Sample records for commercial space industry

  1. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    We are at a turning point in the history of space exploration and development, where new industries are being born to use space in non-traditional ways. Established state-run industrial space sector is no longer the only game in town; commercial space is becoming competitive. Many new entrepreneurial companies, such as SpaceX, Deep Space Industries, etc. are developing new markets, such as Orbital, Suborbital, and Deep Space. Together, government and private industry can facilitate the birth of this new industry. The U.S. national policy on commercial space is to develop a robust and competitive U.S. commercial space sector and to energize competitive domestic industries to participate in global markets. NASA can do this by purchasing and using commercial space capabilities and services; exploring the use of nontraditional arrangements for acquiring space capabilities and services; refraining from activities that preclude, discourage, or compete with commercial space activities; and pursuing opportunities to transfer some functions to the commercial space sector, where beneficial. Commercial space must be competitive, while the government has other priorities such as safety, jobs, etc.

  2. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2014-01-01

    Presenter will give a lecture on the emerging commercial space industry at International Space University's 2014 Space Studies Program (SSP) at McGill University in Montreal, Canada. The presentation consists of 38 Powerpoint slides and describes the emerging commercial space sector, key players and capabilities. The slides explain which areas that the commercial sector is taking hold, what new markets are attracting start up companies, and which companies are participating. A discussion of how governments can help with the new industry's development is offered.

  3. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    NASA Astrophysics Data System (ADS)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights

  4. Space industrialization. [space flight and environment for commercial/utilitarian purposes

    NASA Technical Reports Server (NTRS)

    Disher, J. H.

    1977-01-01

    Space industrialization is defined as the use of space flight and the space environment for commercial or utilitarian purposes in contrast to other uses such as gains in basic scientific knowledge, national defense, or exploration. Some unique attributes of space that make it amenable to industrial use include overview of the earth, the 'zero gravity' effect, potential for near perfect vacuum, unlimited reservoir for disposal of waste products, availability of essentially uninterrupted flow of solar energy, and the 'perpetual motion' characteristic of orbital mechanics. The role of human participation in assembling and maintaining the large sophisticated systems that will be required for future space industrialization needs is considered.

  5. Second Symposium on Space Industrialization. [space commercialization

    NASA Technical Reports Server (NTRS)

    Jernigan, C. M. (Editor)

    1984-01-01

    The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.

  6. Space Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  7. Commercial use of space - The space business era

    NASA Technical Reports Server (NTRS)

    Griffin, G. D.

    1985-01-01

    Progress and avenues being explored by NASA to hasten the commercialization of space are described. A task force has recommended that the effort begin at once, that bureaucratic barriers to commercial space activities be removed, and that a partnership between government and industry be seriously explored. The government role is to establish links with private industry, invest in high-leverage technologies and space facilities which will be attractive to commercial ventures, and contribute to commercial enterprises where risks are high and significant economic benefits can be foreseen. The government/industry relationship can be legally evinced by MOUs, joint endeavor agreements, technical exchange agreements and industrial guest investigator arrangements. The Space Station is the first step in that it allows Americans to live and work in space. It is expected that international participation in Space Station development and utilization will accelerate the space business era.

  8. NewSpace: The Emerging Commercial Space Industry

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  9. An Initial Strategy for Commercial Industry Awareness of the International Space Station

    NASA Technical Reports Server (NTRS)

    Jorgensen, Catherine A.

    1999-01-01

    While plans are being developed to utilize the ISS for scientific research, and human and microgravity experiments, it is time to consider the future of the ISS as a world-wide commercial marketplace developed from a government owned, operated and controlled facility. Commercial industry will be able to seize this opportunity to utilize the ISS as a unique manufacturing platform and engineering testbed for advanced technology. NASA has begun the strategic planning of the evolution and commercialization of the ISS. The Pre-Planned Program Improvement (P3I) Working Group at NASA is assessing the future ISS needs and technology plans to enhance ISS performance. Some of these enhancements will allow the accommodation of commercial applications and the Human Exploration and Development of Space mission support. As this information develops, it is essential to disseminate this information to commercial industry, targeting not only the private and public space sector but also the non-aerospace commercial industries. An approach is presented for early distribution of this information via the ISS Evolution Data book that includes ISS baseline system information, baseline utilization and operations plans, advanced technologies, future utilization opportunities, ISS evolution and Design Reference Missions (DRM). This information source and tool can be used as catalyst in the commercial world for the generation of ideas and options to enhance the current capabilities of the ISS.

  10. Government and Industry Issues for Expanding Commercial Markets into Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2003-01-01

    In 2002, the Foresight and Governance Project at the Woodrow Wilson Center in Washington, D.C, organized a "Global Foresight Workshop" in partnership with NASA and in cooperation with other Federal Agencies to provide integrated consideration of broad challenges for the 2lst century. Many long-range goals for the nation were discussed and selected, among them were space related goals of interest to NASA. During much of the Agency's history, NASA advanced studies have focused consistently on the challenges of science-driven space exploration and operations. However, workshop findings indicate little interest in these goals unless they can also solve national and global issues. Many technologies and space development studies indicate great potential to enable new, important commercial markets in space that could address the many global challenges facing America in this century. But communication of these ideas are lacking. In conclusion, it appears that the commercial development of space could have broad implications on many impending problems, including energy resources, environmental impact, and climate changes. The challenge will be to develop a consistent coordinated effort among the many industries and Agencies that should be involved in opening this new frontier for these new commercial markets.

  11. Benefits Awareness: Educating Industry, Finance, and the Public About Space Commercialization

    NASA Technical Reports Server (NTRS)

    Powers, Blake; Nall, Mark; Casas, Joseph C.; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    For space to be truly commercialized, businesses of all sizes and types must be involved, from foundries to agricultural research initiatives. Achieving this goal, however, requires three separate but integrated educational efforts to support it. The first is to educate industry leaders about the possibilities available through such research, while dispelling some of the myths and misinformation educate the financial community about the economic benefits that result both from the research and the leveraging of private research dollars through the use of space and microgravity research. The third is to educate the public about the tangible benefits that come directly to them from such efforts, the economic benefits to national economies from same, and the other less tangible benefits that will cascade from commercial operations. Together, these steps will educate and provide the framework necessary to help advance space commercialization.

  12. Synergistic control center development utilizing commercial technology and industry standards. [NASA space programs

    NASA Technical Reports Server (NTRS)

    Anderson, Brian L.

    1993-01-01

    The development of the Control Center Complex (CCC), a synergistic control center supporting both the Space Station Freedom and the Space Shuttle Program, is described. To provide maximum growth and flexibility, the CCC uses commercial off-the-shelf technology and industry standards. The discussion covers the development philosophy, CCC architecture, data distribution, the software platform concept, workstation platform, commercial tools for the CCC, and benefits of synergy.

  13. Participating in commercial space ventures: Introduction to NASA Centers for the Commercial Development of Space and the Cooperative Agreements Programs

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to a Presidential directive, NASA has implemented a space policy which actively supports and encourages U.S. industry investment and participation in commercial space ventures. NASA's Office of Commercial Programs (OCP) has played a significant role in stimulating the growth of commercial space activity. Through a variety of programs, OCP encourages commercial interest and involvement in space endeavors by providing access to NASA resources and opportunities for the emerging space industry to reduce the technical, financial, and business risks associated with space-related activities. This manual describes NASA's Commercial Uses of Space Program and introduces participants to four major OCP Commercial programs: Technology Utilization (TU), Small Business Innovation Research (SBIR), Centers for the Commercial Development of Space Flight Agreement (CCDSFA), and Cooperative Agreements Programs. The objective of this manual is to assist U.S. industry identify and pursue the appropriate agreement for participation in a commercial space venture.

  14. A gap analysis of meteorological requirements for commercial space operators

    NASA Astrophysics Data System (ADS)

    Stapleton, Nicholas James

    Commercial space companies will soon be the primary method of launching people and supplies into orbit. Among the critical aspects of space launches are the meteorological concerns. Laws and regulations pertaining to meteorological considerations have been created to ensure the safety of the space industry and those living around spaceports; but, are they adequate? Perhaps the commercial space industry can turn to the commercial aviation industry to help answer that question. Throughout its history, the aviation industry has dealt with lessons learned from mishaps due to failures in understanding the significance of weather impacts on operations. Using lessons from the aviation industry, the commercial space industry can preempt such accidents and maintain viability as an industry. Using Lanicci's Strategic Planning Model, this study identified the weather needs of the commercial space industry by conducting three gap analyses. First, a comparative analysis was done between laws and regulations in commercial aviation and those in the commercial space industry pertaining to meteorological support, finding a "legislative gap" between the two industries, as no legal guarantee is in place to ensure weather products remain available to the commercial space industry. A second analysis was conducted between the meteorological services provided for the commercial aviation industry and commercial space industry, finding a gap at facilities not located at an established launch facility or airport. At such facilities, many weather observational technologies would not be present, and would need to be purchased by the company operating the spaceport facility. A third analysis was conducted between the meteorological products and regulations that are currently in existence, and those needed for safe operations within the commercial space industry, finding gaps in predicting lightning, electric field charge, and space weather. Recommendations to address these deficiencies have

  15. Proceedings of the Second Annual Symposium on Industrial Involvement and Successes in Commercial Space

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The proceedings of the conference are presented. It is proposed that commercial development in space is an important element in the future competitive posture of the industrial nations of the world. The resources and characteristics of space will play a major role in opening a new economic frontier for all the spacefaring nations of the world. Some topics of discussion are as follow: NASA's mission and the role of CCD's; A balanced commercial access to space; Systems for COMET; SPACEHAB; Space Station Freedom; The center for macromolecular crystallography; Center for space power and advanced electronics; and The center for mapping.

  16. Commercial space infrastructure - Giving industry a lift

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Wood, Peter W.

    1991-01-01

    Private sector initiatives directed toward establishing a commercial space sector in the fields of commercial space transportation, payload processing, upper stages, launch facilities, and other facilities and equipment are presented. Consideration is given to a payload processing facility that is capable of providing all prelaunch services required by communications satellites targeted for launch on U.S. launch systems. Attention is given to NASA's efforts to promote commercial infrastructure development for the creation of new products and services, leading to new markets and businesses.

  17. Business in orbit - The commercial use of space

    NASA Technical Reports Server (NTRS)

    Gillam, I. T., IV

    1985-01-01

    Current and proposed business opportunities in space are discussed. The advantages offered by the zero gravity environment of space are examined. The roles of the Space Shuttle and the Space Station in space commercialization are described. International development and use of the Space Station is proposed. It is observed that the communications satellite industry is a successful space venture, and opportunities for materials processing and pharmaceuticals production in space are considered. The relationship between NASA's Office of Commercial Programs, which assists businesses in space commercialization, and industry is studied. The impact of space commercialization on the national economy and international trade is analyzed.

  18. Programmatic and economic challenges for commercial space processing

    NASA Astrophysics Data System (ADS)

    Overfelt, Tony; Watkins, John

    1997-01-01

    The International Space Station is the largest cooperative space project in history and is likely to be industry's most viable access to the low-g environment for long duration materials processing experiments. Such access will provide unique and competitive research capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial projects. Although ``commercial utilization'' implies a variety of things to different people, the key industrial issues are frequent, reliable, and economical access to space as well as protection of private sector intellectual property rights. This paper discusses how these key issues will influence the programmatic and economic challenges for commercial space processing in the future Space Station era.

  19. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    NASA Astrophysics Data System (ADS)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  20. Enabling Sustainable Exploration through the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  1. Commercial biotechnology processing on International Space Station

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Hardin, Juanita R.; Lewis, Marian L.

    1998-01-01

    Commercial biotechnology processing in space has the potential to eventually exceed the $35 billion annual worldwide market generated by the current satellite communications industry (Parone 1997). The International Space Station provides the opportunity to conduct long-term, crew-tended biotechnology research in microgravity to establish the foundation for this new commercial biotechnology market. Industry, government, and academia are collaborating to establish the infrastructure needed to catalyze this biotechnology revolution that could eventually lead to production of medical and pharmaceutical products in space. The biotechnology program discussed herein is evidence of this collaborative effort, with industry involvement from Space Hardware Optimization Technology, Inc., government participation through the NASA Commercial Space program, and academic guidance from the Consortium for Materials Development in Space at the University of Alabama in Huntsville. Blending the strengths and resources of each collaborator creates a strong partnership, that offers enormous research and commercial opportunities.

  2. Space Station Workshop: Commercial Missions and User Requirements

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The topics of discussion addressed during a three day workshop on commercial application in space are presented. Approximately half of the program was directed towards an overview and orientation to the Space Station Project; the technical attributes of space; and present and future potential commercial opportunities. The remaining time was spent addressing technological issues presented by previously-formed industry working groups, who attempted to identify the technology needs, problems or issues faced and/or anticipated by the following industries: extraction (mining, agriculture, petroleum, fishing, etc.); fabrication (manufacturing, automotive, aircraft, chemical, pharmaceutical and electronics); and services (communications, transportation and retail robotics). After the industry groups presented their technology issues, the workshop divided into smaller discussion groups composed of: space experts from NASA; academia; industry experts in the appropriate disciplines; and other workshop participants. The needs identified by the industry working groups, space station technical requirements, proposed commercial ventures and other issues related to space commercialization were discussed. The material summarized and reported are the consensus from the discussion groups.

  3. Space America's commercial space program

    NASA Technical Reports Server (NTRS)

    Macleod, N. H.

    1984-01-01

    Space America prepared a private sector land observing space system which includes a sensor system with eight spectral channels configured for stereoscopic data acquisition of four stereo pairs, a spacecraft bus with active three-axis stabilization, a ground station for data acquisition, preprocessing and retransmission. The land observing system is a component of Space America's end-to-end system for Earth resources management, monitoring and exploration. In the context of the Federal Government's program of commercialization of the US land remote sensing program, Space America's space system is characteristic of US industry's use of advanced technology and of commercial, entrepreneurial management. Well before the issuance of the Request for Proposals for Transfer of the United States Land Remote Sensing Program to the Private Sector by the US Department of Commerce, Space Services, Inc., the managing venturer of Space America, used private funds to develop and manage its sub-orbital launch of its Conestoga launch vehicle.

  4. Non-US approaches to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, P. G.

    1984-01-01

    The approaches to the commercialization of space taken by the four foreign countries most active in the field - Canada, France, the Federal Republic of Germany, and Japan are described. National space program elements with commercial potential are examined in the context of national industrial and science policies, with special attention to objectives, timetables, and budgetary priority relative to other sectors. The role of the European Space Agency in attaining national and regional commercialization objectives is also examined.

  5. Space-Derived Imagery and a Commercial Remote Sensing Industry: Impossible Dream or Inevitable Reality?

    NASA Astrophysics Data System (ADS)

    Murray, Felsher

    Landsat-1 was launched in 1972 as a research satellite. Many of us viewed this satellite as a precursor to remote sensing "commercialization." Indeed since that time, the birth, growth and maturation of a remote sensing "industry" has been an ongoing objective for much of the U.S. private sector engaged in space and ground-segment activities related to the acquisition, analysis, and dissemination of imagery. In September 1999 a U.S. commercial entity, Space Imaging, Inc. launched its 1-meter pan/4-meter multispectral IKONOS sensor. DigitalGlobe, Inc. (nee EarthWatch, Inc.) matched this feat in October 2001. Thus, a full 30 years later, we are finally on the brink of building a true remote sensing information industry based on the global availability of competitively-priced space- derived imagery of the Earth. The upcoming availability of similar imagery from non-U.S. sources as ImageSat and U.S. sources as ORBIMAGE will only strengthen that reality. However, a remote sensing industry can only grow by allowing these entities (in times of peace) unencumbered access to a world market. And that market continues to expand -- up 11% in 2001, with gross revenues of U.S. commercial remote sensing firms alone reaching 2.44 billion, according to a joint NASA/ASPRS industry survey. However, the 30-year gap between the research-labeled Landsat-1 and our current commercial successes was not technology-driven. That lacuna was purely political -- driven by valid concerns related to national security. Although the world's governments have cooperated thoroughly and completely in areas related to satellite telecommunications, cooperation in space-derived image information is still today done cautiously and on a case-by-case basis -- and then only for science- based undertakings. It is still a fact that, except for the United States, all other Earth-imaging satellites/sensors flying today are owned, operated, and their products disseminated, by national governments -- and not private

  6. 75 FR 70347 - Commercial Space Transportation Advisory Committee; Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Regulations, notice is hereby given that the Commercial Space Transportation Advisory Committee (COMSTAC) has... matters concerning the U.S. commercial space transportation industry. The [[Page 70348

  7. Commercialization is Required for Sustainable Space Exploration and Development

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  8. Commercial Use of Space: a New Economic Strength for America

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space commerce is composed of diverse activities which fall into four broad areas: satellite communications, earth and ocean observations, materials research and processing, and space transportation and industrial services. Space has become an industrial laboratory for materials research and processing. NASA's role in the commercial use of space is discussed through its commercial development program.

  9. Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight

    NASA Technical Reports Server (NTRS)

    Alpert, Brian K.

    2015-01-01

    As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration

  10. Space station needs, attributes, and architectural options: Commercial opportunities in space

    NASA Technical Reports Server (NTRS)

    Wolbers, H. L., Jr.

    1983-01-01

    The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.

  11. 76 FR 82031 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... conducted by AST because of its knowledge and resources in the commercial space industry. The purpose of the... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Risk Management Working Group Teleconference...

  12. NASA's approach to the commercial use of space

    NASA Technical Reports Server (NTRS)

    Gillam, I. T., IV

    1984-01-01

    NASA planning activities in the area of commercial development of space resources are reviewed. Examples of specific types of commercial space ventures are given, according to three different categories: new commercial high-technology ventures; new commercial application of existing space technology, and commercial ventures resulting from the transfer of existing space programs to the private sector. Basic objectives for reducing technical, financial and institutional risks for commercial space operations are considered. Attention is given to the cooperative working environment encouraged by Joint Endeavor Agreements (JEAs) and Technical Exchange Agreements (TEAs) between industrial organizations in the development of space systems. Benefits of the commercial development of space resources include the production of purer pharmaceuticals for the treatment of cancers, kidney diseases, and diabetes; and the development of ultra-pure semiconductor crystals for use in next generation electronic equipment.

  13. Commercial potential of space-based plant research

    NASA Astrophysics Data System (ADS)

    Bula, Raymond J.; Christophersen, Eric

    1999-01-01

    Plant research conducted in space by commercial organizations could enhance the development of plant materials having superior characteristics and unique constituents for a wide range of agricultural, industrial, and medical applications. These commercial efforts will also include terrestrial application of controlled environment technologies that reduce the time involved in making the new plant materials available in the marketplace. The International Space Station with its ability to support long duration plant experiments will be critically important to such commercial activities.

  14. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  15. 77 FR 71474 - Commercial Space Transportation Advisory Committee-Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Transportation (DOT). ACTION: Announcement of Charter Renewal of the Commercial Space Transportation Advisory... space transportation industry. This charter renewal will take effect on November 16, 2012, and will...

  16. Space industrialization: A national perspective

    NASA Technical Reports Server (NTRS)

    Reis, V. H.

    1984-01-01

    Space industrialization (or commercialization) has the potential to be a major player in America's space program. If this potential is to be realized, however, industrialization efforts must be considered within the context of the other major portions of the space program: shuttle, space station, and civil remote sensing. Further, development efforts must be based upon a sound scientific and technical understanding of the products and processes, and there must be a trained cadre of dedicated individuals willing to devote time and effort to this effort. There remain considerable risks and uncertainties. Given all this, the best path to follow would seem to be a long term, balanced commitment, emphasizing government, industry, and academia partnerships. Several points are addressed: (1) the place of space industrialization in the overall national space program; (2) the meaning of space industrialization with respect to the historic, national aims of space; and (3) specifically what is being industrialized.

  17. CASH 2021: commercial access and space habitation.

    PubMed

    Aldrin, Andrew; Amara, Adam; Aris, Lodewijk; Baierl, Nida; Beatty, Patrick; Beaulieu, Catherine; Behnke, Torsten; Castegini, Roberta; Chauhan, Amitabh; Cojanis, Philip; Dayawansa, Pelawa; Diop, Marie; Eito, Kinya; Engle, Steve; Feretti, Stefano; Gassama, Hamet; Genova, Bojana; Goulding, Colin; Janjua, Jameel; Jansaeng, Thidarat; Jousset, Frederic; Kopik, Anatoly; Laurin, Catherine; Leggatt, Jason; Li, Hengnian; Mezzadri, Monica; Miura, Amane; Nolet, Simon; Ogami, Satoshi; Patry, Johanne; Patten, Laryssa; Payerne, Cyril; Peer, Guy; Prampolini, Marco; Rheaume, Caroline; Saary, Joan; Spehar, Daniela; Sufi, Atiya; Sun, Baosheng; Thompson, J Barry; Thomson, Ward; Trautner, Roland; Tursunmuratov, Murat; Venet, Vrata; Wilems, Elizabeth; Wilson, Helen; Wittwer, Karl; Wokke, Frank; Wu, Yansheng; Zhou, Shaobin; Zilioli, Ilaria

    2002-01-01

    Issues about commercialization of space have been a growing concern in the past decade for the space community. This paper focuses on the work from a team of 51 students attending the Summer Session Program of the International Space University in Bremen, Germany. CASH 2021 (Commercial Access and Space Habitation) documents a plan that identifies commercial opportunities for space utilization that will extend human presence in space, and will chart the way forward for the next 20 years. The group selected four commercial sectors that show the most promise for the future: tourism, entertainment, space system service, assembly and debris removal, and research and development/production. The content of this document presents the results of their research. Historical activities in each of the commercial sectors are reviewed along with the current market situation. To provide a coherent background for future commercialization possibilities a scenario has been developed. This scenario includes a postulated upon ideal future and includes social, political and economic factors that may affect the space industry over the timeline of the study. The study also presents a roadmap, within the limited optimistic scenario developed, for the successful commercialization of space leading to future human presence in space. A broad range of commercially viable opportunities, not only within the current limits of the International Space Station, but also among the many new developments that are expected by 2021 are discussed. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  18. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    NASA Technical Reports Server (NTRS)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  19. Commercial opportunities utilizing the International Space Station

    NASA Astrophysics Data System (ADS)

    Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth

    1998-01-01

    The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.

  20. Economic consequences of commercial space operations

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Wood, Peter W.

    1990-01-01

    The potential economic benefits generated from increased industry involvement and investment in space activities and the subsequent cost implications are discussed. A historical overview of commercial industry involvement in space is given and sources of new economic growth in space are discussed. These include communications satellites, small satellites, positioning and navigation services, space transportation and infrastructure, remote sensing, and materials processing in space such as the manufacturing of protein crystals and zeolites. Macroeconomic trends and principles such as limits on technology trade, eased restrictions on international joint ventures, foreign investments in U.S. firms, and increased foreign competition are discussed. Earth observations and mapping are considered. Opportunities for private sector involvement in building space infrastructure and space transportation are highlighted.

  1. Space Biotechnology and Commercial Applications University of Florida

    NASA Technical Reports Server (NTRS)

    Phillips, Winfred; Evanich, Peggy L.

    2004-01-01

    collect real-time information from these systems to ensure crew safety. This new class of nanosensors will be critical to monitoring the space flight environment in future NASA space systems. The Commercial Applications component of this program pursued industry partnerships to develop products for terrestrial use of NASA sponsored technologies, and in turn to stimulate growth in the biotechnology industry. For technologies demonstrating near term commercial potential, the objective is to include industry partners on or about the time of proof of concept that will not only co-invest in the technology but also take the resultant technology to the commercial market.

  2. NASA's commercial space program - Initiatives for the future

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1990-01-01

    NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.

  3. The Impact of Space Commercialization on Space Agencies: the Case of NASA

    NASA Astrophysics Data System (ADS)

    Zervos, Vasilis

    2002-01-01

    The purpose of this paper is to examine the hypothesis that commercialisation of space results in inefficient contracting policies by the space agencies, using the US NASA as a case study. Though commercialisation is seen by many as a way to reduce costs in space programmes, as the space industry is seen as a decreasing costs industry, this is not a problem-free process. Commercialisation of space has affected the US and European space industries and policies in two major ways. The first is that the public sector actively encourages mergers and acquisitions of major contractors, confined, however, within the geographical borders of the US and Europe. This follows largely from the perceived benefits of economies of size when competing in global commercial markets. The second is the formation of an increasing number of public-private partnerships (PPPs) in space programmes and a more `cosy' relationship between the two within a public-assistance strategic trade theoretic framework. As ESA's contracting policy of `juste retour' is marked by limited competition, the paper focuses on the case of NASA, which is expected to be more pro- competitive, to examine the impact of commercialisation. With the use of quantitative methods based on time series econometric analysis, the paper shows that NASA's contracting policy, results in increasingly less competition and more rent-favouring contracting. This is attributed to the decreasing number of major contractors in conjunction with the preferential treatment of the domestic space industry (`Buy American'). The results of the paper verify that the support of the domestic space industry in commercial and public space markets results in inefficient contracting policies, with NASA facing the conflicting tasks of a stated policy of enhancing competition and efficiency in contracting, as well as, supporting the competitiveness of the domestic space industry. The paper concludes with an analysis and assessment of solutions to this

  4. Utilization of Space Station for industrial thermophysical property measurements

    NASA Astrophysics Data System (ADS)

    Overfelt, Tony; Watkins, John

    1996-03-01

    The International Space Station represents the largest cooperative space project in history and will be industry's only reasonable access to the low-g environment for long duration R&D. Such access will provide unique and competitive capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial research programs. The metal casting industry has identified the need for accurate thermophysical properties of molten alloys as a priority need. Research over the last decade has demonstrated that experimental techniques exist to containerlessly measure critical thermophysical and related properties of molten metals for improved process design. This paper describes the ``VULCAN'' concept, a proposed commercial instrument for thermophysical properties measurements on the Space Station. Finally, several issues regarding private sector utilization of the Space Station are also discussed.

  5. Commercial Space with Technology Maturation

    NASA Technical Reports Server (NTRS)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  6. A study of factors related to commercial space platform services

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1986-01-01

    In the past four years, the issue of the commercial development of space has come to the forefront of the U. S. national space policy. Though the Administration, Congress and NASA have all shown strong support for encouraging the private sector to become more actively involved in the commercial utilization of space, the question remains whether they must do more to foster the creation and development of a viable U. S. commercial space industry. Marketing aspects, insurance and risk loss, tax related factors, space transportation, termination liability, institutional barriers, and procurement laws and regulations are discussed.

  7. New Space Industries for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Smitherman, D. V., Jr. (Compiler)

    1998-01-01

    New Space Industries For the Next Millennium is a final report of the findings from the New Space Industries Workshop held in Washington, DC, in February 1998. The primary purpose of this workshop was to identify what must be done to develop new markets, and to generate plans, milestones and new organizational relationships designed to facilitate the goal of space development. This document provides a summary report on the results of that workshop and is not intended as a statement of NASA or government policy. Previous studies had shown great potential for the development of new markets in space (e.g., travel and entertainment, space solar power, satellite and space transfer services, research and development in space, space manufacturing, and space resources), and a great need for coordination and formation of infrastructures (e.g., space transportation, space business parks, and space utilities), to facilitate the growth of new space businesses. The New Space Industries Workshop brought together government, academia, and industry participants from several previous studies and other professionals interested in the development of space for commercial purposes. Their participation provided input into the role of government and industry in space development as well as the technology needs that will enable space development. The opening of the frontier of space, not just to government missions but to private individuals and commercial business, is a challenge of overarching importance. It is our hope that the workshop and this final report continue in earnest the process of identifying and overcoming the barriers to large-scale public access and development of space in the early years of the next century.

  8. A business man views commercial ventures in space.

    NASA Technical Reports Server (NTRS)

    Scarff, D. D.; Bloom, H. L.

    1973-01-01

    Paper reviews technical, resource planning and marketing steps an industrial organization must perform in arriving at a decision to undertake space development and production of commercial products or services for Users on the ground. Technical elements are supported by particular examples. Analysis of required resources emphasizes facility and financial inter-relationships between commercial organizations and NASA. Marketing planning covers elements of profitability. Paper addresses questions related to protection of corporate stockholders and public interest, investment decision timing, budget variations. Paper concludes with observations on timeliness of planning shuttle-based commercial ventures and on key industry/NASA problems and decisions.

  9. Collaboration Between Government and Commercial Space Weather Information Providers

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie

    2007-10-01

    Many systems and situations require up-to-date space weather information. These include navigation systems in cars, boats, and commercial freight; the specific location information needed for construction and oil drilling; communications; airline navigation; avionic systems; and passengers and personnel on polar airline flights. Thus, as the world's industries become increasingly more reliant on satellite data and more vulnerable to space weather conditions, new collaborations will have to be formed between commercial providers of space weather information and the government scientists who monitor space weather.

  10. Hyperspectral Imaging on the International Space Station: An Innovative Approach to Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA s Space Partnership Division (SPD) was established to promote the commercial development of space by providing access to space ai opportunity to perform commercial research in the microgravity environment. NASA, through SPD, has established Research Partnership Centers (RPC s) that bring the government, universities at private industry together to perform research in space for commercial applica!.!lons. The SPD Office has fostered a re!ationship between an RPC and an aerospace company to perform hyperspectral imaging on the Window Observational Research Facility (WORF) on board the International Space Station (ISS). As a result of this relationship and M the capabilities of the WORF, the ISS will serve the private sector with platform to conduct hyperspectral imaging for commercial research.

  11. Space Product Development: NASA Partnering With Industry For Out of This World Results

    NASA Technical Reports Server (NTRS)

    Nall, Mark E.; Casas, Joe; Powers, Blake; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    True space commercialization can only be achieved through having the broadest possible industrial participation. Commercial paradigms focused simply on commercial launch operations are not viable since there are limited payload launch opportunities in terms of satellites and similar vehicles, and there are not yet sufficient markets to support large-scale operations and innovation. What is required to expand commercial operations to the point of viability is a broad base of industry that understands the opportunities of commercial space and microgravity operations, and is eager to take advantage of it. Interesting non-aerospace companies in commercial space and microgravity research or operations is a major challenge, since these companies must be educated about the opportunities, introduced into the process in an effective and comfortable manner, and encouraged to continue and expand their work in this area. The NASA Space Product Development Program does this through fifteen Commercial Space Centers located across the United States, each focusing on a different area of interest to industry rather than of interest to NASA. These Centers serve as a consortium of industry, academia, and government, bringing the synergistic effects of membership to the benefit of all. This paper will discuss the guiding philosophies of this program, its organization, the successes obtained by industry in a variety of fields, and the success NASA is experiencing in building the broad base of industry needed to achieve true space commercialization.

  12. Summary results of the Industry Conference on the Commercial Use of Space

    NASA Technical Reports Server (NTRS)

    REUSE; Thuerbach, R. P.

    1985-01-01

    The future intentions of the Federal Republic of Germany in the area of the commercialization of space are presented. It is shown that significant advances in microgravity research, particulary in the areas of materials science, composite materials, physical chemistry, crystal growth, biology, and process engineering will have an effect on future plans for establishing sponsoring organizations to guide commercial interests in German space research. An organizational and functional outline of a proposed sponsoring organization to promote space commercialization under German supervision, including the objectives, the target group to be served, and the administrative structure, is presented. The role of the DFVLR (German Aerospace Research Establishment) and the BMFT (German Ministry for Research and Technology) as sponsoring organizations representing the interests of the German government is shown.

  13. Commercial involvement in the development of space-based plant growing technology

    NASA Astrophysics Data System (ADS)

    Bula, R. J.; Tibbitts, T. W.; Morrow, R. C.; Dinauer, W. R.

    1992-07-01

    Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.

  14. Commercial involvement in the development of space-based plant growing technology.

    PubMed

    Bula, R J; Tibbitts, T W; Morrow, R C; Dinauer, W R

    1992-01-01

    Considerable technological progress has been made in the development of controlled environment facilities for plant growth. Although not all of the technology used for terrestrial facilities is applicable to space-based plant growth facilities, the information resident in the commercial organizations that market these facilities can provide a significant resource for the development of the plant growing component of a CELSS. In 1985, NASA initiated an effort termed the Centers for the Commercial Development of Space (CCDS). This program endeavors to develop cooperative research and technology development programs with industrial companies that capitalize on the strengths of industry-university working relationships. One of the these CCDSs, the Wisconsin Center for Space Automation and Robotics (WCSAR), deals with developing automated plant growth facilities for space, in cooperation with several industrial partners. Concepts have been developed with industrial partners for the irradiation, water and nutrient delivery, nutrient composition control and automation and robotics subsystems of plant growing units. Space flight experiments are planned for validation of the concepts in a space environment.

  15. Space Resources Development: The Link Between Human Exploration and the Long-Term Commercialization of Space

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.

    2000-01-01

    In a letter to the NASA Administrator, Dan Goldin, in January of 1999, the Office of Management and Budget (OMB) stated the following . OMB recommends that NASA consider commercialization in a broader context than the more focused efforts to date on space station and space shuttle commercialization. We suggest that NASA examine architectures that take advantage of a potentially robust future commercial infrastructure that could dramatically lower the cost of future human exploration." In response to this letter, the NASA Human Exploration and Development of Space (HEDS) Enterprise launched the BEDS Technology & Commercialization Initiative (HTCI) to link technology and system development for human exploration with the commercial development of space to emphasize the "D" (Development) in BEDS. The development of technologies and capabilities to utilize space resources is the first of six primary focus areas in this program. It is clear that Space Resources Development (SRD) is key for both long-term human exploration of our solar system and to the long-term commercialization of space since: a) it provides the technologies, products, and raw materials to support efficient space transportation and in-space construction and manufacturing, and b) it provides the capabilities and infrastructure to allow outpost growth, self-sufficiency, and commercial space service and utility industry activities.

  16. Space commerce in a global economy - Comparison of international approaches to commercial space

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Kleber, Peter

    1992-01-01

    A historical perspective, current status, and comparison of national government/commercial space industry relationships in the United States and Europe are presented. It is noted that space technology has been developed and used primarily to meet the needs of civil and military government initiatives. Two future trends of space technology development include new space enterprises, and the national drive to achieve a more competitive global economic position.

  17. Commercial Banking Industry Survey.

    ERIC Educational Resources Information Center

    Bright Horizons Children's Centers, Cambridge, MA.

    Work and family programs are becoming increasingly important in the commercial banking industry. The objective of this survey was to collect information and prepare a commercial banking industry profile on work and family programs. Fifty-nine top American commercial banks from the Fortune 500 list were invited to participate. Twenty-two…

  18. NASA's Commercial Space Centers: Bringing Together Government and Industry for "Out of this World" Benefits

    NASA Technical Reports Server (NTRS)

    Robinson, R. Keith; Henderson, Robin N. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is making significant effort to accommodate commercial research in the utilization plans of the International Space Station (ISS)[1]. NASA is providing 30% of the research accommodations in the ISS laboratory modules to support commercial endeavors. However, the availability of resources alone does not necessarily translate into significant private sector participation in NASA's ISS utilization plans. Due to the efforts of NASA's Commercial Space Centers (CSC's), NASA has developed a very robust plan for involving the private sector in ISS utilization activities. Obtaining participation from the private sector requires a demonstrated capability for obtaining commercially significant research results. Since 1985, NASA CSC's have conducted over 200 commercial research activities aboard parabolic aircraft, sounding rockets, the Space Shuttle, and the ISS. The success of these activities has developed substantial investment from private sector companies in commercial space research.

