Sample records for commercial processing facility

  1. Commercial space infrastructure - Giving industry a lift

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Wood, Peter W.

    1991-01-01

    Private sector initiatives directed toward establishing a commercial space sector in the fields of commercial space transportation, payload processing, upper stages, launch facilities, and other facilities and equipment are presented. Consideration is given to a payload processing facility that is capable of providing all prelaunch services required by communications satellites targeted for launch on U.S. launch systems. Attention is given to NASA's efforts to promote commercial infrastructure development for the creation of new products and services, leading to new markets and businesses.

  2. 7 CFR 1000.19 - Commercial food processing establishment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Commercial food processing establishment. 1000.19... FEDERAL MILK MARKETING ORDERS Definitions § 1000.19 Commercial food processing establishment. Commercial food processing establishment means any facility, other than a milk plant, to which fluid milk products...

  3. 7 CFR 1000.19 - Commercial food processing establishment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Commercial food processing establishment. 1000.19... FEDERAL MILK MARKETING ORDERS Definitions § 1000.19 Commercial food processing establishment. Commercial food processing establishment means any facility, other than a milk plant, to which fluid milk products...

  4. 7 CFR 1000.19 - Commercial food processing establishment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Commercial food processing establishment. 1000.19... FEDERAL MILK MARKETING ORDERS Definitions § 1000.19 Commercial food processing establishment. Commercial food processing establishment means any facility, other than a milk plant, to which fluid milk products...

  5. 7 CFR 1000.19 - Commercial food processing establishment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Commercial food processing establishment. 1000.19... FEDERAL MILK MARKETING ORDERS Definitions § 1000.19 Commercial food processing establishment. Commercial food processing establishment means any facility, other than a milk plant, to which fluid milk products...

  6. 7 CFR 1000.19 - Commercial food processing establishment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Commercial food processing establishment. 1000.19... FEDERAL MILK MARKETING ORDERS Definitions § 1000.19 Commercial food processing establishment. Commercial food processing establishment means any facility, other than a milk plant, to which fluid milk products...

  7. Microgravity and Materials Processing Facility study (MMPF): Requirements and Analyses of Commercial Operations (RACO) preliminary data release

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This requirements and analyses of commercial operations (RACO) study data release reflects the current status of research activities of the Microgravity and Materials Processing Facility under Modification No. 21 to NASA/MSFC Contract NAS8-36122. Section 1 includes 65 commercial space processing projects suitable for deployment aboard the Space Station. Section 2 contains reports of the R:BASE (TM) electronic data base being used in the study, synopses of the experiments, and a summary of data on the experimental facilities. Section 3 is a discussion of video and data compression techniques used as well as a mission timeline analysis.

  8. Enterobacteriaceae and related organisms recovered from biofilms in a commercial shell egg processing facility.

    USDA-ARS?s Scientific Manuscript database

    During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...

  9. Low-cost Solar Array Project. Feasibility of the Silane Process for Producing Semiconductor-grade Silicon

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of Union Carbide's silane process for commercial application was established. An integrated process design for an experimental process system development unit and a commercial facility were developed. The corresponding commercial plant economic performance was then estimated.

  10. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility,more » and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.« less

  11. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  12. 40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...

  13. The BioDyn facility on ISS: Advancing biomaterial production in microgravity for commercial applications

    NASA Astrophysics Data System (ADS)

    Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian

    1999-01-01

    The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.

  14. Factors determining the viability of radiation processing in developing countries

    NASA Astrophysics Data System (ADS)

    van der Linde, HJ; Basson, RA

    In the fifteen years since the introduction of radiation processing to South Africa, four commercial irradiation facilities have been established. These are involved in the processing of a large variety of products, from syringes and prostheses to strawberries and sugar yeast. Three of the facilities are devoted mainly to food irradiation and several thousand tonnes are now processed annually. During this period it was repeatedly experienced that the successful introduction of radiation processing in general, and food radurization in particular, on a commercial scale was critically dependent on the following factors: acceptance by the producer, industry and consumer; initial capital expenditure; running costs and overheads in general; and continous throughput. All of these factors contribute to the processing cost which is the ultimate factor in determing the value/price ratio for the potential entrepreneur and customer of this new technology. After a market survey had identified the need for a new food irradiation facility to cope with the growing interest in commercial food radurization in the Western Cape, the above-mentioned factors were of cardinal importance in the design and manufacture of a new irradiator. The resulting batch-pallet facility which was commisioned in August 1986, is rather inefficient as far as energy utilization is concerned but this shortcoming is compensated for by its low cost, versatility and low hold-up. Although the facility has limitations as far as the processing of really large volumes of produce is concerned, it is particularly suitable not only for developing countries, but for developed countries in the introductory phase of commercial food radurization.

  15. Hazardous Waste Cleanup: Frontier Chemical Waste Process Incorporated – Royal Avenue Site in Niagara Falls, New York

    EPA Pesticide Factsheets

    Frontier Chemical Waste Process facility is located in a heavy industrial/commercial area. Several large industrial facilities surround the facility. The closest residential area is located about ½ mile west and the closest off-site building is located 300

  16. Cabana Multi-User Spaceport Tour/CRS-10

    NASA Image and Video Library

    2017-02-17

    Robert Cabana, director of NASA’s Kennedy Space Center, accompanied news media on Friday, February 17 for a three-part tour of facilities in the Launch Complex 39 area at Kennedy. Media received an update on the transition of government facilities to the aerospace industry, and how that approach enables NASA and industry success. The tour included the Vehicle Assembly Building, where extensive work is being completed to prepare not only for NASA’s Space Launch System, but also enables members of the aerospace industry to use the facility between NASA missions. The tour completed at Boeing’s Commercial Crew and Cargo Processing Facility, previously a shuttle processing facility, where the company is manufacturing its Starliner spacecraft for flight tests and ultimately crew rotation missions with NASA’s Commercial Crew Program.

  17. A method for studying the development pattern of urban commercial service facilities based on customer reviews from social media

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Jiang, B. T.; Ye, X. Y.

    2016-06-01

    Urbanization is one of the most important human social activities in the 21st century (Chaolin et al., 2012). With an increasing number of people visiting cities, the provision of adequate urban service facilities, including public and commercial service facilities, in locations where people live has become an important guarantee of the success of urbanization. Exploring the commercial service facilities in a specific area of a city can help us understand the progress and trends of urban renewal in the area, provide a quantitative basis for evaluating the rationality of planning implementation, and facilitate an analysis of the effects of different factors on the regional development of a city (Schor et al. 2003). In this paper, we proposed a data processing and analysis method for studying the distribution and development pattern of urban commercial facilities based on customer reviews. In addition, based on road network constraints, we explored the patterns contained in customer reviews data, including patterns for the spatial distribution and spatial-temporal evolution of facilities as well as the number of facilities and degree of satisfaction.

  18. Incidence, species and antimicrobial resistance of naturally occurring Campylobacter isolates from quail carcasses sampled in a commercial processing facility

    USDA-ARS?s Scientific Manuscript database

    Most of the published information about the presence of Campylobacter on processed poultry is from studies with chickens and turkeys; therefore there is a paucity of published material about the presence of Campylobacter on commercially processed quail (Coturnix coturnix). The objective of this stud...

  19. 15 CFR 971.602 - Significant adverse environmental effects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... testing of recovery equipment, the recovery of manganese nodules in commercial quantities from the deep seabed, and the construction and operation of commercial-scale processing facilities as activities which...

  20. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Science.gov Websites

    industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard intellectual property and helping industrial partners commercialize technologies. Testing Facilities and

  1. Traffic model for commercial payloads in the Materials Experiment Assembly (MEA). [market research in commercial space processing

    NASA Technical Reports Server (NTRS)

    Tietzel, F. A.

    1979-01-01

    One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.

  2. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  3. Vice President Pence Leads National Space Council Meeting, Tours Kennedy Space Center

    NASA Image and Video Library

    2018-02-20

    Vice President Mike Pence arrived at Kennedy Space Center in Florida on Tuesday, Feb. 20 at 5:10 p.m. aboard Air Force Two. The Vice President was greeted by Robert Lightfoot, acting NASA Administrator and Brig. Gen. Wayne Monteith, commander, 45th Space Wing. After arrival, the vice president toured commercial partner United Launch Alliance’s facility at Cape Canaveral Air Force Station adjacent to Kennedy. He also toured Blue Origin’s new rocket facility located at nearby Exploration Park. On Feb. 21, Vice President Mike Pence led a National Space Council meeting inside NASA Kennedy Space Center’s Space Station Processing Facility. This second meeting of the council, called, “Moon, Mars, and Worlds Beyond: Winning the Next Frontier,” included testimonials from leaders in the civil, commercial, and national security sectors about the importance of the United States’ space enterprise. Vice President Pence concluded his visit with a tour of Kennedy Space Center, which included stops at the Boeing Commercial Crew and Cargo Processing Facility, and SpaceX Launch Complex 39A.

  4. Individual Learning Route as a Way of Highly Qualified Specialists Training for Extraction of Solid Commercial Minerals Enterprises

    NASA Astrophysics Data System (ADS)

    Oschepkova, Elena; Vasinskaya, Irina; Sockoluck, Irina

    2017-11-01

    In view of changing educational paradigm (adopting of two-tier system of higher education concept - undergraduate and graduate programs) a need of using of modern learning and information and communications technologies arises putting into practice learner-centered approaches in training of highly qualified specialists for extraction and processing of solid commercial minerals enterprises. In the unstable market demand situation and changeable institutional environment, from one side, and necessity of work balancing, supplying conditions and product quality when mining-and-geological parameters change, from the other side, mining enterprises have to introduce and develop the integrated management process of product and informative and logistic flows under united management system. One of the main limitations, which keeps down the developing process on Russian mining enterprises, is staff incompetence at all levels of logistic management. Under present-day conditions extraction and processing of solid commercial minerals enterprises need highly qualified specialists who can do self-directed researches, develop new and improve present arranging, planning and managing technologies of technical operation and commercial exploitation of transport and transportation and processing facilities based on logistics. Learner-centered approach and individualization of the learning process necessitate the designing of individual learning route (ILR), which can help the students to realize their professional facilities according to requirements for specialists for extraction and processing of solid commercial minerals enterprises.

  5. BER-Myriant Succinic Acid Biorefinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shmorhun, Mark

    Myriant Corporation (Myriant) has successfully produced the bioproduct succinic acid by the fermentation of glucose at a commercial scale operation in Lake Providence, Louisiana. The MySAB facility (Myriant Succinic Acid Biorefinery) came on stream in May 2013 and has been producing product since then. The MySAB facility is a demonstration-scale plant, capable of utilizing sorghum grits and commercially available dextrose, to ferment glucose into succinic acid. A downstream processing train has demonstrated the ability to produce an industrial, a standard and a polymer grade product. It consists of cell separation, membrane filtration, continuous chromatography, polishing to remove ionic and colormore » bodies impurities, and final evaporation and crystallization. A by-product of the process is ammonium sulfate which is sold as a liquid fertilizer product. Since 2007 when development work began in the Woburn, Massachusetts R&D laboratories, the succinic acid bio-process has evolved through: Process development (microbiology, fermentation, and downstream) – R&D development laboratories; Piloting efforts at Fermic S.A. de C.V., Mexico City, Mexico – upstream and downstream processes; Design, construction, commissioning, and commercial production operations at the MySAB facility Additionally, Myriant became a wholly-owned subsidiary of the PTT Global Chemical Plc., Thailand, in late 2015, their investment into and support of Myriant goes back to 2011. The support of PTT Global Chemical Plc. helped to improve the upstream and downstream processes, and produce significant metric ton quantities of high quality bio-based succinic acid. The product has gone into a number of commercial markets worldwide for customer applications, development and production. The experience base gained via operations at the MySAB facility since May 2013, along with continued R&D development efforts involving Microbiology, Fermentation, and Downstream processes, at both the Woburn, Massachusetts and PTT Global Chemical Plc. Thailand laboratories, positions the company well for future production at the plant and commercialization of new bio-based products. This will be especially important and valuable as the green chemistry business climate continues to take root and flourish.« less

  6. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence, left, and John Mulholland, Boeing vice president and program manager for Commercial Crew Programs, walk with members of the National Space Council during a tour of the Boeing Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. During his visit, Pence chaired a meeting of the council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  7. 47 CFR 90.165 - Procedures for mutually exclusive applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 90.165 Section 90.165 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND... Governing Facilities Used to Provide Commercial Mobile Radio Services § 90.165 Procedures for mutually exclusive applications. Mutually exclusive commercial mobile radio service applications are processed in...

  8. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  9. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  11. Space station needs, attributes, and architectural options study. Volume 1: Missions and requirements

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Science and applications, NOAA environmental observation, commercial resource observations, commercial space processing, commercial communications, national security, technology development, and GEO servicing are addressed. Approach to time phasing of mission requirements, system sizing summary, time-phased user mission payload support, space station facility requirements, and integrated time-phased system requirements are also addressed.

  12. Microbiology and Safety of Table Eggs

    USDA-ARS?s Scientific Manuscript database

    This chapter describes the microbiology of table eggs, effects of processing, regulatory influences, relative risk of egg-borne disease, and the role of retail and consumer practices in outbreaks. Effects of washing, refrigeration, and facility sanitation in US commercial facilities will be describe...

  13. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence, left, is flanked by NASA astronaut Bob Behnken, left, John Mulholland, Boeing vice president and program manager for Commercial Crew Programs, and Chris Ferguson, Boeing’s director of Crew and Mission Systems, during a tour of the company’s Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. During his visit, Pence chaired a meeting of the National Space Council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  14. Commerce Lab - An enabling facility and test bed for commercial flight opportunities

    NASA Technical Reports Server (NTRS)

    Robertson, Jack; Atkins, Harry L.; Williams, John R.

    1986-01-01

    Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.

  15. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  16. WASTE TREATABILITY TESTS OF SPENT SOLVENT AND OTHER ORGANIC WASTEWATERS

    EPA Science Inventory

    Some commercial and industrial facilities treat RCRA spent solvent wastewaters by steam stripping, carbon adsorption, and/or biological processes. Thirteen facilities were visited by EPA's Office of Research and Development (ORD) from June 1985 to September 1986, to conduct sampl...

  17. Antenna Test Facility (ATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  18. Radiant Heat Test Facility (RHTF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    DelPapa, Steven

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  19. Communication Systems Simulation Laboratory (CSSL): Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Schlesinger, Adam

    2012-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CSSL. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  20. Systems Engineering Simulator (SES) Simulator Planning Guide

    NASA Technical Reports Server (NTRS)

    McFarlane, Michael

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the SES. The Simulator Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  1. Computational Electromagnetics (CEM) Laboratory: Simulation Planning Guide

    NASA Technical Reports Server (NTRS)

    Khayat, Michael A.

    2011-01-01

    The simulation process, milestones and inputs are unknowns to first-time users of the CEM Laboratory. The Simulation Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their engineering personnel in simulation planning and execution. Material covered includes a roadmap of the simulation process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, facility interfaces, and inputs necessary to define scope, cost, and schedule are included as an appendix to the guide.

  2. Electromagnetic Interference/Compatibility (EMI/EMC) Control Test and Measurement Facility: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  3. Launch Site Computer Simulation and its Application to Processes

    NASA Technical Reports Server (NTRS)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  4. Pathways for Disposal of Commercially-Generated Tritiated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Nancy V.

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less

  5. Launch and landing site science processing for ISS utilization

    NASA Astrophysics Data System (ADS)

    Shao, Mimi; van Twest, Jacqueline; van den Ende, Oliver; Gruendel, Douglas; Wells, Deborah; Moyer, Jerry; Heuser, Jan; Etheridge, Guy

    2000-01-01

    Since 1986, Kennedy Space Center (KSC) has provided support to over 500 spaceflight experiments from NASA, international agencies, academic institutions, commercial entities, and the military sector. The experiments cover a variety of science disciplines including molecular, cellular, developmental biology, chemistry, physiology, and material sciences. KSC supports simulation, pre-flight, in-flight, and post-flight processing of flight hardware, specimens, and data at the primary and secondary landing sites. Science processing activities for spaceflight experiments occurs at the Life Science Support Facility (Hangar L) on the Cape Canaveral Air Station (CCAS) and select laboratories in the Industrial Area at KSC. Planning is underway to meet the challenges of the International Space Station (ISS). ISS support activities are expected to exceed the current launch site capability. KSC plans to replace the current facilities with Space Experiments Research and Processing Laboratory (SERPL), a collaborative effort between NASA and the State of Florida. This facility will be the cornerstone of a larger Research Park at KSC and is expected to foster relations between commercial industry and academia in areas related to space research. .

  6. Reference earth orbital research and applications investigations (blue book). Volume 6: Materials sciences and manufacturing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The development of commercial manufacturing and research activities in space is discussed. The capability is to be installed in space stations in order to exploit the extended free fall which makes many novel manipulations of materials possible and alters the behavior of certain chemical and physical processes. The broad objectives are: (1) to develop technical basis required for commercial use of manned space facilities, (2) to provide indirect economic benefits by exploiting advantages of space laboratory facilities to solve critical experimental problems, and (3) to initiate manufacturing operations in space by private enterprise for commercial purposes and by agencies of the Government for public purposes.

  7. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  8. 26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...

  9. 26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...

  10. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  11. Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  12. Concept design theory and model for multi-use space facilities: Analysis of key system design parameters through variance of mission requirements

    NASA Astrophysics Data System (ADS)

    Reynerson, Charles Martin

    This research has been performed to create concept design and economic feasibility data for space business parks. A space business park is a commercially run multi-use space station facility designed for use by a wide variety of customers. Both space hardware and crew are considered as revenue producing payloads. Examples of commercial markets may include biological and materials research, processing, and production, space tourism habitats, and satellite maintenance and resupply depots. This research develops a design methodology and an analytical tool to create feasible preliminary design information for space business parks. The design tool is validated against a number of real facility designs. Appropriate model variables are adjusted to ensure that statistical approximations are valid for subsequent analyses. The tool is used to analyze the effect of various payload requirements on the size, weight and power of the facility. The approach for the analytical tool was to input potential payloads as simple requirements, such as volume, weight, power, crew size, and endurance. In creating the theory, basic principles are used and combined with parametric estimation of data when necessary. Key system parameters are identified for overall system design. Typical ranges for these key parameters are identified based on real human spaceflight systems. To connect the economics to design, a life-cycle cost model is created based upon facility mass. This rough cost model estimates potential return on investments, initial investment requirements and number of years to return on the initial investment. Example cases are analyzed for both performance and cost driven requirements for space hotels, microgravity processing facilities, and multi-use facilities. In combining both engineering and economic models, a design-to-cost methodology is created for more accurately estimating the commercial viability for multiple space business park markets.

  13. Accessing space: A catalogue of process, equipment and resources for commercial users

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This catalogue, produced by NASA's Office of Commercial Programs, provides a broad source of information for the commercial developer interested in the areas of microgravity research and remote sensing. Methods for accessing space for research are reviewed including the shuttle, expendable launch vehicles, suborbital sounding rockets, experimental aircraft, and drop towers and other ground-based facilities. Procedures for using these vehicles and facilities are described along with funding options to pay for their use. Experiment apparatus and carriers for microgravity research are also described. A separate directory of resources and services is also included which contains a listing of transportation products and services, a listing of businesses and industries which provide space-related services and products, and a listing of the NASA and CCDS (Center for the Commercial Development of Space) points of contact.

  14. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. Audio Development Laboratory (ADL) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Romero, Andy

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ADL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. Electronic Systems Test Laboratory (ESTL) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Robinson, Neil

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  17. Advanced Materials Laboratory User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Advanced Materials Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  18. Structures Test Laboratory (STL). User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Zipay, John J.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the STL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  19. 30 CFR 585.221 - What bidding systems may BOEM use for commercial leases and limited leases?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commercial leases and limited leases? 585.221 Section 585.221 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Award Process...

  20. 30 CFR 585.221 - What bidding systems may BOEM use for commercial leases and limited leases?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commercial leases and limited leases? 585.221 Section 585.221 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Award Process...

  1. 30 CFR 585.221 - What bidding systems may BOEM use for commercial leases and limited leases?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commercial leases and limited leases? 585.221 Section 585.221 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Award Process...

  2. Cabana Multi-User Spaceport Tour of KSC

    NASA Image and Video Library

    2017-02-17

    Inside Boeing’s Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida members of the news media view work platforms that will be used in manufacturing Boeing's CST-100 Starliner spacecraft for flight tests and crew rotation missions to the International Space Station as part of the agency's Commercial Crew Program.

  3. Survey of the US materials processing and manufacturing in space program

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  4. CLEANING OF FLUE GASES FROM WASTE COMBUSTORS

    EPA Science Inventory

    The paper addresses flue gas cleaning processes currently used commercially in waste combustion facilities. It also discusses the operating concepts of dry, semi-dry, and wet processes and their effectiveness in controlling various pollutants. Air pollutants from the combustion o...

  5. Facility for orbital material processing

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Dellosa, M.; Erdelyi, E.; Volfson, L.

    2018-05-01

    The sustainable orbital manufacturing with commercially viable and profitable operation has tremendous potential for driving the space exploration industry and human expansion into outer space. This highly challenging task has never been accomplished before. The current relatively high delivery cost of materials represents the business challenge of value proposition for making products in space. FOMS Inc. team identified an opportunity of fluoride optical fiber manufacturing in space that can lead to the first commercial production on orbit. To address continued cost effective International Space Station (ISS) operations FOMS Inc. has developed and demonstrated for the first time a fully operational space facility for orbital remote manufacturing with up to 50 km fiber fabrication capability and strong commercial potential for manufacturing operations on board the ISS.

  6. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  7. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    PubMed

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in <18 months from groundbreaking. As of 2015, this facility was one of the world's largest plant-based manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Space station needs attributes and architectural options study costing working group briefing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Individuals in the United States who understand the promise of materials processing in space and who also are senior technical personnel associated with commercial firms that process materials: (1) endorsed the concept of a space station as a desirable national asset; (2) stated that a commercial MPS research program is mandatory to extend commericalization of space for materials processing; and (3) described in general terms a national research laboratory and free flying facilities that are needed. Participants agreed that industry R&D is motivated largely by market pull rather than by technology push, that initial interest is low-g materials research; and that to farther, commercial market assurance (a salable product) is a must.

  9. AN ENVIRONMENTAL AND ECONOMIC COMPARISON OF ION EXCHANGE AND RECENTLY COMMERCIALIZED ELECTROCHEMICAL TECHNOLOGIES FOR THE RECOVERY OF RINSE WATER IN BRIGHT NICKEL PLATING FACILITY

    EPA Science Inventory

    Researchers at USEPA are testing and evaluating two commercial electrochemical technologies for the purification of rinse water and the recovery of copper and nickel from a variety of electroplating processes. One of the investigated technologies is based on the application of hi...

  10. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Sitemore » Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Benchmarking of a commercial nuclear facility, a commercial research facility, and a DOE research facility was conducted to both validate the efficacy of these findings and seek additional ideas for improvement. The outcome of this evaluation is represented by the 15 final recommendations that are described in this report.« less

  11. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  12. Six-Degree-of-Freedom Dynamic Test System (SDTS) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Stokes, LeBarian

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the SDTS. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  13. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  14. Specialized Environmental Chamber Test Complex: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Michael E.

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the Specialized Environmental Test Complex. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. Energy Systems Test Area (ESTA) Battery Test Operations User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Battery Test Operations. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a char cyclonefiltration hybrid unit in the E-Gas (TM) gasification process. These reductions would help to keep the E-Gas (TM) technology competitive among other coal-fired power generation technologies. The Wabash combined cyclone and gas filtration slipstream test program was developed to provide design information, equipment specification and process control parameters of a hybrid cyclone and candle filter particulate removal system in the E-Gas (TM) gasification process that would provide the optimum performance and reliability for future commercial use. The test program objectives were as follows: 1. Evaluate the use of various cyclone materials of construction; 2. Establish the optimal cyclone efficiency that provides stable long term gas filter operation; 3. Determine the particle size distribution of the char separated by both the cyclone and candle filters. This will provide insight into cyclone efficiency and potential future plant design; 4. Determine the optimum filter media size requirements for the cyclone-filtration hybrid unit; 5. Determine the appropriate char transfer rates for both the cyclone and filtration portions of the hybrid unit; 6. Develop operating procedures for the cyclone-filtration hybrid unit; and, 7. Compare the installed capital cost of a scaled-up commercial cyclone-filtration hybrid unit to the current gas filtration design without a cyclone unit, such as currently exists at the Wabash facility.« less

  17. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence signs a banner during a tour of the Boeing Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. During his visit, Pence chaired a meeting of the National Space Council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  18. KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  19. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  20. Development and operation of innovative scum to biodiesel pilot-system for the treatment of floatable wastewater scum.

    PubMed

    Anderson, Erik; Addy, Min; Chen, Paul; Ruan, Roger

    2018-02-01

    A novel process was developed for the biorefining of floatable wastewater scum and other waste oils from water treatment facilities into biodiesel and other value-added bio-products. To test the scalability and commercial potential of the technology, a 7000 l/year pilot-scale system was designed and built. Scum from a wastewater treatment facility, located in St. Paul, Mn, was collected and converted into methyl esters (biodiesel) according to the process chemistry. All of the incoming and outgoing process streams were sampled, tested, weighed and recorded to calculate both the process efficiency and product quality. Data from the pilot-scale system operation was compared to laboratory results and the theoretically expected values for each individual unit operation. The biodiesel was tested using a third party laboratory and confirmed it met all of the US EPA's test requirements for commercial-grade biodiesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Channel catfish

    USDA-ARS?s Scientific Manuscript database

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  2. Cryptosporidium: Prevention - Immunocompromised Persons

    MedlinePlus

    ... Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and Other ... water, or filtering your water with certain home filters. Processed carbonated (bubbly) drinks in cans or bottles ...

  3. Effect of processing method on bacterial community recovered from scalder and chiller water tanks in a commercial broiler processing facility.

    USDA-ARS?s Scientific Manuscript database

    In poultry processing plants, chicken carcasses were processed through a succession of steps including their immersion in scalder and chiller water tanks. Water tank microbiota may impact the microbiological quality of carcasses and the occurrence of pathogens or spoilage bacteria may lead to their ...

  4. SPRT Calibration Uncertainties and Internal Quality Control at a Commercial SPRT Calibration Facility

    NASA Astrophysics Data System (ADS)

    Wiandt, T. J.

    2008-06-01

    The Hart Scientific Division of the Fluke Corporation operates two accredited standard platinum resistance thermometer (SPRT) calibration facilities, one at the Hart Scientific factory in Utah, USA, and the other at a service facility in Norwich, UK. The US facility is accredited through National Voluntary Laboratory Accreditation Program (NVLAP), and the UK facility is accredited through UKAS. Both provide SPRT calibrations using similar equipment and procedures, and at similar levels of uncertainty. These uncertainties are among the lowest available commercially. To achieve and maintain low uncertainties, it is required that the calibration procedures be thorough and optimized. However, to minimize customer downtime, it is also important that the instruments be calibrated in a timely manner and returned to the customer. Consequently, subjecting the instrument to repeated calibrations or extensive repeated measurements is not a viable approach. Additionally, these laboratories provide SPRT calibration services involving a wide variety of SPRT designs. These designs behave differently, yet predictably, when subjected to calibration measurements. To this end, an evaluation strategy involving both statistical process control and internal consistency measures is utilized to provide confidence in both the instrument calibration and the calibration process. This article describes the calibration facilities, procedure, uncertainty analysis, and internal quality assurance measures employed in the calibration of SPRTs. Data will be reviewed and generalities will be presented. Finally, challenges and considerations for future improvements will be discussed.

