Science.gov

Sample records for commercializing advanced heavy-duty

  1. Commercial Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal ethnographic study of the appropriateness and effectiveness of the instructional materials currently being used in such training. Interviews were conducted with eight instructors from the National Alternative Fuels Training Program…

  2. Commercial Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal ethnographic study of the appropriateness and effectiveness of the instructional materials currently being used in such training. Interviews were conducted with eight instructors from the National Alternative Fuels Training Program…

  3. Joining of ceramics for advanced heavy-duty diesels

    SciTech Connect

    Moorhead, A.J.; Keating, H.

    1986-03-01

    The wettability and adherence in vacuum of a series of metal alloys on several oxide ceramics were investigated with the goal of identifying those compositions suitable as filler metals for direct brazing of ceramics in uncooled diesel engine applications. Wetting behavior was determined by the sessile-drop technique. Adherence was measured by several tests including sessile-drop shear, flexure strength of ceramics brazed in a butt-joint configuration, fracture toughness using a composite double cantilever beam specimen, and, in the case of ceramic-metal brazements, by a bar/pad shear test. Compositions were identified in both the Cu-Ag-Ti and Cu-Au-Ti ternary systems that wet and strongly adhered to high-purity aluminas, partially stabilized zirconia ceramics, and alumina reinforced with SiC whiskers. Excellent flexural strengths, at temperatures up to 600/sup 0/C, of brazements containing these filler metals indicate that these materials are good candidates for use in advanced heavy-duty diesel engines. They have the advantage over competing systems of not requiring that the ceramic be metallized before brazing.

  4. Materials advances required to reduce energy consumption through the application of heavy duty diesel engines

    SciTech Connect

    Patten, J.W.

    1984-09-01

    Several key materials advances are required to reduce energy consumption through application of heavy duty diesel engines. Heavy duty diesel engines are viewed as effecting energy use both directly through fuel consumption, and indirectly through their durability with large energy expenditures required to replace worn-out engines. Materials advances that would improve fuel consumption include materials related to hot gas-path insulation, and materials related to design advances (other than insulation). Most design advances that are focused on fuel consumption or other performance factors also directly influence durability through materials properties. Several major engine components and many conventional (and advanced) materials are examined. If materials development is integrated with design and manufacturing advances, then fuel economy higher than 0.28 BSFC (50 pct thermal efficiency), and durability beyond 750,000 miles may be achievable.

  5. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect

    DellaCorte, C.; Wood, J.C.

    1994-10-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  6. High Temperature Solid Lubricant Materials for Heavy Duty and Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Wood, J. C.

    1994-01-01

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature Stirling engines, sidewall seals of rotary engines, and various exhaust valve and exhaust component applications. This paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis on heavy duty and advanced heat engines.

  7. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    SciTech Connect

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  8. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    SciTech Connect

    Not Available

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  9. Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks

    SciTech Connect

    Larry Slone; Jeffrey Birkel

    2007-10-31

    The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional

  10. 49 CFR 523.6 - Heavy-duty vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Heavy-duty vehicle. 523.6 Section 523.6... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.6 Heavy-duty vehicle. (a) A heavy-duty vehicle is any commercial medium- and heavy-duty on highway vehicle or a work truck, as defined in 49...

  11. Fault detection in heavy duty wheels by advanced vibration processing techniques and lumped parameter modeling

    NASA Astrophysics Data System (ADS)

    Malago`, M.; Mucchi, E.; Dalpiaz, G.

    2016-03-01

    Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.

  12. 49 CFR 523.6 - Heavy-duty vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Heavy-duty vehicle. 523.6 Section 523.6... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.6 Heavy-duty vehicle. (a) A heavy-duty vehicle is any commercial medium- and heavy-duty on highway vehicle or a work truck, as defined in 49 U.S...

  13. 49 CFR 523.6 - Heavy-duty vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Heavy-duty vehicle. 523.6 Section 523.6... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.6 Heavy-duty vehicle. (a) A heavy-duty vehicle is any commercial medium- and heavy-duty on highway vehicle or a work truck, as defined in 49 U.S...

  14. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    SciTech Connect

    Subramanian, Swami

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  15. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    NASA Astrophysics Data System (ADS)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  16. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  17. Effect of advanced aftertreatment for PM and NO(x) control on heavy-duty diesel truck emissions.

    PubMed

    Herner, Jorn Dinh; Hu, Shaohua; Robertson, William H; Huai, Tao; Collins, John F; Dwyer, Harry; Ayala, Alberto

    2009-08-01

    Emissions from four heavy-duty and medium-duty diesel vehicles were tested in six different aftertreatment configurations using a chassis dynamometer. The aftertreatment included four different diesel particle filters (DPF) and two prototype selective catalytic reduction (SCR) devices for NO(x) control. The goal of the project was to fully characterize emissions from various in-use vehicles meeting the 2007 particulate matter (PM) standard for the United States and California and to provide a snapshot of emissions from 2010 compliant vehicles. The aftertreatment devices all worked as designed, realizing significant reductions of PM and NO(x). The DPF realized > 95% PM reductions irrespective of cycle and the SCRs > 75% NO(x) reductions during cruise and transient modes, but no NO(x) reductions during idle. Because of the large test matrix of vehicles and aftertreatment devices, we were able to characterize effects on additional emission species (CO, organics, and nucleation mode particles) from these devices as a function of their individual characteristics. The two predicting parameters were found to be exhaust temperature and available catalytic surface in the aftertreatment, which combine to create varying degrees of oxidizing conditions. The aftertreatments were not found to incur a fuel penalty.

  18. Effect of advanced aftertreatment for PM and NOx reduction on heavy-duty diesel engine ultrafine particle emissions.

    PubMed

    Herner, Jorn Dinh; Hu, Shaohua; Robertson, William H; Huai, Tao; Chang, M-C Oliver; Rieger, Paul; Ayala, Alberto

    2011-03-15

    Four heavy-duty and medium-duty diesel vehicles were tested in six different aftertreament configurations using a chassis dynamometer to characterize the occurrence of nucleation (the conversion of exhaust gases to particles upon dilution). The aftertreatment included four different diesel particulate filters and two selective catalytic reduction (SCR) devices. All DPFs reduced the emissions of solid particles by several orders of magnitude, but in certain cases the occurrence of a volatile nucleation mode could increase total particle number emissions. The occurrence of a nucleation mode could be predicted based on the level of catalyst in the aftertreatment, the prevailing temperature in the aftertreatment, and the age of the aftertreatment. The particles measured during nucleation had a high fraction of sulfate, up to 62% of reconstructed mass. Additionally the catalyst reduced the toxicity measured in chemical and cellular assays suggesting a pathway for an inverse correlation between particle number and toxicity. The results have implications for exposure to and toxicity of diesel PM.

  19. Heavy duty complete extension slides

    NASA Astrophysics Data System (ADS)

    Bueno, José Ignacio; Vázquez, Javier

    2001-09-01

    The selection from available commercial market of a set of slides to be used in an habitable pressurised module in space, to draw a 660 mm box out of a rack, up to a completely extracted position in a safely supported configuration, seems in principle not to be a complicated task. That was the first approach taken in the design process of the telescopic guides of the Crew Work Bench (CWB) included in the Fluid Science Laboratory (FSL), part of "ESA Microgravity Facilities for Columbus" within the Columbus Orbital Facility (COF) of the International Space Station (ISS). Nevertheless, common space compatible requirements such as materials, specific environmental loads, available envelope, total weight, etc., can make the selection of telescopic slides from commercial market unfeasible. A specific development to design space compatible telescopic slides for the CWB was undertaken. A set of heavy duty space compatible telescopic slides were designed, manufactured and tested. They should be operative in both, 1-g environment and in orbit, and additionally should withstand an inadvertent astronaut kick or bump of 556 N in any direction.

  20. Future heavy duty trucking engine requirements

    NASA Technical Reports Server (NTRS)

    Strawhorn, L. W.; Suski, V. A.

    1985-01-01

    Developers of advanced heavy duty diesel engines are engaged in probing the opportunities presented by new materials and techniques. This process is technology driven, but there is neither assurance that the eventual users of the engines so developed will be comfortable with them nor, indeed, that those consumers will continue to exist in either the same form, or numbers as they do today. To ensure maximum payoff of research dollars, the equipment development process must consider user needs. This study defines motor carrier concerns, cost tolerances, and the engine parameters which match the future projected industry needs. The approach taken to do that is to be explained and the results presented. The material to be given comes basically from a survey of motor carrier fleets. It provides indications of the role of heavy duty vehicles in the 1998 period and their desired maintenance and engine performance parameters.

  1. 3M heavy duty roto peen: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The heavy-duty roto peen technology is being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  2. 3M heavy duty roto peen: Baseline report

    SciTech Connect

    1997-07-31

    The heavy-duty roto peen technology was being evaluated at Florida International University (FIU) as a baseline technology. It is a commercially available technology and has been used for various projects at locations throughout the country. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the human factors assessment for safety and health issues. The heavy-duty roto peen allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy-duty flexible flap. The shot rivet is kept captive to the tool by mounting the roto peen in a slotted hub. The heavy-duty roto peen is designed to be used with several commercially available pieces of equipment. The equipment being used will determine the width of each pass. The equipment being used with the roto peen is then connected to a vacuum system for dust collection during scabbling. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  3. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL ...

    EPA Pesticide Factsheets

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance with any new standards. The EPA has created a model called “GHG Emissions Model (GEM)”, which is specifically tailored to predict truck GHG emissions. As the model is designed for the express purpose of vehicle compliance demonstration, it is less configurable than similar commercial products and its only outputs are GHG emissions and fuel consumption. This approach gives a simple and compact tool for vehicle compliance without the overhead and costs of a more sophisticated model. Evaluation of both fuel consumption and CO2 emissions from heavy-duty highway vehicles through a whole-vehicle operation simulation model.

  4. Heavy-Duty Diesel Fuel Analysis

    EPA Pesticide Factsheets

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  5. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    SciTech Connect

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  6. 3M heavy duty roto peen: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The roto peen scaler allows for the selective removal of concrete substrates. The peen is a tungsten carbide shot brazed to a hardened steel rivet that is supported by a heavy duty flexible flap. The peens are coupled with a commercially available piece of equipment that is used to scabble or remove the concrete. The scabbled debris is then collected into 55 gallon drums by means of a vacuum system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  7. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  8. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  9. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  10. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  11. 7 CFR 58.230 - Heavy duty vacuum cleaners.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Heavy duty vacuum cleaners. 58.230 Section 58.230....230 Heavy duty vacuum cleaners. Each plant handling dry milk products shall be equipped with a heavy duty industrial vacuum cleaner. The vacuum cleaner shall be of a type that has a collector...

  12. 49 CFR 523.8 - Heavy-duty vocational vehicle.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Heavy-duty vocational vehicle. 523.8 Section 523.8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.8 Heavy-duty vocational vehicle. Heavy-duty vocational vehicles are vehicles with a gross vehicle weight rating (GVWR) above 8,500 pounds...

  13. 49 CFR 523.8 - Heavy-duty vocational vehicle.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Heavy-duty vocational vehicle. 523.8 Section 523.8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.8 Heavy-duty vocational vehicle. Heavy-duty vocational vehicles are vehicles with a gross vehicle weight rating (GVWR) above 8,500...

  14. 49 CFR 523.8 - Heavy-duty vocational vehicle.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Heavy-duty vocational vehicle. 523.8 Section 523.8... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION VEHICLE CLASSIFICATION § 523.8 Heavy-duty vocational vehicle. Heavy-duty vocational vehicles are vehicles with a gross vehicle weight rating (GVWR) above 8,500...

  15. Greenhouse gas emissions from heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Graham, Lisa A.; Rideout, Greg; Rosenblatt, Deborah; Hendren, Jill

    This paper summarizes greenhouse gas (GHG) emissions measurements obtained during several recent studies conducted by Environment Canada, Emissions Research and Measurement Division (ERMD). A variety of heavy-duty vehicles and engines operating on a range of different fuels including diesel, biodiesel, compressed natural gas (CNG), hythane (20% hydrogen, 80% CNG), and liquefied natural gas (LNG), and with different advanced aftertreatment technologies were studied by chassis dynamometer testing, engine dynamometer testing or on-road testing. Distance-based emission rates of CO 2, CH 4, and N 2O are reported. Fuel consumption calculated by carbon balance from measured emissions is also reported. The measurement results show, for heavy-duty diesel vehicles without aftertreatment, that while CO 2 emissions dominate, CH 4 emissions account for between 0% and 0.11% and N 2O emissions account for between 0.16% and 0.27% of the CO 2-equivalent GHG emissions. Both of the aftertreatment technologies (diesel oxidation catalyst and active regeneration diesel particle filter) studied increased N 2O emissions compared to engine out emissions while CH 4 emissions remain essentially unchanged. No effect on tailpipe GHG emissions was found with the use of up to 20% biodiesel when the engine was equipped with an oxidation catalyst. Biodiesel use did show some reductions in tailpipe GHG emissions as compared to ULSD without aftertreatment and with the use of a diesel particle filter. Natural gas and hythane also offer decreased GHG emissions (10-20%) at the tailpipe when compared with diesel. Emission factors (g L -1 fuel) for CH 4 and N 2O are suggested for heavy-duty vehicles fueled with diesel-based fuels and natural gas. These emission factors are substantially lower than those recommended for use by IPCC methodologies for developing national inventories.

  16. NOx Adsorbers for Heavy Duty Truck Engines-Testing and Simulation

    SciTech Connect

    Hakim, N; Hoelzer, J.; Liu, Y.

    2002-08-25

    This feasibility study of NOx adsorbers in heavy-duty diesel engines examined three configurations (dual-leg, single-leg and single-leg-bypass) in an integrated experimental setup, composed of a Detroit Diesel Class-8 truck engine, a catalyzed diesel particulate filter and the NOx absorber system. The setup also employed a reductant injection concept, sensors and advanced control strategies.

  17. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  18. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  19. INTERIOR VIEW, LOOKING WEST, TOWARD HEAVY DUTY COIL PROCESSING AREA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, LOOKING WEST, TOWARD HEAVY DUTY COIL PROCESSING AREA WITH HEAVY DUTY CUT TO LENGTH LINE MACHINE AND KERRY MITCHELL, LOADER ('HOOKER'); JAMES BOWMAN, CRANE OPERATOR; WILLIAM BART DORINEY, OPERATOR. - O'Neal Steel, Incorporated, Fabrication Shop, 744 Forty-first Avenue North, Birmingham, Jefferson County, AL

  20. Accelerating advanced-materials commercialization

    NASA Astrophysics Data System (ADS)

    Maine, Elicia; Seegopaul, Purnesh

    2016-05-01

    Long commercialization times, high capital costs and sustained uncertainty deter investment in innovation for advanced materials. With appropriate strategies, technology and market uncertainties can be reduced, and the commercialization of advanced materials accelerated.

  1. The ethanol heavy-duty truck fleet demonstration project

    SciTech Connect

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  2. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  3. Advanced commercial tokamak study

    SciTech Connect

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  4. Catalog of selected heavy duty transport energy management models

    NASA Technical Reports Server (NTRS)

    Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.

    1983-01-01

    A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.

  5. Advanced Technologies for Commercial Airplanes

    NASA Technical Reports Server (NTRS)

    1982-01-01

    263-page report addresses what advanced electrical and electronic spacecraft technologies can be applied in commercial airplanes. Report discusses a study in which technologies used in the Space Shuttle were evaluated for their potential in commercial transports. Describes new technologies, airplanes, tradeoffs and methods of evaluation. Concludes that major beneficiary would be an advanced wide-body transport (500 passenger).

  6. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  7. Heavy Duty Mechanics Apprenticeship Training, Module One. Volume I.

    ERIC Educational Resources Information Center

    Batchelor, Leslie A.; Abercrombie, Richard, Ed.

    This training manual, the first of two volumes, comprises the first six blocks in a nine-block in-service training course for apprentices working in heavy duty mechanics. Addressed in the individual blocks included in this volume are the following topics: shop equipment and practices; procedures for starting, moving, and stopping equipment; the…

  8. Heavy Duty Mechanics Apprenticeship Training, Module One. Volume II.

    ERIC Educational Resources Information Center

    Batchelor, Leslie A.; Abercrombie, Richard, Ed.

    This training manual, the second of two volumes, comprises the final three blocks in a nine-block in-service training course for apprentices working in heavy duty mechanics. Addressed in the individual blocks included in this volume are engines, basic electricity, and winches. Each block contains a section on parts theory that gives the purpose,…

  9. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  10. AUTOMOTIVE AND HEAVY-DUTY ENGINE COOLANT RECYCLING BY DISTILLATION

    EPA Science Inventory

    This evaluation addresses the product quality, waste reduction, and economic issues involved in recycling automotive and heavy-duty engine coolants for a facility such as the New Jersey Department of Transportation garage in Ewing, New Jersey. he specific recycling evaluated is b...

  11. Heavy Duty Tireman. Open Pit Mining Job Training Series.

    ERIC Educational Resources Information Center

    McColman, Don

    This training outline for heavy duty tiremen, one in a series of eight outlines, is designed primarily for company training foremen or supervisors and for trainers to use as an industry-wide guideline for heavy equipment operator training in open pit mining in British Columbia. Intended as a guide for preparation of lesson plans both for classroom…

  12. DEVELOPMENT WORK FOR IMPROVED HEAVY-DUTY VEHICLE MODELING CAPABILITY DATA MINING--FHWA DATASETS

    EPA Science Inventory

    A heavy-duty vehicle can produce 10 to 100 times the emissions (of NOx and PM emissions especially) of a light-duty vehicle, so heavy-duty vehicle activity needs to be well characterized. Key uncertainties with the use of MOBILE6 regarding heavy-duty vehicle emissions include th...

  13. 40 CFR 86.004-40 - Heavy-duty engine rebuilding practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.004-40 Heavy-duty engine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  14. 40 CFR 86.004-40 - Heavy-duty engine rebuilding practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.004-40 Heavy-duty engine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  15. 40 CFR 86.004-40 - Heavy-duty engine rebuilding practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.004-40 Heavy-duty engine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  16. DEVELOPMENT WORK FOR IMPROVED HEAVY-DUTY VEHICLE MODELING CAPABILITY DATA MINING--FHWA DATASETS

    EPA Science Inventory

    A heavy-duty vehicle can produce 10 to 100 times the emissions (of NOx and PM emissions especially) of a light-duty vehicle, so heavy-duty vehicle activity needs to be well characterized. Key uncertainties with the use of MOBILE6 regarding heavy-duty vehicle emissions include th...

  17. Emission from in-use heavy-duty gasoline trucks

    SciTech Connect

    Black, F.; Ray, W.; King, F.; Karches, W.; Bradow, R.; Perry, N.; Duncan, J.; Crews, W.

    1984-01-01

    Apportionment of air pollution to sources requires knowledge of source emission strengths and/or chemical and physical characteristics. The literature is deficient in data useful for this purpose for heavy-duty motor vehicles, which can be important sources of air pollution in certain microenvironments. Emissions factors are developed in this study for heavy-duty gasoline trucks using chassis dynamometer simulations of urban driving conditions. The sensitivity of the emissions to such considerations as the characteristics of the speed-time driving schedule, vehicle payload, and chassis configuration are examined. Emissions characterization includes total and individual hydrocarbons, aldehydes, carbon monoxide, oxides of nitrogen, total particulate matter, particulate organics, lead, bromine, chlorine, and the fraction of total particulate less than 2 ..mu..m. Preliminary comparisons of emissions obtained using transient engine and transient chassis test procedures are also reported.

  18. Product audit for heavy duty diesel engines in production environment

    NASA Astrophysics Data System (ADS)

    Suh, Sanghoon; Beresford, Jim

    2005-09-01

    A product audit at manufacturing plants has become more important due to the customer's requirements on product quality. Noise and vibration performance have been a primary concern for gas engines and small size diesel engines. Lately, more interest has been shown by truck manufacturers about engine noise for heavy duty diesel application. It has been regarded that acoustic measurements requires dedicated measurement environment for detailed study. This case study shows that acoustic measurements can be performed at performance cell without any dedicated acoustic treatment at the manufacturing plant to identify some of the noise characteristics with proper preparation. Order tracking and loudness were used to identify two different characteristics related to front gear train in heavy duty diesel engines. In addition, the coordination between technical organization and manufacturing plant for the data acquisition and analysis is discussed.

  19. Noise reduction of diesel engine for heavy duty vehicles

    SciTech Connect

    Miura, Y.; Arai, S.

    1989-01-01

    Noise reduction of diesel engines installed in heavy duty vehicles is one of the highest priorities from the viewpoints of meeting the regulations for urban traffic noise abatement and noise reduction in the cabin for lightening fatigue with comfortable long driving. It is necessary that noise reduction measures then be applied to those causes. All noise reduction measures for the diesel engine researched for the purpose of practical use are described in this paper.

  20. Testing of a heavy heavy-duty diesel engine schedule for representative measurement of emissions.

    PubMed

    Bedick, Clinton R; Clark, Nigel N; Zhen, Feng; Atkinson, Richard J; McKain, David L

    2009-08-01

    The Advanced Collaborative Emissions Study (ACES) program required the use of representative heavy-duty diesel engine activity. This need resulted in an engine test schedule creation program, and a schedule of engine modes representative of modern truck usage was developed based on data collected from engines in trucks operated through the heavy heavy-duty diesel truck (HHDDT) chassis schedule. The ACES test schedule included four active modes of truck operation including creep, transient, cruise, and high-speed cruise (HHDDT_S). This paper focuses on Phase 2 of the program, which was to validate and demonstrate the use of the ACES modes in a test cell. Preliminary testing was performed using a 1992 Detroit Diesel Corporation heavy heavy-duty diesel engine (HHDDE) on only the transient mode. On the basis of these results, each mode was modified slightly to suit implementation in a test cell. The locations of "closed throttle" points in the modes were determined through careful examination of the data. These closed throttle points were simulated during testing by adding negative set point torque values to the input file. After modification, all modes were tested during a final ACES modes demonstration period using a 2004 Cummins ISM HHDDE, obtaining three runs for each mode. During testing, carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), particulate matter (PM), and hydrocarbon (HC) emissions were measured, and engine control unit (ECU) data were recorded. The new ACES modes did not adopt the Federal Test Procedure (FTP) regression criteria. New regression criteria for acceptability of a run were determined for each mode using the data obtained during testing.

