same trend is expected in Pt-based nanowires (NWs) and nanoplates remains questionable because there is no scalable approach to make such Pt nanostructures. We report a general approach for preparing subnanometer Pt alloy NWs with a diameter of only 4 to 5 atomic layer thickness, ranging from monometallic Pt NWs to bimetallic PtNi and PtCo NWs and to trimetallic PtNiCo NWs. In a sharp contrast to Pt alloy NPs, the subnanometer Pt alloy NWs demonstrate exceptional mass and specific activities of 4.20 A/mg and 5.11 mA/cm(2) at 0.9 V versus reversible hydrogen electrode (RHE), respectively, 32.3 and 26.9 times higher than those of the commercial Pt/C. Density functional theory simulations reveal that the enhanced ORR activities are attributed to the catalytically active sites on high-density (111) facets in the subnanometer Pt alloy NWs. They are also very stable under the ORR condition with negligible activity decay over the course of 30,000 cycles. Our work presents a new approach to maximize Pt catalytic efficiency with atomic level utilization for efficient heterogeneous catalysis and beyond.

  17. Inhibited Aluminization of an ODS FeCr Alloy

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Pint, Bruce A

    2012-01-01

    Aluminide coatings are of interest for fusion energy applications both for compatibility with liquid Pb-Li and to form an alumina layer that acts as a tritium permeation barrier. Oxide dispersion strengthened (ODS) ferritic steels are a structural material candidate for commercial reactor concepts expected to operate above 600 C. Aluminizing was conducted in a laboratory scale chemical vapor deposition reactor using accepted conditions for coating Fe- and Ni-base alloys. However, the measured mass gains on the current batch of ODS Fe-14Cr were extremely low compared to other conventional and ODS alloys. After aluminizing at two different Al activities at 900 C and at 1100 C, characterization showed that the ODS Fe-14Cr specimens formed a dense, primarily AlN layer that prevented Al uptake. This alloy batch contained a higher (> 5000 ppma) N content than the other alloys coated and this is the most likely reason for the inhibited aluminization. Other factors such as the high O content, small ({approx} 140 nm) grain size and Y-Ti oxide nano-clusters in ODS Fe-14Cr also could have contributed to the observed behavior. Examples of typical aluminide coatings formed on conventional and ODS Fe- and Ni-base alloys are shown for comparison.

  18. The Influence of Fabrication Process on the Initial Stages of Steam Oxidation Performed on Haynes® 282® Alloy at 760 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boron, L.; Homa, M.; Nowak, R.; Horton, N.; Sheppard, R.; Purgert, R. M.; Siewiorek, A.; Sobczak, N.; Sobczak, J. J.

    2017-01-01

    This work presents results observed after the first 5 h of oxidation of Haynes® 282® alloy. The steam oxidation tests have been carried out in pure water at 760 °C for 1, 2 and 5 h, respectively, using an accurate thermogravimetric balance technique. The alloy used for comparison in this work was fabricated using three different methods. The initial steam oxidation performance of the commercially wrought alloy Haynes® 282® was compared with a fabricated cast alloy and a HIP/PM alloy. The results show that in terms of corrosion resistance, fabrication techniques appear to have little impact on steam oxidation performance and behavior. The exposed Ni-based alloys all developed the oxide scales consisting mainly of Cr2O3 phase mixed with some TiO2, while internal Al and Ti precipitations along the grain boundaries were observed both in Haynes® 282® wrought and HIP/PM alloy.

  19. The Influence of Fabrication Process on the Initial Stages of Steam Oxidation Performed on Haynes® 282® Alloy at 760 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boron, L.; Homa, M.; Nowak, R.; Horton, N.; Sheppard, R.; Purgert, R. M.; Siewiorek, A.; Sobczak, N.; Sobczak, J. J.

    2016-11-01

    This work presents results observed after the first 5 h of oxidation of Haynes® 282® alloy. The steam oxidation tests have been carried out in pure water at 760 °C for 1, 2 and 5 h, respectively, using an accurate thermogravimetric balance technique. The alloy used for comparison in this work was fabricated using three different methods. The initial steam oxidation performance of the commercially wrought alloy Haynes® 282® was compared with a fabricated cast alloy and a HIP/PM alloy. The results show that in terms of corrosion resistance, fabrication techniques appear to have little impact on steam oxidation performance and behavior. The exposed Ni-based alloys all developed the oxide scales consisting mainly of Cr2O3 phase mixed with some TiO2, while internal Al and Ti precipitations along the grain boundaries were observed both in Haynes® 282® wrought and HIP/PM alloy.

  20. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments.

    PubMed

    Nakagawa, M; Matono, Y; Matsuya, S; Udoh, K; Ishikawa, K

    2005-05-01

    In this study, we examined the corrosion behaviors of pure titanium, the alloys Ti-6Al-4V and Ti-6Al-7Nb, and the new experimental alloys Ti-Pt and Ti-Pd using anodic polarization and corrosion potential measurements in an environment containing fluoride. Before and after immersion in the test solutions, we made observations using a scanning electron microscope. The test solutions included an artificial saliva containing 0.2% NaF (corresponding to 905 ppm F) and an artificial saliva with a low concentration of oxygen. Although the surfaces of the Ti-Pt and Ti-Pd alloys were not affected by an acidic environment containing fluoride, the surfaces of the pure titanium, the Ti-6Al-4V alloy, and the Ti-6Al-7Nb alloy were markedly roughened by corrosion. The surfaces of the pure titanium, the Ti-6Al-4V alloy, and the Ti-6Al-7Nb alloy were microscopically damaged by corrosion when they were immersed in the solution containing a low concentration of dissolved oxygen, even with a fluoride concentration included in the commercial dentifrices. In this situation, however, the surfaces of the new Ti-Pt and Ti-Pd alloys were not affected. These alloys are expected to be of use in dental work as new titanium alloys with high corrosion resistances.

  1. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    SciTech Connect

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  2. Fundamentals of Commercial Art. Module 1. Commercial Art. Instructor's Guide.

    ERIC Educational Resources Information Center

    Davis, Diane; Tadrick, Christine

    This module is the first of five in the Commercial Art series. The curriculum guide is designed for competency-based teaching and testing. Within this module on fundamentals of commercial art are six instructional units. A cross-reference table reveals how the instructional components of the module relate to Missouri competencies. Each unit…

  3. Optimization of Superaustenitic Stainless Steel Filler Metals for Welding Advanced Double Hull Combatant Ships

    DTIC Science & Technology

    2005-02-16

    of vertical isopleths was constructed of the Fe-Ni- Cr -Mo system using the CALPHAD software Thermo-Calc 8 in conjunction with the Iron Alloy Database 9...Element (wt/ o ) 25.4-mm-thick plate 15.9-mm-thick plate C 0.02 0.02 Mn 0.51 0.38 P 0.016 0.016 S 0.001 0.001 Si 0.46 0.50 Cr 20.54 20.69 Ni 24.31 24.06 Mo...red). 45 30% Niobium 20% 0 0 / o ’ 10% -- J--- 0% 10% 20% 30% Cr concentration, wt% Figure 26. Phase stability diagram of Fe-Ni- Cr -6Mo compositions

  4. Environmentally assisted cracking of low pressure steam turbine disk-rim material

    SciTech Connect

    Inagaki, H.; Sugita, Y.; Kondo, Y.; Bodai, M.; Takel, M.

    1996-12-31

    At the last stage disk-rim blade attachments of low pressure steam turbines for fossil power units which are subjected to increasing number of start-stop operations, the frequent start-stop operations can be a potential problem in the integrity of the rotor. Environmentally assisted cracking of 3.5 NiCrMoV low alloy steel under cyclic straining was investigated in both the water environment at 60 C in the laboratory and the actual steam environment of a low pressure steam turbine. Effects of strain rate, strain holding time, superposed vibratory stress, impurities and dissolved oxygen in the water environment, on crack initiation life and crack propagation rate were investigated using trapezoidal strain wave form.

  5. Characteristics of a multicomponent Nb-Ti-Al alloy via industrial-scale practice

    SciTech Connect

    Sikka, V.K.; Loria, E.A.

    1997-05-01

    Within the spectrum of advanced intermetallic materials, an alloy containing 44Nb-35Ti-6Al-5Cr-8V-1W-0.5Mo-0.3Hf (at. %) was investigated in the industrial-scale produced condition. The alloy was tensile tested in air from room temperature to 1,000 C and in vacuum at 750 and 850 C. Results of this study have shown that the alloy can be commercially produced and has adequate ductility for its secondary processing even at an oxygen level of 1,160 wppm. The alloy has room temperature ductility of 16% and superplastic elongation of 244% at 1,000 C. This alloy shows low intermediate temperature (600--850 C) ductility when tested in air. The vacuum testing revealed that the low ductility is associated within oxygen embrittlement phenomenon. It is expected that such an embrittlement can be taken care of by an oxidation resistant coating. The alloy also possesses superior strength to similar alloys in this class. Results of this investigation suggest a strong potential for consideration of this alloy to exceed the useful temperature range of nickel-base superalloys.