  5. 76 FR 51879 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... input for processing in some stage of a manufacturing or production process to produce a different end... and sold on the market as a material for input into manufacturing or production processes. The... production of any agricultural, commercial, consumer, or industrial product, provided that material qualified...

  6. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence views Boeing’s Starliner spacecraft for the Crew Flight Test during a tour of the company’s Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. During his visit, Pence chaired a meeting of the National Space Council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  7. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence, center, and members of the National Space Council hear from a Boeing employee during a tour of the Boeing Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. During his visit, Pence chaired a meeting of the council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  8. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence, center, speaks to Boeing executives and members of the National Space Council during a tour of the Boeing Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. During his visit, Pence chaired a meeting of the council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  9. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  10. Optimising the design and operation of semi-continuous affinity chromatography for clinical and commercial manufacture.

    PubMed

    Pollock, James; Bolton, Glen; Coffman, Jon; Ho, Sa V; Bracewell, Daniel G; Farid, Suzanne S

    2013-04-05

    This paper presents an integrated experimental and modelling approach to evaluate the potential of semi-continuous chromatography for the capture of monoclonal antibodies (mAb) in clinical and commercial manufacture. Small-scale single-column experimental breakthrough studies were used to derive design equations for the semi-continuous affinity chromatography system. Verification runs with the semi-continuous 3-column and 4-column periodic counter current (PCC) chromatography system indicated the robustness of the design approach. The product quality profiles and step yields (after wash step optimisation) achieved were comparable to the standard batch process. The experimentally-derived design equations were incorporated into a decisional tool comprising dynamic simulation, process economics and sizing optimisation. The decisional tool was used to evaluate the economic and operational feasibility of whole mAb bioprocesses employing PCC affinity capture chromatography versus standard batch chromatography across a product's lifecycle from clinical to commercial manufacture. The tool predicted that PCC capture chromatography would offer more significant savings in direct costs for early-stage clinical manufacture (proof-of-concept) (∼30%) than for late-stage clinical (∼10-15%) or commercial (∼5%) manufacture. The evaluation also highlighted the potential facility fit issues that could arise with a capture resin (MabSelect) that experiences losses in binding capacity when operated in continuous mode over lengthy commercial campaigns. Consequently, the analysis explored the scenario of adopting the PCC system for clinical manufacture and switching to the standard batch process following product launch. The tool determined the PCC system design required to operate at commercial scale without facility fit issues and with similar costs to the standard batch process whilst pursuing a process change application. A retrofitting analysis established that the direct cost savings obtained by 8 proof-of-concept batches would be sufficient to pay back the investment cost of the pilot-scale semi-continuous chromatography system. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Facilities Engineering Management System Study: Catalog of Automatic Data Processing Applications Developed by USACERL (U.S. Army Construction Engineering Research Laboratory) for Army Installation Directories of Engineering and Housing

    DTIC Science & Technology

    1989-08-01

    Programming Languages Used: AUTOCAD Command, AUTOLISP Type of Commercial Program Used: CAD Specific Commercial Program Used: AUTOCAD Version: 1.0...collection which the system can directly translate into printed reports. This eliminates the need for filling data collection forms and manual compiling of

  12. Dehydration of pollock skin prior to gelatin production

    USDA-ARS?s Scientific Manuscript database

    Alaska pollock (Theragra chalcogramma) is the U.S.A.'s largest commercial fishery, with an annual catch of over 1 million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin-processing facilities in Alask...

  13. SSPF Operational Upgrades

    NASA Image and Video Library

    2016-11-15

    During a ribbon cutting ceremony in the high bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, center director Bob Cabana, far left, is joined by Bill Dowdell, Kennedy's International Space Station technical director, Josephine Burnett, director of Exploration Research and Technology, Andy Allen, Jacobs vice president and general manager and Test and Operations Support Contract program manager, and Jeff McAlear, Jacobs director of Processing Services. The event celebrated completion of facility modifications to improve processing and free up zones tailored to a variety of needs supporting a robust assortment of space-bound hardware including NASA programs and commercial space companies.

  14. Commonwealth of Pennsylvania. [Establishment of hazardous waste facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Environmental Resources Secretary Arthur A. Davis and Commerce Secretary Raymond R. Christman have announced a joint initiative to establish commercial hazardous waste treatment and disposal facilities Pennsylvania. The state Hazardous Sites Cleanup Act, which Gov. Robert P. Casey signed into law last October, called for accelerated efforts in this regard. These included an expedited permitting process for facilities, requiring the Department of Environmental Resources (DER) to appoint a special sitting team to review permit applications, and designation of sitting coordinator within the Department of Commerce to identify potential developers of the facilities and encourage them to operate within Pennsylvania.

  15. Development of a shuttle recovery Commercial Materials Processing in Space (CMPS) program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The work performed has covered the following tasks: update commercial users requirements; assess availability of carriers and facilities; shuttle availability assessment; development of optimum accommodations plan; and payload documentation requirements assessment. The results from the first four tasks are presented. To update commercial user requirements, contacts were made with the JEA and CCDS partners to obtain copies of their most recent official flight requests. From these requests the commercial partners' short and long range plans for flight dates, flight frequency, experiment hardware and carriers was determined. A 34 by 44 inch chart was completed to give a snapshot view of the progress of commercialization in space. Further, an assessment was made of the availability of carriers and facilities. Both existing carriers and those under development were identified for use by the commercial partners. A data base was compiled to show the capabilities of the carriers. A shuttle availability assessment was performed using the primary and secondary shuttle manifests released by NASA. Analysis of the manifest produced a flight-by-flight list of flight opportunities available to commercial users. Using inputs from the first three tasks, an Optimum Accommodations Plan was developed. The Accommodation Plan shows the commercial users manifested by flight, the experiment flown, the carrier used and complete list of commercial users that could not be manifested in each calendar year.

  16. Overview of materials processing in space activity at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Chassay, R. P.; Moore, W. W.; Ruff, R. C.; Yates, I. C.

    1984-01-01

    An overview of activities involving the Space Transportation System (STS), now in the operational phase, and results of some of the current space experiments, as well as future research opportunities in microgravity environment, are presented. The experiments of the Materials Processing in Space Program flown on the STS, such as bioseparation processes, isoelectric focusing, solidification and crystal growth processes, containerless processes, and the Materials Experiment Assembly experiments are discussed. Special consideration is given to the experiments to be flown aboard the Spacelab 3 module, the Fluids Experiments System, and the Vapor Crystal Growth System. Ground-based test facilities and planned space research facilities, as well as the nature of the commercialization activities, are briefly explained.

  17. Commercial implementation of food irradiation

    NASA Astrophysics Data System (ADS)

    Welt, M. A.

    In July 1981, the first specifically designed multi-purpose irradiation facility for food irradiation was put into service by the Radiation Technology, Inc. subsidiary Process Technology, Inc. in West Memphis, Arkansas. The operational experience gained, resulted in an enhanced design which was put into commercial service in Haw River, North Carolina, by another subsidiary, Process Technology (N.C.), Inc. in October 1983. These facilities have enabled the food industry to assess the commercial viability of food irradiation. Further impetus towards commercialization of food irradiation was gained in March 1981 with the filing in the Federal Register, by the FDA, of an Advanced Proposed Notice of Rulemaking for Food Irradiation. Two years later in July 1983, the FDA approved the first food additive regulation involving food irradiation in nineteen years, when they approved the Radiation Technology, Inc. petition calling for the sanitization of spices, onion powder and garlic powder at a maximum dosage of 10 kGy. Since obtaining the spice irradiation approval, the FDA has accepted four additional petitions for filing in the Federal Register. One of the petitions which extended spice irradiation to include insect disinfestation has issued into a regulation while the remaining petitions covering the sanitization of herbs, spice blends, vegetable seasonings and dry powdery enzymes as well as the petition to irradiate hog carcasses and pork products for trichinae control at 1 kGy, are expected to issue either before the end of 1984 or early in 1985. More recently, food irradiation advocates in the United States received another vote of confidence by the announcement that a joint venture food irradiation facility to be constructed in Hawaii by Radiation Technology, is backed by a contractual committment for the processing of 40 million pounds of produce per year. Another step was taken when the Port of Salem, New Jersey announced that the Radiation Technology Model RT-4104-4048(TM) irradiation facility was chosen to interface with the only East Coast grain elevator in the United States. These factors, along with concern over the ban of EDB as a post harvest fumigant, coupled with the expected FDA action to approve the use of irradiation for the insect disinfestation of fruit and vegetables, should finally permit the commercial implementation of food irradiation to take hold in the United States.

  18. Orbital ATK's Ground Support Equipment (GSE) Delivery for OA-7

    NASA Image and Video Library

    2016-12-15

    Sealed in its shipping container, the ground support equipment for the Orbital ATK OA-7 commercial resupply services mission has arrived at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The container will be moved inside the low bay of the facility. The Orbital ATK CRS-7 with the Cygnus cargo module will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  19. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence, center, NASA astronaut Bob Behnken, left, and Chris Ferguson, Boeing’s director of Crew and Mission Systems, tour the company’s Commercial Crew and Cargo Processing Facility at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. During his visit, Pence chaired a meeting of the National Space Council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  20. 40 CFR 62.14575 - What must I do if I close my CISWI unit and then restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FACILITIES AND POLLUTANTS Federal Plan Requirements for Commercial and Industrial Solid Waste Incineration... necessary process changes and air pollution control devices operate as designed. Waste Management Plan ...

  1. Space station needs, attributes and architectural options. Part 1: Summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Candidate missions for the space station were subjected to an evaluation/filtering process which included the application of budgetary constraints and performance of benefits analysis. Results show that the initial space station should be manned, placed in a 28.5 deg orbit, and provide capabilities which include a space test facility, satellite service, a transport harbor, and an observatory. A space industrial park may be added once further development effort validates the cost and expanding commercial market for space-processed material. Using the space station as a national space test facility can enhance national security, as well as commercial and scientific interests alike. The potential accrued gross mission model benefit derived from these capabilities is $5.9B without the industrial park, and $9.3B with it. Other benefits include the lowering of acquisition costs for NASA and DoD space assets and a basis for broadening international participation.

  2. Testing of electrical equipment for a commercial grade dedication program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.L.; Srinivas, N.

    1995-10-01

    The availability of qualified safety related replacement parts for use in nuclear power plants has decreased over time. This has caused many nuclear power plants to purchase commercial grade items (CGI) and utilize the commercial grade dedication process to qualify the items for use in nuclear safety related applications. The laboratories of Technical and Engineering Services (the testing facility of Detroit Edison) have been providing testing services for verification of critical characteristics of these items. This paper presents an overview of the experience in testing electrical equipment with an emphasis on fuses.

  3. Managing a Safe and Successful Multi-User Spaceport

    NASA Technical Reports Server (NTRS)

    Dacko, Taylor; Ketterer, Kirk; Meade, Phillip

    2016-01-01

    Encouraged by the creation of the Office of Commercial Space Transportation within the U.S. Federal Aviation Administration (FAA) in 1984 and the Commercial Space Act of 1998, the National Aeronautics and Space Administration (NASA) now relies on an extensive network of support from commercial companies and organizations. At NASA's Kennedy Space Center (KSC), this collaboration opens competitive opportunities for launch providers, including repurposing underutilized Shuttle Program resources, constructing new facilities, and utilizing center services and laboratories. The resulting multi-user spaceport fosters diverse activity, though it engenders risk from hazards associated with various spaceflight processing activities. The KSC Safety & Mission Assurance (S&MA) Directorate, in coordination with the center's Spaceport Integration and Center Planning & Development organizations, has developed a novel approach to protect NASA's workforce, critical assets, and the public from hazardous, space-related activity associated with KSC's multi-user spaceport. For NASA KSC S&MA, the transformation to a multi-user spaceport required implementing methods to foster safe and successful commercial activity while resolving challenges involving: Retirement of the Space Shuttle program; Co-location of multiple NASA programs; Relationships between the NASA programs; Complex relationships between NASA programs and commercial partner operations in exclusive-use facilities; Complex relationships between NASA programs and commercial partner operations in shared-use facilities. NASA KSC S&MA challenges were met with long-term planning and solutions involving cooperation with the Spaceport Integration and Services Directorate. This directorate is responsible for managing active commercial partnerships with customer advocacy and services management, providing a dedicated and consistent level of support to a wide array of commercial operations. This paper explores these solutions, their relevance to the current commercial space industry, and the challenges that continue to drive improvement with a focus on areas of safety management and risk assessment that have been crucial in KSC's evolution into a multi-user spaceport. These solutions may be useful to government entities and private companies looking to partner with the commercial space industry.

  4. Detection of Escherichia coli O157:H7 and Salmonella enterica in air and droplets at three U.S. commercial beef processing plants

    USDA-ARS?s Scientific Manuscript database

    Bacteria are known to be present in air at beef processing plants but published data regarding the prevalences of airborne Escherichia coli O157:H7 and Salmonella enterica are very limited. To determine if airborne pathogens were present in beef processing facilities, we placed sedimentation sponges...

  5. CO{sub 2} Reuse in Petrochemical Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Trembly; Brian Turk; Maruthi Pavani

    2010-12-31

    To address public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is actively funding a CO{sub 2} management program to develop technologies capable of mitigating CO{sub 2} emissions from power plant and industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE/NETL launched an alternative CO{sub 2} mitigation program focused on beneficial CO{sub 2} reuse to support the development of technologies that mitigate emissions by converting CO{sub 2} into valuable chemicals andmore » fuels. RTI, with DOE/NETL support, has been developing an innovative beneficial CO{sub 2} reuse process for converting CO{sub 2} into substitute natural gas (SNG) by using by-product hydrogen (H{sub 2)-containing fuel gas from petrochemical facilities. This process leveraged commercial reactor technology currently used in fluid catalytic crackers in petroleum refining and a novel nickel (Ni)-based catalyst developed by RTI. The goal was to generate an SNG product that meets the pipeline specifications for natural gas, making the SNG product completely compatible with the existing natural gas infrastructure. RTI's technology development efforts focused on demonstrating the technical feasibility of this novel CO{sub 2} reuse process and obtaining the necessary engineering information to design a pilot demonstration unit for converting about 4 tons per day (tons/day) of CO{sub 2} into SNG at a suitable host site. This final report describes the results of the Phase I catalyst and process development efforts. The methanation activity of several commercial fixed-bed catalysts was evaluated under fluidized-bed conditions in a bench-scale reactor to identify catalyst performance targets. RTI developed two fluidizable Ni-based catalyst formulations (Cat-1 and Cat-3) that demonstrated equal or better performance than that of commercial methanation catalysts. The Cat-1 and Cat-3 formulations were successfully scaled up using commercial manufacturing equipment at the Sud-Chemie Inc. pilot-plant facility in Louisville, KY. Pilot transport reactor testing with RTI's Cat-1 formulation at Kellog Brown & Root's Technology Center demonstrated the ability of the process to achieve high single-pass CO{sub 2} conversion. Using information acquired from bench- and pilot-scale testing, a basic engineering design package was prepared for a 4-ton/day CO{sub 2} pilot demonstration unit, including process and instrumentation diagrams, equipment list, control philosophy, and preliminary cost estimate.« less

  6. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  7. Multi-man flight simulator

    NASA Technical Reports Server (NTRS)

    Macdonald, G.

    1983-01-01

    A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.

  8. 30 CFR 285.221 - What bidding systems may MMS use for commercial leases and limited leases?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Competitive Lease Award Process § 285.221 What...

  9. Processing materials in space - The history and the future

    NASA Technical Reports Server (NTRS)

    Chassay, Roger; Carswell, Bill

    1987-01-01

    The development of materials processing in space, and some of the Soyuz, Apollo, Skylab, and Shuttle orbital materials experiments are reviewed. Consideration is given to protein crystal growth, electrophoresis, low-gravity isoelectric focusing, phase partitioning, a monodisperse latex reactor, semiconductor crystal growth, solution crystal growth, the triglycine sulfate experiment, vapor crystal growth experiments, the mercuric iodide experiment, electronic and electrooptical materials, organic thin films and crystalline solids, deep undercooling of metals and alloys, magnetic materials, immiscible materials, metal solidification research, reluctant glass-forming materials, and containerless glass formation. The space processing apparatuses and ground facilities, for materials processing are described. Future facilities for commercial research, development, and manufacturing in space are proposed.

  10. Evaluating Michigan commercial vehicle enforcement strategies and facilities.

    DOT National Transportation Integrated Search

    2015-03-01

    This report documents evaluation results and recommendations for Michigan commercial vehicle : enforcement strategies and facilities. Through literature review, online survey and site visits, : enforcement strategies and facilities in other states an...

  11. Cryptosporidium: Treatment

    MedlinePlus

    ... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...

  12. Cryptosporidium (Crypto)

    MedlinePlus

    ... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...

  13. Web-Based Requesting and Scheduling Use of Facilities

    NASA Technical Reports Server (NTRS)

    Yeager, Carolyn M.

    2010-01-01

    Automated User's Training Operations Facility Utilization Request (AutoFUR) is prototype software that administers a Web-based system for requesting and allocating facilities and equipment for astronaut-training classes in conjunction with scheduling the classes. AutoFUR also has potential for similar use in such applications as scheduling flight-simulation equipment and instructors in commercial airplane-pilot training, managing preventive- maintenance facilities, and scheduling operating rooms, doctors, nurses, and medical equipment for surgery. Whereas requesting and allocation of facilities was previously a manual process that entailed examination of documents (including paper drawings) from different sources, AutoFUR partly automates the process and makes all of the relevant information available via the requester s computer. By use of AutoFUR, an instructor can fill out a facility-utilization request (FUR) form on line, consult the applicable flight manifest(s) to determine what equipment is needed and where it should be placed in the training facility, reserve the corresponding hardware listed in a training-hardware inventory database, search for alternative hardware if necessary, submit the FUR for processing, and cause paper forms to be printed. Auto-FUR also maintains a searchable archive of prior FURs.

  14. Cryptosporidium (Crypto) Disease: Diagnosis & Detection

    MedlinePlus

    ... Camps Boil Water Advisories Public Users of Public Water Supplies Commercial Establishments Commercial Ice Maker Users Childcare Facilities Dental Offices Hospitals, Healthcare Facilities, & Nursing Homes Dialysis A Guide to Water Filters A Guide to Commercially-Bottled Water and ...

  15. Extent and Impacts of the Virginia Department of Transportation’s Exception Process for Access Management Design Standards

    DOT National Transportation Integrated Search

    2018-06-01

    The Virginia Department of Transportation (VDOT) Road Design Manual requires that new commercial entrances meet certain minimum spacing standards depending on a facilitys speed limit and functional classification. Landowners, however, may request ...

  16. 41 CFR 102-74.70 - Are commercial vendors and nonprofit organizations required to operate vending facilities by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are commercial vendors and nonprofit organizations required to operate vending facilities by permit or contractual...

  17. 10 CFR 50.22 - Class 103 licenses; for commercial and industrial facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities. 50.22 Section 50.22 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND..., transfer, acquire, possess, or use a production or utilization facility for industrial or commercial purposes; Provided, however, That in the case of a production or utilization facility which is useful in...

  18. 30 CFR 285.233-285.234 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....234 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Noncompetitive Lease Award Process §§ 285.233-285.234 [Reserved] Commercial and Limited...

  19. Characterization of exposure to silver nanoparticles in a manufacturing facility

    NASA Astrophysics Data System (ADS)

    Park, Junsu; Kwak, Byoung Kyu; Bae, Eunjoo; Lee, Jeongjin; Kim, Younghun; Choi, Kyunghee; Yi, Jongheop

    2009-10-01

    An assessment of the extent of exposure to nanomaterials in the workplace will be helpful in improving the occupational safety of workers. It is essential that the exposure data in the workplace are concerned with risk management to evaluate and reduce worker exposure. In a manufacturing facility dealing with nanomaterials, some exposure data for gas-phase reactions are available, but much less information is available regarding liquid-phase reactions. Although the potential for inhaling nanomaterials in a liquid-phase process is less than that for gas-phase, the risks of exposure during wet-chemistry processes are not negligible. In this study, we monitored and analyzed the exposure characteristics of silver nanoparticles during a liquid-phase process in a commercial production facility. Based on the measured exposure data, the source of Ag nanoparticles emitted during the production processes was indentified and a mechanism for the growth of Ag nanoparticle released is proposed. The data reported in this study could be used to establish occupational safety guidelines in the nanotechnology workplace, especially in a liquid-phase production facility.

  20. An economical route to high quality lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.P.; Hahn, S.K.; Kwon, S.H.

    1996-12-01

    The current rends in the automotive and industrial markets toward more efficient engines, longer drain intervals, and lower emissions all contribute to placing increasingly stringent performance requirements on lubricants. The demand for higher quality synthetic and non-conventional basestocks is expected to grow at a much faster rate than that of conventional lube basestocks to meet these higher performance standards. Yukong Limited has developed a novel technology (the Yukong UCO Lube Process) for the economic production of high quality, high-viscosity-index lube basestocks from a fuels hydrocracker unconverted oil stream. A pilot plant based on this process has been producing oils formore » testing purposes since May 1994. A commercial facility designed to produce 3,500 BPD of VHVI lube basestocks cane on-stream at Yukong`s Ulsan refinery in October 1995. The Badger Technology Center of Raytheon Engineers and Constructors assisted Yukong during the development of the technology and prepared the basic process design package for the commercial facility. This paper presents process aspects of the technology and comparative data on investment and operating costs. Yukong lube basestock product properties and performance data are compared to basestocks produced by conventional means and by lube hydrocracking.« less

  1. Coal feed component testing for CDIF

    NASA Technical Reports Server (NTRS)

    Pearson, C. V.; Snyder, B. K.; Fornek, T. E.

    1977-01-01

    Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended.

  2. 30 CFR 585.233-585.234 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....234 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Noncompetitive Lease Award Process §§ 585.233-585.234 [Reserved] Commercial and Limited...

  3. 30 CFR 585.233-585.234 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....234 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Noncompetitive Lease Award Process §§ 585.233-585.234 [Reserved] Commercial and Limited...

  4. 30 CFR 585.233-585.234 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....234 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Noncompetitive Lease Award Process §§ 585.233-585.234 [Reserved] Commercial and Limited...

  5. Potentials for win-win alliances among animal agriculture and forest products industries: application of the principles of industrial ecology and sustainable development.

    PubMed

    Cowling, Ellis B; Furiness, Carl S

    2005-12-01

    Commercial forests in many parts of the world are deficient in nitrogen and phosphorus. These nutrient-deficient forests often exist in close proximity to large animal feeding operations, meat processing and other food, textile, or other biomass-processing plants, and municipal waste treatment facilities. Many of these facilities produce large surpluses of nitrogen, phosphorus, and organic matter as gaseous ammonia, urea, uric acid, phosphorus compounds, bacterial sludges, and partially treated municipal wastewaters. These co-existing and substantial nutrient deficiencies and surpluses offer ready-made opportunities for discovery, demonstration, and commercial development of science-based, technology-facilitated, environmentally sound, economically viable, and socially acceptable "win-win alliances" among these major industries based on the principles of industrial ecology and sustainable development. The major challenge is to discover practical means to capture the surplus nutrients and put them to work in forest stands from which value-added products can be produced and sold at a profit.

  6. Recent Improvements in Semi-Span Testing at the National Transonic Facility (Invited)

    NASA Technical Reports Server (NTRS)

    Gatlin, G. M.; Tomek, W. G.; Payne, F. M.; Griffiths, R. C.

    2006-01-01

    Three wind tunnel investigations of a commercial transport, high-lift, semi-span configuration have recently been conducted in the National Transonic Facility at the NASA Langley Research Center. Throughout the course of these investigations multiple improvements have been developed in the facility semi-span test capability. The primary purpose of the investigations was to assess Reynolds number scale effects on a modern commercial transport configuration up to full-scale flight test conditions (Reynolds numbers on the order of 27 million). The tests included longitudinal aerodynamic studies at subsonic takeoff and landing conditions across a range of Reynolds numbers from that available in conventional wind tunnels up to flight conditions. The purpose of this paper is to discuss lessons learned and improvements incorporated into the semi-span testing process. Topics addressed include enhanced thermal stabilization and moisture reduction procedures, assessments and improvements in model sealing techniques, compensation of model reference dimensions due to test temperature, significantly improved semi-span model access capability, and assessments of data repeatability.

  7. The partnership: Space shuttle, space science, and space station

    NASA Technical Reports Server (NTRS)

    Culbertson, Philip E.; Freitag, Robert F.

    1989-01-01

    An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.

  8. Commercial opportunities utilizing the International Space Station

    NASA Astrophysics Data System (ADS)

    Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth

    1998-01-01

    The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.

  9. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  10. 17 CFR 250.58 - Exemption of investments in certain nonutility companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... facilities relating to electric and compressed natural gas powered vehicles; (iv) The sale of electric and gas appliances; equipment to promote new technologies, or new applications for existing technologies... and commercialization of technologies or processes that utilize coal waste by-products as an integral...

  11. Space Station services and design features for users

    NASA Technical Reports Server (NTRS)

    Kurzhals, Peter R.; Mckinney, Royce L.

    1987-01-01

    The operational design features and services planned for the NASA Space Station will furnish, in addition to novel opportunities and facilities, lower costs through interface standardization and automation and faster access by means of computer-aided integration and control processes. By furnishing a basis for large-scale space exploitation, the Space Station will possess industrial production and operational services capabilities that may be used by the private sector for commercial ventures; it could also ultimately support lunar and planetary exploration spacecraft assembly and launch facilities.

  12. Bivalent rLP2086 (Trumenba®): Development of a well-characterized vaccine through commercialization.

    PubMed

    Sunasara, Khurram; Cundy, John; Srinivasan, Sriram; Evans, Brad; Sun, Weiqiang; Cook, Scott; Bortell, Eric; Farley, John; Griffin, Daniel; Bailey Piatchek, Michele; Arch-Douglas, Katherine

    2018-05-24

    The phrase "Process is the Product" is often applied to biologics, including multicomponent vaccines composed of complex components that evade complete characterization. Vaccine production processes must be defined and locked early in the development cycle to ensure consistent quality of the vaccine throughout scale-up, clinical studies, and commercialization. This approach of front-loading the development work helped facilitate the accelerated approval of the Biologic License Application for the well-characterized vaccine bivalent rLP2086 (Trumenba®, Pfizer Inc) in 2014 under Breakthrough Therapy Designation. Bivalent rLP2086 contains two rLP2086 antigens and is licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B in individuals 10-25years of age in the United States. This paper discusses the development of the manufacturing process of the two antigens for the purpose of making it amenable to any manufacturing facility. For the journey to commercialization, the operating model used to manage this highly accelerated program led to a framework that ensured "right the first time" execution, robust process characterization, and proactive process monitoring. This framework enabled quick problem identification and proactive resolutions, resulting in a robust control strategy for the commercial process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. U.S. Transportation Command Needs Further Improvements to Address Performance Concerns Over the Global Privately Owned Vehicle Contract 3

    DTIC Science & Technology

    2016-02-03

    required vehicles be covered, locked , and stored in accordance with standard commercial practices. Specifically, numerous leaks were present...Vehicle Processing Center and storage facility, Dallas , Texas; • Vehicle Processing Center, St. Louis, Missouri; • Vehicle Processing Center, Charleston...vehicles did not require covers and were not required to be locked based on authorized directives from the contracting officer. He also stated that

  14. 16 CFR 240.7 - Services or facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Services or facilities. 240.7 Section 240.7 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES FOR ADVERTISING ALLOWANCES AND OTHER MERCHANDISING PAYMENTS AND SERVICES § 240.7 Services or facilities. The terms services...