  19. Space commercialization trends and consequences for the workforce

    NASA Astrophysics Data System (ADS)

    Peeters, W.

    2003-08-01

    Space Commercialization has considerably changed the space era over the last few years. Besides a number of facilitators, such as improved regulatory frameworks, it can clearly be demonstrated that reduced public funding has been the prime catalyst for this commercialization process. Space industry has proactively reacted to this new situation by forming strategic alliances, in the first place to be able to reach the global space market. This effect, in turn, induces a number of new skills which are needed for the future space work force. Transnational activities require a more international approach and better understanding of cultural differences, far beyond linguistic ones. Transfer of workforce from other sectors remains difficult, mainly due to the uniqueness of the space sector. Tailored space education curricula will therefore be needed to prepare the new space workforce for timely take over from the present — rapidly aging — space professionals without the risk of losing know-how.

  20. The venture space alliance commercial application of microgravity research

    NASA Astrophysics Data System (ADS)

    Whitton, Dave

    1999-01-01

    The Venture Space Alliance is a Canadian commercial enterprise formed to develop a successful sustainable business, providing industrial and institutional clients with cost effective timely access to space and microgravity facilities for commercial and scientific benefit. The goal is to offer users a comprehensive and reliable set of products and services from the early stages of research, where access to short duration microgravity such as drop towers, aircraft and sub-orbital rockets is required, to more complex missions requiring free flyers, shuttle or Space Station. The service is designed to relieve the researcher from having to be concerned with the special processes associated with space flight, and to assist in the commercial application of their research through the development of business plans and investment strategy. Much of this research could lead to new and better medicines, high disease tolerant and more prolific agricultural products, new materials and alloys, and improvements in fundamental human health. This paper will describe the commercial successes derived from microgravity research, and the anticipated growth of this segment particularly with the completion of the International Space Station.

  1. Consideration of adding a commercial module to the International Space Station

    NASA Astrophysics Data System (ADS)

    Friefeld, J.; Fugleberg, D.; Patel, J.; Subbaraman, G.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) is currently assembling the International Space Station in Low Earth Orbit. One of NASA's program objectives is to encourage space commercialization. Through NASA's Engineering Research and Technology Development program, Boeing is conducting a study to ascertain the feasibility of adding a commercial module to the International Space Station. This module (facility) that can be added, following on-orbit assembly is described. The facility would have the capability to test large, engineering scale payloads in a space environment. It would also have the capability to provide services to co-orbiting space vehicles as well as gathering data for commercial terrestrial applications. The types of industries to be serviced are described as are some of the technical and business considerations that need to be addressed in order to achieve commercial viability.

  2. Office of Commercial Programs' research activities for Space Station Freedom utilization

    NASA Technical Reports Server (NTRS)

    Fountain, James A.

    1992-01-01

    One of the objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDS's) which are located throughout the United States. The CCDS's are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware were built to date. These payloads have flown in space a total of 73 times. The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads. All of these commercial research activities and carrier capabilities are preparing the OCP to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDS's are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will

  3. Prospects for commercialization of SELV-based in-space operations

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J. (Compiler); Garrison, James L., Jr. (Compiler)

    1995-01-01

    A workshop was hosted by the Langley Research Center as a part of an activity to assess the commercialization potential of Small Expendible Launch Vehicle-based in-space operations. Representatives of the space launch insurance industry, industrial consultants, producers of spacecraft, launch vehicle manufacturers, and government researchers constituted the participants. The workshop was broken into four sessions: Customers Small Expendible Launch Systems, Representative Missions, and Synthesis-Government role. This publication contains the presentation material, written synopses of the sessions, and conclusions developed at the workshop.

  4. The Texas space flight liability act and efficient regulation for the private commercial space flight era

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher D.

    2013-12-01

    In the spring of 2011, the American state of Texas passed into law an act limiting the liability of commercial space flight entities. Under it, those companies would not be liable for space flight participant injuries, except in cases of intentional injury or injury proximately caused by the company's gross negligence. An analysis within the framework of international and national space law, but especially informed by the academic discipline of law and economics, discusses the incentives of all relevant parties and attempts to understand whether the law is economically "efficient" (allocating resources so as to yield maximum utility), and suited to further the development of the fledgling commercial suborbital tourism industry. Insights into the Texas law are applicable to other states hoping to foster commercial space tourism and considering space tourism related legislation.

  5. Concept for a commercial space station laboratory

    NASA Technical Reports Server (NTRS)

    Wood, P. W.; Stark, P. M.

    1984-01-01

    The concept of a privately owned and operated fee-for-service laboratory as an element of a civil manned space station, envisioned as the venture of a group of private investors and an experienced laboratory operator to be undertaken with the cooperation of NASA is discussed. This group would acquire, outfit, activate, and operate the labortory on a fee-for-service basis, providing laboratory services to commercial firms, universities, and government agencies, including NASA. This concept was developed to identify, stimulate, and assist potential commercial users of a manned space station. A number of the issues which would be related to the concept, including the terms under which NASA might consider permitting private ownership and operation of a major space station component, the policies with respect to international participation in the construction and use of the space station, the basis for charging users for services received from the space station, and the types of support that NASA might be willing to provide to assist private industry in carrying out such a venture are discussed.

  6. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  7. Dry Lubricant Smooths the Way for Space Travel, Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Reviving industry standards for coating parts in tungsten disulfide, a dry lubricant developed for the Mariner space probes managed by the Jet Propulsion Laboratory in the 1960s and '70s, Applied Tungstenite, a relatively new Temecula, California-based company, has found a client base in the mushrooming commercial space industry, as well as other manufacturers.

  8. Commercial potential of European and Japanese space programs, task 5

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The current and expected future competitive status in the commercialization of space of the two principal programs competitive with NASA: the European Space Agency (ESA) and the program sponsored by the Ministry of International Trade and Industry (MITI) of Japan are evaluated, quantitatively assessed, and presented in usable format.

  9. Intospace a European industrial initiative to commercialise space

    NASA Astrophysics Data System (ADS)

    von der Lippe, Juergen K.; Sprenger, Heinz J.

    2005-07-01

    Intospace, founded in 1985, was the response to the government's request to provide evidence to the industrial promises of commercial utilisation of space systems such as Spacelab and the already planned space station. The company was set up with an exceptional structure comprising 95 shareholders from all over western Europe from space and non-space industry and financial institutes. The companies joined as shareholders and committed beyond the basic capital to cover financial losses up to a given limit allowing the company to invest in market development. Compared to other commercial initiatives in the European space scenario the product that Intospace was supposed to offer, was without doubt the most demanding one regarding its market prospects. The primary product of Intospace was to provide services to commercial customers for using microgravity for research and production in space. This was based on the assumption that an effective operational infrastructure with frequent flights of Spacelab and Eureca would be available leading finally to the space station with Columbus. A further assumption had been that basic research projects of the agencies would provide sufficient data as a basis for commercial project planning. The conflict with these assumptions is best illustrated by the fact that the lifetime of Intospace is framed by the two shuttle disasters, the Challenger accident a couple of months after foundation of Intospace and the Columbia accident with Spacehab on board leading to liquidation of the company. The paper will present the background behind the foundation of the Intospace initiative, describe the objectives and major strategic steps to develop the market.

  10. The economic impact of commercial space transportation on the U.S. economy

    DOT National Transportation Integrated Search

    2001-02-01

    The first study of the U.S. commercial launch industry's effect : on the nation's economy, this report is a quantitative analysis of the extent to which commercial space transportation is responsible directly and indirectly for supporting a variety o...

  11. Space and Industrial Brine Drying Technologies

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  12. Commercial Space Policy in the 1980s: Proceedings of a Roundtable Discussion

    NASA Technical Reports Server (NTRS)

    Dahlstrom, Neil (Editor)

    2000-01-01

    The Space Business Archives and the NASA History Office signed a Memorandum of Understanding in March of 1999. The MOU outlines several opportunities for cooperative endeavors between the two agencies in historical programming. This oral history, and subsequently this publication, are the first products of that cooperation. In accordance with the purpose of the Space Business Archives--to provide an impartial forum for lessons learned in the development of the commercial space industry--the idea for this roundtable discussion seemed appropriate as the Archives first public program. With the combined resources of the Archives and the NASA History Office we were fortunate to assemble a panel of individuals that served in both industry and government during the 1980s, many working in both sectors during that time. When envisioning the focus of this oral history, we decided that it was appropriate to highlight space policy in the 1980s, with an emphasis on the emerging commercial industry. Panelists were sent several documents in preparation, such as the Land Remote Sensing Commercialization Act and the Commercial Space Launch Act of 1984, President Reagan's 1982 National Space Policy, and other memoranda and letters that outline important policy issues of the decade. This discussion, we think, fills in some of the gaps that would otherwise be left unfilled when simply reading through the documents themselves. Some of these gaps include: how were these policy directives, legislation and decisions introduced and developed, by whom, and at what political and financial cost? This transcript is meant to serve as a reference to some of the issues, organizations and individuals involved in the creation and development of space policy during the 1980s. It is also the result of the first of many future roundtable discussions aimed at providing an open exchange of ideas concerning past success and failure in order to provide a stronger base for future endeavors in governmental

  13. 77 FR 65443 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ...: a. Abort. b. Contingency. c. Emergency. d. Early Flight Return. e. Landing Site. (2) Aborts and... the coming months to allow the U.S. commercial space transportation industry to share views with the...

  14. An overview of the U.S. commercial space launch infrastructure : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1998-01-01

    The commercial space transportation industry has witnessed unparalleled growth in the number of commercial launches over the past few years. Last year witnessed the largest number yet, 35 commercial launches worldwide, nearly twice the 21 commercial ...

  15. Space Industry

    DTIC Science & Technology

    2006-01-01

    invest in and support commercial efforts. In testimony before the House Committee on Space and Aeronautics in April of 2005, Elon Musk provided the...Response Launch Vehicle. Space Daily. Retrieved April 9, 2006 from www.spacedaily.com. 81 Musk , Elon (2005, April 20). Commercialization of Space...Space Transportation Policy. (2006, January 5). Retrieved May 30, 2006 from http://www.ostp.gov/html/SpaceTransFactSheetJan2005.pdf. 86 Musk , Elon

  16. Space Commercialization and the Development of Space Law

    NASA Astrophysics Data System (ADS)

    Yun, Zhao

    2017-05-01

    Shortly after the launch of the first manmade satellite in 1957, the United Nations (UN) took the lead in formulating international rules governing space activities. The five international conventions (i.e., the 1967 Outer Space Treaty, the 1968 Rescue Agreement, the 1972 Liability Convention, the 1975 Registration Convention, and the 1979 Moon Agreement) within the UN framework constitute the nucleus of space law; laying a solid legal foundation for securing the smooth development of space activities over the next few decades. Outer space was soon found to be a place with abundant opportunities for commercialization: with telecommunications services the first and most successful commercial application followed by remote sensing and global navigation services. In the last decade, the rapid development of space technologies brought space tourism and space mining to the forefront as well. With more and more commercial activities taking place on a daily basis from the 1980s on, existing space law faces severe challenges. The five conventions, which were enacted at a time when space was monopolized by two superpowers—the United States and the former Soviet Union—also failed to take into account the commercial aspect of space activities. Although there are urgent needs for new rules to deal with the ongoing trend of space commercialization, the international society faces difficulties in adopting new rules due to diversified national interests. As a result, it adjusts legislative strategies by enacting soft laws. In view of the difficulty in adopting binding rules at the international level, states are encouraged to enact their own national space legislation providing sufficient guidance for their domestic space commercial activities. It is expected that the development of soft laws and national space legislation will be the mainstream regulatory activities in the space field for the foreseeable future.

  17. Implications of previous space commercialization experiences for the reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Obermann, Richard M.; Williamson, Ray A.

    2003-07-01

    The United States' 1994 National Space Transportation Policy directed the National Aeronautics and Space Administration (NASA) to work with industry on the development of technologies required for a reusable launch vehicle (RLV). In the partnership that has evolved from that directive, NASA envisions its role as providing support for technological risk reduction and for developing space transportation to serve government needs. NASA officials assume that the development of an operational, commercial RLV will be carried out by the private sector without use of government funds. Under that scenario, the Federal government will simply become a customer for commercial RLV services. In evaluating the prospects for the development of a commercially viable RLV, it may be useful to examine "lessons learned" from previous space commercialization efforts—both those that succeeded and those that did not. It can be argued that several distinct streams of market and technological development may have to converge for successful commercialization of space systems to occur. Potential factors influencing the prospects for commercialization include the size and growth rate of the potential customer base, the extent to which a governmental customer exists to underpin the market, the development of associated "value-added" markets, the stability of governmental policies, the levels of technological and business risk, and the degree to which competitive markets exist. This paper examines two previous space commercialization experiences, evaluates the relative importance of the various factors that influence the prospects for success of commercialization efforts, and assesses the implications of those factors for the commercial viability of the proposed RLV.

  18. Opportunities for the chemical industry in space, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The chemical/petrochemical industry devotes a large percentage of its gross income to research and development, with much of its R and D of a long-term nature. As the chemical industry is examined as a candidate for space investigations, it is readily apparent that research and development in the space environment may lead to attractive commercial opportunities. The advantages of low gravity manufacturing, with a particular emphasis on chemical catalysts, are presented herein specifically for the chemical industry. Research from the Skylab program and Apollo Soyuz test project is reviewed, including acoustic levitation, crystal growth, and container less melts. Space processing of composite materials, alloys, and coatings is also discussed.

  19. 76 FR 43218 - Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Commercial and Industrial Pumps AGENCY: Department of Energy... efficient product designs for commercial and industrial pumps. The comment period closed on July 13, 2011... commercial and industrial pumps. The comment period is extended to September 16, 2011. DATES: The comment...

  20. Physical Properties and Durability of New Materials for Space and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    2003-01-01

    To develop and test new materials for use in space power systems and related space and commercial applications, to assist industry in the application of these materials, and to achieve an adequate understanding of the mechanisms by which the materials perform in their intended applications.

  1. Traffic model for commercial payloads in the Materials Experiment Assembly (MEA). [market research in commercial space processing

    NASA Technical Reports Server (NTRS)

    Tietzel, F. A.

    1979-01-01

    One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.

  2. A Technology Plan for Enabling Commercial Space Business

    NASA Technical Reports Server (NTRS)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  3. Materials processing in space - A strategy for commercialization

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1978-01-01

    Major aerospace companies are talking about space factories manufacturing billions of dollars worth of high technology materials per year. On the other hand, a recent National Academy of Sciences study team saw little prospect for space manufacturing because, in their opinion, most of the disturbing effects of gravity in the processes they considered could be overcome on the ground for much less expenditure. This paper presents a current assessment of the problems and promises of the Materials Processing in Space Program and outlines a strategy for developing the first products of commercial value. These early products are expected to serve as paradigms of what can be accomplished by manufacturing in space and should stimulate industry to develop space manufacturing to whatever degree is economically justifiable.

  4. Enabling the Commercial Space Transportation Industry at the Mid-Atlantic Regional Spaceport

    DTIC Science & Technology

    2011-09-01

    International Space Station xiv ITAR International Traffic in Arms Regulation LADEE Lunar Atmosphere & Dust Environment Explorer LEO Low Earth...Orbit LOC Loss of Crew LVM&SI Launch Vehicle Manufacturing and Services Industry MARS Mid-Atlantic Regional Spaceport MIST Mid-Atlantic Institute of...of its own space services. It is only recently that NASA has changed policy to focus on space travel beyond Low Earth Orbit ( LEO ). With the

  5. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  6. Elastic memory composites (EMC) for deployable industrial and commercial applications

    NASA Astrophysics Data System (ADS)

    Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken

    2005-05-01

    The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.

  7. 36 CFR 27.2 - Commercial and industrial activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Commercial and industrial... INTERIOR CAPE COD NATIONAL SEASHORE; ZONING STANDARDS § 27.2 Commercial and industrial activities. No commercial or industrial districts may be established within the Cape Cod National Seashore. ...

  8. Accessing space: A catalogue of process, equipment and resources for commercial users

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This catalogue, produced by NASA's Office of Commercial Programs, provides a broad source of information for the commercial developer interested in the areas of microgravity research and remote sensing. Methods for accessing space for research are reviewed including the shuttle, expendable launch vehicles, suborbital sounding rockets, experimental aircraft, and drop towers and other ground-based facilities. Procedures for using these vehicles and facilities are described along with funding options to pay for their use. Experiment apparatus and carriers for microgravity research are also described. A separate directory of resources and services is also included which contains a listing of transportation products and services, a listing of businesses and industries which provide space-related services and products, and a listing of the NASA and CCDS (Center for the Commercial Development of Space) points of contact.

  9. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  10. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1997-01-01

    To test and evaluate suitability of materials for use in space power systems and related space and commercial applications, and to achieve sufficient understanding of the mechanisms by which, the materials perform in their intended applications. Materials and proposed applications included but were not limited to: Improved anodes for lithium ion batteries, highly-transparent arc-proof solar array coatings, and improved surface materials for solar dynamic concentrators and receivers. Cooperation and interchange of data with industrial companies as appropriate.

  11. 75 FR 23841 - Commercial Space Transportation Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Grant... for the Commercial Space Transportation Grant Program. SUMMARY: The FAA's Office of Commercial Space Transportation (AST) requests grant proposals pursuant to its newly funded Commercial Space Transportation Grant...

  12. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  13. 40 CFR 721.80 - Industrial, commercial, and consumer activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Industrial, commercial, and consumer... Industrial, commercial, and consumer activities. Whenever a substance is identified in subpart E of this part... the substance. (l) Non-industrial use. (m) Commercial use. (n) Non-commercial use. (o) Use in a...

  14. The first decade of commercial space tourism

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Wei

    2015-03-01

    In order to provide a basis for assessing the future prospects and challenges of space tourism, this paper begins with a brief overview of the history of space tourism. This is followed by a discussion on market demand and current developments in the academic community, as well as the status of traffic tools, regulations and legalization. In market demand, although studies conducted in 1990s assumed the possibility of 500,000 per year in space tourists and several billion USD of annual revenue, in 2008 a relatively modest 13,000 per year was predicted. At this time traffic transport tools including the Soyuz system, CST-100, DragonRider and International Space Station (ISS) can only provide a few tens in spare seats for space tourists per year compared to the projected 20,000 plus seat capacity of the Lynx, Dream Chaser and SpaceShipTwo (SS2) fleets, which have the potential to conduct their first full suborbital test flight and first commercial flight within the coming decade. Added to this, the US government has only a regulatory regime that supports privately owned suborbital space tourism (SST) and no government funded orbital space tourism (OST). These evidences reveal a very high and advantageous potential for SST to form a space tourism industry in the coming decade, whereas the possibility of OST is relatively low. However, even though the prosperity of SST in the coming years is expectable, its maturity, reliability and safety still need to win the confidence of the general public. For examples, the announcement of changes to fuel used in the SS2 rocket engine in May 2014 and the crash of one SS2 while performing test flight on 31 October 2014 indicated the need for much careful preparation, as any accident in commercial operation could seriously damage or even kill its future prospects.

  15. Use of space for development of commercial plant natural products

    NASA Astrophysics Data System (ADS)

    Draeger, Norman A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol.

  16. Commercial Spacewalking: Designing an EVA Qualification Program for Space Tourism

    NASA Technical Reports Server (NTRS)

    Gast, Matthew A.

    2010-01-01

    In the near future, accessibility to space will be opened to anyone with the means and the desire to experience the weightlessness of microgravity, and to look out upon both the curvature of the Earth and the blackness of space, from the protected, shirt-sleeved environment of a commercial spacecraft. Initial forays will be short-duration, suborbital flights, but the experience and expertise of half a century of spaceflight will soon produce commercial vehicles capable of achieving low Earth orbit. Even with the commercial space industry still in its infancy, and manned orbital flight a number of years away, there is little doubt that there will one day be a feasible and viable market for those courageous enough to venture outside the vehicle and into the void, wearing nothing but a spacesuit, armed with nothing but preflight training. What that Extravehicular Activity (EVA) preflight training entails, however, is something that has yet to be defined. A number of significant factors will influence the composition of a commercial EVA training program, but a fundamental question remains: 'what minimum training guidelines must be met to ensure a safe and successful commercial spacewalk?' Utilizing the experience gained through the development of NASA's Skills program - designed to qualify NASA and International Partner astronauts for EVA aboard the International Space Station - this paper identifies the attributes and training objectives essential to the safe conduct of an EVA, and attempts to conceptually design a comprehensive training methodology meant to represent an acceptable qualification standard.

  17. New initiatives in the commercial development of space

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1988-01-01

    This paper provides a status report on aggressive new initiatives by the NASA Office of Commercial Programs to implement new commercial space policy. The promotion of a strong U.S. commercial presence in space via Spacehab, the Space Shuttle external tanks, privatization of the Space Station, and the development of commercial remote sensing systems is addressed. The privatization of launch services and the development of a talent base for commercial space efforts are considered. Groups, policies, and plans involved in these developments are discussed.

  18. NASA's commercial research plans and opportunities

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.

    1992-01-01

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  19. NASA's commercial research plans and opportunities

    NASA Astrophysics Data System (ADS)

    Arnold, Ray J.

    One of the primary goals of the National Aeronautics and Space Administration's (NASA) commercial space development plan is to encourage the development of space-based products and markets, along with the infrastructure and transportation that will support those products and markets. A three phased program has been instituted to carry out this program. The first phase utilizes government grants through the Centers for the Commercial Development of Space (CCDS) for space-related, industry driven research; the development of a technology data base; and the development of commercial space transportation and infrastructure. The second phase includes the development of these technologies by industry for new commercial markets, and features unique industry/government collaborations such as Joint Endeavor Agreements. The final phase will feature technical applications actually brought to the marketplace. The government's role will be to support industry required infrastructure to encourage start-up markets and industries through follow-on development agreements such as the Space Systems Development Agreement. The Office of Commercial Programs has an aggressive flight program underway on the Space Shuttle, suborbital rockets, orbital expendable launch vehicles, and the Commercial Middeck Accommodation Module with SPACEHAB Inc. The Office of Commercial Program's has been allocated 35 percent of the U.S. share of the Space Station Freedom resources for 1997 utilization. A utilization plan has been developed with the Centers for the Commercial Development of Space and has identified eleven materials processing and biotechnology payloads occupying 5 double racks in the pressurized module as well as two payloads external to the module in materials exposure and environment monitoring. The Office of Commercial Programs will rely on the Space Station Freedom to provide the long duration laboratory component for space-based commercial research.

  20. Commercializing solar for industry in California

    NASA Astrophysics Data System (ADS)

    Yudelson, J.

    1980-10-01

    The State of California has begun a commercialization program for increasing the rate of solar applications in industry. The components of this program include low interest loans, tax credits, revenue bonds and educational efforts. Many California industries appear to be likely candidates for solar systems, but as yet only a few companies have elected to install them. The various barriers to solar use by industry are primarily perceptual and financial. The emphasis of the state program for commercialization is turning increasingly towards educational seminars for industry groups and development of creative financial tools and arrangements. There are a few remaining legislative changes at state and federal levels, primarily involving leasing and tax laws which, if enacted, would overcome all of the remaining financial barriers to widespread adoption of solar applications by industry.

  1. Use of space for development of commercial plant natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draeger, N.A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol. {copyright} {ital 1997 American Institute of Physics.}

  2. Study of industry requirements that can be fulfilled by combustion experimentation aboard space station

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.

    1988-01-01

    The purpose of this study is to define the requirements of commercially motivated microgravity combustion experiments and the optimal way for space station to accommodate these requirements. Representatives of commercial organizations, universities and government agencies were contacted. Interest in and needs for microgravity combustion studies are identified for commercial/industrial groups involved in fire safety with terrestrial applications, fire safety with space applications, propulsion and power, industrial burners, or pollution control. From these interests and needs experiments involving: (1) no flow with solid or liquid fuels; (2) homogeneous mixtures of fuel and air; (3) low flow with solid or liquid fuels; (4) low flow with gaseous fuel; (5) high pressure combustion; and (6) special burner systems are described and space station resource requirements for each type of experiment provided. Critical technologies involving the creation of a laboratory environment and methods for combining experimental needs into one experiment in order to obtain effective use of space station are discussed. Diagnostic techniques for monitoring combustion process parameters are identified.

  3. Commercialization in NASA Space Operations

    NASA Technical Reports Server (NTRS)

    Gilbert, Charlene E.

    1998-01-01

    Various issues associated with commercialization in NASA space operations are presented in viewgraph form. Specific topics include: 1) NASA's financial outlook; 2) Space operations; 3) Space operations technology; and 4) Strategies associated with these operations.

  4. Potential commercial use of the International Space Station by the biotechnology/pharmaceutical/biomedical sector

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Stodieck, Louis

    1999-01-01

    The International Space Station (ISS) is the linch-pin of NASA's future space plans. It emphasizes scientific research by providing a world-class scientific laboratory in which to perform long-term basic science experiments in the space environment of microgravity, radiation, vacuum, vantage-point, etc. It will serve as a test-bed for determining human system response to long-term space flight and for developing the life support equipment necessary for NASA's Human Exploration and Development of Space (HEDS) enterprise. The ISS will also provide facilities (up to 30% of the U.S. module) for testing material, agricultural, cellular, human, aquatic, and plant/animal systems to reveal phenomena heretofore shrouded by the veil of 1-g. These insights will improve life on Earth and will provide a commercial basis for new products and services. In fact, some products, e.g., rare metal-alloys, semiconductor chips, or protein crystals that cannot now be produced on Earth may be found to be sufficiently valuable to be manufactured on-orbit. Biotechnology, pharmaceutical and biomedical experiments have been regularly flown on 10-16 day Space Shuttle flights and on three-month Mir flights for basic science knowledge and for life support system and commercial product development. Since 1985, NASA has created several Commercial Space Centers (CSCs) for the express purpose of bringing university, government and industrial researchers together to utilize space flight and space technology to develop new industrial products and processes. BioServe Space Technologies at the University of Colorado at Boulder and Kansas State University, Manhattan, Kansas, is such a NASA sponsored CSC that has worked with over 65 companies and institutions in the Biotech Sector in the past 11 years and has successfully discovered and transferred new product and process information to its industry partners. While tests in the space environment have been limited to about two weeks on Shuttle or a few

  5. 76 FR 15039 - Commercial Space Transportation Grants Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... proposals for the Commercial Space Transportation Grant Program. SUMMARY: This notice solicits Fiscal Year (FY) 2011 grant proposals to continue the development of a Commercial Space Transportation...

  6. Commercial Space Travel, Ethics and Society

    NASA Astrophysics Data System (ADS)

    Cox, N. L. J.

    2002-01-01

    For the past two decades interest in the possibilities of commercial (manned) space travel or space tourism has increased among engineers, scientists, entrepreneurs and also citizens. A continuously growing collection of papers is being published on space tourism itself and associated subjects, like new reusable launch vehicles, space habitats, space entertainment and corresponding law and regulation. Market research promises sufficient interest in tourist space travel to take off and develop into a multi billion-dollar business. The basic engineering knowledge and expertise is available to start development and designing of safe and affordable reusable vertical lift off and landing vehicles, like the Kankoh-Maru. However, many issues remain fairly untouched in literature. These include, for example, regulations, law, international agreement on space traffic control and also insurance policy. One important topic however has been barely touched upon. This concerns the ethical issues in commercial (manned) space travel, which need to be considered thoroughly, preferably before actual take off of the first regular space tourist services. The answer to the latter question comprises the major part of the paper. First, the paper deals with the issue of who wants, needs and will go to space at what stage in the development of the space tourism industry. A schematic pyramid differentiating between several community groups is made. Secondly, it discusses the way we can and should deal with our environment. Space is still fairly unspoiled, although there is a lot of (government) debris out there. Rules of the space tourist game need to be established. A few general directions are presented, for example on debris cleaning and garbage disposal. Also our right to exploit the asteroids and the moon for material is discussed. In the last part of this paper, the risks involved with the harsh environment of space are considered. Is it safe and responsible to eject people into outer

  7. The impact of industry/university consortia programs on space education

    NASA Technical Reports Server (NTRS)

    Page, John R.; Stone, Barbara A.

    1993-01-01

    The paper describes the industry/university consortia programs established by the United States and Australia and examines these programs from the viewpoint of their impact on space education in their respective countries. Particular attention is given to the aim and the nature of the three programs involved: the Centers for the Commercial Development of Space (CCDSs) (funded by NASA), which are currently involving about 250 companies and 88 universities as participants; the Space Industry Development Centers (SIDCs) (funded by the Australian Space Office): and the Cooperative Research Centers (CRCs) (funded by the Federal Government), which are not limited to the space area but are open to activities ranging from medical research to waste-water treatment. It is emphasized that, while the main aim of the CCDS, SIDC, and CRC programs is to develop space expertise, space education is a very significant byproduct of the activity of these agencies.

  8. Risk Mitigation Approach to Commercial Resupply to the International Space Station

    NASA Technical Reports Server (NTRS)

    Koons, Diane S.; Schreiber, Craig

    2010-01-01

    In August 2006, NASA awarded Space Act Agreements (SAAs) for Commercial Orbital Transportation Services (COTS) under the Commercial Crew and Cargo Project Office at Johnson Space Center. One of the goals of the SAAs is to facilitate U.S. private industry demonstration of cargo transportation capabilities, ultimately achieving reliable, cost effective access to low-Earth orbit (LEO). Each COTS provider is required to complete International Space Stations (ISS) Integration activities, which includes meeting the physical and functional interfaces and interface requirements between the ISS and COTS vehicles. These requirements focus on the areas of risk to the ISS during rendezvous and proximity operations, as well as the integration operations while the COTS vehicle is berthed to the ISS. On December 23, 2008, NASA awarded Commercial Resupply Service (CRS) contracts to provide resupply services to the ISS, following the Shuttle retirement. In addition to performing any ISS Integration activities, NASA will be performing independent assessments of the launch vehicle and orbital vehicle to evaluate the readiness of the contractor to deliver NASA cargo safely to the ISS. This paper will address the activities NASA Centers, both JSC and KSC, in the oversight and insight function over commercial visiting vehicles to the ISS.

  9. Commercial Lunar ISRU for the Space Launch Industry: Cruder is Better

    NASA Astrophysics Data System (ADS)

    Turner, M.

    2017-09-01

    Lunar ISRU scenarios typically focus on making relatively high-added-value products (such as solar PVs) for off-Earth use only. Discussion of space mining in general focuses on high-value trace substances (e.g. platinum group metals) as exports to Earth, and hydroxyls and other volatiles for use only in space. This paper considers two potential bulk commodities with high availability on the lunar surface: space-weathered basalt fines and the oxygen in metal oxides. Basalt fiber can be produced by a simple process, and is strong enough that a tapered rotating sling could propel payloads at lunar escape velocity. Basalt aerobrakes could be flung to LEO depots to aid in aerocapture, reentry, and thermal protection of upper stages. Lunar oxygen (O2 being most of the mass of most liquid-fueled rockets) could aid in powered descent. In short, abundant substances on the Moon could make cost-saving exports possible sooner than later, for the satellite launch industry.

  10. Update of the space and launch insurance industry : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1998-01-01

    Insurance is a basic requirement for the maintenance of a commercial space industry. Space activity mishaps can result in hundreds of millions of dollars of expenses. Two recent launch vehicles that failed (a Titan 4A and the initial Delta 3) were va...

  11. Safety And Promotion in the Federal Aviation Administration- Enabling Safe and Successful Commercial Space Transportation

    NASA Astrophysics Data System (ADS)

    Repcheck, Randall J.

    2010-09-01

    The United States Federal Aviation Administration’s Office of Commercial Space Transportation(AST) authorizes the launch and reentry of expendable and reusable launch vehicles and the operation of launch and reentry sites by United States citizens or within the United States. It authorizes these activities consistent with public health and safety, the safety of property, and the national security and foreign policy interests of the United States. In addition to its safety role, AST has the role to encourage, facilitate, and promote commercial space launches and reentries by the private sector. AST’s promotional role includes, among other things, the development of information of interest to industry, the sharing of information of interest through a variety of methods, and serving as an advocate for Commercial Space Transportation within the United States government. This dual safety and promotion role is viewed by some as conflicting. AST views these two roles as complementary, and important for the current state of commercial space transportation. This paper discusses how maintaining a sound safety decision-making process, maintaining a strong safety culture, and taking steps to avoid complacency can together enable safe and successful commercial space transportation.

  12. Space Commercialization Trends and Consequences for the Workforce

    NASA Astrophysics Data System (ADS)

    Peeters, W.

    2002-01-01

    The major trend we are currently witnessing in space activities is an increasing level of commercialization. This trend is emphasized by: consolidation, mergers and forming strategic alliances. In USA, from the 20 major space companies in the 80's only 3 `prime' ones were left by 1997. A similar effect took place in Europe in the 90's, where at present only primarily 2 major space conglomerates are operating at prime contractor level. Such strategic alliances in the first place result in the creation of end-to-end capabilities, with larger internal R&D and broader access to technologies. Due to the bigger financial volume of such conglomerates there is also better access to new capital and sharing of risks. In a second step, we can at present observe the creation of transatlantic alliances to enter the worldwide market. These trends have a considerable effect on the workforce requirements in industry:

  13. Evaluation tests of industrial vacuum bearings for space use

    NASA Astrophysics Data System (ADS)

    Obara, S.; Sasaki, A.; Haraguchi, M.; Imagawa, K.; Nishimura, M.; Kawashima, N.

    2001-09-01

    Tribological performance of industrial vacuum bearings was experimentally evaluated for space use. The bearings selected for investigation were an 8 mm bore-sized deep-groove ball bearing lubricated with a sputtered MoS2 film and that lubricated with an ion-plated Ag film, commercially delivered from three Japanese domestic bearing-manufacturers. Based on survey results of tribological requirements for the existing satellite mechanisms, four types of bearing tests were defined and conducted: a vacuum test at room temperature, an atmosphere-resistant test, a thermal vacuum test and a vibration test. In addition to these tests, variation in tribological performance of the industrial bearings was also investigated. The results of more than eighty tests demonstrated that the industrial vacuum bearings had sufficient lubrication lives with low frictional torque and their data were reasonably repeatable, indicating very good potentiality for space use.

  14. U.S. commercial space activities - Returning the U.S. to preeminence in space

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1987-01-01

    The current status of NASA's activities related to the commercial development of space is reviewed with particular reference to the emerging new commercial space activities and the post-Challenger policy developments affecting space commerce. The discussion covers the development of U.S. private sector launching capabilities, cooperative agreements with the private sector, the NASA technology utilization program, the technology applications activities of the Office of Commercial Programs, and the activities of the Centers for the Commercial Development of Space program.

  15. 75 FR 4875 - NASA Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-014)] NASA Commercial Space Committee... and Space Administration announces a meeting of the Commercial Space Committee to the NASA Advisory Council. DATES: Tuesday, February 16, 2010, 10 a.m.-5 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E...

  16. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  17. 76 FR 28662 - Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2002-0058; EPA-HQ-2003-0119; FRL-9308-6] RIN 2060-AQ25; 2060-AO12 Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and Industrial Solid Waste Incineration Units AGENCY: Environmental Protection...

  18. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    NASA Technical Reports Server (NTRS)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  19. Commercial development of space - A national commitment

    NASA Technical Reports Server (NTRS)

    Rose, James T.; Stone, Barbara A.