  6. Properties of experimental titanium-silver-copper alloys for dental applications.

    PubMed

    Kang, Dong-Kuk; Moon, Seoung-Kyun; Oh, Keun-Taek; Choi, Good-Sun; Kim, Kyoung-Nam

    2009-07-01

    The aim of this study was to develop Ti-Ag-Cu alloys with a higher corrosion resistance, better biocompatibility, and better mechanical properties than commercially pure titanium and its alloys. The microstructure, corrosion resistance, mechanical property and cytotoxicity of the Ti-Ag-Cu alloys were investigated. The corrosion resistance was evaluated by open circuit potential measurements and potentiodynamic polarization tests in artificial saliva at 37 degrees C. The mechanical properties were evaluated using tensile and microhardness tests. The biocompatibility was tested by evaluating the cytotoxicity of the alloys using an agar-overlay test and MTT assay. It was found that the open circuit potentials of the Ti-Ag-Cu alloys were higher than that of pure Ti. However, the passive current densities of the Ti-Ag-Cu alloys were similar to that of pure titanium. The mechanical properties improved with increasing Ag and Cu content. All the Ti-Ag-Cu alloys examined were found to be noncytotoxic similar to pure Ti. Therefore, Ti-Ag-Cu alloys can be used as biomaterials in the dental field.

  7. Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Czerwinski, F.; Niewczas, M.; Chen, D. L.

    2015-03-01

    The methodology based on correlating hardness and phase transformations was developed and applied to determine the maximum temperature of hardness retention of selected Al-based and Mg-based alloys for aerospace applications. The Al alloys: A356, F357, and C355 experienced 34-66% reduction of the initial hardness, in comparison to 4-22% hardness reduction observed in Mg alloys: QE22A, EV31A, ZE41A, and WE43B after the same annealing to 450 °C. For Al alloys the hardness reduction showed a steep transition between 220 and 238 °C. In contrast, Mg alloys showed a gradual hardness decrease occurring at somewhat higher temperatures between 238 and 250 °C. The hardness data were correlated with corresponding phase transformation kinetics examined by dilatometer and electrical resistivity measurements. Although Mg alloys preserved hardness to higher temperatures, their room temperature tensile strength and hardness were lower than Al alloys. The experimental methodology used in the present studies appears to be very useful in evaluating the softening temperature of commercial Al- and Mg-based alloys, permitting to assess their suitability for high-temperature applications.

  8. Tribological characteristics of aluminum alloys against steel lubricated by ammonium and imidazolium ionic liquids

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M; Truhan, John J.

    2009-01-01

    Sliding friction and wear characteristics of aluminum alloys against AISI 52100 steel lubricated by ionic liquids (ILs) were investigated at both room and elevated temperatures. The tested aluminum alloys include a commercially pure aluminum Al 1100, a wrought alloy Al 6061-T6511, and a cast alloy Al 319-T6. The lubricating performance of two ILs with the same anion, one ammonium-based [C8H17]3NH.Tf2N and one imidazolium-based C10mim.Tf2N, were compared each other and benchmarked against that of a conventional fully-formulated engine oil. Significant friction (up to 35%) and wear (up to 55%) reductions were achieved by the ammonium IL when lubricating the three aluminum alloys compared to the engine oil. The imidazolium IL performed better than the oil but not as well as the ammonium IL for Al 1100 and 319 alloys. However, accelerated wear was unexpectedly observed for Al 6061 alloy when lubricated by C10mim.Tf2N. Surface chemical analyses implied complex tribochemical reactions between the aluminum surfaces and ILs during the wear testing, which has been demonstrated either beneficial by forming a protective boundary film or detrimental by causing severe tribo-corrosion. The effects of the IL cation structure, aluminum alloy composition, and tribo-testing condition on the friction and wear results have been discussed.

  9. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  10. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  11. Microporosity in casting alloys.

    PubMed

    Lewis, A J

    1975-06-01

    Three series of tensile test pieces were produced using a nickel base partial denture casting alloy. For the first series induction heating was employed, for the second a resistance crucible, and for the third an oxy-acetylene torch. Samples from each series were sectioned longitudinally, mounted, polished and examined microscopically for evidence of microporosity.

  12. Superplasticity in aluminum alloys

    SciTech Connect

    Nieh, T. G.

    1997-12-01

    We have characterized in the Al-Mg system the microstructure and mechanical properties of a cold-rolled Al-6Mg-0.3Sc alloy. The alloy exhibited superplasticity at relatively high strain rates (about 10-2 s-1). At a strain rate of 10-2 s-1 there exists a wide temperature range (475-520`C) within which the tensile elongation is over 1000%. There also exists a wide strain rate range (10-3 - 10-1 s-1) within which the tensile elongation is over 500%. The presence of Sc in the alloy results in a uniform distribution of fine coherent Al3SC precipitates which effectively pin grain and subgrain boundaries during static and continuous recrystallization. As a result, the alloy retains its fine grain size (about 7 micron), even after extensive superplastic deformation (>1000%). During deformation, dislocations Mg with a high Schmidt factor slip across subgrains but are trapped by subgrain boundaries, as a result of the strong pining of Al3Sc. This process leads to the conversion of low-angled subgrain boundaries to high-angled grain boundaries and the subsequent grain boundary sliding, which produces superelasticity. A model is proposed to describe grain boundary sliding accommodated by dislocation glide across grains with a uniform distribution of coherent precipitates. The model predictions is consistent with experimental observations.

  13. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  14. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  15. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  16. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water

    NASA Astrophysics Data System (ADS)

    Stephenson, Kale J.; Was, Gary S.

    2014-01-01

    The objective of this study was to isolate key factors affecting the irradiation-assisted stress corrosion cracking (IASCC) susceptibility of eleven neutron-irradiated austenitic stainless steel alloys. Four commercial purity and seven high purity stainless steels were fabricated with specific changes in composition and microstructure, and irradiated in a fast reactor spectrum at 320 °C to doses between 4.4 and 47.5 dpa. Constant extension rate tensile (CERT) tests were performed in normal water chemistry (NWC), hydrogen water chemistry (HWC), or primary water (PW) environments to isolate the effects of environment, elemental solute addition, alloy purity, alloy heat, alloy type, cold work, and irradiation dose. The irradiated alloys showed a wide variation in IASCC susceptibility, as measured by the relative changes in mechanical properties and crack morphology. Cracking susceptibility measured by %IG was enhanced in oxidizing environments, although testing in the lowest potential environment caused an increase in surface crack density. Alloys containing solute addition of Ni or Ni + Cr exhibited no IASCC. Susceptibility was reduced in materials cold worked prior to irradiation, and increased with increasing irradiation dose. Irradiation-induced hardening was accounted for by the dislocation loop microstructure, however no relation between crack initiation and radiation hardening was found.

  17. Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys.

    PubMed

    Nakagawa, Masaharu; Matsuya, Shigeki; Udoh, Koichi

    2002-06-01

    The effects of dissolved-oxygen concentration and fluoride concentration on the corrosion behaviors of commercial pure titanium, Ti-6Al-4V and Ti-6Al-7Nb alloys and experimentally produced Ti-0.2Pd and Ti-0.5Pt alloys were examined using the corrosion potential measurements. The amount of dissolved Ti was analyzed by inductively coupled plasma mass spectroscopy. A decrease in the dissolved-oxygen concentration tended to reduce the corrosion resistance of Ti and Ti alloys. If there was no fluoride, however, corrosion did not occur. Under low dissolved-oxygen conditions, the corrosion of pure Ti and Ti-6Al-4V and Ti-6Al-7Nb alloys might easily take place in the presence of small amounts of fluoride. They were corroded by half or less of the fluoride concentrations in commercial dentifrices. The Ti-0.2Pd and Ti-0.5Pt alloys did not corrode more, even under the low dissolved-oxygen conditions and a fluoride-containing environment, than pure Ti and Ti-6Al-4V and Ti-6Al-7Nb alloys. These alloys are expected to be useful as new Ti alloys with high corrosion resistance in dental use.