  1. Development of a heavy heavy-duty diesel engine schedule for representative measurement of emissions.

    PubMed

    Zhen, Feng; Clark, Nigel N; Bedick, Clinton R; Gautam, Mridul; Wayne, W Scott; Thompson, Gregory J; Lyons, Donald W

    2009-08-01

    The Advanced Collaborative Emissions Study (ACES) has the objective of characterizing the emissions and assessing the possible health impacts of the 2007-2010 heavy-duty diesel engines and their control systems. The program seeks to examine emissions from engines operated in a realistic duty cycle and requires the development of an engine test schedule described in this paper. Field data on engine operation were available from Engine Control Unit (ECU) broadcasts from seven heavy heavy-duty trucks (HHDDT) tested during the Coordinating Research Council (CRC) E-55/59 study. These trucks were exercised at three weights (30,000 lb [13,610 kg], 56,000 lb [25,400 kg], and 66,000 lb [29,940 kg]) through four different active modes of a chassis test schedule that were developed from the data of in-use HHDDT operation in the state of California. The trucks were equipped with heavy-duty engines made by three major U.S. engine manufacturers with a range of model years from 1998 to 2003. This paper reports on the development of four engine test modes, termed creep, transient, cruise, and high-speed cruise (HHDDT_S), which correspond to the E-55/59 HHDDT chassis test modes. The creep and transient modes represent urban travel, and the cruise and HHDDT_S modes represent freeway operation. The test mode creation used the method of joining selected truck trips together while ensuring that they offered a reasonable statistical representation of the whole database by using a least-square errors method. Least-square errors between test modes and the database are less than 5%. The four test modes are presented in normalized engine

  2. HEAVY-DUTY VEHICLE IN USE EMISSION PERFORMANCE

    SciTech Connect

    Nylund, N; Ikonen, M; Laurikko, J

    2003-08-24

    Engines for heavy-duty vehicles are emission certified by running engines according to specified load pattern or duty cycle. In the US, the US Heavy-Duty Transient cycle has been in use already for a number of years, and Europe is, according to the requirements of the Directive 1999/96/EC gradually switching to transient-type testing. Evaluating the in-use emission performance of heavy-duty vehicles presents a problem. Taking engines out of vehicles for engine dynamometer testing is difficult and costly. In addition, engine dynamometer testing does not take into account the properties of the vehicle itself (i.e. mass, transmission etc.). It is also debatable, how well the standardized duty cycles reflect real-life -driving patterns. VTT Processes has recently commissioned a new emission laboratory for heavy-duty vehicles. The facility comprises both engine test stand and a fully transient heavy-duty chassis dynamometer. The roller diameter of the dynamometer is 2.5 meters. Regulated emissions are measured using a full-flow CVS system. The HD vehicle chassis dynamometer measurements (emissions, fuel consumption) has been granted accreditation by the Centre of Metrology and Accreditation (MIKES, Finland). A national program to generate emission data on buses has been set up for the years 2002-2004. The target is to generate emission factors for some 50 different buses representing different degree of sophistication (Euro 1 to Euro5/EEV, with and without exhaust gas aftertreatment), different fuel technologies (diesel, natural gas) and different ages (the effect of aging). The work is funded by the Metropolitan Council of Helsinki, Helsinki City Transport, The Ministry of Transport and Communications Finland and the gas company Gasum Oy. The International Association for Natural Gas Vehicles (IANGV) has opted to buy into the project. For IANGV, VTT will deliver comprehensive emission data (including particle size distribution and chemical and biological

  3. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ...EPA and NHTSA, on behalf of the Department of Transportation, are each finalizing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's final fuel consumption standards and EPA's final carbon dioxide (CO2) emissions standards are tailored to each of three regulatory categories of heavy-duty vehicles: Combination Tractors; Heavy-duty Pickup Trucks and Vans; and Vocational Vehicles. The rules include separate standards for the engines that power combination tractors and vocational vehicles. Certain rules are exclusive to the EPA program. These include EPA's final hydrofluorocarbon standards to control leakage from air conditioning systems in combination tractors, and pickup trucks and vans. These also include EPA's final nitrous oxide (N2O) and methane (CH4) emissions standards that apply to all heavy- duty engines, pickup trucks and vans. EPA's final greenhouse gas emission standards under the Clean Air Act will begin with model year 2014. NHTSA's final fuel consumption standards under the Energy Independence and Security Act of 2007 will be voluntary in model years 2014 and 2015, becoming mandatory with model year 2016 for most regulatory categories. Commercial trailers are not regulated in this phase of the Heavy-Duty National Program. The agencies estimate that the combined standards will reduce CO2 emissions by approximately 270 million metric tons and save 530 million barrels of oil over the life of vehicles sold during the 2014 through 2018 model years, providing over $7 billion in net societal benefits, and $49 billion in net societal benefits when private fuel savings are considered. EPA is also finalizing provisions allowing light-duty vehicle manufacturers to use CO2 credits to meet the light-duty vehicle N2O and

  4. Characterization of heavy-duty diesel vehicle emissions

    NASA Astrophysics Data System (ADS)

    Lowenthal, Douglas H.; Zielinska, Barbara; Chow, Judith C.; Watson, John G.; Gautam, Mridul; Ferguson, Donald H.; Neuroth, Gary R.; Stevens, Kathy D.

    Emissions of heavy duty diesel-powered vehicles were measured at the Phoenix Transit Yard in South Phoenix between 31 March 1992 and 25 April 1992 using the West Virginia University Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Mobile Lab). Thirteen heavy-duty trucks and buses were tested over this period. The vehicles were operated with diesel No. 2 and Jet A fuels, with and without a fuel additive, and with and without particulate control traps. The chassis dynamometer Mobile Lab tested vehicles over the Central Business District (CBD) driving cycle. Particulate matter in the diluted exhaust was sampled proportionally from a total-exhaust dilution tunnel. Emission rates and compositions of PM 2.5 particulate mass, elements, ions, bulk organic and elemental carbon, and gaseous and particulate polycyclic aromatic hydrocarbons were averaged for various classes of fuels and particulate matter control. Emission rates for PM 2.5 mass averaged 0.2 and 1 g mile -1 for trucks and buses with and without particulate traps, respectively. Emission rates for elemental carbon averaged 0.02 and 0.5 g mile -1 for trucks and buses with and without particulate traps, respectively. Diesel particulate exhaust was comprised mainly of organic and elemental carbon (80-90%) and sulfate (up to 14%). The new diesel source composition profiles are similar to one determined earlier in Phoenix. Polycyclic aromatic hydrocarbons comprised no more than a few percent of the particulate organic carbon but their relative abundances may be useful for distinguishing diesel emissions from those of other combustion sources.

  5. Empirical membrane lifetime model for heavy duty fuel cell systems

    NASA Astrophysics Data System (ADS)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  6. Evolution of Westinghouse heavy-duty power generation and industrial combustion turbines

    SciTech Connect

    Scalzo, A.J.; Bannister, R.L.; DeCorso, M.; Howard, G.S.

    1996-04-01

    This paper reviews the evolution of heavy-duty power generation and industrial combustion turbines in the United States from a Westinghouse Electric Corporation perspective. Westinghouse combustion turbine genealogy began in March of 1943 when the first wholly American designed and manufactured jet engine went on test in Philadelphia, and continues today in Orlando, Florida, with the 230 MW, 501G combustion turbine. In this paper, advances in thermodynamics, materials, cooling, and unit size will be described. Many basic design features such as two-bearing rotor, cold-end drive, can-annular internal combustors, CURVIC{sup 2} clutched turbine disks, and tangential exhaust struts have endured successfully for over 40 years. Progress in turbine technology includes the clean coal technology and advanced turbine systems initiatives of the US Department of Energy.

  7. Heavy-Duty Emissions Control: Plasma-Facilitated vs Reformer-Assisted Lean NOx Catalysis

    SciTech Connect

    Aardahl, C; Rozmiarek, R; Rappe, K; Mendoza, D Park, P

    2003-08-24

    Progress has been made in the control of combustion processes to limit the formation of environmentally harmful species, but lean burn vehicles, such as those powered by diesel engines used for the majority of commercial trucking and off-road applications, remain a major source of nitrogen oxides (NOx) and particulate matter (PM) emissions. Tighter control of the combustion process coupled with exhaust gas recirculation has brought emissions in line with 2004 targets worldwide. Additional modifications to the engine control system, somewhat limited NOx control, and PM filters will likely allow the 2007 limits to be met for the on-highway regulations for heavy-duty engines in the United States. Concern arises when the NOx emission limit of 0.2 g/bhphr set for the year 2010 is considered.

  8. Demonstration of a heavy-duty vehicle chassis screening test for compliance testing heavy-duty engines. Final report

    SciTech Connect

    Clark, N.N.; McKain, D.L.; Hoppie, J.A.; Lyons, D.W.; Gautam, M.

    1998-07-01

    Emissions testing of new heavy-duty engines is performed to ensure compliance with governmental emissions standards. This testing involves operating the engine through the heavy-duty diesel transient Federal Test Procedure (FTP). While in-use engine emissions testing would be beneficial in aiding regions to meet standards dictated by the Clean Air Act, the process of removing the engine from the vehicle, fitting it to an engine dynamometer, testing, and refitting the engine in the chassis, combined with costs associated with removing the vehicle from service, is prohibitively expensive. A procedure for screening engine emissions testing with the engine in the vehicle using a chassis dynamometer was developed to mimic the FTP. Data from two engines and vehicles (a 195 hp Navistar T 444E in a single axle straight truck and a 370 hp Cummins N-14 in a tandem drive axle tractor) is presented as well as correlation between engine and chassis emissions tests. Also included was data gathered to gauge the effects of engine tampering and malfunctioning on emissions levels. It was concluded that engine and chassis emissions levels were well correlated with respect to oxides of nitrogen, but less well so with respect to particulate matter.

  9. 77 FR 75257 - Proposed Collection of Information: Medium- and Heavy-Duty Truck Fleet Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... National Highway Traffic Safety Administration Proposed Collection of Information: Medium- and Heavy-Duty... medium- and heavy-duty truck fleet managers. DATES: Comments must be received within 60 days of... Information Collection: New collection. OMB Control Number: To be issued at time of approval. Title: Medium...

  10. EVALUATION OF FUEL CELL AUXILIARY POWER UNITS FOR HEAVY-DUTY DIESEL TRUCKS

    EPA Science Inventory

    A large number of heavy-duty trucks idle a significant amount. Heavy-duty line-haul truck engines idle about 30-50% of the time the engine is running. Drivers idle engines to power climate control devices (e.g., heaters and air conditioners) and sleeper compartment accessories (e...

  11. 78 FR 56171 - Heavy-Duty Engine and Vehicle and Nonroad Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... Safety Administration 49 CFR Part 535 RIN 2060-AR48; 2127-AL31 Heavy-Duty Engine and Vehicle and Nonroad... Exhaust emission standards for CO2, CH4, and N2O for heavy-duty vehicles at or below 14,000 pounds...

  12. EVALUATION OF FUEL CELL AUXILIARY POWER UNITS FOR HEAVY-DUTY DIESEL TRUCKS

    EPA Science Inventory

    A large number of heavy-duty trucks idle a significant amount. Heavy-duty line-haul truck engines idle about 30-50% of the time the engine is running. Drivers idle engines to power climate control devices (e.g., heaters and air conditioners) and sleeper compartment accessories (e...

  13. Urban driving cycle results of retrofitted diesel oxidation catalysts on heavy duty vehicles

    SciTech Connect

    Brown, K.F.; Rideout, G.

    1996-09-01

    This paper presents the emissions testing results of various heavy duty engines and vehicles with and without retrofitted diesel oxidation catalyst technology. 1987 Cummins L10 and 1991 DDC 6V92TA DDECII engine results over the US Heavy Duty Transient Test are presented for comparison to chassis test results. The vehicles in this study include two urban buses, two school buses and three heavy duty trucks. The Central Business District, New York Bus and New York Composite urban driving cycles have been used to evaluate baseline emissions and the catalyst performance on a heavy duty chassis dynamometer. The results demonstrate that 25--45% particulate reduction is readily achievable on a wide variety of heavy duty vehicles. Significant carbon monoxide and hydrocarbon reductions were also observed.

  14. Chassis test cycles for assessing emissions from heavy duty trucks

    SciTech Connect

    Clark, N.N.; McKain, D.L.; Messer, J.T.; Lyons, D.W.

    1994-10-01

    Emissions from internal combustion engines can be evaluated by testing the engine itself or testing a whole vehicle using a chassis dynamometer. Recent concerns over atmospheric pollution and the drive to examine alternative fuel technology have led to an interest in chassis testing of trucks and buses. In particular these chassis tests permit the examination of changing emissions over the life of the vehicle. Identification of the chassis test protocols for heavy duty vehicles remains inchoate, but this paper seeks to assuage part of the problem by offering a practical test schedule for Class 8 trucks and truck-tractors in the 15000 to 36,360 kg GVW range. 8 refs., 15 figs., 1 tab.

  15. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    NASA Astrophysics Data System (ADS)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  16. Advanced technology commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.

    1991-01-01

    Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.

  17. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    SciTech Connect

    Chambon, Paul H.; Deter, Dean D.

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  18. Development of a heavy duty portable variable power supply (HPVPS)

    NASA Astrophysics Data System (ADS)

    Musa, Ahmad Zulfadli Bin; Lung, Chong Man; Abidin, Wan'Amirah Basyarah Binti Zainol

    2017-08-01

    This paper covers the innovation of a Heavy Duty Portable Variable Power Supply (HPVPS) in Jabatan Kejuruteraan Elektrik (JKE), Politeknik Mukah, Sarawak (PMU). This project consists of variable power supply which can vary the output from 1.2 V to 11.6V, AC pure wave inverter to convert DC to AC for the operation of low power home appliances and also used Li-on rechargeable batteries to store the electrical energy and additional feature that can be used to jump-start the batteries of the car. The main objective of this project is to make the user can operate the electronic devices anywhere whenever if no electricity while doing their lab activities. Most of the regulated power supply in JKE lab aged 9-10 years old and need periodical maintenance and need cost and also the unit can be used is not enough to support the whole class during lab activities. As a result, the P&P process will be facing the major problem in order to make the lab activities running smoothly. By development of the portable variable power supply, the P&P process is more efficient and very helpful.

  19. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles §...

  20. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1817-08...

  1. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles §...

  2. Heavy-duty truck population, activity and usage patterns. Final report

    SciTech Connect

    Fischer, M.

    1998-07-01

    The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

  3. Greenhouse Gas Emissions Model (GEM) for Medium- and Heavy-Duty Vehicle Compliance

    EPA Pesticide Factsheets

    EPA’s Greenhouse Gas Emissions Model (GEM) is a free, desktop computer application that estimates the greenhouse gas (GHG) emissions and fuel efficiency performance of specific aspects of heavy-duty vehicles.

  4. June 7, 2017 Webinar: Heavy-Duty Highway Trailers Verify Certification Module and Manufacturer Testing Information

    EPA Pesticide Factsheets

    This EPA webinar provides information on the Verify module for heavy-duty highway trailer manufacturers including introduction, user registration process, submitting certification information, request for certificate, testing and deployment information.

  5. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission standards...

  6. EPA and DOT Propose Greenhouse Gas and Fuel Efficiency Standards for Heavy-Duty Trucks

    EPA Pesticide Factsheets

    (06/19/15) ATLANTA - The U.S. Environmental Protection Agency (EPA) and the Department of Transportation's National Highway Traffic Safety Administration (NHTSA) are jointly proposing standards for medium- and heavy-duty vehicles that would improve

  7. The U.S. Army, Diesel Engines, and Heavy-Duty Emission Standards

    DTIC Science & Technology

    2007-03-16

    Dr. Pete Schihl The U.S. Army, Diesel Engines , and Heavy-Duty Emission Standards TARDEC Propulsion Laboratory Report Documentation Page Form...DATES COVERED - 4. TITLE AND SUBTITLE The U.S. Army, Diesel Engines , and Heavy-Duty Emission Standards 5a. CONTRACT NUMBER 5b. GRANT NUMBER...transmission, engine (fuel), ducting requirements — Ex. Bradley FIV: PD=3 2. High Power Density Engines (Future Combat System ~ 20 ton vehicle

  8. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  9. Demonstrating and evaluating heavy-duty alternative fuel operations

    SciTech Connect

    Peerenboom, W.

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  10. The transportable heavy-duty engine emissions testing laboratory

    SciTech Connect

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be driven'' through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle's exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  11. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a

  12. Idle emissions from heavy-duty diesel vehicles: review and recent data.

    PubMed

    Khan, A B M S; Clark, Nigel N; Thompson, Gregory J; Wayne, W Scott; Gautam, Mridul; Lyons, Donald W; Hawelti, Daniel

    2006-10-01

    Heavy-duty diesel vehicle idling consumes fuel and reduces atmospheric quality, but its restriction cannot simply be proscribed, because cab heat or air-conditioning provides essential driver comfort. A comprehensive tailpipe emissions database to describe idling impacts is not yet available. This paper presents a substantial data set that incorporates results from the West Virginia University transient engine test cell, the E-55/59 Study and the Gasoline/Diesel PM Split Study. It covered 75 heavy-duty diesel engines and trucks, which were divided into two groups: vehicles with mechanical fuel injection (MFI) and vehicles with electronic fuel injection (EFI). Idle emissions of CO, hydrocarbon (HC), oxides of nitrogen (NOx), particulate matter (PM), and carbon dioxide (CO2) have been reported. Idle CO2 emissions allowed the projection of fuel consumption during idling. Test-to-test variations were observed for repeat idle tests on the same vehicle because of measurement variation, accessory loads, and ambient conditions. Vehicles fitted with EFI, on average, emitted approximately 20 g/hr of CO, 6 g/hr of HC, 86 g/hr of NOx, 1 g/hr of PM, and 4636 g/hr of CO2 during idle. MFI equipped vehicles emitted approximately 35 g/hr of CO, 23 g/hr of HC, 48 g/hr of NOx, 4 g/hr of PM, and 4484 g/hr of CO2, on average, during idle. Vehicles with EFI emitted less idle CO, HC, and PM, which could be attributed to the efficient combustion and superior fuel atomization in EFI systems. Idle NOx, however, increased with EFI, which corresponds with the advancing of timing to improve idle combustion. Fuel injection management did not have any effect on CO2 and, hence, fuel consumption. Use of air conditioning without increasing engine speed increased idle CO2, NOx, PM, HC, and fuel consumption by 25% on average. When the engine speed was elevated from 600 to 1100 revolutions per minute, CO2 and NOx emissions and fuel consumption increased by >150%, whereas PM and HC emissions increased

  13. Transformation toughened ceramics for the heavy duty diesel engine technology program

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Feingold, E.; Rauch, H.; Samanta, S.

    1984-01-01

    The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated.

  14. Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.

    2016-10-01

    Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.

  15. Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine

    NASA Astrophysics Data System (ADS)

    Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.

  16. Fuel Economy Improvement by Utilizing Thermoelectric Generator in Heavy-Duty Vehicle

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Hu, T.; Su, C. Q.; Yuan, X. H.

    2017-05-01

    Recent advances in thermoelectric technology have made exhaust-based thermoelectric generators (TEGs) promising for recovery of waste heat. Utilization of exhaust-based TEGs in heavy-duty vehicles was studied in this work. Given that the generated power is limited, the alternator is still indispensable. To improve the fuel economy, the generated electricity must be integrated into the automotive electrical system and consumed by electrical loads. Therefore, two feasible ways of integrating the generated electricity into the automotive electrical system are discussed: one in which the original alternator works only under certain conditions, i.e., the "thermostat" strategy, and another in which a smaller alternator is adopted and works together with the TEG, i.e., the "cooperative work" strategy. The overall performance and efficiency are obtained through simulation analysis. The simulation results show that both methods can improve the fuel economy, but the former provides better results. Moreover, if the electrical loads can be properly modified, the fuel economy is further improved. These simulation results lay a solid foundation for application of TEGs in vehicles in the future.

  17. EPA GHG certification of medium- and heavy-duty vehicles: Development of road grade profiles representative of US controlled access highways

    SciTech Connect

    Wood, Eric; Duran, Adam; Kelly, Kenneth

    2016-09-27

    In collaboration with the U.S. Environmental Protection Agency and the U.S. Department of Energy, the National Renewable Energy Laboratory has conducted a national analysis of road grade characteristics experienced by U.S. medium- and heavy-duty trucks on controlled access highways. These characteristics have been developed using TomTom's commercially available street map and road grade database. Using the TomTom national road grade database, national statistics on road grade and hill distances were generated for the U.S. network of controlled access highways. These statistical distributions were then weighted using data provided by the U.S. Environmental Protection Agency for activity of medium- and heavy-duty trucks on controlled access highways. Here, the national activity-weighted road grade and hill distance distributions were then used as targets for development of a handful of sample grade profiles potentially to be used in the U.S. Environmental Protection Agency's Greenhouse Gas Emissions Model certification tool as well as in dynamometer testing of medium- and heavy-duty vehicles and their powertrains.