  15. 30 CFR 715.13 - Postmining use of land.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disturbed areas shall be restored in a timely manner (1) to conditions that are capable of supporting the... facilities, powerplants, airports or similar facilities. (2) Light industry and commercial services. Office... facilities may include commercial services incorporated in and comprising less than 5 percent of the total...

  16. 30 CFR 715.13 - Postmining use of land.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disturbed areas shall be restored in a timely manner (1) to conditions that are capable of supporting the... facilities, powerplants, airports or similar facilities. (2) Light industry and commercial services. Office... facilities may include commercial services incorporated in and comprising less than 5 percent of the total...

  17. 30 CFR 715.13 - Postmining use of land.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disturbed areas shall be restored in a timely manner (1) to conditions that are capable of supporting the... facilities, powerplants, airports or similar facilities. (2) Light industry and commercial services. Office... facilities may include commercial services incorporated in and comprising less than 5 percent of the total...

  18. Israel: Possible Military Strike Against Iran’s Nuclear Facilities

    DTIC Science & Technology

    2012-03-27

    centrifuge facility and a larger commercial facility located at this site. The commercial facility is reportedly hardened by steel-reinforced concrete , buried...prime minister has had to contemplate. A strike against Iran’s nuclear facilities could lead to regional conflagration , tens of thousands of...high explosives, and can penetrate more than 6 feet of reinforced concrete . The GBU-28 5000-lb class weapon penetrates at least 20 feet of concrete

  19. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    PubMed

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 78 FR 27182 - Notice of Request for Extension of Approval of an Information Collection; Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Equines for Slaughter AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Extension of... commercial transportation of equines to slaughtering facilities. DATES: We will consider all comments that we... for the commercial transportation of equines to slaughtering facilities, contact Dr. P. Gary Egrie...

  1. Space station needs, attributes, and architectural options: Commercial opportunities in space

    NASA Technical Reports Server (NTRS)

    Wolbers, H. L., Jr.

    1983-01-01

    The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.

  2. KSC-2012-4585

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden announced new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  3. KSC-2012-4584

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden announced new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-4586

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden announced new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  5. Commercial Decommissioning at DOE's Rocky Flats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freiboth, C.; Sandlin, N.; Schubert, A.

    2002-02-25

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rockymore » Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.« less

  6. 75 FR 17170 - Notice of Opportunity To Request a Hearing for the License Application From International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Fluoride Extraction and Uranium Deconversion Facility in Lea County NM and Order Imposing Procedures for... application from International Isotopes Fluorine Products, Inc. (IIFP), for a proposed fluoride extraction and... applicant to process depleted uranium hexafluoride (DUF 6 ) into commercially resalable fluoride products...

  7. Diabetes Insipidus

    MedlinePlus

    ... a health care provider's office, or at a commercial facility. A health care provider tests the sample ... at a health care provider’s office or a commercial facility and sending the sample to a lab ...

  8. Electromagnetic Fields Associated with Commercial Solar Photovoltaic Electric Power Generating Facilities.

    PubMed

    Tell, R A; Hooper, H C; Sias, G G; Mezei, G; Hung, P; Kavet, R

    2015-01-01

    The southwest region of the United States is expected to experience an expansion of commercial solar photovoltaic generation facilities over the next 25 years. A solar facility converts direct current generated by the solar panels to three-phase 60-Hz power that is fed to the grid. This conversion involves sequential processing of the direct current through an inverter that produces low-voltage three-phase power, which is stepped up to distribution voltage (∼12 kV) through a transformer. This study characterized magnetic and electric fields between the frequencies of 0 Hz and 3 GHz at two facilities operated by the Southern California Edison Company in Porterville, CA and San Bernardino, CA. Static magnetic fields were very small compared to exposure limits established by IEEE and ICNIRP. The highest 60-Hz magnetic fields were measured adjacent to transformers and inverters, and radiofrequency fields from 5-100 kHz were associated with the inverters. The fields measured complied in every case with IEEE controlled and ICNIRP occupational exposure limits. In all cases, electric fields were negligible compared to IEEE and ICNIRP limits across the spectrum measured and when compared to the FCC limits (≥0.3 MHz).

  9. Goodpasture Syndrome

    MedlinePlus

    ... container in a health care provider’s office or commercial facility and can be tested in the same ... blood at a health care provider’s office or commercial facility and sending the sample to a lab ...

  10. KSC-2011-7883

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. -- The pressurized vessel of The Boeing Co.'s Commercial Crew Transportation System, which could take NASA astronauts to the International Space Station, is on display in Orbiter Processing Facility-3 (OPF-3) at NASA's Kennedy Space Center in Florida. Boeing is maturing its CST-100 spacecraft design for NASA's Commercial Crew Program (CCP) under the Commercial Crew Development Round 2 (CCDev2) activities. Boeing's current design shows the CST-100 taking up to seven astronauts and cargo to the space station or other low Earth orbit destinations by the middle of the decade. Through an agreement with NASA and Space Florida, Boeing is leasing OPF-3, the Processing Control Facility (PCC) and Space Shuttle Main Engine Shop at Kennedy to design, manufacture, process and integrate the CST-100. This work is expected to generate up to 550 engineering and technical jobs for Florida's Space Coast. Chuck Hardison, Boeing's production and ground operations manager, explained that the CST-100 will be manufactured using a spin-form technology, which is expected to bring down the cost and safety concerns of a traditional welded spacecraft. It's innovations such as this that CCP hopes will drive down the cost of space travel as well as open up space to more people than ever before. Seven aerospace companies are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  11. KSC-2011-7884

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. -- Chuck Hardison, the production and ground operations manager of The Boeing Co.'s Commercial Crew Transportation System, talks to media about plans to take NASA astronauts to the International Space Station in Orbiter Processing Facility-3 (OPF-3) at NASA's Kennedy Space Center in Florida. Boeing is maturing its CST-100 spacecraft design for NASA's Commercial Crew Program (CCP) under the Commercial Crew Development Round 2 (CCDev2) activities. Boeing's current design shows the CST-100 taking up to seven astronauts and cargo to the space station or other low Earth orbit destinations by the middle of the decade. Through an agreement with NASA and Space Florida, Boeing is leasing OPF-3, the Processing Control Facility (PCC) and Space Shuttle Main Engine Shop at Kennedy to design, manufacture, process and integrate the CST-100. This work is expected to generate up to 550 engineering and technical jobs for Florida's Space Coast. Hardison explained that the CST-100 will be manufactured using a spin-form technology, which is expected to bring down the cost and safety concerns of a traditional welded spacecraft. It's innovations such as this that CCP hopes will drive down the cost of space travel as well as open up space to more people than ever before. Seven aerospace companies are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK) of Promontory, Utah, Blue Origin of Kent, Wash., The Boeing Co., of Houston, Excalibur Almaz Inc. of Houston, Sierra Nevada Corp. of Louisville, Colo., Space Exploration Technologies (SpaceX) of Hawthorne, Calif., and United Launch Alliance (ULA) of Centennial, Colo. For more information, visit www.nasa.gov/exploration/commercial Photo credit: Jim Grossmann

  12. 7 CFR 500.23 - Fees for commercial photography and cinematography on grounds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Fees for commercial photography and cinematography on... National Arboretum Facilities and Grounds § 500.23 Fees for commercial photography and cinematography on... photography or cinematography as specified in § 500.24. Facilities and grounds are available for use for...

  13. 7 CFR 500.23 - Fees for commercial photography and cinematography on grounds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fees for commercial photography and cinematography on... National Arboretum Facilities and Grounds § 500.23 Fees for commercial photography and cinematography on... photography or cinematography as specified in § 500.24. Facilities and grounds are available for use for...

  14. 7 CFR 500.23 - Fees for commercial photography and cinematography on grounds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fees for commercial photography and cinematography on... National Arboretum Facilities and Grounds § 500.23 Fees for commercial photography and cinematography on... photography or cinematography as specified in § 500.24. Facilities and grounds are available for use for...

  15. 7 CFR 500.23 - Fees for commercial photography and cinematography on grounds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fees for commercial photography and cinematography on... National Arboretum Facilities and Grounds § 500.23 Fees for commercial photography and cinematography on... photography or cinematography as specified in § 500.24. Facilities and grounds are available for use for...

  16. Hemolytic Uremic Syndrome in Children

    MedlinePlus

    ... in a health care provider's office or a commercial facility. For the test, a nurse or technician ... at a health care provider's office or a commercial facility and sending the sample to a lab ...

  17. The Wallops Flight Facility Model for an Integrated Federal/Commercial Launch Range

    NASA Technical Reports Server (NTRS)

    Underwood, Bruce E.

    1999-01-01

    Historically, the federal government has been the predominant purchaser of space launches in the United States. The government met its needs through purchase of hardware and services. It also provided the infrastructure necessary to conduct launch operations through federal launch ranges, both military and NASA. Under this model, the government had the complete ownership, responsibility, liability, and expense for launch activities. As the commercial space sector grew, there emerged a corresponding growth in demand for launch range services. However, the expense and complexity of activities has thus far deterred a rapid rise in the establishment of purely commercial launch sites. In this context, purely commercial is defined as "without benefit of capabilities provided by the federal government." Consistent with the Commercial Space Launch Act, in recent years NASA and the Air Force have supported commercial launches from government launch ranges on a cost-reimbursable, non-interference basis. In this mode the commercial launch service providers contract with the government to provide services including use of facilities, tracking and data services, and range safety. As the commercial market projections began to show significant opportunities for economic development, several states established spaceports to provide the services necessary to meet these projected commercial needs. In 1997, NASA agreed to the establishment of the Virginia Space Flight Center (VSFC) at the Wallops Flight Facility. Under this arrangement, NASA agreed to allow Virginia Commercial Space Flight Authority (VCSFA) to construct facilities on NASA property and agreed to provide services in accordance with the Space Act of 1958 and the Commercial Space Launch Act of 1984 (as amended) to support VSFC launch customers. The relationship between NASA and VCSFA, however, has evolved beyond a customer supplier relationship. A partnership relationship has emerged which pairs the strengths of the established NASA test range and the state-sponsored, commercial launch facility provider, in an attempt to satisfy the needs for flexible, low-cost access to space. Furthermore, the future of the NASA/Wallops Test Range is closely linked with the success of VCSFA in promoting commercial launches from Wallops. This paper will describe the changing paradigm of the federal launch range and the unique aspects of the NASA/Wallops Facility relationship with VCSFA. Discussion will include institutional cost-sharing, business development and marketing, joint educational programs, and strategic planning.

  18. Research and test facilities for development of technologies and experiments with commercial applications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  19. Canadian macromolecular crystallography facility: a suite of fully automated beamlines.

    PubMed

    Grochulski, Pawel; Fodje, Michel; Labiuk, Shaunivan; Gorin, James; Janzen, Kathryn; Berg, Russ

    2012-06-01

    The Canadian light source is a 2.9 GeV national synchrotron radiation facility located on the University of Saskatchewan campus in Saskatoon. The small-gap in-vacuum undulator illuminated beamline, 08ID-1, together with the bending magnet beamline, 08B1-1, constitute the Canadian Macromolecular Crystallography Facility (CMCF). The CMCF provides service to more than 50 Principal Investigators in Canada and the United States. Up to 25% of the beam time is devoted to commercial users and the general user program is guaranteed up to 55% of the useful beam time through a peer-review process. CMCF staff provides "Mail-In" crystallography service to users with the highest scored proposals. Both beamlines are equipped with very robust end-stations including on-axis visualization systems, Rayonix 300 CCD series detectors and Stanford-type robotic sample auto-mounters. MxDC, an in-house developed beamline control system, is integrated with a data processing module, AutoProcess, allowing full automation of data collection and data processing with minimal human intervention. Sample management and remote monitoring of experiments is enabled through interaction with a Laboratory Information Management System developed at the facility.

  20. Nephrotic Syndrome in Adults

    MedlinePlus

    ... container in a health care provider’s office or commercial facility and can be tested in the same ... blood at a health care provider’s office or commercial facility and sending the sample to a lab ...

  1. Adrenal Insufficiency and Addison's Disease

    MedlinePlus

    ... tests in a health care provider’s office, a commercial facility, or a hospital. Hormonal Blood and Urine ... at a health care provider’s office or a commercial facility and sending the sample to a lab ...

  2. Status of food irradiation in the United States

    NASA Astrophysics Data System (ADS)

    Derr, Donald D.; Engel, Ronald E.

    1993-07-01

    The time immediately preceding the 8th International Meeting on Radiation Processing in September 1992 has been a landmark period for food irradiation in the United States. U.S. regulatory officials, industry and media representatives, and some consumer organizations share the opinion that radiation processing may be part of the solution to microbiological contamination of products of animal origin. Several new regulations being developed by U.S. regulatory agencies and being petitioned by industry groups are outlined. Renewed interest on the part of the U.S. Army in using irradiated foods in many of their nations is reviewed. The first commercial facility designed for food irradiation and two demonstration food irradiation facilities began operations early in 1992. The progress of these facilities is discussed. The North American Free Trade Agreement (NAFTA) and the Uruguay round of GATT negotiations may significantly lower barriers that impede international agricultural trade. International agreement on appropriate control and inspection procedures would eliminate unnecessary differences and improve mutual trust thus facilitating international trade in irradiated foods. The harmonization of radiation process practices, dosimetry standards, and other issues plays a very important role in meeting the provisions of trade agreeements. It is vitally important to address these issues early in the commercialization of food irradiation throughout the trading world. Some comments in that area are provided. Much has been done already to harmonize regulations and facilitate trade; but there is still much to be done. Regardless of how these issues are resolved, they will have a significant impact on the use of radiation processing for foods and the trade of irradiated foods all over the world.

  3. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  4. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  5. KSC-2012-4583

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. -- Inside the Space Exploration Technologies, or SpaceX, processing facility near NASA’s Kennedy Space Center in Florida, Scott Thurston, partner integration office manager with the Commercial Crew Program, talks to the media prior to an announcement from NASA Administrator Charles Bolden about new milestones in the nation’s commercial space initiatives. Bolden announced that SpaceX has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  6. Botulism associated with commercially canned chili sauce--Texas and Indiana, July 2007.

    PubMed

    2007-08-03

    On July 7 and July 11, 2007, public health officials in Texas and Indiana, respectively, reported to CDC four suspected cases of foodborne botulism, two in each state. Investigations conducted by state and local health departments revealed that all four patients had eaten brands of Castleberry's hot dog chili sauce before illness began. Botulinum toxin type A was detected in the serum of one Indiana patient and in a leftover chili mixture obtained from his home. CDC informed the Food and Drug Administration (FDA) of the apparent link between illness and consumption of the chili sauce. On July 18, FDA issued a consumer advisory, and the manufacturer, Castleberry's Food Company (Augusta, Georgia), subsequently recalled the implicated brand and several other products produced in the same set of retorts (commercial-scale pressure cookers for processing canned foods) at the same canning facility. Examination of the canning facility in Georgia during the outbreak investigation had identified deficiencies in the canning process. On July 19, the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS) issued a press release that announced a recall of chili and certain meat products from the Castleberry canning facility and provided recommendations to consumers. That recall was expanded on July 21 to include additional canned products. A fifth case of botulism potentially linked to one of the recalled products is under investigation in California. This report describes the ongoing investigation by members of OutbreakNet and others and the measures undertaken to control the outbreak, which is the first outbreak of foodborne botulism in the United States associated with a commercial canning facility in approximately 30 years. Clinicians should be vigilant for symptoms of botulism, including symmetric cranial nerve palsies, especially if accompanied by descending flaccid paralysis. Consumers should not eat any of the recalled chili sauce or other recalled products and should carefully dispose of all recalled products. Information regarding product disposal is available at http://www.cdc.gov/botulism/botulism_faq.htm.

  7. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    PubMed

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.

  8. Population Dynamics of Salmonella enterica Serotypes in Commercial Egg and Poultry Production ▿

    PubMed Central

    Foley, Steven L.; Nayak, Rajesh; Hanning, Irene B.; Johnson, Timothy J.; Han, Jing; Ricke, Steven C.

    2011-01-01

    Fresh and processed poultry have been frequently implicated in cases of human salmonellosis. Furthermore, increased consumption of meat and poultry has increased the potential for exposure to Salmonella enterica. While advances have been made in reducing the prevalence and frequency of Salmonella contamination in processed poultry, there is mounting pressure on commercial growers to prevent and/or eliminate these human pathogens in preharvest production facilities. Several factors contribute to Salmonella colonization in commercial poultry, including the serovar and the infectious dose. In the early 1900s, Salmonella enterica serovars Pullorum and Gallinarum caused widespread diseases in poultry, but vaccination and other voluntary programs helped eradicate pullorum disease and fowl typhoid from commercial flocks. However, the niche created by the eradication of these serovars was likely filled by S. Enteritidis, which proliferated in the bird populations. While this pathogen remains a significant problem in commercial egg and poultry production, its prevalence among poultry has been declining since the 1990s. Coinciding with the decrease of S. Enteritidis, S. Heidelberg and S. Kentucky have emerged as the predominant serovars in commercial broilers. In this review, we have highlighted bacterial genetic and host-related factors that may contribute to such shifts in Salmonella populations in commercial poultry and intervention strategies that could limit their colonization. PMID:21571882

  9. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE will be unpacked for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  10. Use of MIDI-fatty acid methyl ester analysis to monitor the transmission of Campylobacter during commercial poultry processing.

    PubMed

    Hinton, Arthur; Cason, J A; Hume, Michael E; Ingram, Kimberly D

    2004-08-01

    The presence of Campylobacter spp. on broiler carcasses and in scald water taken from a commercial poultry processing facility was monitored on a monthly basis from January through June. Campylobacter agar, Blaser, was used to enumerate Campylobacter in water samples from a multiple-tank scalder; on prescalded, picked, eviscerated, and chilled carcasses; and on processed carcasses stored at 4 degrees C for 7 or 14 days. The MIDI Sherlock microbial identification system was used to identify Campylobacter-like isolates based on the fatty acid methyl ester profile of the bacteria. The dendrogram program of the Sherlock microbial identification system was used to compare the fatty acid methyl ester profiles of the bacteria and determine the degree of relatedness between the isolates. Findings indicated that no Campylobacter were recovered from carcasses or scald tank water samples collected in January or February, but the pathogen was recovered from samples collected in March, April, May, and June. Processing generally produced a significant (P < 0.05) decrease in the number of Campylobacter recovered from broiler carcasses, and the number of Campylobacter recovered from refrigerated carcasses generally decreased during storage. Significantly (P < 0.05) fewer Campylobacter were recovered from the final tank of the multiple-tank scald system than from the first tank. MIDI similarity index values ranged from 0.104 to 0.928 based on MIDI-fatty acid methyl ester analysis of Campylobacterjejuni and Campylobacter coli isolates. Dendrograms of the fatty acid methyl ester profile of the isolates indicated that poultry flocks may introduce several strains of C. jejuni and C. coli into processing plants. Different populations of the pathogen may be carried into the processing plant by successive broiler flocks, and the same Campylobacter strain may be recovered from different poultry processing operations. However, Campylobacter apparently is unable to colonize equipment in the processing facility and contaminate broilers from flocks processed at later dates in the facility.

  11. CEMS: Building a Cloud-Based Infrastructure to Support Climate and Environmental Data Services

    NASA Astrophysics Data System (ADS)

    Kershaw, P. J.; Curtis, M.; Pechorro, E.

    2012-04-01

    CEMS, the facility for Climate and Environmental Monitoring from Space, is a new joint collaboration between academia and industry to bring together their collective expertise to support research into climate change and provide a catalyst for growth in related Earth Observation (EO) technologies and services in the commercial sector. A recent major investment by the UK Space Agency has made possible the development of a dedicated facility at ISIC, the International Space Innovation Centre at Harwell in the UK. CEMS has a number of key elements: the provision of access to large-volume EO and climate datasets co-located with high performance computing facilities; a flexible infrastructure to support the needs of research projects in the academic community and new business opportunities for commercial companies. Expertise and tools for scientific data quality and integrity are another essential component, giving users confidence and transparency in its data, services and products. Central to the development of this infrastructure is the utilisation of cloud-based technology: multi-tenancy and the dynamic provision of resources are key characteristics to exploit in order to support the range of organisations using the facilities and the varied use cases. The hosting of processing services and applications next to the data within the CEMS facility is another important capability. With the expected exponential increase in data volumes within the climate science and EO domains it is becoming increasingly impracticable for organisations to retrieve this data over networks and provide the necessary storage. Consider for example, the factor of o20 increase in data volumes expected for the ESA Sentinel missions over the equivalent Envisat instruments. We explore the options for the provision of a hybrid community/private cloud looking at offerings from the commercial sector and developments in the Open Source community. Building on this virtualisation layer, a further core services tier will support and serve applications as part of a service oriented architecture. We consider the constituent services in this layer to support access to the data, data processing and the orchestration of workflows.

  12. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  13. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  14. 16 CFR Figures 1 and 2 to Part 1204 - Suggested Instrumentation for Current Monitoring Device and High Voltage Facility

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Suggested Instrumentation for Current Monitoring Device and High Voltage Facility 1 Figures 1 and 2 to Part 1204 Commercial Practices CONSUMER... Instrumentation for Current Monitoring Device and High Voltage Facility EC03OC91.008 ...

  15. Availability of physical activity-related facilities and neighborhood demographic and socioeconomic characteristics: a national study.

    PubMed

    Powell, Lisa M; Slater, Sandy; Chaloupka, Frank J; Harper, Deborah

    2006-09-01

    We examined associations between neighborhood demographic characteristics and the availability of commercial physical activity-related outlets by zip code across the United States. Multivariate analyses were conducted to assess the availability of 4 types of outlets: (1) physical fitness facilities, (2) membership sports and recreation clubs, (3) dance facilities, and (4) public golf courses. Commercial outlet data were linked by zip code to US Census Bureau population and socioeconomic data. Results showed that commercial physical activity-related facilities were less likely to be present in lower-income neighborhoods and in neighborhoods with higher proportions of African American residents, residents with His-panic ethnicity, and residents of other racial minority backgrounds. In addition, these neighborhoods had fewer such facilities available. Lack of availability of facilities that enable and promote physical activity may, in part, underpin the lower levels of activity observed among populations of low socioeconomic status and minority backgrounds.

  16. 30 CFR 585.230 - May I request a lease if there is no Call?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Noncompetitive Lease Award Process § 585.230 May I request a lease if... commercial operations. (d) Available and pertinent data and information concerning renewable energy and...

  17. 30 CFR 585.230 - May I request a lease if there is no Call?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Noncompetitive Lease Award Process § 585.230 May I request a lease if... commercial operations. (d) Available and pertinent data and information concerning renewable energy and...

  18. 30 CFR 585.230 - May I request a lease if there is no Call?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Issuance of OCS Renewable Energy Leases Noncompetitive Lease Award Process § 585.230 May I request a lease if... commercial operations. (d) Available and pertinent data and information concerning renewable energy and...

  19. MICROREFINING OF WASTE GLYCEROL FOR THE PRODUCTION OF A VALUE-ADDED PRODUCT

    EPA Science Inventory

    As a result of Phase I, a process to refine crude glycerin waste to value-added products was designed. An economic analysis was performed to determine the capital and operating costs for a commercial facility that implements this design. Using the estimated 1,800 gallons of ra...

  20. Wanchese Harbor--Community Development. Project CAPE Teaching Module SOC.

    ERIC Educational Resources Information Center

    Gray, R. Wayne; Martin, William T.

    North Carolina and Dare County, with assistance from the federal government, are developing a seafood industrial park at Wanchese, a small residential community. The purposes of this park are to develop a major commercial seafood handling, processing, and distribution port in North Carolina; and to provide a home port with support facilities for a…

  1. Advanced Plant Habitat (APH)

    NASA Image and Video Library

    2017-03-16

    A test unit, or prototype, of NASA's Advanced Plant Habitat (APH) with its first initial grow test in the Space Station Processing Facility at the agency's Kennedy Space Center in Florida. The taller plants pictured are dwarf wheat and the smaller plants are Arabidopsis. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  2. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  3. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, pours a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  4. Enhanced Energy Density in Permanent Magnets using Controlled High Magnetic Field during Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; Carter, Bill; Constantinides, Steve

    This ORNL Manufacturing Demonstraction Facility (MDF) technical collaboration focused on the use of high magnetic field processing (>2Tesla) using energy efficient large bore superconducting magnet technology and high frequency electromagnetics to improve magnet performance and reduce the energy budget associated with Alnico thermal processing. Alnico, alloys containing Al, Ni, Co and Fe, represent a class of functional nanostructured alloys, and show the greatest potential for supplementing or replacing commercial Nd-based rare-earth alloy magnets.

  5. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.

    PubMed

    Kockmann, Tobias; Trachsel, Christian; Panse, Christian; Wahlander, Asa; Selevsek, Nathalie; Grossmann, Jonas; Wolski, Witold E; Schlapbach, Ralph

    2016-08-01

    Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Microbiological Food Safety Status of Commercially Produced Tomatoes from Production to Marketing.

    PubMed

    van Dyk, Brigitte N; de Bruin, Willeke; du Plessis, Erika M; Korsten, Lise

    2016-03-01

    Tomatoes have been implicated in various microbial disease outbreaks and are considered a potential vehicle for foodborne pathogens. Traceback studies mostly implicate contamination during production and/or processing. The microbiological quality of commercially produced tomatoes was thus investigated from the farm to market, focusing on the impact of contaminated irrigation and washing water, facility sanitation, and personal hygiene. A total of 905 samples were collected from three largescale commercial farms from 2012 through 2014. The farms differed in water sources used (surface versus well) and production methods (open field versus tunnel). Levels of total coliforms and Escherichia coli and prevalence of E. coli O157:H7 and Salmonella Typhimurium were determined. Dominant coliforms were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. No pathogens or E. coli were detected on any of the tomatoes tested throughout the study despite the high levels of coliforms (4.2 to 6.2 log CFU/g) present on the tomatoes at the market. The dominant species associated with tomatoes belonged to the genera Enterobacter, Klebsiella, and Citrobacter. Water used on the farm for irrigation considered not fit for purpose according to national agricultural irrigation standards, with high E. coli levels resulting from either a highly contaminated source water (river water at 3.19 log most probable number [MPN]/100 ml) or improper storage of source water (stored well water at 1.72 log MPN/100 ml). Salmonella Typhimurium was detected on two occasions on a contact surface in the processing facility of the first farm in 2012. Contact surface coliform counts were 2.9 to 4.8 log CFU/cm(2). Risk areas identified in this study were water used for irrigation and poor sanitation practices in the processing facility. Implementation of effective food safety management systems in the fresh produce industry is of the utmost importance to ensure product safety for consumers.