    1989-01-01

    The United States is currently in a unique position. It has all the assets required to lead the world in commercial space development. It has the transportation: the Shuttle and a family of expendable launch vehicles. Space Station Freedom is forthcoming. It has the extrepreneurial spirit, coupled with a strong university system and lending institutions with financial capacity necessary for entrepreneurial activities. But, there are a number of actions that the government should take to improve the climate and prospects for greater commercial development of space. This paper outlines some of the steps that NASA is taking to incentivize the private sector to apply its resources and talents to commercial space endeavors.

  20. Technology Challenges and Opportunities in Commercialing Industrial Biotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Brian H.; Lievense, Jeff

    Industrial biotechnology is at a pivotal point, with tremendous and ongoing growth in technology contributing to a rich pipeline of opportunities: new products; new and more sustainable ways to make established products; and improvements to existing products and processes. The trillion-dollar questions are: When will there be a commercial breakout in industrial biotech as there has been in biopharma and ag biotech? What advances in technology are needed to make that happen? This article is drawn from the Workshop on Technology Challenges and Opportunities in Commercializing Industrial Biotechnology, sponsored by AIChE’s Society for Biological Engineering (SBE) and held Sept. 28–29,more » 2015, in San Diego. The workshop brought together industrial biotech stakeholders to share — through presentations, case studies, interactive discussions, and exhibits — perspectives on the state of industrial biotech, as well as to address key areas for technology advancement to benefit commercialization.« less

  1. Technology Challenges and Opportunities in Commercialing Industrial Biotechnology

    DOE PAGES

    Davison, Brian H.; Lievense, Jeff

    2016-06-01

    Industrial biotechnology is at a pivotal point, with tremendous and ongoing growth in technology contributing to a rich pipeline of opportunities: new products; new and more sustainable ways to make established products; and improvements to existing products and processes. The trillion-dollar questions are: When will there be a commercial breakout in industrial biotech as there has been in biopharma and ag biotech? What advances in technology are needed to make that happen? This article is drawn from the Workshop on Technology Challenges and Opportunities in Commercializing Industrial Biotechnology, sponsored by AIChE’s Society for Biological Engineering (SBE) and held Sept. 28–29,more » 2015, in San Diego. The workshop brought together industrial biotech stakeholders to share — through presentations, case studies, interactive discussions, and exhibits — perspectives on the state of industrial biotech, as well as to address key areas for technology advancement to benefit commercialization.« less

  2. 76 FR 40753 - NASA Advisory Council; Commercial Space; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-061)] NASA Advisory Council; Commercial Space; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of meeting. SUMMARY... Aeronautics and Space Administration announces a meeting of the Commercial Space Committee of the NASA...

  3. 75 FR 20372 - Commercial Fishing Industry Vessel Safety Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-0276] Commercial Fishing Industry Vessel... Commercial Fishing Industry Vessel Safety Advisory Committee (CFIVSAC) will meet in Oakland, CA, to discuss various issues relating to commercial vessel safety in the fishing industry. This meeting will be open to...

  4. A Study on the Commercialization of Space-Based Remote Sensing in the Twenty-First Century and Its Implications to United States National Security

    DTIC Science & Technology

    2011-06-01

    Remote sensing from space provides critical data for many commercial space applications. Due to global market demand, it has undergone tremendous...commercial space imaging capability in the future, remote sensing policy makers, systems engineers, and industry analysts must be aware of the implications to United States National Security....available dissemination and accessibility. The analysis results, together with the findings from a review of commercial programs, initiatives, and remote

  5. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  6. The Attached Payload Facility Program: A Family of In-Space Commercial Facilities for Technology, Science and Industry

    NASA Technical Reports Server (NTRS)

    Avery, Don E.; Kaszubowski, Martin J.; Kearney, Michael E.; Howard, Trevor P.

    1996-01-01

    It is anticipated that as the utilization of space increases in both the government and commercial sec tors the re will be a high degree of interest in materials and coatings research as well as research in space environment definition, deployable structures, multi-functional structures and electronics. The International Space Station (ISS) is an excellent platform for long-term technology development because it provides large areas for external attached payloads, power and data capability, and ready access for experiment exchange and return. An alliance of SPACEHAB, MicroCraft, Inc. and SpaceTec, Inc. has been formed to satisfy this research need through commercial utilization of the capabilities of ISS. The alliance will provide a family of facilities designed to provide low-cost, reliable access to space for experimenters. This service would start as early as 1997 and mature to a fully functional attached facility on ISS by 2001. The alliances facilities are based on early activities by NASA, Langley Research Center (LaRC) to determine the feasibility of a Material Exposure Facility (MEF).

  7. NASA's Commercial Crew Program, the Next Step in U.S. Space Transportation

    NASA Technical Reports Server (NTRS)

    Mango, Edward J., Jr.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the middecade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA certification will cover all aspects of a crew transportation system, including: Development, test, evaluation, and verification. Program management and control. Flight readiness certification. Launch, landing, recovery, and mission operations. Sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA certification will validate technical and performance requirements, verify compliance with NASA requirements, validate that the crew transportation system operates in the appropriate environments, and quantify residual risks. The Commercial Crew Program will present progress to date and how it manages safety and reduces risk.

  8. Space Station needs, attributes and architectural options. Volume 2, book 1, part 3: Manned Space Station relevance to commercial telecommunications satellites

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A document containing a forecast of satellite traffic and revelant technology trends to the year 2000 was prepared which includes those space station capabilities and characteristics that should be provided to make the station useful to commercial satellite owners. The document was circulated to key representative organizations within the commercial telecommunications satellite and related communities of interest, including spacecraft manufacturers, commercial satellite owners, communications carriers, networks and risk insurers. The prospectus document is presented as well as the transmittal letter and the mailing list of the people and companies that were asked to review it. Key commercial telecommunications comments are summarized the actual response letters from the industry are included.

  9. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL ORGANIZATION AND DEFINITIONS § 401.1 The Office of Commercial Space Transportation. The Office of...

  10. 78 FR 1917 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to the... Group (BLWG) of the Commercial Space Transportation Advisory Committee (COMSTAC). DATES: The...

  11. 76 FR 41323 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  12. 76 FR 4988 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  13. 76 FR 621 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  14. BioServe space technologies: A NASA Center for the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    1992-01-01

    BioServe Space Technologies, a NASA Center for the Commercial Development of Space (CCDS), was established in 1987. As is characteristic of each CCDS designated by NASA, the goals of this commercial center are aimed at stimulating high technology research that takes advantage of the space environment and at leading in the development of new products and services which have commercial potential or that contribute to possible new commercial ventures. BioServe's efforts in these areas focus upon space life science studies and the development of enabling devices that will facilitate ground-based experiments as well as the conversion of such to the microgravity environment. A direct result of BioServe's hardware development and life sciences studies is the training of the next generation of bioengineers who will be knowledgeable and comfortable working with the challenges of the space frontier.

  15. 76 FR 4412 - Commercial Space Transportation Advisory Committee-Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a... Commercial Space Transportation Advisory Committee (COMSTAC). The special closed session will be an...

  16. 75 FR 71791 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Space Transportation Operations Working Group (STOWG) of the Commercial...

  17. U.S. Space Policy and Space Industry Strangulation

    DTIC Science & Technology

    2010-03-01

    protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry. 14...still protecting U.S. national security, and creating an environment in which non-U.S. citizens can participate fully in the U.S. space industry...security, and creating and sustaining a globally competitive space industry. These realms are not mutually exclusive. If technologies are overly guarded

  18. 78 FR 70093 - Commercial Space Transportation Advisory Committee-Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a...), notice is hereby given of a special closed session of the Commercial Space Transportation Advisory...

  19. 77 FR 52108 - Commercial Space Transportation Advisory Committee; Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  20. 78 FR 18416 - Commercial Space Transportation Advisory Committee; Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  1. 76 FR 17474 - Commercial Space Transportation Advisory Committee-Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  2. 75 FR 54002 - Commercial Space Transportation Advisory Committee-Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  3. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  4. 78 FR 53497 - Commercial Space Transportation Advisory Committee; Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a...), notice is hereby given of a special closed session of the Commercial Space Transportation Advisory...

  5. 76 FR 51461 - Commercial Space Transportation Advisory Committee-Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee open meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  6. 75 FR 16901 - Commercial Space Transportation Advisory Committee-Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open meeting. SUMMARY: Pursuant to section 10(a)(2) of the... of the Commercial Space Transportation Advisory Committee (COMSTAC). The meetings will take place on...

  7. Commercial Orbital Transportation Services (COTS) Demonstrations

    NASA Technical Reports Server (NTRS)

    Lindenmoyer, Allan

    2006-01-01

    U.S. space policy directs pursuit of commercial opportunities for providing transportation and other services low Earth orbit and beyond. COTS Project established to implement policy. COTS strategy: Phase 1) Assist industry with system development/demonstrations (COTS Demos); Phase 2) Procure commercial services for ISS logistics support. COTS Demonstrations competition completed in 10 months. Two industry partners selected for funded Space Act Agreements: 1) SpaceX & Rocketplane-Kistler; and 2) Unfunded Space Act Agreements in work with other competitors. COTS budget of $500 M thru 2010, with pay for performance milestone approach. Cargo flight demonstrations planned for 2008 and 2009: Crew flight demonstration options for 2011-2012. Commercial cargo transportation services potentially available as early as 2009-2010. Successful COTS partners may open new space markets and provide reliable, cost effective cargo and crew transportation services, a new era for commercial space.

  8. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Highlights of NASA-sponsored and assisted commercial space activities of 1989 are presented. Industrial R and D in space, centers for the commercial development of space, and new cooperative agreements are addressed in the U.S. private sector in space section. In the building U.S. competitiveness through technology section, the following topics are presented: (1) technology utilization as a national priority; (2) an exploration of benefits; and (3) honoring Apollo-Era spinoffs. International and domestic R and D trends, and the space sector are discussed in the section on selected economic indicators. Other subjects included in this report are: (1) small business innovation; (2) budget highlights and trends; (3) commercial programs management; and (4) the commercial programs advisory committee.

  9. Commercialization of solar space power

    NASA Astrophysics Data System (ADS)

    Pant, Alok; Sera, Gary

    1995-01-01

    The objective of this research is to help U.S. companies commercialize renewable energy in India, with a special focus on solar energy. The National Aeronautics and Space Administration (NASA) Mid-Continent Technology Transfer Center (MCTTC) is working with ENTECH, Inc., a solar photovoltaic (SPV) systems manufacturer to form partnerships with Indian companies. MCTTC has conducted both secondary and primary market research and obtained travel funding to meet potential Indian partners face to face. MCTTC and ENTECH traveled to India during June 2-20, 1994, and visited New Delhi, Bombay, Pune and Calcutta. Meetings were held with several key government officials and premier Indian business houses and entrepreneurs in the area of solar energy. A firsthand knowledge of India's renewable energy industry was gained, and companies were qualified in terms of capabilities and commitment to the SPV business. The World Bank has awarded India with 280 million to commercialize renewable energies, including 55 million for SPV. There is a market in India for both small-scale (kW) and large SPV (MW) applications. Each U.S. company needs to form a joint venture with an Indian firm and let the latter identify the states and projects with the greatest business potential. Several big Indian companies and entrepreneurs are planning to enter the SPV business, and they currently are seeking foreign technology partners. Since the lager companies have adopted a more conservative approach, however, partnerships with entrepreneurs might offer the quickest route to market entry in India.

  10. 77 FR 4370 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-006)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  11. 77 FR 20852 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-027)] NASA Advisory Council; Commercial Space Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION: Notice of..., the National Aeronautics and Space Administration announces a meeting of the Commercial Space...

  12. A process to help assure successful commercial space ventures

    NASA Astrophysics Data System (ADS)

    Mihara, Sam K.

    1999-01-01

    The purpose of this paper is to describe a process for successful space business ventures-a methodology used by highly successful commercial ventures, but relatively new to space business enterprises. What do highly successful commercial business ventures have in common? How do these companies differ from most commercial space ventures? The answer is the implementation of a state-of-the-art customer satisfaction process. Take the case of the latest winners of the Malcolm Baldrige National Quality Award. What did they do that helped to achieve this performance? The answer is they implemented an effective process that measures and achieves the highest possible level of customer satisfaction. The same process can be implemented by space enterprises to achieve comparable commercial results. This paper describes the six-step process, including examples of each step. It concludes with the strong recommendation that this process be implemented to assure success in the commercial space world.

  13. Exploiting The New Commercial Space Race

    DTIC Science & Technology

    2016-02-10

    developing orbital launch vehicle.  PayPal founder and Tesla Motors CEO Elon Musk’s SpaceX which is developing space access technologies.  Microsoft co...Resources company is developing asteroid mining technology Among the upstart companies, SpaceX has emerged as the leading contender to traditional...US commercial space companies. SpaceX was founded in 2002 by South African billionaire Elon Musk, with the ultimate goal of enabling people to live

  14. 75 FR 14609 - Commercial Fishing Industry Vessel Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2010-0163] Commercial Fishing... applications. SUMMARY: The Coast Guard seeks applications for membership on the Commercial Fishing Industry... Coast Guard on matters relating to the safe operation of commercial fishing industry vessels. DATES...

  15. 46 CFR 25.26-5 - Commercial fishing industry vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Commercial fishing industry vessels. 25.26-5 Section 25... Position Indicating Radio Beacons (EPIRB) § 25.26-5 Commercial fishing industry vessels. (a) The owner of a fishing vessel, a fish processing vessel, or a fish tender vessel, 11 meters (36 feet) or more in length...

  16. 46 CFR 25.26-5 - Commercial fishing industry vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Commercial fishing industry vessels. 25.26-5 Section 25... Position Indicating Radio Beacons (EPIRB) § 25.26-5 Commercial fishing industry vessels. (a) The owner of a fishing vessel, a fish processing vessel, or a fish tender vessel, 11 meters (36 feet) or more in length...

  17. 46 CFR 25.26-5 - Commercial fishing industry vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Commercial fishing industry vessels. 25.26-5 Section 25... Position Indicating Radio Beacons (EPIRB) § 25.26-5 Commercial fishing industry vessels. (a) The owner of a fishing vessel, a fish processing vessel, or a fish tender vessel, 11 meters (36 feet) or more in length...

  18. 46 CFR 25.26-5 - Commercial fishing industry vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Commercial fishing industry vessels. 25.26-5 Section 25... Position Indicating Radio Beacons (EPIRB) § 25.26-5 Commercial fishing industry vessels. (a) The owner of a fishing vessel, a fish processing vessel, or a fish tender vessel, 11 meters (36 feet) or more in length...

  19. 46 CFR 25.26-5 - Commercial fishing industry vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Commercial fishing industry vessels. 25.26-5 Section 25... Position Indicating Radio Beacons (EPIRB) § 25.26-5 Commercial fishing industry vessels. (a) The owner of a fishing vessel, a fish processing vessel, or a fish tender vessel, 11 meters (36 feet) or more in length...

  20. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    .... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment... meeting and availability of the Framework Document pertaining to the development of energy conservation... to and the issues presented by these equipment types, and in consideration of the travel schedules of...

  1. Space Product Development: Bringing the Benefits of Space Down to Earth

    NASA Technical Reports Server (NTRS)

    Allen, Rosalie W.; Tygielski, Andrew; Gabris, Edward A.

    1997-01-01

    The newly developed microgravity Research Program Office was created to consolidate and integrate NASA's microgravity research efforts, comprised of the microgravity Science and Applications Program and Space Product Development Program. This resulted in an integrated agency program serving the science and industrial research communities, providing leadership, management, direction and overview of all agency microgravity research activities. This paper provides an overview of NASA's microgravity Research Program, with particular emphasis on the Space Product Development Program activities, the potential economic impact and quality of life improvements resulting from this research, and future plans for commercial microgravity research in space. The goal of the Space Product Development Program is to facilitate the use of space for commercial products and services. The unique attributes of space are exploited to conduct industry driven research in the areas of crystallography, bio-systems, agriculture, electronic and non-electronic materials. Industry uses the knowledge gained from focused space research to create new products and processes, to gain economic competitive advantages, to create new jobs and improve the quality of life on earth. The objectives of the program are implemented through NASA's Commercial Space Centers, non-profit consortia of industry, academia and government, that provide the mechanism for communication and technical expert exchange between NASA and industry. Over 200 commercial research activities have been conducted by the Commercial Space Centers and their industrial affiliates over the last four and one-half years during Space Shuttle mission, as well as sounding rocket flights. The results of this research will have a significant impact on competitive products, jobs and quality of life improvements.

  2. Role of Space Station: The how of space industrialization

    NASA Technical Reports Server (NTRS)

    Marshall, W. R.

    1984-01-01

    The roles of the Space Station, as an R&D facility, as part of an industrial system which support space industralization, and as a transportation node for space operations are considered. Industrial opportunities relative to these roles are identified and space station concepts responsive to these roles are discussed.

  3. Managing commercial and light-industrial discharges to POTWs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fink, R.G.

    1993-02-01

    Discharging commercial and light-industrial wastewater to a publicly owned treatment works (POTW) is risky business. Pretreating wastewater using traditional methods may leave a wastestream's originator vulnerable to fines, civil and criminal punishment, cleanup costs, and cease-and-desist orders. EPA has tightened regulations applying to discharges from POTWs, which, in turn, are looking to industrial and commercial discharge sources to determine responsibility for toxic contaminants. Although EPA in the past focused on large point sources of contamination, the Agency has shifted its emphasis to smaller and more diverse nonpoint sources. One result is that POTWs no longer act as buffers for light-industrialmore » and commercial wastewater dischargers.« less

  4. Progression of Space Transportation - Transitioning from Government to Commercial

    NASA Technical Reports Server (NTRS)

    Lueders, Kathy

    2015-01-01

    Spaceflight began as the exclusive province of government, however, starting in the 1980's the United States began to promote commercial participation in space transportation. Beginning with Executive policy and extending through legislation and regulation, NASA has embarked on facilitating the commercialization of space transportation to serve NASA needs and enable a non-NASA market place. This presentation provides background on the transition to commercial space transportation and the specific role NASA is playing in that endeavor.

  5. 77 FR 75400 - Labeling Requirements for Commercial and Industrial Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    .... EERE-2012-BT-NOA-0037] RIN 1904-AC84 Labeling Requirements for Commercial and Industrial Equipment... standards for certain commercial and industrial equipment, and requires the Department of Energy (DOE) to administer an energy conservation program for the equipment, including the development of labeling...

  6. Third Space Weather Summit Held for Industry and Government Agencies

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2009-12-01

    The potential for space weather effects has been increasing significantly in recent years. For instance, in 2008 airlines flew about 8000 transpolar flights, which experience greater exposure to space weather than nontranspolar flights. This is up from 368 transpolar flights in 2000, and the number of such flights is expected to continue to grow. Transpolar flights are just one example of the diverse technologies susceptible to space weather effects identified by the National Research Council's Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (2008). To discuss issues related to the increasing need for reliable space weather information, experts from industry and government agencies met at the third summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's (NOAA) Space Weather Prediction Center (SWPC), held 30 April 2009 during Space Weather Week (SWW), in Boulder, Colo.

  7. Alaska OCS socioeconomic studies program. Technical report number 44. Lower Cook Inlet petroleum development scenarios: commercial fishing industry analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, J.M.; Scoles, R.G.; Larson, D.M.

    1980-07-01

    The objectives of the report are to increase the understanding of the potential relationships between the commercial fishing and Outer Continental Shelf (OCS) petroleum industries and to project the potential impacts on the commercial fishing industry of Cook Inlet and Shelikof Strait that may occur as a result of the proposed OCS Lease Sale Number 60. To meet this objective, the report consists of: (1) the documentation and examination of the history and current trends of the Cook Inlet and Shelikof Strait commercial fishing industry as necessary to develop a basis for projecting fishery development and potential interactions with themore » OCS petroleum industry, (2) the development of models used to forecast the level of commercial fishing industry activity through the year 2000 in the absence of OCS development pursuant to Lease Sale Number 60, and (3) an analysis of the potential impacts of Lease Sale Number 60 based on the hypothesized nature and magnitude of the activities of the commercial fishing and OCS petroleum industries. Both the harvesting and processing sectors of the fishing industry are considered. The sources of impacts considered are the competition for labor, ocean space use, and the infrastructure. Potential impacts due to environmental or biological changes resulting from OCS petroleum development are not considered.« less

  8. Proprietary rights and commercial use of space stations

    NASA Technical Reports Server (NTRS)

    Kempf, Robert F.

    1986-01-01

    The treatment of proprietary rights related to commercial activity aboard an international space station is discussed, with a focus on the relationship between the acquisition (on earth or in space) and protection of such rights. The applicable national and international law is briefly characterized, and consideration is given to patent, trade-secret, and copyright considerations. It is concluded that the provisions of present commercial law can be applied relatively straightforwardly to rights acquired on earth, while the Outer Space Treaty of 1967 and the Convention on Registration of 1976 apply to rights obtained in space.

  9. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Ramona Travis, NASA Stennis Space Center Chief Technologist, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  10. Industry-university cooperation/research

    NASA Technical Reports Server (NTRS)

    Whitten, Raymond P.

    1991-01-01

    The paper concentrates on the commercial development of space programs through cooperative research with the U.S. universities and industry. The origins of the programs are discussed, beginning with the Communication Satellite Act of 1963. The National Space Policy is outlined, and the creation of NASA's Office of Commercial Programs is emphasized, along with its Centers for the Commercial Development of Space. It is noted that the centers are consortia of university, industry, and government involved in commercial-space-technology database development and research and testing of potentially valuable products and services. The center titles, locations, and brief descriptions for such area of research as remote sensing, life sciences, materials processing, space power, space propulsion, materials and space structures, and automation and robotics centers are listed, along with some results of the programs.

  11. Trends in satellite manufacturing : changing how the commercial space transportation industry does business : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1999-01-01

    In recent years, the commercial sector of the satellite industry has seen unprecedented growth. An expanding base of satellite applications and satellite services has increased the demand for satellites and has : brought about changes in almost every...

  12. Space market model space industry input-output model

    NASA Technical Reports Server (NTRS)

    Hodgin, Robert F.; Marchesini, Roberto

    1987-01-01

    The goal of the Space Market Model (SMM) is to develop an information resource for the space industry. The SMM is intended to contain information appropriate for decision making in the space industry. The objectives of the SMM are to: (1) assemble information related to the development of the space business; (2) construct an adequate description of the emerging space market; (3) disseminate the information on the space market to forecasts and planners in government agencies and private corporations; and (4) provide timely analyses and forecasts of critical elements of the space market. An Input-Output model of market activity is proposed which are capable of transforming raw data into useful information for decision makers and policy makers dealing with the space sector.

  13. 29. OVERALL VIEW OF COMMERCIAL/INDUSTRIAL DISTRICT, WITH DUBUQUE SEED COMPANY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. OVERALL VIEW OF COMMERCIAL/INDUSTRIAL DISTRICT, WITH DUBUQUE SEED COMPANY WAREHOUSE IN RIGHT FOREGROUND AND ILLINOIS CENTRAL RAILROAD FREIGHT HOUSE IN CENTER BACKGROUND. VIEW TO SOUTH. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA

  14. 77 FR 20531 - Correction of Authority Citations for Commercial Space Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ...-AI50, 2120-AI57, 2120-AI56, 2120-AI88] Correction of Authority Citations for Commercial Space..., Congress transferred the statute authorizing the FAA's commercial space transportation regulations. This...: Laura Montgomery, Senior Attorney for Commercial Space Transportation, Office of the Chief Counsel...

  15. NASA's Earth Observations Commercialization Applications Program: A model for government promotion of commercial space opportunities

    NASA Technical Reports Server (NTRS)

    Macauley, Molly K.

    1995-01-01

    The role of government in promoting space commerce is a topic of discussion in every spacefaring nation. This article describes a new approach to government intervention which, based on its five-year track record, appears to have met with success. The approach, developed in NASA's Earth Observations Commercialization Application Program (EOCAP), offer several lessons for effective government sponsorship of commercial space development in general and of commercial remote sensing in particular.

  16. 75 FR 30690 - Civil Penalty Inflation Adjustment for Commercial Space Adjudications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ...-1240; Amendment No. 406-6] RIN 2120-AJ63 Civil Penalty Inflation Adjustment for Commercial Space... Federal Aviation Administration commercial space transportation regulations into compliance with the... contained in 14 CFR part 406 authorized for violations of the Commercial Space Launch Act of 1984, as...

  17. Three near term commercial markets in space and their potential role in space exploration

    NASA Astrophysics Data System (ADS)

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  18. Highlights: US Commercial Remote Sensing Industry Analysis

    NASA Technical Reports Server (NTRS)

    Rabin, Ron

    2002-01-01

    This viewgraph presentation profiles the US remote sensing industry based on responses to a survey by 1450 industry professionals. The presentation divides the industry into three sectors: academic, commercial, and government; the survey results from each are covered in a section of the presentation. The presentation also divides survey results on user needs into the following sectors: spatial resolution, geolocation accuracy; elevation accuracy, area coverage, imagery types, and timeliness. Data, information, and software characteristics are also covered in the presentation.

  19. (abstract) Space Science with Commercial Funding

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The world-wide recession, and other factors, have led to reduced or flat budgets in real terms for space agencies around the world. Consequently space science projects and proposals have been under pressure and seemingly will continue to be pressured for some years into the future. A new concept for space science funding is underway at JPL. A partnership has been arranged with a commercial, for-profit, company that proposes to implement a (bandwidth-on-demand) information and telephone system through a network of low earth orbiting satellites (LEO). This network will consist of almost 1000 satellites operating in polar orbit at Ka-band. JPL has negotiated an agreement with this company that each satellite will also carry one or more science instruments for astrophysics, astronomy, and for earth observations. This paper discussed the details of the arrangement and the financial arrangements. It describes the technical parameters, such as the 60 GHz wideband inter-satellite links and the frequency, time, and position control, on which the science is based, and it also discusses the complementarity of this commercially funded space science with conventional space science.

  20. Space Industry. Industry Study, Spring 2009

    DTIC Science & Technology

    2009-01-01

    Space Flight Center, Cocoa Beach, FL Cape Canaveral Air Force Station, Cocoa Beach, FL Naval Ordnance Test Unit, Cocoa Beach, FL 50th Space Wing... America .” In 2009, as we celebrate the 40th anniversary of the fulfillment of that vision, it is appropriate to pause and reflect on how far we...value system, providing high-value services to both government and commercial consumers. The estimate of international and U.S. government consumption

  1. 77 FR 67028 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-093] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The [[Page 67029

  2. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment... Certain Industrial Equipment,'' a program covering certain commercial and industrial equipment (hereafter... (AEMTCA), Public Law 112-210 (Dec. 18, 2012). EPCA covers many types of commercial and industrial...

  3. Commercial space policy - Theory and practice

    NASA Technical Reports Server (NTRS)

    Freibaum, Jerry

    1986-01-01

    NASA policy toward commercial space ventures is summarized and illustrated with a proposed system for mobile communications through satellite links (MSAT). The government's, i.e., NASA's, role in commercial space ventures is to provide funding and expertise to high risk projects with prospective large returns, provided no vital public services are displaced. MSAT would be realized with a relay spacecraft in GEO, linking mobile radios costing in the range $500-2500. The experimental ATS-6 satellite would be the first generation relay. It is estimated that by the 1990s a spacecraft with a 20-55 m antenna could provide transmission relays for between 640,000 to about 2.5 million nonurban communications units.

  4. 78 FR 10213 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-012] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  5. 78 FR 42111 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (13-080)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  6. 77 FR 38678 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-052)] NASA Advisory Council; Commercial..., the National Aeronautics and Space Administration (NASA) announces a meeting of the Commercial Space Committee of the NASA Advisory Council (NAC). This Committee reports to the NAC. The meeting will be held...

  7. Computers for Manned Space Applications Base on Commercial Off-the-Shelf Components

    NASA Astrophysics Data System (ADS)

    Vogel, T.; Gronowski, M.

    2009-05-01

    Similar to the consumer markets there has been an ever increasing demand in processing power, signal processing capabilities and memory space also for computers used for science data processing in space. An important driver of this development have been the payload developers for the International Space Station, requesting high-speed data acquisition and fast control loops in increasingly complex systems. Current experiments now even perform video processing and compression with their payload controllers. Nowadays the requirements for a space qualified computer are often far beyond the capabilities of, for example, the classic SPARC architecture that is found in ERC32 or LEON CPUs. An increase in performance usually demands costly and power consuming application specific solutions. Continuous developments over the last few years have now led to an alternative approach that is based on complete electronics modules manufactured for commercial and industrial customers. Computer modules used in industrial environments with a high demand for reliability under harsh environmental conditions like chemical reactors, electrical power plants or on manufacturing lines are entered into a selection procedure. Promising candidates then undergo a detailed characterisation process developed by Astrium Space Transportation. After thorough analysis and some modifications, these modules can replace fully qualified custom built electronics in specific, although not safety critical applications in manned space. This paper focuses on the benefits of COTS1 based electronics modules and the necessary analyses and modifications for their utilisation in manned space applications on the ISS. Some considerations regarding overall systems architecture will also be included. Furthermore this paper will also pinpoint issues that render such modules unsuitable for specific tasks, and justify the reasons. Finally, the conclusion of this paper will advocate the implementation of COTS based

  8. U.S. commercial space policies - Implications for developing countries

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV; Stone, Barbara A.

    1987-01-01

    Recent U.S. policy developments on the commercial use of space are summarized and their international implications are considered. Attention is given to successful applications of technology developed in space, including an implantable cancer medication system, an implantable defibrillator, an ultrasonic residual stress monitor, and aquaculture treatment techniques. NASA projects involving bioengineering and rehabilitation applications are summarized, and plans to investigate high-temperature superconductors in space are addressed. Recent agreements entred into by NASA for space commercial studies are reviewed.

  9. Enterprise: an International Commercial Space Station Option

    NASA Astrophysics Data System (ADS)

    Lounge, John M.

    2002-01-01

    In December 1999, the U.S. aerospace company SPACEHAB, Inc., (SPACEHAB) and the Russian aerospace company Rocket and Space Corporation Energia (RSC-Energia), initiated a joint project to establish a commercial venture on the International Space Station (ISS). The approach of this venture is to use private capital to build and attach a commercial habitable module (the "Enterprise Module") to the Russian Segment of the ISS. The module will become an element of the Russian Segment; in return, exclusive rights to use this module for commercial business will be granted to its developers. The Enterprise Module has been designed as a multipurpose module that can provide research accommodation, stowage and crew support services. Recent NASA budget decisions have resulted in the cancellation of NASA's ISS habitation module, a significant delay in its new ISS crew return vehicle, and a mandate to stabilize the ISS program. These constraints limit the ISS crew size to three people and result in very little time available for ISS research support. Since research activity is the primary reason this Space Station is being built, the ISS program must find a way to support a robust international research program as soon as possible. The time is right for a commercial initiative incorporating the Enterprise Module, outfitted with life support systems, and commercially procured Soyuz vehicles to provide the capability to increase ISS crew size to six by the end of 2005.

  10. Space Industrialization. Volume 2: Opportunities, Markets and Programs

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The nature of space industrialization and the reasons for its promotion are examined. Increases in space industry activities to be anticipated from 1980 to 2010 are assessed. A variety of future scenarios against which space industrialization could evolve were developed and the various industrial opportunities that might constitute that evolution were defined. The needs and markets of industry activities were quantitatively and qualitatively assessed and messed. The various hardware requirements vs. time (space industry programs) as space industrialization evolves are derived and analyzed.

  11. 76 FR 12211 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference (COMSTAC). SUMMARY: Pursuant...

  12. 76 FR 67018 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  13. 77 FR 35102 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  14. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  15. 75 FR 38866 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  16. 76 FR 4743 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  17. 76 FR 15041 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  18. 77 FR 48585 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  19. 75 FR 51332 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  20. 78 FR 14401 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  1. Space and biotechnology: An industry profile

    NASA Technical Reports Server (NTRS)

    Johnston, Richard S.; Norton, David J.; Tom, Baldwin H.

    1988-01-01

    The results of a study conducted by the Center for Space and Advanced Technology (CSAT) for NASA-JSC are presented. The objectives were to determine the interests and attitudes of the U.S. biotechnology industry toward space biotechnology and to prepare a concise review of the current activities of the biotechnology industry. In order to accomplish these objectives, two primary actions were taken. First, a questionnaire was designed, reviewed, and distributed to U.S. biotechnology companies. Second, reviews of the various biotechnology fields were prepared in several aspects of the industry. For each review, leading figures in the field were asked to prepare a brief review pointing out key trends and current industry technical problems. The result is a readable narrative of the biotechnology industry which will provide space scientists and engineers valuable clues as to where the space environment can be explored to advance the U.S. biotechnology industry.

  2. Commercial and Industrial Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This guide is designed to assist teachers conducting a course to prepare students for entry-level employment in the commercial and industrial wiring trade. Included in the guide are 15 instructional units and the following sections of information for teachers: guidelines in using the unit components; academic and workplace skills classifications…

  3. 75 FR 52058 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee-Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section 10...

  4. Centers for the commercial development of space

    NASA Technical Reports Server (NTRS)

    Walker, Susan E. (Editor)

    1989-01-01

    In 1985, NASA initiated an innovative effort called Centers for the Commercial Development of Space (CCDS). The CCDS program was designed to increase private-sector interest and investment in space-related activities, while encouraging U.S. economic leadership and stimulating advances in promising areas of research and development. Research conducted in the Centers handling the following areas is summarized: materials processing; life sciences; remote sensing; automation and robotics; space propulsion; space structures and materials; and space power.

  5. Mars Missions Using Emerging Commercial Space Transportation Capabilities

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.

    2016-01-01

    New Discoveries regarding the Martian Environment may impact Mars mission planning. Transportation of investigation payloads can be facilitated by Commercial Space Transportation options. The development of Commercial Space Transportation. Capabilities anticipated from various commercial entities are examined objectively. The potential for one of these options, in the form of a Mars Sample Return mission, described in the results of previous work, is presented to demonstrate a high capability potential. The transportation needs of the Mars Environment Team Project at ISU 2016 may fit within the payload capabilities of a Mars Sample Return mission, but the payload elements may or may not differ. Resource Modules will help you develop a component of a strategy to address the Implications of New Discoveries in the Martian Environment using the possibility of efficient, commercial space transportation options. Opportunities for open discussions as appropriate during the team project formulation period at the end of each Resource Module. The objective is to provide information that can be incorporated into your work in the Team Project including brainstorming.

  6. 77 FR 58607 - Office of Commercial Space Transportation Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space...), FAA Office of Commercial Space Transportation (AST), 800 Independence Avenue SW., Room 331, Washington... September 17, 2012. George C. Nield, Associate Administrator for Commercial Space Transportation. [FR Doc...