  18. Fatigue Life of Cast Titanium Alloys Under Simulated Denture Framework Displacements

    NASA Astrophysics Data System (ADS)

    Koike, Mari; Chan, Kwai S.; Hummel, Susan K.; Mason, Robert L.; Okabe, Toru

    2013-02-01

    The objective of the study was to evaluate the hypothesis that the mechanical properties and fatigue behavior of removable partial dentures (RPD) made from cast titanium alloys can be improved by alloying with low-cost, low-melting elements such as Cu, Al, and Fe using commercially pure Ti (CP-Ti) and Ti-6Al-4V as controls. RPD specimens in the form of rest-shaped, clasp, rectangular-shaped specimens and round-bar tensile specimens were cast using an experimental Ti-5Al-5Cu alloy, Ti-5Al-1Fe, and Ti-1Fe in an Al2O3-based investment with a centrifugal-casting machine. The mechanical properties of the alloys were determined by performing tensile tests under a controlled displacement rate. The fatigue life of the RPD specimens was tested by the three-point bending in an MTS testing machine under a cyclic displacement of 0.5 mm. Fatigue tests were performed at 10 Hz at ambient temperature until the specimens failed into two pieces. The tensile data were statistically analyzed using one-way ANOVA (α = 0.05) and the fatigue life data were analyzed using the Kaplan-Meier survival analysis (α = 0.05). The experimental Ti-5Al-5Cu alloy showed a significantly higher average fatigue life than that of either CP-Ti or Ti-5Al-1Fe alloy ( p < 0.05). SEM fractography showed that the fatigue cracks initiated from surface grains, surface pores, or hard particles in surface grains instead of the internal casting pores. Among the alloys tested, the Ti-5Al-5Cu alloy exhibited favorable results in fabricating dental appliances with an excellent fatigue behavior compared with other commercial alloys.

  19. 150 Passenger Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  20. Commercial researcher perspective

    NASA Technical Reports Server (NTRS)

    Delucas, Larry

    1992-01-01

    Protein crystallography--a research tool used to study the structure of the complex building blocks of living systems--has a lot to gain from space-based research. In order to know how a protein works in the human body, researchers must understand its molecular structure. Researchers have identified 150,000 different proteins in the body, but they now know the structure of less than a third of them. The only viable technique for analyzing the structure of these proteins is x-ray diffraction of the proteins in their crystal form. The better the quality of a protein crystal, the more useful it is to researchers who are trying to delineate its structure. The microgravity environment of space allows protein crystals to grow nearly undisturbed by convection and other gravity-driven forces that cause flaws to form in them on the ground. In space, lack of convection enables protein crystals to grow more slowly than they do on Earth, and the slower a protein crystal grows, the fewer flaws it will have. Protein crystal growth experiments have already flown on 14 Space Shuttle missions. This year's USML-1 Spacelab mission included protein crystal growth experiments conducted for commercial researchers. The results of protein crystal experiments flown thus far have been larger crystals with more uniform morphologies. The Center for Macromolecular Crystallography (A NASA-cosponsored CCDS) currently builds flight hardware to meet researchers' needs and handles sample loading and retrieval for flight experiments. Protein crystallography enables 'rational drug design': the development of drugs that bind only with the target protein and, hence, do not cause side effects. For example, pharmaceutical companies presently are interested in developing drugs that can inhibit purine nucleoside phosphorylase (PNP), a protein that plays a role in auto-immune diseases. To continue these kinds of investigations, researchers need a constant supply of protein crystals that are as free of flaws

  1. Commercial researcher perspective

    NASA Astrophysics Data System (ADS)

    Delucas, Larry

    Protein crystallography--a research tool used to study the structure of the complex building blocks of living systems--has a lot to gain from space-based research. In order to know how a protein works in the human body, researchers must understand its molecular structure. Researchers have identified 150,000 different proteins in the body, but they now know the structure of less than a third of them. The only viable technique for analyzing the structure of these proteins is x-ray diffraction of the proteins in their crystal form. The better the quality of a protein crystal, the more useful it is to researchers who are trying to delineate its structure. The microgravity environment of space allows protein crystals to grow nearly undisturbed by convection and other gravity-driven forces that cause flaws to form in them on the ground. In space, lack of convection enables protein crystals to grow more slowly than they do on Earth, and the slower a protein crystal grows, the fewer flaws it will have. Protein crystal growth experiments have already flown on 14 Space Shuttle missions. This year's USML-1 Spacelab mission included protein crystal growth experiments conducted for commercial researchers. The results of protein crystal experiments flown thus far have been larger crystals with more uniform morphologies. The Center for Macromolecular Crystallography (A NASA-cosponsored CCDS) currently builds flight hardware to meet researchers' needs and handles sample loading and retrieval for flight experiments. Protein crystallography enables 'rational drug design': the development of drugs that bind only with the target protein and, hence, do not cause side effects. For example, pharmaceutical companies presently are interested in developing drugs that can inhibit purine nucleoside phosphorylase (PNP), a protein that plays a role in auto-immune diseases. To continue these kinds of investigations, researchers need a constant supply of protein crystals that are as free of flaws

  2. Teaching Commercial German Through Advertisements.

    ERIC Educational Resources Information Center

    Heyer, Elfriede A.

    Advertisements can be used in many ways to facilitate the teaching of a commercial language. If reproduced as slides or other visual aids, they serve as a visual warm-up exercise for each class period, either reinforcing previously discussed topics or introducing new ones. Catchy headlines in commercials promote rapid expansion of vocabulary and…

  3. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  4. Mechanical alloying of brittle materials

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; McDermott, B.; Koch, C. C.

    1988-12-01

    Mechanical alloying by high energy ball milling has been observed in systems with nominally brittle components. The phases formed by mechanical alloying of brittle components include solid solutions (Si + Ge → SiGe solid solution), intermetallic compounds (Mn + Bi → MnBi), and amorphous alloys (NiZr2 + Ni11Zr9 → amorphous Ni50Zr50). A key feature of possible mechanisms for mechanical alloying of brittle components is the temperature of the powders during milling. Experiments and a computer model of the kinetics of mechanical alloying were carried out in order to esti-mate the temperature effect. Temperature rises in typical powder alloys during milling in a SPEX mill were estimated to be ≤350 K using the kinetic parameters determined from the computer model. The tempering response of fresh martensite in an Fe-1.2 wt pct C alloy during milling was consistent with the maximum results of the computer model, yielding temperatures in the pow-ders of ≤575 K i.e., ΔT ≤ 300 K). Thermal activation was required for mechanical alloying of Si and Ge powder. No alloying occurred when the milling vial was cooled by liquid nitrogen. The pos-sible mechanisms responsible for material transfer during mechanical alloying of brittle components are considered.

  5. Grindability of dental magnetic alloys.

    PubMed

    Hayashi, Eisei; Kikuchi, Masafumi; Okuno, Osamu; Kimura, Kohei

    2005-06-01

    In this study, the grindability of cast magnetic alloys (Fe-Pt-Nb magnetic alloy and magnetic stainless steel) was evaluated and compared with that of conventional dental casting alloys (Ag-Pd-Au alloy, Type 4 gold alloy, and cobalt-chromium alloy). Grindability was evaluated in terms of grinding rate (i.e., volume of metal removed per minute) and grinding ratio (i.e., volume ratio of metal removed compared to wheel material lost). Solution treated Fe-Pt-Nb magnetic alloy had a significantly higher grinding rate than the aged one at a grinding speed of 750-1500 m x min(-1). At 500 m x min(-1), there were no significant differences in grinding rate between solution treated and aged Fe-Pt-Nb magnetic alloys. At a lower speed of 500 m x min(-1) or 750 m x min(-1), it was found that the grinding rates of aged Fe-Pt-Nb magnetic alloy and stainless steel were higher than those of conventional casting alloys.

  6. Advanced ordered intermetallic alloy deployment

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Easton, D.S.

    1997-04-01

    The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositions and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.

  7. Determination of the toughness of in-service steam turbine disks using small punch testing

    NASA Astrophysics Data System (ADS)

    Foulds, J.; Viswanathan, R.

    2001-10-01

    Knowledge of the material toughness is crucial in assessing the integrity of heavy section steel components. Conventional tests to determine the toughness involve extraction of large blocks of materials and therefore are not practical on in-service components. On the other hand, conservative assumptions regarding toughness without regard to actual data can lead to expensive and premature replacement of the components. Previous EPRI studies have demonstrated the use of a relatively nondestructive technique termed the "small punch test" to estimate the fracture appearance transition temperature (FATT) and fracture toughness ( K Ic ) of high-temperature turbine rotor steels and nuclear reactor pressure vessel steels. This paper summarizes the results of research into the feasibility of extending the small punch test to characterize the toughness of the 3 to 3.5% NiCrMoV (3-3.5NiCrMoV) low alloy steel used for fossil and nuclear power plant low-pressure (LP) steam turbine disks. Results of the present study show that the small punch transition temperature, T sp , is linearly correlated with FATT, so that measurement of T sp permits estimation of the standard Charpy FATT through empirical use of the correlation. The statistical confidence prediction uncertainty bands for the correlation were found to be narrow enough to make the small punch- based FATT estimation practical for this alloy. Additionally, independent K Ic measurements made by PowerGen, UK, on some of the same test materials were in excellent agreement with measurements made here, indicating that the small punch K Ic measurement can be reproducible across laboratories. Limited testing for fracture initiation toughness showed, as has been demonstrated for other materials, that the small punch test-based initiation fracture toughness ( K Ic ) determination was within ±25% of the ASTM standard measurement of K Ic , suggesting that the test method can be used for direct determination of fracture initiation

  8. The venture space alliance commercial application of microgravity research

    NASA Astrophysics Data System (ADS)

    Whitton, Dave

    1999-01-01

    The Venture Space Alliance is a Canadian commercial enterprise formed to develop a successful sustainable business, providing industrial and institutional clients with cost effective timely access to space and microgravity facilities for commercial and scientific benefit. The goal is to offer users a comprehensive and reliable set of products and services from the early stages of research, where access to short duration microgravity such as drop towers, aircraft and sub-orbital rockets is required, to more complex missions requiring free flyers, shuttle or Space Station. The service is designed to relieve the researcher from having to be concerned with the special processes associated with space flight, and to assist in the commercial application of their research through the development of business plans and investment strategy. Much of this research could lead to new and better medicines, high disease tolerant and more prolific agricultural products, new materials and alloys, and improvements in fundamental human health. This paper will describe the commercial successes derived from microgravity research, and the anticipated growth of this segment particularly with the completion of the International Space Station.