  7. Veggie Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  8. Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes.

    PubMed

    Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert

    2014-04-01

    The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.

  9. Aerosol can puncture device operational test plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leist, K.J.

    1994-05-03

    Puncturing of aerosol cans is performed in the Waste Receiving and Processing Facility Module 1 (WRAP 1) process as a requirement of the waste disposal acceptance criteria for both transuranic (TRU) waste and low-level waste (LLW). These cans have contained such things as paints, lubricating oils, paint removers, insecticides, and cleaning supplies which were used in radioactive facilities. Due to Westinghouse Hanford Company (WHC) Fire Protection concerns of the baseline system`s fire/explosion proof characteristics, a study was undertaken to compare the baseline system`s design to commercially available puncturing devices. While the study found no areas which might indicate a riskmore » of fire or explosion, WHC Fire Protection determined that the puncturing system must have a demonstrated record of safe operation. This could be obtained either by testing the baseline design by an independent laboratory, or by substituting a commercially available device. As a result of these efforts, the commercially available Aerosolv can puncturing device was chosen to replace the baseline design. Two concerns were raised with the system. Premature blinding of the coalescing/carbon filter, due to its proximity to the puncture and draining operation; and overpressurization of the collection bottle due to its small volume and by blinding of the filter assembly. As a result of these concerns, testing was deemed necessary. The objective of this report is to outline test procedures for the Aerosolv.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Lu, Hongyou; Price, Lynn K.

    In the U.S., energy consumption by steam and process heat combined accounts for over 50% of the total energy use from industrial systems (see Figure 1). The use of boilers, process heaters, and furnaces for generating steam and heat in industrial facilities, commercial settings, and institutions consumes significant amounts of energy and is one of major sources of hazardous air pollutants, which contribute significantly to local pollution and global climate change. To address the energy and environmental challenges caused by boiler systems in the U.S., the country has taken a series of actions to reduce emissions from industrial, commercial andmore » institutional boilers, improve the efficiency of steam systems, replace coal with cleaner energy resources, and promote the wider use of combined heat and power (CHP).« less

  11. Gas-to-gasoline plant half complete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.

    New Zealand has reached the midpoint in construction of the world's first commercial natural gas-to-gasoline (GTG) plant. Plans call for mid-1985 mechanical completion of the $1.475 billion GTG project in Motunui; limited production would begin by year-end 1985 with the plant fully on-stream by 1986, yielding about 628,000 tons (570,000 metric tons)/yr or about 14,450 bbl/stream-day of high-octane, low-sulfur gasoline. The process configuration combines for the first time on a commercial scale the ICI low-pressure gas-to-methanol scheme with Mobil's fixed bed zeolite catalyst process for converting methanol to gasoline. The GTG plant will be the world's biggest methanol plant andmore » New Zealand's largest grassroots industrial facility.« less

  12. Haselden/RNL - Research Support Facility Documentary

    ScienceCinema

    Haselden, Byron; Baker, Jeff; Glover, Bill; von Luhrte, Rich; Randock, Craig; Andary, John; Macey, Philip; Okada, David

    2017-12-12

    The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  13. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  14. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  15. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  16. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION... ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4 to Part 1204—High Voltage Test Facility and Antenna System...

  17. State Enabling Legislation for Commercial-Scale Wind Power Siting and the Local Government Role

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElfish, J.M.; Gersen, S.

    Siting of commercial-scale wind facilities (>5MW) is determined primarily by state laws. State laws either leave siting regulation to local governments, prescribe and constrain the role for local governments, establish state standards, or preempt local governance by having state institutions govern siting. Siting regulation is extremely important to the advancement of wind generation in the United States. Major siting decisions lie ahead for state and local governments as the nation diversifies its energy portfolio. An increase in the number of new wind facilities, siting in more locations and in more heavily populated areas, will require attention to the laws andmore » regulations that govern siting. Local governments exercise some authority over commercial-scale wind facility siting in 48 of the 50 states. In 34 states, local governments have substantial autonomy to regulate the siting of most or all commercial-scale wind facilities. A few states authorize local governments to regulate wind facility siting, but make the scope of local regulation subject to limitations defined by state law. Eleven states set size thresholds for state regulatory involvement with local governments in these states regulating smaller facilities and state boards regulating larger ones (either exclusively or concurrently with local governments). In just under a third of the states, siting of most or all commercial-scale wind facilities requires approval by both state and local government bodies. Only a few states reserve the regulation of siting of all or virtually all commercial-scale wind facilities to state boards and commissions. The content of the applicable regulations is more important, in general, than the level of government responsible for the decision. Several states that assign siting responsibilities to local governments have specified some of the content and the limits of local regulation. About 1/5 of the states have directed boards and commissions to develop statewide regulations to deal with wind facility siting issues subject to state approval. These requirements most often specify standards for setbacks, wildlife, noise, decommissioning, and other issues.« less

  18. Efficacy of citrilow™ and cecure™ spray wash on the levels and prevalence of aerobic bacterials and enterobacteriaceae bacteria on cattle hides

    USDA-ARS?s Scientific Manuscript database

    Bacterial cross-contamination from the haired outer surface of cattle skins to the inner meat and hide quality detrition from bacteria is recognized as a severe hygienic problem for commercial beef and hide processing facilities. To circumvent bacterial contamination, cattle are washed during hide p...

  19. Seed Planting in Veggie Pillows

    NASA Image and Video Library

    2017-08-08

    Seeds are secured in plant pillows for the Veggie plant growth system inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The plant pillows, containing Outredgeous lettuce, Mizuna Mustard and Waldmann's green lettuce seeds, were packed for delivery to Veggie on SpaceX's 12th commercial resupply services mission to the International Space Station.

  20. Seed Planting in Veggie Pillows

    NASA Image and Video Library

    2017-08-08

    Seeds are secured in plant pillows for the Veggie plant growth system inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The plant pillows, containing Outredgeous lettuce, Mizuna Mustard and Waldmann's green lettuce, were packed for delivery to Veggie on SpaceX's 12th commercial resupply services mission to the International Space Station.

  1. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.

    2003-02-27

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials atmore » a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.« less

  2. An IDEA of What's in the Air

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Automatic Particle Fallout Monitor (APFM) is an automated instrument that assesses real-time particle contamination levels in a facility by directly imaging, sizing, and counting contamination particles. It allows personnel to respond to particle contamination before it becomes a major problem. For NASA, the APFM improves the ability to mitigate, avoid, and explain mission-compromising incidents of contamination occurring during payload processing, launch vehicle ground processing, and potentially, during flight operations. Commercial applications are in semiconductor processing and electronics fabrication, as well as aerospace, aeronautical, and medical industries. The product could also be used to measure the air quality of hotels, apartment complexes, and corporate buildings. IDEA sold and delivered its first four units to the United Space Alliance for the Space Shuttle Program at Kennedy. NASA used the APFM in the Kennedy Space Station Processing Facility to monitor contamination levels during the assembly of International Space Station components.

  3. Environmental process improvement feasibility study and demonstration program

    NASA Technical Reports Server (NTRS)

    Martin, Rodger L.

    1994-01-01

    This report is the final product of an environmental study conducted by Western Commercial Space Center, Inc. under contract to Tennessee-Calspan Center for Space Transportation and Applied Research. The purpose of this investigation is to accurately document the current environmental and permitting processes associated with commercial space launch activity at Vandenberg AFB, and make recommendations to streamline those processes. The particular areas of interest focus on: identifying applicable Federal, state, and local laws, Department of Defense directives, and Air force regulations; defining the environmental process on Vandenberg AFB and how it relates with other agencies, including Federal and state regulatory agencies; and defining the air quality permit process. Study investigation results are applied to an example Pilot Space Launch Vehicle (PSLV) planning to launch from Vandenberg AFB. The PSLV space hardware is analyzed with respect to environmental and permitting issues associated with vehicle processing, facilities required (existing or new), and launch. The PSLV verified the earlier findings of the study and gave insight into streamlining recommendations.

  4. A gap analysis of meteorological requirements for commercial space operators

    NASA Astrophysics Data System (ADS)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have been generated for the Federal Aviation Administration, U.S. Congress, commercial space launch companies, and areas are identified for further research.

  5. Microvax-based data management and reduction system for the regional planetary image facilities

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Guinness, E.; Slavney, S.; Weiss, B.

    1987-01-01

    Presented is a progress report for the Regional Planetary Image Facilities (RPIF) prototype image data management and reduction system being jointly implemented by Washington University and the USGS, Flagstaff. The system will consist of a MicroVAX with a high capacity (approx 300 megabyte) disk drive, a compact disk player, an image display buffer, a videodisk player, USGS image processing software, and SYSTEM 1032 - a commercial relational database management package. The USGS, Flagstaff, will transfer their image processing software including radiometric and geometric calibration routines, to the MicroVAX environment. Washington University will have primary responsibility for developing the database management aspects of the system and for integrating the various aspects into a working system.

  6. KSC-20171002-MH-CSH01_0001-MISSE_Arrival_Integration_H265-3170951

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. MISSE is unpacked and moved for integration and processing. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  7. Density of Indoor Tanning Facilities in 116 Large U.S. Cities

    PubMed Central

    Hoerster, Katherine D.; Garrow, Rebecca L.; Mayer, Joni A.; Clapp, Elizabeth J.; Weeks, John R.; Woodruff, Susan I.; Sallis, James F.; Slymen, Donald J.; Patel, Minal R.; Sybert, Stephanie A.

    2009-01-01

    Background U.S. adolescents and young adults are using indoor tanning at high rates, even though it has been linked to both melanoma and squamous cell cancer. Because the availability of commercial indoor tanning facilities may influence use, data are needed on the number and density of such facilities. Methods In March 2006, commercial indoor tanning facilities in 116 large U.S. cities were identified, and the number and density (per 100,000 population) were computed for each city. Bivariate and multivariate analyses conducted in 2008 tested the association between tanning-facility density and selected geographic, climatologic, demographic, and legislative variables. Results Mean facility number and density across cities were 41.8 (SD=30.8) and 11.8 (SD=6.0), respectively. In multivariate analysis, cities with higher percentages of whites and lower ultraviolet (UV)index scores had significantly higher facility densities than those with lower percentages of whites and higher UV index scores. Conclusions These data indicate that commercial indoor tanning is widely available in the urban U.S., and this availability may help explain the high usage of indoor tanning. PMID:19215849

  8. Density of indoor tanning facilities in 116 large U.S. cities.

    PubMed

    Hoerster, Katherine D; Garrow, Rebecca L; Mayer, Joni A; Clapp, Elizabeth J; Weeks, John R; Woodruff, Susan I; Sallis, James F; Slymen, Donald J; Patel, Minal R; Sybert, Stephanie A

    2009-03-01

    U.S. adolescents and young adults are using indoor tanning at high rates, even though it has been linked to both melanoma and squamous cell cancer. Because the availability of commercial indoor tanning facilities may influence use, data are needed on the number and density of such facilities. In March 2006, commercial indoor tanning facilities in 116 large U.S. cities were identified, and the number and density (per 100,000 population) were computed for each city. Bivariate and multivariate analyses conducted in 2008 tested the association between tanning-facility density and selected geographic, climatologic, demographic, and legislative variables. Mean facility number and density across cities were 41.8 (SD=30.8) and 11.8 (SD=6.0), respectively. In multivariate analysis, cities with higher percentages of whites and lower ultraviolet (UV)index scores had significantly higher facility densities than those with lower percentages of whites and higher UV index scores. These data indicate that commercial indoor tanning is widely available in the urban U.S., and this availability may help explain the high usage of indoor tanning.

  9. OA-7 Veggie Series 1 Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  10. Effects of marketing group on the variability of fresh loin, belly, and fresh and processed ham quality from pigs sourced from a commercial processing facility

    USDA-ARS?s Scientific Manuscript database

    The objective was to quantify the effect of marketing group (MG) on the variability of primal quality. Pigs (N=7,684) were slaughtered in 3 MGs from 8 barns. Pigs were from genetic selection programs focused on lean growth (L; group 1 n=1,131; group 2 n=1,466; group 3 n=1,030) or superior meat qua...

  11. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers inspect components for the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  12. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  13. Chapter 24: Strategic Energy Management (SEM) Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James

    Strategic energy management (SEM) focuses on achieving energy-efficiency improvements through systematic and planned changes in facility operations, maintenance, and behaviors (OM&B) and capital equipment upgrades in large energy-using facilities, including industrial buildings, commercial buildings, and multi-facility organizations such as campuses or communities. Facilities can institute a spectrum of SEM actions, ranging from a simple process for regularly identifying energy-savings actions, to establishing a formal, third-party recognized or certified SEM framework for continuous improvement of energy performance. In general, SEM programs that would be considered part of a utility program will contain a set of energy-reducing goals, principles, and practices emphasizingmore » continuous improvements in energy performance or savings through energy management and an energy management system (EnMS).« less

  14. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepared the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  15. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, several varieties of Arabidopsis seeds, commonly known as thale cress, are being prepared for securing in the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  16. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, research scientists prepare the science carrier, or base, of the Advanced Plant Habitat (APH) for planting of Arabidopsis seeds, commonly known as thale cress, on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  17. Haselden/RNL - Research Support Facility Documentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselden, Byron; Baker, Jeff; Glover, Bill

    2010-06-10

    The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designedmore » and built.« less

  18. Direct heat geothermal opportunities at Pahoa, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, J.; Jones, W.L.

    1980-09-01

    A geothermal commercial park located near Pahoa, Hawaii, has been found to be technically feasible. However, community acceptance varies from optimistic support for the job opportunities to only lukewarm acceptance by most residents of the nearby planned residential community. Interviews, team evaluations, and calculations of energy and transportation savings were used to reduce a list of candidate processes to four. These four include an ethanol plant, a cattle feed mill, a protein recovery plant, and a papaya processing facility. In addition, a research laboratory is planned for the evaluation of other processes identified as very promising.

  19. Effects of aeroconvective environments on 2D reinforced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza; Hood, Thomas; Chang, William

    1991-01-01

    The effect of aeroconvective heating environment similar to that observed a spacecraft ascent or reentry from orbit, on the performance of a commercial carbon-reinforced ceramic matrix material specimens of two configurations (orthotropic and quasi-isotropic), fabricated by the Societe Europenne Propulsion (SEP) process was investigated using the NASA Ames Research Center 20 Megawatt Panel Test facility. The performance of the commercial material was compared with the SEP prepared materials. It was found that, whereas the quasi-isotropic SEP specimens exhibited a much higher mass loss rate and a significant dimensional change upon exposure to the thermal environment than did the orthotropic ones, the commercial SEP-like materials did not exhibit these characteristics. There was no greater mass loss rate for the quasi-isotropic specimens, and no dimension changes were observed. The Nicalon reinforced materials in both configurations, as fabricated by SEP or by the commercial source, showed no mass changes and no dimensional changes.

  20. Facile deferration of commercial fertilizers containing iron chelates for their NMR analysis.

    PubMed

    Laghi, Luca; Alcañiz, Sara; Cerdán, Mar; Gomez-Gallego, Mar; Sierra, Miguel Angel; Placucci, Giuseppe; Cremonini, Mauro Andrea

    2009-06-24

    Ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,o-EDDHA) is widely used in commercial formulations as a Fe(3+) chelating agent to remedy iron shortage in calcareous and alkaline soils. Commercially available o,o-EDDHA-Fe(3+) formulations contain a mixture of EDDHA regioisomers (o,p-EDDHA and p,p-EDDHA), together with other, still uncharacterized, products. NMR spectroscopy can be applied to their study as long as iron is accurately removed prior to the observation. This paper shows that it is possible to obtain a deferrated solution of the organic ligands present in commercial fertilizers containing the EDDHA-Fe(3+) chelate by treating the chelate with ferrocyanide, thus forming Prussian Blue that can be easily removed by centrifugation. This iron removal process does not cause significant losses of the o,o-EDDHA ligand or its minor structural isomers.

  1. Food environment of fruits and vegetables in the territory of the Health Academy Program.

    PubMed

    Costa, Bruna Vieira de Lima; Oliveira, Cláudia Di Lorenzo; Lopes, Aline Cristine Souza

    2015-11-01

    This study provides a spatial analysis of distribution and access to commercial fruit and vegetable establishments within the territory of a representative sample of public fitness facilities known as the Health Academy Program (HAP) in Belo Horizonte, Minas Gerais State, Brazil. The study evaluated commercial food establishments within a buffer area based on a radius of 1,600 meters around each of 18 randomly selected fitness facilities. Quality of access to fruits and vegetables was assessed by the Healthy Food Store Index (HFSI), consisting of the variables availability, variety, and advertising of fruits, vegetables and ultra-processed foods. The analysis was based on calculation of the Kernel intensity estimator, nearest neighbor method, and Ripley K-function. Of the 336 food establishments, 61.3% were green grocers and open-air markets, with a median HFSI of 11 (5 to 16). In only 17% of the territories, the majority of the "hot area" establishments displayed better access to healthy foods, and only three areas showed a clustering pattern. The study showed limited access to commercial establishments supplying healthy fruits and vegetables within the territory of the public fitness program.

  2. Seed Planting in Veggie Pillows

    NASA Image and Video Library

    2017-08-08

    Matt Romeyn, a NASA biologist, secures seeds in plant pillows for the Veggie plant growth system inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The plant pillows, containing Outredgeous lettuce, Mizuna Mustard and Waldmann's green lettuce seeds, were packed for delivery to Veggie on SpaceX's 12th commercial resupply services mission to the International Space Station.

  3. Effect of hot carcass weight on loin, ham, and belly quality from pigs sourced from a commercial processing facility

    USDA-ARS?s Scientific Manuscript database

    The objective was to determine the predictive abilities of HCW for loin, ham, and belly quality of 7,684 pigs with carcass weights ranging from 53.2 to 129.6 kg. Carcass composition, subjective loin quality, and ham face color were targeted on all carcasses, whereas in-plant instrumental loin color ...

  4. A rapid, one-pot, microwave-influenced synthesis of spiro-2,5-diketopiperazines via a cascade Ugi/6-exo-trig aza-Michael reaction.

    PubMed

    Santra, Soumava; Andreana, Peter R

    2011-04-01

    A rapid, cascade reaction process has been developed to access biologically validated spiro-2,5-diketopiperazines. The facile and environmentally benign method capitalizes on commercially available starting reagents for a sequential Ugi/6-exo-trig aza-Michael reaction, water as a solvent, and microwave irradiation without any extraneous additives.

  5. Effects of marketing group and production focus on quality and variability of adipose tissue and bellies sourced from a commercial processing facility

    USDA-ARS?s Scientific Manuscript database

    Objectives were to determine the effects of marketing group on quality and variability of belly and adipose tissue quality traits of pigs sourced from differing production focuses (lean vs. quality). Pigs (N = 8,042) raised in 8 barns representing 2 seasons (cold and hot) were used. Three groups wer...

  6. Effects of marketing group on the quality of fresh and cured hams sourced from a commercial processing facility

    USDA-ARS?s Scientific Manuscript database

    The objective was: 1) to characterize the effect of marketing 30 group on fresh and cured ham quality, and 2) to determine which fresh ham traits correlated to cured ham quality traits. Pigs raised in 8 barns representing two seasons (hot and cold) and two production focuses (lean and quality) were ...

  7. Sapphire Energy - Integrated Algal Biorefinery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Rebecca L.; Tyler, Mike

    2015-07-22

    Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass productionmore » facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR demonstrated significant year over year yield improvements (2013 to 2014), and reduction in the cost of biomass production. Therefore, the IABR fulfills a number of critical functions in SEI’s integrated development pipeline. These functions are critical in general for the commercialization of algal biomass production and production of biofuels from algal biomass.« less

  8. NREL Research Support Facility (RSF) Documentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, Bill; Pless, Shanti; Torcellini, Paul

    2010-01-01

    The ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

  9. Commercial applications of telemedicine

    NASA Technical Reports Server (NTRS)

    Natiello, Thomas A.

    1991-01-01

    Telemedicine Systems Corporation was established in 1976 and is a private commercial supplier of telemedicine systems. These systems are various combinations of communications and diagnostic technology, designed to allow the delivery of health care services to remote facilities. The technology and the health care services are paid for by the remote facilities, such as prisons.

  10. NREL Research Support Facility (RSF) Documentary

    ScienceCinema

    Glover, Bill; Pless, Shanti; Torcellini, Paul; Judkoff, Ron; Detamore, Drew; Telesmanich, Eric

    2017-12-09

    The ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.

  11. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less

  12. Veggie Processing

    NASA Image and Video Library

    2017-02-15

    Charles Spern, at right, project manager on the Engineering Services Contract (ESC), and Glenn Washington, ESC quality assurance specialist, perform final inspections of the Veggie Series 1 plant experiment inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. At far left is Dena Richmond, ESC configuration management. The Series 1 experiment is being readied for flight aboard Orbital ATK's Cygnus module on its seventh (OA-7) Commercial Resupply Services mission to the International Space Station. The Veggie system is on the space station.

  13. Method for exfoliation of hexagonal boron nitride

    NASA Technical Reports Server (NTRS)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  14. Cosmic-Ray Energetics and Mass (CREAM) Processing - Bonding

    NASA Image and Video Library

    2017-06-20

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers remove a protective cover on the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  15. Audit of HIV counselling and testing services among primary healthcare facilities in Cameroon: a protocol for a multicentre national cross-sectional study.

    PubMed

    Tianyi, Frank-Leonel; Tochie, Joel Noutakdie; Agbor, Valirie Ndip; Kadia, Benjamin Momo

    2018-03-01

    HIV testing is an invaluable entry point to prevention, care and treatment services for people living with HIV and AIDS. Poor adherence to recommended protocols and guidelines reduces the performance of rapid diagnostic tests, leading to misdiagnosis and poor estimation of HIV seroprevalence. This study seeks to evaluate the adherence of primary healthcare facilities in Cameroon to recommended HIV counselling and testing (HCT) procedures and the impact this may have on the reliability of HIV test results. This will be an analytical cross-sectional study involving primary healthcare facilities from all the 10 regions of Cameroon, selected by a multistaged random sampling of primary care facilities in each region. The study will last for 9 months. A structured questionnaire will be used to collect general information concerning the health facility, laboratory and other departments involved in the HCT process. The investigators will directly observe at least 10 HIV testing processes in each facility and fill out the checklist accordingly. Clearance has been obtained from the National Ethical Committee to carry out the study. Informed consent will be sought from the patients to observe the HIV testing process. The final study will be published in a peer-reviewed journal and the findings presented to health policy-makers and the general public. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Research Support Facility (RSF): Leadership in Building Performance (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This brochure/poster provides information on the features of the Research Support Facility including a detailed illustration of the facility with call outs of energy efficiency and renewable energy technologies. Imagine an office building so energy efficient that its occupants consume only the amount of energy generated by renewable power on the building site. The building, the Research Support Facility (RSF) occupied by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) employees, uses 50% less energy than if it were built to current commercial code and achieves the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED{reg_sign})more » Platinum rating. With 19% of the primary energy in the U.S. consumed by commercial buildings, the RSF is changing the way commercial office buildings are designed and built.« less

  17. The Attached Payload Facility Program: A Family of In-Space Commercial Facilities for Technology, Science and Industry

    NASA Technical Reports Server (NTRS)

    Avery, Don E.; Kaszubowski, Martin J.; Kearney, Michael E.; Howard, Trevor P.

    1996-01-01

    It is anticipated that as the utilization of space increases in both the government and commercial sec tors the re will be a high degree of interest in materials and coatings research as well as research in space environment definition, deployable structures, multi-functional structures and electronics. The International Space Station (ISS) is an excellent platform for long-term technology development because it provides large areas for external attached payloads, power and data capability, and ready access for experiment exchange and return. An alliance of SPACEHAB, MicroCraft, Inc. and SpaceTec, Inc. has been formed to satisfy this research need through commercial utilization of the capabilities of ISS. The alliance will provide a family of facilities designed to provide low-cost, reliable access to space for experimenters. This service would start as early as 1997 and mature to a fully functional attached facility on ISS by 2001. The alliances facilities are based on early activities by NASA, Langley Research Center (LaRC) to determine the feasibility of a Material Exposure Facility (MEF).

  18. A new large-scale manufacturing platform for complex biopharmaceuticals.

    PubMed

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals. Copyright © 2012 Wiley Periodicals, Inc.

  19. Commercial involvement in the development of space-based plant growing technology

    NASA Astrophysics Data System (ADS)

    Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.

    1992-07-01

    Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.

  20. Commercial involvement in the development of space-based plant growing technology.

    PubMed

    Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R

    1992-01-01

    Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.

  1. Test Activities in the Langley Transonic Dynamics Tunnel and a Summary of Recent Facility Improvements

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.

    2003-01-01

    The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.

  2. Cleanups In My Community (CIMC) - Hazardous Waste Corrective Actions, National Layer

    EPA Pesticide Factsheets

    This data layer provides access to Hazardous Waste Corrective Action sites as part of the CIMC web service. Hazardous waste is waste that is dangerous or potentially harmful to our health or the environment. Hazardous wastes can be liquids, solids, gases, or sludges. They can be discarded commercial products, like cleaning fluids or pesticides, or the by-products of manufacturing processes. The RCRA Corrective Action Program, run by EPA and 43 authorized states and territories, works with facilities that have treated, stored, or disposed of hazardous wastes (TSDs) to protect public health and the environment by investigating and cleaning up hazardous releases to soil, ground water, surface water, and air at their facilities.RCRA Corrective Action sites in all 50 states and four U.S. territories cover 18 million acres of land.EPA estimates that more than 35 million people, roughly 12 percent of the U.S. population, live within one mile of a RCRA Corrective Action site (based on the 2000 U.S. Census).RCRA Corrective Action facilities include many current and former chemical manufacturing plants, oil refineries, lead smelters, wood preservers, steel mills, commercial landfills, and a variety of other types of entities. Due to poor practices prior to environmental regulations, Corrective Action facilities have left large stretches of river sediments laden with PCBs; deposited lead in residential yards and parks beyond site boundaries; polluted drinking water wells

  3. Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of themore » processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.« less

  4. Kistler reusable vehicle facility design and operational approach

    NASA Astrophysics Data System (ADS)

    Fagan, D.; McInerney, F.; Johnston, C.; Tolson, B.