  18. EPA GHG certification of medium- and heavy-duty vehicles: Development of road grade profiles representative of US controlled access highways

    SciTech Connect

    Wood, Eric; Duran, Adam; Kelly, Kenneth

    2016-09-27

    In collaboration with the U.S. Environmental Protection Agency and the U.S. Department of Energy, the National Renewable Energy Laboratory has conducted a national analysis of road grade characteristics experienced by U.S. medium- and heavy-duty trucks on controlled access highways. These characteristics have been developed using TomTom's commercially available street map and road grade database. Using the TomTom national road grade database, national statistics on road grade and hill distances were generated for the U.S. network of controlled access highways. These statistical distributions were then weighted using data provided by the U.S. Environmental Protection Agency for activity of medium- and heavy-duty trucks on controlled access highways. Here, the national activity-weighted road grade and hill distance distributions were then used as targets for development of a handful of sample grade profiles potentially to be used in the U.S. Environmental Protection Agency's Greenhouse Gas Emissions Model certification tool as well as in dynamometer testing of medium- and heavy-duty vehicles and their powertrains.

  19. [Impact of heavy-duty diesel vehicles on air quality and control of their emissions].

    PubMed

    Zhou, Lei; Wang, Bo-Guang; Tang, Da-Gang

    2011-08-01

    Through an analysis of the characteristics of diesel vehicle emissions and motor vehicle emissions inventories, this paper examines the impact of heavy-duty diesel vehicles on air quality in China as well as issues related to the control of their emissions. Heavy-duty diesel vehicles emit large amounts of nitrogen oxides and particulate matter. Nitrogen oxides is one of the important precursors for the formation of secondary particles and ozone in the atmosphere, causing regional haze. Diesel particulate matter is a major toxic air pollutant with adverse effect on human health, and in particular, the ultrafine particles in 30-100 nm size range can pose great health risks because of its extremely small sizes. Motor vehicles have become a major source of air pollution in many metropolitan areas and city cluster in China, and among them the heavy-duty diesel vehicles are a dominant contributor of nitrogen oxides and particulate matter emissions. Hence, controlling heavy-duty diesel vehicle emissions should be a key component of an effective air quality management plan, and a number of issues related to heavy-duty diesel vehicle emissions need to be addressed.

  20. Designing Optimal LNG Station Network for U.S. Heavy-Duty Freight Trucks using Temporally and Spatially Explicit Supply Chain Optimization

    NASA Astrophysics Data System (ADS)

    Lee, Allen

    The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions

  1. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  2. Research on carrying capacity of hydrostatic slideway on heavy-duty gantry CNC machine

    NASA Astrophysics Data System (ADS)

    Cui, Chao; Guo, Tieneng; Wang, Yijie; Dai, Qin

    2017-05-01

    Hydrostatic slideway is a key part in the heavy-duty gantry CNC machine, which supports the total weight of the gantry and moves smoothly along the table. Therefore, the oil film between sliding rails plays an important role on the carrying capacity and precision of machine. In this paper, the oil film in no friction is simulated with three-dimensional CFD. The carrying capacity of heavy hydrostatic slideway, pressure and velocity characteristic of the flow field are analyzed. The simulation result is verified through comparing with the experimental data obtained from the heavy-duty gantry machine. For the requirement of engineering, the oil film carrying capacity is analyzed with simplified theoretical method. The precision of the simplified method is evaluated and the effectiveness is verified with the experimental data. The simplified calculation method is provided for designing oil pad on heavy-duty gantry CNC machine hydrostatic slideway.

  3. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  4. Modeling and simulation for heavy-duty mecanum wheel platform using model predictive control

    NASA Astrophysics Data System (ADS)

    Fuad, A. F. M.; Mahmood, I. A.; Ahmad, S.; Norsahperi, N. M. H.; Toha, S. F.; Akmeliawati, R.; Darsivan, F. J.

    2017-03-01

    This paper presents a study on a control system for a heavy-duty four Mecanum wheel platform. A mathematical model for the system is synthesized for the purpose of examining system behavior, including Mecanum wheel kinematics, AC servo motor, gearbox, and heavy duty load. The system is tested for velocity control, using model predictive control (MPC), and compared with a traditional PID setup. The parameters for the controllers are determined by manual tuning. Model predictive control was found to be more effective with reference to a linear velocity.

  5. Proposed Rule and Related Materials for Non-Conformance Penalties for 2004 and Later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for: Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and Later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  6. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.

    PubMed

    Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T

    2017-08-22

    Today's heavy-duty natural gas fueled fleet is estimated to represent less than two percent of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50 percent. While fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas fueled fleet penetration is low, today's total fleet wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas fueled vehicles and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "Pump-to-Wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete Wells-to-Wheels analysis. Stasis, high, medium, and low scenario PTW emission projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emission reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Implications Newly collected Pump to Wheels methane emissions data for current

  7. 75 FR 74151 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...EPA and NHTSA, on behalf of the Department of Transportation, are each proposing rules to establish a comprehensive Heavy-Duty National Program that will reduce greenhouse gas emissions and increase fuel efficiency for on-road heavy-duty vehicles, responding to the President's directive on May 21, 2010, to take coordinated steps to produce a new generation of clean vehicles. NHTSA's proposed......

  8. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  9. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  10. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  11. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  12. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  13. 75 FR 39251 - Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...A public workshop is being held to discuss the operation of heavy-duty engines equipped with selective catalyst reduction (SCR). EPA will be reviewing its policies regarding the operation of SCR- equipped heavy-duty diesel engines without diesel exhaust fluid (DEF), with improper DEF, or when tampering (or some other defect in the SCR system) is detected.

  14. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on... a comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce...

  15. Comparative risk analysis of dioxins in fish and fine particles from heavy-duty vehicles.

    PubMed

    Leino, Olli; Tainio, Marko; Tuomisto, Jouni T

    2008-02-01

    Dioxins and airborne fine particles are both environmental health problems that have been the subject of active public debate. Knowledge on fine particles has increased substantially during the last 10 years, and even the current, lowered levels in the Europe and in the United States appear to be a major public health problem. On the other hand, dioxins are ubiquitous persistent contaminants, some being carcinogens at high doses, and therefore of great concern. Our aim was to (a) quantitatively analyze the two pollutant health risks and (b) study the changes in risk in view of the current and forthcoming EU legislations on pollutants. We performed a comparative risk assessment for both pollutants in the Helsinki metropolitan area (Finland) and estimated the health effects with several scenarios. For primary fine particles: a comparison between the present emission situation for heavy-duty vehicles and the new fine particle emission standards set by the EU. For dioxins: an EU directive that regulates commercial fishing of Baltic salmon and herring that exceed the dioxin concentration limit set for fish meat, and a derogation (= exemption) from the directive for these two species. Both of these two decisions are very topical issues and this study estimates the expected changes in health effects due to these regulations. It was found that the estimated fine particle risk clearly outweighed the estimated dioxin risk. A substantial improvement to public health could be achieved by initiating reductions in emission standards; about 30 avoided premature deaths annually in the study area. In addition, the benefits of fish consumption due to omega-3 exposure were notably higher than the potential dioxin cancer risk. Both regulations were instigated as ways of promoting public health.

  16. Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications

    SciTech Connect

    Daniel T. Hennessy

    2010-06-15

    Changing economic and environmental needs of the trucking industry is driving the use of auxiliary power unit (APU) technology for over the road haul trucks. The trucking industry in the United States remains the key to the economy of the nation and one of the major changes affecting the trucking industry is the reduction of engine idling. Delphi Automotive Systems, LLC (Delphi) teamed with heavy-duty truck Original Equipment Manufacturers (OEMs) PACCAR Incorporated (PACCAR), and Volvo Trucks North America (VTNA) to define system level requirements and develop an SOFC based APU. The project defines system level requirements, and subsequently designs and implements an optimized system architecture using an SOFC APU to demonstrate and validate that the APU will meet system level goals. The primary focus is on APUs in the range of 3-5 kW for truck idling reduction. Fuels utilized were derived from low-sulfur diesel fuel. Key areas of study and development included sulfur remediation with reformer operation; stack sensitivity testing; testing of catalyst carbon plugging and combustion start plugging; system pre-combustion; and overall system and electrical integration. This development, once fully implemented and commercialized, has the potential to significantly reduce the fuel idling Class 7/8 trucks consume. In addition, the significant amounts of NOx, CO2 and PM that are produced under these engine idling conditions will be virtually eliminated, inclusive of the noise pollution. The environmental impact will be significant with the added benefit of fuel savings and payback for the vehicle operators / owners.

  17. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines

    PubMed Central

    Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially

  18. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards... tank capacity of greater than 35 gallons, or which do not share a common fuel system with a...

  19. 78 FR 49963 - Heavy-Duty Engine and Vehicle and Nonroad Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ...Because EPA and NHTSA, on behalf of the Department of Transportation, received adverse comment on certain elements of the Heavy-Duty Engine and Vehicle and Nonroad Technical Amendments direct final rule published on June 17, 2013, we are withdrawing those elements of the direct final rule and republishing the affected sections without those elements.

  20. 40 CFR 86.004-40 - Heavy-duty engine rebuilding practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... without removing the engine from the vehicle, or during the installation of a rebuilt engine, all critical... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Heavy-duty engine rebuilding practices... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  1. Exhaust Emission Rates for Heavy-Duty Onroad Vehicles in the Next Version of MOVES

    EPA Science Inventory

    Derivation of the exhaust and crankcase emission rates for HC, CO, NOx, and PM emissions from medium and heavy-duty diesel, gasoline, and compressed natural gas vehicles. Including updates for emission rates for 2007 and later model year diesel vehicles

  2. Idle emissions from medium heavy-duty diesel and gasoline trucks.

    PubMed

    Khan, A B M S; Clark, Nigel N; Gautam, Mridul; Wayne, W Scott; Thompson, Gregory J; Lyons, Donald W

    2009-03-01

    Idle emissions data from 19 medium heavy-duty diesel and gasoline trucks are presented in this paper. Emissions from these trucks were characterized using full-flow exhaust dilution as part of the Coordinating Research Council (CRC) Project E-55/59. Idle emissions data were not available from dedicated measurements, but were extracted from the continuous emissions data on the low-speed transient mode of the medium heavy-duty truck (MHDTLO) cycle. The four gasoline trucks produced very low oxides of nitrogen (NOx) and negligible particulate matter (PM) during idle. However, carbon monoxide (CO) and hydrocarbons (HCs) from these four trucks were approximately 285 and 153 g/hr on average, respectively. The gasoline trucks consumed substantially more fuel at an hourly rate (0.84 gal/hr) than their diesel counterparts (0.44 gal/hr) during idling. The diesel trucks, on the other hand, emitted higher NOx (79 g/hr) and comparatively higher PM (4.1 g/hr), on average, than the gasoline trucks (3.8 g/hr of NOx and 0.9 g/hr of PM, on average). Idle NOx emissions from diesel trucks were high for post-1992 model year engines, but no trends were observed for fuel consumption. Idle emissions and fuel consumption from the medium heavy-duty diesel trucks (MHDDTs) were marginally lower than those from the heavy heavy-duty diesel trucks (HHDDTs), previously reported in the literature.

  3. DEVELOPMENT OF ON-ROAD EMISSION FACTORS FOR HEAVY- DUTY VEHICLES

    EPA Science Inventory

    The paper discusses an EPA project the objectives of which are to: (1) define on-road emissions from heavy-duty diesel vehicles (HDDVs); (2) assess agreement between engine and chassis dynamometers and on-road emission factors; (3) evaluate current conversion factors for dynamome...

  4. Ceramic valve development for heavy-duty low heat rejection diesel engines

    NASA Technical Reports Server (NTRS)

    Weber, K. E.; Micu, C. J.

    1989-01-01

    Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.

  5. ON-ROAD FACILITY TO MEASURE AND CHARACTERIZE EMISSIONS FROM HEAVY-DUTY DIESEL VEHICLES

    EPA Science Inventory

    In response to lingering concerns about the utility of dynamometer data for mobile source emissions modeling, the U.S. Environmental Protection Agency (EPA) has constructed an on-road test facility to characterize the real-world emissions of heavy-duty trucks. The facility was de...

  6. Informal Market Survey of Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Doug

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal marketing survey. A list of 277 potential respondents was compiled from the 220 individuals in the National Alternative Fuels Training Program database and 57 names identified from journals in the field of alternative fuels. When 2…

  7. 77 FR 4736 - Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... later for emissions of oxides of nitrogen (NOx). In general, the availability of NCPs allows a...), carbon monoxide (CO), nitrogen oxides (NO X ), and particulate matter (PM). The most recent NCP rule (67...), EPA established more stringent emission standards for all heavy-duty gasoline (or...

  8. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards for complete... (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled by...

  9. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission standards...) Carbon monoxide. 7.3 grams per mile. (iv) Oxides of nitrogen. (A)0.2 grams per mile. (B) A manufacturer... grams per mile. (iv) Oxides of nitrogen. (A)0.4 grams per mile. (B) A manufacturer may elect to...

  10. 77 FR 4678 - Nonconformance Penalties for On-Highway Heavy Heavy-Duty Diesel Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... and 2013 for emissions of oxides of nitrogen (NO X ). In general, the availability of NCPs allows a... established for hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO X ), and particulate matter (PM... established more stringent emission standards for all heavy-duty gasoline (or ``Otto-cycle'') vehicles...

  11. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that...-cycle vehicles may participate in an NMHC averaging, banking and trading program to show compliance...

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES

    EPA Science Inventory

    While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...

  13. Energy Consumption and Cost Savings of Truck Electrification for Heavy-Duty Vehicle Applications

    SciTech Connect

    Gao, Zhiming; Lin, Zhenhong; Franzese, Oscar

    2017-01-01

    Our paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks.

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES

    EPA Science Inventory

    While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...

  15. 40 CFR 86.1215-85 - EPA heavy-duty vehicle (HDV) urban dynamometer driving schedule.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dynamometer driving schedule. 86.1215-85 Section 86.1215-85 Protection of Environment ENVIRONMENTAL PROTECTION... (HDV) urban dynamometer driving schedule. (a)(1) The EPA dynamometer driving schedule for heavy-duty... mph (30.4 km/hr). The Administrator will use this driving schedule when conducting...

  16. 40 CFR 86.1215-85 - EPA heavy-duty vehicle (HDV) urban dynamometer driving schedule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dynamometer driving schedule. 86.1215-85 Section 86.1215-85 Protection of Environment ENVIRONMENTAL PROTECTION... (HDV) urban dynamometer driving schedule. (a)(1) The EPA dynamometer driving schedule for heavy-duty... mph (30.4 km/hr). The Administrator will use this driving schedule when conducting...

  17. 40 CFR 86.1215-85 - EPA heavy-duty vehicle (HDV) urban dynamometer driving schedule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dynamometer driving schedule. 86.1215-85 Section 86.1215-85 Protection of Environment ENVIRONMENTAL PROTECTION... (HDV) urban dynamometer driving schedule. (a)(1) The EPA dynamometer driving schedule for heavy-duty... mph (30.4 km/hr). The Administrator will use this driving schedule when conducting...

  18. 40 CFR 86.1215-85 - EPA heavy-duty vehicle (HDV) urban dynamometer driving schedule.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dynamometer driving schedule. 86.1215-85 Section 86.1215-85 Protection of Environment ENVIRONMENTAL PROTECTION... (HDV) urban dynamometer driving schedule. (a)(1) The EPA dynamometer driving schedule for heavy-duty... mph (30.4 km/hr). The Administrator will use this driving schedule when conducting...

  19. HEAVY DUTY DIESEL VEHICLE LOAD ESTIMATION: DEVELOPMENT OF VEHICLE ACTIVITY OPTIMIZATION ALGORITHM

    EPA Science Inventory

    The Heavy-Duty Vehicle Modal Emission Model (HDDV-MEM) developed by the Georgia Institute of Technology(Georgia Tech) has a capability to model link-specific second-by-second emissions using speed/accleration matrices. To estimate emissions, engine power demand calculated usin...

  20. DEVELOPMENT OF ON-ROAD EMISSION FACTORS FOR HEAVY- DUTY VEHICLES

    EPA Science Inventory

    The paper discusses an EPA project the objectives of which are to: (1) define on-road emissions from heavy-duty diesel vehicles (HDDVs); (2) assess agreement between engine and chassis dynamometers and on-road emission factors; (3) evaluate current conversion factors for dynamome...

  1. Ceramic valve development for heavy-duty low heat rejection diesel engines

    NASA Technical Reports Server (NTRS)

    Weber, K. E.; Micu, C. J.

    1989-01-01

    Monolithic ceramic valves can be successfully operated in a heavy-duty diesel engine, even under extreme low heat rejection operating conditions. This paper describes the development of a silicon nitride valve from the initial design stage to actual engine testing. Supplier involvement, finite element analysis, and preliminary proof of concept demonstration testing played a significant role in this project's success.

  2. HEAVY-DUTY TRUCK TEST CYCLES: COMBINING DRIVEABILITY WITH REALISTIC ENGINE EXERCISE

    EPA Science Inventory

    Heavy-duty engine certification testing uses a cycle that is scaled to the capabilities of each engine. As such, every engine should be equally challenged by the cycle's power demands. It would seem that a chassis cycle, similarly scaled to the capabilities of each vehicle, could...

  3. 40 CFR 86.1816-08 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-08 Emission standards...) Carbon monoxide. 7.3 grams per mile. (iv) Oxides of nitrogen. (A)0.2 grams per mile. (B) A manufacturer... grams per mile. (iv) Oxides of nitrogen. (A)0.4 grams per mile. (B) A manufacturer may elect to include...

  4. HEAVY-DUTY TRUCK TEST CYCLES: COMBINING DRIVEABILITY WITH REALISTIC ENGINE EXERCISE

    EPA Science Inventory

    Heavy-duty engine certification testing uses a cycle that is scaled to the capabilities of each engine. As such, every engine should be equally challenged by the cycle's power demands. It would seem that a chassis cycle, similarly scaled to the capabilities of each vehicle, could...

  5. ON-ROAD EMISSIONS OF PCDDS AND PCDFS FROM HEAVY DUTY DIESEL VEHICLES

    EPA Science Inventory

    This work characterized emission factors, homologue profiles, and isomer patterns of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from on-road sampling of three heavy duty diesel vehicles (HDDVS) under various conditions of city and highway drivi...

  6. Exhaust Emission Rates for Heavy-Duty Onroad Vehicles in the Next Version of MOVES

    EPA Science Inventory

    Derivation of the exhaust and crankcase emission rates for HC, CO, NOx, and PM emissions from medium and heavy-duty diesel, gasoline, and compressed natural gas vehicles. Including updates for emission rates for 2007 and later model year diesel vehicles

  7. 75 FR 28820 - Notice of Public Meeting by Teleconference Concerning Heavy Duty Diesel Engine Consent Decrees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Notice of Public Meeting by Teleconference Concerning Heavy Duty Diesel Engine Consent Decrees The Department of Justice and the Environmental Protection Agency will hold a public meeting on June 14, 2010 at 3 p.m. by telephone conference. The subject of...

  8. HEAVY DUTY DIESEL VEHICLE LOAD ESTIMATION: DEVELOPMENT OF VEHICLE ACTIVITY OPTIMIZATION ALGORITHM

    EPA Science Inventory

    The Heavy-Duty Vehicle Modal Emission Model (HDDV-MEM) developed by the Georgia Institute of Technology(Georgia Tech) has a capability to model link-specific second-by-second emissions using speed/accleration matrices. To estimate emissions, engine power demand calculated usin...

  9. Proposed Rule and Related Materials for Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles

    EPA Pesticide Factsheets

    EPA and NHTSA, on behalf of the Department of Transportation, each proposed rules to establish a comprehensive Heavy-Duty National Program to reduce greenhouse gas emissions and increase fuel efficiency for onroad heavy-duty vehicles.

  10. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  11. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  12. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  13. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  14. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty... emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For...

  15. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    PubMed

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  16. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty... described in this section do not apply to Otto-cycle medium-duty passenger vehicles (MDPVs) that are...

  17. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty... described in this section do not apply to Otto-cycle medium-duty passenger vehicles (MDPVs) that are...

  18. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty... described in this section do not apply to Otto-cycle medium-duty passenger vehicles (MDPVs) that are...

  19. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  20. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  1. HEAVY-DUTY DIESEL VEHICLE MODAL EMISSION MODEL (HDDV-MEM): VOLUME I: MODAL EMISSION MODELING FRAMEWORK; VOLUME II: MODAL COMPONENTS AND OUTPUTS

    EPA Science Inventory

    This research outlines a proposed Heavy-Duty Diesel Vehicle Modal Emission Modeling Framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different, should be compatible wi...

  2. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  3. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a) Exhaust emissions from new 1999 and later model year diesel heavy-duty engines shall not exceed...

  4. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Heavy-Duty Vehicles § 86.008-10 Emission standards for 2008 and later model year Otto-cycle heavy-duty...)(1) Exhaust emissions from new 2008 and later model year Otto-cycle HDEs shall not exceed:...

  5. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Heavy-Duty Vehicles § 86.008-10 Emission standards for 2008 and later model year Otto-cycle heavy-duty...)(1) Exhaust emissions from new 2008 and later model year Otto-cycle HDEs shall not exceed:...

  6. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...: 3.0 grams carbon per test. (2) For the supplemental two-diurnal test sequence described in §...

  7. HEAVY-DUTY DIESEL VEHICLE MODAL EMISSION MODEL (HDDV-MEM): VOLUME I: MODAL EMISSION MODELING FRAMEWORK; VOLUME II: MODAL COMPONENTS AND OUTPUTS

    EPA Science Inventory

    This research outlines a proposed Heavy-Duty Diesel Vehicle Modal Emission Modeling Framework (HDDV-MEMF) for heavy-duty diesel-powered trucks and buses. The heavy-duty vehicle modal modules being developed under this research effort, although different, should be compatible wi...

  8. Evaluations of 1997 Fuel Consumption Patterns of Heavy Duty Trucks

    SciTech Connect

    Santini, Danilo

    2001-08-05

    The proposed 21st Century Truck program selected three truck classes for focused analysis. On the basis of gross vehicle weight (GVW) classification, these were Class 8 (representing heavy), Class 6 (representing medium), and Class 2b (representing light). To develop and verify these selections, an evaluation of fuel use of commercial trucks was conducted, using data from the 1997 Vehicle Inventory and Use Survey (VIUS). Truck fuel use was analyzed by registered GVW class, and by body type.