  7. Commercial Application of In-Space Assembly

    NASA Technical Reports Server (NTRS)

    Lymer, John; Hanson, Mark; Tadros, Al; Boccio, Joel; Hollenstein, Bruno; Emerick, Ken; Doughtery, Sean; Doggett, Bill; Dorsey, John T.; King, Bruce D.; hide

    2016-01-01

    In-Space assembly (ISA) expands the opportunities for cost effective emplacement of systems in space. Currently, spacecraft are launched into space and deploy into their operational configuration through a carefully choreographed sequence of operations. The deployment operation dictates the arrangement of the primary systems on the spacecraft, limiting the ability to take full advantage of launch vehicles volume and mass capability. ISA enables vastly different spacecraft architectures and emplacement scenarios to be achieved, including optimal launch configurations ranging from single launch and assembly to on-orbit aggregation of multiple launches at different orbital locations and times. The spacecraft can be visited at different orbital locations and times to effect expansion and maintenance of an operational capability. To date, the primary application of ISA has been in large programs funded by government organizations, such as the International Space Station. Recently, Space Systems Loral (SSL) led a study funded by the Defense Advanced Research Projects Agency (DARPA), called Dragonfly, to investigate the commercial applicability and economic advantages of ISA. In the study, it was shown that ISA enables SSL to double the capability of a commercial satellite system by taking advantage of alternate packaging approaches for the reflectors. The study included an ultra-light-weight robotic system, derived from Mars manipulator designs, to complete assembly of portions of the antenna system using a tool derived from DARPA orbital express and National Aeronautics and Space Administration (NASA) automated structural assembly experience. The mechanical connector that enables robotic ISA takes advantage of decades of development by NASA from the 1970's to 1980's during the Space Station Freedom program, the precursor to the ISS. The mechanical connector was originally designed for rapid astronaut assembly while also providing a high quality structural connection

  8. Space commerce - Preparing for the next century

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1991-01-01

    The role of NASA in space commerce is discussed in terms of providing direct assistance to the private sector and in terms of the most suitable industrial areas for such support. The primary mechanism for such support is the program of Centers for the Commercial Development of Space (CCDS) which selects industrial high-technology projects to help make them viable. The research spans such fields as remote sensing, crop forecasting, and microgravity materials processing. The collaboration of NASA and private industry is discussed in terms of sounding-rocket projects, the Commercial Experiment Transporter, and academic/industrial programs designed to generate enthusiasm for commercial space research. The future of such research is expected to focus on CCDSs for microgravity-developed products, commercial infrastructure, SEI, and commercial use of the Space Station Freedom.

  9. International space research perspectives of commercialization for German industry

    NASA Technical Reports Server (NTRS)

    Jordan, H. L.

    1985-01-01

    A brief overview of space flight activities is presented. West German contributions to satellite mapping, communication satellites, navigation, Spacelab, diffusion under weightlessness, crystal growth in space, metal bonding, and biochemistry are described. The future of the research in the space station is analyzed.

  10. NASA support for commerce in space - Broadening opportunities

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Livingston, Candace D.

    1989-01-01

    The status of the NASA Office of Commercial Program's initiatives to implement the 1988 commercial space policy and expand industrial interest in the commercial development of space in the post-Challenger era is presented. Specific objectives have been developed to capture the drive and creativity of the private sector, for increasing NASA's effectiveness in conducting business with industrial firms, and impacting the commercial space market. An aggressive, comprehensive, and forward-looking program has been defined which provides the type of infrastructure and organization required to bring industry into the mainstream of space activities.

  11. Alaska OCS socioeconomic studies program. Technical report number 30. Northern and western Gulf of Alaska petroleum development scenarios: commercial fishing industry analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, J.M.; Gorham, A.H.; Larson, D.M.

    1980-02-01

    The objective of the report is to increase our understanding of the potential relationships between the commercial fishing and Outer Continental Shelf (OCS) petroleum industries and to project the potential impacts on the commercial fishing industry of the Gulf of Alaska that may occur as a result of the proposed OCS lease sales No. 46 and No. 55. To meet this objective, the report consists of: (1) the documentation and examination of the history and current trends of the Gulf of Alaska commercial fishing industry as necessary to develop a basis for projecting fishery development and potential interactions with themore » OCS petroleum industry, (2) the development of models used to forecast the level of commercial fishing industry activity through the year 2000 in the absence of OCS development pursuant to lease sales No. 46 and No. 55, and (3) an analysis of the potential impacts of lease sales No. 46 and No. 55 based on the hypothesized nature and magnitude of the activities of the commercial fishing and OCS petroleum industries. The study concentrates on the commercial fishing industry activities centered in Kodiak, Seward, Cordova, and Yakutat. Both the harvesting and processing sectors of the fishing industry are considered. The sources of impacts considered are the competition for labor, ocean space use, and the infrastructure.« less

  12. Space Colony from a Commercial Asteroid Mining Company Town

    NASA Astrophysics Data System (ADS)

    Taylor, Thomas C.; Grandl, Werner; Pinni, Martina; Benaroya, Haym

    2008-01-01

    Commercial mining towns on Earth become cities. Company towns need commerce to drive the growth and economy of early space colonies. Water is an early resource for camp consumables plus propellant export sales from asteroid mining operations at proposed burned out comets with water methane ice cores for sustainable growth over 50 years, financed from profits and capable with affordable logistics to support resource recovery. One co-author's perspective includes remote resource recovery sites on Earth. Other co-authors' experiences include architecture, lunar habitation, and architectural space colony concepts. This paper combines these experiences to propose commercial opportunities possible as mankind moves beyond one planet. Alaska's North Slope commercial history indicates that different multiple logistics transportation systems are required to reduce the risk to humans and families moved in before the oil flowed. Commercial enterprises have risked $20 billion and spent hundreds of billions in private money after profits were created. The lessons learned are applied to a burned out comet designated Wilson-Harrington (1979) and explores the architecture for early living within the burned out comet disk created from ice recovery and later sealed with an expected methane ice interior. Considered is the recovery of the resources, the transport of water back to Earth orbit or L-1, plus later the development of more comfortable space colony living. Commercial markets produce cities on Earth and the same can happen on Space Colonies. The key is an ``in place'' affordable commercial logistics system that can service, stimulate and sustain a 50-year commercial propellant market.

  13. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    David Steitz, from NASA's Office of Communications, kicks off the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  14. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    NASA Chief Technologist Bobby Braun speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  15. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    NASA's Manager of Centennial Challenges Andy Petro speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  16. 76 FR 34192 - Commercial and Industrial Pumps

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... 1999. The ADL analysis, ``Energy Consumption Characteristics of Commercial Building HVAC Systems... report for the United Nations (``Motor System Efficiency Supply Curves UNIDO,'' Dec. 2010),\\3\\ also used..., A. and A. Hasanbeigi, ``Motor Systems Efficiency Supply Curves,'' United Nations Industrial...

  17. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    NASA Program Executive for SBIR/STTR Programs Carl Ray speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  18. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    Program Executive for the NASA Innovative Advanced Concepts (NIAC) Program Jay Falker speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  19. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    Retired NASA Astronaut and Air Force Col. Buzz Aldrin talks with other attendees of NASA's New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  20. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Keith Belvin, NASA Systems Engineer at NASA Langley Research Center, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  1. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Bobby Braun, third from right, NASA Chief Technologist, answers a question during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  2. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    James Reuther, second from right, Director of Strategic Integration at NASA Headquarters, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  3. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    James Reuther, Director of Strategic Integration at NASA Headquarters, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  4. Demandite, lunar materials and space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1977-01-01

    Terrestrial industry consumes a wide range of elements in producing the outputs which support and make industrial societies possible. 'Demandite' is a conceptual or synthetic molecule which is composed of the weight fractions of the major elements consumed by industry. Demandite needed for mature industrial activities in space will differ from the terrestrial composition because solar energy must replace hydrocarbon-energy, lunar and asteroidal bulk compositions are different from mineral deposits on the earth, and the major bulk processing in space will be the creation of radiation shielding for human habitats to provide real estate in space complete with water, atmosphere and life-stock elements. Demandite cost may be dominated by earth to deep space transport cost of minor elemental constituents depleted in the lunar soils unless careful attention is given to substitution of materials, searches of the moon (polar regions) and asteroids for the depleted elements, and continuing lowering of earth to deep space transport costs.

  5. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  6. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1997-01-01

    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  7. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Bobby Braun, second from right, NASA Chief Technologist, listens as James Reuther, Director of Strategic Integration at NASA Headquarters, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  8. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-13

    Bobby Braun, far left, NASA Chief Technologist, speaks during the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Wednesday, July 14, 2010. Mr. Braun is joined on the panel by James Reuther, Director of Strategic Integration at NASA Headquarters, second from left; Keith Belvin, NASA Systems Engineer at NASA Langley Research Center and Ramona Travis, NASA Stennis Space Center Chief Technologist, far right. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Carla Cioffi)

  9. Transplantable tissue growth-a commercial space venture

    NASA Astrophysics Data System (ADS)

    Giuntini, Ronald E.; Vardaman, William K.

    1997-01-01

    Rantek was incorporated in 1984 to pursue research toward product development in space based biotechnology. The company has maintained an aggressive experiment flight program since 1989 having flown biotechnology experiments in six Consort rockets flights, one Joust rocket flight and eight Space Shuttle missions. The objective of these flights was to conduct a series of research experiments to resolve issues affecting transplantable tissue growth feasibility. The purpose of the flight research was to determine the behavior of lymphocyte mixing, activation, magnetic mixing and process control, drug studies in a model leukemia cell line, and various aspects of the hardware system process control in the low gravity of space. The company is now preparing for a two Space Shuttle flight program as precursors to a sustained, permanent, commercial venture at the Space Station. The shuttle flights will enable new, larger scale tissue growth systems to be tested to determine fundamental process control sensitivity and growth rates unique to a number of tissue types. The answer to these issues will ultimately determine the commercial viability of the Rantek Biospace program. This paper addresses considerations that will drive the cost of a space venture-the largest cost driver will be the cost to and from the station and the cost at the station.

  10. The Turkish commercial health insurance industry.

    PubMed

    Kisa, A

    2001-08-01

    Turkey has experienced significant development in the private health insurance market since 1991. Improvements in private health services, increased public awareness, and insufficient service delivery by the social security organizations have encouraged more people to buy private health insurance. The number of people covered by private health insurance has reached 600,000, forming a $200 million market. The Turkish insurance industry is targeting 6-8 million insurance holders before the year 2005. This study examines the structure of the commercial health insurance industry of Turkey and gives the latest policy and legal changes made in the insurance market by the Turkish government to affect supply and demand.

  11. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  12. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  13. Economic benefits of commercial space activities

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.

    1988-01-01

    This paper discusses the current and potential impact on the economy of selected private sector space activities including materials processing in space and satellite communications. Spacehab, a commercially developed and manufactured pressurized metal cylinder which fits in the Shuttle payload bay and connects to the crew compartment is examined along with potential uses of the Shuttle external tank. Private sector upper stage development, the privatization of expendable launch vehicles, and the transfer of NASA technology are discussed.

  14. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    NASA Chief Technologist Bobby Braun, center, listens as NASA's Manager of Centennial Challenges Andy Petro, right, answers a reporter's question during a press conference held at the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  15. Space Technology Industry Forum

    NASA Image and Video Library

    2010-07-12

    NASA's Manager of Centennial Challenges Andy Petro, right, listens as NASA Chief Technologist Bobby Braun answers a reporter's question during a press conference held at the NASA New Space Technology Industry Forum being held at the University of Maryland in College Park on Tuesday, July 13, 2010. During the two-day event, speakers are focusing on the president's fiscal year 2011 budget request for NASA's new Space Technology Program. Representatives from industry, academia and the federal government are in attendance to discuss strategy, development and implementation of NASA's proposed new technology-enabled exploration. Photo Credit: (NASA/Bill Ingalls)

  16. Preventing deaths in Alaska's commercial fishing industry.

    PubMed

    Conway, G A; Lincoln, J M; Jorgensen, S A; Klatt, M L; Manwaring, J C

    1998-01-01

    The arctic and sub-arctic waters of Alaska provide a very hazardous work setting, with special hazards posed by great distances, seasonal darkness, cold waters, high winds, brief fishing seasons, and icing. Our intent is to reduce the remarkably high occupational fatality rate (200/100,000/year in 1991-1992) among Alaska's commercial fishing workers. Over 90% of these deaths have been due to drowning or drowning plus hypothermia, primarily associated with vessel capsizings and sinkings. Comprehensive surveillance for commercial fishing occupational fatalities was established during 1991 in Alaska. During 1990 through 1994, the U.S. Commercial Fishing Industry Vessel Safety Act of 1988 required the implementation of comprehensive prevention measures for all fishing vessels in offshore cold waters, including immersion suits and other personal flotation devices, survival craft (life rafts), emergency position-indicating radio beacons, and crew training in emergency response and first aid. Parallel to this, voluntary training efforts by nonprofit organizations have greatly increased. During 1990-1994, drowning was the leading cause of occupational death in Alaska. During this period, 117 fishers died, 101 of them from drowning or drowning/hypothermia. During 1991-1994, there was a substantial decrease in Alaskan commercial fishing-related deaths, from 34 in 1991 to 35 in 1992, 22 in 1993, and 10 in 1994. While man-overboard drownings and some other categories of deaths (falls, fires) have continued to occur, the most marked progress has been in vessel-related events. Specific measures tailored to prevent drowning in vessel capsizings and sinkings in Alaska's commercial fishing industry have been very successful so far. Additional efforts must be made to reduce the frequency of vessel events and to prevent man-overboard events and drownings associated with them.

  17. The U.S. Commercial Space Launch Program and the Department of Defense Dilemma

    NASA Technical Reports Server (NTRS)

    Clapp, William G.

    1995-01-01

    The U.S. space launch program no longer dominates the world and is now playing 'catch-up' with the world's first commercial launch company, Arianespace. A healthy U.S. commercial launch program is essential and will assure continued low-cost military access to space. The effort to regain the lead in commercial space launch market has been hindered by declining Department of Defense budgets. President Clinton's space policy prohibits expensive new launch vehicles and limits the Department of Defense to low cost upgrades of existing launch vehicles. The U.S. government created the space sector and must ensure a smooth and effective split from the emerging commercial space program in order to regain world dominance. Until U.S. government and commercial ties are severed, the Department of Defense must consider commercial space launch interests when making military decisions. Ariane provides an excellent 'bench mark' for the U.S. to base future launch vehicle upgrades. Ariane advantages were identified and low-cost recommendations have been made. If the U.S. sets the target of first equaling and then surpassing Ariane by incorporating these recommendations, then the U.S. could once again dominate the world commercial launch market and ensure low cost military access to space.

  18. The elements of a commercial human spaceflight safety reporting system

    NASA Astrophysics Data System (ADS)

    Christensen, Ian

    2017-10-01

    In its report on the SpaceShipTwo accident the National Transportation Safety Board (NTSB) included in its recommendations that the Federal Aviation Administration (FAA) ;in collaboration with the commercial spaceflight industry, continue work to implement a database of lessons learned from commercial space mishap investigations and encourage commercial space industry members to voluntarily submit lessons learned.; In its official response to the NTSB the FAA supported this recommendation and indicated it has initiated an iterative process to put into place a framework for a cooperative safety data sharing process including the sharing of lessons learned, and trends analysis. Such a framework is an important element of an overall commercial human spaceflight safety system.

  19. Economic benefits of commercial space activities

    NASA Astrophysics Data System (ADS)

    Stone, Barbara A.

    Space is not only an endless frontier for exploration, but also a potentially rich arena for profitable commerce to benefit all mankind. Access to the unique environment of space provides opportunities for unprecedented kinds of research to develop new products and services. This research can lead to commercially viable enterprises, which will become permanent businesses, which will provide good jobs for workers, pay taxes to their governments, and return dividends to their investors. Seeking superior products and processes is vital if the economy is to grow and prosper. This paper discusses the current and potential impact on the economy of selected private sector space activities.

  20. 33 CFR 1.07-100 - Summons in lieu of seizure of commercial fishing industry vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commercial fishing industry vessels. 1.07-100 Section 1.07-100 Navigation and Navigable Waters COAST GUARD... Proceedings § 1.07-100 Summons in lieu of seizure of commercial fishing industry vessels. (a) As used in this section, the following terms have the meanings specified: (1) Commercial fishing industry vessel means a...

  1. 33 CFR 1.07-100 - Summons in lieu of seizure of commercial fishing industry vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commercial fishing industry vessels. 1.07-100 Section 1.07-100 Navigation and Navigable Waters COAST GUARD... Proceedings § 1.07-100 Summons in lieu of seizure of commercial fishing industry vessels. (a) As used in this section, the following terms have the meanings specified: (1) Commercial fishing industry vessel means a...

  2. 33 CFR 1.07-100 - Summons in lieu of seizure of commercial fishing industry vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commercial fishing industry vessels. 1.07-100 Section 1.07-100 Navigation and Navigable Waters COAST GUARD... Proceedings § 1.07-100 Summons in lieu of seizure of commercial fishing industry vessels. (a) As used in this section, the following terms have the meanings specified: (1) Commercial fishing industry vessel means a...

  3. 33 CFR 1.07-100 - Summons in lieu of seizure of commercial fishing industry vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commercial fishing industry vessels. 1.07-100 Section 1.07-100 Navigation and Navigable Waters COAST GUARD... Proceedings § 1.07-100 Summons in lieu of seizure of commercial fishing industry vessels. (a) As used in this section, the following terms have the meanings specified: (1) Commercial fishing industry vessel means a...

  4. FAA's Implementation of the Commercial Space Launch Amendments Act of 2004- The Experimental Permit

    NASA Astrophysics Data System (ADS)

    Repcheck, J. Randall

    2005-12-01

    A number of entrepreneurs are committed to the goal of developing and operating reusable launch vehicles for private human space travel. In order to promote this emerging industry, and to create a clear legal, regulatory, and safety regime, the United States (U.S.) Congress passed the Commercial Space Launch Amendments Act of 2004 (CSLAA). Signed on December 23, 2004 by U.S. President George W. Bush, the CSLAA makes the Federal Aviation Administration (FAA) responsible for regulating human spaceflight. The CSLAA, among other things, establishes an experimental permit regime for developmental reusable suborbital rockets. This paper describes the FAA's approach in developing guidelines for obtaining and maintaining an experimental permit, and describes the core safety elements of those guidelines.

  5. 78 FR 7306 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Fans and Blowers AGENCY: Office of Energy Efficiency and Renewable... and industrial fans and blowers. To inform interested parties and to facilitate this process, DOE has...

  6. 78 FR 7304 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable Energy... industrial pumps. To inform interested parties and to facilitate this process, DOE has prepared a Framework...

  7. Commercial Maritime Industry: Updated Information on Federal Assessments

    DOT National Transportation Integrated Search

    1999-09-16

    One of the means by which the federal government generates revenue to support America's maritime infrastructure is to enable federal agencies to levy assessments - user fees, taxes, and other charges - upon the commercial maritime industry. As of the...

  8. The Virginia Space Flight Center model for an integrated federal/commercial launch range

    NASA Astrophysics Data System (ADS)

    Reed, Billie M.

    2000-01-01

    Until 1998, the federal government has been the predominant purchaser of space launches in the U.S. through the purchase of hardware and services. Historically, the government provided the necessary infrastructure for launches from the federal DoD and NASA launch ranges. In this historical model, the federal government had complete ownership, responsibility, liability, and expense for launch activities. In 1998, commercial space launches accounted for 60% of U.S. launches. This growth in commercial launches has increased the demand for launch range services. However, the expense, complexity of activities, and issues over certification of flight safety have deterred the establishment of purely commercial launch sites, with purely commercial being defined as without benefit of capabilities provided by the federal government. Provisions of the Commercial Space Launch Act have enabled DoD and NASA to support commercial launches from government launch ranges on a cost-reimbursable, non-interference basis. The government provides services including use of facilities, tracking and data services, and range and flight safety. In the 1990's, commercial space market projections indicated strong potential for large numbers of commercial satellites to be launched well into the first decade of the 21st century. In response to this significant opportunity for economic growth, several states established spaceports to provide the services necessary to meet these forecast commercial needs. In 1997, NASA agreed to the establishment of the Virginia Space Flight Center (VSFC), a commercial spaceport, at its Wallops Flight Facility. Under this arrangement, NASA agreed to allow the Virginia Commercial Space Flight Authority (VCSFA) to construct facilities on NASA property and agreed to provide launch range and other services in accordance with the Space Act and Commercial Space Launch Act in support of VSFC launch customers. A partnership relationship between NASA and VCSFA has emerged

  9. The commercial development of space: is an international regulatory framework needed?

    PubMed

    Contant, Corinne M; Logsdon, John M

    2004-04-01

    The commercial space sector to date has failed to develop comprehensive regulations--"rules of the road"--for its international activities. Within the next 5 years, conflicts with respect to international trade in satellite sales and launch services could emerge, highlighting the need for such a regulatory framework. If the commercial space sector is to continue to develop, it is important to begin discussions now, before these conflicts become significant, on the elements of an appropriate international regulatory framework. The existing framework for space activities was developed when government, not commercial, space activities were dominant, or was adapted from regulations in other sectors such as terrestrial telecommunications. c2003 Elsevier Ltd. All rights reserved.

  10. Bolden at FAA Commercial Space Transportation Conference

    NASA Image and Video Library

    2011-02-09

    NASA Administrator Charles Bolden speaks at the 14th Annual Federal Aviation Administration (FAA) Commercial Space Transport Conference at the Washington Convention Center on Wednesday, Feb. 9, 2001. Photo Credit: (NASA/Carla Cioffi)

  11. 76 FR 30232 - Office of Commercial Space Transportation Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space... levels associated with suborbital space flight. The reduced gravity levels are: --0.00 g 0.05 g for 17... Division (AST-200), FAA Office of Commercial Space Transportation (AST), 800 Independence Avenue, SW., Room...

  12. Interoperability for Space Mission Monitor and Control: Applying Technologies from Manufacturing Automation and Process Control Industries

    NASA Technical Reports Server (NTRS)

    Jones, Michael K.

    1998-01-01

    Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.

  13. The Space Industry

    DTIC Science & Technology

    2007-01-01

    Bölkow-Blohm, Construcciones Aeronauticas Sociedad Aónima, and Aeronautica Industrial SA. This merger was significant because it crossed a number of...large firms. As the larger U.S. space firms move toward a lead systems integrator construct , technological innovation migrates to lower tier

  14. Commercial Space Port Planning in Texas

    NASA Astrophysics Data System (ADS)

    Bell, L.; Looke, B.

    2002-01-01

    The Texas Legislature is providing funding to support research and planning activities aimed at creating a commercial spaceport in the state. These monies have been allocated to regional Spaceport Development Corporations that have been established in three countries containing candidate site locations: Willacy County (in South Texas); Brazoria County (East Texas); and Pecos County (West Texas). This program is being sponsored and coordinated by the Texas Aerospace Commission (TAC). The Sasakawa International Center for Space Architecture (SICSA) at the University of Houston is providing research, planning and design support to TAC and is a member of each of the three regional development teams. Planning must carefully consider special support requirements and operational characteristics of all prospective launch systems along with geographic, infrastructure and environmental factors at each site. Two of the candidate sites are in coastal areas; a priority for certain launch service providers; whereas the third inland site is more attractive to others. Candidate launch systems include winged horizontal takeoff air-launch vehicles, vertical multi-stage reusable launch vehicles, and expendable sub-orbital surrounding rockets. Important research and planning activities include environmental impact assessments, analyses of overflight hazards, investigations of economic impacts and business plan development. The results of these activities will guide master plan development for each site, including: a physical plan (site layout, infrastructure improvements and facility construction); and a strategic plan (user agreements, licenses, finance sources and participants). Commercial spaceport development demands compliance with stringent FAA regulations established by the Office of Commercial Space Transportation (OCST) which exceed minimum standards allowed for U.S. Government spaceport facilities. Key among these requirements are 15,000 ft. radius on-site clear zones

  15. Commercial space transportation licensing : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1999-01-01

    In order to conduct a commercial space launch or operate a commercial launch site in the U.S., it is necessary to obtain a license from the United States government. Under the 1972 United Nations Convention on International Liability for Damage Cause...

  16. Commercial Development Plan for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long term objective of the development plan for the International Space Station (ISS) is to establish the foundation for a marketplace and stimulate a national economy for space products and services in low-Earth orbit, where both demand and supply are dominated by the private sector. The short term objective is to begin the transition to private investment and offset a share of the public cost for operating the space shuttle fleet and space station through commercial enterprise in open markets.

  17. Astronautics Degrees for Space Industry

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Brodsky, R.; Erwin, D.; Kunc, J.

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science degree program in Astronautics combines basic science and engineering classes with specialized astronautics classes. The Master of Science degree program in Astronautics offers classes in various areas of space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers. The new world of distance learning presents new challenges and opens new opportunities. We show how the transformation of distance learning and particularly the introduction of webcasting transform organization of the program and class delivery. We will describe in detail the academic focus of the program, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  18. NASA's approach to commercial cargo and crew transportation

    NASA Astrophysics Data System (ADS)

    Stone, Dennis; Lindenmoyer, Alan; French, George; Musk, Elon; Gump, David; Kathuria, Chirinjeev; Miller, Charles; Sirangelo, Mark; Pickens, Tom

    2008-07-01

    To stimulate the commercial space industry and potentially serve the logistics needs of the International Space Station (ISS) in the post-Space Shuttle era, the National Aeronautics and Space Administration (NASA) in 2006 began the Commercial Orbital Transportation Services (COTS) initiative. NASA entered into agreements with two U.S. firms, Rocketplane Kistler and Space Exploration Technologies to share up to 485,000,000 USD to demonstrate cargo transportation services to and from Low Earth orbit (LEO), with an option for additional funds to demonstrate human transportation services. Subsequently, NASA also entered into unfunded agreements with five companies to develop innovative space transportation capabilities. This paper reviews this unique initiative, describes the concepts of these seven companies, and discusses the potential of this emerging industry to make LEO more accessible.

  19. 26 CFR 509.105 - Industrial and commercial profits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sales promotion, the orders being transmitted to Switzerland for acceptance, then the profits arising... 26 Internal Revenue 19 2010-04-01 2010-04-01 false Industrial and commercial profits. 509.105 Section 509.105 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED...

  20. Spring 2004 Industry Study: Space Industry

    DTIC Science & Technology

    2004-01-01

    a heavier spacecraft mass direct to geostationary orbit or place a payload into a higher perigee. The Sea Launch web site is located at http...NOTES The original document contains color images . 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...other people, the citizens of the U.S. rely on the commercial space sector for their way of life. Remote sensing by optical, radar and infrared

  1. Commercial Development Plan for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long term objective is to establish the foundation for a marketplace and stimulate a national economy for space products and services in low-Earth orbit, where both demand and supply are dominated by the private sector. The short term objective is to begin the transition to private investment and offset a share of the public cost for operating the space shuttle fleet and space station through commercial enterprise in open markets.

  2. 75 FR 45196 - Office of Commercial Space Transportation; Notice of Availability of the Final Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space..., the FAA would issue a Launch Site Operator License to Space Florida to operate a commercial space... of Commercial Space Transportation Web site at http://www.faa.gov/about/office_org/headquarters...

  3. Recombinant drug development, regulation, and commercialization: an Indian industry perspective.

    PubMed

    Sahoo, Niharika; Manchikanti, Padmavati

    2011-04-01

    The Indian biopharmaceutical sector comprises nearly 40 companies that manufacture and/or market 14 recombinant drugs that account for nearly 50 products. Among these, 22 companies have manufacturing facilities in India. The aim of the present study was to analyze the patenting trends, commercialization, and regulatory system for biopharmaceuticals in India. Representatives from 19 such biopharmaceutical companies were interviewed on aspects related to regulatory compliance, manufacturing, commercialization, and innovation in order to understand the challenges faced by them in the current regulatory and patent system. The study revealed that 94% of the companies have filed patents and 52% are developing new biologic entities in areas such as diabetes mellitus, cancer, and congestive heart diseases. Forty-two percent of the companies consider delays in regulatory approval to be a major constraint for biopharmaceutical industry development. Almost all are of the opinion that uniform guidelines across countries would help to prevent delays in the commercialization of products. A high proportion of representatives of the biopharmaceutical industry in India identified that elaboration of regulatory guidelines, defined submission requirements, and drug approval timelines are vital to the growth of the biopharmaceutical industry. © 2011 Adis Data Information BV. All rights reserved.

  4. A space exploration strategy that promotes international and commercial participation

    NASA Astrophysics Data System (ADS)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  5. Commercial technologies from the SP-100 program

    NASA Astrophysics Data System (ADS)

    Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.

    1995-01-01

    For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.

  6. Space allowance during commercial long distance transport of cattle in North America.

    PubMed

    González, L A; Schwartzkopf-Genswein, K S; Bryan, M; Silasi, R; Brown, F

    2012-10-01

    The objective of the present work was to study space allowance in cattle during commercial long haul transport (≥400 km; n = 6,152 journeys). Surveys, delivered to livestock transport carriers, gathered information on the number, BW, and distribution of cattle by trailer compartment as well as the characteristics of the transport vehicles used. Space allowance (SA; m(2)/animal), allometric coefficient (k = SA / BW(0.6667)), and the percentage of deviation from recommended SA (DRSA; %) in the Canadian Codes of Practice were calculated for each compartment of the trailers. All quad-axle (77%) and tri-axle (23%) cattle trailers were reported with 5 compartments (nose, deck, belly, back, and doghouse). Sixty percent of all animals were carried in the middle compartments (deck and belly), 30% in the rear (back and doghouse), and 10% in the front or nose. Approximately 30% of the journeys required that the cattle be redistributed at the Canada-USA border to comply with different axle weight regulations, and most journeys moved them between the deck and the doghouse. Total loaded weight increased and the number of animals decreased with increasing BW of the animals. space allowance, k-value, and DRSA were least for calves and feeders compared with fat and cull cattle (p < 0.01). Both total loaded weight and number of animals increased with the number of axles in the trailer, being greatest in quad-axle trailers pulled by push tractors, which were most frequently used. Space allowance (k-value) was least in vehicles with greater number of axles and transporting the lightest cattle (i.e., quad-axles trailers transporting calves and feeders). Space allowance, k-value, and variability among journeys were least in the middle compartments (belly and deck), followed by the back, then doghouse and nose compartments of the trailers showing the largest values (p < 0.05). Many factors contributed to the variability in SA such as body size (smaller animals are placed more densely

  7. Layered Thermal Insulation Systems for Industrial and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2015-01-01

    From the high performance arena of cryogenic equipment, several different layered thermal insulation systems have been developed for industrial and commercial applications. In addition to the proven areas in cold-work applications for piping and tanks, the new Layered Composite Insulation for Extreme Environments (LCX) has potential for broader industrial use as well as for commercial applications. The LCX technology provides a unique combination of thermal, mechanical, and weathering performance capability that is both cost-effective and enabling. Industry applications may include, for example, liquid nitrogen (LN2) systems for food processing, liquefied natural gas (LNG) systems for transportation or power, and chilled water cooling facilities. Example commercial applications may include commercial residential building construction, hot water piping, HVAC systems, refrigerated trucks, cold chain shipping containers, and a various consumer products. The LCX system is highly tailorable to the end-use application and can be pre-fabricated or field assembled as needed. Product forms of LCX include rigid sheets, semi-flexible sheets, cylindrical clam-shells, removable covers, or flexible strips for wrapping. With increasing system control and reliability requirements as well as demands for higher energy efficiencies, thermal insulation in harsh environments is a growing challenge. The LCX technology grew out of solving problems in the insulation of mechanically complex cryogenic systems that must operate in outdoor, humid conditions. Insulation for cold work includes equipment for everything from liquid helium to chilled water. And in the middle are systems for LNG, LN2, liquid oxygen (LO2), liquid hydrogen (LH2) that must operate in the ambient environment. Different LCX systems have been demonstrated for sub-ambient conditions but are capable of moderately high temperature applications as well.

  8. The Space Shuttle in perspective

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1981-01-01

    Commercial aspects of the Space Shuttle are examined, with attention given to charges to users, schedule of launches and reimbursement, kinds of payload and their selection, NASA authority, space allocation, and risk, liability, and insurance. It is concluded that insurance to reduce the risk, incentives that NASA is willing to make available to U.S. industry, and the demonstrated willingness of industry and the financial community to invest their funds in space ventures indicate that the new Shuttle capabilities will exponentially increase commercial activities in space during the 1980s.

  9. University of Central Florida / Deep Space Industries Asteroid Regolith Simulants

    NASA Astrophysics Data System (ADS)

    Britt, Daniel; Covey, Steven D.; Schultz, Cody

    2017-10-01

    Introduction: The University of Central Florida (UCF), in partnership with Deep Space Industries (DSI) are working under a NASA Phase 2 SBIR contract to develop and produce a family of asteroid regolith simulants for use in research, engineering, and mission operations testing. We base simulant formulas on the mineralogy, particle size, and physical characteristics of CI, CR, CM, C2, CV, and L-Chondrite meteorites. The advantage in simulating meteorites is that the vast majority of meteoritic materials are common rock forming minerals that are available in commercial quantities. While formulas are guided by the meteorites our approach is one of constrained maximization under the limitations of safety, cost, source materials, and ease of handling. In all cases our goal is to deliver a safe, high fidelity analog at moderate cost.Source Materials, Safety, and Biohazards: A critical factor in any useful simulant is to minimize handling risks for biohazards or toxicity. All the terrestrial materials proposed for these simulants were reviewed for potential toxicity. Of particular interest is the organic component of volatile rich carbonaceous chondrites which contain polycyclic aromatic hydrocarbons (PAHs), some of which are known carcinogens and mutagens. Our research suggests that we can maintain rough chemical fidelity by substituting much safer sub-bituminous coal as our organic analog. A second safety consideration is the choice of serpentine group materials. While most serpentine polymorphs are quite safe we avoid fibrous chrysotile because of its asbestos content. Terrestrial materials identified as inputs for our simulants are common rock forming minerals that are available in commercial quantities. These include olivine, pyroxene, plagioclase feldspar, smectite, serpentine, saponite, pyrite, and magnetite in amounts that are appropriate for each type. For CI's and CR’s, their olivines tend to be Fo100 which is rare on Earth. We have substituted Fo90 olivine

  10. Operation of commercially-based microcomputer technology in a space radiation environment

    NASA Astrophysics Data System (ADS)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  11. Methods utilized in evaluating the profitability of commercial space processing

    NASA Technical Reports Server (NTRS)

    Bloom, H. L.; Schmitt, P. T.

    1976-01-01

    Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.

  12. Environmental Remediation Technologies Derived from Space Industry Research

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Sauser, Brian; Helminger, Andrew

    2004-01-01

    Beginning in the 1950s and 1960s, an abundance of effort and initiative was focused on propelling the space industry outward for planetary exploration and habitation. During these early years, the push to take space science to new levels indirectly contributed to the evolution of another science field that would not fully surface until the early 1980s, environmental remediation. This field is associated with the remediation or cleanup of environmental resources such as groundwater, soil, and sediment. Because the space-exploration initiative began prior to the establishment of the U.S. Environmental Protection Agency (EPA) in December of 1970, many NASA Centers as well as space-related support contractors allowed for the release of spent chemicals into the environment. Subsequently, these land owners have been directed by the EPA to responsibly initiate cleanup of their impacted sites. This paper will focus on the processes and lessons learned with the development, testing, and commercialization initiatives associated with four remediation technologies. The technologies include installation techniques for permeable reactive barriers (PRBs), the use of ultrasound to improve long-term performance of PRBs, emulsified zero-valent iron for product-level solvent degradation, and emulsion technologies for application to metal and polychlorinated biphenyl contaminated media. Details of the paper cover technology research, evaluation, and testing; contracts and grants; and technology transfer strategies including patenting, marketing, and licensing.

  13. Preventing Commercial Colonialism and Retaining Sovereignty Over National Policy and Military Strategy in Space

    DTIC Science & Technology

    2018-04-09

    29 National Interests in SpaceCommercial or State-Driven Celestial Expansion? ....... 31 Celestial Market Opportunities – When Will Commercial...Space Markets Open? ...... 38 Implications of Commercial Space Operations ............................................................ 45 Chapter 5...Successful development of competitiveness involves seeking to dominate or control an existing or emergent market . The development of market domination into

  14. The commercial health insurance industry in an era of eroding employer coverage.

    PubMed

    Robinson, James C

    2006-01-01

    This paper analyzes the commercial health insurance industry in an era of weakening employer commitment to providing coverage and strengthening interest by public programs to offer coverage through private plans. It documents the willingness of the industry to accept erosion of employment-based enrollment rather than to sacrifice earnings, the movement of Medicaid beneficiaries into managed care, and the distribution of market shares in the employment-based, Medicaid, and Medicare markets. The profitability of the commercial health insurance industry, exceptionally strong over the past five years, will henceforth be linked to the budgetary cycles and political fluctuations of state and federal governments.