    Kistler Aerospace Corporation is designing and developing the K-1, the world's first fully reusable aerospace vehicle to deliver satellites into orbit. The K-1 vehicle test program will be conducted in Woomera, Australia, with commercial operations scheduled to begin shortly afterwards. Both stages of the K-1 will return to the launch site utilizing parachutes and airbags for a soft landing within 24 h after launch. The turnaround flow of the two stages will cycle from landing site to a maintenance/refurbishment facility and through the next launch in only 9 days. Payload processing will occur in a separate facility in parallel with recovery and refurbishment operations. The vehicle design and on-board checkout capability of the avionics system eliminates the need for an abundance of ground checkout equipment. Payload integration, vehicle assembly, and K-1 transport to the launch pad will be performed horizontally, simplifying processing and reducing infrastructure requirements. This simple, innovative, and cost-effective approach will allow Kistler to offer its customers flexible, low-cost, and on-demand launch services.

  5. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-goingmore » missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.« less

  6. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  7. Outdoor Test Facility and Related Facilities | Photovoltaic Research | NREL

    Science.gov Websites

    advanced or emerging photovoltaic (PV) technologies under simulated, accelerated indoor and outdoor, and evaluate prototype, pre-commercial, and commercial PV modules. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV

  8. The challenge of the US Space Station

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.

  9. ESF GROUND SUPPORT - MATERIAL DEDICATION ANALYSIS FOR STRUCTURAL STEEL AND ACCESSORIES FROM A COMMERCIAL GRADE SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.D. Stine

    1996-01-23

    The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.

  10. Wholesale bakeries: A small-business guide. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Commercial baking is thought to be one of the world`s oldest industries, with evidence of commercial bakeries dating back to the Egyptians. In the late 19th century, technological innovations such as the development of {open_quotes}tame{close_quotes} yeast and the mechanization of bread kneading enabled mass production of baked goods. As a result, larger {open_quotes}wholesale{close_quotes} baking facilities began to replace smaller local bakeries. Today, there are over 3000 wholesale bakeries across the United States. This report is intended to provide information on the bakery business from the perspective of processes, issues, and challenges faced, including energy consumption of electrically driven equipment.

  11. Orbital ATK's Ground Support Equipment (GSE) Delivery for OA-7

    NASA Image and Video Library

    2016-12-15

    Sealed in its shipping container, the ground support equipment for the Orbital ATK OA-7 commercial resupply services mission was moved inside the low bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. The Orbital ATK CRS-7 with the Cygnus cargo module will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station. The commercial resupply services mission to the International Space Station will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  12. Facile approach to the fabrication of a micropattern possessing nanoscale substructure.

    PubMed

    Ji, Qiang; Jiang, Xuesong; Yin, Jie

    2007-12-04

    On the basis of the combined technologies of photolithography and reaction-induced phase separation (RIPS), a facile approach has been successfully developed for the fabrication of a micropattern possessing nanoscale substructure on the thin film surface. This approach involves three steps. In the first step, a thin film was prepared by spin coating from a solution of a commercial random copolymer, polystyrene-r-poly(methyl methacrylate) (PS-r-PMMA) and a commercial crosslinker, trimethylolpropane triacrylate (TMPTA). In the second step, photolithograph was performed with the thin film using a 250 W high-pressure mercury lamp to produce the micropattern. Finally, the resulting micropattern was annealed at 200 degrees C for a certain time, and reaction-induced phase separation occurred. After soaking in chloroform for 4 h, nanoscale substructure was obtained. The whole processes were traced by atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS), and Fourier transform infrared (FTIR) spectroscopy, and the results supported the proposed structure.

  13. Commercialization of fuels from Pinyon-Juniper biomass in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, G.P.

    1994-12-31

    This study analyzes and defines energy applications and markets that could stimulate the commercial use of Eastern Nevada`s Pinyon-Juniper resources. The commercialization potential for producing energy from Pinyon-Juniper biomass is analyzed by examining the resource base and resource availability for a commercial harvesting and processing operation. The study considered the spectrum of available equipment and technology for carrying out harvesting and processing operations, investigated the markets that might be able to use energy products derived from Pinyon-Juniper biomass, analyzed the costs of harvesting, processing, and transporting Pinyon-Juniper fuels, and set forth a plan for developing the commercial potential of thesemore » resources. The emerging residential pellet-fuels market is a promising entry market for the commercialization of an energy from Pinyon-Juniper biomass industry in Eastern Nevada, although there are serious technical issues that may render Pinyon-Juniper biomass an unsuitable feedstock for the manufacture of pellet fuels. These issues could be investigated at a moderate cost in order to determine whether to proceed with development efforts in this direction. In the longer term, one or two biomass-fired power plants in the size range of 5-10 MW could provide a stable and predictable market for the production and utilization of fuels derived from local Pinyon-Juniper biomass resources, and would provide valuable economic and environmental benefits to the region. Municipal utility ownership of such facilities could help to enhance the economic benefits of the investments by qualifying them for federal energy credits and tax-free financing.« less

  14. ISO 50001 for US Commercial Buildings - Current Status and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jingjing; Sheaffer, Paul

    ''ISO 50001: 2011 Energy management systems – Requirements with guidance for use'' is a voluntary International Standard which provides organizations a proven framework to manage energy and continuously improve their energy performance. Implementing ISO 50001 in the commercial building sector has its unique opportunities and challenges in comparison with the industrial sector. The energy footprint of a portfolio of commercial buildings can be just as significant as a large industrial facility in comparison. There are many energy-saving opportunities in commercial buildings that can be addressed without capital investments, and the perceived risks for making energy improvements can be lower thanmore » in the industrial sector. In addition, the energy-consuming systems in commercial buildings are limited in types and have many similarities across buildings, which makes it much easier to standardize many ISO 50001 required processes, 5 procedures and documents to simplify implementation. There are also some sector-unique challenges, such as less familiar with ISO systems and the certification process. Another challenge arises from the complexity in some buildings’ ownership, tenancy, and O&M responsibilities. This whitepaper discusses these opportunities and issues in detail. The paper also recommends the characteristics of organizations in the commercial building sector that can benefit the most from adopting the ISO 50001 standard – namely the “suitable market”. Eight segments (education, food sales, retail, inpatient health care, hospitality, office buildings, laboratories and data centers) within the commercial building sector are highlighted.« less

  15. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, at left, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  16. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, a project science coordinator with URS Federal Services, secures Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  17. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a research scientist prepares a fixative which will be used to secure Arabidopsis seeds, commonly known as thale cress, inside the science carrier, or base, of the Advanced Plant Habitat (APH) on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  18. Advanced Plant Habitat (APH) Seed Planting

    NASA Image and Video Library

    2018-05-09

    Jeffrey Richards, a project science coordinator with URS Federal Services, uses a fixative to secure Arabidopsis seeds, commonly known as thale cress, in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida on Wednesday, May 9. The APH base will be delivered to the International Space Station aboard Orbital ATK's Cygnus spacecraft on the company's ninth Commercial Resupply Services mission for NASA. The APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that is being used to conduct bioscience research on the space station. Cygnus will launch on Orbital ATK's Antares rocket from Wallops Flight Facility in Wallops Island, Virginia. Launch is targeted for May 20, 2018.

  19. National profile on commercially generated low-level radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate themore » mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.« less

  20. Boeing's CST-100 Structural Test Article Shipment from C3PF to B

    NASA Image and Video Library

    2016-11-22

    Boeing’s Structural Test Article of its CST-100 Starliner spacecraft is moved out of the company’s Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center on its way to Huntington Beach, California, for evaluations. Built to the specifications of an operational spacecraft, the STA is intended to be evaluated through a series of thorough testing conditions.

  1. Effect of hot carcass weight on fresh loin, ham, and belly quality from pigs sourced from a commercial processing facility

    USDA-ARS?s Scientific Manuscript database

    The objective was to quantify the effect of HCW on pork primal quality of 7,684 pigs with carcass weights ranging from 53.2 to 129.6 kg. Carcass composition, subjective loin quality, and ham face color were collected on all carcasses. In-plant instrumental loin color and belly quality analyses were ...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C.S.

    The future of the photovoltaic industry is discussed. The success of a small New Jersey high technology solar firm, Chronar, is described. The company started a modern, efficient commercial facility for the manufacture of 1 megawatt capacity amorphous silicon solar cells. The hatch manufacturing process consists of the deposition of the amorphous silicon layers in a machine called a 6 pack named for the six identical glow discharge chambers operated simultaneously by a mini-computer.

  3. Heat Recovery at Army Materiel Command (AMC) Facilities

    DTIC Science & Technology

    1988-06-01

    industrial complexes and somewhat smaller commercial/ HVAC ** systems, a portion of this waste heat can be recovered, improving energy efficiency. Heat...devices are used in sequence. Other shell-and-tube applications include heat transfer from process liquids, condensates, and cooling water. Two...pipe consists of a sealed element involving an annular capillary wick con- tained inside the full length of the tube, with an appropriate entrained

  4. Flexible manufacturing of aircraft engine parts

    NASA Astrophysics Data System (ADS)

    Hassan, Ossama M.; Jenkins, Douglas M.

    1992-06-01

    GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.

  5. Communication satellites for STS-5 being readied for loading

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Two commercial communication satellites scheduled for flight on STS-5 are pictured as they are being readied for loading into a special canister that will transport them to the launch pad. Telsat Canada's Anik C-3 (at bottom) is seen in its blanket covered cradle assemble. Satellite Business System's SBS-3 is at top. This photo was taken inside the vertical processing facility (VPF).

  6. Implementation of a low-cost, commercial orbit determination system

    NASA Technical Reports Server (NTRS)

    Corrigan, Jim

    1994-01-01

    This paper describes the implementation and potential applications of a workstation-based orbit determination system developed by Storm Integration, Inc. called the Precision Orbit Determination System (PODS). PODS is offered as a layered product to the commercially-available Satellite Tool Kit (STK) produced by Analytical Graphics, Inc. PODS also incorporates the Workstation/Precision Orbit Determination (WS/POD) product offered by Van Martin System, Inc. The STK graphical user interface is used to access and invoke the PODS capabilities and to display the results. WS/POD is used to compute a best-fit solution to user-supplied tracking data. PODS provides the capability to simultaneously estimate the orbits of up to 99 satellites based on a wide variety of observation types including angles, range, range rate, and Global Positioning System (GPS) data. PODS can also estimate ground facility locations, Earth geopotential model coefficients, solar pressure and atmospheric drag parameters, and observation data biases. All determined data is automatically incorporated into the STK data base, which allows storage, manipulation and export of the data to other applications. PODS is offered in three levels: Standard, Basic GPS and Extended GPS. Standard allows processing of non-GPS observation types for any number of vehicles and facilities. Basic GPS adds processing of GPS pseudo-ranging data to the Standard capabilities. Extended GPS adds the ability to process GPS carrier phase data.

  7. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a scientist inserts Apogee wheat seeds into the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  8. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite was packed down in the base and coverings were secured on top of the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  9. OA-7 Preparations and move from SSPF to PHSF

    NASA Image and Video Library

    2017-02-21

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Orbital ATK CYGNUS pressurized cargo module is bagged with a protective coverage and lifted up by crane for transfer to the KAMAG transporter. The module is secured on the transporter and moved to the Payload Hazardous Servicing Facility. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.

  10. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists are preparing the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite has been packed down in the base and coverings are being secured to seal the base. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  11. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Seated at right is Susan Manning-Roach, a quality assurance specialist on the Engineering Services Contract. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  12. Recovery Act: Alpena Biorefinery and Alpena Biorefinery Lignin Separation Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retsina, Theodora

    The Alpena Biorefinery (AB) was constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. At full capacity, the AB can produce 894,200 gallons per year of cellulosic ethanol and 696,000 gallons per year of aqueous potassium acetate, using extract from northern hardwood and aspen woodchips feedstock. The project objectives and the value proposition of AB promote the national goals of energy independence, greenhouse gas reduction, and green job creationmore » and retention. A successful outcome of the Alpena Biorefinery project has been commercial sales of the first ever cellulosic ethanol RINS generated from woody biomass in the US, under the EPA’s Renewable Fuels Standard Program. We believe that American Process is also likely the first company in the world to produce commercial quantities of cellulosic ethanol from mixed forest residue. Life Cycle Analysis performed by Michigan Institute of Technology found that the entire life cycle greenhouse gas emissions from the plant’s cellulosic ethanol were only 25 percent that of petroleum-based gasoline. They found the potassium acetate runway de-icer coproduct generates up to 45 percent less greenhouse gases than the production of conventional potassium acetate. The Alpena Biorefinery project created 31 permanent jobs for direct employees and helped retain 200 jobs associated with the existing Decorative Panels International facility, by increasing its economic viability through significant savings in waste water treatment costs. The AB project has been declared a Michigan Center of Energy Excellence and was awarded a $4 million State of Michigan grant. The project also received New Market Tax Credit financing for locating in an economically distressed community. All other equity funds were contributed by American Process Inc. The facility will remain operational after the demonstration period. It will also be available as a pilot-plant “for hire,” where third parties can perform trials on emerging biorefinery technologies. Additional capital projects are underway outside of the scope of DOE project.« less

  13. David Florida Laboratory Thermal Vacuum Data Processing System

    NASA Technical Reports Server (NTRS)

    Choueiry, Elie

    1994-01-01

    During 1991, the Space Simulation Facility conducted a survey to assess the requirements and analyze the merits for purchasing a new thermal vacuum data processing system for its facilities. A new, integrated, cost effective PC-based system was purchased which uses commercial off-the-shelf software for operation and control. This system can be easily reconfigured and allows its users to access a local area network. In addition, it provides superior performance compared to that of the former system which used an outdated mini-computer and peripheral hardware. This paper provides essential background on the old data processing system's features, capabilities, and the performance criteria that drove the genesis of its successor. This paper concludes with a detailed discussion of the thermal vacuum data processing system's components, features, and its important role in supporting our space-simulation environment and our capabilities for spacecraft testing. The new system was tested during the ANIK E spacecraft test, and was fully operational in November 1991.

  14. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  15. 49 CFR 195.59 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Abandonment or deactivation of facilities. 195.59... Abandonment or deactivation of facilities. For each abandoned offshore pipeline facility or each abandoned onshore pipeline facility that crosses over, under or through a commercially navigable waterway, the last...

  16. Conversion of municipal solid waste to hydrogen

    NASA Astrophysics Data System (ADS)

    Richardson, J. H.; Rogers, R. S.; Thorsness, C. B.

    1995-04-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL's focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  17. 76 FR 63913 - Commercial Building Workforce Job/Task Analyses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ..., Commercial Building Energy Modeler, Commissioning/Retro-Commissioning Authority, Energy/Sustainability..., Commercial Building Energy Modeler, Commissioning/Retro-Commissioning Authority, Energy/Sustainability...-commissioning authority, energy/sustainability manager, facility manager, and/or operating engineer/building...

  18. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.

    PubMed

    Garcia, Fernando A; Vandiver, Michael W

    2017-01-01

    In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a novel mathematical algorithm used to determine the most optimal equipment scheduling configuration that maximizes the mass output for a facility producing a single product. The paper also illustrates how different scheduling arrangements can have a profound impact on the availability of plant resources, and identifies limiting constraints on the plant design. In addition, simulation data is presented using visualization techniques that aid in the interpretation of the scientific concepts discussed. © PDA, Inc. 2017.

  19. Cyber Mutual Assistance Workshop Report

    DTIC Science & Technology

    2018-02-01

    Information Technology, Nuclear Reactors, Materials/Waste, Defense Industrial Base, Critical Manufacturing, Food/ Agriculture Government Facilities and...Manufacturing, Food/ Agriculture Government Facilities and Chemical, Commercial Facilities [DHS 2017c]. Distributed Energy Resources (DER) are

  20. Evaluating Commercial and Private Cloud Services for Facility-Scale Geodetic Data Access, Analysis, and Services

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Boler, F. M.; Ertz, D. J.; Mencin, D.; Phillips, D.; Baker, S.

    2017-12-01

    UNAVCO, in its role as a NSF facility for geodetic infrastructure and data, has succeeded for over two decades using on-premises infrastructure, and while the promise of cloud-based infrastructure is well-established, significant questions about suitability of such infrastructure for facility-scale services remain. Primarily through the GeoSciCloud award from NSF EarthCube, UNAVCO is investigating the costs, advantages, and disadvantages of providing its geodetic data and services in the cloud versus using UNAVCO's on-premises infrastructure. (IRIS is a collaborator on the project and is performing its own suite of investigations). In contrast to the 2-3 year time scale for the research cycle, the time scale of operation and planning for NSF facilities is for a minimum of five years and for some services extends to a decade or more. Planning for on-premises infrastructure is deliberate, and migrations typically take months to years to fully implement. Migrations to a cloud environment can only go forward with similar deliberate planning and understanding of all costs and benefits. The EarthCube GeoSciCloud project is intended to address the uncertainties of facility-level operations in the cloud. Investigations are being performed in a commercial cloud environment (Amazon AWS) during the first year of the project and in a private cloud environment (NSF XSEDE resource at the Texas Advanced Computing Center) during the second year. These investigations are expected to illuminate the potential as well as the limitations of running facility scale production services in the cloud. The work includes running parallel equivalent cloud-based services to on premises services and includes: data serving via ftp from a large data store, operation of a metadata database, production scale processing of multiple months of geodetic data, web services delivery of quality checked data and products, large-scale compute services for event post-processing, and serving real time data from a network of 700-plus GPS stations. The evaluation is based on a suite of metrics that we have developed to elucidate the effectiveness of cloud-based services in price, performance, and management. Services are currently running in AWS and evaluation is underway.

  1. Integration and use of Microgravity Research Facility: Lessons learned by the crystals by vapor transport experiment and Space Experiments Facility programs

    NASA Technical Reports Server (NTRS)

    Heizer, Barbara L.

    1992-01-01

    The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science was as important as the hardware functionality. How the CVTE payload was designed and what it is capable of, the philosophy of including the scientists in design and operations decisions, and the lessons learned during the integration process are descussed.

  2. Programmable multi-zone furnace for microgravity research

    NASA Technical Reports Server (NTRS)

    Rosenthal, Bruce N.; Krolikowski, Cathryn R.

    1991-01-01

    In order to provide new furnace technology to accommodate microgravity research studies and commercial applications in material processes, research has been initiated on the development of the Programmable-Multi-zone Furnace (PMZF). The PMZF is described as a multi-user materials processing furnace facility that is composed of thirty or more heater elements in series on a muffle tube or in a stacked ring-type configuration and independently controlled by a computer. One of the aims of the PMZF project is to allow furnace thermal gradient profiles to be reconfigured without physical modification of the hardware by creating the capability of reconfiguring thermal profiles in response to investigators' requests. The future location of the PMZF facility is discussed; the preliminary science survey results and preliminary conceptual designs for the PMZF are presented; and a review of multi-zone furnace technology is given.

  3. Space Station Furnace Facility. Volume 2: Summary of technical reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics, and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. In order to accommodate the furnace modules with the resources required to operate, SSFF developed a design that meets the needs of the wide range of furnaces that are planned for the SSFF. The system design is divided into subsystems which provide the functions of interfacing to the SSF services, conditioning and control for furnace module use, providing the controlled services to the furnace modules, and interfacing to and acquiring data from the furnace modules. The subsystems, described in detail, are as follows: Power Conditioning and Distribution Subsystem; Data Management Subsystem; Software; Gas Distribution Subsystem; Thermal Control Subsystem; and Mechanical Structures Subsystem.

  4. Factsheets - Division of Mining, Land, and Water

    Science.gov Websites

    Recreational Mining Area PDF Commercial Recreation Day Use Registration PDF Commercial Recreation Facility Programs PDF Off-Road Travel On The North Slope On State Land PDF Permits for Commercial Recreation

  5. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  6. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  7. 49 CFR 27.71 - Airport facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Airport facilities. 27.71 Section 27.71... Administration Programs: Airports, Railroads, and Highways § 27.71 Airport facilities. (a) This section applies... financial assistance at a commercial service airport, including parking and ground transportation facilities...

  8. Pilot production & commercialization of LAPPD ™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minot, Michael J.; Bennis, Daniel C.; Bond, Justin L.

    We present a progress update on plans to establish pilot production and commercialization of Large Area (400 cm2) Picosecond Photodetector (LAPPD™). Steps being taken to commercialize this MCP and LAPPD™ technology and begin tile pilot production are presented including (1) the manufacture of 203 mm×203 mm borosilicate glass capillary arrays (GCAs), (2) optimization of MCP performance and creation of an ALD coating facility to manufacture MCPs and (3) design, construction and commissioning of UHV tile integration and sealing facility to produce LAPPDs. Taken together these plans provide a “pathway toward commercialization”.

  9. 78 FR 33897 - Atlantic Wind Lease Sale 2 (ATLW2) Commercial Leasing for Wind Power on the Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... megawatts (MW), that the turbines of the wind farm facility under commercial operations can produce at their rated wind speed as designated by the turbine's manufacturer. The nameplate capacity at the start of..., the nameplate capacity of the wind farm facility at the rated wind speed of the turbines would be 100...

  10. Obama Kennedy Space Center Visit

    NASA Image and Video Library

    2010-04-14

    President Barack Obama tours the commercial rocket processing facility of Space Exploration Technologies, known as SpaceX, along with Elon Musk, SpaceX CEO at Cape Canaveral Air Force Station, Cape Canaveral, Fla. on Thursday, April 15, 2010. Obama also visited the NASA Kennedy Space Center to deliver remarks on the bold new course the administration is charting to maintain U.S. leadership in human space flight. Photo Credit: (NASA/Bill Ingalls)

  11. Developing better artificial bones.

    PubMed

    Flinn, Edward D

    2003-01-01

    Researchers at the Center for Commercial Applications of Combustion in Space at the Colorado School of Mines are preparing the Space-DRUMS (Dynamically Responding Ultrasonic Matrix Systems) materials processing facility for transport to the International Space Station. The Space-DRUMS uses acoustic pressure beams to maintain the position of a suspended liquid or solid. Space-DRUMS will be used to extend experiments with tricalcium phosphate in the development of artificial bone material.

  12. Microgravity

    NASA Image and Video Library

    1994-02-03

    The objective of this facility is to investigate the potential of space grown semiconductor materials by the vapor transport technique and develop powdered metal and ceramic sintering techniques in microgravity. The materials processed or developed in the SEF have potential application for improving infrared detectors, nuclear particle detectors, photovoltaic cells, bearing cutting tools, electrical brushes and catalysts for chemical production. Flown on STS-60 Commercial Center: Consortium for Materials Development in Space - University of Alabama Huntsville (UAH)

  13. A study of the efficiency of hydrogen liquefaction. [jet aircraft applications

    NASA Technical Reports Server (NTRS)

    Baker, C. R.; Shaner, R. L.

    1976-01-01

    The search for an environmentally acceptable fuel to eventually replace petroleum-based fuels for long-range jet aircraft has singled out liquid hydrogen as an outstanding candidate. Hydrogen liquefaction is discussed, along with the effect of several operating parameters on process efficiency. A feasible large-scale commercial hydrogen liquefaction facility based on the results of the efficiency study is described. Potential future improvements in hydrogen liquefaction are noted.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A.; Johnson, F.

    Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less

  15. The venture space alliance commercial application of microgravity research

    NASA Astrophysics Data System (ADS)

    Whitton, Dave

    1999-01-01

    The Venture Space Alliance is a Canadian commercial enterprise formed to develop a successful sustainable business, providing industrial and institutional clients with cost effective timely access to space and microgravity facilities for commercial and scientific benefit. The goal is to offer users a comprehensive and reliable set of products and services from the early stages of research, where access to short duration microgravity such as drop towers, aircraft and sub-orbital rockets is required, to more complex missions requiring free flyers, shuttle or Space Station. The service is designed to relieve the researcher from having to be concerned with the special processes associated with space flight, and to assist in the commercial application of their research through the development of business plans and investment strategy. Much of this research could lead to new and better medicines, high disease tolerant and more prolific agricultural products, new materials and alloys, and improvements in fundamental human health. This paper will describe the commercial successes derived from microgravity research, and the anticipated growth of this segment particularly with the completion of the International Space Station.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Edward J., Jr.; Henry, Karen Lynne

    Sandia National Laboratories develops technologies to: (1) sustain, modernize, and protect our nuclear arsenal (2) Prevent the spread of weapons of mass destruction; (3) Provide new capabilities to our armed forces; (4) Protect our national infrastructure; (5) Ensure the stability of our nation's energy and water supplies; and (6) Defend our nation against terrorist threats. We identified the need for a single overarching Integrated Workplace Management System (IWMS) that would enable us to focus on customer missions and improve FMOC processes. Our team selected highly configurable commercial-off-the-shelf (COTS) software with out-of-the-box workflow processes that integrate strategic planning, project management, facilitymore » assessments, and space management, and can interface with existing systems, such as Oracle, PeopleSoft, Maximo, Bentley, and FileNet. We selected the Integrated Workplace Management System (IWMS) from Tririga, Inc. Facility Management System (FMS) Benefits are: (1) Create a single reliable source for facility data; (2) Improve transparency with oversight organizations; (3) Streamline FMOC business processes with a single, integrated facility-management tool; (4) Give customers simple tools and real-time information; (5) Reduce indirect costs; (6) Replace approximately 30 FMOC systems and 60 homegrown tools (such as Microsoft Access databases); and (7) Integrate with FIMS.« less

  17. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  18. KSC-07pd0922

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Pilot Rick Svetkoff addresses the media on the KSC Shuttle Landing Facility. Behind him are Al Wassel (left), a representative from the FAA Office of Commercial Space, and (right) Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  19. Auto-Thermal Reforming of Jet-A Fuel over Commercial Monolith Catalysts: MicroReactor Evaluation and Screening Test Results

    NASA Technical Reports Server (NTRS)

    Yen, Judy C. H.; Tomsik, Thomas M.

    2004-01-01

    This paper describes the results of a series of catalyst screening tests conducted with Jet-A fuel under auto-thermal reforming (ATR) process conditions at the research laboratories of SOFCo-EFS Holdings LLC under Glenn Research Center Contract. The primary objective is to identify best available catalysts for future testing at the NASA GRC 10-kW(sub e) reformer test facility. The new GRC reformer-injector test rig construction is due to complete by March 2004. Six commercially available monolithic catalyst materials were initially selected by the NASA/SOFCo team for evaluation and bench scale screening in an existing 0.05 kW(sub e) microreactor test apparatus. The catalyst screening tests performed lasted 70 to 100 hours in duration in order to allow comparison between the different samples over a defined range of ATR process conditions. Aging tests were subsequently performed with the top two ranked catalysts as a more representative evaluation of performance in a commercial aerospace application. The two catalyst aging tests conducted lasting for approximately 600 hours and 1000 hours, respectively.

  20. KSC-2013-3026

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- The Optical Payload for Lasercomm Science, or OPALS, an optical technology demonstration experiment, arrives at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  1. Uranium-Loaded Water Treatment Resins: 'Equivalent Feed' at NRC and Agreement State-Licensed Uranium Recovery Facilities - 12094

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camper, Larry W.; Michalak, Paul; Cohen, Stephen

    Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less

  2. The LEAN Payload Integration Process

    NASA Technical Reports Server (NTRS)

    Jordan, Lee P.; Young, Yancy; Rice, Amanda

    2011-01-01

    It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.

  3. Influence of processing steps in cold-smoked salmon production on survival and growth of persistent and presumed non-persistent Listeria monocytogenes.