  9. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  10. Positive displacement compounding of a heavy duty diesel engine

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Kamo, R.

    1983-01-01

    A helical screw type positive displacement (PD) compressor and expander was considered as an alternative to the turbocharger and the power turbine in the Cummins advanced turbocompound engine. The Institute of Gas Technology (IGT) completed the design, layout, and performance prediction of the PD machines. The results indicate that a screw compressor-expander system is feasible up to at least 750 HP, dry operation of the rotors is feasible, cost and producibility are uncertain, and the system will yield about 4% improvement in brake specific fuel consumption (BSFC) over the advanced turbocompound engine.

  11. Combustion and emission analysis of heavy-duty vehicle diesel engine

    NASA Astrophysics Data System (ADS)

    Sun, Zhixin; Wang, Xue; Wang, Xiancheng; Zhou, Jingkai

    2017-03-01

    Aiming at the research on combustion and emission characteristics of heavy-duty vehicle diesel engine, a bench test was carried out for PM and NOx emission for a certain type diesel engine under different speed and loads. Results shows that for this type of heavy-duty vehicle diesel engine, ignition delay is longer and the proportion of diffusion combustion increases under high speed of external characteristics conditions. Under the speed of 1400 r/min, ignition delay decreases with load increases, combustion duration shortened at first, then increases, the proportion of diffusion combustion increases. The ignition delay is longer and cylinder temperature is higher under lower speed external characteristics of diesel engine, the emissions of soot and NOx are heavier; with large load of external characteristics of diesel engine, the emissions of soot and NOx are heavy as well.

  12. Advances in commercial ICF technology since 1986

    SciTech Connect

    Kulcinski, G.L.

    1989-03-01

    Progress in the march toward commercial ICF fusion reactors has been uneven in the past few years. Considerable advances have been made in the area of light ion beam fusion through the development of rep ratable drivers (i.e., HERMES-III technology) and diodes (i.e., applied B configuration with renewable Li surfaces). Significant progress in the development of lasers to compress targets has also been made through the KrF Aurura program. The possibility of lowering the cost of glass in the advanced solid state lasers has been given serious consideration. The development of the Induced Spatial Incoherence (ISI) technique to improve the uniformity of the laser beam has allowed physicists and engineers to once again contemplate the use of symmetric illumination. This would reduce the driver energy required to achieve high gains but it also introduces difficulty in the reactor design. Relatively little progress in commercial heavy ion beam drivers has been made over the past few years aside from an indepth study (HIFSA) of the desirable operating regimes to be pursued. Other areas where little progress has been made are conceptual reactor studies, target declassification and specific experimental programs to address commercial ICF reactor technology needs.

  13. Evaluation of the potential of the Stirling engine for heavy duty application

    NASA Technical Reports Server (NTRS)

    Meijer, R. J.; Ziph, B.

    1981-01-01

    A 150 hp four cylinder heavy duty Stirling engine was evaluated. The engine uses a variable stroke power control system, swashplate drive and ceramic insulation. The sensitivity of the design to engine size and heater temperature is investigated. Optimization shows that, with porous ceramics, indicated efficiencies as high as 52% can be achieved. It is shown that the gain in engine efficiency becomes insignificant when the heater temperature is raised above 200 degrees F.

  14. Impact of Military JP-8 Fuel on Heavy Duty Diesel Engine Performance and Emissions

    DTIC Science & Technology

    2005-12-07

    Filipi, Z., Assanis, D., Kuo, T.-W., Najt, P., Rask, R. “New Heat Transfer Correlation for the HCCI Engine Derived from Measurements of...Impact of Military JP-8 Fuel on Heavy Duty Diesel Engine Performance and Emissions Gerald Fernandes1, Jerry Fuschetto1, Zoran Filipi1 and Dennis...with the operation of a diesel engine with JP- 8 fuel due to its lower density and viscosity, but few experimental studies suggest that kerosene

  15. The Effect of Heavy-Duty Diesel Emission Standards on U.S. Army Ground Vehicles

    DTIC Science & Technology

    2007-12-05

    Program) - ‘Environmental Impact of Fuel Use on Military Engines ’ December 5, 2007 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...Standards • Emission Control Technology Discussion • Fuels and Lubricants Discussion • Current Army Ground Vehicle Engine Philosophy and Conclusion...P.J. Schihl Conclusion • The Army can not buy 2007 compliant COTS engines and directly integrate into current and new heavy-duty vehicles. P.J

  16. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards...-duty vehicles (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled...

  17. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards...-duty vehicles (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled...

  18. 40 CFR 86.1816-05 - Emission standards for complete heavy-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1816-05 Emission standards...-duty vehicles (2003 model year for manufacturers choosing Otto-cycle HDE option 1 in § 86.005-1(c)(1), or 2004 model year for manufacturers choosing Otto-cycle HDE option 2 in § 86.005-1(c)(2)) fueled...

  19. Review of light-duty diesel and heavy-duty diesel gasoline inspection programs.

    PubMed

    St Denis, Michael; Lindner, Jim

    2005-12-01

    Emissions from diesel vehicles and gas-powered heavy-duty vehicles are becoming a new focus of many inspection and maintenance (I/M) programs. Diesel particulate matter (PM) is increasingly becoming more recognized as an important health concern, while at the same time, the public awareness of diesel PM emissions because of their visibility have combined to increase the focus on diesel emissions in the United States. This has resulted in an increased interest by some states in including heavy-duty vehicle testing in their I/M program. This paper provides an overview of existing I/M programs focused on testing light-duty diesel vehicles, heavy-duty diesel vehicles, and heavy-duty gasoline vehicles (HDGVs). Information on 39 I/M programs in 27 different states in the United States plus 9 international inspection programs is included. Information on the status of diesel emissions technology and current test procedures is also presented. The goal is to provide useful information for air quality managers as they work to decide whether such I/M programs would be worth pursuing in their respective areas and in evaluating the emissions measurement technology to be used in the program. Testing of HDGVs is generally limited to idle testing, because dynamometer testing of these vehicles is not practical, and most were not certified on a chassis basis. Testing of diesel vehicles has mostly been limited to SAE J1667 "snap-idle" opacity testing. Cost-effective technology for measuring diesel emissions currently does not exist, and, therefore, opacity-type measurements, although not effective at reducing the pollutants of most significant health concern, will continue to be used.

  20. Hennepin County`s experience with heavy-duty ethanol vehicles

    SciTech Connect

    1998-01-01

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

  1. Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate

    DTIC Science & Technology

    2008-04-14

    2008-01-1081 Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate Michael Mosburger, Jerry Fuschetto, Dennis...International ABSTRACT Low-sulfur “clean” diesel fuel has been mandated in the US and Europe. However, quality of diesel fuel, particularly the sulfur...on local fuel supplies, which exposes vehicles to diesel fuel or jet fuel (JP-8) with elevated levels of sulfur. Modern engines typically use

  2. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    PubMed

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    flexural strength, lowest apparent porosity and water absorption of EAF slag based tile was attained at the composition of 40 wt.% EAF slag--30 wt.% ball clay--10 wt.% feldspar--20 wt.% silica. The properties of ceramic tile made with EAF slag waste (up to 40 wt.%), especially flexural strength are comparable to those of commercial ceramic tile and are, therefore, suitable as high flexural strength and heavy-duty green ceramic floor tile. Continuous development is currently underway to improve the properties of tile so that this recycling approach could be one of the potential effective, efficient and sustainable solutions in sustaining our nature.

  3. Heavy-duty explosively operated pulsed opening and closing switches - Reducing cost and turnaround time

    NASA Astrophysics Data System (ADS)

    Peterson, D. R.; Price, J. H.; Upshaw, J. L.; Weldon, W. F.; Zowarka, R. C., Jr.

    1991-01-01

    Improvements to heavy-duty, explosively operated opening and closing switches to reduce component cost, installation cost, and turnaround time without sacrificing reliability are discussed. Heavy-duty opening and closing switches operated by small explosive charges (50 g or less) are essential to operation of the 60-MJ Balcones power supply. The six independent modules can be discharged sequentially. Each delayed inductor must be isolated from the railgun circuit with a heavy-duty closing switch capable of carrying megaampere currents of millisecond duration. Similar closing switches are used to crowbar the railgun as the projectile approaches the muzzle. Efficient switching is crucial to efficient conversion: rotor kinetic energy to stored inductive energy with about 50 percent efficiency; stored inductive energy to projectile kinetic energy with about 30 percent efficiency. The switches must operate with a precision and repeatability of 10 to the -5 sec, readily achievable with explosives. The opening switches must be structurally and thermally capable of carrying megampere currents for more than 100 ms and develop 10 kV on opening, stay open for 0.01 s, and safely and reliably dissipate megajoules of inductive energy in the event of a fault, a failure of the switch to operate, or an attempt to commutate into an open circuit. An example of the severe switching requirements is presented.

  4. Conversion of the exhaust emission results obtained from combustion engines of heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Merkisz, J.; Pielecha, J.

    2016-09-01

    The use of internal combustion engines as the drive for heavy-duty vehicles forces these engines to be tested on an engine dynamometer. Thus, these engines operate under forced conditions, which are significantly different from their actual application. To assess the ecology of such vehicles (or more accurately the engine alone) the emission of pollution per unit of work done by the engine must be determined. However, obtaining the results of unit emissions (expressed in grams of the compound per a unit of performed work) does not give the grounds for determining the mass of pollutants on a given stretch of the road travelled by the vehicle. Therefore, there is a need to change the emission value expressed in units referenced to the engine work into a value of road emissions. The paper presents a methodology of determining pollutant emissions of heavy-duty road vehicles on the basis of the unit emissions, as well as additional parameters determined on the basis of the algorithm presented in the article. A solution was obtained that can be used not only for heavy-duty vehicles, but was also extended to allow use for buses.

  5. 77 FR 54384 - Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...EPA is taking final action to establish nonconformance penalties (NCPs) for manufacturers of heavy heavy-duty diesel engines (HHDDE) in model years 2012 and later for emissions of oxides of nitrogen (NOX) because we have found the criteria for NCPs and the Clean Air Act have been met. The NOX standards to which these NCPs apply were established by a rule published on January 18, 2001. In general, NCPs allow a manufacturer of heavy-duty engines (HDEs) whose engines do not conform to applicable emission standards, but do not exceed a designated upper limit, to be issued a certificate of conformity upon payment of a monetary penalty to the United States Government. The upper limit associated with these NCPs is 0.50 grams of NOX per brake horsepower-hour (g/bhp-hr). This Final Rule specifies certain parameters that are entered into the preexisting penalty formulas along with the emissions of the engine and the incorporation of other factors to determine the amount a manufacturer must pay. Key parameters that determine the NCP a manufacturer must pay are EPA's estimated cost of compliance for a near worst-case engine and the degree to which the engine exceeds the emission standard (as measured from production engines). EPA proposed NCPs for medium heavy duty diesel engines. However, EPA is not taking final action with regard to NCPs for these engines at this time because EPA has not completed its review of the data and comments regarding these engines.

  6. Non-Tactical Vehicle Replacement for the Department of the Navy’s Medium- and Heavy-Duty Vehicle Fleet

    DTIC Science & Technology

    2016-12-01

    financial analysis was performed, estimating and comparing the life cycle cost of our current internal combustion fleet versus that of an electrical ...replace the existing medium- and heavy-duty non-tactical vehicle fleet. These technologies were electric , hybrid- electric , and compressed natural gas...the existing medium- and heavy-duty non-tactical vehicle fleet. These technologies were electric , hybrid- electric , and compressed natural gas. All

  7. Differences between emissions measured in urban driving and certification testing of heavy-duty diesel engines

    NASA Astrophysics Data System (ADS)

    Dixit, Poornima; Miller, J. Wayne; Cocker, David R.; Oshinuga, Adewale; Jiang, Yu; Durbin, Thomas D.; Johnson, Kent C.

    2017-10-01

    Emissions from eight heavy-duty diesel trucks (HDDTs) equipped with three different exhaust aftertreatment systems (ATS) for controlling nitrogen oxide (NOx) emissions were quantified on a chassis dynamometer using driving schedules representative of stop-and-go and free-flow driving in metropolitan areas. The three control technologies were: 1) cooled exhaust gas recirculation (CEGR) plus a diesel particulate filter (DPF); 2) CEGR and DPF plus advanced engine controls; and 3) CEGR and DPF plus selective catalytic reduction with ammonia (SCR). Results for all control technologies and driving conditions showed PM emission factors were less than the standard, while selected non-regulated emissions (ammonia, carbonyls, and C4-C12 hydrocarbons) and a greenhouse gas (nitrous oxide) were at measurement detection limits. However, NOx emission factors depended on the control technology, engine calibration, and driving mode. For example, emissions from engines with cooled-exhaust gas recirculation (CEGR) were 239% higher for stop-and-go driving as compared with free-flow. For CEGR plus selective catalytic reduction (SCR), the ratio was 450%. A deeper analysis was carried out with the assumption that emissions measured for a drive cycle on either the chassis or in-use driving would be similar. Applying the same NTE rules to the chassis data showed emissions during stop-and-go driving often exceeded the certification standard and >90% of the driving did not fall within the Not-To-Exceed (NTE) control area suggesting the NTE requirements do not provide sufficient emissions control under in-use conditions. On-road measurement of emissions using the same mobile lab while the vehicle followed a free-flow driving schedule verified the chassis results. These results have implications for scientists who build inventories using certification values instead of real world emission values and for metropolitan populations, who are exposed to elevated emissions. The differences in values

  8. Hybrid electric 40 foot heavy duty transit bus

    SciTech Connect

    Rezza, P. Jr.; Wu, A.

    1994-12-31

    The authors describe the development of an advanced hybrid electric drive system for a ULEV transit bus. In transit applications, hybrid electric drive systems enjoy distinct advantages over all battery powered electric and conventional diesel drive systems. These advantages include reduced weight, high efficiency, extended range, and reduced emissions. For this application a conventional RTS T80208 transit bus was converted from diesel to hybrid electric drive, consisting of a 190 kW brushless DC permanent magnet traction motor, a propane fueled rotary engine generator set, nickel cadmium batteries, and control and power conditioning electronics. The 120 kW generator set was sized to supply the auxiliary power and mean propulsion power with the engine running at nearly constant speed at its highest efficiency and lowest emission operating point. The nominal 270 volt battery pack was sized to supply peak power of up to 120 kW; battery charging was achieved either through regenerative braking or the generator set. Passenger capacity and operational capability remain unchanged as a result of the conversion. The hybrid electric bus can run urban routes over a ten hour day without refueling or external battery charging. A detailed description of the system is provided in this paper.

  9. EPA GHG certification of medium- and heavy-duty vehicles: Development of road grade profiles representative of US controlled access highways

    DOE PAGES

    Wood, Eric; Duran, Adam; Kelly, Kenneth

    2016-09-27

    In collaboration with the U.S. Environmental Protection Agency and the U.S. Department of Energy, the National Renewable Energy Laboratory has conducted a national analysis of road grade characteristics experienced by U.S. medium- and heavy-duty trucks on controlled access highways. These characteristics have been developed using TomTom's commercially available street map and road grade database. Using the TomTom national road grade database, national statistics on road grade and hill distances were generated for the U.S. network of controlled access highways. These statistical distributions were then weighted using data provided by the U.S. Environmental Protection Agency for activity of medium- and heavy-dutymore » trucks on controlled access highways. Here, the national activity-weighted road grade and hill distance distributions were then used as targets for development of a handful of sample grade profiles potentially to be used in the U.S. Environmental Protection Agency's Greenhouse Gas Emissions Model certification tool as well as in dynamometer testing of medium- and heavy-duty vehicles and their powertrains.« less

  10. The AC-120: The advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Duran, David; Griffin, Ernest; Mendoza, Saul; Nguyen, Son; Pickett, Tim; Noernberg, Clemm

    1993-01-01

    The main objective of this design was to fulfill a need for a new airplane to replace the aging 100 to 150 passenger, 1500 nautical mile range aircraft such as the Douglas DC9 and Boeing 737-100 airplanes. After researching the future aircraft market, conducting extensive trade studies, and analysis on different configurations, the AC-120 Advanced Commercial Transport final design was achieved. The AC-120's main design features include the incorporation of a three lifting surface configuration which is powered by two turboprop engines. The AC-120 is an economically sensitive aircraft which meets the new FM Stage Three noise requirements, and has lower NO(x) emissions than current turbofan powered airplanes. The AC-120 also improves on its contemporaries in passenger comfort, manufacturing, and operating cost.

  11. Heavy-duty diesel engine NO{sub x} reduction with nitrogen-enriched combustion air. Final CRADA report.

    SciTech Connect

    McConnell, S.; Energy Systems

    2010-07-28

    The concept of engine emissions control by modifying intake combustion gas composition from that of ambient air using gas separation membranes has been developed during several programs undertaken at Argonne. These have led to the current program which is targeted at heavy-duty diesel truck engines. The specific objective is reduction of NO{sub x} emissions by the target engine to meet anticipated 2007 standards while extracting a maximum of 5 percent power loss and allowing implementation within commercial constraints of size, weight, and cost. This report includes a brief review of related past programs, describes work completed to date during the current program, and presents interim conclusions. Following a work schedule adjustment in August 2002 to accommodate problems in module procurement and data analysis, activities are now on schedule and planned work is expected to be completed in September, 2004. Currently, we believe that the stated program requirements for the target engine can be met, based upon extrapolation of the work completed. Planned project work is designed to experimentally confirm these projections and result in a specification for a module package that will meet program objectives.

  12. Method for analyzing articulated torques of heavy-duty six-legged robot

    NASA Astrophysics Data System (ADS)

    Zhuang, Hongchao; Gao, Haibo; Ding, Liang; Liu, Zhen; Deng, Zongquan

    2013-07-01

    The accuracy of an articulated torque analysis influences the comprehensive performances of heavy-duty multi-legged robots. Currently, the extremal estimation method and some complex methods are employed to calculate the articulated torques, which results in a large safety margin or a large number of calculations. To quickly obtain accurate articulated torques, an analysis method for the articulated torque is presented for an electrically driven heavy-duty six-legged robot. First, the rearmost leg that experiences the maximum normal contact force is confirmed when the robot transits a slope. Based on the ant-type and crab-type tripod gaits, the formulas of classical mechanics and MATLAB software are employed to theoretically analyze the relevant static torques of the joints. With the changes in the joint angles for the abductor joint, hip joint, and knee joint, variable tendency charts and extreme curves are obtained for the static articulated torques. Meanwhile, the maximum static articulated torques and the corresponding poses of the robot are also obtained. According to the poses of the robot under the maximum static articulated torques, ADAMS software is used to carry out a static simulation analysis. Based on the relevant simulation curves of the articulated torques, the maximum static articulated torques are acquired. A comparative analysis of the maximum static articulated torques shows that the theoretical calculation values are higher than the static simulation values, and the maximum error value is approximately 10%. The proposed method lays a foundation for quickly determining accurate articulated torques to develop heavy-duty six-legged robots.

  13. Alternative fuels for low emissions and improved performance in CI and heavy duty engines

    SciTech Connect

    1995-12-31

    Contents include: Limited durability of the diesel engine with a dual-fuel system on neat sunflower oil; Analysis and testing of a high-pressure micro-compressor; Spark-assisted alcohol operation in a low heat rejection engine; Combustion improvement of heavy-duty methanol engine by using autoignition system; Clean Fleet Alternative Fuels demonstration project; Vehicle fuel economy -- the Clean Fleet Alternative Fuels project; Safety and occupational hygiene results -- Clean Fleet Alternative Fuels project; Vehicle reliability and maintenance -- Clean Fleet Alternative Fuels project; Flammability tests of alcohol/gasoline vapors; Flame luminosity enhancement of neat methanol fuel by non-aromatic hydrocarbon additives; and more.

  14. Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

    SciTech Connect

    Kast, James; Marcinkoski, Jason; Vijayagopal, Ram; Duran, Adam

    2016-06-22

    Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles. [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representative sample of MD and HD diesel trucks into Fuel Cell Electric Trucks (FCETs), while ensuring the same truck performance, in terms of range, payload, acceleration, speed, gradeability and fuel economy.

  15. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...: 3.0 grams carbon per test. (2) For the supplemental two-diurnal test sequence described in § 86.1230...

  16. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    DOE PAGES

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; ...

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed naturalmore » gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.« less

  17. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    SciTech Connect

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.

  18. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    SciTech Connect

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-15

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO{sub x}; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO{sub x} and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO{sub x} emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants.

  19. Feasibility evaluation of fuel cells for selected heavy-duty transportation systems

    NASA Astrophysics Data System (ADS)

    Huff, J. R.; Murray, H. S.

    1982-10-01

    A study of the feasibility of using fuel cell power plants for heavy duty transportation applications is performed. It is concluded that it will be feasible to use fuel cell technology projected as being available by 1995 to 2000 for powering 3000-hp freight locomotives and 6000-hp river boats. The fuel cell power plant is proposed as an alternative to the currently used diesel or diesel-electric system. Phosphoric acid and solid polymer electrolyte fuel cells are determined to be the only applicable technologies in the desired time frame. Methanol, chemically reformed to produce hydrogen, is determined to be the most practical fuel for the applications considered. Feasibility is determined on the basis of weight and volume constraints, compatibility with existing propulsion components, and adequate performance relative to operational requirements. Simulation results show that performance goals are met and that overall energy consumption of heavy duty fuel cell power plants is lower that of diesels for the same operating conditions. Overall energy consumption is substantially improved over diesel operation for locomotives.

  20. A new deformation measurement method for heavy-duty machine tool base by multipoint distributed FBG sensors

    NASA Astrophysics Data System (ADS)

    Li, Ruiya; Tan, Yuegang; Liu, Yi; Zhou, Zude; Liu, Mingyao

    2015-10-01

    The deformation of machine tool base is one of main error elements of heavy-duty CNC machine tool. A new deformation measurement method for heavy-duty machine tool base by multipoint distributed FBG sensors is developed in this study. Experiment is implemented on a real moving beam gantry machine tool. 16 FBG strain sensors are installed on the side-surface of the machine tool base. Moving the machine tool column to different positions, varying strain signals are collected. The testing results show that this distributed measurement method based on FBG sensors can effectively detect the deformation of the machine tool base. The largest deflection in vertical direction (axis Z) can be 75μm. This work is of great significance to the structure optimizing of machine tool base and real-time error compensation of heavy-duty CNC machine tool.