  15. 78 FR 12251 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework... the notice of public meeting and availability of the Framework Document pertaining to the development of energy conservation standards for commercial and industrial fan and blower equipment published on...

  16. COTS/CRS: KSC Evolving Host Initiatives with Commercial Space Partners

    NASA Technical Reports Server (NTRS)

    Yohpe, Megan

    2010-01-01

    NASA's Commercial Crew and Cargo Program Office (C3PO) leads the agency's commercial efforts to stimulate United States private companies as the shuttle program comes to a close. Through the Commercial Orbital Transportation Services (COTS) program, two companies, SpaceX and Orbital, were selected to demonstrate their ability to perform flights to the International Space Station. The Commercial Resupply Services (CRS) Project leverages off the COTS experience, and awarded these two private companies contracts to resupply the International Space Station after shuttle fly out. As a 2010 summer intern, I supported the COTS/CRS team in their team meetings, attended and contributed to project discussions and planning, and assisted in developing visual representations for the variety of processes and organizational endeavors required for the program to run smoothly. One aspect of the COTS/CRS program gives the involved private companies the opportunity to request available services from Kennedy Space Center (KSC); one of my projects included assisting in the development of a related Task Order Request (TOR) process. In addition, an integral part of the project was to maintain and enhance the team database for processing the variety of TORS. My experience in the project gave me great insight into the growing field of commercial space activities. The development of the TOR process involved coordinating representatives from a variety of backgrounds at KSC. A clear and concise visual representation of the TOR process in the form of a flow chart was necessary to successfully implement a task order request from one of NASA's commercial partners. The goals of the process charts were to communicate the team's ideas and foster a common thought process while at the same time allow the process to grow and evolve. It was critical that the requests from the private companies were addressed quickly and thoroughly as the process developed this summer is expected to have extensive

  17. Commercial fishing industry deaths - forensic issues.

    PubMed

    Byard, Roger W

    2013-04-01

    The commercial fishing industry has one of the highest injury and mortality rates of all occupational areas. This results from the nature of the work involving vessels often manned by only a few individuals who are working with heavy-duty equipment in dangerous environments at all hours. Economic pressures may force inappropriately geared vessels to operate further out to sea than is safe. Deaths result from a wide variety of situations involving vessel loss, falls overboard, fire and explosions, cable entanglements and gas exposure. Autopsies are often difficult as there are no diagnostic features of either drowning or hypothermia and features may be obscured by putrefaction and postmortem animal predation. The forensic implications of deaths in the fishing industry are reviewed. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Industry and Government Officials Meet for Space Weather Summit

    NASA Astrophysics Data System (ADS)

    Intriligator, Devrie S.

    2008-10-01

    Commercial airlines, electric power grids, cell phones, handheld Global Positioning Systems: Although the Sun is less active due to solar minimum, the number and types of situations and technologies that can benefit from up-to-date space weather information are growing. To address this, the second annual summit of the Commercial Space Weather Interest Group (CSWIG) and the National Oceanic and Atmospheric Administration's Space Weather Prediction Center (SWPC) was held on 1 May 2008 during Space Weather Workshop (SWW), in Boulder, Colo.

  19. SP-100 nuclear space power systems with application to space commercialization

    NASA Technical Reports Server (NTRS)

    Smith, John M.

    1988-01-01

    The purpose of this paper is to familiarize the Space Commercialization Community with the status and characteristics of the SP-100 space nuclear power system. The program is a joint undertaking by the Department of Defense, the Department of Energy and NASA. The goal of the program is to develop, validate, and demonstrate the technology for space nuclear power systems in the range of 10 to 1000 kWe electric for use in the future civilian and military space missions. Also discussed are mission applications which are enhanced and/or enabled by SP-100 technology and how this technology compares to that of more familiar solar power systems. The mission applications include earth orbiting platforms and lunar/Mars surface power.

  20. The design of a commercial space infrastructure

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Space Services and Logistics, Inc. represents the complete engineering design of a technically and financially viable commercial space company. The final proposal offers an economically sound program of space vehicles and systems designed to substantially affect a variety of space markets and produce a vertically integrated structure within the next 20 years. Throughout this design process, particular stress has been placed on attaining the highest possible levels of safety and reliability. The final program financial design requires a considerable initial outlay, but promises a relatively quick return on invested capital, culminating in large annual profits by the end of the 20-year scope of the cost outlook. The overall design has been extensively researched and was primarily driven by the present and near-term projected market demands for services uniquely or competitively offered only by space-oriented operations. Heretofore, available capabilities, rather than these market demands, have determined the degree and type of commercial market access. Removing this limitation through extensive use of modularity and reconfigurability allows the company to gear itself to the market, while still remaining extremely competitive with existing systems. The markets identified as lucrative, and that have governed much of the design requirements, are: low-cost launch services to LEO over a wide range of payload masses and inclinations; upper stage payload delivery from LEO to GEO; manned space operations and human transport to and from orbit; EVA assembly and maintenance of large space structures; satellite servicing and repair by both humans and telerobotic operations; a line of customized satellites designed for extended life and capable of reconfiguration or technology upgrade on orbit; small-scale microgravity experimentation and manufacturing supported by spacecraft retrieval capabilities for experimental specimens and manufactured goods; and a full-range of payload

  1. 78 FR 26544 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework... the development of energy conservation standards for commercial and industrial fan and blower equipment published on February 1, 2013, is extended to June 3, 2013. DATES: The comment period for the...

  2. 77 FR 76825 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC..., the Department extended the compliance date for certification of commercial refrigeration equipment...

  3. Space Industrialization: The Mirage of Abundance.

    ERIC Educational Resources Information Center

    Deudney, Daniel

    1982-01-01

    Large-scale space industrialization is not a viable solution to the population, energy, and resource problems of earth. The expense and technological difficulties involved in the development and maintenance of space manufacturing facilities, space colonies, and large-scale satellites for solar power are discussed. (AM)

  4. 76 FR 80451 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... wastes ERUs were designed to burn. Energy Recovery Units (i.e., units that would be boilers and process... and 241 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed... 2060-AR15 and 2050-AG44 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and...

  5. Sub-orbital commercial Human space flight and informed consent in the United States

    NASA Astrophysics Data System (ADS)

    Carminati, Maria-Vittoria « Giugi »; Griffith, Doug; Campbell, Mark R.

    2013-12-01

    Commercial space flight is expected to rapidly develop in the near future. This will begin with sub-orbital missions and then progress to orbital flights. In the United States, technical informed consent of space flight participants is required by the commercial space flight operator for regulatory purposes. Additionally, though not required by U.S. regulation, the aerospace medicine professional involved in the medical screening of both space flight participants and crewmembers will be asked to assist operators in obtaining medical informed consent for liability purposes. The various US federal and state regulations regarding informed consent for sub-orbital commercial space flight are evolving and are unfamiliar to most aerospace medical professionals and are reviewed and discussed.

  6. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehorn, Will

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  7. SPECIAL COLLOQUIUM : Building a Commercial Space Launch System and the Role of Space Tourism in the Future (exceptionally on Tuesday)

    ScienceCinema

    Whitehorn, Will

    2017-12-15

    The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan

  8. 48 CFR 1812.7000 - Prohibition on guaranteed customer bases for new commercial space hardware or services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... customer bases for new commercial space hardware or services. 1812.7000 Section 1812.7000 Federal... PLANNING ACQUISITION OF COMMERCIAL ITEMS Commercial Space Hardware or Services 1812.7000 Prohibition on guaranteed customer bases for new commercial space hardware or services. Public Law 102-139, title III...

  9. 77 FR 72763 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... Commercial and Industrial HVAC, Refrigeration and Water Heating Equipment AGENCY: Office of Energy Efficiency... extension to the compliance date for the certification provisions of commercial refrigeration equipment... refrigeration equipment; commercial HVAC equipment; commercial WH equipment; and walk-in coolers and freezers...

  10. Concepts in health evaluation of commercial and industrial chemicals

    NASA Technical Reports Server (NTRS)

    Mcnamara, B. P.

    1975-01-01

    A method is described for determining no toxic effect exposure levels based on short-term testing of industrial and commercial chemicals. Procedures for monitoring all organs and body functions for the presence or absence of toxicological effects are demonstrated using various laboratory animals.

  11. NASDA and the Space Industry in Japan

    NASA Astrophysics Data System (ADS)

    Takamatsu, Hideo

    2002-01-01

    With over 30 years of history in space activities, Japan is now recognized as one of space powers in the world. Compared to other countries though, the features of Japanese space development are unique in several aspects. At first, its efforts are directed solely toward peaceful purposes and strictly separated from military uses. Secondly, there are many space related governmental agencies and institutes which are under supervision of different ministries. Thirdly, although the government budget is moderate and sales revenue of space industries is not so large, many large companies in aerospace or electronics industries see the importance of this business and compete each other mainly in the domestic market. NASDA, founded in 1969, is the largest governmental space organization and has played an important role in realizing practical applications of space activities. It has rapidly caught up the technology gap behind leading countries and has achieved remarkable successes with its own launch vehicles and satellites. Space industries, under the guidance of NASDA, have learned much from the U.S. companies and improved their technology levels and enjoyed steady growth during the early stage of Japanese space development. But before they became competitive enough in the world space business, the trade conflict between Japan and the U.S. made the procurement of Japanese non-R&D satellites open to the foreign satellite companies. Furthermore, interruptions of space activities due to recent successive failures of launch vehicles as well as Japanese economic slump have made space industries face hard situations. Under these circumstances, M&A of launch vehicle companies as well as satellite makers took place for the first time in Japanese aero-space history. Also at the government level, reorganization of space agencies is now under process. It is expected as a natural consequence of the merge of the Ministry of Education and the Science an Technology Agency, three space

  12. Heat Shield Paves the Way for Commercial Space

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Phenolic-Impregnated Carbon Ablator (PICA) heat shield, a lightweight material designed to withstand high temperatures, was used for the Stardust’s reentry into Earth’s atmosphere. Hawthorne, California-based SpaceX later worked with the inventors at Ames Research Center to outfit PICA on its Dragon capsule, which is now delivering cargo to and from the International Space Station through NASA’s Commercial Resupply Services contracts program.

  13. The future of the US Space Industrial Base

    NASA Astrophysics Data System (ADS)

    1992-11-01

    Our space industrial base has given the United States the capability to be the world's leading space-faring nation. We have exploited space to greatly advance our national security by using extraordinarily sophisticated reconnaissance space systems to guard against military surprise, and other spacecraft that support the pinpoint delivery of weapons. We have fulfilled the dreams of those visionary national leaders who enacted the first National Aeronautics and Space Act by advancing our scientific knowledge of the planet we occupy and the universe around us. And the advancements in technology engendered by the U.S. space program have had world-wide impact in fostering entire new industries. The industrial base is broad. It is not merely plant and equipment, but an entire infrastructure of skilled scientific and technical manpower backed up by superb government, private and academic facilities and institutions.

  14. 76 FR 20070 - Commercial Space Transportation Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... application. Background: NASTAR applied for, and received, a safety approval for the ability of its Space... approval are applicant developed per 14 CFR 414.19 (a)(4). NASTAR's [[Page 20071

  15. Astronautics degrees for the space industry

    NASA Astrophysics Data System (ADS)

    Gruntman, M.; Brodsky, R. F.; Erwin, D. A.; Kunc, J. A.

    2004-01-01

    The Astronautics Program (http://astronautics.usc.edu) of the University of Southern California (USC) offers a full set of undergraduate and graduate degree programs in Aerospace Engineering with emphasis in Astronautics. The Bachelor of Science and Master of Science degree programs in Astronautics combine basic science and engineering classes with specialized classes in space technology. The Certificate in Astronautics targets practicing engineers and scientists who enter space-related fields and/or who want to obtain training in specific space-related areas. Many specialized graduate classes are taught by adjunct faculty working at the leading space companies. The Master of Science degree and Certificate are available entirely through the USC Distance Education Network (DEN). Today, the Internet allows us to reach students anywhere in the world through webcasting. The majority of our graduate students, as well as those pursuing the Certificate, work full time as engineers in the space industry and government research and development centers while earning their degrees. The new world of distance learning presents new challenges and opens new opportunities. Distance learning, and particularly the introduction of webcasting, transform the organization of the graduate program and class delivery. We describe in detail the program's academic focus, student reach, and structure of program components. Program development is illustrated by the student enrollment dynamics and related industrial trends; the lessons learned emphasize the importance of feedback from the students and from the space industry.

  16. Commercial/industrial photovoltaic module and array requirement study. Low-cost solar array project engineering area

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design requirements for photovoltaic modules and arrays used in commercial and industrial applications were identified. Building codes and referenced standards were reviewed for their applicability to commercial and industrial photovoltaic array installation. Four general installation types were identified - integral (replaces roofing), direct (mounted on top of roofing), stand-off (mounted away from roofing), and rack (for flat or low slope roofs, or ground mounted). Each of the generic mounting types can be used in vertical wall mounting systems. This implies eight mounting types exist in the commercial/industrial sector. Installation costs were developed for these mounting types as a function of panel/module size. Cost drivers were identified. Studies were performed to identify optimum module shapes and sizes and operating voltage cost drivers. The general conclusion is that there are no perceived major obstacles to the use of photovoltaic modules in commercial/industrial arrays.

  17. Commercial industry on the horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, J.

    2000-01-01

    About 5,000 Tcf of stranded gas reserves exist worldwide--gas that is not economically feasible to recover and move to market through pipelines. For oil producers, this is problematic for a number of reasons. What do you do with associated gas when environmental regulations worldwide are banning flaring due to concerns over greenhouse gas emissions? Reinjection is costly and may not be the best solution in every reservoir. While many producers have enormous gas reserves, they are of no value if that gas is just sitting in the ground with no potential markets at hand. How can you monetize these reserves?more » A potential solution to the problem of stranded gas reserves is GTL processing. This process takes methane and converts it to synthesis gas, uses the Fischer-Tropsch (FT) process to convert the synthesis gas to syncrude, and upgrades the syncrude to various hydrocarbon chains to produce a variety of refined products. Three recent developments favor commercial GTL development: environmental regulations are creating a premium for ultraclean fuels; new technology is lowering the capital costs and operating costs of GTL development; and world oil prices have risen above $20/bbl. Therefore, the oil and gas industry is taking a serious look at commercialization of GTL.« less

  18. Commercial Optics for Space Surveillance and Astronomy

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Kopit, E.; McGraw, J.; Zimmer, P.

    Since the first days of the space program, there have been both amateur and government satellite watchers. Large, expensive government systems with custom optics are still the most capable, but with modern sensors and high speed computers, amateur trackers are easily pushing the limits of what government systems achieved only a decade ago. A very recent trend in the space world is the emergence of commercial space operations centers. Once the exclusive purview of governments, corporations are now providing orbital environment awareness services to the operators of commercial satellites. The requirement for synoptic satellite observations has led to corporations developing world-wide observing networks. A problem facing both amateur and corporate observers is the limited availability of suitable optical systems. Most observing efforts rely on long focus (f/8 or greater) optical systems with focal reducers, and a somewhat limited field of view. Often, the cameras in use are not ideally matched to the optical system. While there are a few exceptions, the choices are not many. Celestron recently introduced the C-11 RASA optical system, with an 11-inch aperture and an f/2.2 focal ratio. This optical system is designed for dedicated imaging and is ideally suited for both wide-field astronomy and the detection and tracking of satellites. The larger C-14 RASA, to be introduced later this year, was specifically designed for wide-field imaging with large commercial CCDs. It offers greater sensitivity and a wider field of view than the smaller C-11 RASA and should prove to be the instrument of choice for both amateur and corporate satellite observers. We present data from satellite observations with a production model C-11 RASA and estimated performance for the new C-14 RASA.

  19. Solar thermal central receivers for industrial process heat generation: User views and recommendations for commercialization

    NASA Astrophysics Data System (ADS)

    Fish, M. J.

    1981-08-01

    Results of recent meetings with several private industrial groups in which solar thermal central receivers were discussed in depth as a potential for industrial process heat generation are summarized. Topics covering potential economics, technical requirements, and actions to promote commercialization of the technology are presented. These findings are then translated into recommendations for commercialization in private industrial markets. Key points include the need for small scale systems integration projects in addition to the 10 MW/sub e/ plant under construction at Barstow, CA, and the adoption of financial incentives, such as tax credits, for getting the early commercial plants built.

  20. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  1. Space Phase III - The commercial era dawns

    NASA Technical Reports Server (NTRS)

    Allnutt, R. F.

    1983-01-01

    After the 'Phase I' of space activities, the period bounded by Sputnik and Apollo, 'Phase II', has been entered, a phase in which concerns over the use and the protection of space assets which support national security predominate. However, it is only when the commercial motive becomes prominent that human activity in new regions truly prospers and enters periods of exponential growth. It is believed that there are increasing signs that such a period, called 'Space Phase III', may be coming soon. A description is presented of developments and results upon which this conclusion is based. Since 1980, there have been three developments of great importance for the future of space activities. Six highly successful flights have demonstrated that the Space Shuttle concept works. A series of Soviet missions are related to the emergence of a capability to construct and service modular space stations. Successful tests of the European Ariane 1 indicate an end to U.S. monopoly with respect to the provision of launch services to the Western World.

  2. New Earth Observation Capabilities For The Commercial Sector

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2017-01-01

    Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.

  3. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    NASA Technical Reports Server (NTRS)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  4. Creating Processes Associated with Providing Government Goods and Services Under the Commercial Space Launch Act at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Letchworth, Janet F.

    2011-01-01

    Kennedy Space Center (KSC) has decided to write its agreements under the Commercial Space Launch Act (CSLA) authority to cover a broad range of categories of support that KSC could provide to our commercial partner. Our strategy was to go through the onerous process of getting the agreement in place once and allow added specificity and final cost estimates to be documented on a separate Task Order Request (TOR). This paper is written from the implementing engineering team's perspective. It describes how we developed the processes associated with getting Government support to our emerging commercial partners, such as SpaceX and reports on our success to date.

  5. Evaluation criteria for commercially oriented materials processing in space proposals

    NASA Technical Reports Server (NTRS)

    Moore, W. F.; Mcdowell, J. R.

    1979-01-01

    An approach and criteria for evaluating NASA funded experiments and demonstrations which have commercial potential were developed. Methods for insuring quick initial screening of commercial proposals are presented. Recommendations are given for modifying the current evaluation approach. New criteria for evaluating commercially orientated materials processing in space (MPS) proposals are introduced. The process for selection of qualified individuals to evaluate the phases of this approach and criteria is considered and guidelines are set for its implementation.

  6. Industrial Engineering Lifts Off at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  7. Race, space, place: notes on the racialisation and spatialisation of commercial sex work in Dubai, UAE.

    PubMed

    Mahdavi, Pardis

    2010-11-01

    This paper focuses on the perceived racialisation and resultant spatialisation of commercial sex in Dubai. In recent years, the sex industry in Dubai has grown to include women from the Middle East, Eastern Europe, East Asia and Africa. With the increase in sex workers of different nationalities has come a form of localised racism that is embedded in structures and desires seen within specific locations. The physical spatialisation of sex work hinges on perceived race and produces distinct income generating potential for women engaged in the sex industry in Dubai. The social and physical topography of Dubai is important in marginalising or privileging these various groups of sex workers, which correlates race, space and place with rights and assistance. I begin with a description of the multidirectional flows of causality between race, space, place and demand. I then discuss how these various groups are inversely spatialised within the discourse on assistance, protection and rights. The findings presented here are based on ethnographic research conducted with transnational migrants in the UAE in 2004, 2008 and 2009.

  8. 77 FR 52067 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [12-069] NASA Advisory Council; Commercial Space.... DATES: Tuesday, September 18, 2012, 11:45 a.m.-5:30 p.m.; Local Time. ADDRESSES: NASA Ames Research Center (ARC), The Showroom, Building M-3, NASA Ames Conference Center, 500 Severyns Road, NASA Research...

  9. 75 FR 17437 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-039)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Monday, April 26, 2010, 1:30 p.m.-6 p.m. CDT. ADDRESSES: NASA Johnson Space Center, Gilruth Conference Center, 2101 NASA Parkway, Houston, TX 77058. FOR FURTHER...

  10. Space Station - The base for tomorrow's electronic industry

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1985-01-01

    The potential value of space material processing on the Space Station for the electronics industry is examined. The primary advantages of the space environment for producing high-purity semiconductors and electrooptical materials are identified as the virtual absence of gravity (suppressing buoyancy-driven convection in melts and density segregation of alloys) and the availabilty of high vacuum (with high pumping speed and heat rejection). The recent history of material development and processing technology in the electronics industry is reviewed, and the principal features of early space experiments are outlined.

  11. 78 FR 49202 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    .... EERE-2013-BT-STD-0030] RIN 1904-AD01 Energy Conservation Program for Certain Commercial and Industrial... efficiency of certain industrial equipment to conserve the energy resources of the Nation. DATES: DOE will... codification in the U.S. Code, establishes the ``Energy Conservation Program for Certain Industrial Equipment...

  12. Space commercialization: Analysis of R and D investments with long time horizons

    NASA Technical Reports Server (NTRS)

    Sheahen, T. P.

    1984-01-01

    By following a single hypothetical example through a series of variations, the way different potential investors might look at the opportunity to participate in space commercialization is described. The example itself is fairly typical of commercial opportunities in space. The chief characteristics are a steadily increasing requirement for capital infusion over an 8 year period, followed by a very generous stream of profits running another decade or more beyond. There is a decision point at 3 years, at the conclusion of laboratory R&D; and another at 6 years, following 2 initial space flights.

  13. 75 FR 28821 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-060)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Thursday, June 17, 2010, 1 p.m.-4 p.m., EDST. ADDRESSES: NASA... Space Administration, Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa...

  14. The US commercial space launch program and the Department of Defense dilemma

    NASA Astrophysics Data System (ADS)

    Clapp, William G.

    1994-08-01

    A scenario by which the United States might regain its lost advantage in launching commercial satellites is developed using the Ariane space commercial launch company as a benchmark. Ariane's advantages are identified and low-cost recommendations for countering them are presented The four areas selected for analysis inidentifying an American strategy are launch vehicle: (1) payload characteristics; (2) delivery costs; (3) selection process; and (4) technology. Several of the recommendations require Department of Defense funding even though the primary beneficiary appears to be the commercial space sector. But this will ensure that the military has affordable access to space and it is part of a dual purpose strategy whereby government spending benefits both the public and private sector. There is also a brief discussion of other foreign launch vehicle competition.

  15. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    In 2011, NASA released a report assessing the market for commercial crew and cargo services to low Earth orbit (LEO). The report stated that NASA had spent a few hundred million dollars in the Commercial Orbital Transportation Services (COTS) program on the portion related to the development of the Falcon 9 launch vehicle. Yet a NASA cost model predicted the cost would have been significantly more with a non-commercial cost-plus contracting approach. By 2016 a NASA request for information stated it must "maximize the efficiency and sustainability of the Exploration Systems development programs", as "critical to free resources for reinvestment...such as other required deep space exploration capabilities." This work joins the previous two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for "...other required deep space exploration capabilities." These other capabilities include landers, stages and more. We mature the concept of "costed baseball cards", adding cost estimates to NASA's space systems "baseball cards." We show some potential costs, including analysis, the basis of estimates, data sources and caveats to address a critical question - based on initial assessment, are significant agency resources justified for more detailed analysis and due diligence to understand and invest in public private partnerships for human deep space exploration systems? The cost analysis spans commercial to cost-plus contracting approaches, for smaller elements vs. larger, with some variation for lunar or Mars. By extension, we delve briefly into the potentially much broader significance of the individual cost estimates if taken together as a NASA investment portfolio where public private partnership are stitched together for deep space exploration. How might multiple improvements in individual systems add up to NASA human deep space exploration achievements, realistically, affordably

  16. Opportunities for research in space life sciences aboard commercial suborbital flights.

    PubMed

    Wagner, Erika B; Charles, John B; Cuttino, Charles Marsh

    2009-11-01

    The emergence of commercial suborbital spaceflight offers a wide range of new research and development opportunities for those in the space life sciences. Large numbers of diverse flyers, frequent re-flights, and flexible operations provide a fertile ground for both basic and applied science, as well as technology demonstrations. This commentary explores some of the unique features available to the space life science community and encourages engagement with commercial developers and operators during the design phase to help optimize platform designs and operations for future research.

  17. [Doctor, may I travel in space? Aeromedical considerations regarding commercial suborbital space flights].

    PubMed

    Haerkens, Marck H T M; Simons, Ries; Kuipers, André

    2011-01-01

    Within a few years, the first commercial operators will start flying passengers on suborbital flights to the verge of space. Medical data on the effects of space journeys on humans have mainly been provided by professional astronauts. There is very little research into the aeromedical consequences of suborbital flights for the health of untrained passengers. Low air pressure and oxygen tension can be compensated for by pressurising the spacecraft or pressure suit. Rapid changes in gravitational (G-)force pose ultimate challenges to cardiovascular adaptation mechanisms. Zero-gravity and G-force may cause motion sickness. Vibrations and noise during the flight may disturb communication between passengers and crew. In addition, the psychological impact of a suborbital flight should not be underestimated. There are currently no legal requirements available for medical examinations for commercial suborbital flights, but it seems justifiable to establish conditions for potential passengers' states of health.

  18. Industry perceptions of barriers to commercialization of regenerative medicine products in the UK.

    PubMed

    Plagnol, Anke C; Rowley, Emma; Martin, Paul; Livesey, Finbarr

    2009-07-01

    Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. The analysis is based on 20 interviews with leading industrialists in the field. The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.

  19. Legal considerations and cooperative opportunities for space commercial activities

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1984-01-01

    It is a national policy to make the capabilities of the Space Transportation System available to a wide range of potential users. This includes its availability as a space manufacturing facility for commercial activities, which may be carried out on a reimbursable basis or as a joint endeavor with NASA, but with substantial private investment. In any high risk, long lead-time research and development activity directed towards commercialization, the protection afforded the results of the research and development under the laws relating to intellectual property rights may provide an important incentive for private investment. The policies and practices of NASA directed towards the protection of privately-established intellectual property rights involved in STS use are reviewed with particular emphasis on reimbursable launch agreements and joint endeavor agreements.

  20. Space Coatings for Industry

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Ball Aerospace developed entirely new space lubrication technologies. A new family of dry lubricants emerged from Apollo, specifically designed for long life in space, together with processes for applying them to spacecraft components in microscopically thin coatings. Lubricants worked successfully on seven Orbiting Solar Observatory flights over the span of a decade and attracted attention to other contractors which became Ball customers. The company has developed several hundred variations of the original OSO technology generally designed to improve the quality and useful life of a wide range of products or improve efficiency of the industrial processes by which such products are manufactured.

  1. 33 CFR 1.07-100 - Summons in lieu of seizure of commercial fishing industry vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Summons in lieu of seizure of... Proceedings § 1.07-100 Summons in lieu of seizure of commercial fishing industry vessels. (a) As used in this... specified in 19 CFR 171.51. (b) When a commercial fishing industry vessel is subject to seizure for a...

  2. Oklahoma Space Industry Development Authority

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of this grant was to increase the awareness of students of space sciences and commerce through experimentation. This objective was carried out through the award and administration, by OSIDA, the Oklahoma Space Industry Development Authority, of eleven smaller grants to fund thirteen projects at schools determined by competitive application. Applications were graded on potential outreach, experimentation objectives and impact on students' awareness of space sciences. We chose projects from elementary, middle and high schools as well as colleges that would encourage students through research and experimentation to consider education and careers in related disciplines. Each organization did not receive an equal share of the grant; instead, OSIDA distributed the money to each project based on the organization's need. A copy of the dispersement record is enclosed with this final grant report. The projects covered topics such as: space colonization, space stations, constellations, model rocketry, and space commerce.

  3. 75 FR 71596 - Energy Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Efficiency Program for Certain Commercial and Industrial Equipment: Test Procedures for Commercial Refrigeration Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION... amendments to its test procedure for commercial refrigeration equipment (CRE). The amendments would update...

  4. Space Industrialization: Manufacturing and Construction Activities. Part 2.

    ERIC Educational Resources Information Center

    Story, Charles H.

    1983-01-01

    Discusses how space industrialization will provide direct benefits for our nation and will transfer technology to the many diverse areas of human activity. Examples are the development of the Space Shuttle, the Space Studies Institute, and the LS Society (advocates for colonizing space). (NRJ)

  5. Commercial Capaciflector

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1991-01-01

    A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

  6. 76 FR 8629 - Clarification of Reciprocal Waivers of Claims for Multiple-Customer Commercial Space Launch and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ..., Government property, Indemnity payments, Insurance, Reporting and recordkeeping requirements, Rockets, Space...- Customer Commercial Space Launch and Reentry AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... INFORMATION CONTACT: Laura Montgomery, Senior Attorney for Commercial Space Transportation, Office of the...

  7. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  8. 36 CFR 28.13 - Variance, commercial and industrial application procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Variance, commercial and industrial application procedures. 28.13 Section 28.13 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS Federal Standards and...

  9. 36 CFR 28.13 - Variance, commercial and industrial application procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Variance, commercial and industrial application procedures. 28.13 Section 28.13 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING STANDARDS Federal Standards and...

  10. Study to encourage and facilitate industrial investment and involvement in space

    NASA Technical Reports Server (NTRS)

    Wilson, J. E.

    1984-01-01

    A simple and efficient means to alert the Director, Space Station Commercialization Task Force (DSCTF) and the equivalent director of a permanent office for the same function, to actions required to assure comprehensive support of the NASA objectives for commercial uses of space during the annual budget cycle is described.

  11. Commercial and industrial applications of color ink jet: a technological perspective

    NASA Astrophysics Data System (ADS)

    Dunand, Alain

    1996-03-01

    In just 5 years, color ink-jet has become the dominant technology for printing color images and graphics in the office and home markets. In commercial printing, the traditional printing processes are being influenced by new digital techniques. Color ink-jet proofing, and concepts such as computer to film/plate or digital processes are contributing to the evolution of the industry. In industrial color printing, the penetration of digital techniques is just beginning. All widely used conventional contact printing technologies involve mechanical printing forms including plates, screens or engraved cylinders. Such forms, which need to be newly created and set up for each job, increase costs. In our era of fast changing customer demands, growing needs for customization, and increasing use of digital exchange of information, the commercial and industrial printing markets represent an enormous potential for digital printing technologies. The adoption characteristics for the use of color ink-jet in these industries are discussed. Examples of color ink-jet applications in the fields of billboard printing, floor/wall covering decoration, and textile printing are described. The requirements on print quality, productivity, reliability, substrate compatibility, and color lead to the consideration of various types of ink-jet technologies. Key technical enabling factors and directions for future improvements are presented.

  12. Economic Metrics for Commercial Reusable Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.; Hamaker, Joseph (Technical Monitor)

    2000-01-01

    baseline. Still, economic metrics for technology development in these Programs and projects remain fairly straightforward, being based on reductions in acquisition and operating costs of the Systems. One of the most challenging requirements that NASA levies on its Programs is to plan for the commercialization of the developed technology. Some NASA Programs are created for the express purpose of developing technology for a particular industrial sector, such as aviation or space transportation, in financial partnership with that sector. With industrial investment, another set of goals, constraints and expectations are levied on the technology program. Economic benefit metrics then expand beyond cost and cost savings to include the marketability, profit, and investment return requirements of the private sector. Commercial investment criteria include low risk, potential for high return, and strategic alignment with existing product lines. These corporate criteria derive from top-level strategic plans and investment goals, which rank high among the most proprietary types of information in any business. As a result, top-level economic goals and objectives that industry partners bring to cooperative programs cannot usually be brought into technical processes, such as systems engineering, that are worked collaboratively between Industry and Government. In spite of these handicaps, the top-level economic goals and objectives of a joint technology program can be crafted in such a way that they accurately reflect the fiscal benefits from both Industry and Government perspectives. Valid economic metrics can then be designed that can track progress toward these goals and objectives, while maintaining the confidentiality necessary for the competitive process.

  13. Space station needs, attributes and architectural options study commercialization working group briefing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The benefits for each of the following commercial areas was investigated: communications, remote sensing, materials processing in space, low Earth orbit (LEO) satellite assembly, testing, and servicing, and space tourism. In each case, where economic benefits are derived, the costs for accomplishing tasks with the Space Station are compared with the cost with the Space Transportation System only.

  14. Partnering to Change the Way NASA and the Nation Communicate Through Space

    NASA Technical Reports Server (NTRS)

    Vrotsos, Pete A.; Budinger, James M.; Bhasin, Kul; Ponchak, Denise S.

    2000-01-01

    For at least 20 years, the Space Communications Program at NASA Glenn Research Center (GRC) has focused on enhancing the capability and competitiveness of the U.S. commercial communications satellite industry. GRC has partnered with the industry on the development of enabling technologies to help maintain U.S. preeminence in the worldwide communications satellite marketplace. The Advanced Communications Technology Satellite (ACTS) has been the most significant space communications technology endeavor ever performed at GRC, and the centerpiece of GRC's communication technology program for the last decade. Under new sponsorship from NASA's Human Exploration and Development of Space Enterprise, GRC has transitioned the focus and direction of its program, from commercial relevance to NASA mission relevance. Instead of one major experimental spacecraft and one headquarters sponsor, GRC is now exploring opportunities for all of NASA's Enterprises to benefit from advances in space communications technologies, and accomplish their missions through the use of existing and emerging commercially provided services. A growing vision within NASA is to leverage the best commercial standards, technologies, and services as a starting point to satisfy NASA's unique needs. GRC's heritage of industry partnerships is closely aligned with this vision. NASA intends to leverage the explosive growth of the telecommunications industry through its impressive technology advancements and potential new commercial satellite systems. GRC's partnerships with the industry, academia, and other government agencies will directly support all four NASA's future mission needs, while advancing the state of the art of commercial practice. GRC now conducts applied research and develops and demonstrates advanced communications and network technologies in support of all four NASA Enterprises (Human Exploration and Development of Space, Space Science, Earth Science, and Aero-Space Technologies).

  15. The international space station: An opportunity for industry-sponsored global education

    NASA Astrophysics Data System (ADS)

    Shields, Cathleen E.

    1999-01-01

    The International Space Station provides an excellent opportunity for industry sponsorship of international space education. As a highly visible worldwide asset, the space station already commands our interest. It has captured the imagination of the world's researchers and connected the world's governments. Once operational, it can also be used to capture the dreams of the world's children and connect the world's industry through education. The space station's global heritage and ownership; its complex engineering, construction, and operation; its flexible research and technology demonstration capability; and its long duration make it the perfect educational platform. These things also make a space station education program attractive to industry. Such a program will give private industry the opportunity to sponsor space-related activities even though a particular industry may not have a research or technology-driven need for space utilization. Sponsors will benefit through public relations and goodwill, educational promotions and advertising, and the sale and marketing of related products. There is money to be made by supporting, fostering, and enabling education in space through the International Space Station. This paper will explore various ISS education program and sponsorship options and benefits, will examine early industry response to such an opportunity, and will make the case for moving forward with an ISS education program as a private sector initiative.