  9. Analysis of SMA Hybrid Composite Structures using Commercial Codes

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Patel, Hemant D.

    2004-01-01

    A thermomechanical model for shape memory alloy (SMA) actuators and SMA hybrid composite (SMAHC) structures has been recently implemented in the commercial finite element codes MSC.Nastran and ABAQUS. The model may be easily implemented in any code that has the capability for analysis of laminated composite structures with temperature dependent material properties. The model is also relatively easy to use and requires input of only fundamental engineering properties. A brief description of the model is presented, followed by discussion of implementation and usage in the commercial codes. Results are presented from static and dynamic analysis of SMAHC beams of two types; a beam clamped at each end and a cantilevered beam. Nonlinear static (post-buckling) and random response analyses are demonstrated for the first specimen. Static deflection (shape) control is demonstrated for the cantilevered beam. Approaches for modeling SMAHC material systems with embedded SMA in ribbon and small round wire product forms are demonstrated and compared. The results from the commercial codes are compared to those from a research code as validation of the commercial implementations; excellent correlation is achieved in all cases.

  10. Fusion Welding of AerMet 100 Alloy

    SciTech Connect

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  11. Tungsten carbide laser alloying of a low alloyed steel

    NASA Astrophysics Data System (ADS)

    Cojocaru, Mihai; Taca, Mihaela

    1996-10-01

    Laser alloying is a way to change the composition of metal surfaces in order to improve their corrosion-resistance, high-temperature strength and hardness. The results of a structural and phase analysis of a tungsten carbide based surface layer prepared by laser alloying of a low carbon steel substrate are presented. Structure, phase composition and microhardness of surface alloyed layers have been investigated. The surface of the samples exhibited a thin layer with a different chemical and phase composition. An increase in alloyed surface hardness and wear-resistance was observed.

  12. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  13. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  14. Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.

    2004-01-01

    "Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.

  15. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  16. Structural characteristics and elevated temperature mechanical properties of AJ62 Mg alloy

    SciTech Connect

    Kubásek, J. Vojtěch, D.; Martínek, M.

    2013-12-15

    Structure and mechanical properties of the novel casting AJ62 (Mg–6Al–2Sr) alloy developed for elevated temperature applications were studied. The AJ62 alloy was compared to commercial casting AZ91 (Mg–9Al–1Zn) and WE43 (Mg–4Y–3RE) alloys. The structure was examined by scanning electron microscopy, x-ray diffraction and energy dispersive spectrometry. Mechanical properties were characterized by Viskers hardness measurements in the as-cast state and after a long-term heat treatment at 250 °C/150 hours. Compressive mechanical tests were also carried out both at room and elevated temperatures. Compressive creep tests were conducted at a temperature of 250 °C and compressive stresses of 60, 100 and 140 MPa. The structure of the AJ62 alloy consisted of primary α-Mg dendrites and interdendritic nework of the Al{sub 4}Sr and massive Al{sub 3}Mg{sub 13}Sr phases. By increasing the cooling rate during solidification from 10 and 120 K/s the average dendrite arm thickness decreased from 18 to 5 μm and the total volume fraction of the interdendritic phases from 20% to 30%. Both factors slightly increased hardness and compressive strength. The room temperature compressive strength and hardness of the alloy solidified at 30 K/s were 298 MPa and 50 HV 5, i.e. similar to those of the as-cast WE43 alloy and lower than those of the AZ91 alloy. At 250 °C the compressive strength of the AJ62 alloy decreased by 50 MPa, whereas those of the AZ91 and WE43 alloys by 100 and 20 MPa, respectively. The creep rate of the AJ62 alloy was higher than that of the WE43 alloy, but significantly lower in comparison with the AZ91 alloy. Different thermal stabilities of the alloys were discussed and related to structural changes during elevated temperature expositions. - Highlights: • Small effect of cooling rate on the compressive strength and hardness of AJ 62 • A bit lower compressive strength of AJ 62 compared to AZ91 at room temperature • Higher resistance of the AJ 62

  17. DESIGN DATA STUDY FOR COATED COLUMBIUM ALLOYS

    DTIC Science & Technology

    ANTIOXIDANTS, * COATINGS , * NIOBIUM ALLOYS, *REFRACTORY COATINGS , *SILICON COATINGS , ALLOYS, ALUMINUM, DEFORMATION, ELASTIC PROPERTIES, HIGH...TEMPERATURE, OXIDATION, PLASTIC PROPERTIES, REENTRY VEHICLES, REFRACTORY MATERIALS, SHEETS, SILICIDES , VACUUM APPARATUS, VAPOR PLATING, ZIRCONIUM ALLOYS

  18. Materials data handbook, Inconel alloy 718

    NASA Technical Reports Server (NTRS)

    Sessler, J.; Weiss, V.

    1967-01-01

    Materials data handbook on Inconel alloy 718 includes data on the properties of the alloy at cryogenic, ambient, and elevated temperatures and other pertinent engineering information required for the design and fabrication of components and equipment utilizing this alloy.

  19. Two phase titanium aluminide alloy

    DOEpatents

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  20. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  1. Campylobacter jejuni in commercial eggs

    PubMed Central

    Fonseca, Belchiolina Beatriz; Beletti, Marcelo Emílio; de Melo, Roberta Torres; Mendonça, Eliane Pereira; Coelho, Letícia Ríspoli; Nalevaiko, Priscila Christen; Rossi, Daise Aparecida

    2014-01-01

    This study evaluated the ability of Campylobacter jejuni to penetrate through the pores of the shells of commercial eggs and colonize the interior of these eggs, which may become a risk factor for human infection. Furthermore, this study assessed the survival and viability of the bacteria in commercial eggs. The eggs were placed in contact with wood shavings infected with C. jejuni to check the passage of the bacteria. In parallel, the bacteria were inoculated directly into the air chamber to assess the viability in the egg yolk. To determine whether the albumen and egg fertility interferes with the entry and survival of bacteria, we used varying concentrations of albumen and SPF and commercial eggs. C. jejuni was recovered in SPF eggs (fertile) after three hours in contact with contaminated wood shavings but not in infertile commercial eggs. The colonies isolated in the SPF eggs were identified by multiplex PCR and the similarity between strains verified by RAPD-PCR. The bacteria grew in different concentrations of albumen in commercial and SPF eggs. We did not find C. jejuni in commercial eggs inoculated directly into the air chamber, but the bacteria were viable during all periods tested in the wood shavings. This study shows that consumption of commercial eggs infected with C. jejuni does not represent a potential risk to human health. PMID:24948916

  2. Development of low coefficient of thermal expansion (CTE) nickel alloys for potential use as interconnects in SOFC

    SciTech Connect

    Alman, David E.; Jablonski, Paul D.

    2004-11-01

    This paper deals with the development of low coefficient of thermal expansion (CTE) nickel-base superalloys for potential use as interconnects for SOFC. Ni-Mo-Cr alloys were formulated with CTE on the order of 12.5 to 13.5 x10-6/°C. The alloys were vacuum induction melted and reduced to sheet via a combination of hot and cold working. Dilatometry was used to measure CTE of the alloys. Oxidation behavior of the alloys at 800°C in dry and moist air is reported. The results are compared to results for Haynes 230 (a commercial Ni-base superalloy) and for Crofer 22APU (a commercial ferritic stainless steel designed specifically for use as an SOFC interconnect).

  3. Titanium-tantalum alloy development

    SciTech Connect

    Cotton, J.D.; Bingert, J.F.; Dunn, P.S.; Butt, D.P.; Margevicius, R.W.

    1996-04-01

    Research has been underway at Los Alamos National Laboratory for several years to develop an alloy capable of containing toxic materials in the event of a fire involving a nuclear weapon. Due to their high melting point, good oxidation resistance, and low solubility in molten plutonium, alloys based on the Ti-Ta binary system have been developed for this purpose. The course of the alloy development to-date, along with processing and property data, are presented in this overview.

  4. Characterization Techniques for Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Carow-Watamura, U.; Louzguine, D. V.; Takeuchi, A.