  1. Development of LNG-Powered Heavy-Duty Trucks in Commercial Hauling

    SciTech Connect

    Detroit Diesel Corporation; Trucking Research Institute

    1998-12-03

    In support of the U.S. Department of Energy's development, deployment, and evaluation of alternative fuels, NREL and the Trucking Research Institute contracted with Detroit Diesel Corporation (DDC) to develop and operate a liquid natural gas fueled tractor powered by a DDC Series 50 prototype natural gas engine. This is the final report on the project.

  2. The Advanced Software Development and Commercialization Project

    SciTech Connect

    Gallopoulos, E. . Center for Supercomputing Research and Development); Canfield, T.R.; Minkoff, M.; Mueller, C.; Plaskacz, E.; Weber, D.P.; Anderson, D.M.; Therios, I.U. ); Aslam, S.; Bramley, R.; Chen, H.-C.; Cybenko, G.; Gallopoulos, E.; Gao, H.; Malony, A.; Sameh, A. . Center for Supercomputing Research

    1990-09-01

    This is the first of a series of reports pertaining to progress in the Advanced Software Development and Commercialization Project, a joint collaborative effort between the Center for Supercomputing Research and Development of the University of Illinois and the Computing and Telecommunications Division of Argonne National Laboratory. The purpose of this work is to apply techniques of parallel computing that were pioneered by University of Illinois researchers to mature computational fluid dynamics (CFD) and structural dynamics (SD) computer codes developed at Argonne. The collaboration in this project will bring this unique combination of expertise to bear, for the first time, on industrially important problems. By so doing, it will expose the strengths and weaknesses of existing techniques for parallelizing programs and will identify those problems that need to be solved in order to enable wide spread production use of parallel computers. Secondly, the increased efficiency of the CFD and SD codes themselves will enable the simulation of larger, more accurate engineering models that involve fluid and structural dynamics. In order to realize the above two goals, we are considering two production codes that have been developed at ANL and are widely used by both industry and Universities. These are COMMIX and WHAMS-3D. The first is a computational fluid dynamics code that is used for both nuclear reactor design and safety and as a design tool for the casting industry. The second is a three-dimensional structural dynamics code used in nuclear reactor safety as well as crashworthiness studies. These codes are currently available for both sequential and vector computers only. Our main goal is to port and optimize these two codes on shared memory multiprocessors. In so doing, we shall establish a process that can be followed in optimizing other sequential or vector engineering codes for parallel processors.

  3. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  4. Advanced materials systems as commercial opportunities

    SciTech Connect

    Gilman, J.J.

    1987-04-01

    This paper shows that commercial opportunities in the materials area lie principally in materials systems, and much less in components made from differentiated individual materials. Examples are given.

  5. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    PubMed

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  6. 40 CFR 86.099-11 - Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... described in § 86.1230-96, diurnal plus hot soak measurements: 4.0 grams per test. (2) For the supplemental... model year diesel heavy-duty engines and vehicles. 86.099-11 Section 86.099-11 Protection of Environment... § 86.099-11 Emission standards for 1999 and later model year diesel heavy-duty engines and vehicles. (a...

  7. 40 CFR 86.004-11 - Emission standards for 2004 and later model year diesel heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... model year diesel heavy-duty engines and vehicles. 86.004-11 Section 86.004-11 Protection of Environment... § 86.004-11 Emission standards for 2004 and later model year diesel heavy-duty engines and vehicles... diesel HDEs only). (iii) Particulate. (A) For diesel engines to be used in urban buses, 0.05 gram...

  8. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  9. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  10. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  11. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  12. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... year Otto-cycle HDEs. (i) Oxides of Nitrogen plus Non-methane Hydrocarbons (NO, X + NMHC) for engines... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle...

  13. Analysis of the CO2, NOx emission and fuel consumption from a heavy-duty vehicle designed for carriage of timber

    NASA Astrophysics Data System (ADS)

    Fuc, P.; Lijewski, P.; Ziolkowski, A.

    2016-09-01

    The paper presents the results of measurements of the CO2 and NOx emission and fuel consumption recorded under actual operating conditions of a heavy-duty vehicle designed for loading and carriage of timber. The tests were performed on a specially designed test route that reflected the arrival of the vehicle to the felling site in the forest, the loading process and return to the lumberyard. The route ran through paved (asphalt) and unpaved (forest) portions. Its total length was 8.6 km. An advanced PEMS (Portable Emission Measurement System) device was used for the measurement of the exhaust emissions - SEMTECH DS by Sensors Inc. The paper analyses the CO2 and NOx emission and fuel consumption on all portions of the test route and presents a comparison between the forest and asphalt roads.

  14. Near and long term efficiency improvements to natural gas heavy duty engines. Quarterly technical progress report, July 1, 1997--September 30, 1997

    SciTech Connect

    1997-10-10

    Trucking Research Institute (TRI) in cooperation with the Department of Energy Office of Heavy Vehicle Technologies (DOE), South Coast Air Quality Management District (SCAQMD), and Gas Research Institute (GRI), requests proposals designed to support the Natural Gas Engine Enhanced Efficiency Program. This effort, which contains Programs A & B, is designed to fund projects that advance both the part and full load fuel efficiency of heavy-duty (250 hp plus) natural gas engines. Approximately $1.2 million will be available in Program A to fund up to three projects. These projects may target either or both near-term, and longer-term engine efficiency goals in addition, it is possible that one of the projects funded under Program A will be selected for additional funding for up to 42 months under Program B funding amounts are to be determined.

  15. Time- and space-resolved quantitative LIF measurements of formaldehyde in a heavy-duty diesel engine

    SciTech Connect

    Donkerbroek, A.J.; van Vliet, A.P.; Klein-Douwel, R.J.H.; Meerts, W.L.; ter Meulen, J.J.; Somers, L.M.T.; Frijters, P.J.M.; Dam, N.J.

    2010-01-15

    Formaldehyde (CH{sub 2}O) is a characteristic species for the ignition phase of diesel-like fuels. As such, the spatio-temporal distribution of formaldehyde is an informative parameter in the study of the ignition event in internal combustion engines, especially for new combustion modes like homogeneous charge compression ignition (HCCI). This paper presents quantitative data on the CH{sub 2}O distribution around diesel and n-heptane fuel sprays in the combustion chamber of a commercial heavy-duty diesel engine. Excitation of the 4{sub 0}{sup 1} band (355 nm) as well as the 4{sub 0}{sup 1}2{sub 0}{sup 1} band (339 nm) is applied. We use quantitative, spectrally resolved laser-induced fluorescence, calibrated by means of formalin seeding, to distinguish the contribution from CH{sub 2}O to the signal from those of other species formed early in the combustion. Typically, between 40% and 100% of the fluorescence in the wavelength range considered characteristic for formaldehyde is in fact due to other species, but the latter are also related to the early combustion. Numerical simulation of a homogeneous reactor of n-heptane and air yields concentrations that are in reasonable agreement with the measurements. Formaldehyde starts to be formed at about 2 CA (crank angle degrees) before the rise in main heat release. There appears to be a rather localised CH{sub 2}O formation zone relatively close to the injector, out of which formaldehyde is transported downstream by the fuel jet. Once the hot combustion sets in, formaldehyde quickly disappears. (author)

  16. Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains

    SciTech Connect

    Kelly, Kenneth; Bennion, Kevin; Miller, Eric; Prohaska, Bob

    2016-03-02

    NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impacts of duty cycle on performance requirements.

  17. 40 CFR Appendix I to Part 1037 - Heavy-Duty Transient Chassis Test Cycle

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Appendix I to Part 1037—Heavy-Duty Transient Chassis Test Cycle Timesec. Speedmph Speedm/s 1 0.00 0.00 2 0.00 0.00 3 0.00 0.00 4 0.00 0.00 5 0.00 0.00 6 0.00 0.00 7 0.41 0.18 8 1.18 0.53 9 2.26 1.01 10 3.19 1... 42 3.03 1.35 43 1.88 0.84 44 1.15 0.51 45 1.14 0.51 46 1.12 0.50 47 1.11 0.50 48 1.19 0.53 49 1.57 0...

  18. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers

    SciTech Connect

    Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

    2013-09-30

    The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

  19. Tribo-evaluation of iron based metal matrix nanocomposites for heavy duty applications

    NASA Astrophysics Data System (ADS)

    Gupta, Pallav; Kumar, Devendra; Parkash, Om; Jha, A. K.

    2017-09-01

    The present paper reports dry sliding wear behavior of Iron based Metal Matrix Nanocomposites (MMNCs). Specimens were synthesized by ball milling followed by compaction and sintering in an argon atmosphere. Dry sliding wear behavior of undoped and doped Fe-Al2O3 metal matrix nanocomposite system was evaluated respectively. It was found that due to the reactive sintering between iron and alumina particles a nano iron aluminate phase (FeAl2O4) forms as a result of which the various structural and mechanical properties were found to improve. The results so obtained are critically analyzed and discussed to illustrate the interaction of various process parameters involved. It is expected that the results of the present work will be beneficial in developing quality MMNC products for heavy duty applications.

  20. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    SciTech Connect

    Robert W. Carling; Gurpreet Singh

    2000-06-19

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work.

  1. Heavy-duty low-emission engine from Stork-Waertsilae

    SciTech Connect

    Mullins, P.

    1995-12-01

    A new heavy-duty medium-speed diesel engine range has been announced by the Waertsilae Diesel Group. A six-cylinder in-line version was shown for the first time at Europort `95. The new Waertsilae 26 power unit, of modular design, was developed at Stork-Waertsilae`s plant at Zwolle, the Netherlands. It is aimed at a wide variety of applications including marine propulsion and auxiliary use, power generation and industrial operations. The 26 engine filled a gap in the Stork-Waertsilae range and is very much a response to market demands for a power unit with high reliability, low emissions and good fuel economy. Our design approach is aimed at easy space-saving installation, multiple fuel choices and an overall low operating cost per kilowatt for the user.

  2. Marine vessels as substitutes for heavy-duty trucks in Great Lakes freight transportation.

    PubMed

    Comer, Bryan; Corbett, James J; Hawker, J Scott; Korfmacher, Karl; Lee, Earl E; Prokop, Chris; Winebrake, James J

    2010-07-01

    This paper applies a geospatial network optimization model to explore environmental, economic, and time-of-delivery tradeoffs associated with the application of marine vessels as substitutes for heavy-duty trucks operating in the Great Lakes region. The geospatial model integrates U.S. and Canadian highway, rail, and waterway networks to create an intermodal network and characterizes this network using temporal, economic, and environmental attributes (including emissions of carbon dioxide, particulate matter, carbon monoxide, sulfur oxides, volatile organic compounds, and nitrogen oxides). A case study evaluates tradeoffs associated with containerized traffic flow in the Great Lakes region, demonstrating how choice of freight mode affects the environmental performance of movement of goods. These results suggest opportunities to improve the environmental performance of freight transport through infrastructure development, technology implementation, and economic incentives.

  3. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  4. Transformation toughened ceramics for the heavy duty diesel engine technology program, phase 2

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Samanta, S. C.; Architetto, P.; Feingold, E.

    1985-01-01

    The objective of this program is to develop an insulating structural ceramic for application in a heavy duty adiabatic diesel engine. The approach is to employ transformation toughening (TT) by additions of zirconia-hafnia solid solution (ZHSS). The feasibility of using ZHSS as a toughening agent in mullite and alumina has been demonstrated in Phase 1 of this work. Based on Phase 1 results, a decision was made to concentrate the Phase 2 effort on process optimization of the TT mullite. A strong factor in that decision was the low thermal conductivity and high thermal shock resistance of the mullite. Results of the Phase 2 effort indicate that optimum toughening of mullite by additions of ZHSS is difficult to achieve due to apparent sensitivity to morphology. The 48 ksi room temperature modulus-of-rupture (MOR) achieved in selected specimens is approximately 50% of the original strength target. The MOR deteriorated to 34 ksi at 800 C.

  5. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    SciTech Connect

    Cai, Hao; Burnham, Andrew; Wang, Michael; Hang, Wen; Vyas, Anant

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  6. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    SciTech Connect

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  7. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  8. A predictive tool for emissions from heavy-duty diesel vehicles.

    PubMed

    Clark, Nigel N; Gajendran, Prakash; Kern, Stin M

    2003-01-01

    Traditional emissions inventories for trucks and buses have relied on diesel engine emissions certification data, in units of g/bhp-hr, processed to yield a value in g/mile without a detailed accounting of the vehicle activity. Research has revealed a variety of other options for inventory prediction, including the use of emissions factors based upon instantaneous engine power and instantaneous vehicle behavior. The objective of this paper is to provide tabular factors for use with vehicle activity information to describe the instantaneous emissions from each heavy-duty vehicle considered. To produce these tables, a large body of data was obtained from the research efforts of the West Virginia University-Transportable Heavy Duty Emissions Testing Laboratories (TransLabs). These data were available as continuous records of vehicle speed (hence also acceleration), vehicle power, and emissions of carbon monoxide (CO), oxides of nitrogen (NOx), and hydrocarbons (HC). Data for particulate matter (PM) were available only as a composite value for a whole vehicle test cycle, but using a best effort approach, the PM was distributed in time in proportion to the CO. Emissions values, in g/sec, were binned according to the speed and acceleration of a vehicle, and it was shown that the emissions could be predicted with reasonable accuracy by applying this table to the original speed and acceleration data. The test cycle used was found to have a significant effect on the emissions value predicted. Tables were created for vehicles grouped by type (large transit buses, small transit buses, and tractor-trailers) and by range of model year. These model year ranges were bounded by U.S. national changes in emissions standards. The result is that a suite of tables is available for application to emissions predictions for trucks and buses with known activity, or as modeled by TRANSIMS, a vehicle activity simulation model from Los Alamos National Laboratories.

  9. Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions: a new educational antismoking instrument.

    PubMed

    De Marco, Cinzia; Ruprecht, Ario Alberto; Pozzi, Paolo; Munarini, Elena; Ogliari, Anna Chiara; Mazza, Roberto; Boffi, Roberto

    2015-01-01

    Indoor smoking in public places and workplaces is forbidden in Italy since 2003, but some health concerns are arising from outdoor secondhand smoke (SHS) exposure for non-smokers. One of the biggest Italian Steel Manufacturer, with several factories in Italy and abroad, the Marcegaglia Group, recently introduced the outdoor smoking ban within the perimeter of all their factories. In order to encourage their smoker employees to quit, the Marcegaglia management decided to set up an educational framework by measuring the PM1, PM2.5 and PM10 emissions from heavy duty trucks and to compare them with the emissions of cigarettes in an indoor controlled environment under the same conditions. The exhaust pipe of two trucks powered by a diesel engine of about 13.000/14.000 cc(3) were connected with a flexible hose to a hole in the window of a container of 36 m(3) volume used as field office. The trucks operated idling for 8 min and then, after adequate office ventilation, a smoker smoked a cigarette. Particulate matter emission was thereafter analyzed. Cigarette pollution was much higher than the heavy duty truck one. Mean of the two tests was: PM1 truck 125.0(47.0), cigarettes 231.7(90.9) p = 0.002; PM2.5 truck 250.8(98.7), cigarettes 591.8(306.1) p = 0.006; PM10 truck 255.8(52.4), cigarettes 624.0(321.6) p = 0.002. Our findings may be important for policies that aim reducing outdoor SHS exposure. They may also help smokers to quit tobacco dependence by giving them an educational perspective that rebuts the common alibi that traffic pollution is more dangerous than cigarettes pollution.

  10. Semivolatile organic compound emissions from heavy-duty trucks operating on diesel and bio-diesel fuel blends

    EPA Science Inventory

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  11. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    EPA Science Inventory

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  12. Petitions for Reconsideration of Phase 2 GHG Emissions and Fuel Efficiency Standards for Medium and Heavy Duty Vehicles

    EPA Pesticide Factsheets

    EPA has received petitions for reconsideration or reconsideration of the October 25, 2016 final rulemaking entitled Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles—Phase 2 Final Rule (81 FR 73,478)

  13. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    EPA Science Inventory

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  14. 78 FR 11804 - Approval and Promulgation of Implementation Plans; State of Kansas; Idle Reduction of Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ...EPA is proposing to approve the State Implementation Plan (SIP) submitted by the State of Kansas on July 27, 2010, to add two new rules which implement restrictions on the idling of heavy duty diesel vehicles and reduce nitrogen oxide (NOX) emissions at stationary sources in the Kansas portion of the Kansas City Maintenance Area for ozone. EPA is approving this revision because the......

  15. 77 FR 51499 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... consider pure vegetable oil, and technology to enable its usage, as a feasible technology in heavy-duty... argued that NHTSA did not specifically consider pure vegetable oil, and POP Diesel's proprietary... operate on pure vegetable oil fuel, and if they had, the agencies could have considered an...

  16. 2010 Commitment Letters for MY2017-2025 Light-Duty and MY 2014-2018 Heavy-Duty Programs

    EPA Pesticide Factsheets

    The State of California and major automobile and truck manufacturers showed their support for a national heavy-duty GHG and fuel efficiency program as well as further light-duty GHG and CAFE standards by sending letters to the agencies in May 2010.

  17. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    EPA Science Inventory

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  18. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....8). (5) For diesel engine families, the combined number of engines certified to FELs higher than 0... percent of the manufacturer's U.S.-directed production of engines in all heavy-duty diesel engine families... diesel engine families, or generated for 2008 and later model year Otto-cycle engine families are...

  19. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....8). (5) For diesel engine families, the combined number of engines certified to FELs higher than 0... percent of the manufacturer's U.S.-directed production of engines in all heavy-duty diesel engine families... diesel engine families, or generated for 2008 and later model year Otto-cycle engine families are...

  20. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....8). (5) For diesel engine families, the combined number of engines certified to FELs higher than 0... percent of the manufacturer's U.S.-directed production of engines in all heavy-duty diesel engine families... diesel engine families, or generated for 2008 and later model year Otto-cycle engine families are...

  1. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....8). (5) For diesel engine families, the combined number of engines certified to FELs higher than 0... percent of the manufacturer's U.S.-directed production of engines in all heavy-duty diesel engine families... diesel engine families, or generated for 2008 and later model year Otto-cycle engine families are...

  2. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    EPA Science Inventory

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  3. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false NOX and particulate averaging, trading... § 86.007-15 NOX and particulate averaging, trading, and banking for heavy-duty engines. Section 86.007... in an NMHC averaging, banking and trading program to show compliance with the standards specified...

  4. Semivolatile organic compound emissions from heavy-duty trucks operating on diesel and bio-diesel fuel blends

    EPA Science Inventory

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  5. 40 CFR 1042.605 - Dressing engines already certified to other standards for nonroad or heavy-duty highway engines...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... other standards for nonroad or heavy-duty highway engines for marine use. 1042.605 Section 1042.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Compliance...

  6. Heavy Duty Equipment Mechanic. Apprenticeship Training Standards = Mecanicien d'equipement lourd. Normes de formation en apprentissage.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    These training standards for heavy duty equipment mechanics are intended to be used by apprentice/trainees, instructors, and companies in Ontario, Canada, as a blueprint for training or as a prerequisite for accreditation/certification. The training standards identify skills required for this occupation and its related training program. They are…

  7. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    EPA Science Inventory

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  8. Heavy Duty Equipment Mechanic. Apprenticeship Training Standards = Mecanicien d'equipement lourd. Normes de formation en apprentissage.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    These training standards for heavy duty equipment mechanics are intended to be used by apprentice/trainees, instructors, and companies in Ontario, Canada, as a blueprint for training or as a prerequisite for accreditation/certification. The training standards identify skills required for this occupation and its related training program. They are…

  9. 40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Particulate emissions shall not exceed 0.05 grams per brake horsepower-hour. (4) Formaldehyde emissions shall.... (4) Formaldehyde emissions shall not exceed 0.05 grams per brake horsepower-hour. (e) The standards... hydrocarbons, oxides of nitrogen, carbon monoxide, formaldehyde, and particulates. (2) A heavy-duty vehicle...

  10. 40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Particulate emissions shall not exceed 0.05 grams per brake horsepower-hour. (4) Formaldehyde emissions shall.... (4) Formaldehyde emissions shall not exceed 0.05 grams per brake horsepower-hour. (e) The standards... hydrocarbons, oxides of nitrogen, carbon monoxide, formaldehyde, and particulates. (2) A heavy-duty vehicle...

  11. 40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Particulate emissions shall not exceed 0.05 grams per brake horsepower-hour. (4) Formaldehyde emissions shall.... (4) Formaldehyde emissions shall not exceed 0.05 grams per brake horsepower-hour. (e) The standards... hydrocarbons, oxides of nitrogen, carbon monoxide, formaldehyde, and particulates. (2) A heavy-duty vehicle...

  12. 40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Particulate emissions shall not exceed 0.05 grams per brake horsepower-hour. (4) Formaldehyde emissions shall.... (4) Formaldehyde emissions shall not exceed 0.05 grams per brake horsepower-hour. (e) The standards... hydrocarbons, oxides of nitrogen, carbon monoxide, formaldehyde, and particulates. (2) A heavy-duty vehicle...

  13. 40 CFR 88.105-94 - Clean-fuel fleet emission standards for heavy-duty engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Particulate emissions shall not exceed 0.05 grams per brake horsepower-hour. (4) Formaldehyde emissions shall.... (4) Formaldehyde emissions shall not exceed 0.05 grams per brake horsepower-hour. (e) The standards... hydrocarbons, oxides of nitrogen, carbon monoxide, formaldehyde, and particulates. (2) A heavy-duty vehicle...