  16. Space education: Deriving benefits from industrial consortia

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    As the number of spacefaring nations of the world increases, so does the difficulty of competing in a global economy. The development of high technology products and services for space programs, and the economic exploitation of these technologies for national economic growth, requires professionals versed in both technical and commercial aspects of space. Meeting this requirement academically presents two challenges. On the technical side, enrollment in science and engineering is decreasing in some of the spacefaring nations. From the commerce perspective, very few colleges and universities offer specific courses in space business.

  17. The law applicable to the use of space for commercial activities

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    The general principles of space law that have an impact on commercial space activities are discussed. The Outer Space Treaty guaranteed the right of private enterprise in space, with jurisdiction over the participating parties residing in the country of origin. The liability for damages caused to a third party is also assigned to the country of origin. Government consent is necessary in the U.S. before a private firm is permitted to launch an object into space, with the relevant statute sections being part of the Arms Export Control Act; launches are legally treated as exports. FAA regulations define the safe area and flight conditions that must be satisfied for a private launch, although NASA, in the 1958 act which formed the agency, potentialy has the power to regulate space launch activities. The DoD must be notified of any launches in order to notify the U.S.S.R., filings must be made with the Bureau of Alcohol, Tobacco, and Firearms, and fees must be paid to the IRS. It is presently U.S. government policy to encourage and facilitate private sector development of commercial launch services.

  18. Public choice economics and space policy: realising space tourism

    NASA Astrophysics Data System (ADS)

    Collins, Patrick

    2001-03-01

    Government space agencies have the statutory responsibility to suport the commercialisation of space activities. NASA's 1998 report "General Public Space Travel and Tourism" concluded that passenger space travel can start using already existing technology, and is likely to grow into the largest commercial activity in space: it is therefore greatly in taxpayers' economic interest that passenger space travel and accommodation industries should be developed. However, space agencies are doing nothing to help realise this — indeed, they are actively delaying it. This behaviour is predicted by 'public choice' economics, pioneered by Professors George Stigler and James Buchanan who received the 1982 and 1986 Nobel prizes for Economics, which views government organisations as primarily self-interested. The paper uses this viewpoint to discuss public and private roles in the coming development of a space tourism industry.

  19. Commercial Pesticides Applicator Manual: Industrial, Institutional, Structural and Health Related.

    ERIC Educational Resources Information Center

    Fitzwater, William D.; Renes, Robert

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the industrial, institutional, structural and health related pest control category. The text discusses the use and safety of applying pesticides to control invertebrate and vertebrate pests such as ants,…

  20. Commercial launch systems: A risky investment?

    NASA Astrophysics Data System (ADS)

    Dupnick, Edwin; Skratt, John

    1996-03-01

    A myriad of evolutionary paths connect the current state of government-dominated space launch operations to true commercial access to space. Every potential path requires the investment of private capital sufficient to fund the commercial venture with a perceived risk/return ratio acceptable to the investors. What is the private sector willing to invest? Does government participation reduce financial risk? How viable is a commercial launch system without government participation and support? We examine the interplay between various forms of government participation in commercial launch system development, alternative launch system designs, life cycle cost estimates, and typical industry risk aversion levels. The boundaries of this n-dimensional envelope are examined with an ECON-developed business financial model which provides for the parametric assessment and interaction of SSTO design variables (including various operational scenarios with financial variables including debt/equity assumptions, and commercial enterprise burden rates on various functions. We overlay this structure with observations from previous ECON research which characterize financial risk aversion levels for selected industrial sectors in terms of acceptable initial lump-sum investments, cumulative investments, probability of failure, payback periods, and ROI. The financial model allows the construction of parametric tradeoffs based on ranges of variables which can be said to actually encompass the ``true'' cost of operations and determine what level of ``true'' costs can be tolerated by private capitalization.

  1. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  2. 78 FR 28275 - Office of Commercial Space Transportation; Safety Approval Performance Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Office of Commercial Space... classroom and hypobaric chamber training for crew and space flight participants to experience and demonstrate knowledge of the following through testing: Understand fundamental principles of the atmosphere...

  3. Space commerce in a global economy: Comparison of US and Australian approaches

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Page, John R.

    1993-01-01

    The United States and Australia are among the 20 or more nations of the world having industries currently engaging in some form of space commerce. As a matter of national policy, the United States has encouraged private investment and involvement in space activities since 1984, when the Congress declared it in the best interest of the Nation that NASA '...seek and encourage to the maximum extent possible, the fullest commercial use of space.' Australia's space policy, announced in 1986, has the objective of encouraging greater involvement by industry in space research and development, and the development of commercial space activities. This paper discusses the underlying policies, current status, and prospects for the future of commercial space business activities in the two countries.

  4. Collaborative Commercial Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.; Hendrix, D.; Sibert, D.; Hall, R. A.; Therien, W.

    2013-09-01

    There is an increasing recognition by commercial and civil space operators of the need for space situational awareness (SSA) data to support ongoing conjunction analysis, maneuver planning, and radio frequency interference mitigation as part of daily operations. While some SSA data is available from the Joint Space Operations Center via the Space Track web site, access to raw observations and photometric data is limited due to national security considerations. These data, however, are of significant value in calibrating intra- and inter-operator orbit determination results, determining inter-system biases, and assessing operating profiles in the geostationary orbit. This paper details an ongoing collaborative effort to collect and process optical observations and photometric data using a network of low-cost telescope installations and shows how these data are being used to support ongoing operations in the Space Data Center. This presentation will demonstrate how by leveraging advance photometric processing algorithms developed for Missile Defense Agency and the Ballistic Missile Defense (BMD) mission ExoAnalytic and AGI have been able to provide actionable SSA for satellite operators from small telescopes in less than optimal viewing conditions. Space has become an increasingly cluttered environment requiring satellite operators to remain forever vigilant in order to prevent collisions to preserve their assets and prevent further cluttering the space environment. The Joint Space Operations Center (JSpOC), which tracks all objects in earth orbit, reports possible upcoming conjunctions to operators by providing Conjunction Summary Messages (CSMs). However due to large positional uncertainties in the forward predicted position of space objects at the time closest approach the volume of CSMs is excessive to the point that maneuvers in response to CSMs without additional screening is cost prohibitive. CSSI and the Space Data Association have been able to screen most

  5. Space Applications Industrial Laser System (SAILS)

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Bible, J. B.; Mueller, R. E.

    1993-01-01

    A program is underway to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. This workstation, called Space Applications Industrial Laser System (SAILS), will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use in constructing the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1996, will be constructed as three modules using standard Get-Away-Special (GAS) canisters. The first module holds the laser head and cooling system, while the second contains a high peak power electrical supply. The third module houses the materials processing workstation and the command and data acquisition subsystems. The laser head and workstation cansisters are linked by a fiber-optic cable to transmit the laser light. The team assembled to carry out this project includes Lumonics Industrial Products (laser), Tennessee Technological University (structural analysis and fabrication), Auburn University Center for Space Power (electrical engineering), University of Waterloo (low-g laser process consulting), and CSTAR/UTSI (data acquisition, control, software, integration, experiment design). This report describes the SAILS program and highlights recent activities undertaken at CSTAR.

  6. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...

  7. Research in space commercialization, technology transfer, and communications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and internship programs in technology transfer, space commercialization, and information and communications policy are described. The intern's activities are reviewed. On-campus research involved work on the costs of conventional telephone technology in rural areas, an investigation of the lag between the start of a research and development project and the development of new technology, using NASA patent and patent waiver data, studies of the financial impact and economic prospects of a space operation center, a study of the accuracy of expert forecasts of uncertain quantities and a report on frequency coordination in the fixed and fixed satellite services at 4 and 6 GHz.

  8. Space-Hotel Early Bird - Visions for a Commercial Space Hotel

    NASA Astrophysics Data System (ADS)

    Amekrane, R.; Holze, C.; Apel, U.

    2002-01-01

    rachid.amekrane@astrium-space.com/Fax: +49 421 539-24801, cholze@zarm.uni-bremen.de/Fax: +49 421 218-7473, The International Space Station was planed for research purposes. In 2001 the first private man, Denis Tito,visited the ISS and the second private man, Mark Shuttleworth is following him. The gate towards the commercial utilization of manned space flight has been pushed open. Space pioneers as Wernher von Braun and Sir Arthur C. Clarke had the dream that one day a space station in earth orbit will host tourists. It is evident that the ISS is not designed to host tourists. Therefore the dream of the pioneers is still open. By asking the question "how should a space station should look like to host tourists?", the German Aerospace Society DGLR e.V. organized a contest under the patronage of Mr. Joerg Feustel-Buechl, the Director of Manned Spaceflight and Microgravity, European Space Agency (ESA) in April 2001. Because the definition and design of living space is the content of architecture the approach was to gather new ideas from young architects in cooperation with space experts. This contest was directed at students of architecture and the task set was to design a hotel for the earth orbit and to accommodate 220 guests. The contest got the name "Early Bird - Visions of a Space Hotel". The results and models of the student's work were shown in an exhibition in Hamburg/Germany, which was open to the public from September 19th till October 20th 2001. During the summer term of 2001 seventeen designs were completed. Having specialists, as volunteers, in the field of space in charge meant that it could be ensured that the designs reflected a certain possibility of being able to be realized. Within this interdisciplinary project both parties learned from each other. The 17 different designs were focused on the expectations and needs of a future space tourist. The designs are for sure not feasible today, but the designs are in that sense realistic that they could be

  9. Bulk-buy practices by satellite operators foster further commercialization of launch services industry : Quarterly Launch Report : special report

    DOT National Transportation Integrated Search

    1997-01-01

    The satellite launch industry has steadily grown and matured to take on the features of a truly commercial industry. This year, commercial launches outnumber government launches for the first time. New launch systems, such as the Delta 3, Sea Launch,...

  10. Space industrialization. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Potential goals for space industrialization were identified, and evolutionary program options for the realization of those goals were developed and assessed. Program support demands were defined, and recommendations were made in relation to program implementation.

  11. TechTracS: NASA's commercial technology management system

    NASA Astrophysics Data System (ADS)

    Barquinero, Kevin; Cannon, Douglas

    1996-03-01

    The Commercial Technology Mission is a primary NASA mission, comparable in importance to those in aeronautics and space. This paper will discuss TechTracS, NASA Commercial Technology Management System that has been put into place in FY 1995 to implement this mission. This system is designed to identify and capture the NASA technologies which have commercial potential into an off-the-shelf database application, and then track the technologies' progress in realizing the commercial potential through collaborations with industry. The management system consists of four stages. The first is to develop an inventory database of the agency's entire technology portfolio and assess it for relevance to the commercial marketplace. Those technologies that are identified as having commercial potential will then be actively marketed to appropriate industries—this is the second stage. The third stage is when a NASA-industry partnership is entered into for the purposes of commercializing the technology. The final stage is to track the technology's success or failure in the marketplace. The collection of this information in TechTracS enables metrics evaluation and can accelerate the establishment on direct contacts between and NASA technologist and an industry technologist. This connection is the beginning of the technology commercialization process.

  12. Commercial Nuclear Power Industry: Assessing and Meeting the Radiation Protection Workforce Needs.

    PubMed

    Hiatt, Jerry W

    2017-02-01

    This paper will provide an overview of the process used by the commercial nuclear power industry in assessing the status of existing industry staffing and projecting future supply demand needs. The most recent Nuclear Energy Institute-developed "Pipeline Survey Results" will be reviewed with specific emphasis on the radiation protection specialty. Both radiation protection technician and health physicist specialties will be discussed. The industry-initiated Nuclear Uniform Curriculum Program will be reviewed as an example of how the industry has addressed the need for developing additional resources. Furthermore, the reality of challenges encountered in maintaining the needed number of health physicists will also be discussed.

  13. Space tourism risks: A space insurance perspective

    NASA Astrophysics Data System (ADS)

    Bensoussan, Denis

    2010-06-01

    Space transportation is inherently risky to humans, whether they are trained astronauts or paying tourists, given that spaceflight is still in its relative infancy. However, this is easy to forget when subjected to the hype often associated with space tourism and the ventures seeking to enter that market. The development of commercial spaceflight constitutes a challenge as much as a great opportunity to the insurance industry as new risks emerge and standards, policies and procedures to minimise/mitigate and cover them still to be engineered. Therefore the creation of a viable and affordable insurance regime for future space tourists is a critical step in the development of a real space tourism market to address burning risk management issues that may otherwise ultimately hamper this nascent industry before it has a chance to prove itself.

  14. SpaceX: Breaking the Barrier to the Space Launch Vehicle Industry

    DTIC Science & Technology

    2016-12-22

    like FedEx, implemented a unique technique to the industry and found success. SpaceX was also evaluated against guidelines and principles presented by...associated with implementing vertical integration. Musk, following value innovative principles , is using the concept of reusability to decrease the...47 Figure 6: Vertical Integration, Relative Market Share, and Profitability (Buzzell, 1983) ...... 49 Figure 7. SpaceX Capabilities and

  15. Evaluating the performance of active noise control systems in commercial and industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depies, C.; Deneen, S.; Lowe, M.

    1995-06-01

    Active sound cancellation technology is increasingly being used to quiet commercial and industrial air-moving devices. Engineers and designers are implementing active or combination active/passive technology to control sound quality in the workplace and the acoustical environment in residential areas near industrial facilities. Sound level measurements made before and after the installation of active systems have proved that significant improvements in sound quality can be obtained even if there is little or no change in the NC/RC or dBA numbers. Noise produced by centrifugal and vane-axial fans, pumps and blowers, commonly used for ventilation and material movement in industry, are frequentlymore » dominated by high amplitude, tonal noise at low frequencies. And the low-frequency noise produced by commercial air handlers often has less tonal and more broadband characteristics, resulting in audible duct rumble noise and objectionable room spectrums. Because the A-weighting network, which is commonly used for industrial noise measurements, de-emphasizes low frequencies, its single number rating can be misleading in terms of judging the overall subjective sound quality in impacted areas and assessing the effectiveness of noise control measures. Similarly, NC values, traditionally used for commercial HVAC acoustical design criteria, can be governed by noise at any frequency and cannot accurately depict human judgment of the aural comfort level. Analyses of frequency spectrum characteristics provide the most effective means of assessing sound quality and determining mitigative measures for achieving suitable background sound levels.« less

  16. Toward an Air and Space Force: Naval Aviation and the Implications for Space Power

    DTIC Science & Technology

    1999-09-01

    People’s Republic of China currently pose only indirect threats to vital security inter - ests. 6. In the 1920s, there was a limited commercial market for...military aviation products, so the aviation industry depended on government orders for survival. Although the market for space services is growing...commercial space market ap- pears to be on the verge of expansion. 7. In the early days of wood and fabric biplanes, naval avia - tion was

  17. 75 FR 67637 - Energy Conservation Program for Certain Commercial and Industrial Equipment: Framework Document...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Industrial Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... electric motors. The comment period is extended to November 24, 2010. DATES: The comment period for the framework document for certain commercial and industrial electric motors, referenced in the notice of public...

  18. Evaluation of Space Food for Commercial Astronauts

    NASA Astrophysics Data System (ADS)

    Ahlstrom, Britt Karin

    As commercial aerospace companies advance toward manned spaceflight, they must overcome many hurdles - not only technical, but also human. One of the greatest human challenges they face is food. Throughout the history of human spaceflight, astronauts have primarily eaten food developed by government space agencies. Now, with manned commercial flights on the horizon, astronauts will be provided with an entirely new diet - one comprised of commercially available, ready-to-eat food. Yet will this diet keep astronauts nourished, satisfied with their diet, and both psychologically and physically healthy? The purpose of this parallel crossover design study was to evaluate (a) nutrient intake, (b) food satisfaction, (c) psychological health, and (d) physical health in commercial aerospace employees (N = 7) as they ate a diet of commercial, ready-to-eat food for four days, as compared to eating as normal for four days. Findings from this study showed that the ready-to-eat diet did not lead to any significant changes in caloric intake, psychological health, or physical health, aside from weight loss. It is not clear whether this weight loss was due to the loss of body fat, muscle, or water. When eating the ready-to-eat food, participants reported being slightly less satisfied with the variety, reported lower cravings for sweets, and reported the food was slightly less hedonically rewarding. In post-study interviews, participants reported they wanted to see more meats, fruits, vegetables, and desserts added to the ready-to-eat diet, so as to provide more meal-like structure. Overall, these findings show the diet could be used in commercial spaceflight after making simple changes. The diet could also be used by individuals in remote areas on Earth and to provide food assistance to individuals in disaster or emergency situations. Due to the increasing popularity of ready-to-eat food around the world, these findings also provide knowledge about the potential consequences of

  19. Status of NASA's commercial cargo and crew transportation initiative

    NASA Astrophysics Data System (ADS)

    Lindenmoyer, Alan; Stone, Dennis

    2010-03-01

    To stimulate the commercial space transportation industry, the National Aeronautics and Space Administration (NASA) is facilitating the demonstration of Commercial Orbital Transportation Services (COTS) to Low Earth Orbit (LEO) by private-sector companies. In 2006, NASA entered into funded agreements with two such companies to share NASA's 500 million investment, Space Exploration Technologies (SpaceX) and Rocketplane Kistler (RpK), each of which proposed to obtain the additional private financing needed to complete its flight demonstrations. In 2007, NASA terminated the agreement with RpK because it failed to meet a series of technical and financial milestones which were necessary to receive the incremental NASA payments. In 2008, NASA conducted another competition for the remaining 170 million of NASA funding and entered into a funded agreement with Orbital Sciences Corporation (OSC). This paper provides an overview of the COTS approach of SpaceX and OSC and the status of their efforts to develop reliable and cost-effective commercial transportation to serve the LEO marketplace.

  20. The economics of personalized medicine: commercialization as a driver of return on investment.

    PubMed

    Keeling, Peter; Roth, Mollie; Zietlow, Tom

    2012-09-15

    Optimizing commercialization of drugs is the sine qua non of the pharmaceutical industry and intensive work has been done to characterize fully the drivers of drug adoption and understand the resources required to optimize those drivers for full adoption of drugs. Conversely, while the pharmaceutical industry is actively embracing the new personalized medicine (PM) paradigm, much work remains to be done to understand fully what drives adoption of targeted therapies and how to resource those drivers appropriately. While the industry is slowly learning from its early missteps, progress is still inhibited by a lack of understanding of the specific hurdles that individual development teams face in developing and commercializing targeted therapies and the requirement for budgets specifically aimed at driving test adoption. This article considers the benefits of optimizing commercial planning in the PM space and the potential negative impact in potentially failing to optimize that planning. Real world insights are used to illustrate that a far broader commercial lens is required in the PM space and will touch on functional areas not usually included in the context of 'commercial' decisions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Leveraging Terrestrial Industry for Utilization of Space Resources

    NASA Technical Reports Server (NTRS)

    Sanders, Gerald B.; Linne, Diane L.; Starr, Stan O.; Boucher, Dale

    2017-01-01

    NASA's Journey to Mars: Pioneering Next Steps in Space Exploration released in October of 2015 states that NASA is working toward the capability to work, operate, and sustainably live safely beyond Earth. To progress from our current "Earth-Reliant" approach to exploration and eventually become "Earth Independent", we need to first identify resources in space and then learn to use and harvest them to minimize logistics from Earth, reduce costs, and enable sustainable and affordable space transportation and surface operations. Known as In Situ Resource Utilization (ISRU), the collection and conversion of space resources into products such as propellants, fuel cell reactants, and life support consumables can greatly reduce the mass, cost, and risk of space exploration. Also, the ability to perform civil engineering, construction, and manufacturing at sites of exploration can also allow for increased crew safety and sustainable growth in critical infrastructure. Much of what NASA wants to do on the Moon and Mars with respect to harnessing and utilizing space resources has been performed and perfected on Earth over the centuries. While minimizing mass and operating in the vacuum of space may be unique challenges to NASA, both terrestrial industry and NASA face many of the same challenges associated with operating in severe environments, minimizing maintenance and logistics, maximizing performance per unit mass and volume, performing remote and autonomous operations, and integrating hardware from many vendors and countries. In the end, both NASA and terrestrial industry need to obtain a return on the investment for the development and deployment of these capabilities. This paper will first examine what is ISRU and what are the space resources of interest. The paper will than discuss what are NASA's approach, life cycle, and economic considerations for implementing ISRU. The paper will outline the site and infrastructure needs associated with a phased implementation of

  2. Commercial ELV services and the National Aeronautics and Space Administration - Concord or discord?

    NASA Technical Reports Server (NTRS)

    Frankle, Edward A.

    1988-01-01

    In implementation of the U.S. policy to foster and encourage the commercial expendable launch vehicle (ELV) industry, tensions have developed between the industry and U.S. Government agencies in two distinct areas: industry use of government facilities and government purchase of commercial ELV services. The reasons for the tensions and discrete legal problems for each area are identified and discussed. Specifically, in the use of government facilities area, issues of insurance and indemnification for third-party liability and government property, concerns over priority and scheduling, and dispute-resolution procedures are discussed. In the area of government purchase of ELV launch services, a comparison is made between a launch service purchase and prior procurement practice. In all areas, the conclusion is reached that while problems still exist, they generally are understood and great progress has been made toward their resolution.

  3. Commercial and Industrial Wiring. Teacher Edition [and] Student Edition. Third Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary; Aneke, Norbert O.

    This revised curriculum guide for teachers and students includes the additional technical knowledge and applications required to help prepare students for job entry in the commercial and industrial wiring trade. The curriculum guide contains 16 units that cover the following topics: (1) blueprint reading and load calculations; (2) tools and…

  4. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  5. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Jessica Jensen, director, Dragon Mission Management, SpaceX, participates in the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  6. 2002 Commercial Space Transportation Lecture Series, volumes 1,2, and 3

    DOT National Transportation Integrated Search

    2003-04-01

    This document includes three presentations which are part of the 2002 Commercial Space Transportation Lecture Series: The Early Years, AST - A Historical Perspective; Approval of Reentry Vehicles; and, Setting Insurance Requirements: Maximum Probable...

  7. Future of Human Space Exploration

    NASA Image and Video Library

    2014-07-01

    Now that the Space Shuttle era is over, NASA is writing the next chapters in human Spaceflight with its commercial and international partners. It is advancing research and technology on the International Space Station, opening low-Earth orbit to US industry, and pushing the frontiers of deep space even farther ... all the way to Mars.

  8. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1995-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum, and Inconel alloys of the type planned for use on Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into the standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at the University of Tennessee Space Institute (UTSI) and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  9. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  10. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Stephanie Schierholz, of NASA Communications, moderates the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  11. Space Age Training

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Teledyne Brown developed a computer-based interactive multimedia training system for use with the Crystal Growth Furnace in the U.S. Microgravity Laboratory-2 mission on the Space Shuttle. Teledyne Brown commercialized the system and customized it for PPG Industries Aircraft Products. The system challenges learners with role-playing scenarios and software-driven simulations engaging all the senses using text, video, animation, voice, sounds and music. The transfer of this technology to commercial industrial process training has resulted in significant improvements in effectiveness, standardization, and quality control, as well as cost reductions over the usual classroom and on-the- job training approaches.

  12. Industry Initiated Core Safety Attributes for Human Spaceflight for the 7th IAASS Conference

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.

    2014-01-01

    Now that the NASA Commercial Crew Program (CCP) is beginning its full certification contract for crew transportation to the International Space Station (ISS), is it time for industry to embrace a minimum set of core safety attributes? Those attributes can then be evolved into an industry-led set of basic safety standards and requirements. After 50 years of human space travel sponsored by governments, there are two basic conditions that now exist within the international space industry. The first, there is enough of a space-faring history to encourage the space industry to design, develop and operate human spaceflight systems without government contracts for anything other than services. Second, industry is capable of defining and enforcing a set of industry-based safety attributes and standards for human spaceflight to low-Earth orbit (LEO). This paper will explore both of these basic conditions with a focus on the safety attributes and standards. In the United States, the Federal Aviation Administration (FAA) is now starting to dialogue with industry about the basic safety principles and attributes needed for potential future regulatory oversight. This process is not yet formalized and will take a number of years once approval is given to move forward. Therefore, throughout the next few years, it is an excellent time and opportunity for industry to collaborate together and develop the core set of attributes and standards. As industry engages and embraces a common set of safety attributes, then government agencies, like the FAA and NASA can use that industry-based product to strengthen their efforts on a safe commercial spaceflight foundation for the future. As the commercial space industry takes the lead role in establishing core safety attributes, and then enforcing those attributes, the entire planet can move away from governmental control of design and development and let industry expand safe and successful space operations in LEO. At that point the

  13. SpaceX CRS-10 Prelaunch News Conference

    NASA Image and Video Library

    2017-02-17

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media at a prelaunch news conference for the SpaceX CRS-10 commercial resupply services mission to the International Space Station. Jessica Jensen, director of Dragon mission management for SpaceX, answers questions.

  14. Economic benefits of the Space Station to commercial communication satellite operators

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Dixson, John E.; Weyandt, Charles J.

    1987-01-01

    The economic and financial aspects of newly defined space-based activities, procedures, and operations (APOs) and associated satellite system designs are presented that have the potential to improve economic performance of future geostationary communications satellites. Launch insurance, launch costs, and the economics of APOs are examined. Retrieval missions and various Space Station scenarios are addressed. The potential benefits of the new APOs to the commercial communications satellite system operator are quantified.

  15. Convergence and Commercial Momentum - Industrial Internet of Things Evolution

    DOE PAGES

    Fuhr, Peter L.; Morales Rodriguez, Marissa E.; Rooke, Sterling; ...

    2017-03-01

    Industrial instrumentation and sensors are purpose-built for applications. Rugged and proven for field applications in harsh environments, such as on an oil platform or in a copper mine 5,000-feet below ground, these instruments require reliability and performance. Before the turn of the millennium, industrial technology-and information technology (IT) in particular-drove these systems, and they often exceeded the abilities of consumer products. However, as we stand today, commercial Internet of Things (IoT) technology has advanced rapidly, with industrial control systems lagging in intelligence and features. Experienced owner-operators of industrial facilities recognize the buzz surrounding the Industrial Internet of Things (IIoT) butmore » often shun the notion of consumer-grade devices being installed and integrated into an operational control system. During the International Society of Automation (ISA) Process Control and Safety Forum (PCS) in Houston, Texas, in November 2016, ISA’s Communication Division convened a panel to focus on IIoT. Experienced industrial and control engineers on the panel expressed concerns and reservations with IIoT. Whereas some acknowledged an interest in the topic, others did not recognize it as an inevitable part of the industrial controls landscape. Granted, IIoT is still mostly a vision in the instrumentation and automation landscape; however, its place on stage is coming into view. During the opening session of PCS 2016, ISA President Jim Keaveney rhetorically asked the audience if IoT had peaked and also wondered if “cyber” would be the next area for innovation. This paper will explore the nexus of “domestic” IoT and how product evolution will drive its development toward that of IIoT.« less

  16. Convergence and Commercial Momentum - Industrial Internet of Things Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuhr, Peter L.; Morales Rodriguez, Marissa E.; Rooke, Sterling

    Industrial instrumentation and sensors are purpose-built for applications. Rugged and proven for field applications in harsh environments, such as on an oil platform or in a copper mine 5,000-feet below ground, these instruments require reliability and performance. Before the turn of the millennium, industrial technology-and information technology (IT) in particular-drove these systems, and they often exceeded the abilities of consumer products. However, as we stand today, commercial Internet of Things (IoT) technology has advanced rapidly, with industrial control systems lagging in intelligence and features. Experienced owner-operators of industrial facilities recognize the buzz surrounding the Industrial Internet of Things (IIoT) butmore » often shun the notion of consumer-grade devices being installed and integrated into an operational control system. During the International Society of Automation (ISA) Process Control and Safety Forum (PCS) in Houston, Texas, in November 2016, ISA’s Communication Division convened a panel to focus on IIoT. Experienced industrial and control engineers on the panel expressed concerns and reservations with IIoT. Whereas some acknowledged an interest in the topic, others did not recognize it as an inevitable part of the industrial controls landscape. Granted, IIoT is still mostly a vision in the instrumentation and automation landscape; however, its place on stage is coming into view. During the opening session of PCS 2016, ISA President Jim Keaveney rhetorically asked the audience if IoT had peaked and also wondered if “cyber” would be the next area for innovation. This paper will explore the nexus of “domestic” IoT and how product evolution will drive its development toward that of IIoT.« less

  17. The Deployment of a Commercial RGA to the International Space Station

    NASA Technical Reports Server (NTRS)

    Kowitt, Matt; Hawk, Doug; Rossetti, Dino; Woronowicz, Michael

    2015-01-01

    The International Space Station (ISS) uses ammonia as a medium for heat transport in its Active Thermal Control System. Over time, there have been intermittent component failures and leaks in the ammonia cooling loop. One specific challenge in dealing with an ammonia leak on the exterior of the ISS is determining the exact location from which ammonia is escaping before addressing the problem. Together, researchers and engineers from Stanford Research Systems (SRS) and NASA's Johnson Space Center and Goddard Space Flight Center have adapted a commercial off-the-shelf (COTS) residual gas analyzer (RGA) for repackaging and operation outside the ISS as a core component in the ISS Robotic External Leak Locator, a technology demonstration payload currently scheduled for launch during 2015. The packaging and adaptation of the COTS RGA to the Leak Locator will be discussed. The collaborative process of adapting a commercial instrument for spaceflight will also be reviewed, including the build-­-up of the flight units. Measurements from a full-­-scale thermal vacuum test will also be presented demonstrating the absolute and directional sensitivity of the RGA.

  18. 76 FR 3674 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-006)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Tuesday, February 8, 2011, 2 p.m.-3:30 p.m., Local Time. ADDRESSES: NASA Headquarters, 300 E Street, SW., Glennan Conference Center, Room 1Q39, Washington, DC 20546...

  19. 76 FR 17712 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-027)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: April 27, 2011, 2-3:30 p.m., Local Time. ADDRESSES: NASA... Administration, Washington, DC 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  20. 75 FR 53349 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-098)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday September 14, 8 a.m. to 12 noon CDT. ADDRESSES: NASA..., Washington, DC 20546. Phone 202- 358-1686, fax: 202-358-3878, [email protected]nasa.gov . SUPPLEMENTARY...

  1. 75 FR 39973 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-076)] NASA Advisory Council; Commercial... Committee to the NASA Advisory Council. DATES: Thursday, July 29, 2010, 9 a.m.-12 p.m., Eastern. ADDRESSES: NASA Headquarters, 300 E Street, SW., PRC/Room 9H40, Washington, DC 20546. FOR FURTHER INFORMATION...

  2. 75 FR 11200 - NASA Advisory Council; Commercial Space Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-025)] NASA Advisory Council; Commercial... Committee of the NASA Advisory Council. DATES: Tuesday, March 30, 2010, 1 p.m.-5 p.m., EST. ADDRESSES: NASA... Administration, Washington, DC, 20546. Phone 202-358-1686, fax: 202-358-3878, [email protected]nasa.gov...

  3. Commercial and Industrial Wiring. Fourth Edition. Teacher Edition [and] Student Guide [and] Student Workbook 1 [and] Student Workbook 2.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    Commercial and Industrial Wiring, third in a series of three wiring publications, includes the additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. Instructional materials include a teacher edition, student guide, and two student workbooks. The teacher edition begins with…

  4. Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Prakash; Sheaffer, Paul; McKane, Aimee

    2015-09-01

    In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energymore » consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.« less

  5. Comments on the commercialization of expendable launch vehicles

    NASA Technical Reports Server (NTRS)

    Trilling, D. R.

    1984-01-01

    The President's national space policy encourages private sector investment and involvement in civil space activities. Last November, the President designated the Department of Transportation as lead agency for the commercialization of expendable launch vehicles. This presents a substantial challenge to the United States Government, since the guidelines and requirements that are set now will have great influence on whether American firms can become a viable competitive industry in the world launch market. There is a dual need to protect public safety and free the private sector launch industry from needless regulatory barriers so that it can grow and prosper.

  6. Commercial space development needs cheap launchers

    NASA Astrophysics Data System (ADS)

    Benson, James William

    1998-01-01

    SpaceDev is in the market for a deep space launch, and we are not going to pay $50 million for it. There is an ongoing debate about the elasticity of demand related to launch costs. On the one hand there are the ``big iron'' NASA and DoD contractors who say that there is no market for small or inexpensive launchers, that lowering launch costs will not result in significantly more launches, and that the current uncompetitive pricing scheme is appropriate. On the other hand are commercial companies which compete in the real world, and who say that there would be innumerable new launches if prices were to drop dramatically. I participated directly in the microcomputer revolution, and saw first hand what happened to the big iron computer companies who failed to see or heed the handwriting on the wall. We are at the same stage in the space access revolution that personal computers were in the late '70s and early '80s. The global economy is about to be changed in ways that are just as unpredictable as those changes wrought after the introduction of the personal computer. Companies which fail to innovate and keep producing only big iron will suffer the same fate as IBM and all the now-extinct mainframe and minicomputer companies. A few will remain, but with a small share of the market, never again to be in a position to dominate.

  7. The Opportunity in Commercial Approaches for Future NASA Deep Space Exploration Elements

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2017-01-01

    This work joins two events, showing the potential for commercial, public private partnerships, modeled on programs like COTS, to reduce the cost to NASA significantly for other required deep space exploration capabilities. These other capabilities include landers, stages and more. We mature the concept of costed baseball cards, adding cost estimates to NASAs space systems baseball cards.

  8. Financing commercial RLVs: Considering government incentives

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel S.

    1997-01-01

    There appears to be a national goal to achieve a commercial space transportation industry that provides launch services utilizing a fleet of reusable launch vehicles (RLVs). Because of the combination of large required investment, inadequate rate of return, and perceived high risk, industry has indicated that this goal may not be achievable without government support. What form of government support will likely be necessary? Government programs and policies can effect private sector investment decisions by reducing risk perceptions, reducing capital requirements, and increasing expected rates of return. Different programs and policies will have different impacts. For example, tax policies will affect expected return on investment but are likely to have little or no effect on risk perceptions and magnitude of required investment, whereas anchor tenancy is likely to alter risk perceptions and may increase expected rates of return. This paper is concerned with the development of an approach that may be used to identify packages of government incentives that may be required to influence private sector investment decisions so as to achieve the desired goal of a commercial space transportation industry that provides launch services utilizing a fleet of RLVs. The paper discusses the relationship of government incentive programs and policies to the RLV investment decision.

  9. Meeting NASA's Mission Through Commercial Partnerships

    NASA Technical Reports Server (NTRS)

    Nall, Mark

    2003-01-01

    This paper examines novel approaches to furthering NASA's missions through the use of commercial partnerships. The exploration of space ha proven to be a costly endeavor requiring the development of new technologies at significant expense. One of the prime factors holding bac the robust development of space is insufficient investment in the technologies necessary to make it a reality. The key to success in bringin needed space development technologies to maturation lies in bringing technology investors together from government, industry and academia. aggressive road map for developing space will require a diverse set of interest to industry or other government agencies. By having each invest( contributing to the part of the technology development of interest to them development of space systems can be put together at a cost far below wl would be required to develop for a stand-alone effort. The NASA Space Partnership Division has been employing this technique to leverage a 30 million dollar NASA investment into at 100 million dollar advanced technology development effort focused on meeting NASA's mission needs.