    This document is part of Part 2 http://dx.doi.org/10.1007/9getType="URL"/> 'Systems from B-Be-Fe to Co-W-Zr' of Subvolume B 'Physical Properties of Ternary Amorphous Alloys' of Volume 37 'Phase Diagrams and Physical Properties of Nonequilibrium Alloys' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains the Chapter '2 Characterization Techniques for Amorphous Alloys' with the content:

  5. Amorphous metal alloy and composite

    DOEpatents

    Wang, Rong; Merz, Martin D.

    1985-01-01

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  6. Machine Casting of Ferrous Alloys.

    DTIC Science & Technology

    possible today. Extensive work was conducted on casting of semi-solid alloys when highly fluid (’ Rheocasting ’) and when thixotropically gelled...Thixocasting’). In initial phases of the program, copper base alloys and cast iron alloys were prepared with special non-dendritic Rheocast structure by batch...processing. Compatibility studies were carried out to select materials suitable for preparing cast iron with the Rheocast structure. Design

  7. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  8. Pilot production & commercialization of LAPPD™

    NASA Astrophysics Data System (ADS)

    Minot, Michael J.; Bennis, Daniel C.; Bond, Justin L.; Craven, Christopher A.; O`Mahony, Aileen; Renaud, Joseph M.; Stochaj, Michael E.; Elam, Jeffrey W.; Mane, Anil U.; Demarteau, Marcellinus W.; Wagner, Robert G.; McPhate, Jason B.; Helmut Siegmund, Oswald; Elagin, Andrey; Frisch, Henry J.; Northrop, Richard; Wetstein, Matthew J.

    2015-07-01

    We present a progress update on plans to establish pilot production and commercialization of Large Area (400 cm2) Picosecond Photodetector (LAPPD™). Steps being taken to commercialize this MCP and LAPPD™ technology and begin tile pilot production are presented including (1) the manufacture of 203 mm×203 mm borosilicate glass capillary arrays (GCAs), (2) optimization of MCP performance and creation of an ALD coating facility to manufacture MCPs and (3) design, construction and commissioning of UHV tile integration and sealing facility to produce LAPPDs. Taken together these plans provide a "pathway toward commercialization".

  9. Alloy Interface Interdiffusion Modeled

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Garces, Jorge E.; Abel, Phillip B.

    2003-01-01

    With renewed interest in developing nuclear-powered deep space probes, attention will return to improving the metallurgical processing of potential nuclear fuels so that they remain dimensionally stable over the years required for a successful mission. Previous work on fuel alloys at the NASA Glenn Research Center was primarily empirical, with virtually no continuing research. Even when empirical studies are exacting, they often fail to provide enough insight to guide future research efforts. In addition, from a fundamental theoretical standpoint, the actinide metals (which include materials used for nuclear fuels) pose a severe challenge to modern electronic-structure theory. Recent advances in quantum approximate atomistic modeling, coupled with first-principles derivation of needed input parameters, can help researchers develop new alloys for nuclear propulsion.

  10. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  11. Duct and cladding alloy

    DOEpatents

    Korenko, Michael K.

    1983-01-01

    An austenitic alloy having good thermal stability and resistance to sodium corrosion at 700.degree. C. consists essentially of 35-45% nickel 7.5-14% chromium 0.8-3.2% molybdenum 0.3-1.0% silicon 0.2-1.0% manganese 0-0.1% zirconium 2.0-3.5% titanium 1.0-2.0% aluminum 0.02-0.1% carbon 0-0.01% boron and the balance iron.

  12. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  13. The long-term, cyclic-oxidation behavior of selected chromia-forming alloys

    SciTech Connect

    Gleeson, B.; Harper, M.A.

    1998-04-01

    Long-term, cyclic-oxidation testing in still air for about 2 years (720 days) at 982 C and 1 year (360 days) at 1093, 1149, and 1204 C has been conducted on the commercial, high-temperature chromia-forming HR-120, HR-160, and 230 alloys (all trademarks of Haynes International, Inc.). Each thermal cycle consisted of 30 days at temperature followed by about 4 hr at ambient. The results demonstrated the significant effects of alloy composition on long-term, cyclic-oxidation resistance. Each of the alloys exhibited scale spallation; however, the manner by which spallation occurred varied between the alloys. The 230 alloy, which contains 0.02 wt.% La, exhibited partial scale spallation, thus allowing for the easier formation of a protective or semiprotective Cr{sub 2}O{sub 3}-rich scale during subsequent oxidation. The HR-160 alloy exhibited complete spallation owing largely to its relatively high silicon content (2.75 wt.%). However, the silicon was also beneficial in promoting protective or semiprotective scale formation when the exposed alloy was subsequently oxidized. The HR-120 alloy showed the poorest cyclic-oxidation resistance, due in part to poor scale adhesion and the tendency of the iron in this alloy (33 wt.%) to eventually oxidize and result in the formation of a less-protective scale. All of the alloys underwent internal attack in the form of internal oxidation and void formation. In most cases, the extent of internal attack was significantly greater than that of metal loss.

  14. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    SciTech Connect

    Cockeram, B.V.

    1999-11-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods.

  15. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    NASA Technical Reports Server (NTRS)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  16. Swelling of solute-modified Fe-Cr-Mn alloys in FFTF (Fast Flux Test Facility)-MOTA

    SciTech Connect

    Garner, F.A.

    1986-10-01

    Density change data continue to be accumulated on solute-modified and commercial Fe-Cr-Mn alloys irradiated at 520/sup 0/C and 50 dpa. The tendency toward saturation of density change observed in the simple ternary alloys in the annealed condition is accentuated by cold-working and solute addition. Irradiation at 420/sup 0/C appears to further accelerate the tendency toward saturation.

  17. The puzzle of graphene commercialization

    NASA Astrophysics Data System (ADS)

    Park, Seongjun

    2016-11-01

    The commercialization of graphene-based products is challenging, because many engineering and economical aspects have to be taken into consideration. A stronger collaboration between academia and industry would be beneficial for accelerating the process.

  18. Commercial and Institutional Case Studies

    EPA Pesticide Factsheets

    Throughout the country, commercial and institutional (CI) building owners and facility managers are taking actions to reduce their water use, implementing many of the operations and maintenance, retrofit, and replacement projects.

  19. Commercialization in NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene E.

    1998-01-01

    Various issues associated with commercialization in NASA space operations are presented in viewgraph form. Specific topics include: 1) NASA's financial outlook; 2) Space operations; 3) Space operations technology; and 4) Strategies associated with these operations.

  20. Commercialization of parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Washom, B.

    1982-01-01

    The impact of recent federal tax and regulatory legislation on the commercialization of parabolic solar reflector technology is assessed. Specific areas in need of technical or economic improvement are noted.

  1. Commercial Crew Planning Status Forum

    NASA Video Gallery

    NASA presents an overview of common themes captured from industry responses provided to NASA's Commercial Crew Initiative Request for Information (RFI) published on May 21, 2010. The forum includes...

  2. Performance of aluminide coatings applied on alloy CF8C plus at 800 C

    SciTech Connect

    Kumar, Deepak; Dryepondt, Sebastien N; Shyam, Amit; Haynes, James A; Pint, Bruce A; Armstrong, Beth L; Lara-Curzio, Edgar

    2011-01-01

    The cost effective, austenitic stainless steel CF8C plus is an attractive alloy for massive cast structures such as steam turbine casings. The microstructure stability and creep strength of this alloy are better than commercial high-performance heat-resistant steels such as NF709 and Super 304H, and are comparable to the Ni-based superalloy Inconel 617. The oxidation resistance of the alloy in atmosphere rich in water vapor is however insufficient at T>800 C, and the use of diffusion aluminide coatings is considered for potential high temperature applications. The thermal stability and protectiveness of coatings applied on the CF8C plus substrate by pack cementation and slurry process were investigated in air + 10% H2O environment at 800 C. Further, the coating effect on the fatigue life of the alloy was assessed via low-cycle-fatigue experiments.

  3. Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material.

    PubMed

    Medvedev, Alexander E; Molotnikov, Andrey; Lapovok, Rimma; Zeller, Rolf; Berner, Simon; Habersetzer, Philippe; Dalla Torre, Florian

    2016-09-01

    Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4.

  4. (abstract) Studies on AB(sub 5) Metal Hydride Alloys with Sn Additives

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Surampudi, S.; Stefano, S. Di; Halpert, G.; Witham, C.; Fultz, B.

    1994-01-01

    The use of metal hydrides as negative electrodes in alkaline rechargeable cells is becoming increasingly popular, due to several advantages offered by the metal hydrides over conventional anode materials (such as Zn, Cd) in terms of specific energy environmental cycle life and compatibility. Besides, the similarities in the cell voltage pressure characteristics, and charge control methods of the Ni-MH cells to the commonly used Ni-Cd point to a projected take over of 25% of the Ni-Cd market for consumer electronics by the Ni-MH cells in the next couple of years. Two classes of metal hydrides alloys based on rare earth metals (AB(sub 5)) and titanium (AB(sub 2)) are being currently developed at various laboratories. AB(sub 2) alloys exhibit higher specific energy than the AB(sub 5) alloys but the state of the art commercial Ni-MH cells are predominately manufactured using AB(sub 5) alloys.