  14. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    EPA Science Inventory

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  15. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 RIN 2127-AK74 Greenhouse Gas... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty...

  16. 76 FR 59922 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 RIN 2127-AK74 Greenhouse Gas Emissions... greenhouse gas emissions for on-road heavy-duty vehicles, responding to the President's directive on May...

  17. Commercial applications of electron beam advanced oxidation technology

    NASA Astrophysics Data System (ADS)

    Curry, Randy D.; Bosma, John T.

    1995-03-01

    Emerging commercial applications of electron-beam advanced oxidation technology offer a significant advancement in the treatment of waste steams. Both electron beam and X-ray (Brehmsstrahlung) advanced oxidation processes have been shown to be effective in the destruction of volatile and semivolatile organic compounds. Emerging commercial applications, however, far exceed in scope current applications of oxidation technologies for the destruction of simple semivolatile and volatile organic compounds in water. Emerging applications include direct treatment of contaminated soil, removal of metal ions from water and sterilization of water, sludges, and food. Application of electron beam advanced oxidation technologies are reviewed, along with electron- beam-generated X-ray (Brehmsstrahlung) advanced oxidation processes. Advantages of each technology are discussed along with advanced accelerator technologies which are applicable for commercial processing of waste streams. An overview of the U.S. companies and laboratories participating in this research area are included in this discussion.

  18. Advanced thermal control technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.

    1991-01-01

    A number of the technologies previously developed for the thermal control of spacecraft have found their way into commercial application. Specialized coatings and heat pipes are but two examples. The thermal control of current and future spacecraft is becoming increasingly more demanding, and a variety of new technologies are being developed to meet these needs. Closed two-phase loops are perceived to be the answer to many of the new requirements. All of these technologies are discussed, and their spacecraft and current terrestrial applications are summarized.

  19. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-10-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g km-1, and 11.8 ± 2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOx mitigation for the HDDV

  20. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zhang, S. J.; Li, M. L.; Ge, Y. S.; Shu, J. W.; Zhou, Y.; Xu, Y. Y.; Hu, J. N.; Liu, H.; Fu, L. X.; He, K. B.; Hao, J. M.

    2012-07-01

    China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011-2015. Heavy-duty diesel vehicles (HDDVs) have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS). The major finding is that neither the on-road distance-specific (g km -1) nor brake-specific (g kW h-1) NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3±3.3 g km-1, 12.5± 1.3 g km-1, and 11.8±2.0 g km-1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009) than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program) are urged to secure the goal of total NOxmitigation for the HDDV fleet

  1. Size and composition distributions of particulate matter emissions: part 2--heavy-duty diesel vehicles.

    PubMed

    Robert, Michael A; Kleeman, Michael J; Jakober, Christopher A

    2007-12-01

    Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load

  2. SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005

    SciTech Connect

    Frank, W; Huethwohl, G; Maurer, B

    2003-08-24

    Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for Ad

  3. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    NASA Astrophysics Data System (ADS)

    Hajbabaei, Maryam

    There is a global effort to expand the use of alternative fuels due to their several benefits such as improving air quality with reducing some criteria emissions, reducing dependency on fossil fuels, and reducing greenhouse gases such as carbon dioxide. This dissertation is focused on investigating the impact of two popular alternative fuels, biodiesel and natural gas (NG), on emissions from heavy-duty engines. Biodiesel is one of the most popular renewable fuels with diesel applications. Although biodiesel blends are reported to reduce particulate matter, carbon monoxide, and total hydrocarbon emissions; there is uncertainty on their impact on nitrogen oxides (NOx) emissions. This dissertation evaluated the effect of biodiesel feedstock, biodiesel blend level, engine technology, and driving conditions on NOx emissions. The results showed that NOx emissions increase with 20% and higher biodiesel blends. Also, in this study some strategies were proposed and some fuel formulations were found for mitigating NOx emissions increases with biodiesel. The impact of 5% biodiesel on criteria emissions specifically NOx was also fully studied in this thesis. As a part of the results of this study, 5% animal-based biodiesel was certified for use in California based on California Air Resources Board emissions equivalent procedure. NG is one of the most prominent alternative fuels with larger reserves compared to crude oil. However, the quality of NG depends on both its source and the degree to which it is processed. The current study explored the impact of various NG fuels, ranging from low methane/high energy gases to high methane/low energy gases, on criteria and toxic emissions from NG engines with different combustion and aftertreatment technologies. The results showed stronger fuel effects for the lean-burn technology bus. Finally, this thesis investigated the impact of changing diesel fuel composition on the criteria emissions from a variety of heavy-duty engine

  4. Analysis of heavy-duty diesel truck activity and emissions data

    NASA Astrophysics Data System (ADS)

    Huai, Tao; Shah, Sandip D.; Wayne Miller, J.; Younglove, Ted; Chernich, Donald J.; Ayala, Alberto

    Despite their relatively small population, heavy-duty diesel vehicles (HDDVs) are (in 2005) disproportionate contributors to the emissions inventory for oxides of nitrogen (NO x) and particulate matter (PM) due to their high individual vehicle emissions rates, lack of engine aftertreatment, and high vehicle miles traveled. Beginning in the early 1990s, heavy-duty engine manufacturers began equipping their engines with electronic sensors and controls and on-board electronic computer modules (ECMs) to manage these systems. These ECMs can collect and store both periodic and lifetime engine operation data for a variety of engine and vehicle parameters including engine speed and load, time at idle, average vehicle speed, etc. The University of California, Riverside (UCR), under a contract with the California Air Resources Board (CARB), performed data analysis of 270 ECM data sets obtained from the CARB. The results from this analysis have provided insights into engine/vehicle operation that have not been obtained from previous on-board datalogger studies since those previous studies focused on vehicle operation and did not collect engine operating data. Results indicate that HDDVs spend a considerable amount of time at high-speed cruise and at idle and that a smaller percentage of time is spent under transient engine/vehicle operation. These results are consistent with other HDDV activity studies, and provide further proof of the validity of assumptions in CARB's emission factor (EMFAC2002) model. An additional important contribution of this paper is that the evaluation of vehicle ECM data provides several advantages over traditional global positioning system (GPS) and datalogger studies: (1) ECM data is significantly cheaper than the traditional method (50 record -1 vs. ˜2000 record -1) and (2) ECM data covers vehicle operation over the entire life of the vehicle, whereas traditional surveys cover only short periods of surveillance (days, weeks, or months). It is

  5. Effects of fuel oxygenates, cetane number, and aromatic content on emissions from 1994 and 1998 prototype heavy-duty diesel engines. Final report

    SciTech Connect

    Spreen, K.B.; Ullman, T.L.; Mason, R.L.

    1995-05-01

    The Coordinating Research Council-Air Pollution Research Advisory Committee (CRC-APRAC) developed the VE-10 Project to determine the effects of selected fuel properties on heavy-duty diesel engine emissions. In the first part, the VE-10 Project examined the effects of cetane number, aromatic level, and oxygen content of diesel fuel on regulated and selected unregulated emissions from two heavy-duty diesel engines calibrated for 1994 emission levels. In the second part of VE-10, cetane number effects on emissions from prototype 1998 heavy-duty engine were examined.

  6. Advanced emergency openings for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Schimmel, M. L.

    1985-01-01

    Explosively actuated openings in composite panels are proposed to enhance passenger survivability within commercial aircraft by providing improvements in emergency openings, fuselage venting, and fuel dump. The concept is to embed a tiny, highly stable explosive cord in the periphery of a load-carrying composite panel; on initiation of the cord, the panel is fractured to create a well-defined opening. The panel would be installed in the sides of the fuselage for passenger egress, in the top of the fuselage for smoke venting, and in the bottoms of the fuel cells for fuel dump. Described are the concerns with the use of explosive systems, safety improvements, advantages, experimental results, and recommended approach to gain acceptance and develop this concept.

  7. Commercialization of Australian advanced infrared technology

    NASA Astrophysics Data System (ADS)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  8. A Vector Approach to Regression Analysis and Its Implications to Heavy-Duty Diesel Emissions

    SciTech Connect

    McAdams, H.T.

    2001-02-14

    An alternative approach is presented for the regression of response data on predictor variables that are not logically or physically separable. The methodology is demonstrated by its application to a data set of heavy-duty diesel emissions. Because of the covariance of fuel properties, it is found advantageous to redefine the predictor variables as vectors, in which the original fuel properties are components, rather than as scalars each involving only a single fuel property. The fuel property vectors are defined in such a way that they are mathematically independent and statistically uncorrelated. Because the available data set does not allow definitive separation of vehicle and fuel effects, and because test fuels used in several of the studies may be unrealistically contrived to break the association of fuel variables, the data set is not considered adequate for development of a full-fledged emission model. Nevertheless, the data clearly show that only a few basic patterns of fuel-property variation affect emissions and that the number of these patterns is considerably less than the number of variables initially thought to be involved. These basic patterns, referred to as ''eigenfuels,'' may reflect blending practice in accordance with their relative weighting in specific circumstances. The methodology is believed to be widely applicable in a variety of contexts. It promises an end to the threat of collinearity and the frustration of attempting, often unrealistically, to separate variables that are inseparable.

  9. Repeat Fuel Specific Emission Measurements on Two California Heavy-Duty Truck Fleets.

    PubMed

    Haugen, Molly J; Bishop, Gary A

    2017-04-04

    The University of Denver repeated its 2013 fuel specific gaseous and particle emission measurements on two California heavy-duty vehicle fleets. In 2015 1456 measurements at the Port of Los Angeles and 694 measurements at the Cottonwood weigh station in northern California were collected. The Port fleet changed little since 2013, increasing the average age (+1.8 years), accompanied by an increase in particle mass (PM) by +266% (0.03 ± 0.01 to 0.11 ± 0.01 gPM/kg of fuel) and black carbon (BC) by +300% (0.02 ± 0.003 to 0.08 ± 0.01 gBC/kg of fuel). Particle number (PN) also increased (1.5 × 10(14) ± 2.5 × 10(13) to 2.8 × 10(14) ± 2.8 × 10(13) PN/kg of fuel) by a smaller percentage (+87%). Chassis model year 2008 and 2009 vehicles currently dominate the fleet, accounting for the majority of these increases. The long-haul Cottonwood fleet decreased in fleet age (-0.6 model years), where half the decreases in fuel specific PM (-66%), BC (-65%), and PN (-19%) emissions are due to the newer fleet; an increased fraction of pre-2008 chassis model year vehicles with retrofit diesel particulate filters (DPFs) account for the remaining reductions. These opposing emissions trends emphasize the importance of fully functional DPFs.

  10. 78 FR 36135 - Heavy-Duty Engine and Vehicle, and Nonroad Technical Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...EPA is proposing to amend provisions in the Medium- and Heavy- Duty Greenhouse Gas Emissions and Fuel Efficiency final rule issued on September 15, 2011. These proposed amendments would eliminate duplicative reporting requirements, reduce inadvertent minor differences between the EPA and NHTSA programs regarding such matters as voluntary early model year compliance, better align testing procedures to market realities, and reduce unnecessary testing burdens. EPA is also proposing to amend several regulations by: Adjusting the provisions of the replacement engine exemption; expanding EPA's discretion to allow greater flexibility under the Transition Program for Equipment Manufacturers related to the Tier 4 standards for nonroad diesel engines; specifying multiple versions of the applicable SAE standard for demonstrating that fuel lines for nonroad spark-ignition engines above 19 kilowatts meet permeation requirements; and allowing for the use of the ethanol-based test fuel specified by the California Air Resources Board for nonroad spark-ignition engines at or below 19 kilowatts. Some of the individual provisions of this action may have minor impacts on the costs and emission reductions of the underlying regulatory programs amended in this action, though in most cases these are simple technical amendments. For those provisions that may have a minor impact on the costs or benefits of the amended regulatory program, any potential impacts would be small and we have not attempted to quantify the potential changes.

  11. Evaluation of fuel consumption potential of medium and heavy duty vehicles through modeling and simulation.

    SciTech Connect

    Delorme, A.; Karbowski, D.; Sharer, P.; Energy Systems

    2010-03-31

    The main objective of this report is to provide quantitative data to support the Committee in its task of establishing a report to support rulemaking on medium- and heavy-duty fuel efficiency improvement. In particular, it is of paramount importance for the Committee to base or illustrate their conclusions on established models and actual state-of-the art data. The simulations studies presented in the report have been defined and requested by the members of the National Academy committee to provide quantitative inputs to support their recommendations. As such, various technologies and usage scenarios were considered for several applications. One of the objective is to provide the results along with their associated assumptions (both vehicle and drive cycles), information generally missing from public discussions on literature search. Finally, the advantages and limitations of using simulation will be summarized. The study addresses several of the committee tasks, including: (1) Discussion of the implication of metric selection; (2) Assessing the impact of existing technologies on fuel consumption through energy balance analysis (both steady-state and standard cycles) as well as real world drive cycles; and (3) Impact of future technologies, both individually and collectively.

  12. The energy consumption and cost savings of truck electrification for heavy duty vocational applications

    SciTech Connect

    Gao, Zhiming; Lin, Zhenhong; Franzese, Oscar

    2017-01-01

    This paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks. A simulation tool based on vehicle tractive energy methodology and component efficiency for addressing component and system performance was developed to evaluate the energy consumption and performance of the trucks. As part of this analysis, various battery sizes combined with different charging powers on the E-Trucks for local delivery and utility bucket applications were investigated. The results show that the E-Truck applications not only reduce energy consumption but also achieve significant energy cost savings. For delivery E-Trucks, the results show that periodic stops at delivery sites provide sufficient time for battery charging, and for this reason, a high-power charger is not necessary. For utility bucket PHEV trucks, energy consumption per mile of bucket truck operation is typically higher because of longer idling times and extra high idling load associated with heavy utility work. The availability of on-route charging is typically lacking at the work sites of bucket trucks; hence, the battery size of these trucks is somewhat larger than that of the delivery trucks studied.

  13. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes.

    PubMed

    He, Chao; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Liu, Zhihua; Wang, Chu; Yu, Linxiao; Ding, Yan

    2011-08-01

    In order to evaluate the effects of altitude on the pollutant emissions of a diesel engine, an experimental research was carried out using an engine test bench with an altitude simulation system. The emissions of HC, CO, NOx, smoke, and particle number of a heavy-duty diesel engine were measured under steady state operating conditions at sea level and simulated altitudes of 1000 and 2000 m. The experimental results indicate that the high altitude increases the emissions of HC, CO and smoke of the diesel engine, the average increasing rates of which are 30%, 35% and 34% with addition of altitude of 1000 m, respectively. The effect of high altitudes on the NOx emission varies with the engine types and working conditions. At 1000 m the particles number emissions are 1.6 to 4.2 times the levels at the low altitude. The pattern of the particle size distributions at 1000 m is similar with that at sea-level, which is the mono-modal lognormal distribution with geometric mean diameter around 0.1 μm. However, the peak number concentrations of particles are bigger and the exhausted particles are smaller at the high altitude.

  14. Heavy Duty Diesel Exhaust Particles during Engine Motoring Formed by Lube Oil Consumption.

    PubMed

    Karjalainen, Panu; Ntziachristos, Leonidas; Murtonen, Timo; Wihersaari, Hugo; Simonen, Pauli; Mylläri, Fanni; Nylund, Nils-Olof; Keskinen, Jorma; Rönkkö, Topi

    2016-11-15

    This study reports high numbers of exhaust emissions particles during engine motoring. Such particles were observed in the exhaust of two heavy duty vehicles with no diesel particle filter (DPF), driven on speed ramp tests and transient cycles. A significant fraction of these particles was nonvolatile in nature. The number-weighted size distribution peak was below 10 nm when a thermodenuder was used to remove semivolatile material, growing up to 40 nm after semivolatile species condensation. These particles were found to contribute to 9-13% of total particle number emitted over a complete driving cycle. Engine motoring particles originated from lube oil and evidence suggests that these are of heavy organic or organometallic material. Particles of similar characteristics have been observed in the core particle mode during normal fired engine operation. Their size and chemical character has implications primarily on the environmental toxicity of non-DPF diesel and, secondarily, on the performance of catalytic devices and DPFs. Lube oil formulation measures can be taken to reduce the emission of such particles.

  15. Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems.

    PubMed

    Tang, Shida; Frank, Brian P; Lanni, Thomas; Rideout, Greg; Meyer, Norman; Beregszaszy, Chris

    2007-07-15

    This study evaluated the effects of various combinations of fuels and emission control technologies on exhaust emissions from a heavy-duty diesel engine tested on an engine dynamometer. Ten fuels were studied in twenty four combinations of fuel and emission control technology configurations. Emission control systems evaluated were diesel oxidation catalyst (DOC), continuously regenerating diesel particulate filter (CRDPF), and the CRDPF coupled with an exhaust gas recirculation system (EGRT). The effects of fuel type and emission control technology on emissions of benzene, toluene, ethylbenzene, xylene (BTEX), and 1,3-butadiene, elemental carbon and organic carbon (EC/OC), carbonyls, polycyclic aromatic hydrocarbons (PAHs), and nitro-PAHs (n-PAHs) are presented in this paper. Regulated gaseous criteria pollutants of total hydrocarbons (THC), carbon monoxide (CO), oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have been reported elsewhere. In general, individual unregulated emission with a CRDPF or an EGRT system is similar (at very low emission level) or much lower than that operating solely with a DOC and choosing a "best" fuel. The water emulsion PuriNO(x) fuel exhibited higher BTEX, carbonyls and PAHs emissions compared to other ultralow sulfur diesel (ULSD) fuels tested in this study while n-PAH emissions were comparable to that from other ULSD fuels. Naphthalene accounted for greater than 50% of the total PAH emissions in this study and there was no significant increase of n-PAHs with the usage of CRDPF.

  16. Human health impacts of biodiesel use in on-road heavy duty diesel vehicles in Canada.

    PubMed

    Rouleau, Mathieu; Egyed, Marika; Taylor, Brett; Chen, Jack; Samaali, Mehrez; Davignon, Didier; Morneau, Gilles

    2013-11-19

    Regulatory requirements for renewable content in diesel fuel have been adopted in Canada. Fatty acid alkyl esters, that is, biodiesel, will likely be used to meet the regulations. However, the impacts on ambient atmospheric pollutant concentrations and human health outcomes associated with the use of biodiesel fuel blends in heavy duty diesel vehicles across Canada have not been evaluated. The objective of this study was to assess the potential human health implications of the widespread use of biodiesel in Canada compared to those from ultralow sulfur diesel (ULSD). The health impacts/benefits resulting from biodiesel use were determined with the Air Quality Benefits Assessment Tool, based on output from the AURAMS air quality modeling system and the MOBILE6.2C on-road vehicle emissions model. Scenarios included runs for ULSD and biodiesel blends with 5 and 20% of biodiesel by volume, and compared their use in 2006 and 2020. Although modeling and data limitations exist, the results of this study suggested that the use of biodiesel fuel blends compared to ULSD was expected to result in very minimal changes in air quality and health benefits/costs across Canada, and these were likely to diminish over time.

  17. Energetic, structural, thermal and fatigue analysis of heavy duty process pumps

    NASA Astrophysics Data System (ADS)

    Lipej, A.; Mitrusevski, D.; Zafosnik, B.

    2016-11-01

    Design of heavy duty process pumps usually based on the end user requirements. Operating conditions of pumps in the system dictate technical solution to reach high performance pump design. Pumps for special application like nuclear power plants, petroleum, petrochemical and natural gas industry should reach very high design criteria and have to fulfil requirements of different international standards for pumps. Usually energetic and cavitation characteristics are necessary issues of the development procedure. In this paper structural analysis that include thermo-mechanical loading and fatigue phenomena are also considered, because they are very important for estimation of long service life. Repeated thermomechanical loading and unloading which leads to fatigue of pumps are obtained using unsteady Computational Fluid Dynamics (CFD) with taking into account also thermodynamics equations. Complete numerical analysis is done for an example of centrifugal pump with the specific speed around nq=24. The results show energetic characteristics, thermal stresses and deformations and maximal number of operation cycles for safe and reliable operation.

  18. Nanoparticle emissions from a heavy-duty engine running on alternative diesel fuels.

    PubMed

    Heikkilä, Juha; Virtanen, Annele; Rönkkö, Topi; Keskinen, Jorma; Aakko-Saksa, Päivi; Murtonen, Timo

    2009-12-15

    We have studied the effect of three different fuels (fossil diesel fuel (EN590); rapeseed methyl ester (RME); and synthetic gas-to-liquid (GTL)) on heavy-duty diesel engine emissions. Our main focus was on nanoparticle emissions of the engine. Our results show that the particle emissions from a modern diesel engine run with EN590, GTL, or RME consisted of two partly nonvolatile modes that were clearly separated in particle size. The concentration and geometric mean diameter of nonvolatile nucleation mode cores measured with RME were substantially greater than with the other fuels. The soot particle concentration and soot particle size were lowest with RME. With EN590 and GTL, a similar engine load dependence of the nonvolatile nucleation mode particle size and concentration imply a similar formation mechanism of the particles. For RME, the nonvolatile core particle size was larger and the concentration dependence on engine load was clearly different from that of EN590 and GTL. This indicates that the formation mechanism of the core particles is different for RME. This can be explained by differences in the fuel characteristics.

  19. Wear and wear mechanism simulation of heavy-duty engine intake valve and seat inserts

    NASA Astrophysics Data System (ADS)

    Wang, Y. S.; Narasimhan, S.; Larson, J. M.; Schaefer, S. K.