  10. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Pete Hasbrook, associate program scientist, ISS Program Science Office at NASA's Johnson Space Center in Houston; participates in the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  11. SpaceX CRS-10 Prelaunch News Conference

    NASA Image and Video Library

    2017-02-17

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media at a prelaunch news conference for the SpaceX CRS-10 commercial resupply services mission to the International Space Station. Tara Ruttley, associate scientist for the International Space Station Program at Johnson Space Center in Houston, answers questions.

  12. SpaceX CRS-10 Prelaunch News Conference

    NASA Image and Video Library

    2017-02-17

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media at a prelaunch news conference for the SpaceX CRS-10 commercial resupply services mission to the International Space Station. Tara Ruttley, associate scientist for the International Space Station Program at Johnson Space Center in Houston answers questions.

  13. 10 CFR 50.22 - Class 103 licenses; for commercial and industrial facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities. 50.22 Section 50.22 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND..., transfer, acquire, possess, or use a production or utilization facility for industrial or commercial purposes; Provided, however, That in the case of a production or utilization facility which is useful in...

  14. The Lower Tiers of the Space Transportation Industrial Base

    DOT National Transportation Integrated Search

    1995-08-01

    The U.S. space transportation industry includes large and small providers of subsystems, components, and materials in areas such as propulsion, avionics, guidance, and structures. For each dollar spent on the procurement of space transportation syste...

  15. Enhancing data from commercial space flights (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sherman, Ariel; Paolini, Aaron; Kozacik, Stephen; Kelmelis, Eric J.

    2017-05-01

    Video tracking of rocket launches inherently must be done from long range. Due to the high temperatures produced, cameras are often placed far from launch sites and their distance to the rocket increases as it is tracked through the flight. Consequently, the imagery collected is generally severely degraded by atmospheric turbulence. In this talk, we present our experience in enhancing commercial space flight videos. We will present the mission objectives, the unique challenges faced, and the solutions to overcome them.

  16. Space Applications of Industrial Laser Systems (SAILS)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert E.; McCay, T. Dwayne; McCay, Mary Helen; Bible, Brice

    1992-01-01

    A program is under way to develop a YAG laser based materials processing workstation to fly in the cargo bay of the Space Shuttle. The system will be capable of cutting and welding steel, aluminum and Inconel alloys of the type planned for use on the Space Station Freedom. As well as demonstrating the ability of a YAG laser to perform remote (fiber-optic delivered) repair and fabrication operations in space, fundamental data will be collected on these interactions for comparison with terrestrial data and models. The flight system, scheduled to fly in 1995, will be constructed as two modules to fit into standard Get Away Special (GAS) canisters. The first can holds the laser and its power supply, to be constructed by our industrial partner, Lumonics Industrial Processing Division. The second canister has the materials processing workstation and the command and data acquisition subsystems. These components will be provided by groups at UTSI and the University of Waterloo. The cans are linked by a fiber-optic cable which transmits the beam from the laser head to the workstation.

  17. Space Telemetry for the Energy Industry

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space telemetry is the process whereby information acquired in orbit is relayed to Earth. In 1981, Bill Sheen, President of Nu-Tech Industries, Inc., saw a need for a better way of monitoring flow, due to high costs of oil and gas, increasing oil field theft and a mounting requirement for more timely information to speed up accounting procedures. Sheen turned to NASA for assistance which was provided by Kerr Industrial Applications Center (KIAC). The system that emerged from two years of research, now in production at Nu-Tech's Fort Worth Texas facility, is known as the Remote Measurement and Control Network.

  18. Space industrialization - Education. [via communication satellites

    NASA Technical Reports Server (NTRS)

    Joels, K. M.

    1978-01-01

    The components of an educational system based on, and perhaps enhanced by, space industrialization communications technology are considered. Satellite technology has introduced a synoptic distribution system for various transmittable educational media. The cost of communications satellite distribution for educational programming has been high. It has, therefore, been proposed to utilize Space Shuttle related technology and Large Space Structures (LSS) to construct a system with a quantum advancement in communication capability and a quantum reduction in user cost. LSS for communications purposes have three basic advantages for both developed and emerging nations, including the ability to distribute signals over wide geographic areas, the reduced cost of satellite communications systems versus installation of land based systems, and the ability of a communication satellite system to create instant educational networks.

  19. Space industrialization. Volume 3: World and domestic implications

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of worldwide space industralization activities is assessed as well as the benefits to be anticipated from enhanced activities. Methods for stimulating space industralization growth are discussed with emphasis on foreign and international activities, national and world impact assessments, industry/government interfaces, legal implications, institutional implications, economics and capitalization, and implementation issues and recommendations.

  20. Satellite Communications Using Commercial Protocols

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Griner, James H.; Dimond, Robert; Frantz, Brian D.; Kachmar, Brian; Shell, Dan

    2000-01-01

    NASA Glenn Research Center has been working with industry, academia, and other government agencies in assessing commercial communications protocols for satellite and space-based applications. In addition, NASA Glenn has been developing and advocating new satellite-friendly modifications to existing communications protocol standards. This paper summarizes recent research into the applicability of various commercial standard protocols for use over satellite and space- based communications networks as well as expectations for future protocol development. It serves as a reference point from which the detailed work can be readily accessed. Areas that will be addressed include asynchronous-transfer-mode quality of service; completed and ongoing work of the Internet Engineering Task Force; data-link-layer protocol development for unidirectional link routing; and protocols for aeronautical applications, including mobile Internet protocol routing for wireless/mobile hosts and the aeronautical telecommunications network protocol.

  1. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Mike McAleenan, weather officer, 45th Weather Squadron, participates in the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  2. SpaceX CRS-12 Prelaunch News Conference

    NASA Image and Video Library

    2017-08-13

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-12 commercial resupply services mission to the International Space Station. Josh Finch of NASA Communications; Dan Hartman, NASA deputy manager of the International Space Station Program, Hans Koenigsmann, vice president of Build and Flight Reliability for SpaceX, and Pete Hasbrook, associate program scientist for the International Space Station Program. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  3. 78 FR 41333 - Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    .... EERE-2013-BT-STD-0022] RIN 1904-AD00 Energy Efficiency Program for Commercial and Industrial Equipment... the Framework Document pertaining to the development of energy conservation standards for refrigerated...

  4. The Context for Food Service and Nutrition in the Space Station

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1985-01-01

    Commercial activities in space represent diverse markets where international competitors will be motivated by economic, technical and political considerations. These considerations are given and discussed. The space station program, industrial participation and the potential benefits of commercial activities in space are described. How food service and nutrition affects habitability, effects on physical condition, dietary goals, food preparation and meal service are detailed.

  5. Criteria for successful government-industry-academic partnerships

    NASA Astrophysics Data System (ADS)

    Brannon, David P.

    1996-03-01

    The mission of the Commercial Remote Sensing Program (CRSP) Office at NASA's John C. Stennis Space Center is to maximize U.S. industry's commercial use of remote sensing and related space-based technologies and to develop advanced technical responses to spatial information requirements. The CRSP Office carries out this mission by offering several commercial partnership programs that help companies to apply remote sensing technologies in business applications and to buy down the risk of bringing new or improved products and services to market. Through its commercial partnerships, the CRSP seeks to increase the market demand for remote sensing products and related advanced technologies, thus increasing the use and reducing the cost of spatial information.

  6. Financial issues for commercial space ventures: Paying for the dreams

    NASA Technical Reports Server (NTRS)

    Egan, J. J.

    1984-01-01

    Various financial issues involved in commercial space enterprise are discussed. Particular emphasis is placed on the materials processing area: the current state of business plan and financial developments, what is needed for enhanced probability of success of future materials development efforts in attracting financial backing, and finally, the risks involved in this entire business area.

  7. The Role of Robots and Automation in Space

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1978-01-01

    Advanced space transportation systems based on the shuttle and interim upper stage will open the way to the use of large-scale industrial and commercial systems in space. The role of robot and automation technology in the cost-effective implementation and operation of such systems in the next two decades is discussed. Planning studies initiated by NASA are described as applied to space exploration, global services, and space industrialization, and a forecast of potential missions in each category is presented. The appendix lists highlights of space robot technology from 1967 to the present.

  8. Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan

    2018-01-01

    This presentation describes the accelerating use of Commercial off the Shelf (COTS) parts in space applications. Component reliability and threats in the context of the mission, environment, application, and lifetime. Provides overview of traditional approaches applied to COTS parts in flight applications, and shows challenges and potential paths forward for COTS systems in flight applications it's all about data!

  9. SpaceX CRS-10 Post Launch News Conference

    NASA Image and Video Library

    2017-02-19

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the liftoff of SpaceX CRS-10, a commercial resupply services mission to the International Space Station. From left are: William Spetch, deputy manager of the International Space Station Transportation Office; Jessica Jensen, Dragon mission manager for SpaceX; and Pam Underwood, manager of the Operations Integration Division of the Federal Aviation Administration Office of Commercial Space Transportation. SpaceX CRS-10 lifted off atop a Falcon 9 rocket from Kennedy's Launch Complex 39A at 9:39 a.m. EST.

  10. SpaceX CRS-10 Post Launch News Conference

    NASA Image and Video Library

    2017-02-19

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the liftoff of SpaceX CRS-10, a commercial resupply services mission to the International Space Station. From left are: George Diller, NASA Communications; William Spetch, deputy manager of the International Space Station Transportation Office; Jessica Jensen, Dragon mission manager for SpaceX; and Pam Underwood, manager of the Operations Integration Division of the Federal Aviation Administration Office of Commercial Space Transportation. SpaceX CRS-10 lifted off atop a Falcon 9 rocket from Kennedy's Launch Complex 39A at 9:39 a.m. EST.

  11. SpaceX CRS-10 Post Launch Press Conference

    NASA Image and Video Library

    2017-02-19

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the liftoff of SpaceX CRS-10, a commercial resupply services mission to the International Space Station. From left are: George Diller, NASA Communications; William Spetch, deputy manager of the International Space Station Transportation Office; Jessica Jensen, Dragon mission manager for SpaceX; and Pam Underwood, manager of the Operations Integration Division of the Federal Aviation Administration Office of Commercial Space Transportation. SpaceX CRS-10 lifted off atop a Falcon 9 rocket from Kennedy's Launch Complex 39A at 9:39 a.m. EST.

  12. Commercial Contributions to the Success of the HEDS Enterprise: A Working Model

    NASA Technical Reports Server (NTRS)

    Nall, Mark; Askew, Ray

    2000-01-01

    The future of NASA involves the exploration of space beyond the confines of orbit about the Earth. This includes robotic investigations and Human Exploration and Development of Space (HEDS). The HEDS Strategic Plan states: "HEDS will join with the private sector to stimulate opportunities for commercial development in space as a key to future settlement. Near-term efforts will emphasize joint pilot projects that provide clear benefit to Earth from the development of near-Earth space." In support of this endeavor, NASA has established the Commercial Development of Space as a prime goal and is exploring all the ways in which NASA might make contributions to this development. NASA has long supported the development of space for commercial use. In 1985 it formally established and provided funds to support a program which created a number of joint ventures between universities and industry for this purpose. These were known as Centers for the Commercial Development of Space (CCDS). In 1999 NASA established a broader policy on commercialization with the aim of encouraging near-term commercial investment in conjunction with the International Space Station. Joint pilot projects will be initiated to stimulate this near-term investment. The long-term development of commercial concepts utilizing space access continues through the activities of the Commercial Space Centers (CSC), a sub-set of the original CCDS group. These Centers primarily require access to space for the conduct of their work. The remainder of the initial Centers focus on the development of tools and infrastructure to support users of the space environment. It is in this arena that long term development for commercial use and infrastructure development will occur. This paper will provide a retrospective examination of the Commercial Centers, the variety of models employed, the lessons learned, and the progress to date. This review will provide the bases for how successful models can be employed to accelerate

  13. Space station needs, attributes and architectural options. Part 1: Summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Candidate missions for the space station were subjected to an evaluation/filtering process which included the application of budgetary constraints and performance of benefits analysis. Results show that the initial space station should be manned, placed in a 28.5 deg orbit, and provide capabilities which include a space test facility, satellite service, a transport harbor, and an observatory. A space industrial park may be added once further development effort validates the cost and expanding commercial market for space-processed material. Using the space station as a national space test facility can enhance national security, as well as commercial and scientific interests alike. The potential accrued gross mission model benefit derived from these capabilities is $5.9B without the industrial park, and $9.3B with it. Other benefits include the lowering of acquisition costs for NASA and DoD space assets and a basis for broadening international participation.

  14. National Space Council Meeting

    NASA Image and Video Library

    2017-10-05

    Acting NASA Administrator Robert Lightfoot, center, along with Deputy Chief Technology Officer of the United States Michael Kratsios, left, and Director of National Intelligence Daniel Coats, right, listen to remarks by panelists during the National Space Council's first meeting, Thursday, Oct. 5, 2017 at the Smithsonian National Air and Space Museum's Steven F. Udvar-Hazy Center in Chantilly, Va. The National Space Council, chaired by Vice President Mike Pence heard testimony from representatives from civil space, commercial space, and national security space industry representatives. Photo Credit: (NASA/Joel Kowsky)

  15. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  16. NASA Past, Present, and Future: The Use of Commercial Off The Shelf (COTS) Electronics in Space

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Guertin, Steven M.

    2017-01-01

    NASA has a long history of using commercial grade electronics in space. In this presentation we will provide a brief history of NASA's trends and approaches to commercial grade electronics focusing on processing and memory systems. This will include providing summary information on the space hazards to electronics as well as NASA mission trade space. We will also discuss developing recommendations for risk management approaches to Electrical, Electronic and Electromechanical (EEE) parts usage in space. Two examples will be provided focusing on a near-earth Polar-orbiting spacecraft as well as a mission to Mars. The final portion will discuss emerging trends impacting usage.

  17. Chapter 2: Commercial and Industrial Lighting Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Gowans, Dakers; Telarico, Chad

    The Commercial and Industrial Lighting Evaluation Protocol (the protocol) describes methods to account for gross energy savings resulting from the programmatic installation of efficient lighting equipment in large populations of commercial, industrial, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. A separate Uniform Methods Project (UMP) protocol, Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol, addresses methods for evaluating savings resulting from lighting control measures such as adding time clocks, tuning energy management system commands, and adding occupancy sensors.

  18. Conestoga 2: A low cost commercial space transport system

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. O.

    1984-01-01

    Conestoga 2 is currently under development. It is capable of inserting 500 Kg satellites into 800 Km circular polar orbits. Conestoga 2 makes maximum use of existing (developed) technology and hardware. Its commercial objective is to fill a need for low cost low Earth orbital transport not efficiently served by Shuttle or larger space transport systems. Low Earth orbit markets, foreign participation, and launch site considerations are discussed along with technical and economic trade-offs.

  19. International Space Station medical standards and certification for space flight participants.

    PubMed

    Bogomolov, Valery V; Castrucci, Filippo; Comtois, Jean-Marc; Damann, Volker; Davis, Jeffrey R; Duncan, J Michael; Johnston, Smith L; Gray, Gary W; Grigoriev, Anatoly I; Koike, Yu; Kuklinski, Paul; Matveyev, Vladimir P; Morgun, Valery V; Pochuev, Vladimir I; Sargsyan, Ashot E; Shimada, Kazuhito; Straube, Ulrich; Tachibana, Shoichi; Voronkov, Yuri V; Williams, Richard S

    2007-12-01

    The medical community of the International Space Station (ISS) has developed joint medical standards and evaluation requirements for Space Flight Participants ("space tourists") which are used by the ISS medical certification board to determine medical eligibility of individuals other than professional astronauts (cosmonauts) for short-duration space flight to the ISS. These individuals are generally fare-paying passengers without operational responsibilities. By means of this publication, the medical standards and evaluation requirements for the ISS Space Flight Participants are offered to the aerospace medicine and commercial spaceflight communities for reference purposes. It is emphasized that the criteria applied to the ISS spaceflight participant candidates are substantially less stringent than those for professional astronauts and/or crewmembers of visiting and long-duration missions to the ISS. These medical standards are released by the government space agencies to facilitate the development of robust medical screening and medical risk assessment approaches in the context of the evolving commercial human spaceflight industry.

  20. What the growth of a space tourism industry could contribute to employment, economic growth, environmental protection, education, culture and world peace

    NASA Astrophysics Data System (ADS)

    Collins, Patrick; Autino, Adriano

    2010-06-01

    The authors argue that the creation of a popular new industry of passenger space travel could be economically and socially very beneficial in creating new employment in aerospace and related fields in order to supply these services. In doing so, the application of nearly a half-century of technological development that has yet to be used commercially could create many new aerospace engineering business opportunities. In addition, by growing to large scale, space tourism has unique potential to reduce the cost of space travel sharply, thereby making many other activities in space feasible and profitable. The paper discusses the scope for new employment, stimulating economic growth, reducing environmental damage, sustaining education particularly in the sciences, stimulating cultural growth, and preserving peace by eliminating any need for "resource wars".

  1. Center for the development of commercial crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1989-01-01

    The second year of operation of the Center for Commercial Crystal Growth in Space is described. This center is a consortium of businesses, universities and national laboratories. The primary goal of the Center's research is the development of commercial crystal growth in space. A secondary goal is to develop scientific understanding and technology which will improve commercial crystal growth on earth. In order to achieve these goals the Center's research is organized into teams by growth technique; melt growth, solution growth, and vapor growth. The melt growth team is working on solidification and characterization of bulk crystals of gallium arsenide and cadmium telluride. They used high resolution X-ray topography performed at the National Synchrotron Light Source at Brookhaven National Laboratory. Streak-like features were found in the diffraction images of semi-insulating undoped LEC GaAs. These were shown to be (110) antiphase boundaries, which have not been reported before but appear to be pervasive and responsible for features seen via less-sensitive characterization methods. The results on CdTe were not as definitive, but indicate that antiphase boundaries may also be responsible for the double peaks often seen in X-ray rocking curves of this material. A liquid encapsulated melt zone system for GaAs has been assembled and techniques for casting feed rods developed. It was found that scratching the inside of the quartz ampoules with silicon carbide abrasive minimized sticking of the GaAs to the quartz. Twelve floating zone experiments were done.

  2. Developing Entrepreneurial and Technology Commercialization Policies to Promote Cooperative Ventures Between NIH and Industry

    NASA Astrophysics Data System (ADS)

    Rossomando, Edward F.

    2001-03-01

    The NIH has had a great influence in guiding the biological research agenda for the last half of the 20th century. This may change if the increases in research funding from the private sector that occurred in the last ten years continue into the 21st century. Ten years ago, industry supplied 55% of the US R&D funds. In 2000, industry support of R&D had increased to 76%, with industry carrying out 70% of the nations applied and 91% of its development research. Given this shift, one of the biggest challenges that NIH may face in coming years is sharing control of America's research agenda with industry. For this to occur policies that encourage cooperative ventures with industry are needed. In a unique experiment, I was invited to the National Institute of Dental and Craniofacial Research (NIDCR), one of the 25 NIH Institutes and Centers, to develop programs and policies that would promote interactions with industry. This talk will introduce the strategy and programs developed to commercialize products and technologies from basic science discoveries and introducing an entrepreneurial atmosphere within the Institute. The results of this experiment will be discussed by comparing differences between discovery-driven and customer-driven innovation. One outcome of this experience is a greater appreciation of the obstacles to introducing disruptive technologies into the market place and of the paradigms that serve as barriers to commercialization. One recommendation is that the NIDCR consider a policy that allows for some participation by industry in setting the research and training agenda of the Institute, and that a mechanism for industry input be introduced into its administrative organization.

  3. National Space Club

    NASA Image and Video Library

    2018-03-20

    NASA Kennedy Space Center Director Bob Cabana speaks to National Space Club-Florida Chapter (NSCFC) members and guests at the Radisson Resort at the Port in Cape Canaveral, Florida. Cabana's presentation was titled, "KSC - Space Exploration Begins Here." He included an update on the multi-user spaceport and several programs, including Exploration Ground Systems, Launch Services Program and Commercial Crew Program. The NSCFC is a non-profit organization composed of representatives from the space industry, government, educational institutions, and private individuals who share a commitment to increasing public awareness of America's aerospace programs.

  4. Industrial and Commercial Property and the Dispersion of Assessed Valuation per Pupil

    ERIC Educational Resources Information Center

    Boltz, Paul W.

    1973-01-01

    Examines the dispersion of assessed valuation per pupil in Illinois and evaluates some proposals that might reduce this dispersion. The major proposal considered by the author is removal of industrial and commercial property (I & C) from local rolls. The conclusion is drawn that removing I & C from the property tax base has little or no…

  5. Consortium for Materials Development in Space

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During FY99 the Consortium for Materials Development in Space (CMDS) was reorganized around the following guidelines: industry driven, product focus, an industry led advisory council, focus on University of Alabama in Huntsville (UAH) core competencies, linkage to regional investment firms to assist commercialization and to take advantage of space flights. The organizational structure of the CMDS changed considerably during the year. The decision was made to reduce the organization to a Director and an Administrative Assistant. The various research projects, including the employees, were transferred to the appropriate UAH research center or college. In addition, an advisory council was established to provide direction and guidance to the CMDS to ensure a strong commercial focus. The council will (i) review CMDS commercial development plans and provide feedback, (ii) perform an annual evaluation of the Center's progress and present the results of this review to the UAH Vice President for Research, (iii) serve as an avenue of communication between the CMDS and its commercial partners, and (iv) serve as an ambassador and advocate for the CMDS.

  6. Foresight Model of Turkey's Defense Industries' Space Studies until 2040

    NASA Astrophysics Data System (ADS)

    Yuksel, Nurdan; Cifci, Hasan; Cakir, Serhat

    2016-07-01

    Being advanced in science and technology is inevitable reality in order to be able to have a voice in the globalized world. Therefore, for the countries, making policies in consistent with their societies' intellectual, economic and political infrastructure and attributing them to the vision having been embraced by all parties of the society is quite crucial for the success. The generated policies are supposed to ensure the usage of countries' resources in the most effective and fastest way, determine the priorities and needs of society and set their goals and related roadmaps. In this sense, technology foresight studies based on justified forecasting in science and technology have critical roles in the process of developing policies. In this article, Foresight Model of Turkey's Defense Industries' Space Studies, which is turned out to be the important part of community life and fundamental background of most technologies, up to 2040 is presented. Turkey got late in space technology studies. Hence, for being fast and efficient to use its national resources in a cost effective way and within national and international collaboration, it should be directed to its pre-set goals. By taking all these factors into consideration, the technology foresight model of Turkey's Defense Industry's Space Studies was presented in the study. In the model, the present condition of space studies in the World and Turkey was analyzed; literature survey and PEST analysis were made. PEST analysis will be the inputs of SWOT analysis and Delphi questionnaire will be used in the study. A two-round Delphi survey will be applied to the participants from universities, public and private organizations operating in space studies at Defense Industry. Critical space technologies will be distinguished according to critical technology measures determined by expert survey; space technology fields and goals will be established according to their importance and feasibility indexes. Finally, for the

  7. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  8. Space ventures and society long-term perspectives

    NASA Technical Reports Server (NTRS)

    Brown, W. M.

    1985-01-01

    A futuristic evaluation of mankind's potential long term future in space is presented. Progress in space will not be inhibited by shortages of the Earth's physical resources, since long term economic growth will be focused on ways to constrain industrial productivity by changing social values, management styles, or government competence. Future technological progress is likely to accelerate with an emphasis on international cooperation, making possible such large joint projects as lunar colonies or space stations on Mars. The long term future in space looks exceedingly bright even in relatively pessimistic scenarios. The principal driving forces will be technological progress, commercial and public-oriented satellites, space industrialization, space travel, and eventually space colonization.

  9. Concept of operations for commercial space transportation in the National Airspace System

    DOT National Transportation Integrated Search

    2001-05-11

    This is a concept document. It provides a conceptual overview of commercial space transportation (CST) : operations in the National Airspace System (NAS) in 2005 and beyond. This document is intended to support : evolution of a fully integrated, mode...

  10. Space Biotech: Hindsight, Insight, Foresight

    NASA Technical Reports Server (NTRS)

    Harper, Lynn

    2015-01-01

    Over the past forty years, microgravity has inspired and enabled applications in a wide range of sectors including medicine, materials, computers, communications, and national defense. Trends show that demand for high-tech solutions is increasing in these sectors, solutions that require higher resolution, greater precision, novel materials, innovative processes, and more sophisticated tools. These are areas where microgravity can offer unique capabilities for innovation. The Emerging Space Office (ESO) has engaged in multiple studies over the past year that have found that microgravity RD is one of the most promising technology areas for contributing to economic growth and to NASAs mission. The focus of these studies was on terrestrial markets rather than NASA applications, applied research rather than basic research, and commercial rather than academic investigators. There have been more success stories than are generally appreciated and there are significant areas of promising future potential. Many of the problems that have limited commercial microgravity development in the past are being solved. Microgravity research and development (RD) requires iteration and learning, as rapidly as possible. New technologies enable high throughput and rapid data collection in increasingly small payloads. The International Space Station is in orbit and provides a laboratory that is available 247 at least until 2024. Frequent flights by commercial space providers to and from the ISS now enable the fast learning cycles needed by high-tech industries. Launch costs are decreasing and the ability to return payloads to Earth is increasing. New commercial space laboratories, such as those being developed by SpaceX and Bigelow Aerospace, are in the final stages of development and testing. This ecosystem for microgravity RD has never been available before. These are game-changer conditions for attracting high-tech industries to space for terrestrial, as well as NASA, applications

  11. Trends in space activities in 2014: The significance of the space activities of governments

    NASA Astrophysics Data System (ADS)

    Paikowsky, Deganit; Baram, Gil; Ben-Israel, Isaac

    2016-01-01

    This article addresses the principal events of 2014 in the field of space activities, and extrapolates from them the primary trends that can be identified in governmental space activities. In 2014, global space activities centered on two vectors. The first was geopolitical, and the second relates to the matrix between increasing commercial space activities and traditional governmental space activities. In light of these two vectors, the article outlines and analyzes trends of space exploration, human spaceflights, industry and technology, cooperation versus self-reliance, and space security and sustainability. It also reviews the space activities of the leading space-faring nations.

  12. SMEs, IT, and the Third Space: Colonization and Creativity in the Theatre Industry

    NASA Astrophysics Data System (ADS)

    Kendall, Julie E.; Kendall, Kenneth E.

    We examine how small and medium-sized, professional, nonprofit performing arts theatres in the US can improve the strategic use of information technology (IT), as well as other aspects of theatre management for large, commercial theatre productions in the West End of London and on Broadway in New York City. In this article we use the epistemology of the third space developed by Bhabha (1994) and extended by Frenkel (2008). Although both authors were discussing knowledge transfer, we use their conceptualizations to characterize and explore more deeply the transfer process of culture (and thereby useful practices and worthwhile lessons) from small and medium-sized professional, nonprofit theaters to large-scale commercial theatres. We include a discussion of Nonaka’s (1991) concept of ba, and how it relates to the third space. We specifically employ the metaphor of the third space developed by Bhabha (1994) to critique and understand the verbal and nonverbal cultural transmissions between small and large theatres. One of our contributions is to use the conceptualization and metaphor of the third space to understand the complex exchanges and relationships between small to medium-sized nonprofit professional theatres and large commercial theatres, and to identify what large commercial productions can learn from nonprofit theatres from these exchanges.

  13. International Safety Regulation and Standards for Space Travel and Commerce

    NASA Astrophysics Data System (ADS)

    Pelton, J. N.; Jakhu, R.

    The evolution of air travel has led to the adoption of the 1944 Chicago Convention that created the International Civil Aviation Organization (ICAO), headquartered in Montreal, Canada, and the propagation of aviation safety standards. Today, ICAO standardizes and harmonizes commercial air safety worldwide. Space travel and space safety are still at an early stage of development, and the adoption of international space safety standards and regulation still remains largely at the national level. This paper explores the international treaties and conventions that govern space travel, applications and exploration today and analyzes current efforts to create space safety standards and regulations at the national, regional and global level. Recent efforts to create a commercial space travel industry and to license commercial space ports are foreseen as means to hasten a space safety regulatory process.

  14. Manpower development for the biomedical industry space.

    PubMed

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  15. Strategies For Human Exploration Leading To Human Colonization of Space

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  16. 78 FR 21003 - Office of Commercial Space Transportation; Notice of Availability of the Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... (ROD) for Issuing Launch and Reentry Licenses to Space Exploration Technologies Corp. (SpaceX) for... to support the issuance of launch and reentry licenses to SpaceX for Falcon 9 and Falcon Heavy commercial launch operations at VAFB. The Proposed Action analyzed in the EA consists of SpaceX operating its...

  17. Space Transportation and the Computer Industry: Learning from the Past

    NASA Technical Reports Server (NTRS)

    Merriam, M. L.; Rasky, D.

    2002-01-01

    Since the space shuttle began flying in 1981, NASA has made a number of attempts to advance the state of the art in space transportation. In spite of billions of dollars invested, and several concerted attempts, no replacement for the shuttle is expected before 2010. Furthermore, the cost of access to space has dropped very slowly over the last two decades. On the other hand, the same two decades have seen dramatic progress in the computer industry. Computational speeds have increased by about a factor of 1000 and available memory, disk space, and network bandwidth has seen similar increases. At the same time, the cost of computing has dropped by about a factor of 10000. Is the space transportation problem simply harder? Or is there something to be learned from the computer industry? In looking for the answers, this paper reviews the early history of NASA's experience with supercomputers and NASA's visionary course change in supercomputer procurement strategy.

  18. US development and commercialization of a North American mobile satellite service

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Gray, Valerie; Freibaum, Jerry

    1990-01-01

    U.S. policies promoting applications and commercialization of space technology for the 'benefit of mankind,' and emphasis on international competitiveness, formed the basis of NASA's Mobile Satellite (MSAT) R&D and user experiments program to develop a commercial U.S. Mobile Satellite Service. Exemplifying this philosophy, the MSAT program targets the reduction of technical, regulatory, market, and financial risks that inhibit commercialization. The program strategy includes industry and user involvement in developing and demonstrating advanced technologies, regulatory advocacy, and financial incentives to industry. Approximately two decades of NASA's satellite communications development and demonstrations have contributed to the emergence of a new multi-billion dollar industry for land, aeronautical, and maritime mobile communications via satellite. NASA's R&D efforts are now evolving from the development of 'enabling' ground technologies for VHF, UHF, and L-Band mobile terminals, to Ka-Band terminals offering additional mobility and user convenience.

  19. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...

  20. NASA commercial programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An expanded role for the U.S. private sector in America's space future has emerged as a key national objective, and NASA's Office of Commercial Programs is providing a focus for action. The Office supports new high technology commercial space ventures, the commercial application of existing aeronautics and space technology, and expanded commercial access to available NASA capabilities and services. The progress NASA has made in carrying out its new assignment is highlighted.

  1. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Stephanie Schierholz of NASA Communications; Joel Montalbano, NASA Deputy Manager of the International Space Station Program; Jessica Jensen, Director of Dragon Mission Management for SpaceX; Pete Hasbrook, Associate Program Scientist for the ISS Program Science Office; and Mike McAleenan the Launch Weather Officer from the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 14th Commercial Resupply Services mission to the space station.

  2. SpaceX CRS-13 Prelaunch News Conference

    NASA Image and Video Library

    2017-12-11

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-13 commercial resupply services mission to the International Space Station. Cheryl Warner of NASA Communications; Kirk Shireman, NASA Manager of the International Space Station Program; Jessica Jensen, Director of Dragon Mission Management for SpaceX; Kirt Costello, Deputy Chief Scientist for the ISS Program Science Office; and David Myers the Launch Weather Officer from the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 13th Commercial Resupply Services mission to the space station.

  3. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The feasibility of the commercial manufacturing of pharmaceuticals in space is examined. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is presented. Antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon were studied. Production mass balances for antihemophilic factor, beta cells, and erythropoietin were compared for space verus ground operation.

  4. Commercial space and launch insurance : current market and future outlook : fourth quarter 2002 Quarterly Launch Report

    DOT National Transportation Integrated Search

    2002-01-01

    Since the last review of the space and launch insurance industry (see "Update of the Space and Launch Insurance Industry," 4th quarter, : 1998 Quarterly Launch Report), many changes have occurred in the market. This report endeavors to examine the cu...

  5. BEOS-A new approach to promote and organize industrial ISS utilization

    NASA Astrophysics Data System (ADS)

    Luttmann, Helmut; Buchholz, Henning; Bratke, Burkhard; Hueser, Detlev; Dittus, Hansjörg

    2000-01-01

    In order to develop and to market innovative services and products for the operation of the ISS and its utilization, three players have teamed up together and established an entity called BEOS (Bremen Engineering Operations Science). The team is made up of DaimlerChrysler Aerospace, OHB-System and ZARM, the Center of Applied Space Technology and Microgravity at the University of Bremen. It is the aim of BEOS to represent a competent industrial interface to potential ISS users from the space and non-space industries. In this effort BEOS is supporting and supplementing the activities of the space agencies, especially in the field of industrial and/or commercial ISS utilization. With this approach BEOS is creating new business opportunities not only for its team members but also for its customers from industry. Besides the fostering of industrial research in space, nontechnical fields of space utilization like entertainment, advertisement, education and space travel represent further key sectors for the marketing efforts of BEOS. .

  6. Qualification of Commercial XIPS(R) Ion Thrusters for NASA Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Polk, James E.; Wirz, Richard E.; Snyder, J.Steven; Mikellides, Ioannis G.; Katz, Ira; Anderson, John

    2008-01-01

    Electric propulsion systems based on commercial ion and Hall thrusters have the potential for significantly reducing the cost and schedule-risk of Ion Propulsion Systems (IPS) for deep space missions. The large fleet of geosynchronous communication satellites that use solar electric propulsion (SEP), which will approach 40 satellites by year-end, demonstrates the significant level of technical maturity and spaceflight heritage achieved by the commercial IPS systems. A program to delta-qualify XIPS(R) ion thrusters for deep space missions is underway at JPL. This program includes modeling of the thruster grid and cathode life, environmental testing of a 25-centimeter electromagnetic (EM) thruster over DAWN-like vibe and temperature profiles, and wear testing of the thruster cathodes to demonstrate the life and benchmark the model results. This paper will present the delta-qualification status of the XIPS thruster and discuss the life and reliability with respect to known failure mechanisms.

  7. Technology R&D for space commerce

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Christensen, Carissa B.; Steen, Robert G.

    1992-01-01

    The potential effects of reserach conducted by the NASA Office of Aeronautics and Space Technology, OAST, on the aerospace industry are addressed. Program elements aimed at meeting commercial needs and those aimed at meeting NASA needs which have secondary effects benefiting aerospace firms are considered. Particular attention is given to current and future NASA programs for cooperating with industry and the potential effects of OAST research on nonaerospace industries.

  8. Market Driven Space Exploration

    NASA Astrophysics Data System (ADS)

    Gavert, Raymond B.

    2004-02-01

    Market driven space exploration will have the opportunity to develop to new levels with the coming of space nuclear power and propulsion. NASA's recently established Prometheus program is expected to receive several billion dollars over the next five years for developing nuclear power and propulsion systems for future spacecraft. Not only is nuclear power and propulsion essential for long distance Jupiter type missions, but it also important for providing greater access to planets and bodies nearer to the Earth. NASA has been working with industrial partners since 1987 through its Research Partnerships Centers (RPCs) to utilize the attributes of space in Low Earth Orbit (LEO). Plans are now being made to utilize the RPCs and industrial partners in extending the duration and boundaries of human space flight to create new opportunities for exploration and discovery. Private investors are considering setting up shops in LEO for commercial purposes. The trend is for more industrial involvement in space. Nuclear power and propulsion will hasten the progress. The objective of this paper is to show the progression of space market driven research and its potential for supporting space exploration given nuclear power and propulsion capabilities.