    PubMed

    Porsby, Cisse Hedegaard; Vogel, Birte Fonnesbech; Mohr, Mona; Gram, Lone

    2008-03-20

    Cold-smoked salmon is a ready-to-eat product in which Listeria monocytogenes sometimes can grow to high numbers. The bacterium can colonize the processing environment and it is believed to survive or even grow during the processing steps. The purpose of the present study was to determine if the steps in the processing of cold-smoked salmon affect survival and subsequent growth of a persistent strain of L. monocytogenes to a lesser degree than presumed non-persistent strains. We used a sequence of experiments increasing in complexity: (i) small salmon blocks salted, smoked or dried under model conditions, (ii) fillets of salmon cold-smoked in a pilot plant and finally, (iii) assessment of the bacterial levels before and after processing during commercial scale production. L. monocytogenes proliferated on salmon blocks that were brined or dipped in liquid smoke and left at 25 degrees C in a humidity chamber for 24 h. However, combining brining and liquid smoke with a drying (25 degrees C) step reduced the bacterium 10-100 fold over a 24 h period. Non-salted, brine injected or dry salted salmon fillets were surface inoculated with L. monocytogenes and cold-smoked in a pilot plant. L. monocytogenes was reduced from 10(3) to 10-10(2) CFU/cm(2) immediately after cold-smoking. The greatest reductions were observed in dry salted and brine injected fillets as compared to cold-smoking of non-salted fresh fillets. Levels of L. monocytogenes decreased further when the cold-smoked fish was vacuum-packed and stored at 5 degrees C. A similar decline was seen when inoculating brine injected fillets after cold-smoking. High phenol concentrations are a likely cause of this marked growth inhibition. In a commercial production facility, the total viable count of salmon fillets was reduced 10-1000 fold by salting, cold-smoking and process-freezing (a freezing step after smoking and before slicing). The prevalence of L. monocytogenes in the commercial production facility was too low to determine any quantitative effects, however, one of nine samples was positive before processing and none after. Taken together, the processing steps involved in cold-smoking of salmon are bactericidal and reduce, but do not eliminate L. monocytogenes. A persistent strain was no less sensitive to the processing steps than a clinical strain or strain EGD.

  4. 30 CFR 285.637 - When may I commence commercial operations on my commercial lease?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... require a FERC license (i.e., wind), then you may commence commercial operations 30 days after the CVA or...

  5. 16 CFR Figures 3 and 4 to Part 1204 - High Voltage Test Facility and Antenna System Test Setup

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false High Voltage Test Facility and Antenna System Test Setup 3 Figures 3 and 4 to Part 1204 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR OMNIDIRECTIONAL CITIZENS BAND BASE STATION ANTENNAS Pt. 1204, Figs. 3, 4 Figures 3 and 4...

  6. OA-7 Advanced Plant Habitat

    NASA Image and Video Library

    2017-02-15

    Inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, scientists prepare Apogee wheat seeds for the science carrier, or base, of the Advanced Plant Habitat (APH). A growing substrate called arcillite is packed down in the base and coverings are secured to seal the base. The Apogee wheat seeds are then inserted into the carrier. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  7. ISS Biotechnology Facility - Overview of Analytical Tools for Cellular Biotechnology Investigations

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A. S.; Towe, B. C.; Anderson, M. M.; Gonda, S. R.; Pellis, N. R.

    2001-01-01

    The ISS Biotechnology Facility (BTF) platform provides scientists with a unique opportunity to carry out diverse experiments in a microgravity environment for an extended period of time. Although considerable progress has been made in preserving cells on the ISS for long periods of time for later return to Earth, future biotechnology experiments would desirably monitor, process, and analyze cells in a timely way on-orbit. One aspect of our work has been directed towards developing biochemical sensors for pH, glucose, oxygen, and carbon dioxide for perfused bioreactor system developed at Johnson Space Center. Another aspect is the examination and identification of new and advanced commercial biotechnologies that may have applications to on-orbit experiments.

  8. Design documentation: Krypton encapsulation preconceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs,more » technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.« less

  9. Commercial-scale demonstration of the Liquid Phase Methanol process. Technical progress report number 8, April 1--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallon per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases producedmore » by modern-day coal gasifiers. Originally tested at a small (10 TPD), DOE-owned experimental unit in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading.« less

  10. The Virginia Space Flight Center model for an integrated federal/commercial launch range

    NASA Astrophysics Data System (ADS)

    Reed, Billie M.

    2000-01-01

    Until 1998, the federal government has been the predominant purchaser of space launches in the U.S. through the purchase of hardware and services. Historically, the government provided the necessary infrastructure for launches from the federal DoD and NASA launch ranges. In this historical model, the federal government had complete ownership, responsibility, liability, and expense for launch activities. In 1998, commercial space launches accounted for 60% of U.S. launches. This growth in commercial launches has increased the demand for launch range services. However, the expense, complexity of activities, and issues over certification of flight safety have deterred the establishment of purely commercial launch sites, with purely commercial being defined as without benefit of capabilities provided by the federal government. Provisions of the Commercial Space Launch Act have enabled DoD and NASA to support commercial launches from government launch ranges on a cost-reimbursable, non-interference basis. The government provides services including use of facilities, tracking and data services, and range and flight safety. In the 1990's, commercial space market projections indicated strong potential for large numbers of commercial satellites to be launched well into the first decade of the 21st century. In response to this significant opportunity for economic growth, several states established spaceports to provide the services necessary to meet these forecast commercial needs. In 1997, NASA agreed to the establishment of the Virginia Space Flight Center (VSFC), a commercial spaceport, at its Wallops Flight Facility. Under this arrangement, NASA agreed to allow the Virginia Commercial Space Flight Authority (VCSFA) to construct facilities on NASA property and agreed to provide launch range and other services in accordance with the Space Act and Commercial Space Launch Act in support of VSFC launch customers. A partnership relationship between NASA and VCSFA has emerged which pairs the strengths of the established NASA Test Range and the state-sponsored, commercial launch facility provider in an attempt to satisfy the needs for flexible, low-cost access to space. The continued viability of the VSFC and other commercial spaceports depend upon access to a space launch and re-entry range safety system that assures the public safety and is accepted by the public and government as authoritative and reliable. DoD and NASA budget problems have resulted in deteriorating services and reliability at federal ranges and has caused fear with respect to their ability to service the growing commercial market. Numerous high level studies have been conducted or are in progress that illuminate the deficiencies. No federal agency has been provided the necessary funding or authority to address the nations diminishing space launch capability. It is questionable as to whether the U.S. can continue to compete in the global space launch market unless these domestic space access problems are rapidly corrected. This paper discusses a potential solution to the lack of a coordinated response in the U.S. to the challenge presented by the global market for space launch facilities and services. .

  11. Making contact: rooting out the potential for exposure of commercial production swine facilities to feral swine in North Carolina.

    PubMed

    Engeman, Richard; Betsill, Carl; Ray, Tom

    2011-03-01

    Despite North Carolina's long history with feral swine, populations were low or absent in eastern counties until the 1990s. Feral swine populations have since grown in these counties which also contain a high density of commercial production swine (CPS) facilities. Sixteen of the highest swine producing U.S. counties also populated with feral swine are in North Carolina. Disconcertingly, since 2009, positive tests for exposure to swine brucellosis or pseudorabies virus have been found for feral swine. We surveyed 120 CSP facilities across four eastern counties to document the level and perception of feral swine activity around CSP facilities and to identify disease transmission potential to commercial stock. Nearly all facility operators (97%) recognized feral swine were in their counties. Far fewer said they had feral swine activity nearby (18%). Our inspections found higher presence than perceived with feral swine sign at 19% of facilities where operators said they had never observed feral swine or their sign. Nearly 90% expressed concern about feral to domestic disease transmission, yet only two facilities had grain bins or feeders fenced against wildlife access. Due to increasing feral swine populations, recent evidence of disease in feral populations, the importance of swine production to North Carolina's economy and the national pork industry, and potential for feral-domestic contact, we believe feral swine pose an increasing disease transmission threat warranting a stringent look at biosecurity and feral swine management at North Carolina CPS facilities.

  12. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at themore » labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.« less

  13. A review study of maintenance and management issues in Malaysian commercial building towards sustainable future practice

    NASA Astrophysics Data System (ADS)

    Nawi, Mohd Nasrun Mohd; Baharum, Faizal; Ibrahim, Siti Halipah; Riazi, Salman Riazi Mehdi

    2017-10-01

    Good management of the building will be able to influence the quality of the buildings that remain long, safe and beautiful without any damage and problems. This research paper aims to explore the issue of maintenance and management that appear in managing the commercial building in Malaysian construction and property industry. The data in this research has been gathered through the reviewing process of secondary data such as journals, proceeding, thesis etc. in the area that related to maintenance and management issue in commercial building. As highlighted by previous study, building a good management can ensure that the facilities available in the building are well and meet the standard. Thus, exposure to the problems and needs in the management of the building would be able to improve the quality of building management systems to be more effective and fulfil the client needs and features.

  14. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less

  15. A terrorism response plan for hospital security and safety officers.

    PubMed

    White, Donald E

    2002-01-01

    Security and Safety managers in today's healthcare facilities need to factor terrorism response into their emergency management plans, separate from the customary disaster plans and the comparatively recent security plans. Terrorism incidents will likely be security occurrences that use a weapon of mass destruction to magnify the incidents into disasters. Facility Y2K Plans can provide an excellent framework for the detailed contingency planning needed for terrorism response by healthcare facilities. Tabbed binder notebooks, with bulleted procedures and contact points for each functional section, can provide security and safety officers with at-a-glance instructions for quick 24/7 implementation. Each functional section should focus upon what activities or severity levels trigger activation of the backup processes. Network with your countywide, regional, and/or state organizations to learn what your peers are doing. Comprehensively inventory your state, local, and commercial resources so that you have alternate providers readily available 24/7 to assist your facility upon disasters.

  16. Consideration of adding a commercial module to the International Space Station

    NASA Astrophysics Data System (ADS)

    Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.

  17. Remote sensing in the coastal and marine environment. Proceedings of the US North Atlantic Regional Workshop

    NASA Technical Reports Server (NTRS)

    Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)

    1980-01-01

    Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.

  18. The History of Commercial Recreation and Its Role in the Provision of Family Recreation.

    ERIC Educational Resources Information Center

    Ellis, E. Taylor

    Commercial recreation is the provision of facilities, equipment, and programs that satisfy public demand for activities during unobligated time and are profitable to the supplier. The term "commercial recreation" has been given a negative connotation in the field of recreation and leisure. This negative concept of commercial recreation…

  19. 30 CFR 585.637 - When may I commence commercial operations on my commercial lease?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commercial lease? 585.637 Section 585.637 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...: (a) Do not require a FERC license (i.e., wind), then you may commence commercial operations 30 days...

  20. 30 CFR 585.637 - When may I commence commercial operations on my commercial lease?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commercial lease? 585.637 Section 585.637 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...: (a) Do not require a FERC license (i.e., wind), then you may commence commercial operations 30 days...

  1. 30 CFR 585.637 - When may I commence commercial operations on my commercial lease?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commercial lease? 585.637 Section 585.637 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...: (a) Do not require a FERC license (i.e., wind), then you may commence commercial operations 30 days...

  2. A facile and cost-effective TEM grid approach to design gold nano-structured substrates for high throughput plasmonic sensitive detection of biomolecules.

    PubMed

    Jia, Kun; Bijeon, Jean Louis; Adam, Pierre Michel; Ionescu, Rodica Elena

    2013-02-21

    A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.

  3. Great Lakes Regional Phase 3 Commercialization Conference, Held in Detroit, Michigan on May 23 - 25, 1994

    DTIC Science & Technology

    1994-05-25

    small highly efficient power systems to provide electricity for space applications. These converters are solar heated for near earth orbit applications...processing in NASA’s Wake Shield Facility. AMPS plans to complete product development in each of these specific technology areas utilizing SBIR...Corrosion: Crevice corrosion is a form of localized corrosion that occurs within crevices or shielded surfaces where stagnant solution is present

  4. Butyltin compounds in sediments from the commercial harbor of Alexandria City, Egypt.

    PubMed

    Barakat, A O; Kim, M; Qian, Y; Wade, T L

    2001-12-01

    Tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) compounds were quantitatively determined in surface-sediment samples collected from 23 sites in the commercial harbor of Alexandria City, Egypt. Butyltin concentrations in sediments varied widely depending on the sample location, ranging from less than 0.1 to 186 ng g(-1) of Sn for MBT, less than 0.1 to 379 ng g(-1) of Sn for DBT, and 1 to 2,067 ng g(-1) of Sn for TBT Elevated TBT concentrations, ranging from 727 to 2,067 ng g(-1) of Sn were observed in harbors, marinas, and near ship-repair facilities, indicating that the butyltin-containing, antifouling paints of boats and vessels are the major source of butyltin contamination. The TBT concentration decreased rapidly away from potential source areas of boat docking and repair facilities. The high relative concentrations of TBT in the sediments indicated that degradation processes in the sediments are minor, probably due to the anoxic sedimentary conditions at the sampling sites and/or relatively fresh input of TBT to these sites.

  5. KSC-07pd0920

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Al Wassel, a representative from the FAA Office of Commercial Space, addresses the media on the KSC Shuttle Landing Facility. At left is the F-104 pilot, Rick Svetkoff. At right is Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd0919

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- Bill Parsons, director of Kennedy Space Center, addresses the media at the KSC Shuttle Landing Facility after a test flight of the Starfighter F-104. Behind Parsons, at left, is the pilot Rick Svetkoff. At right is Al Wassel, a representative from the FAA Office of Commercial Space. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  7. The Protein Crystallization Facility STS-95

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Protein Crystallization Facility will be used to grow crystals of human insulin. Insulin is the primary treatment for diabetes, the fourth leading cause of death by disease. Research on STS-95 is aimed at producing crystals of even higher quality, which when combined with new analysis techniques will permit a better understanding of the interaction between insulin and its receptor. This has the potential to aid in the development of a new commercially available insulin product with unique time release properties that could reduce fluctuations in a patient's blood sugar level. The Protein Crystallization Facility supports large-scale commercial investigations.

  8. Modified Fittings Enhance Industrial Safety

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Kennedy Space Center is not only home to one of the largest buildings in the world - the massive Vehicle Assembly Building - it also hosts a number of one-of-a-kind facilities. The more than 30-mile-long campus has witnessed every launch from the Space Shuttle Launch Pad, as well as many homecomings at the Shuttle Landing Facility. Just as important, the Space Station Processing Facility (SSPF) has seen each element of the International Space Station (ISS) that passes through Kennedy before it goes into orbit. The SSPF is where ISS components are checked, tested, and adjusted before being packed into the Space Shuttle for transport. In an environment like the SSPF - spanning 457,000 square feet of processing areas, operational control rooms, laboratories, logistics areas, and office space - large workstands and equipment used to support the processing of ISS components need to be moved around the facility. One of the devices employed for this task is an air pallet. An air pallet moves on cushions of air instead of wheels. Compressed air inflates the cushions underneath the pallet and is then expelled through exhaust holes. This forms a thin film of air between the cushions and the floor, lifting the platform off the floor and making it easy to move the heavy workstands, equipment, and ISS components. Concerned with the safety of the connections on the pressurized air hoses used for the air pallets, engineers at Kennedy modified an existing commercial cam and groove fitting to control the air supply hose in the event of an accidental release of a pressurized hose. This modification prevented the hose from detaching and, propelled by compressed air, striking workers or equipment. "At the time, these were not available on commercial coupling halves, so NASA made a modification and then put them into use. If a worker were to accidentally try to remove a pressurized hose from the pallet, it no longer rapidly separated, and it safely relieved the pressure," says Paul Schwindt, an engineer at Kennedy who together with Alan Littlefield, also an engineer at Kennedy, designed the modification.

  9. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  10. NASA in-house Commercially Developed Space Facility (CDSF) study report. Volume 1: Concept configuration definition

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Chiger, H. D.; Deryder, D. D.; Detweiler, K. N.; Dupree, R. L.; Gillespie, V. P.; Hall, J. B.; Heck, M. L.; Herrick, D. C.; Katzberg, S. J.

    1989-01-01

    The results of a NASA in-house team effort to develop a concept definition for a Commercially Developed Space Facility (CDSF) are presented. Science mission utilization definition scenarios are documented, the conceptual configuration definition system performance parameters qualified, benchmark operational scenarios developed, space shuttle interface descriptions provided, and development schedule activity was assessed with respect to the establishment of a proposed launch date.

  11. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  12. Past, Present, and Future Capabilities of the Transonic Dynamics Tunnel from an Aeroelasticity Perspective

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R.; Garcia, Jerry L.

    2000-01-01

    The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.

  13. Isolation and characterization of a resident tolerant Saccharomyces cerevisiae strain from a spent sulfite liquor fermentation plant

    PubMed Central

    2012-01-01

    Spent Sulfite Liquor (SSL) from wood pulping facilities is a sugar rich effluent that can be used as feedstock for ethanol production. However, depending on the pulping process conditions, the release of monosaccharides also generates a range of compounds that negatively affect microbial fermentation. In the present study, we investigated whether endogenous yeasts in SSL-based ethanol plant could represent a source of Saccharomyces cerevisiae strains with a naturally acquired tolerance towards this inhibitory environment. Two isolation processes were performed, before and after the re-inoculation of the plant with a commercial baker’s yeast strain. The isolates were clustered by DNA fingerprinting and a recurrent Saccharomyces cerevisiae strain, different from the inoculated commercial baker’s yeast strain, was isolated. The strain, named TMB3720, flocculated heavily and presented high furaldehyde reductase activity. During fermentation of undiluted SSL, TMB3720 displayed a 4-fold higher ethanol production rate and 1.8-fold higher ethanol yield as compared to the commercial baker’s yeast. Another non-Saccharomyces cerevisiae species, identified as the pentose utilizing Pichia galeiformis, was also recovered in the last tanks of the process where the hexose to pentose sugar ratio and the inhibitory pressure are expected to be the lowest. PMID:23237549

  14. A PLANNED COMMUNITY FOR MIGRATORY FARM WORKERS--A PROPOSAL FOR A DEMONSTRATION PROJECT.

    ERIC Educational Resources Information Center

    PEERY, A.B.

    A DEMONSTRATION PROJECT FOR MIGRATORY FARM LABORERS HOME-BASED IN SOUTH TEXAS IS PROPOSED. THE PURPOSE IS TO DESIGN A PLANNED COMMUNITY CONTAINING HOUSING, HEALTH FACILITIES, ORIENTATION AND EDUCATIONAL FACILITIES, JOB-PLACEMENT FACILITIES, AND SOCIAL, RECREATIONAL, AND COMMERCIAL FACILITIES. THE PLANNED COMMUNITY WOULD PROVIDE SAFE, SANITARY, AND…

  15. Advances in roll to roll processing of optics

    NASA Astrophysics Data System (ADS)

    Watts, Michael P. C.

    2008-02-01

    Today, there are a number of successful commercial applications that utilize roll to roll processing and almost all involve optics; unpatterned film, patterned film, and devices on film. The largest applications today are in holograms, and brightness enhancement film (BEF) for LCD. Solar cells are rapidly growing. These are mostly made in large captive facilities with their own proprietary equipment, materials and pattern generation capability. World wide roll to roll volume is > 100M meters2 year -1, and generates sales of > $5B. The vast majority of the sales are in BEF film by 3M.

  16. KSC-2014-2515

    NASA Image and Video Library

    2014-05-12

    CAPE CANAVERAL, Fla. – The components of NASA's International Space Station-RapidScat scatterometer instrument await processing inside Kennedy Space Center's Space Station Processing Facility. ISS-RapidScat is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. Built at NASA's Jet Propulsion Laboratory, ISS-RapidScat is slated to fly on the SpaceX-4 commercial cargo resupply flight in 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Dimitri Gerondidakis

  17. 32 CFR 705.13 - Commercial advertising.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Commercial advertising. 705.13 Section 705.13... AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.13 Commercial advertising. (a) The Navy... personnel, facilities, equipment or supplies for advertising purposes must be referred to the Chief of...

  18. 32 CFR 705.13 - Commercial advertising.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Commercial advertising. 705.13 Section 705.13... AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.13 Commercial advertising. (a) The Navy... personnel, facilities, equipment or supplies for advertising purposes must be referred to the Chief of...

  19. 32 CFR 705.13 - Commercial advertising.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Commercial advertising. 705.13 Section 705.13... AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.13 Commercial advertising. (a) The Navy... personnel, facilities, equipment or supplies for advertising purposes must be referred to the Chief of...

  20. 32 CFR 705.13 - Commercial advertising.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Commercial advertising. 705.13 Section 705.13... AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.13 Commercial advertising. (a) The Navy... personnel, facilities, equipment or supplies for advertising purposes must be referred to the Chief of...

  1. 32 CFR 705.13 - Commercial advertising.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Commercial advertising. 705.13 Section 705.13... AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.13 Commercial advertising. (a) The Navy... personnel, facilities, equipment or supplies for advertising purposes must be referred to the Chief of...

  2. KSC-2013-3031

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- The Optical Payload for Lasercomm Science, or OPALS, an optical technology demonstration experiment, sits on a pallet near the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. OPALS arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  3. KSC-2013-3034

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- The Optical Payload for Lasercomm Science, or OPALS, an optical technology demonstration experiment, sits on a pallet inside the air lock entrance to the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. OPALS arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  4. KSC-2013-3041

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Optical Payload for Lasercomm Science, or OPALS, experiment has been unpacked in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  5. KSC-2013-3039

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians move the Optical Payload for Lasercomm Science, or OPALS, experiment into the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  6. KSC-2013-3042

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Optical Payload for Lasercomm Science, or OPALS, experiment has been uncovered in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  7. KSC-2013-3036

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare to move the Optical Payload for Lasercomm Science, or OPALS, experiment into the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  8. The Ferrofluids Story

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A new Ferrofluidics exclusion seal promises improvement in controlling "fugitive emissions" -vapors that escape into the atmosphere from petroleum refining and chemical processing facilities. These are primarily volatile organic compounds, and their emissions are highly regulated by the EPA. The ferrofluid system consists of a primary mechanical seal working in tandem with a secondary seal. Ferrofluids are magnetic liquids - fluids in which microscopic metal particles have been suspended, allowing the liquid to be controlled by a magnetic force. The concept was developed in the early years of the Space program, but never used. Two Avco scientists, however, saw commercial potential in ferrofluids and formed a company. Among exclusion seal commercial applications are rotary feedthrough seals, hydrodynamic bearings and fluids for home and automotive loudspeakers. Ferrofluidics has subsidiaries throughout the world.

  9. A Commercialization Roadmap for Carbon-Negative Energy Systems

    NASA Astrophysics Data System (ADS)

    Sanchez, D.

    2016-12-01

    The Intergovernmental Panel on Climate Change (IPCC) envisages the need for large-scale deployment of net-negative CO2 emissions technologies by mid-century to meet stringent climate mitigation goals and yield a net drawdown of atmospheric carbon. Yet there are few commercial deployments of BECCS outside of niche markets, creating uncertainty about commercialization pathways and sustainability impacts at scale. This uncertainty is exacerbated by the absence of a strong policy framework, such as high carbon prices and research coordination. Here, we propose a strategy for the potential commercial deployment of BECCS. This roadmap proceeds via three steps: 1) via capture and utilization of biogenic CO2 from existing bioenergy facilities, notably ethanol fermentation, 2) via thermochemical co-conversion of biomass and fossil fuels, particularly coal, and 3) via dedicated, large-scale BECCS. Although biochemical conversion is a proven first market for BECCS, this trajectory alone is unlikely to drive commercialization of BECCS at the gigatonne scale. In contrast to biochemical conversion, thermochemical conversion of coal and biomass enables large-scale production of fuels and electricity with a wide range of carbon intensities, process efficiencies and process scales. Aside from systems integration, primarily technical barriers are involved in large-scale biomass logistics, gasification and gas cleaning. Key uncertainties around large-scale BECCS deployment are not limited to commercialization pathways; rather, they include physical constraints on biomass cultivation or CO2 storage, as well as social barriers, including public acceptance of new technologies and conceptions of renewable and fossil energy, which co-conversion systems confound. Despite sustainability risks, this commercialization strategy presents a pathway where energy suppliers, manufacturers and governments could transition from laggards to leaders in climate change mitigation efforts.

  10. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.« less

  11. Contamination issues in a continuous ethanol production corn wet milling facility

    USDA-ARS?s Scientific Manuscript database

    Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...

  12. Evaluation of components, subsystems, and networks for high rate, high frequency space communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ivancic, William D.; Zuzek, John E.

    1991-01-01

    The development of new space communications technologies by NASA has included both commercial applications and space science requirements. At NASA's Lewis Research Center, methods and facilities have been developed for evaluating these new technologies in the laboratory. NASA's Systems Integration, Test and Evaluation (SITE) Space Communication System Simulator is a hardware-based laboratory simulator for evaluating space communications technologies at the component, subsystem, system, and network level, geared toward high frequency, high data rate systems. The SITE facility is well-suited for evaluation of the new technologies required for the Space Exploration Initiative (SEI) and advanced commercial systems. This paper describes the technology developments and evaluation requirements for current and planned commercial and space science programs. Also examined are the capabilities of SITE, the past, present, and planned future configurations of the SITE facility, and applications of SITE to evaluation of SEI technology.

  13. Dumping Syndrome

    MedlinePlus

    ... test during an office visit or in a commercial facility and sends the blood samples to a ... Government does not endorse or favor any specific commercial product or company. Trade, proprietary, or company names ...

  14. Commercial and Institutional Case Studies

    EPA Pesticide Factsheets

    Throughout the country, commercial and institutional (CI) building owners and facility managers are taking actions to reduce their water use, implementing many of the operations and maintenance, retrofit, and replacement projects.

  15. OA-7 Cargo Module Loading

    NASA Image and Video Library

    2017-02-07

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, thousands of pounds of supplies, equipment and scientific research materials are prepared for loading aboard a Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.

  16. Corrosion of titanium and zirconium in organic solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, R.A.; Saldanha, B.J.; Kvochak, J.J.

    1995-09-01

    Experiences of reactive metal corrosion in organic acids will be discussed. Emphasis will be placed on anhydrous organic solutions, and organic acids containing halides which are often added as catalysts or promoters. The case examples will illustrate the importance of evaluating reactive metals under conditions that closely simulate actual process chemistry, type of exposure (vapor, liquid, condensate), and final fabricated form, to ensure that the material will provide predictable long-term service in a commercial facility.

  17. Commercial applications for optical data storage

    NASA Astrophysics Data System (ADS)

    Tas, Jeroen

    1991-03-01

    Optical data storage has spurred the market for document imaging systems. These systems are increasingly being used to electronically manage the processing, storage and retrieval of documents. Applications range from straightforward archives to sophisticated workflow management systems. The technology is developing rapidly and within a few years optical imaging facilities will be incorporated in most of the office information systems. This paper gives an overview of the status of the market, the applications and the trends of optical imaging systems.