    1998-02-01

    A silicon-chromium alloy frequently used for heavy-duty diesel engine intake valves was tested against eight different insert materials with a valve seat wear simulator. Wear resistance of these combinations was ranked. For each test, the valve seat temperature was controlled at approximately 510 °C, the number of cycles was 864,000 (or 24 h), and the test load was 17,640 N. The combination of the silicon-chromium valve against a cast iron insert produced the least valve seat wear, whereas a cobalt-base alloy insert produced the highest valve seat wear. In the overall valve seat recession ranking, however, the combination of the silicon-chromium valve and an iron-base chromium-nickel alloy insert had the least total seat recession, whereas the silicon-chromium valve against cobalt-base alloy, cast iron, and nickel-base alloy inserts had significant seat recession. Hardness and microstructure compatibility of valve and insert materials are believed to be significant factors in reducing valve and insert wear. The test results indicate that the mechanisms of valve seat and insert wear are a complex combination of adhesion and plastic deformation. Adhesion was confirmed by material transfer, while plastic deformation was verified by shear strain (or radial flow) and abrasion. The oxide films formed during testing also played a significant role. They prevented direct metal-to-metal contact and reduced the coefficient of friction on seat surfaces, thereby reducing adhesive and deformation-controlled wear.

  20. Effects of methanol-containing additive on emission characteristics from a heavy-duty diesel engine.

    PubMed

    Chao, M R; Lin, T C; Chao, H R; Chang, F H; Chen, C B

    2001-11-12

    This study was aimed to investigate the effect of methanol-containing additive (MCA) on the regulated emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), particulate matter (PM), as well as the unregulated carbon dioxide (CO2) and polycyclic aromatic hydrocarbons (PAHs) from a diesel engine. The engine was tested on a series of diesel fuels blended with five additive levels (0, 5, 8, 10 and 15% of MCA by volume). Emissions tests were performed under both cold- and hot-start transient heavy-duty federal test procedure (HD-FTP) cycles and two selected steady-state modes. Results show that MCA addition slightly decreases PM emissions but generally increases both THC and CO emissions. Decrease in NOx emissions was found common in all MCA blends. As for unregulated emissions, CO2 emissions did not change significantly for all MCA blends, while vapor-phase and particle-associated PAHs emissions in high load and transient cycle tests were relatively low compared to the base diesel when either 5 or 8% MCA was used. This may be attributed to the lower PAHs levels in MCA blends. Finally, the particle-associated PAHs emissions also showed trends quite similar to that of the PM emissions in this study.

  1. Nucleation mode formation in heavy-duty diesel exhaust with and without a particulate filter.

    PubMed

    Vaaraslahti, Kati; Virtanen, Annele; Ristimäki, Jyrki; Keskinen, Jorma

    2004-09-15

    Particle size distribution measurement with direct tailpipe sampling is employed to study the effect of a continuously regenerating diesel particulate filter (CRDPF) on emissions of a heavy-duty diesel engine. The CRDPF consists of an oxidation catalyst and a filter. Tests are conducted using 2 and 40 ppm sulfur content fuels and two steady-state driving modes. The formation of nucleation mode with and without CRDPF is found to depend on different parameters. Without after-treatment, size distribution is observed to have a nucleation mode only at low load. Being independent of the fuel sulfur level (with these low sulfur level fuels), this nucleation mode is suggested to form mainly from hydrocarbons. With a CRDPF-equipped engine, nucleation mode, which was not observed without CRDPF, was found at high load mode only. This nucleation mode formation was found to correlate positively with fuel sulfur content. It is suggested that sulfuric acid is a main nucleating species in this situation, resulting from the effective conversion of SO2 to SO3 in the oxidation catalyst. Using a thermodenuder confirms that the nucleation mode particles are semivolatile in nature.

  2. Clutch fill control of an automatic transmission for heavy-duty vehicle applications

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Chen, Huiyan; Zhang, Tao; Zhu, Xiaoyuan

    2015-12-01

    In this paper an integrated clutch filling phase control for gearshifts on wet clutch transmissions is developed. In a clutch-to-clutch shift of an automatic transmission, in order to obtain smooth gearshift, it should synchronize the oncoming clutch and the off-going clutch timely as well as precise pressure control for the engagement of the oncoming clutch. However, before the oncoming clutch pressure starts to increase, the initial cavity of the clutch chamber has to be filled first. The filling time and stability of the fill phase are very important for the clutch control. In order to improve the shift quality of the automatic transmission which is equipped on heavy-duty vehicles, the electro-hydraulic clutch actuation system is analysed and modelled. A new fill phase control strategy is proposed based on the system analysis as well as the control parameters are optimized according to the variation of the oil temperature and engine speed. The designed strategy is validated by a simulation work. The results demonstrate that the proposed control strategy and parameters modified method can transit the shift process from the fill phase to the torque phase effectively.

  3. Effect of fuel aromatic content on PAH emission from a heavy-duty diesel engine.

    PubMed

    Mi, H H; Lee, W J; Chen, C B; Yang, H H; Wu, S J

    2000-12-01

    Polycyclic aromatic hydrocarbons (PAHs) emission tests for a heavy-duty diesel engine fueled with blend base diesel fuel by adding batch fractions of poly-aromatic and mono-aromatic hydrocarbons, Fluorene and Toluene, respectively, were simulated to five steady-state modes by a DC-current dynamometer with fully automatic control system. The main objective of this study is to investigate the effect of total aromatic content and poly-aromatic content in diesel fuels on PAH emission from the HDD engine exhaust under these steady-state modes. The results of this study revealed that adding 3% and 5% (fuel vol%) Fluorene in the diesel fuel increases the amount of total-PAH emission by 2.6 and 5.7 times, respectively and increases the amount of Fluorene emission by 52.9 and 152 times, respectively, than no additives. However, there was no significant variation of PAH emission by adding 10% (vol%) of Toluene. To regulate the content of poly-aromatic content in diesel fuel, in contrast to the total aromatic content, will be more suitable for the management of PAH emission.

  4. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle.

    PubMed

    Rönkkö, Topi; Virtanen, Annele; Kannosto, Jonna; Keskinen, Jorma; Lappi, Maija; Pirjola, Liisa

    2007-09-15

    The characteristics of the nucleation mode particles of a Euro IV heavy-duty diesel vehicle exhaust were studied. The NOx and PM emissions of the vehicle were controlled through the use of cooled EGR and high-pressure fuel injection techniques; no exhaust gas after-treatment was used. Particle measurements were performed in vehicle laboratory and on road. Nucleation mode dominated the particle number size distribution in all the tested driving conditions. According to the on-road measurements, the nucleation mode was already formed after 0.7 s residence time in the atmosphere and no significant changes were observed for longer residence times. The nucleation mode was insensitive to the fuel sulfur content, dilution air temperature, and relative humidity. An increase in the dilution ratio decreased the size of the nucleation mode particles. This behavior was observed to be linked to the total hydrocarbon concentration in the diluted sample. In volatility measurements, the nucleation mode particles were observed to have a nonvolatile core with volatile species condensed on it. The results indicate that the nucleation mode particles have a nonvolatile core formed before the dilution process. The core particles have grown because of the condensation of semivolatile material, mainly hydrocarbons, during the dilution.

  5. Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel.

    PubMed

    Martins, Leila Droprinchinski; da Silva Júnior, Carlos Roberto; Solci, Maria Cristina; Pinto, Jurandir Pereira; Souza, Davi Zacarias; Vasconcellos, Pérola; Guarieiro, Aline Lefol Nani; Guarieiro, Lílian Lefol Nani; Sousa, Eliane Teixeira; de Andrade, Jailson B

    2012-05-01

    In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

  6. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    SciTech Connect

    Wai-Lin Litzke; James Wegrzyn

    2001-05-14

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications.

  7. Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul

    This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.

  8. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.

    PubMed

    Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J

    2017-01-17

    Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.

  9. Advanced metal-membrane technology-commercialization

    SciTech Connect

    Edlund, D.J.

    1995-06-01

    The gasification of coal offers a potentially significant source of hydrogen for use in clean power generation and as a primary chemical feedstock. However, hydrogen derived from coal continues to be more expensive than hydrogen derived from natural gas or petroleum, due in large part to the expense of separating hydrogen from the mixture of gases produced during gasification. At Bend Research, we have been developing a novel hydrogen-permeable metal membrane that promises to be economical for hydrogen separation and purification, including the purification of hydrogen derived from gasifying coal. Furthermore, the membrane is ideally suited for use at high temperatures (200{degrees} to 500{degrees}C), making it feasible to produce pure hydrogen directly from hot gas streams. Through a partnership with Teledyne Wah Chang, we are proceeding with scale-up of prototype membrane modules and field tests to demonstrate the technology to potential users. Additionally, we are working with potential customers to estimate capital savings and operating costs for integrated systems. In this paper, we present some of the operating characteristics of the metal membrane, including its use to drive equilibrium-limited reactions toward complete conversion (e.g., the water-gas-shift reaction). We also describe our activities for commercializing this technology for a variety of applications.

  10. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    PubMed

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure

  11. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    PubMed

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  12. Implementation of advanced technologies in commercial monoclonal antibody production.

    PubMed

    Zhou, Joe X; Tressel, Tim; Yang, Xiaoming; Seewoester, Thomas

    2008-10-01

    Process advancements driven through innovations have been key factors that enabled successful commercialization of several human therapeutic antibodies in recent years. The production costs of these molecules are higher in comparison to traditional medicines. In order to lower the development and later manufacturing costs, recent advances in antibody production technologies target higher throughput processes with increased clinical and commercial economics. In this review, essential considerations and trends for commercial process development and optimization are described, followed by the challenges to obtain a high titer cell culture process and its subsequent impact on the purification process. One of these recent technical advances is the development and implementation of a disposable Q membrane adsorber as an alternative to a Q-packed-bed column in a flow-through mode. The scientific concept and principles underlining Q membrane technology and its application are also reviewed.

  13. The effect of fuel processes on heavy duty automotive diesel engine emissions

    SciTech Connect

    Reynolds, E.G.

    1995-12-31

    The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxide levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.

  14. Size distribution of trace organic species emitted from heavy-duty diesel vehicles.

    PubMed

    Riddle, Sarah G; Robert, Michael A; Jakober, Chris A; Hannigan, Michael P; Kleeman, Michael J

    2007-03-15

    Size distributions of particulate hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs) were measured in the exhaust from four heavy-duty diesel vehicles (HDDVs) operated under idle, creep, transient, and two high-speed driving modes. Particulate matter was collected using a chassis dynamometer and a dilution sampling system equipped with cascade impactors and filter samplers. Samples were extracted using organic solvents and analyzed using gas chromatography-mass spectrometry. Size distributions of hopanes and steranes were functions of engine load conditions and vehicle technology. Hopanes and steranes peaked in size ranges larger than 0.18 microm aerodynamic particle diameter under light load conditions and less than 0.10 microm aerodynamic particle diameter under heavier load conditions. The eight hopane size distributions emitted from newertechnology (> 1998) vehicles were unimodal while the four hopane size distributions emitted from older technology vehicles (< 1992) were bimodal. Similar trends between older and newer vehicles were not observed for sterane size distributions. The PAH composition emitted from HDDVs was a function of driving cycle and vehicle technology. Light driving cycles produced quantifiable emissions of 3, 4, 5, and 6 ring PAHs (including coronene). Heavier driving cycles produced only the 3 and 4 ring PAHs in quantifiable amounts. PM1.8 and PM0.1 source profiles constructed using the relative abundance of hopanes and steranes to total organic carbon were functions of vehicle load condition. Increasing load reduced the relative abundance of motor oil tracers in the PM1.8 size fraction and increased the abundance of these tracers in the PM0.1 size fraction. The relative abundances of PAHs in the PM0.1 and PM1.8 size fractions emitted from the oldest vehicle tested (1985 HDDV) were significantly higher than for any other vehicle tested.

  15. Measurement of black carbon and particle number emission factors from individual heavy-duty trucks.

    PubMed

    Ban-Weiss, George A; Lunden, Melissa M; Kirchstetter, Thomas W; Harley, Robert A

    2009-03-01

    Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel trucks driving through a 1-km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO2 concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for approximately 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg(-1) and maximum values of approximately 10 g kg(-1). Corresponding values for PN emission factors were 4.7 x 10(15) and 4 x 10(16) # kg(-1). There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1sigma) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from +/- 43% for n=10 to +/- 8% for n=300, illustrating the importance of vehicle sample sizes in emissions studies. When n=10, sample means are more likely to be biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in the future, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet will become more of a challenge.

  16. Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

    SciTech Connect

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-02-02

    Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO{sub 2}B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for {approx} 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg {sup -1} and maximum values of {approx} 10 g kg{sup -1}. Corresponding values for PN emission factors were 4.7 x 10{sup 15} and 4 x 10{sup 16} kg{sup -1}. There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1{sigma}) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from {+-} 43% for n = 10 to {+-} 8% for n = 300, illustrating the importance of sufficiently large vehicle sample sizes in emissions studies. Studies with low sample sizes are also more easily biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in future years, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet are expected to become more of a challenge.

  17. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  18. Effect of truck operating weight on heavy-duty diesel emissions.

    PubMed

    Gajendran, Prakash; Clark, Nigel N

    2003-09-15

    Heavy-duty diesel vehicles are substantial contributors of oxides of nitrogen (NO(x)) and particulate matter (PM) while carbon monoxide and hydrocarbon (HC) emissions from diesel vehicles receive less attention. Truck emissions inventories have traditionally employed average fuel economy and engine efficiency factors to translate certification into distance-specific (g/mi) data, so that inventories do not take into account the real effects of truck operating weight on emissions. The objective of this research was to examine weight corrections for class 7 and 8 vehicles (over 26 000 lb (11 793 kg) gross vehicle weight) from a theoretical point of view and to present a collection of original data on the topic. It was found by combining an empirical equation with theoretical truck loads that the NO(x) emissions increased by approximately 54% for a doubling of test weight. Emissions data were gathered from specific tests performed using different test weights and using various test schedules, which can consist of cycles or routes. It was found experimentally that NO(x) emissions have a nearly linear correlation with vehicle weight and did not vary much from vehicle to vehicle. NO(x) emissions were also found to be insensitive to transient operation in the test schedule. The observed trends correlate well with the theory presented, and hence, the NO(x) emissions can be predicted reasonably accurately using the theory. If NO(x) data were considered in fuel-specific (g/gal) units, they did not vary with the test weight. HC emissions were found to be insensitive to the vehicle weight. CO and PM emissions were found to be a strong function of weight during transient operation. Under transient operation, the CO emissions value increased by 36% for an increase in test weight from 42 000 (19 051 kg) to 56 000 lb (25 401 kg). However, CO and PM were found to be insensitive to the vehicle weight during nearly steady-state operation.

  19. The transportable heavy-duty engine emissions testing laboratory. Annual progress report, April 1990--April 1991

    SciTech Connect

    Not Available

    1991-05-01

    West Virginia University has designed and constructed a Transportable Emissions Testing Laboratory for measuring emissions from heavy duty vehicles, such as buses and trucks operating on conventional and alternative fuels. The laboratory facility can be transported to a test site located at, or nearby, the home base of the vehicles to be tested. The laboratory has the capability of measuring vehicle emissions as the vehicle is operated under either transient or steady state loads and speeds. The exhaust emissions from the vehicle is sampled and the levels of the constituents of the emission are measured. The laboratory consists of two major units; a power absorber unit and an emissions measurement unit. A power absorber unit allows for the connection of a dynamic load to the drive train of the vehicle so that the vehicle can be ``driven`` through a test cycle while actually mounted on a stationary test bed. The emissions unit contains instrumentation and equipment which allows for the dilution of the vehicle`s exhaust with air. The diluteed exhaust is sampled and analyzed to measure the level of concentration of those constituents which have been identified to have impact on the clean environment. Sampling probes withdraw diluted exhaust which is supplied to a number of different exhaust gas analysis instruments. The exhaust gas analysis instruments have the capability to measure the levels of the following exhaust gas constituents: carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), unburned hydrocarbons (HC), formaldehyde (HCHO), methane and particulate matter. Additional instruments or sampling devices can be installed whenever measurements of additional constituents are desired. A computer based, data acquisition system is used to continuously monitor a wide range of parameters important to the operation of the test and to record the test results.

  20. Single-event upset in advanced commercial power PC microprocessors

    NASA Technical Reports Server (NTRS)

    Irom, F.; Farmanesh, F.; Swift, G. M.; Johnston, A. H.

    2003-01-01

    Single-event upset from heavy ions in measured for advanced commercial microprocessors, comparing upset sensitivity in registers and d-cache for several generations of devices. Multiple-bit upsets and asymmetry in registers upset cross sections are also discussed.

  1. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    SciTech Connect

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth; Lammert, Michael

    2016-10-06

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.

  2. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint

    SciTech Connect

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth; Lammert, Michael

    2016-08-01

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.

  3. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    SciTech Connect

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth; Lammert, Michael

    2016-05-02

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.

  4. [Applied physiology: the work of driving an industrial heavy-duty truck on the highway].

    PubMed

    Wyss, V; Cavalli, S

    1983-07-01

    Scope of this work was the investigation of the following parameters: energetic metabolism, by O2 consumption measurement using the open-circuit technique; pulmonary ventilation; cardio-circulatory activity behaviour, by recording heart rate, E.C.G., arterial blood pressure and plethysmography of lower limbs; body temperature pattern; visual function, through the determination of the visual field; kidney function through urine analysis; body joints flexibility, by proper test. The subjects chosen for this investigation are three experienced heavy-duty vehicle drivers that where submitted to proper checks before, during and after having driven a 190.38 Model truck fitted with spoiler and an S.R. Viber, high cargo body tarpaulin, PTT, 43.2 tons overall weight truck, over 9 different courses including town traffic, level highway, up and downhill highway with different gradients, in a period from 9 a.m. to 8 p.m. Along the total run of 404 kilometres, covered in 364 minutes, recording of the parameters under investigation was carried out over 249 kilometres covered 240 minutes (72% of overall driving time). Energy expenditure (1.20 +/- .19 Kcal/min at rest) resulted higher on steep uphill stretches with many bends (2.28 +/- .44 Kcal/min) than on less steep up- and downhill stretches and in city traffic (1.82 +/- .21 Kcal/min). The lowest energy expenditure--in some cases lower than the value found in the experimental rest--was recorded during motorway driving (1.28 +/- .19 Kcal/min). Pulmonary ventilation was characterized by frequent changes in rate and tidal air, in strict relationship with driving work bio-mechanical requirements (operation of the steering wheel). Also heart rate underwent ariations well in line with the energy expenditure pattern: of limited magnitude in uphill driving (+33% max over the value at rest), up to values identical with those at rest in the level highway drive. No appreciable variations were recorded in the respiratory quotient, calories

  5. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    NASA Astrophysics Data System (ADS)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  6. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine.

    PubMed

    McCormick, R L; Graboski, M S; Alleman, T L; Herring, A M; Tyson, K S

    2001-05-01

    Biodiesel is an oxygenated diesel fuel made from vegetable oils and animal fats by conversion of the triglyceride fats to esters via transesterification. In this study we examined biodiesels produced from a variety of real-world feedstocks as well as pure (technical grade) fatty acid methyl and ethyl esters for emissions performance in a heavy-duty truck engine. The objective was to understand the impact of biodiesel chemical structure, specifically fatty acid chain length and number of double bonds, on emissions of NOx and particulate matter (PM). A group of seven biodiesels produced from real-world feedstocks and 14 produced from pure fatty acids were tested in a heavy-duty truck engine using the U.S. heavy-duty federal test procedure (transient test). It was found that the molecular structure of biodiesel can have a substantial impact on emissions. The properties of density, cetane number, and iodine number were found to be highly correlated with one another. For neat biodiesels, PM emissions were essentially constant at about 0.07 g/bhp-h for all biodiesels as long as density was less than 0.89 g/cm3 or cetane number was greater than about 45. NOx emissions increased with increasing fuel density or decreasing fuel cetane number. Increasing the number of double bonds, quantified as iodine number, correlated with increasing emissions of NOx. Thus the increased NOx observed for some fuels cannot be explained by the NOx/PM tradeoff and is therefore not driven by thermal NO formation. For fully saturated fatty acid chains the NOx emission increased with decreasing chain length for tests using 18, 16, and 12 carbon chain molecules. Additionally, there was no significant difference in NOx or PM emissions for the methyl and ethyl esters of identical fatty acids.

  7. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 1

    SciTech Connect

    2000-03-02

    The transportation sector accounts for approximately 65% of US petroleum consumption. Consumption for light-duty vehicles has stabilized in the last 10--15 years; however, consumption in the heavy-duty sector has continued to increase. For various reasons, the US must reduce its dependence on petroleum. One significant way is to substitute alternative fuels (natural gas, propane, alcohols, and others) in place of petroleum fuels in heavy-duty applications. Most alternative fuels have the additional benefit of reduced exhaust emissions relative to petroleum fuels, thus providing a cleaner environment. The best long-term technology for heavy-duty alternative fuel engines is the 4-stroke cycle, direct injected (DI) engine using a single fuel. This DI, single fuel approach maximizes the substitution of alternative fuel for diesel and retains the thermal efficiency and power density of the diesel engine. This report summarizes the results of the first year (Phase 1) of this contract. Phase 1 focused on developing a 4-stroke cycle, DI single fuel, alternative fuel technology that will duplicate or exceed diesel power density and thermal efficiency, while having exhaust emissions equal to or less than the diesel. Although the work is currently on a 3500 Series DING engine, the work is viewed as a basic technology development that can be applied to any engine. Phase 1 concentrated on DING engine component durability, exhaust emissions, and fuel handling system durability. Task 1 focused on identifying primary areas (e.g., ignition assist and gas injector systems) for future durability testing. In Task 2, eight mode-cycle-averaged NO{sub x} emissions were reduced from 11.8 gm/hp-hr (baseline conditions) to 2.5 gm/hp-hr (modified conditions) on a 3501 DING engine. In Task 3, a state-of-the-art fuel handling system was identified.

  8. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  9. Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries

    PubMed Central

    Laser, Mark; Lynd, Lee R.

    2014-01-01

    This study addresses the question, “When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?” In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560–820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles. PMID:24550477

  10. Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries.

    PubMed

    Laser, Mark; Lynd, Lee R

    2014-03-04

    This study addresses the question, "When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?" In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560-820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles.

  11. Effects of Particle Filters and Selective Catalytic Reduction on Heavy-Duty Diesel Drayage Truck Emissions at the Port of Oakland.