  5. Plasma Electrolytic Oxidation (PEO) Coatings on an A356 Alloy for Improved Corrosion and Wear Resistance

    NASA Astrophysics Data System (ADS)

    Peng, Zhijing

    Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving corrosion and wear resistance of the alloy. Effects of current density and treatment time on surface morphologies and thickness of the PEO coatings were investigated. The improvement of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were studied with comparison to the uncoated A356 substrate and other commercially-used engine bore materials. The research results indicated that the PEO coatings could have excellent tribological and corrosion properties for aluminium engine applications.

  6. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    NASA Astrophysics Data System (ADS)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-11-01

    Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation and standard industrial test methods such as acetic acid salt spray (AASS) and filiform corrosion on commercial AA6060 alloy. Barrier properties of the film including adhesion were evaluated using tape test under wet and dry conditions. Electrochemical results showed reduced cathodic and anodic activity, while the protection provided by steam treatment with HNO3 was a function of the concentration of NO3- ions. The coating generated by inclusion of KMnO4 showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local coverage of the alloy microstructure resulting from steam containing with KMnO4 and HNO3.

  7. Microtexture and Nanoindentation Study of Delamination Cracking in Al-Cu-Li-X Alloys

    NASA Technical Reports Server (NTRS)

    Crooks, R.; Domack, M. S.; Wagner, J. A.

    2005-01-01

    Commercial Al-Li alloys have strength and weight advantages over non-Li aluminum alloys. The fracture behavior of these alloys is unusual and has limited their use. The fracture mode, described as delamination, is intergranular, along the broad grain boundaries parallel to the rolling plane of the plate. Microtexture analyses have shown that delaminations occur along boundaries with greater than 30 misorientation. However, it was observed that relatively few of the high angle boundaries exhibited this behavior. Some grains of the retained deformation texture show high internal misorientation, which is a measure of stored strain energy. Delamination tends to occur between these grains and adjacent, recrystallized grains. Nanoindentation studies indicate a higher hardness for the high internal misorientation grains. These results suggest that the delamination could be reduced by processing the alloys to minimize grain-to-grain property disparities.

  8. Tunable magnetocaloric effect in transition metal alloys.

    PubMed

    Belyea, Dustin D; Lucas, M S; Michel, E; Horwath, J; Miller, Casey W

    2015-10-28

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based "high entropy alloys" in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  9. The Elastic Constants for Wrought Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  10. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect

    A. Anderko; G. Engelhardt; M.M. Lencka; M.A. Jakab; G. Tormoen; N. Sridhar

    2007-09-29

    -base alloys, stainless steels and copper-nickel alloys and (2) the effects of heat treatment on localized corrosion. Excellent agreement with experimental data has been obtained for alloys in various environments, including acids, bases, oxidizing species, inorganic inhibitors, etc. Further, a probabilistic model has been established for predicting the long-term damage due to localized corrosion on the basis of short-term inspection results. This methodology is applicable to pitting, crevice corrosion, stress corrosion cracking and corrosion fatigue. Finally, a comprehensive model has been developed for predicting sensitization of Fe-Ni-Cr-Mo-W-N alloys and its effect on localized corrosion. As a vehicle for the commercialization of this technology, OLI Systems has developed the Corrosion Analyzer, a software tool that is already used by many companies in the chemical process industry. In process design, the Corrosion Analyzer provides the industry with (1) reliable prediction of the tendency of base alloys for localized corrosion as a function of environmental conditions and (2) understanding of how to select alloys for corrosive environments. In process operations, the software will help to predict the remaining useful life of equipment based on limited input data. Thus, users will also be able to identify process changes, corrosion inhibition strategies, and other control options before costly shutdowns, energy waste, and environmental releases occur. With the Corrosion Analyzer, various corrosion mitigation measures can be realistically tested in a virtual laboratory.

  11. Industry's Commercial Initiatives on ISS

    NASA Astrophysics Data System (ADS)

    Shields, C. E.; Kessler, C.; Lavitola, M. S.

    2002-01-01

    For more than ten years, private industry has worked to develop a commercial human space market and to create a sustainable ISS commercial utilization customer base. Before ISS assembly was underway - and long before NASA and the international space agencies began to craft ISS commercial business terms and conditions - industry planted and nurtured the seeds of interest in exploiting human space utilization for commerce. These early initiatives have yielded the impetus and framework for industry approaches to ISS commercial utilization today and for NASA's and the International Partners' planned accommodation of private sector interests and desires on the ISS. This paper chronicles major industry initiatives for commercial ISS utilization, emphasizing successful marketing and business approaches and why these approaches have a higher likelihood of success than others. It provides an overview of individual companies' initiatives, as well as collaborative efforts that cross company lines and country borders; and it assesses the relative success of each. Rather than emphasize negative issues and barriers, this paper characterizes and prioritizes actionable success factors for industry and government to make ISS commercial utilization a sustainable reality.

  12. In Vitro Degradation Behavior of Ternary Mg-Zn-Se and Mg-Zn-Cu Alloys as Biomaterials

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah

    2013-01-01

    In this study, the corrosion behavior of Mg-Zn-Se and Mg-Zn-Cu alloys was investigated to evaluate their corrosion behavior related to use as implantable biomaterials. The corrosion behavior of these alloys and a commercially available Mg-Zn alloy were examined using static solution electrochemical testing, dynamic solution gravimetric testing, ion leaching testing, and microscopic evaluation. Fluctuations in the pH of the Dulbecco’s Modified Eagles Medium (DMEM) used for the gravimetric and ion leaching immersion testing were also recorded over the 30-day duration to assess whether the media conditions induced by the alloy degradation would permit for cellular survival. Weight loss experimentation and electrochemical tests revealed the Mg-Zn-Cu alloy to have the greatest corrosion rate. PMID:24465245

  13. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  14. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  15. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  16. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.

    PubMed

    Lin, Brian; Gall, Ken; Maier, Hans J; Waldron, Robbie

    2009-01-01

    The objective of this work is to understand the structure-property relationships in polycrystalline NiTiPt (Ti 42.7 at.% Ni 7.5 at %Pt) with a composition showing pseudoelasticity at ambient temperatures. Structural characterization of the alloy includes grain size determination and texture analysis while the thermomechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at.% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a <111> fiber texture along the wire drawing axis; however, the NiTiPt alloy grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second-phase precipitates. Given the nanometer-scale grain size in NiTiPt and the dispersed, nanometer-scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.

  17. Corrosion behavior of cast Ti-6Al-4V alloyed with Cu.

    PubMed

    Koike, Marie; Cai, Zhuo; Oda, Yutaka; Hattori, Masayuki; Fujii, Hiroyuki; Okabe, Toru

    2005-05-01

    It has recently been found that alloying with copper improved the inherently poor grindability and wear resistance of titanium. This study characterized the corrosion behavior of cast Ti-6Al-4V alloyed with copper. Alloys (0.9 or 3.5 mass % Cu) were cast with the use of a magnesia-based investment in a centrifugal casting machine. Three specimen surfaces were tested: ground, sandblasted, and as cast. Commercially pure titanium and Ti-6Al-4V served as controls. Open-circuit potential measurement, linear polarization, and potentiodynamic cathodic polarization were performed in aerated (air + 10% CO(2)) modified Tani-Zucchi synthetic saliva at 37 degrees C. Potentiodynamic anodic polarization was conducted in the same medium deaerated by N(2) + 10% CO(2). Polarization resistance (R(p)), Tafel slopes, and corrosion current density (I(corr)) were determined. A passive region occurred for the alloy specimens with ground and sandblasted surfaces, as for CP Ti. However, no passivation was observed on the as-cast alloys or on CP Ti. There were significant differences among all metals tested for R(p) and I(corr) and significantly higher R(p) and lower I(corr) values for CP Ti compared to Ti-6Al-4V or the alloys with Cu. Alloying up to 3.5 mass % Cu to Ti-6Al-4V did not change the corrosion behavior. Specimens with ground or sandblasted surfaces were superior to specimens with as-cast surfaces.

  18. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.

    PubMed

    Nnamchi, Paul S; Obayi, C S; Todd, Iain; Rainforth, M W

    2016-07-01

    The development and characterisation of new metallic biomaterials that contain non-toxic and non-allergic elements but possess low elastic modulus and low biodegradation rates, has become a topic of serious investigation in orthopaedic implant application. The lowering of elastic modulus and improving of corrosion resistance can be achieved by specific chemical alloying and super-elasticity effects, associated with a stress-induced phase transformation from the BCC metastable beta phase to the orthorhombic α″ martensite. Using this framework, this paper focuses on the effect of Nb and/or Zr micro-additions on the elastic modulus/yield strength balance and discusses microstructure, and the mechanical and electrochemical behaviour of four new β-Ti-8Mo-xNb-xZr (x=2-5) alloys, using tensile tests, X-ray diffraction, SEM characterisation, ultrasound technique and potentiodynamic polarisation methods. The results reveal that the alloys exhibit a pronounced microstructural sensitivity response, with alloying elements and excellent agreement between β-stability and high mechanical strength, with increasing Nb additions. Although all the alloys possess excellent corrosion resistance and low Young׳s modulus, Ti-8Mo-4Nb-2Zr alloy, which consists of β+α'' phases, exhibits a low Young modulus of 35GPa, which is lower than those of the commercial alloys already used in biomedical implantation. The significant corrosion resistance, nontoxicity and better mechanical compatibility are properties pertinent to preventing stress shielding and bone resorption in orthopaedic implant applications.