  18. Cosmic-Ray Energetics and Mass (CREAM) Unbagging and Inspection

    NASA Image and Video Library

    2017-06-22

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers inspect the Cosmic-Ray Energetics and Mass investigation, or CREAM, instrument. It is designed to measure the charges of cosmic rays to better understand what gives them such incredible energies, and how that effects the composition of the universe. The instrument will be launched to the space station on the SpaceX CRS-12 commercial resupply mission in August 2017.

  19. Evaluation of Environmental Conditions on the Curing Of Commercial Fixative and Intumescent Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, J. C.

    2016-09-26

    Performance metrics for evaluating commercial fixatives are often not readily available for important parameters that must be considered per the facility safety basis and the facility Basis for Interim Operations (BIO). One such parameter is the behavior of such materials in varied, “non-ideal” conditions where ideal is defined as 75 °F, 40% RH. Coupled with the inherent flammable nature of the fixative materials that can act to propagate flame along surfaces that are otherwise fireproof (concrete, sheet metal), much is left unknown when considering the safety basis implications for introducing these materials into nuclear facilities. Through SRNL’s efforts, three (3)more » fixatives, one (1) decontamination gel, and six (6) intumescent coatings were examined for their responses to environmental conditions to determine whether these materials were impervious to non-nominal temperatures and humidities that may be found in nuclear facilities. Characteristics that were examined included set-to-touch time, dust free time, and adhesion testing of the fully cured compounds. Of these ten materials, three were two-part epoxy materials while the other seven consisted of only one constituent. The results show that the epoxies tested are unable to cure in sub-freezing temperatures, with the low temperatures inhibiting crosslinking to a very significant degree. These efforts show significant inhibiting of performance for non-nominal environmental conditions, something that must be addressed both in the decision process for a fixative material to apply and per the safety basis to ensure the accurate flammability and material at risk is calculated.« less

  20. Weapons team engagement trainer: a transfer of high-tech military training technology to the law enforcement community

    NASA Astrophysics Data System (ADS)

    Franz, Thomas M.; Gonos, Greg; Simek, Lisa

    1999-01-01

    Six years ago at SPIE, a team of government researchers and engineers unveiled a new, military, weapons team engagement trainer (WTET). At that time, potential applications of this prototype military training device to civilian law enforcement training were realized. Subsequent action was taken under the Federal Technology Transfer Act of 1986, enabling the transfer of WTET to the private sector, through a cooperative agreement between: the Office of Naval Research (ONR), NAWCTSD, and the commercial weapons training organization Firearms Training Systems, Inc. (FATS). Planning also began for release of a commercial WTET sytem. The government research and development facility and the National Institute of Justice (NIJ) formed a cooperative agreement to make the prototype system available to military, federal, and local law enforcement agencies for use in Orlando, Florida - until a commercial version could become available. This cooperative effort has provided evidence of the effectiveness and realism of WTET with law enforcement personnel. This paper offers a technical description of the improvements made to WTET, a brief explanation of the commercialization process, a summary of the evaluations conducted to date, and insight into how that information has been used in the development of the commercial version.

  1. 77 FR 37899 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Large Household and Commercial Appliances (Renewal) AGENCY: Environmental Protection Agency (EPA... Commercial Appliances (Renewal). ICR Numbers: EPA ICR Number 1954.05, OMB Control Number 2060-0457. ICR... household and commercial appliances facilities. Estimated Number of Respondents: 102. Frequency of Response...

  2. 41 CFR 102-74.40 - What are concession services?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... snack services provided by a Randolph-Sheppard Act vendor, commercial contractor or nonprofit... machines; (b) Sundry facilities; (c) Prepackaged facilities; (d) Snack bars; and (e) Cafeterias. ...

  3. National Biomedical Tracer Facility. Project definition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, R.

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research:more » fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.« less

  4. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Usingmore » 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant availability and throughput capacity and to produce quality lightweight aggregate for use in commercial applications.« less

  5. Technology demonstration of space intravehicular automation and robotics

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Barker, L. Keith

    1994-01-01

    Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.

  6. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered and secured onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  7. Advanced Plant Habitat - Packing and Planting Seeds

    NASA Image and Video Library

    2017-02-15

    Dr. Oscar Monje, (far right) a research scientist, packs a growing substrate called arcillite in the science carrier, or base, of the Advanced Plant Habitat (APH) inside a laboratory at the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. Assisting him is Jeffrey Richards, project science coordinator with SGT on the Engineering Services Contract (ESC). Seated in the foreground is Susan Manning-Roach, a quality assurance specialist, also with ESC. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the International Space Station. The APH will be delivered to the space station aboard future Commercial Resupply Services missions.

  8. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as MISSE is lifted by crane from its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  9. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as one of the components is lowered onto another MISSE component. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  10. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians assist as a crane is used to lift MISSE out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  11. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians work to attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  12. Materials International Space Station Experiment (MISSE) Arrival

    NASA Image and Video Library

    2017-10-02

    The Materials International Space Station Experiment-Flight Facility, or MISSE-FF, hardware arrived at the Space Station Processing Facility low bay at NASA's Kennedy Space Center in Florida. Technicians attach a crane to MISSE for lifting out of its shipping container. MISSE will be used to test various materials and computing elements on the exterior of the space station. They will be exposed to the harsh environment of low-Earth orbit, including to a vacuum, atomic oxygen, ultraviolet radiation, direct sunlight and extreme heat and cold. The experiment will provide a better understanding of material durability, from coatings to electronic sensors, which could be applied to future spacecraft designs. MISSE will be delivered to the space station on a future commercial resupply mission.

  13. Vice President Pence Arrives at Kennedy Space Center for National Space Council Meeting

    NASA Image and Video Library

    2018-02-20

    Vice President Mike Pence arrived at the Shuttle Landing Facility at NASA’s Kennedy Space Center, Florida on Feb. 20 ahead of the second meeting of the National Space Council. Vice President Pence, and his wife Karen, were greeted by Robert Lightfoot, acting NASA Administrator and Brig. Gen. Wayne Monteith, commander, 45th Space Wing. On Feb. 21, Vice President Pence will lead the National Space Council meeting inside Kennedy’s Space Station Processing Facility. “Moon, Mars, and Worlds Beyond: Winning the Next Frontier” will include testimonials from leaders in the civil, commercial, and national security sectors about the importance of the United States’ space enterprise. The Vice President will conclude his visit with a tour of Kennedy Space Center.

  14. KSC-07pd0889

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- Pilot Rick Svetkoff taxis a Starfighter F-104 down the runway on the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  15. KSC-07pd0913

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 approaches the runway at the KSC Shuttle Landing Facility for a landing after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd0914

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 lands on the runway at the KSC Shuttle Landing Facility after its test flight. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd0888

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- A Starfighter F-104 piloted by Rick Svetkoff lands on the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd0887

    NASA Image and Video Library

    2007-04-16

    KENNEDY SPACE CENTER, FLA. -- A Starfighter F-104 piloted by Rick Svetkoff approaches the Shuttle Landing Facility at Kennedy Space Center. The aircraft will take part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd0908

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, pilot Rick Svetkoff settles into the cockpit of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  20. Zollinger-Ellison Syndrome

    MedlinePlus

    ... sample during an office visit or at a commercial facility and sends the sample to a lab ... Government does not endorse or favor any specific commercial product or company. Trade, proprietary, or company names ...

  1. Fully Disposable Manufacturing Concepts for Clinical and Commercial Manufacturing and Ballroom Concepts.

    PubMed

    Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta

    2017-11-04

    The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is described in more detail in 7. Graphical Abstract.

  2. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 6, October 1--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The project involves the construction of an 80,000 gallons per day (260 TPD) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries, product distillation facilities, and utilities. The technology to be demonstrated is the product of a cooperative development effort by Air Products and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} process is ideally suited for directly processing gases produced by modern-day coalmore » gasifiers. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology will be integrated with existing coal-gasifiers. A carefully developed test plan will allow operations at Eastman to simulate electricity demand load-following in coal-based IGCC facilities. The operations will also demonstrate the enhanced stability and heat dissipation of the conversion process, its reliable on/off operation, and its ability to produce methanol as a clean liquid fuel without additional upgrading. An off-site product testing program will be conducted to demonstrate the suitability of the methanol product as a transportation fuel and as a fuel for stationary applications for small modular electric power generators for distributed power.« less

  3. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.

    PubMed

    Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng

    2012-04-01

    As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. Single Pass Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. Copyright © 2011 Wiley Periodicals, Inc.

  4. Commercial Toilets

    EPA Pesticide Factsheets

    Whether you are looking to reduce water use in a new facility or replace old, inefficient toilets in commercial restrooms, a WaterSense labeled flushometer-valve toilet is a high-performance, water-efficient option worth considering.

  5. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  6. 44 CFR 352.25 - Limitation on committing Federal facilities and resources for emergency preparedness.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal facilities and resources for emergency preparedness. 352.25 Section 352.25 Emergency Management... COMMERCIAL NUCLEAR POWER PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.25 Limitation on committing Federal facilities and resources for emergency preparedness. (a) The commitment of Federal...

  7. DOE passive solar commercial buildings program: project summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The 23 projects participating in this program comprise a wide range of building types including offices, retail establishments, educational facilities, public service facilities, community and visitor centers, and private specialized-use facilities, located throughout the United States. Summary data and drawings are presented for each project. (MHR)

  8. Strategy and methodology for rank-ordering Virginia state agencies regarding solar attractiveness and identification of specific project possibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, R.

    1997-12-31

    This paper describes the strategy and computer processing system that NREL, the Virginia Department of Mines, Minerals and Energy (DMME) and the state energy office, are developing for computing solar attractiveness scores for state agencies and the individual facilities or buildings within each agency. In the case of an agency, solar attractiveness is a measure of that agency`s having a significant number of facilities for which solar has the potential to be promising. In the case of a facility, solar attractiveness is a measure of its potential for being good, economically viable candidate for a solar waste heating system. Virginiamore » State agencies are charged with reducing fossil energy and electricity use and expense. DMME is responsible for working with them to achieve the goals and for managing the state`s energy consumption and cost monitoring program. This is done using the Fast Accounting System for Energy Reporting (FASER) computerized energy accounting and tracking system and database. Agencies report energy use and expenses (by individual facility and energy type) to DMME quarterly. DMME is also responsible for providing technical and other assistance services to agencies and facilities interested in investigating use of solar. Since Virginia has approximately 80 agencies operating over 8,000 energy-consuming facilities and since DMME`s resources are limited, it is interested in being able to determine: (1) on which agencies to focus; (2) specific facilities on which to focus within each high-priority agency; and (3) irrespective of agency, which facilities are the most promising potential candidates for solar. The computer processing system described in this paper computes numerical solar attractiveness scores for the state`s agencies and the individual facilities using the energy use and cost data in the FASER system database and the state`s and NREL`s experience in implementing, testing and evaluating solar water heating systems in commercial and government facilities.« less

  9. Facility design, construction, and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, includingmore » uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.« less

  10. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    NASA Technical Reports Server (NTRS)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts wellmore » in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.« less

  12. Maritime security report. November 2000 [Commercial maritime drug smuggling

    DOT National Transportation Integrated Search

    2000-11-01

    Port and security programs being implemented in Colombia's port facilities, maritime jurisdictions, and the marine intermodal shipping cycle are producing successful results against commercial maritime drug smuggling. This security reports examines t...

  13. Technology Transfer Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  14. 9 CFR 88.5 - Requirements at a slaughtering facility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMMERCIAL TRANSPORTATION OF EQUINES FOR SLAUGHTER § 88.5 Requirements at a slaughtering facility. (a) Upon arrival at a slaughtering facility, the owner/shipper must: (1) Ensure that each equine has access to... representative; (3) Allow a USDA representative access to the equines for the purpose of examination; and (4...

  15. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less

  16. KSC-97PC1802

    NASA Image and Video Library

    1997-12-18

    NASA’s Lunar Prospector is prepared for mating to the Trans Lunar Injection Module of the spacecraft, seen in the background, at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  17. KSC-97PC1804

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  18. KSC-97PC1806

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  19. KSC-97PC1805

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff move NASA’s Lunar Prospector spacecraft over the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  20. KSC-97PC1803

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems technicians prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  1. KSC-97PC1807

    NASA Image and Video Library

    1997-12-18

    Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft atop the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m

  2. Study of methane fuel for subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Carson, L. K.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Daniels, E. J.

    1980-01-01

    The cost and performance were defined for commercial transport using liquid methane including its fuel system and the ground facility complex required for the processing and storage of methane. A cost and performance comparison was made with Jet A and hydrogen powered aircraft of the same payload and range capability. Extensive design work was done on cryogenic fuel tanks, insulation systems as well as the fuel system itself. Three candidate fuel tank locations were evaluated, i.e., fuselage tanks, wing tanks or external pylon tanks.

  3. Forecasting Municipal and Industrial Water: IWR MAIN System User’s Guide for Interactive Processing and User’s Manual.

    DTIC Science & Technology

    1983-07-01

    LAUNDROMATS LNDY LAUNDRY MEDL MEDICAL OFFICES MOTL MOTELS MOVI DRIVE-IN MOVIES NURS NURSING HOMES OFFN NEW OFFICE BLDG. OFFO OLD OFFICE BLDG. * JAIL...CHURCHES CLUB GOLF-SWIM CLUBS BOWL BOWLING ALLEYS COLG COLLEGES RESID. HOSP MED CENTERS HOTL HOTELS LNDM LAUNDROMATS LNDY LAUNDRY MEDL MEDICAL OFFICES... Laundromat data YMCA Type Facilities Data for YMCA, YWCA, etc. U.S. Census Bureau Many commercial parameters % "Census of Business" Department of Employment

  4. Clinical Physiologic Research Instrumentation: An Approach Using Modular Elements and Distributed Processing

    PubMed Central

    Hagen, R. W.; Ambos, H. D.; Browder, M. W.; Roloff, W. R.; Thomas, L. J.

    1979-01-01

    The Clinical Physiologic Research System (CPRS) developed from our experience in applying computers to medical instrumentation problems. This experience revealed a set of applications with a commonality in data acquisition, analysis, input/output, and control needs that could be met by a portable system. The CPRS demonstrates a practical methodology for integrating commercial instruments with distributed modular elements of local design in order to make facile responses to changing instrumentation needs in clinical environments. ImagesFigure 3

  5. Biological lignocellulose solubilization: Comparative evaluation of biocatalysts and enhancement via cotreatment

    DOE PAGES

    Paye, Julie M. D.; Guseva, Anna; Hammer, Sarah K.; ...

    2016-01-12

    Feedstock recalcitrance is the most important barrier impeding cost-effective production of cellulosic biofuels. Pioneer commercial cellulosic ethanol facilities employ thermochemical pretreatment and addition of fungal cellulase, reflecting the main research emphasis in the field. However, it has been suggested that it may be possible to process cellulosic biomass without thermochemical pretreatment using thermophilic, cellulolytic bacteria. Thus, to further explore this idea, we examine the ability of various biocatalysts to solubilize autoclaved but otherwise unpretreated cellulosic biomass under controlled but not industrial conditions.

  6. Lunar Prospector mated to 4th stage

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- Lockheed Martin Missile Systems integration and test staff join NASA's Lunar Prospector spacecraft to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon's surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m.

  7. Preparation for Bagging OA-7 CYGNUS

    NASA Image and Video Library

    2017-02-21

    In the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.

  8. Ground breaking at Astrotech for a new facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dirt flies during a ground-breaking ceremony to kick off Astrotech Space Operations' construction of a new satellite preparation facility to support the Delta IV, Boeing's winning entrant in the Air Force Evolved Expendable Launch Vehicle (EELV) Program. Wielding shovels are (from left to right) Tom Alexico; Chet Lee, chairman, Astrotech Space Operations; Gen. Forrest McCartney, vice president, Launch Operations, Lockheed Martin; Richard Murphy, director, Delta Launch Operations, The Boeing Company; Keith Wendt; Toby Voltz; Loren Shriver, deputy director, Launch & Payload Processing, Kennedy Space Center; Truman Scarborough, Brevard County commissioner; U.S. Representative 15th Congressional District David Weldon; Ron Swank; and watching the action at right is George Baker, president, Astrotech Space Operations. Astrotech is located in Titusville, Fla. It is a wholly owned subsidiary of SPACEHAB, Inc., and has been awarded a 10-year contract to provide payload processing services for The Boeing Company. The facility will enable Astrotech to support the full range of satellite sizes planned for launch aboard Delta II, III and IV launch vehicles, as well as the Atlas V, Lockheed Martin's entrant in the EELV Program. The Atlas V will be used to launch satellites for government, including NASA, and commercial customers.

  9. Aluminum powder metallurgy processing

    NASA Astrophysics Data System (ADS)

    Flumerfelt, Joel Fredrick

    In recent years, the aluminum powder industry has expanded into non-aerospace applications. However, the alumina and aluminum hydroxide in the surface oxide film on aluminum powder require high cost powder processing routes. A driving force for this research is to broaden the knowledge base about aluminum powder metallurgy to provide ideas for fabricating low cost aluminum powder components. The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization commercial inert gas atomization and gas atomization reaction synthesis (GARS). The commercial atomization methods are bench marks of current aluminum powder technology. The GARS process is a laboratory scale inert gas atomization facility. A benefit of using pure aluminum powders is an unambiguous interpretation of the results without considering the effects of alloy elements. A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  10. Chevron facility focused on commercial orifice-meter research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.H.; Ferguson, K.R.

    1987-07-27

    Research to determine the accuracy of commercial orifice meters for custody-transfer measurement has indicated that high-volume gas meters can be flow-proven while in such service. The research further yielded more accurate orifice-meter discharge coefficient equations (at Reynolds numbers greater than 4,000,000) than current equations of the International Standards Organization (ISO) and the American Petroleum Institute (API). These are partial findings of a major study conducted by Chevron Oil Field Research Co. at its Venice, La., calibration facility.

  11. Saugus River and Tributaries Flood Damage Reduction Study; Lynn, Malden, Revere and Saugus, Massachusetts. Section 2. Final Environmental Impact Statement and Final Environmental Impact Report

    DTIC Science & Technology

    1989-12-01

    Growth Commercial Fishing and Commercial Fishing 91 Fleet Q Employment 92 R Population and Community Growth , Including 92 Displacement S Public Facilities...Community Growth , Including 128 Displacement S Public Facilities and Services 129 T Transportation 129 U Navigation 130 V Recreation and Open Space 133 W... Growth and more intensive development in this already densely built-up area, plus rising sea levels, guarantee the continuation of a dangerous

  12. 41 CFR 102-74.420 - What is the policy concerning photographs for news, advertising or commercial purposes?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concerning photographs for news, advertising or commercial purposes? 102-74.420 Section 102-74.420 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Conduct on Federal Property Photographs for News, Advertising Or Commercial Purposes § 102-74.420 What is the policy concerning photographs for news...

  13. 41 CFR 102-74.420 - What is the policy concerning photographs for news, advertising or commercial purposes?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... concerning photographs for news, advertising or commercial purposes? 102-74.420 Section 102-74.420 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Conduct on Federal Property Photographs for News, Advertising Or Commercial Purposes § 102-74.420 What is the policy concerning photographs for news...

  14. 41 CFR 102-74.420 - What is the policy concerning photographs for news, advertising or commercial purposes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... concerning photographs for news, advertising or commercial purposes? 102-74.420 Section 102-74.420 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Conduct on Federal Property Photographs for News, Advertising Or Commercial Purposes § 102-74.420 What is the policy concerning photographs for news...

  15. 41 CFR 102-74.420 - What is the policy concerning photographs for news, advertising or commercial purposes?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... concerning photographs for news, advertising or commercial purposes? 102-74.420 Section 102-74.420 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Conduct on Federal Property Photographs for News, Advertising Or Commercial Purposes § 102-74.420 What is the policy concerning photographs for news...

  16. 41 CFR 102-74.420 - What is the policy concerning photographs for news, advertising or commercial purposes?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concerning photographs for news, advertising or commercial purposes? 102-74.420 Section 102-74.420 Public... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Conduct on Federal Property Photographs for News, Advertising Or Commercial Purposes § 102-74.420 What is the policy concerning photographs for news...

  17. 40 CFR 52.1135 - Regulation for parking freeze.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility. (3) The phrase commercial parking space means a space used for parking a vehicle in a commercial..., and (ii) parking on public streets. (6) Freeze means to maintain at all times after October 15, 1973, the total quantity of commercial parking spaces available for use at the same amounts as were...

  18. 40 CFR 52.1135 - Regulation for parking freeze.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility. (3) The phrase commercial parking space means a space used for parking a vehicle in a commercial..., and (ii) parking on public streets. (6) Freeze means to maintain at all times after October 15, 1973, the total quantity of commercial parking spaces available for use at the same amounts as were...

  19. KSC-2013-3027

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician uses a forklift to remove the Optical Payload for Lasercomm Science, or OPALS, experiment from a truck at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  20. KSC-2013-3035

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians move the Optical Payload for Lasercomm Science, or OPALS, experiment from the air lock into an offline laboratory at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  1. KSC-2013-3028

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician uses a forklift to remove the Optical Payload for Lasercomm Science, or OPALS, experiment from a truck at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  2. KSC-2013-3030

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a forklift is used to move the Optical Payload for Lasercomm Science, or OPALS, experiment to the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  3. KSC-2013-3033

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technicians monitor the progress as a forklift is used to lower the Optical Payload for Lasercomm Science, or OPALS, experiment near the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  4. KSC-2013-3040

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians uncover and check the Optical Payload for Lasercomm Science, or OPALS, experiment in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  5. KSC-2013-3032

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician uses a forklift to move the Optical Payload for Lasercomm Science, or OPALS, experiment to the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  6. KSC-2013-3029

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a forklift is used to move the Optical Payload for Lasercomm Science, or OPALS, experiment to the air lock entrance at the Space Station Processing Facility. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  7. KSC-2013-3038

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. --At NASA’s Kennedy Space Center in Florida, technicians uncover and check the Optical Payload for Lasercomm Science, or OPALS, experiment in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  8. KSC-2013-3037

    NASA Image and Video Library

    2013-07-11

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare to uncover and check the Optical Payload for Lasercomm Science, or OPALS, experiment in a test cell at a Space Station Processing Facility offline laboratory. The optical technology demonstration experiment arrived from the agency’s Jet Propulsion Laboratory in Pasadena, Calif. NASA will use the International Space Station to test OPALS’ communications technology that could dramatically improve spacecraft communications, enhance commercial missions and strengthen transmission of scientific data. The experiment is slated to fly later this year aboard a SpaceX Dragon commercial resupply mission to the space station. The mission is expected to run 90 days after installation on the outside of the station. For more information about OPALS, visit: http://go.nasa.gov/10MMPDO. Photo credit: NASA/Jim Grossmann

  9. An overview of current activities at the National Solar Thermal Test Facility

    NASA Astrophysics Data System (ADS)

    Cameron, C. P.; Klimas, P. C.

    This paper is a description of the United States Department of Energy's National Solar Thermal Test Facility, highlighting current test programs. In the central receiver area, research underway supports commercialization of molten nitrate salt technology, including receivers, thermal energy transport, and corrosion experiments. Concentrator research includes large-area, glass-metal heliostats and stretched-membrane heliostats and dishes. Test activities in support of dish-Stirling systems with reflux receivers are described. Research on parabolic troughs includes characterization of several receiver configurations. Other test facility activities include solar detoxification experiments, design assistance testing of commercially-available solar hardware, and non-DOE-funded work, including thermal exposure tests and testing of volumetric and PV central receiver concepts.

  10. KSC-07pd0904

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, a Starfighter F-104 aircraft is being prepared for test flights. Behind the plane is Dave Waldrop, co-pilot. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd0906

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, pilot Rick Svetkoff (left) and co-pilot Dave Waldrop are ready to climb into the cockpit of the Starfighter F-104. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd0905

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, a Starfighter F-104 aircraft is being prepared for test flights. Ready to climb into the cockpit is the pilot, Rick Svetkoff. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd0915

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 comes to a stop on the KSC Shuttle Landing Facility after its test flight. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop.The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd0909

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, the Starfighter F-104 starts to taxi to the runway. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  15. KSC-07pd0910

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- From the KSC Shuttle Landing Facility, the Starfighter F-104 picks up speed on the runway for takeoff. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd0911

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 is airborne after taking off from the KSC Shuttle Landing Facility. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd0907

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- On the KSC Shuttle Landing Facility, pilot Rick Svetkoff (left) climbs toward the cockpit of the Starfighter F-104 while co-pilot Dave Waldrop settles in his seat. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd0912

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- The Starfighter F-104 banks for a turn after taking off from the KSC Shuttle Landing Facility. The pilot is Rick Svetkoff; the co-pilot is Dave Waldrop. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  19. Buffet test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  20. Stabilizing lithium metal using ionic liquids for long-lived batteries

    PubMed Central

    Basile, A.; Bhatt, A. I.; O'Mullane, A. P.

    2016-01-01

    Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652

  1. Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance.

    PubMed

    Lee, Sang Myeon; Park, Kwang Hyun; Jung, Seungon; Park, Hyesung; Yang, Changduk

    2018-05-14

    For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (M w ) and polydispersity index (Ð) can lead to inconsistent process-dependent material properties and consequent performance variations in the device application. Using a stepwise-heating protocol in the Stille polycondensation in conjunction with optimized processing, we obtained an ultrahigh-quality PTB7 polymer having high M w and very narrow Ð. The resulting ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with commercially available PTB7. Moreover, we observe almost negligible batch-to-batch variations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-quality semiconducting polymers that can significantly improve device yield in polymer-based solar cells, an important factor for the commercialization of organic solar cells, by mitigating device-to-device variations.

  2. Selecting a Control Strategy for Plug and Process Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobato, C.; Sheppy, M.; Brackney, L.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less

  3. Reduction of pasteurization temperature leads to lower bacterial outgrowth in pasteurized fluid milk during refrigerated storage: a case study.

    PubMed

    Martin, N H; Ranieri, M L; Wiedmann, M; Boor, K J

    2012-01-01

    Bacterial numbers over refrigerated shelf-life were enumerated in high-temperature, short-time (HTST) commercially pasteurized fluid milk for 15 mo before and 15 mo after reducing pasteurization temperature from 79.4°C (175°F) [corrected] to 76.1°C (169°F). Total bacterial counts were measured in whole fat, 2% fat, and fat-free milk products on the day of processing as well as throughout refrigerated storage (6°C) at 7, 14, and 21 d postprocessing. Mean total bacterial counts were significantly lower immediately after processing as well as at 21 d postprocessing in samples pasteurized at 76.1°C versus samples pasteurized at 79.4°C. In addition to mean total bacterial counts, changes in bacterial numbers over time (i.e., bacterial growth) were analyzed and were lower during refrigerated storage of products pasteurized at the lower temperature. Lowering the pasteurization temperature for unflavored fluid milk processed in a commercial processing facility significantly reduced bacterial growth during refrigerated storage. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. The effect of age and teat order on alpha1-acid glycoprotein, neutrophil-to-lymphocyte ratio, cortisol, and average daily gain in commercial growing pigs.