  9. Space Station Freedom Workshop Opportunities for Commercial Users and Providers: Issues and Recommendations

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The responses to issues and questions raised at the Space Station Freedom Workshops are compiled. The findings are presented under broad divisions of general, materials processing in space, commercial earth and ocean observations, life sciences, infrastructure services, and infrastructure policy. The responses represent the best answers available at this time and future modifications may be expected. Contact names, telephone numbers, and organizations are included.

  10. The trading company in space development in Japan

    NASA Astrophysics Data System (ADS)

    Gonda, Toshi N.

    Trading companies have a unique status in the Japanese market and a really deep involvement in Japanese trade. They are also involved in space development and the space industry as well. An overview of trading companies activities and, more specifically, a way of involving them more in the space industry are presented. The activities of Nissho Iwai Corporation, one of the Sogo Shosha, are described in detail. Their activities in the space industry have two aspects, one is social and the other is commercial. They have been stimulating space projects in these aspects. There are several international cooperative space projects between Japan and the U.S. These projects are proceeding on a government to government basis. But, it is worthwhile to realize that the Sogo Shosha may create trade flow through increased international space cooperation in the private sector.

  11. Economic Benefits of Space Tourism to Europe

    NASA Astrophysics Data System (ADS)

    Collins, P.

    The European aerospace industry has been very slow to consider the commercial opportunities in supplying passenger space travel services. This has been a costly mistake not just of space policy, but also of economic policy and environmental policy. This is because it is very unlikely that space tourism will remain just a small-scale activity of the very rich; it is much more likely to grow into a major new industry, employing millions of people in high quality employment - eventually much of it outside the Earth's eco-system. This is particularly important because, although the European “social-economic model” has greater popular support than the “USA model” (including among the general USA population), Europe today faces the major problem of high unemployment, which is imposing heavy social and economic costs. If Europe makes serious efforts soon to encourage the growth of passenger space travel, and of the many other economically and environmentally valuable space activities to which this will lead, then commercial space activities could become a major new axis of economic growth and employment-creation for Europe. Moreover, Europe has several advantages over the USA, Russia, Japan, China and India, and so could play a leading role in this field, if policy errors are corrected. The paper discusses the above possibilities, and the potential economic, environmental and other benefits for Europe in investing boldly in this fledgling industry.

  12. Development of a shuttle recovery Commercial Materials Processing in Space (CMPS) program

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The work performed has covered the following tasks: update commercial users requirements; assess availability of carriers and facilities; shuttle availability assessment; development of optimum accommodations plan; and payload documentation requirements assessment. The results from the first four tasks are presented. To update commercial user requirements, contacts were made with the JEA and CCDS partners to obtain copies of their most recent official flight requests. From these requests the commercial partners' short and long range plans for flight dates, flight frequency, experiment hardware and carriers was determined. A 34 by 44 inch chart was completed to give a snapshot view of the progress of commercialization in space. Further, an assessment was made of the availability of carriers and facilities. Both existing carriers and those under development were identified for use by the commercial partners. A data base was compiled to show the capabilities of the carriers. A shuttle availability assessment was performed using the primary and secondary shuttle manifests released by NASA. Analysis of the manifest produced a flight-by-flight list of flight opportunities available to commercial users. Using inputs from the first three tasks, an Optimum Accommodations Plan was developed. The Accommodation Plan shows the commercial users manifested by flight, the experiment flown, the carrier used and complete list of commercial users that could not be manifested in each calendar year.

  13. SpaceX CRS-11 Prelaunch News Conference

    NASA Image and Video Library

    2017-05-31

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-11 commercial resupply services mission to the International Space Station. From left are: Mike Curie of NASA Communications, Kirk Shireman, NASA's International Space Station Program manager, Hans Koenigsmann, vice president of Flight Reliability for SpaceX, Camille Alleyne, associate program scientist for the International Space Station at NASA’s Johnson Space Center, and Mike McAleenan, launch weather officer for the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  14. Commercialization of NESSUS: Status

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Millwater, Harry R.

    1991-01-01

    A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.

  15. Business-IT Alignment Maturity: The Correlation of Performance Indicators and Alignment Maturity within the Commercial Airline Industry

    ERIC Educational Resources Information Center

    Ryan, Timothy K.

    2010-01-01

    During the period from 1978 to 2009, more than 200 commercial airlines were forced to merge, cease operations, or file for bankruptcy protection. The purpose of this quantitative study is to evaluate the global commercial airline industry from an IT-business alignment perspective and correlate the alignment maturity level of each airline with…

  16. Feasibility of commercial space manufacturing, production of pharmaceuticals. Volume 2: Technical analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.

  17. L'espace articulaire de la Robotique Industrielle est un espace vectorielIndustrial Robotics joint space is a vector space

    NASA Astrophysics Data System (ADS)

    Tondu, Bertrand

    2003-05-01

    The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws. To cite this article: B. Tondu, C. R. Mecanique 331 (2003).

  18. Space - A unique environment for process modeling R&D

    NASA Technical Reports Server (NTRS)

    Overfelt, Tony

    1991-01-01

    Process modeling, the application of advanced computational techniques to simulate real processes as they occur in regular use, e.g., welding, casting and semiconductor crystal growth, is discussed. Using the low-gravity environment of space will accelerate the technical validation of the procedures and enable extremely accurate determinations of the many necessary thermophysical properties. Attention is given to NASA's centers for the commercial development of space; joint ventures of universities, industries, and goverment agencies to study the unique attributes of space that offer potential for applied R&D and eventual commercial exploitation.

  19. 23 CFR 750.706 - Sign control in zoned and unzoned commercial and industrial areas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Sign control in zoned and unzoned commercial and industrial areas. 750.706 Section 750.706 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT HIGHWAY BEAUTIFICATION Outdoor Advertising Control § 750.706 Sign...

  20. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  1. Monitoring Space Radiation Hazards with the Responsive Environmental Assessment Commercially Hosted (REACH) Project

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Guild, T. B.; Crain, W.; Crain, S.; Holker, D.; Quintana, S.; O'Brien, T. P., III; Kelly, M. A.; Barnes, R. J.; Sotirelis, T.

    2017-12-01

    The Responsive Environmental Assessment Commercial Hosting (REACH) project uses radiation dosimeters on a commercial satellite constellation in low Earth orbit to provide unprecedented spatial and time sampling of space weather radiation hazards. The spatial and time scales of natural space radiation environments coupled with constraints for the hosting accommodation drove the instrumentation requirements and the plan for the final orbital constellation. The project has delivered a total of thirty two radiation dosimeter instruments for launch with each instrument containing two dosimeters with different passive shielding and electronic thresholds to address proton-induced single-event effects, vehicle charging, and total ionizing dose. There are two REACH instruments currently operating with four more planned for launch by the time of the 2017 meeting. Our aim is to field a long-lived system of highly-capable radiation detectors to monitor the hazards of single-event effects, total ionizing dose, and spacecraft charging with maximized spatial coverage and with minimal time latency. We combined a robust detection technology with a commercial satellite hosting to produce a new demonstration for satellite situational awareness and for other engineering and science applications.

  2. "From Bricks to Clicks": Hybrid Commercial Spaces in the Landscape of Early Literacy and Learning

    ERIC Educational Resources Information Center

    Nixon, Helen

    2011-01-01

    In their quest for resources to support children's early literacy learning and development, parents encounter and traverse different spaces in which discourses and artifacts are produced and circulated. This paper uses conceptual tools from the field of geosemiotics to examine some commercial spaces designed for parents and children that…

  3. Patent databases and analytical tools for space technology commercialization (Part 2)

    NASA Astrophysics Data System (ADS)

    Hulsey, William N., III

    2002-07-01

    A shift in the space industry has occurred that requires technology developers to understand the basics of the intellectual property laws; Global harmonization facilitates this understanding; internet-based tools enable knowledge of these rights and the facts affecting them.

  4. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    NASA Technical Reports Server (NTRS)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  5. Presentation of a Novel Model for Evaluation of Commercialization of Research and Development: Case Study of the Pharmaceutical Biotechnology Industry

    PubMed Central

    Emami, Hassan; Radfar, Reza

    2017-01-01

    The current situation in Iran suggests an appropriate basis for developing biotechnology industries, because the patents for the majority of hi-tech medicines registered in developed countries are ending. Biosimilar and technology-oriented companies which do not have patents will have the opportunity to enter the biosimilar market and move toward innovative initiatives. The present research proposed a model by which one can evaluate commercialization of achievements obtained from research with a focus on the pharmaceutical biotechnology industry. This is a descriptive-analytic study where mixed methodology is followed by a heuristic approach. The statistical population was pharmaceutical biotechnology experts at universities and research centers in Iran. Structural equations were employed in this research. The results indicate that there are three effective layers within commercialization in the proposed model. These are a general layer (factors associated with management, human capital, legal infrastructure, communication infrastructure, a technical and executive infrastructures, and financial factors), industrial layer (internal industrial factors and pharmaceutical industry factors), and a third layer that included national and international aspects. These layers comprise 6 domains, 21 indices, 41 dimensions, and 126 components. Compilation of these layers (general layer, industrial layer, and national and international aspects) can serve commercialization of research and development as an effective evaluation package. PMID:29201110

  6. Presentation of a Novel Model for Evaluation of Commercialization of Research and Development: Case Study of the Pharmaceutical Biotechnology Industry.

    PubMed

    Emami, Hassan; Radfar, Reza

    2017-01-01

    The current situation in Iran suggests an appropriate basis for developing biotechnology industries, because the patents for the majority of hi-tech medicines registered in developed countries are ending. Biosimilar and technology-oriented companies which do not have patents will have the opportunity to enter the biosimilar market and move toward innovative initiatives. The present research proposed a model by which one can evaluate commercialization of achievements obtained from research with a focus on the pharmaceutical biotechnology industry. This is a descriptive-analytic study where mixed methodology is followed by a heuristic approach. The statistical population was pharmaceutical biotechnology experts at universities and research centers in Iran. Structural equations were employed in this research. The results indicate that there are three effective layers within commercialization in the proposed model. These are a general layer (factors associated with management, human capital, legal infrastructure, communication infrastructure, a technical and executive infrastructures, and financial factors), industrial layer (internal industrial factors and pharmaceutical industry factors), and a third layer that included national and international aspects. These layers comprise 6 domains, 21 indices, 41 dimensions, and 126 components. Compilation of these layers (general layer, industrial layer, and national and international aspects) can serve commercialization of research and development as an effective evaluation package.

  7. Space Station Workshop Commercial Missions and User Requirements: Issues and Recommendations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The issues and recommendations of a conference on the Space Station are presented. The subjects are organized under three headings of: materials and processing in space, earth and ocean observations, and industrial services. One hundred and two issues and recommendations which resulted from the workskop are categorized for each discipline subpanel. Responses to these issues and recommendations are based on more than twenty interviews with highly qualified NASA personnel and represent the best answers available at this time.

  8. 9. FIRST FLOOR CAR BARN SPACE. VIEW TO NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FIRST FLOOR CAR BARN SPACE. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, Key City Electric Street Railroad, Powerhouse & Storage Barn, Eighth & Washington Streets, Dubuque, Dubuque County, IA

  9. 15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. FIRST FLOOR WAREHOUSE SPACE, SHOWING COLUMN / BEAM CONNECTION. VIEW TO SOUTHWEST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  10. Hazard Analysis of Commercial Space Transportation: Volume 1: Operations. Volume 2: Hazards. Volume 3: Risk Analysis

    DOT National Transportation Integrated Search

    1988-05-01

    The report is devoted to the review and discussion of generic hazards associated with the ground, launch, orbital and re-entry phases of space operations. Since the DOT Office of Commercial Space Transportation (OCST) has been charged with protecting...

  11. Office of the Associate Administrator for Commercial Space Transportation: Insurance Determinations Requirements As of July 22, 1997

    DOT National Transportation Integrated Search

    1997-07-22

    The Commercial Space Launch Act requires that all commercial licensees : demonstrate financial responsibility to compensate for the maximum probable : loss (MPL) from claims by a third party for death, bodily injury, or property : damage or loss resu...

  12. The U.S. commercial air tour industry: a review of aviation safety concerns.

    PubMed

    Ballard, Sarah-Blythe

    2014-02-01

    The U.S. Title 14 Code of Federal Regulations defines commercial air tours as "flight[s] conducted for compensation or hire in an airplane or helicopter where a purpose of the flight is sightseeing." The incidence of air tour crashes in the United States is disproportionately high relative to similar commercial aviation operations, and air tours operating under Part 91 governance crash significantly more than those governed by Part 135. This paper reviews the government and industry response to four specific areas of air tour safety concern: surveillance of flight operations, pilot factors, regulatory standardization, and maintenance quality assurance. It concludes that the government and industry have successfully addressed many of these tenet issues, most notably by: advancing the operations surveillance infrastructure through implementation of en route, ground-based, and technological surveillance methods; developing Aeronautical Decision Making and cue-based training programs for air tour pilots; consolidating federal air tour regulations under Part 136; and developing public-private partnerships for raising maintenance operating standards and improving quality assurance programs. However, opportunities remain to improve air tour safety by: increasing the number and efficiency of flight surveillance programs; addressing pilot fatigue with more restrictive flight hour limitations for air tour pilots; ensuring widespread uptake of maintenance quality assurance programs, especially among high-risk operators not currently affiliated with private air tour safety programs; and eliminating the 25-mile exception allowing Part 91 operators to conduct commercial air tours without the safety oversight required of Part 135 operators.

  13. Hurdles in tissue engineering/regenerative medicine product commercialization: a survey of North American academia and industry.

    PubMed

    Johnson, Peter C; Bertram, Timothy A; Tawil, Bill; Hellman, Kiki B

    2011-01-01

    The Tissue Engineering and Regenerative Medicine International Society-North America (TERMIS-NA) Industry Committee was formed in February 2009 to address the common roadblocks (i.e., hurdles) in the commercialization of tissue engineering/regenerative medicine products for its members. A semiquantitative online opinion survey instrument that delineated potentially sensitive hurdles to commercialization in each of the TERMIS constituency groups that generally participate in the stream of technology commercialization (academia, startup companies, development-stage companies, and established companies) was developed. The survey was opened to each of the 863 members of TERMIS-NA for a period of 5 weeks from October to November 2009. By its conclusion, 215 members (25%) had responded. Their proportionate numbers were closely representative of TERMIS-NA constituencies. The resulting data delineate what each group considers to be its most difficult and also its easiest hurdles in taking a technology to full product development. In addition, each group ranked its perception of the difficult and easy hurdles for all other groups, enabling an assessment of the degree of understanding between groups. The data depict not only critical hurdles in the path to commercialization at each stage in product development but also a variable understanding of perceptions of hurdles between groups. This assessment has provided the Industry Committee with activity foci needed to assist individual groups in the technology-commercialization stream. Moreover, the analysis suggests that enhanced communication between groups engaged in commercialization will be critical to the successful development of products in the tissue engineering/regenerative medicine sector.

  14. Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening

    PubMed Central

    2014-01-01

    Analyzing the chemical space coverage in commercial fragment screening collections revealed the overlap between bioactive medicinal chemistry substructures and rule-of-three compliant fragments is only ∼25%. We recommend including these fragments in fragment screening libraries to maximize confidence in discovering hit matter within known bioactive chemical space, while incorporation of nonoverlapping substructures could offer novel hits in screening libraries. Using principal component analysis, polar and three-dimensional substructures display a higher-than-average enrichment of bioactive compounds, indicating increasing representation of these substructures may be beneficial in fragment screening. PMID:24405118

  15. Preliminary Evaluation Of Commercial Supercapacitors For Space Applications

    NASA Astrophysics Data System (ADS)

    Gineste, Valery; Loup, Didier; Mattesco, Patrick; Neugnot, Nicolas

    2011-10-01

    Supercapacitors are identified since years as a new technology enabling energy storage together with high power delivery capability to the system. A recent ESA study [1] led by Astrium has demonstrated the interest of these devices for space application, providing that reliability and end of life performances are demonstrated. A realistic commercial on the shelf (COTS) approach (or with limited design modification approved by potential suppliers) has been favoured (as for batteries). This paper presents preliminary test results done by Astrium on COTS supercapacitors: accelerated life tests, calendar life tests, technology analyses. Based on these results, assessment and lessons learnt are drawn in view of future exhaustive supercapacitor validation and future qualification.

  16. Early commercial demonstration of space solar power using ultra-lightweight arrays

    NASA Astrophysics Data System (ADS)

    Reed, Kevin; Willenberg, Harvey J.

    2009-11-01

    Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.

  17. Space market model development project

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1987-01-01

    The objectives of the research program, Space Market Model Development Project, (Phase 1) were: (1) to study the need for business information in the commercial development of space; and (2) to propose a design for an information system to meet the identified needs. Three simultaneous research strategies were used in proceeding toward this goal: (1) to describe the space business information which currently exists; (2) to survey government and business representatives on the information they would like to have; and (3) to investigate the feasibility of generating new economical information about the space industry.

  18. An economic analysis of a commercial approach to the design and fabrication of a space power system

    NASA Technical Reports Server (NTRS)

    Putney, Z.; Been, J. F.

    1979-01-01

    A commercial approach to the design and fabrication of an economical space power system is presented. Cost reductions are projected through the conceptual design of a 2 kW space power system built with the capability for having serviceability. The approach to system costing that is used takes into account both the constraints of operation in space and commercial production engineering approaches. The cost of this power system reflects a variety of cost/benefit tradeoffs that would reduce system cost as a function of system reliability requirements, complexity, and the impact of rigid specifications. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance cost estimates are detailed.

  19. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. From left, are Stephanie Schierholz, of NASA Communications; Jessica Jensen, director, Dragon Mission Management, SpaceX; Pete Hasbrook, associate program scientist, ISS Program Science Office at NASA's Johnson Space Center in Houston; and Mike McAleenan, weather officer, 45th Weather Squadron. Joining on the phone is Joel Montalbano, deputy manager, ISS Program at Johnson. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  20. Special report: FAA's third annual commercial space transportation forecast conference (February 8-9 2000)

    DOT National Transportation Integrated Search

    2000-02-01

    The Third Annual Federal Aviation Administration (FAA) Commercial Space : Transportation Forecast Conference took place in Arlington, Virginia at the Sheraton National Hotel. The year 2000 conference featured seven panels and several special presenta...

  1. Kennedy Space Center - "America's Gateway to Space"

    NASA Technical Reports Server (NTRS)

    Petro, Janet; Chevalier, Mary Ann; Hurst, Chery

    2011-01-01

    KSC fits into the overall NASA vision and mission by moving forward so that what we do and learn will benefit all here on Earth. In January of last year, KSC revised its Mission and Vision statements to articulate our identity as we align with this new direction the Agency is heading. Currently KSC is endeavoring to form partnerships with industry, , Government, and academia, utilizing institutional assets and technical capabilities to support current and future m!issions. With a goal of safe, low-cost, and readily available access to space, KSC seeks to leverage emerging industries to initiate development of a new space launch system, oversee the development of a multipurpose crew vehicle, and assist with the efficient and timely evolution of commercial crew transportation capabilities. At the same time, KSC is pursuing modernizing the Center's infrastructure and creating a multi-user launch complex with increased onsite processing and integration capabilities.

  2. Third NASA Workshop on Wiring for Space Applications

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad (Compiler); Stavnes, Mark (Compiler)

    1995-01-01

    This workshop addressed key technology issues in the field of electrical power wiring for space applications, and transferred information and technology related to space wiring for use in government and commercial applications. Speakers from space agencies, U.S. Federal labs, industry, and academia presented program overviews and discussed topics on arc tracking phenomena, advancements in insulation materials and constructions, and new wiring system topologies.

  3. Kennedy Space Center Spaceport Analysis

    NASA Technical Reports Server (NTRS)

    Wary, Samantha A.

    2013-01-01

    Until the Shuttle Atlantis' final landing on July 21, 2011, Kennedy Space Center (KSC) served as NASA's main spaceport, which is a launch and landing facility for rockets and spacecraft that are attempting to enter orbit. Many of the facilities at KSC were created to assist the Shuttle Program. One of the most important and used facilities is the Shuttle Landing Facility (SLF), This was the main landing area for the return of the shuttle after her mission in space. · However, the SLF has also been used for a number of other projects including straight-line testing by Gibbs Racing, weather data collection by NOAA, and an airfield for the KSC helicopters. This runway is three miles long with control tower at midfield and a fire department located at the end in care of an emergency. This facility, which was part of the great space race, will continue to be used for historical events as Kennedy begins to commercialize its facilities. KSC continues to be an important spaceport to the government, and it will transform into an important spaceport for the commercial industry as well. During my internship at KSC's Center Planning and Development Directorate, I had the opportunity to be a part of the negotiation team working on the agreement for Space Florida to control the Shuttle Landing Facility. This gave me the opportunity to learn about all the changes that are occurring here at Kennedy Space Center. Through various meetings, I discovered the Master Plan and its focus is to transform the existing facilities that were primarily used for the Shuttle Program, to support government operations and commercial flights in the future. This. idea is also in a new strategic business plan and completion of a space industry market analysis. All of these different documentations were brought to my attention and I. saw how they came together in the discussions of transitioning the SLF to a commercial operator, Space Florida. After attending meetings and partaking in discussions for

  4. 78 FR 48821 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Commercial and Industrial Equipment: Proposed Determination of Computer Servers as a Covered Consumer Product... comments on the proposed determination that computer servers (servers) qualify as a covered product. DATES: The comment period for the proposed determination relating to servers published on July 12, 2013 (78...

  5. 77 FR 76972 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Proposed... the criteria for covered equipment under Part A-1 of Title III of the Energy Policy and Conservation... the Energy Policy and Conservation Act V. Procedural Issues and Regulatory Review A. Review Under...

  6. Hyperspectral imaging from space: Warfighter-1

    NASA Astrophysics Data System (ADS)

    Cooley, Thomas; Seigel, Gary; Thorsos, Ivan

    1999-01-01

    The Air Force Research Laboratory Integrated Space Technology Demonstrations (ISTD) Program Office has partnered with Orbital Sciences Corporation (OSC) to complement the commercial satellite's high-resolution panchromatic imaging and Multispectral imaging (MSI) systems with a moderate resolution Hyperspectral imaging (HSI) spectrometer camera. The program is an advanced technology demonstration utilizing a commercially based space capability to provide unique functionality in remote sensing technology. This leveraging of commercial industry to enhance the value of the Warfighter-1 program utilizes the precepts of acquisition reform and is a significant departure from the old-school method of contracting for government managed large demonstration satellites with long development times and technology obsolescence concerns. The HSI system will be able to detect targets from the spectral signature measured by the hyperspectral camera. The Warfighter-1 program will also demonstrate the utility of the spectral information to theater military commanders and intelligence analysts by transmitting HSI data directly to a mobile ground station that receives and processes the data. After a brief history of the project origins, this paper will present the details of the Warfighter-1 system and expected results from exploitation of HSI data as well as the benefits realized by this collaboration between the Air Force and commercial industry.

  7. Occupational fatalities in the United States commercial fishing industry, 2000-2009.

    PubMed

    Lincoln, Jennifer M; Lucas, Devin L

    2010-10-01

    The occupational fatality rate among commercial fishermen decreased in the United States during 1992-2008; however, commercial fishing continues to be one of the most dangerous occupations in the United States, with an average annual fatality rate of 129 deaths per 100,000 fishermen in 2008. By contrast, the average annual occupational fatality rate among all US workers during the same period was four deaths per 100,000 workers. During the 1990s, numerous safety interventions were developed for Alaska fisheries that resulted in a significant decline in the state's commercial fishing fatality rate. In 2007, the National Institute for Occupational Safety and Health (NIOSH) expanded surveillance of commercial fishing fatalities to the rest of the United States. The purpose of this report is to identify the hazards and risk factors for all causes of occupational mortality in the US commercial fishing industry, and to explore how those hazards and risk factors differ among fisheries and locations. During 2000-2009, 504 commercial fishing fatalities occurred in the United States. Most (261, 52%) occurred following a vessel disaster (defined as a sinking, capsizing, or other event in which the crew was forced to abandon ship) or a fall overboard (155, 31%). Fatalities occurred in Alaska (133, 26%), Northeast (124, 25%), Gulf of Mexico (116, 23%), West Coast (83, 16%), and the Mid- and South Atlantic (41, 8%) regions. Fatalities occurred most commonly while fishing for shellfish (226, 47%), groundfish (144, 30%) and pelagic fish (97, 20%). Average annual fatality rates were calculated for selected fisheries. The Northeast multispecies groundfish fleet had the highest average annual fatality rate (600 deaths per 100,000 full-time equivalent [FTE] fishermen) followed by the Atlantic scallop fleet (425 deaths per 100,000 FTE fishermen) and the West Coast Dungeness crab fleet (310 deaths per 100,000 FTE fishermen). To reduce fatalities among fishermen at greatest risk

  8. Space station needs, attributes, and architectural options. Volume 1. Executive summary

    NASA Technical Reports Server (NTRS)

    Pritchard, E. B.

    1983-01-01

    The initial space station should be manned, placed in 28.5 deg orbit, and provide substantial economic, performance, and social benefits. The most beneficial space station capabilities include: a space test facility; a transport harbor; satellite servicing and assembly; and an observatory. A space industrial park could be added once further development effort validates the cost and expanding commercial market for space processed materials. The potential accrued gross mission model benefit derived from these capabilities is $5.9B without the industrial park, and $9.3B with it. An unclassified overview of all phases of the study is presented.

  9. The U.S. Commercial Air Tour Industry: A Review of Aviation Safety Concerns

    PubMed Central

    Ballard, Sarah-Blythe

    2016-01-01

    The U.S. Title 14 Code of Federal Regulations defines commercial air tours as “flight[s] conducted for compensation or hire in an airplane or helicopter where a purpose of the flight is sightseeing.” The incidence of air tour crashes in the United States is disproportionately high relative to similar commercial aviation operations, and air tours operating under Part 91 governance crash significantly more than those governed by Part 135. This paper reviews the government and industry response to four specific areas of air tour safety concern: surveillance of flight operations, pilot factors, regulatory standardization, and maintenance quality assurance. It concludes that the government and industry have successfully addressed many of these tenet issues, most notably by: advancing the operations surveillance infrastructure through implementation of en route, ground-based, and technological surveillance methods; developing Aeronautical Decision Making and cue-based training programs for air tour pilots; consolidating federal air tour regulations under Part 136; and developing public-private partnerships for raising maintenance operating standards and improving quality assurance programs. However, opportunities remain to improve air tour safety by: increasing the number and efficiency of flight surveillance programs; addressing pilot fatigue with more restrictive flight hour limitations for air tour pilots; ensuring widespread uptake of maintenance quality assurance programs, especially among high-risk operators not currently affiliated with private air tour safety programs; and eliminating the 25-mile exception allowing Part 91 operators to conduct commercial air tours without the safety oversight required of Part 135 operators. PMID:24597160

  10. Development of flat conductor cable for commercial and residential wiring

    NASA Technical Reports Server (NTRS)

    Carden, J. R.

    1977-01-01

    The overall spectrum of the space technology spin-off development project: development of Flat Conductor Cable (FCC) for commercial and residential wiring, is presented. A discussion of the background, program milestones, industry participants, system outgrowth, hardware availability, cost estimates, and overall status of the program is presented for the 1970-to-present time period.

  11. Protecting Commercial Space Systems: A Critical National Security Issue

    DTIC Science & Technology

    1999-04-01

    The Influence of Sea Power on World History: 1660-1783” (excerpt). Air Command and Staff College War Theory Coursebook (Academic Year 1999), 87- 88. 6...Publications. State of the Space Industry, 1998, 42, 49; and (2) US Census Bureau, Statistical Abstract of the United States: 1998, 1 Oct 1998, 578...College War Theory Coursebook (Academic Year 1999), 109. 2 Stubbs, Captain Bruce B., “The Coast Guard’s National Security Role in the 21st Century.” Air

  12. A comparison of radiosity with current methods of sound level prediction in commercial spaces

    NASA Astrophysics Data System (ADS)

    Beamer, C. Walter, IV; Muehleisen, Ralph T.

    2002-11-01

    The ray tracing and image methods (and variations thereof) are widely used for the computation of sound fields in architectural spaces. The ray tracing and image methods are best suited for spaces with mostly specular reflecting surfaces. The radiosity method, a method based on solving a system of energy balance equations, is best applied to spaces with mainly diffusely reflective surfaces. Because very few spaces are either purely specular or purely diffuse, all methods must deal with both types of reflecting surfaces. A comparison of the radiosity method to other methods for the prediction of sound levels in commercial environments is presented. [Work supported by NSF.

  13. Near-Earth Asteroid Prospector and the Commercial Development of Space Resources

    NASA Astrophysics Data System (ADS)

    Benson, Jim

    1998-01-01

    With the recent bad news that there may be little or no budget money for NASA to continue funding programs aimed at the human exploration of space beyond Earth's orbit, it becomes even more important for other initiatives to be considered. SpaceDev is the world' s first commercial space exploration company, and enjoys the strong support of Dan Goldin, Wes Huntress, Carl Pilcher, Alan Ladwig, and others at NASA headquarters. SpaceDev is also supported by such scientists as Jim Arnold, Paul Coleman, John Lewis, Steve Ostro, and many others. Taxpayers cannot be expected to carry the entire burden of exploration, construction, and settlement. The private sector must be involved, and the SpaceDev Near Earth Asteroid Prospector (NEAP) venture may provide a good example of how governments and the private sector can cooperate to accomplish these goals. SpaceDev believes that the utilization of in situ resources will take place on near-Earth asteroids before the Moon or Mars because many NEOs are energetically closer than the Moon or Mars and have a highly concentrated composition. SpaceDev currently expects to perform the following three missions: NEAP (science data gathering); NEAP 2, near-Earth asteroid or short-term comet sample return mission; and NEAP 3, in situ fuel production or resource extraction and utilization. These missions could pioneer the way for in situ resources for construction.

  14. Symposium on Space Industrialization, Huntsville, Ala., May 26, 27, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space habitats are considered, with attention given the evolution of space station systems, space station habitability, space settlement planning methodology, and orbital assembly. Various aspects of the Space Transportation System are discussed, including Shuttle booster/propulsion growth concept, advanced earth orbital transportation systems technology, single-stage-to-orbit vehicles and aeromaneuvering orbit transfer vehicles. Materials processing in space is examined, with emphasis on biological materials, metallurgical materials, the uses of space ultrahigh vacuum, and extraterrestrial mining and industrial processing. Solar space power is investigated, with attention given the potential of satellite solar power stations, thermal engine power satellites and microwave power transmission to earth. Individual items are announced in this issue.

  15. 17. SECOND FLOOR WAREHOUSE SPACE, SHOWING COLUMN AND BEAM CONNECTION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. SECOND FLOOR WAREHOUSE SPACE, SHOWING COLUMN AND BEAM CONNECTION. VIEW TO NORTHEAST. - Commercial & Industrial Buildings, Dubuque Seed Company Warehouse, 169-171 Iowa Street, Dubuque, Dubuque County, IA

  16. 76 FR 56125 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2011-BT-STD-0047] RIN 1904-AC56 Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Energy Conservation Standards for Direct Heating Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  17. Responsive space: Concept analysis and theoretical framework

    NASA Astrophysics Data System (ADS)

    Saleh, Joseph H.; Dubos, Gregory F.

    2009-08-01

    Customers' needs are dynamic and evolve in response to unfolding environmental uncertainties. The ability of a company or an industry to address these changing customers' needs in a timely and cost-effective way is a measure of its responsiveness. In the space industry, a systemic discrepancy exists between the time constants associated with the change of customers' needs, and the response time of the industry in delivering on-orbit solutions to these needs. There are important penalties associated with such delays, and space responsiveness is recognized as a strategic imperative in commercial competitive and military environments. In this paper, we provide a critical assessment of the literature on responsive space and introduce a new multi-disciplinary framework for thinking about and addressing issues of space responsiveness. Our framework advocates three levels of responsiveness: a global industry-wide responsiveness, a local stakeholder responsiveness, and an interactive or inter-stakeholder responsiveness. We introduce and motivate the use of "responsiveness maps" for multiple stakeholders. We then identify "levers of responsiveness": technical spacecraft- and launch-centric, as well as "soft" levers (e.g., acquisition policies) for improving the responsiveness of the space industry. Finally, we propose a series of research questions to aggressively tackle problems associated with space responsiveness.

  18. Docking of the SpaceX Dragon Commercial cargo craft

    NASA Image and Video Library

    2012-10-10

    ISS033-E-011170 (10 Oct. 2012) --- The SpaceX Dragon commercial cargo craft is berthed to the Earth-facing side of the International Space Station's Harmony node. Working from the robotics workstation inside the seven-windowed Cupola, Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, with the assistance of NASA astronaut Sunita Williams, commander, captured Dragon at 6:56 a.m. (EDT) and used the Canadarm2 robotic arm to berth Dragon to Harmony Oct. 10, 2012. Dragon is scheduled to spend 18 days attached to the station. During that time, the crew will unload 882 pounds of crew supplies, science research and hardware from the cargo craft and reload it with 1,673 pounds of cargo for return to Earth. After Dragon?s mission at the station is completed, the crew will use Canadarm2 to detach Dragon from Harmony and release it for a splashdown about six hours later in the Pacific Ocean, 250 miles off the coast of southern California. Dragon launched atop a Falcon 9 rocket at 8:35 p.m. Oct. 7 from Cape Canaveral Air Force Station in Florida, beginning NASA's first contracted cargo delivery flight, designated SpaceX CRS-1, to the station.

  19. Maintenance of Vinyl Asbestos and Asphalt Tile Floors in Institutional, Industrial and Commercial Buildings.

    ERIC Educational Resources Information Center

    Asphalt and Vinyl Asbestos Tile Inst., New York, NY.

    The claim is made that proper planning and modest outlays of time, labor, and material costs can provide and maintain a high appearance level for floors in institutional, commercial, and industrial buildings. Instructions for four basic steps in maintaining the good looks of vinyl asbestos and asphalt tile floors are treated in the booklet--(1)…

  20. Integrated Space Transportation Plan: Defining Technology Requirements and Next Generation Launch Systems to Meet Commercial and Government Needs. Revision 20 Oct. 1999

    NASA Technical Reports Server (NTRS)

    Davidoff, Larry D.; Reichert, Jack M.

    1999-01-01

    NASA continues to focus on improving safety and reliability while reducing the annual cost of meeting human space flight and unique ISS and exploration needs. NASA's Space Transportation Architecture Study (STAS) Phase 2 in early 1998 focused on space transportation options. Subsequently, NASA directed parallel industry and government teams to conduct the Integrated Space Transportation Plan effort (STAS Phase 3). The objective of ISTP was to develop technology requirements, roadmaps, and risk reduction portfolio that considered expanded definition of "clean-sheet" and Shuttle-derived second generation ETO transportation systems in support of a 2005 RLV competition for NASA missions beginning 2010. NASA provided top-level requirements for improvements in safety, reliability, and cost and a set of design reference missions representing NASA ISS, human exploration, commercial, and other civil and government needs. This paper addresses the challenges of meeting NASA's objectives while servicing the varied market segments represented in the ISTP design reference missions and provides a summary of technology development needs and candidate system concepts. A comparison of driving requirements, architectures and technology needs is discussed and descriptions of viable Shuttle-derived and next generation systems to meet the market needs are presented.