  19. Assessment of precipitation behavior in dental castings of a Co-Cr-Mo alloy.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2015-10-01

    This study investigated solute portioning and precipitation in dental castings of a Co-Cr-Mo alloy and discussed their effects on alloy performance, in particular, the mechanical properties. Samples of a commercial Co-29Cr-6Mo (mass%) alloy were prepared using a dental-casting machine. The precipitates formed owing to the partitioning behaviors of the alloying elements were investigated using scanning electron microscopy, electron backscatter diffraction analysis, electron probe microanalysis, and transmission electron microscopy. The prepared samples exhibited a very coarse face-centered-cubic γ-phase dendritic structure with an average grain size of a few millimeters. A large number of precipitates, which decomposed further into complex interdendritic constituents (σ- and M23C6 carbide phases) were observed in the interdendritic regions rich in Cr, Mo, Si, and C. A reaction between the σ-phase and carbon is probably responsible for the carbide M23C6; however, this reaction did not occur to completion in the current case in spite of slow cooling (i.e., long exposure to elevated temperatures) in dental casting. While these precipitates result in high strength (hardness) and/or brittleness, the properties can be improved further by optimizing the alloy composition and the manufacturing process. The results of this study shed light on the significance of precipitation control in dental castings of Co-Cr-Mo alloys and should aid in the design of novel biomedical Co-Cr-based dental alloys that exhibit better performances.

  20. Radiation Effects in Refractory Alloys

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven J.; Wiffen, F. W.

    2004-02-01

    In order to achieve the required low reactor mass per unit electrical power for space reactors, refractory alloys are essential due to their high operating temperature capability that in turn enables high thermal conversion efficiencies. One of the key issues associated with refractory alloys is their performance in a neutron irradiation environment. The available radiation effects data are reviewed for alloys based on Mo, W, Re, Nb and Ta. The largest database is associated with Mo alloys, whereas Re, W and Ta alloys have the least available information. Particular attention is focused on Nb-1Zr, which is a proposed cladding and structural material for the reactor in the Jupiter Icy Moons Orbiter (JIMO) project. All of the refractory alloys exhibit qualitatively similar temperature-dependent behavior. At low temperatures up to ~0.3TM, where TM is the melting temperature, the dominant effect of radiation is to produce pronounced radiation hardening and concomitant loss of ductility. The radiation hardening also causes a dramatic decrease in the fracture toughness of the refractory alloys. These low temperature radiation effects occur at relatively low damage levels of ~0.1 displacement per atom, dpa (~2×1024 n/m2, E>0.1 MeV). As a consequence, operation at low temperatures in the presence of neutron irradiation must be avoided for all refractory alloys. At intermediate temperatures (0.3 to 0.6 TM), void swelling and irradiation creep are the dominant effects of irradiation. The amount of volumetric swelling associated with void formation in refractory alloys is generally within engineering design limits (<5%) even for high neutron exposures (>>10 dpa). Very little experimental data exist on irradiation creep of refractory alloys, but data for other body centered cubic alloys suggest that the irradiation creep will produce negligible deformation for near-term space reactor applications.

  1. Temporarily alloying titanium to facilitate friction stir welding

    SciTech Connect

    Hovanski, Yuri

    2009-05-01

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  2. Tailoring Fe-Base Alloys for Intermediate Temperature SOFC Interconnect Application

    SciTech Connect

    J.H. Zhu; M.P. Brady; H.U. Anderson

    2007-12-31

    -Ni-Co alloys as precursor to synthesize a protective spinel layer on commercial ferritic steels has been initiated to facilitate the utilization of the Cr-free spinel as a surface seal to block Cr evaporation. It is suggested that low-cost Fe-Ni-Co alloy coating on commercial ferritic steels might be the best approach to completely eliminate the Cr poisoning problem in SOFC stacks, while maintaining the relatively low overall cost of the interconnect component.

  3. Improvement of mechanical and biological properties of TiNi alloys by addition of Cu and Co to orthodontic archwires.

    PubMed

    Phukaoluan, Aphinan; Khantachawana, Anak; Kaewtatip, Pongpan; Dechkunakorn, Surachai; Kajornchaiyakul, Julathep

    2016-09-01

    The purpose of this study was to investigate improved performances of TiNi in order to promote tooth movement. Special attention was paid to the effect on the clinical properties of TiNi of adding Cu and Co to this alloy. Ti49.4Ni50.6, Ti49Ni46Cu5 and Ti50Ni47Co3 (at %) alloys were prepared. Specimens were cold-rolled at 30% reduction and heat-treated at 400°C for 60min. Then, the test results were compared with two types of commercial archwires. The findings showed that superelasticity properties were confirmed in the manufactured commercial alloys at mouth temperature. The difference of stress plateau in TiNi, TiNiCo and commercial wires B at 25°C changed significantly at various testing temperatures due to the combination of martensite and austenite phases. At certain temperatures the alloys exhibited zero recovery stress at 2% strain and consequently produced zero activation force for moving teeth. The corrosion test showed that the addition of Cu and Co to TiNi alloys generates an increase in corrosion potential (Ecorr) and corrosion current densities (Icorr). Finally, we observed that addition of Cu and Co improved cell viability. We conclude that addition of an appropriate amount of a third alloying element can help enhance the performances of TiNi orthodontic archwires.

  4. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  5. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment.

    PubMed

    Rosalbino, F; Delsante, S; Borzone, G; Scavino, G

    2012-05-01

    Titanium alloys exhibit excellent corrosion resistance in most aqueous media due to the formation of a stable oxide film, and some of these alloys (particularly Ti-6Al-7Nb) have been chosen for surgical and odontological implants for their resistance and biocompatibility. Treatment with fluorides (F(-)) is known to be the main method for preventing plaque formation and dental caries. Toothpastes, mouthwashes, and prophylactic gels can contain from 200 to 20,000 ppm F(-) and can affect the corrosion behaviour of titanium alloy devices present in the oral cavity. In this work, the electrochemical corrosion behaviour of Ti-1M alloys (M = Ag, Au, Pd, Pt) was assessed in artificial saliva of pH = 3.0 containing 910 ppm F(-) (0.05 M NaF) through open circuit potential, E(OC), and electrochemical impedance spectroscopy (EIS) measurements. The corrosion behaviour of the Ti-6Al-7Nb commercial alloy was also evaluated for comparison. E (OC) measurements show an active behaviour for all the titanium alloys in fluoridated acidified saliva due to the presence of significant concentrations of HF and HF(2) (-) species that dissolve the spontaneous air-formed oxide film giving rise to surface activation. However, an increase in stability of the passive oxide layer and consequently a decrease in surface activation is observed for the Ti-1M alloys. This behaviour is confirmed by EIS measurements. In fact, the Ti-6Al-7Nb alloy exhibits lower impedance values as compared with Ti-1M alloys, the highest values being measured for the Ti-1Au alloy. The experimental results show that the corrosion resistance of the studied Ti-1M alloys is similar to or better than that of Ti-6Al-7Nb alloy currently used as biomaterial, suggesting their potential for dental applications.

  6. Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model.

    PubMed

    Drynda, Andreas; Seibt, Juliane; Hassel, Thomas; Bach, Friedrich Wilhelm; Peuster, Matthias

    2013-01-01

    The principle of biodegradation has been considered for many years in the development of cardiovascular stents, especially for patients with congenital heart defects. A variety of materials have been examined with regard to their suitability for cardiovascular devices. Iron- and magnesium-based stents were investigated intensively during the last years. It has been shown, that iron, or iron based alloys have slow degradation kinetics whereas magnesium-based systems exhibit rapid degradation rates. Recently we have developed fluoride coated binary magnesium-calcium alloys with reduced degradation kinetics. These alloys exhibit good biocompatibility and no major adverse effects toward smooth muscle and endothelial cells in in vitro experiments. In this study, these alloys were investigated in a subcutaneous mouse model. Fluoride coated (fc) magnesium, as well as MgCa0.4%, MgCa0.6%, MgCa0.8%, MgCa1.0%, and a commercially available WE43 alloy were implanted in form of (fc) cylindrical plates into the subcutaneous tissue of NMRI mice. After a 3 and 6 months follow-up, the (fc) alloy plates were examined by histomorphometric techniques to assess their degradation rate in vivo. Our data indicate that all (fc) alloys showed a significant corrosion. For both time points the (fc) MgCa alloys showed a higher corrosion rate in comparison to the (fc) WE43 reference alloy. Significant adverse effects were not observed. Fluoride coating of magnesium-based alloys can be a suitable way to reduce degradation rates. However, the (fc) MgCa alloys did not exhibit decreased degradation kinetics in comparison to the (fc) WE43 alloy in a subcutaneous mouse model.