    PubMed

    Stull, C L; Kachulis, C J; Farley, J L; Koenig, G J

    1999-01-01

    The objectives of the study were to evaluate age and teat order on a performance trait, average daily gain, and on physiological stress indicators, alpha1-acid glycoprotein (AGP), neutrophil-to-lymphocyte ratio (N:L), and cortisol in commercial growing pigs from weaning to market age. Pigs (n = 129) from five commercial California farms were weighed and blood-sampled at 28-d intervals from 28 to 168 d of age. Laboratory assays were performed from blood samples to quantify cortisol, AGP, and N:L. Age and facility effects (P<.001), but not teat order effects (P>.05), were found for all three physiological traits and ADG. Pigs that routinely suckled from teats 1, 4, or 6 (numbered from anterior to posterior on the upper teat bank) had similar (P>.05) ADG and BW throughout the production cycle. No correlation (P> .05) was found between cortisol, AGP, and N:L. The use of these physiological and production traits as stress and health indices of growing pigs in commercial facilities has limitations in comparing data between facilities or different ages of pigs.

  5. Image Analysis for Facility Siting: a Comparison of Lowand High-altitude Image Interpretability for Land Use/land Cover Mapping

    NASA Technical Reports Server (NTRS)

    Borella, H. M.; Estes, J. E.; Ezra, C. E.; Scepan, J.; Tinney, L. R.

    1982-01-01

    For two test sites in Pennsylvania the interpretability of commercially acquired low-altitude and existing high-altitude aerial photography are documented in terms of time, costs, and accuracy for Anderson Level II land use/land cover mapping. Information extracted from the imagery is to be used in the evaluation process for siting energy facilities. Land use/land cover maps were drawn at 1:24,000 scale using commercially flown color infrared photography obtained from the United States Geological Surveys' EROS Data Center. Detailed accuracy assessment of the maps generated by manual image analysis was accomplished employing a stratified unaligned adequate class representation. Both 'area-weighted' and 'by-class' accuracies were documented and field-verified. A discrepancy map was also drawn to illustrate differences in classifications between the two map scales. Results show that the 1:24,000 scale map set was more accurate (99% to 94% area-weighted) than the 1:62,500 scale set, especially when sampled by class (96% to 66%). The 1:24,000 scale maps were also more time-consuming and costly to produce, due mainly to higher image acquisition costs.

  6. A weight-of-evidence approach to identify nanomaterials in consumer products: a case study of nanoparticles in commercial sunscreens.

    PubMed

    Cuddy, Michael F; Poda, Aimee R; Moser, Robert D; Weiss, Charles A; Cairns, Carolyn; Steevens, Jeffery A

    2016-01-01

    Nanoscale ingredients in commercial products represent a point of emerging environmental concern due to recent findings that correlate toxicity with small particle size. A weight-of-evidence (WOE) approach based upon multiple lines of evidence (LOE) is developed here to assess nanomaterials as they exist in consumer product formulations, providing a qualitative assessment regarding the presence of nanomaterials, along with a baseline estimate of nanoparticle concentration if nanomaterials do exist. Electron microscopy, analytical separations, and X-ray detection methods were used to identify and characterize nanomaterials in sunscreen formulations. The WOE/LOE approach as applied to four commercial sunscreen products indicated that all four contained at least 10% dispersed primary particles having at least one dimension <100 nm in size. Analytical analyses confirmed that these constituents were comprised of zinc oxide (ZnO) or titanium dioxide (TiO2). The screening approaches developed herein offer a streamlined, facile means to identify potentially hazardous nanomaterial constituents with minimal abrasive processing of the raw material.

  7. Conversion of Indigenous Agricultural Waste Feedstocks to Fuel Ethanol. Cooperative Research and Development Final Report, CRADA Number CRD-13-504

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elander, Richard

    This Cooperative Research and Development Agreement (CRADA) is between the National Renewable Energy Laboratory (NREL), a world leader in biomass conversion research and Ecopetrol American Inc., Ecopetrol S.A.'s U.S. subsidiary. The research and development efforts described in the Joint Work Statement (JWS) will take advantage of the strengths of both parties. NREL will use its Integrated Biorefinery Facility and vast experience in the conversion of lignocellulosic feedstocks to fuel ethanol to develop processes for the conversion of Ecopetrol's feedstocks. Ecopetrol will establish the infrastructure in Columbia to commercialize the conversion process.

  8. Evaluation of Bacteriophage Application to Cattle in Lairage at Beef Processing Plants to Reduce Escherichia coli O157:H7 Prevalence on Hides and Carcasses.

    PubMed

    Arthur, Terrance M; Kalchayanand, Norasak; Agga, Getahun E; Wheeler, Tommy L; Koohmaraie, Mohammad

    2017-01-01

    Escherichia coli O157:H7 is a major food safety concern for the beef industry. Several studies have provided evidence that cattle hides are the main source of beef carcass contamination during processing and that reductions in the E. coli O157:H7 load on the hides of cattle entering processing facilities will lead to reductions in carcass contamination. Bacteriophages have been proposed as a novel preharvest antimicrobial intervention to reduce the levels of E. coli O157:H7 on cattle hides. The objective of this study was to evaluate a commercialized phage application administered in the lairage area of commercial beef processing plants for the ability to reduce E. coli O157:H7 contamination of cattle hides and carcasses. Cattle lots either received phage spray treatment (n = 289) or did not (n = 301), as they entered the lairage environments in two separate experiments at two different commercial beef processing plants. Hide and carcass samples were collected and analyzed for E. coli O157:H7 prevalence and concentration. Cattle hides receiving phage treatment had an E. coli O157:H7 prevalence of 51.8%, whereas untreated hides had a prevalence of 57.6%. For carcass samples, the E. coli O157 prevalence in treated and untreated samples was 17.1% and 17.6%, respectively. The results obtained from these experiments demonstrated that the treatment of cattle hides with bacteriophages before processing did not produce a significant reduction of E. coli O157:H7 on cattle hides or beef carcasses during processing.

  9. Financing Strategies For A Nuclear Fuel Cycle Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Shropshire; Sharon Chandler

    2006-07-01

    To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due tomore » government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.« less

  10. A facile single-step synthesis of polyvinylpyrrolidone-silver nanocomposites using a conventional spray dryer

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Ho; Hyuck Kim, Yoon; Lee, Young Jin; Lee, Mi Jai; Kim, Jin-Ho; Hwang, Jonghee; Jeon, Dae-Woo

    2018-01-01

    We have developed a facile single-step synthesis of silver nanocomposite using a conventional spray dryer. We investigated the synthetic conditions by controlling the concentrations of the chemical reactants. Further, we confirmed the effect of the molecular weight of polyvinylpyrrolidones, and revealed that the molecular weight significantly affected the properties of the resultant silver nanocomposites. The long-term stability of the silver nanocomposites was tested, and little change was observed, even after storage for three months. Most of all, the simple commercial implementation, in combination with large-scale synthesis, possesses a variety of advantages, compared to conventional complicated and costly dry-process synthesis methods. Thus, our method presents opportunities for further investigation, for both lab-scale studies and large-scale industrial applications.

  11. Getting the Gold Treatment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Epner Technology, Inc., worked with Goddard Space Center to apply gold coating to the Vegetation Canopy Lidar (VCL) mirror. This partnership resulted in new commercial applications for Epner's LaserGold(R) process in the automotive industry. Previously, the company did not have equipment large enough to handle the plating of the stainless steel panels cost effectively. Seeing a chance to renew this effort, Epner Technology and Goddard entered into an agreement by which NASA would fund the facility needed to do the gold-plating, and Epner Technology would cover all other costs as part of their internal research and development. The VCL mirror project proceeded successfully, fulfilling Goddard's needs and leaving Epner Technology with a new facility to provide LaserGold for the automotive industry. The new capability means increased power savings and improvements in both quality and production time for BMW Manufacturing Corporation of Spartanburg, South Carolina, and Cadillac of Detroit, Michigan, as well as other manufacturers who have implemented Epner Technology's LaserGold process. LaserGold(R) is a registered trademark of Epner Technology, Inc.

  12. The National Carbon Capture Center at the Power Systems Development Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less

  13. Materials, processes, and environmental engineering network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  14. Flexible control techniques for a lunar base

    NASA Technical Reports Server (NTRS)

    Kraus, Thomas W.

    1992-01-01

    The fundamental elements found in every terrestrial control system can be employed in all lunar applications. These elements include sensors which measure physical properties, controllers which acquire sensor data and calculate a control response, and actuators which apply the control output to the process. The unique characteristics of the lunar environment will certainly require the development of new control system technology. However, weightlessness, harsh atmospheric conditions, temperature extremes, and radiation hazards will most significantly impact the design of sensors and actuators. The controller and associated control algorithms, which are the most complex element of any control system, can be derived in their entirety from existing technology. Lunar process control applications -- ranging from small-scale research projects to full-scale processing plants -- will benefit greatly from the controller advances being developed today. In particular, new software technology aimed at commercial process monitoring and control applications will almost completely eliminate the need for custom programs and the lengthy development and testing cycle they require. The applicability of existing industrial software to lunar applications has other significant advantages in addition to cost and quality. This software is designed to run on standard hardware platforms and takes advantage of existing LAN and telecommunications technology. Further, in order to exploit the existing commercial market, the software is being designed to be implemented by users of all skill levels -- typically users who are familiar with their process, but not necessarily with software or control theory. This means that specialized technical support personnel will not need to be on-hand, and the associated costs are eliminated. Finally, the latest industrial software designed for the commercial market is extremely flexible, in order to fit the requirements of many types of processing applications with little or no customization. This means that lunar process control projects will not be delayed by unforeseen problems or last minute process modifications. The software will include all of the tools needed to adapt to virtually any changes. In contrast to other space programs which required the development of tremendous amounts of custom software, lunar-based processing facilities will benefit from the use of existing software technology which is being proven in commercial applications on Earth.

  15. Proceedings and findings of the geothermal commercialization workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Dhillon, H.

    The proceedings are presented of a Geothermal Commercialization Workshop conducted by the Division of Geothermal Resource Management, Department of Energy. The workshop was held in January-February 1979 at The MITRE Corporation facility in McLean, Virginia. The workshop addressed geothermal hydrothermal commercialization achievements and needs in the areas of Marketing and Outreach, Economics, Scenarios, and Progress Monitoring.

  16. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methanemore » (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.« less

  17. From clinical proof-of-concept to commercialization of CAR T cells.

    PubMed

    Calmels, Boris; Mfarrej, Bechara; Chabannon, Christian

    2018-04-01

    The development of CAR T cells currently represents an exciting opportunity to convert the already published clinical successes observed in clinical trials into commercially available efficient therapies. However, the path toward successful commercialization is still hindered by many hurdles. Here, we review such issues as: the need for structured collaborations between hospital collection and clinical facilities and industry manufacturing facilities to streamline the supply chain; necessity for uniform and efficient medical procedures to cope with severe toxicities associated with CAR T cells; and absolute need to define an economical and sustainable model for manufacturers and payers. The fast pace at which the field is evolving requires careful assessments for the benefit of patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. System design package for the solar heating and cooling central data processing system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  19. 40 CFR 257.3-7 - Air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...

  20. 40 CFR 257.3-7 - Air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...

  1. Hazardous Waste Cleanup: Schenectady International Incorporated in Schenectady, New York

    EPA Pesticide Factsheets

    The Schenectady International, Inc. - Congress Street facility encompasses approximately 8 acres within the City of Schenectady, Schenectady County, New York. Adjacent land uses include light industrial to the south and west; commercial facilities to the

  2. Fuel Cell/Reformers Technology Development

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  3. 47 CFR 90.168 - Equal employment opportunities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 90.168 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO... Facilities Used to Provide Commercial Mobile Radio Services § 90.168 Equal employment opportunities. Commercial Mobile Radio Services licensees shall afford equal opportunity in employment to all qualified...

  4. World first in high level waste vitrification - A review of French vitrification industrial achievements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process wasmore » implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.« less

  5. KSC-2012-4601

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-4606

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  7. KSC-2012-4600

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden, right, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  8. KSC-2012-4607

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  9. KSC-2012-4602

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  10. KSC-2012-4605

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-4604

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  12. KSC-2012-4603

    NASA Image and Video Library

    2012-08-23

    CAPE CANAVERAL, Fla. – Space Florida President Frank DiBello, NASA Administrator Charlie Bolden, and Boeing's Vice President and General Manager of Space Exploration John Elbon address the media inside Orbiter Processing Facility-3, or OPF-3, at NASA's Kennedy Space Center in Florida. Bolden took a few dozen media on a road show tour of the center and adjacent Cape Canaveral Air Force Station to show the progress being made for future government and commercial space endeavors that will begin from Florida's Space Coast. Boeing is leasing OPF-3 through an agreement with Space Florida for the manufacturing and assembly of its CST-100 spacecraft, which is under development in collaboration with NASA's Commercial Crew Program. During his tour, Bolden announced that Space Exploration Technologies, or SpaceX, has completed its Space Act Agreement with NASA for Commercial Orbital Transportation Services. SpaceX is scheduled to launch the first of its 12 contracted cargo flights to the space station from Cape Canaveral this October, under NASA’s Commercial Resupply Services Program. Bolden also announced NASA partner Sierra Nevada Corp. has conducted its first milestone under the agency’s recently announced Commercial Crew Integrated Capability CCiCap initiative. The milestone, a program implementation plan review, marks an important first step in Sierra Nevada’s efforts to develop a crew transportation system with its Dream Chaser spacecraft. Through NASA’s commercial space initiatives and programs, the agency is providing investments to stimulate the American commercial space industry. Photo credit: NASA/Kim Shiflett

  13. Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits.

    PubMed

    Kylie, Jennifer; McEwen, Scott A; Boerlin, Patrick; Reid-Smith, Richard J; Weese, J Scott; Turner, Patricia V

    2017-11-01

    Antimicrobial resistance (AMR) in zoonotic (e.g. Salmonella spp.), pathogenic, and opportunistic (e.g. E. coli) bacteria in animals represents a potential reservoir of antimicrobial resistant bacteria and resistance genes to bacteria infecting humans and other animals. This study evaluated the prevalence of E. coli and Salmonella enterica, and the presence of associated AMR in commercial meat, companion, research, and shelter rabbits in Canada. Associations between antimicrobial usage and prevalence of AMR in bacterial isolates were also examined in commercial meat rabbits. Culture and susceptibility testing was conducted on pooled fecal samples from weanling and adult commercial meat rabbits taken during both summer and winter months (n=100, 27 farms), and from pooled laboratory (n=14, 8 laboratory facilities), companion (n=53), and shelter (n=15, 4 shelters) rabbit fecal samples. At the facility level, E. coli was identified in samples from each commercial rabbit farm, laboratory facility, and 3 of 4 shelters, and in 6 of 53 companion rabbit fecal samples. Seventy-nine of 314 (25.2%; CI: 20.7-30.2%) E. coli isolates demonstrated resistance to >1 antimicrobial agent. At least one E. coli isolate resistant to at least one antimicrobial agent was present in samples from 55.6% of commercial farms, and from 25% of each laboratory and shelter facilities, with resistance to tetracycline being most common; no resistance was identified in companion animal samples. Salmonella enterica subsp. was identified exclusively in pooled fecal samples from commercial rabbit farms; Salmonella enterica serovar London from one farm and Salmonella enterica serovar Kentucky from another. The S. Kentucky isolate was resistant to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, streptomycin, and tetracycline, whereas the S. London isolate was pansusceptible. Routine use of antimicrobials on commercial meat rabbit farms was not significantly associated with the presence of antimicrobial resistant E. coli or S. enterica on farms; trends towards resistance were present when resistance to specific antimicrobial classes was examined. E. coli was widely prevalent in many Canadian domestic rabbit populations, while S. enterica was rare. The prevalence of AMR in isolated bacteria was variable and most common in isolates from commercial meat rabbits (96% of the AMR isolates were from commercial meat rabbit fecal samples). Our results highlight that domestic rabbits, and particularly meat rabbits, may be carriers of phenotypically antimicrobial-resistant bacteria and AMR genes, possibly contributing to transmission of these bacteria and their genes to bacteria in humans through food or direct contact, as well as to other co-housed animal species. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under thismore » five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.« less

  15. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema

    None

    2018-02-13

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  16. Modern tornado design of nuclear and other potentially hazardous facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, J.D.; Zhao, Y.

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  17. Hazardous Waste Cleanup: Clean Harbors BTD, LLC in Clarence, New York

    EPA Pesticide Factsheets

    The Clean Harbors BDT, LLC site was a commercial treatment, storage, and disposal facility that treated reactive hazardous wastes, pressurized waste, pharmaceutical and packaged laboratory chemicals. The facility was initially owned and operated by Wilson-

  18. 78 FR 76643 - Atlantic Wind Lease Sale 3 (ATLW3) Commercial Leasing for Wind Power on the Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ...: Nameplate capacity is the maximum rated electric output, expressed in MW, which the turbines of the wind facility under commercial operations can produce at their rated wind speed as designated by the turbine's...; MMAA104000] Atlantic Wind Lease Sale 3 (ATLW3) Commercial Leasing for Wind Power on the Outer Continental...

  19. Air velocity distribution in a commercial broiler house

    USDA-ARS?s Scientific Manuscript database

    Increasing air velocity during tunnel ventilation in commercial broiler production facilities improves production efficiency, and many housing design specifications require a minimum air velocity. Air velocities are typically assessed with a hand-held velocity meter at random locations, rather than ...

  20. Driver detention times in commercial motor vehicle operations : [research brief].

    DOT National Transportation Integrated Search

    2014-12-01

    The purpose of this project was to better understand : the nature of detention times in the commercial motor : vehicle (CMV) industry. Detention time refers to the : time that CMV operators may experience at shipping : and receiving facilities associ...

  1. Commercial Generic Bioprocessing Apparatus

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CGBA, a facility developed by BioServe Space Technologies, a NASA Commercial Generic Bioprocessing Space Center, allows a variety of sophisticated bioprocessing research to be performed using a common device. The Fluids Processing Apparatus is essentially a microgravity test tube that allows a variety of complex investigations to be performed in space. This is a glass barrel containing several chambers separated by rubber stoppers. Eight FPAs are placed together in a Group Activation Pack (GAP), which allows all of the research to be started simultaneously by turning a single crank. Eight GAPs, or similar-sized payloads, can be stored in a single CGBA temperature controlled locker, which now uses motor drives to automatically turn the cranks to start and stop experiments. On STS-95, research efforts cover eight major areas that will benefit Earth-based products ranging from the production of pharmaceuticals to fish hatcheries.

  2. Prevalence and parasitemia of Haemogregarina sp. in Podocnemis expansa (Testudines: Podocnemididae) from the Brazilian Amazon.

    PubMed

    Picelli, Amanda Maria; de Carvalho, Aluísio Vasconcelos; Viana, Lúcio André; Malvasio, Adriana

    2015-01-01

    Seventy-five turtles Podocnemis expansa in the Brazilian Amazon were examined for the presence of ectoparasites and hemoparasites. Samplings were performed in three study areas in the state of Tocantins, Brazil. Twenty-five specimens were sampled per study area (a commercial breeding facility, an indigenous subsistence breeding facility and a wild population of the Javaés River). Hemoparasites of the genus Haemogregarina were found in 66% (50/75) of the turtle specimens, and the infections were restricted to the commercial breeding facility and to the wild population of the Javaés River. The mean level of parasitemia was 54/2,000 erythrocytes (2%). There was no correlation between the body condition index of the chelonians and the level of parasitemia, with no significant difference between genders. No leeches were observed during the physical exams in any of the study areas, but the specimens from the commercial breeding facility were in poor physical condition with shell deformities and the presence of a relatively high amount of skin ulcerations, most likely caused by fungi and bacteria. This was the first study to record the occurrence of hemogregarines on a population scale in P. expansa and helps to increase knowledge about hemoparasites in chelonians in Brazil.

  3. Vice President Pence Visits NASA's Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence got a first-hand look at the public-private partnerships at America’s multi-user spaceport on Thursday, July 6, during a visit to NASA’s Kennedy Space Center in Florida. Speaking in the center’s iconic Vehicle Assembly Building, the Vice President thanked employees for their commitment to America’s continued leadership in the space frontier, before taking a tour showcasing both NASA and commercial work that will soon lead to U.S.-based astronaut launches and eventual missions into deep space. The Vice President started his visit at Shuttle Landing Facility, the former space shuttle landing strip now leased and operated by Space Florida. He also visited the Neil Armstrong Operations and Checkout Building, where the Orion spacecraft is being prepped for its first integrated flight with the Space Launch System (SLS) in 2019. A driving tour showcased the mobile launch platform being readied for SLS flights as well as two commercial space facilities: Launch Complex 39A, the historic Apollo and shuttle pad now leased by SpaceX and used for commercial launches, and Boeing’s facility, where engineers are prepping the company’s Starliner capsule for crew flights to the space station in the same facility once used to do the same thing for space shuttles.

  4. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foare, Genevieve; Meze, Florian; Bader, Sven

    2013-07-01

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were dividedmore » into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)« less

  5. Selecting reasonable future land use scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allred, W.E.; Smith, R.W.

    1995-12-31

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example.more » The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.« less

  6. Modeling Natural Attenuation of an Industrial Facility in Houston

    NASA Astrophysics Data System (ADS)

    Sun, D.

    2016-12-01

    Groundwater monitoring is currently ongoing at a commercial/industrial facility located in Deer Park, Texas (the site). The subject site is an approximate 10 acre commercial/industrial facility that began operation in the late-1970s. Operations have historically consisted of vehicle maintenance services, administrative, and equipment storage. Assessment and groundwater monitoring activities have been conducted at the site to evaluate the magnitude and extent of groundwater affected with chlorinated volatile organic compounds (VOCs). Groundwater data has been collected at this site since the mid-2000s on a quarterly basis. Presently, VOC constituents tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) are the only chemicals of concern (COCs) detected at concentrations exceeding the TCEQ Actions Levels established by the state of Texas. The goal is that one day the site will receive a certificate of completion from the state, which states that all non-responsible parties are released from all liability to the state for cleanup. The remediation technology that is currently being used at this site is Monitoring Natural Attenuation (MNA). A significant question is whether MNA is efficiently removing COCs in groundwater and how long will this process take to achieve the remediation goals. The objective of this study is to provide an estimate of concentrations of COCs in groundwater at the site using the Biochlor model. The Biochlor model will help answer the question as to whether or not natural attenuation is occurring at the site efficiently. Results show that Monitored Natural Attenuation may not be the optimal remediation technology to use at this site. Other remedial technologies are needed to clean up chemical in the site. Groundwater monitoring is currently ongoing at a commercial/industrial facility located in Deer Park, Texas (the site). The subject site is an approximate 10 acre commercial/industrial facility that began operation in the late-1970s. Operations have historically consisted of vehicle maintenance services, administrative, and equipment storage. Assessment and groundwater monitoring activities have been conducted at the site to evaluate the magnitude and extent of groundwater affected with chlorinated volatile organic compounds (VOCs). Groundwater data has been collected at this site since the mid-2000s on a quarterly basis. Presently, VOC constituents tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) are the only chemicals of concern (COCs) detected at concentrations exceeding the TCEQ Actions Levels established by the state of Texas. The goal is that one day the site will receive a certificate of completion from the state, which states that all non-responsible parties are released from all liability to the state for cleanup. The remediation technology that is currently being used at this site is Monitoring Natural Attenuation (MNA). A significant question is whether MNA is efficiently removing COCs in groundwater and how long will this process take to achieve the remediation goals. The objective of this study is to provide an estimate of concentrations of COCs in groundwater at the site using the Biochlor model. The Biochlor model will help answer the question as to whether or not natural attenuation is occurring at the site efficiently. Results show that Monitored Natural Attenuation may not be the optimal remediation technology to use at this site. Other remedial technologies are needed to clean up chemical in the site.

  7. OA-7 Cargo Module Hatch Closure and Rotate to Vertical at SSPF

    NASA Image and Video Library

    2017-02-12

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the hatch is closed on the Cygnus spacecraft's pressurized cargo module (PCM) for the Orbital ATK CRS-7 mission to the International Space Station. The module is then rotated to vertical for mating to the service module. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.

  8. Veg-03 Pillows Preparation for Flight

    NASA Image and Video Library

    2016-03-23

    Inside a laboratory in the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida, 18 plant pillows for the Veg-03 experiment have been prepared for delivery to the International Space Station aboard the eighth SpaceX Dragon commercial resupply mission. The Veg-03 plant pillows will contain ‘Tokyo Bekana’ cabbage seeds and lettuce seeds for NASA’s third Veggie plant growth system experiment. The experiment will continue NASA’s deep space plant growth research to benefit the Earth and the agency’s journey to Mars.

  9. Illuminating Cell Biology

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  10. Boeing CST-100 Starliner Base Heat Shield Installation

    NASA Image and Video Library

    2018-03-15

    On March 15, the base heat shield for Boeing’s CST-100 Starliner was freshly installed on the bottom of Spacecraft 1 in the High Bay of the Commercial Crew and Cargo Processing Facility at Kennedy Space Center. This is the spacecraft that will fly during the Pad Abort Test. The next step involves installation of the back shells and forward heat shield, and then the crew module will be mated to the service module for a fit check. Finally, the vehicle will head out to White Sands Missile Range in New Mexico for testing.

  11. OA-7 Nano-rack Installation

    NASA Image and Video Library

    2017-02-27

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians begin the process to install several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

  12. OA-7 CYGNUS Processing Activities: Nano-Rack Installation

    NASA Image and Video Library

    2017-02-27

    Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians install several Nanoracks on the exterior of the Orbital ATK Cygnus pressurized cargo module. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station no earlier than March 21, 2017. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

  13. OA-7 Mate Service Module to Cargo Module

    NASA Image and Video Library

    2017-02-14

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians and engineers mate a Cygnus spacecraft's pressurized cargo module to its service module. Cygnus is being prepared to deliver thousands of pounds of supplies, equipment and scientific research materials on the Orbital ATK CRS-7 mission to the International Space Station. Scheduled to launch on March 19, 2017, the commercial resupply services mission will lift off atop a United Launch Alliance Atlas V rocket from Space launch Complex 41 at Cape Canaveral Air Force Station.

  14. KAMAG Arrival for OA-7 CYGNUS

    NASA Image and Video Library

    2017-02-21

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a KAMAG transporter has arrived in the high bay. Technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.

  15. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  16. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  17. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  18. 36 CFR 1280.102 - When do NARA regional records services facilities allow other groups to use their public areas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... public areas for events? (a) Although NARA regional records services facility auditoriums and other... auditoriums or other public spaces for any activities that involve: (1) Profit making; (2) Commercial...

  19. Hazardous Waste Cleanup: Mannington Mills Incorporated in Salem, New Jersey

    EPA Pesticide Factsheets

    Mannington Mills, Inc. manufactures vinyl based flooring for residential and commercial use. The facility is located on Mannington Mills Road in Salem, New Jersey and has been in operation since 1924. The historic and current manufacturing facility acreage

  20. Hazardous Waste Cleanup: Republic Environmental Systems in Farmingdale, New York

    EPA Pesticide Factsheets

    The Republic Environmental Systems facility was located in an area of industrial and commercial properties. The facility was surrounded by a perimeter fence and consisted of two main buildings (Building 1 and Building 2) and a small maintenance building

Top