  7. Commercializing fuel cells: managing risks

    NASA Astrophysics Data System (ADS)

    Bos, Peter B.

    Commercialization of fuel cells, like any other product, entails both financial and technical risks. Most of the fuel cell literature has focussed upon technical risks, however, the most significant risks during commercialization may well be associated with the financial funding requirements of this process. Successful commercialization requires an integrated management of these risks. Like any developing technology, fuel cells face the typical 'Catch-22' of commercialization: "to enter the market, the production costs must come down, however, to lower these costs, the cumulative production must be greatly increased, i.e. significant market penetration must occur". Unless explicit steps are taken to address this dilemma, fuel cell commercialization will remain slow and require large subsidies for market entry. To successfully address this commercialization dilemma, it is necessary to follow a market-driven commercialization strategy that identifies high-value entry markets while minimizing the financial and technical risks of market entry. The financial and technical risks of fuel cell commercialization are minimized, both for vendors and end-users, with the initial market entry of small-scale systems into high-value stationary applications. Small-scale systems, in the order of 1-40 kW, benefit from economies of production — as opposed to economies to scale — to attain rapid cost reductions from production learning and continuous technological innovation. These capital costs reductions will accelerate their commercialization through market pull as the fuel cell systems become progressively more viable, starting with various high-value stationary and, eventually, for high-volume mobile applications. To facilitate market penetration via market pull, fuel cell systems must meet market-derived economic and technical specifications and be compatible with existing market and fuels infrastructures. Compatibility with the fuels infrastructure is facilitated by a

  8. Developments in the Ni-Nb-Zr amorphous alloy membranes

    NASA Astrophysics Data System (ADS)

    Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T. J.; Grant, D.; Palumbo, O.; Paolone, A.; Cantelli, R.

    2016-03-01

    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100- x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.

  9. Surface Modification of Commercial Low-Carbon Steel using Glow Discharge Nitrogen Plasma and its Characterization

    NASA Astrophysics Data System (ADS)

    Srikanth, S.; Saravanan, P.; Joseph, Alphonsa; Ravi, K.

    2013-09-01

    Plasma nitriding under glow discharge nitrogen plasma has been undertaken on laboratory scale for surface engineering of commercial low carbon steels. The treatment has been shown to confer exceptional improvement in surface properties, viz., hardness and corrosion resistance. The results have been discussed in light of microstructural changes occurring on steel surface and its interior as a result of Fickian nitrogen diffusion and correlated with influences of nitriding-temperature and alloying elements (Mn, Nb, and Si) in steel.

  10. Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2009-12-01

    AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.

  11. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  12. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  13. Ferritic Alloys as Accident Tolerant Fuel Cladding Material for Light Water Reactors

    SciTech Connect

    Rebak, Raul B.

    2014-09-30

    The objective of the GE project is to demonstrate that advanced steels such as iron-chromium-aluminum (FeCrAl) alloys could be used as accident tolerant fuel cladding material in commercial light water reactors. The GE project does not include fuel development. Current findings support the concept that a FeCrAl alloy could be used for the cladding of commercial nuclear fuel. The use of this alloy will benefit the public since it is going to make the power generating light water reactors safer. In the Phase 1A of this cost shared project, GE (GRC + GNF) teamed with the University of Michigan, Los Alamos National Laboratory, Brookhaven National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory to study the environmental and mechanical behavior of more than eight candidate cladding materials both under normal operation conditions of commercial nuclear reactors and under accident conditions in superheated steam (loss of coolant condition). The main findings are as follows: (1) Under normal operation conditions the candidate alloys (e.g. APMT, Alloy 33) showed excellent resistance to general corrosion, shadow corrosion and to environmentally assisted cracking. APMT also showed resistance to proton irradiation up to 5 dpa. (2) Under accident conditions the selected candidate materials showed several orders of magnitude improvement in the reaction with superheated steam as compared with the current zirconium based alloys. (3) Tube fabrication feasibility studies of FeCrAl alloys are underway. The aim is to obtain a wall thickness that is below 400 µm. (4) A strategy is outlined for the regulatory path approval and for the insertion of a lead fuel assembly in a commercial reactor by 2022. (5) The GE team worked closely with INL to have four rodlets tested in the ATR. GE provided the raw stock for the alloys, the fuel for the rodlets and the cost for fabrication/welding of the rodlets. INL fabricated the rodlets and the caps and welded them to

  14. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  15. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  16. Mo-Si alloy development

    SciTech Connect

    Liu, C.T.; Heatherly, L.; Wright, J.L.

    1996-06-01

    The objective of this task is to develop new-generation corrosion-resistant Mo-Si intermetallic alloys as hot components in advanced fossil energy conversion and combustion systems. The initial effort is devoted to Mo{sub 5}-Si{sub 3}-base (MSB) alloys containing boron additions. Three MSB alloys based on Mo-10.5Si-1.1B (wt %), weighing 1500 g were prepared by hot pressing of elemental and alloy powders at temperatures to 1600{degrees}C in vacuum. Microporosities and glassy-phase (probably silicate phases) formations are identified as the major concerns for preparation of MSB alloys by powder metallurgy. Suggestions are made to alleviate the problems of material processing.

  17. DEVELOPMENT OF PROTECTIVE COATINGS FOR TANTALUM-BASE ALLOYS

    DTIC Science & Technology

    PHASE STUDIES, PHYSICAL PROPERTIES, REFRACTORY MATERIALS, SILICIDES , SILICON COATINGS , SILICON COMPOUNDS, TANTALUM, TENSILE PROPERTIES, TITANIUM COMPOUNDS, TUNGSTEN ALLOYS, VANADIUM ALLOYS, VAPOR PLATING, ZINC COATINGS ....TANTALUM ALLOYS, ALLOYS, ALUMINUM COATINGS , ALUMINUM COMPOUNDS, BORON COMPOUNDS, CERAMIC COATINGS , CHROMIUM COMPOUNDS, COATINGS , FLAME SPRAYING...HAFNIUM ALLOYS, HAFNIUM COMPOUNDS, HARDNESS, HEAT RESISTANT ALLOYS, INTERMETALLIC COMPOUNDS, METAMATHEMATICS, NIOBIUM ALLOYS, OSCILLOGRAPHS, OXIDES

  18. Development of Combinatorial Methods for Alloy Design and Optimization

    SciTech Connect

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-07-01

    The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using spatially resolved probing techniques to characterize its structure, composition, and relevant properties. The three specific objectives of the project were: (1) to devise means by which simple test specimens with a library of alloy compositions spanning the range interest can be produced; (2) to assess how well the properties of the combinatorial specimen reproduce those of the conventionally processed alloys; and (3) to devise screening tools which can be used to rapidly assess the important properties of the alloys. As proof of principle, the methodology was applied to the Fe-Ni-Cr ternary alloy system that constitutes many commercially important materials such as stainless steels and the H-series and C-series heat and corrosion resistant casting alloys. Three different techniques were developed for making alloy libraries: (1) vapor deposition of discrete thin films on an appropriate substrate and then alloying them together by solid-state diffusion; (2) co-deposition of the alloying elements from three separate magnetron sputtering sources onto an inert substrate; and (3) localized melting of thin films with a focused electron-beam welding system. Each of the techniques was found to have its own advantages and disadvantages. A new and very powerful technique for

  19. Wedlable nickel aluminide alloy

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    2002-11-19

    A Ni.sub.3 Al alloy with improved weldability is described. It contains about 6-12 wt % Al, about 6-12 wt % Cr, about 0-3 wt % Mo, about 1.5-6 wt % Zr, about 0-0.02 wt % B and at least one of about 0-0.15 wt % C, about 0-0.20 wt % Si, about 0-0.01 wt % S and about 0-0.30 wt % Fe with the balance being Ni.

  20. Lightweight Disk Alloy Development

    DTIC Science & Technology

    1991-04-01

    2001 (1982). 45. K C. Russell and J. W Eddington , JI Mat. Sci., 6, 20 (1972). 46. M. J. Lequeux, Ph.D. Thesis, Univ. de Paris-Sud (1979). 47. P S ...AD-A237 064 UGHTWEIGHT DISK ALLOY DEVELOPMENT S . M. Russel, C. C. Law and M. J. Blackburn Uted Te lowkles Corpoaton Prat & Whtney Govnment Enes...Space Propulo P. 0. Box 109600 West Palm Beach, FL 33410-9600 P. C. Clapp and D. M. Pease Istitute of Materials Science 9 ELECT Fg AW 11il S E Final