    PubMed

    Preble, Chelsea V; Dallmann, Timothy R; Kreisberg, Nathan M; Hering, Susanne V; Harley, Robert A; Kirchstetter, Thomas W

    2015-07-21

    Effects of fleet modernization and use of diesel particle filters (DPF) and selective catalytic reduction (SCR) on heavy-duty diesel truck emissions were studied at the Port of Oakland in California. Nitrogen oxides (NOx), black carbon (BC), particle number (PN), and size distributions were measured in the exhaust plumes of ∼1400 drayage trucks. Average NOx, BC, and PN emission factors for newer engines (2010-2013 model years) equipped with both DPF and SCR were 69 ± 15%, 92 ± 32%, and 66 ± 35% lower, respectively, than 2004-2006 engines without these technologies. Intentional oxidation of NO to NO2 for DPF regeneration increased tailpipe NO2 emissions, especially from older (1994-2006) engines with retrofit DPFs. Increased deployment of advanced controls has further skewed emission factor distributions; a small number of trucks emit a disproportionately large fraction of total BC and NOx. The fraction of DPF-equipped drayage trucks increased from 2 to 99% and the median engine age decreased from 11 to 6 years between 2009 and 2013. Over this period, fleet-average BC and NOx emission factors decreased by 76 ± 22% and 53 ± 8%, respectively. Emission changes occurred rapidly compared to what would have been observed due to natural (i.e., unforced) turnover of the Port truck fleet. These results provide a preview of more widespread emission changes expected statewide and nationally in the coming years.

  12. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  13. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  14. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    SciTech Connect

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  15. Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears

    PubMed Central

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis. PMID:22346592

  16. Heavy-Duty Vehicle Emissions in the Mexico City Metropolitan Area during the MCMA-2003 Field Measurement Campaign

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Dunlea, E. J.; Marr, L.; Slott, R. S.; Molina, L. T.; Molina, M. J.; Herndon, S. C.; Jayne, J. T.; Shorter, J. H.; Worsnop, D.; Zahniser, M.; Onasch, T.; Kolb, C. E.; Rogers, T.; Knighton, B.

    2004-12-01

    On-road vehicle emissions were measured in the Mexico City Metropolitan Area (MCMA) as part of an intensive, five-week, field campaign held in the spring of 2003 (April 1 - May 5). Vehicle emissions measurements were made during vehicle chase experiments using the Aerodyne Mobile Laboratory. The mobile lab was equipped with a large suite of state-of-the-art analytical instruments for measuring both gas and particle phase chemical components from vehicle emissions in real time. The experiment represents a real-world sample of more than 200 in-use vehicles. The results presented here focus on heavy-duty gasoline (HDGT) and heavy-duty diesel trucks (HDDT), although measurements included pick up trucks, colectivos (microbuses), and private automobiles as well. The use of covariance and fitting methods for individual species vs. CO2 allows the estimation of individual emission ratios in a real time plume-based analysis. The variability of emission ratios within a vehicle class and during different driving modes (acceleration, idling, etc.) are explored. Results are reported as molar emission ratios of emission gases with carbon dioxide. These and other vehicle-related emissions measured during the campaign will be presented and discussed. These types of studies are important for the development of emission inventories and their use in air quality modeling studies in urban areas.

  17. Study and application of acoustic emission testing in fault diagnosis of low-speed heavy-duty gears.

    PubMed

    Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei

    2011-01-01

    Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.

  18. Effect of methanol-containing additive on the emission of carbonyl compounds from a heavy-duty diesel engine.

    PubMed

    Chao, H R; Lin, T C; Chao, M R; Chang, F H; Huang, C I; Chen, C B

    2000-03-13

    This study was aimed at determining the effect of methanol-containing additive (MCA) on the emission of carbonyl compounds (CBCs) generated from the diesel engine. For this experiment, a heavy-duty diesel engine was connected with a full flow critical flow ventri (CFV) type dilution tunnel, a Schenck GS-350 DC dynamometer, and a DC-IV control system in series. The operating conditions of the heavy-duty diesel engine for both cold-start and hot-start Transient Cycle tests and for both low-load and high-load steady-state tests were ascertained. The exhaust of CBCs collected from a 2,4-dinitrophenylhydrazine (2,4-DNPH)-coated cartridge were first converted to corresponding hydrazone derivatives, which were then solvent-eluted and analyzed by a High Performance Liquid Chromatograph (HPLC) with an ultraviolet-visible (UV) detector. When either 10% or 15% MCA was used, the emission factors of the CBCs acrolein and isovaleraldehyde increased by at least 91%. Accordingly, future studies must be done to cut down the emission of CBCs when MCA and methanol alternative fuels are used.

  19. Commercial introduction of the Advanced NOxTECH system

    SciTech Connect

    Sudduth, B.C.

    1997-12-31

    NOxTECH is BACT for diesel electric generators. Emissions of NO{sub x} are reduced 95% or more with substantial concurrent reductions in CO, particulates, and ROG`s. No engine modifications or other exhaust aftertreatments can remove all criteria pollutants as effectively as NOxTECH. The NOxTECH system reliably maintains NH{sub 3} slip below 2 ppm. Unlike other emissions controls, NOxTECH does not generate hazardous by-products. The Advanced NOxTECH system reduces the size, weight, and cost for BACT emissions reductions. Based on the operation of a 150 kW prototype, NOxTECH, Inc. is quoting commercial units for diesel electric generators. Advanced NOxTECH equipment costs about half as much as SCR systems, and NO{sub x} reduction can exceed 95% with guarantees for emissions compliance.

  20. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  1. Effects of diesel fuel combustion-modifier additives on In-cylinder soot formation in a heavy-duty Dl diesel engine.

    SciTech Connect

    Musculus, Mark P. (Sandia National Laboratories, Livermore, CA); Dietz, Jeff

    2005-07-01

    Based on a phenomenological model of diesel combustion and pollutant-formation processes, a number of fuel additives that could potentially reduce in-cylinder soot formation by altering combustion chemistry have been identified. These fuel additives, or ''combustion modifiers'', included ethanol and ethylene glycol dimethyl ether, polyethylene glycol dinitrate (a cetane improver), succinimide (a dispersant), as well as nitromethane and another nitro-compound mixture. To better understand the chemical and physical mechanisms by which these combustion modifiers may affect soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured, using an optically-accessible, heavy-duty, direct-injection diesel engine. A line-of-sight laser extinction diagnostic was employed to measure the relative soot concentration within the diesel jets (''jetsoot'') as well as the rates of deposition of soot on the piston bowl-rim (''wall-soot''). An OH chemiluminescence imaging technique was utilized to measure the lift-off lengths of the diesel diffusion flames so that fresh oxygen entrainment rates could be compared among the fuels. Measurements were obtained at two operating conditions, using blends of a base commercial diesel fuel with various combinations of the fuel additives. The ethanol additive, at 10% by mass, reduced jet-soot by up to 15%, and reduced wall-soot by 30-40%. The other fuel additives also affected in-cylinder soot, but unlike the ethanol blends, changes in in-cylinder soot could be attributed solely to differences in the ignition delay. No statistically-significant differences in the diesel flame lift-off lengths were observed among any of the fuel additive formulations at the operating conditions examined in this study. Accordingly, the observed differences in in-cylinder soot among the fuel formulations cannot be attributed to differences in fresh oxygen entrainment upstream of the soot-formation zones after ignition.

  2. Exhaust emissions from light- and heavy-duty vehicles: chemical composition, impact of exhaust after treatment, and fuel parameters.

    PubMed Central

    Westerholm, R; Egebäck, K E

    1994-01-01

    This paper presents results from the characterization of vehicle exhaust that were obtained primarily within the Swedish Urban Air Project, "Tätortsprojektet." Exhaust emissions from both gasoline- and diesel-fueled vehicles have been investigated with respect to regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], nitrogen oxides [NOx], and particulate), unregulated pollutants, and in bioassay tests (Ames test, TCDD receptor affinity tests). Unregulated pollutants present in both the particle- and the semi-volatile phases were characterized. Special interest was focused on the impact of fuel composition on heavy-duty diesel vehicle emissions. It was confirmed that there exists a quantifiable relationship between diesel-fuel variables of the fuel blends, the chemical composition of the emissions, and their biological effects. According to the results from the multivariate analysis, the most important fuel parameters are: polycyclic aromatic hydrocarbons (PAH) content, 90% distillation point, final boiling point, specific heat, aromatic content, density, and sulfur content. PMID:7529699

  3. Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui

    2016-02-01

    The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.

  4. The influence of fuel type on the cooling system heat exchanger parameters in heavy-duty engines

    NASA Astrophysics Data System (ADS)

    Worsztynowicz, B.

    2016-09-01

    The paper discuses the problem of selection of cooling systems for heavy-duty engines fitted in city buses. Aside from diesel engines, engine manufacturers also have in their portfolio engines fueled with natural gas, whose design is based on that of a conventional diesel engine. Based on the parameters of the engines from this type-series (the same displacement and rated power) an analysis has been performed of the influence of the applied fuel on the heat flows directed to the radiators and charge air coolers, hence, their size and space necessary for their proper installation. A replacement of a diesel engine with a natural gas fueled engine of the same operating parameters results in an increased amount of heat released to the coolant and a reduced heat from the engine charging system. This forces a selection of different heat exchangers that require more space for installation. A universal cooling module for different engines is not an optimal solution.

  5. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.

    PubMed

    Weigand, B; Semmler, K; von Wolfersdorf, J

    2001-05-01

    The present review paper, although far from being complete, aims to give an overview about the present state of the art in the field of heat transfer technology for internal cooling of gas turbine blades. After showing some typical modern cooled blades, the different methods to enhance heat transfer in the internal passages of air-cooled blades are discussed. The complicated flows occurring in bends are described in detail, because of their increasing importance for modern cooling designs. A short review about testing of cooling design elements is given, showing the interaction of the different cooling features as well. The special focus of the present review has been put on the cooling of blades for heavy-duty gas turbines, which show several differences compared to aero-engine blades.

  6. Pre- and post-injection flow characterization in a heavy-duty diesel engine using high-speed PIV

    NASA Astrophysics Data System (ADS)

    Zegers, R. P. C.; Luijten, C. C. M.; Dam, N. J.; de Goey, L. P. H.

    2012-09-01

    High-speed particle image velocimetry (HS-PIV) using hollow microspheres has been applied to characterize the flow in a heavy-duty diesel engine during and after fuel injection. The injection timings were varied in the range representing those used in premixed charge compression ignition (PCCI) regimes, and multiple injections have been applied to investigate their influence on the flow inside the combustion chamber. By injecting into pure nitrogen, combustion is avoided and the flow can be studied long after injection. The results show a sudden change of air motion at the start of injection as a result of the air entrainment at the core of the spray. Furthermore, as expected, spray injection causes a considerable increase in the cycle-to-cycle fluctuations of the flow pattern, the more so for longer injection durations.

  7. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  8. 75 FR 68575 - Revisions To In-Use Testing for Heavy-Duty Diesel Engines and Vehicles; Emissions Measurement and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...This NPRM proposes to make several revisions to EPA's mobile source emission programs and test procedures. EPA believes that each of these is minor and non-controversial in nature. Most of the proposed changes arise from the results of the collaborative test program and related technical work we conducted for the highway heavy-duty diesel in-use testing program. Most noteworthy here is the proposal to adopt a particulate matter measurement allowance for use with portable emission measurement systems. Related to this are two provisions to align the in-use program timing requirements with completion of the program as required in current regulations and the incorporation of revisions to a few technical requirements in the testing regulations based on information learned in this and one other test program. Finally, the NPRM proposes to modify a few transitional flexibilities for locomotive, recreational marine, and Tier 4 nonroad engines and incorporates a handful of minor corrections.

  9. 75 FR 68448 - Revisions to In-Use Testing for Heavy-Duty Diesel Engines and Vehicles; Emissions Measurement and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ...EPA is taking direct final action on several revisions to EPA's mobile source emission programs standards and test procedures. EPA believes that each of these is minor and non-controversial in nature. Most of the changes arise from the results of the collaborative test program and related technical work we conducted for the highway heavy-duty diesel in-use testing program. Most noteworthy here is the adoption of a particulate matter measurement allowance for use with portable emission measurement systems. Related to this are two provisions to align the in-use program timing requirements with completion of the program as required in current regulations and the incorporation of revisions to a few technical requirements in the testing regulations based on information learned in this and one other test program. Finally, the DFR modifies a few transitional flexibilities for locomotive, recreational marine, and Tier 4 nonroad engines and incorporates a handful of minor corrections.

  10. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  11. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2010-12-01

    We assessed the contribution of water-soluble transition metals to the reactive oxygen species (ROS) activity of diesel exhaust particles (DEPs) from four heavy-duty vehicles in five retrofitted configurations (V-SCRT, Z-SCRT, DPX, hybrid, and school bus). A heavy-duty truck without any control device served as the baseline vehicle. Particles were collected from all vehicle-configurations on a chassis dynamometer under three driving conditions: cruise (80 km h -1), transient UDDS, and idle. A sensitive macrophage-based in vitro assay was used to determine the ROS activity of collected particles. The contribution of water-soluble transition metals in the measured activity was quantified by their removal using a Chelex ® complexation method. The study demonstrates that despite an increase in the intrinsic ROS activity (per mass basis) of exhaust PM with use of most control technologies, the overall ROS activity (expressed per km or per h) was substantially reduced for retrofitted configurations compared to the baseline vehicle. Chelex treatment of DEPs water extracts removed a substantial (≥70%) and fairly consistent fraction of the ROS activity, which ascertains the dominant role of water-soluble metals in PM-induced cellular oxidative stress. However, relatively lower removal of the activity in few vehicle-configurations (V-SCRT, DPX and school bus idle), despite a large aggregate metals removal, indicated that not all species were associated with the measured activity. A univariate regression analysis identified several transition metals (Fe, Cr, Co and Mn) as significantly correlated ( R > 0.60; p < 0.05) with the ROS activity. Multivariate linear regression model incorporating Fe, Cr and Co explained 90% of variability in ROS levels, with Fe accounting for the highest (84%) fraction of the variance.

  12. A critical review of the effectiveness of I/M programs for monitoring PM emissions from heavy duty vehicles.

    PubMed

    Van Houtte, Jeroen; Niemeier, Deb

    2008-11-01

    Heavy-duty vehicles (HDV) are estimated to contribute up to 36% of particulate matter (PM) emissions in urban areas. In response, many agencies have established HDV inspection and maintenance (I/M) programs designed to target and repair vehicles with excess emissions. In this review, we conduct an international comparison of legislative context and HDV I/M program characteristics across Europe, North America, and Australia. The results of this analysis show that HDV-I/M programs vary greatly in terms of the ways in which testing is organized, for example, roadside versus periodic testing, whether the fleet is self-tested, and how nonfleet and age exemptions are handled. We also show how the I/M test criteria have changed little in the last 15 years while regulations for new heavy-duty diesel engine emissions have become increasingly stringent. In the U.S., HDV engine PM emissions limits were reduced by a factor of 26 between 1997 and 2007. Most I/M programs have continued to test according to EPA (and often with state legislative confirmation) guidance procedures having cut-points established in 1992. An analysis of data from Washington State show that only a minority of post-1997 vehicles actually exceeds the detection levels of the free-acceleration smoke-opacity test procedures, with the result that malfunctions of these vehicles may not actually be detected. From our review, it is clear that even with the potential adoption of new technologies and a more systematic and efficient framework for HDV-I/M, more research must be conducted in the efficacies of periodic versus roadside testing (and location selection), the use of evaluation methods like fail rates and opacity distributions, and finally, in development of better methods for identifying excess emissions with sensors and duty cycles.

  13. 40 CFR 86.007-11 - Emission standards and supplemental requirements for 2007 and later model year diesel heavy-duty...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... Commonwealth of the Northern Mariana Islands shall be subject to the same standards and requirements as apply... TERRITORY OF THE UNITED STATES EXCEPT GUAM, AMERICAN SAMOA, OR THE COMMONWEALTH OF THE NORTHERN...

  14. 40 CFR 86.007-11 - Emission standards and supplemental requirements for 2007 and later model year diesel heavy-duty...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... Commonwealth of the Northern Mariana Islands shall be subject to the same standards and requirements as apply... TERRITORY OF THE UNITED STATES EXCEPT GUAM, AMERICAN SAMOA, OR THE COMMONWEALTH OF THE NORTHERN...

  15. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part...

  16. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part...

  17. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES Pt. 86, App. X Appendix X to Part 86—Sampling Plans...

  18. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part...

  19. Test/QA plan for the verification testing of selective catalytic reduction control technologies for highway, nonroad use heavy-duty diesel engines

    EPA Science Inventory

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  20. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  1. Test/QA plan for the verification testing of selective catalytic reduction control technologies for highway, nonroad use heavy-duty diesel engines

    EPA Science Inventory

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  2. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Pt. 86, App. X Appendix X to Part 86—Sampling...

  3. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  4. EPA and NHTSA to Propose Greenhouse Gas and Fuel Efficiency Standards for Heavy-Duty Trucks; Begin Process for Further Light-Duty Standards Factsheet

    EPA Pesticide Factsheets

    This fact sheet is an overview of EPA and NHTSA's plan to reduce greenhouse gas emissions and improve fuel economy for heavy-duty trucks, and to adopt the 2nd phase of GHG and fuel economy standards for light-duty vehicles for MY 2017 and beyond.

  5. New enzyme insights drive advances in commercial ethanol production.

    PubMed

    Harris, Paul V; Xu, Feng; Kreel, Nathaniel E; Kang, Connie; Fukuyama, Shiro

    2014-04-01

    Innovations at a small scale through enzyme discovery in the laboratory can have large scale impacts when rolled out in an industrial process, and this is evidenced in recent advances for commercial ethanol production. In the starch to ethanol processes, new enzyme product launches squeeze even more value from an already efficient process, as evidenced in new use of proteases for oil release and cellulases for downstream processing and ethanol yield. As for biomass to ethanol, diverse new thermophilic enzymes, expansins and auxiliary activity (AA) collections are growing rapidly. Our mechanistic understanding of the functions of AA family 9, cellulose binding modules, and cellulase/xylanase synergy will lead to continued improvements in overall enzymatic conversion, thus reducing cost for cellulosic ethanol (or other biofuel) production.

  6. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; Guez, Oded; Messer, Hagit; David, Noam; Harel, Oz; Eshel, Adam; Cohen, Ori

    2016-04-01

    Recent advances in environmental monitoring using commercial microwave links Pinhas Alpert, H. Messer, N. David, O. Guez, O. Cohen, O. Harel, A. Eshel Tel Aviv University, Israel The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for semi-arid region cases when floods occurred in the Judean desert in Israel with comparison to hydrological measurements in the Dead Sea area. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, fog, dew, atmospheric moisture. References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapor monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure-the future of fog monitoring?" BAMS (Oct. issue), 1687-1698, 2015. O. Harel, David, N., Alpert, P. and Messer, H., "The potential of microwave communication networks to detect dew using the GLRT- experimental study", IEEE Journal of Selected

  7. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    PubMed

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  8. Study and program plan for improved heavy duty gas turbine engine ceramic component development

    NASA Technical Reports Server (NTRS)

    Helms, H. E.

    1977-01-01

    Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.

  9. TODAY: EPAs 2015 Technology Showcase in Ann Arbor Spotlights Heavy-Duty Vehicles

    EPA Pesticide Factsheets

    WASHINGTON - Today, Tuesday, October 13, the Environmental Protection Agency (EPA) will host the third Vehicle Technology Showcase in Ann Arbor, Mich. The event will highlight advanced technology to increase fuel efficiency and reduce vehicle greenh

  10. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    PubMed

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  11. In-use activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks.

    PubMed

    Sandhu, Gurdas S; Frey, H Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth

    2015-03-01

    The objectives of this study were to quantify real-world activity, fuel use, and emissions for heavy duty diesel roll-off refuse trucks; evaluate the contribution of duty cycles and emissions controls to variability in cycle average fuel use and emission rates; quantify the effect of vehicle weight on fuel use and emission rates; and compare empirical cycle average emission rates with the U.S. Environmental Protection Agency's MOVES emission factor model predictions. Measurements were made at 1 Hz on six trucks of model years 2005 to 2012, using onboard systems. The trucks traveled 870 miles, had an average speed of 16 mph, and collected 165 tons of trash. The average fuel economy was 4.4 mpg, which is approximately twice previously reported values for residential trash collection trucks. On average, 50% of time is spent idling and about 58% of emissions occur in urban areas. Newer trucks with selective catalytic reduction and diesel particulate filter had NOx and PM cycle average emission rates that were 80% lower and 95% lower, respectively, compared to older trucks without. On average, the combined can and trash weight was about 55% of chassis weight. The marginal effect of vehicle weight on fuel use and emissions is highest at low loads and decreases as load increases. Among 36 cycle average rates (6 trucks×6 cycles), MOVES-predicted values and estimates based on real-world data have similar relative trends. MOVES-predicted CO2 emissions are similar to those of the real world, while NOx and PM emissions are, on average, 43% lower and 300% higher, respectively. The real-world data presented here can be used to estimate benefits of replacing old trucks with new trucks. Further, the data can be used to improve emission inventories and model predictions. In-use measurements of the real-world activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks can be used to improve the accuracy of predictive models, such as MOVES, and emissions

  12. THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES

    SciTech Connect

    Durbin, Thomas

    2001-08-05

    Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

  13. Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine

    DOE PAGES

    O'Connor, Jacqueline; Musculus, Mark P. B.; Pickett, Lyle M.

    2016-05-30

    This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors’ previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strong functionmore » of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. In conclusion, the fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.« less

  14. Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine

    SciTech Connect

    O'Connor, Jacqueline; Musculus, Mark P. B.; Pickett, Lyle M.

    2016-05-30

    This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors’ previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strong function of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. In conclusion, the fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.

  15. Design and test of a new axial compressor for the Nuovo Pignone heavy-duty gas turbines

    SciTech Connect

    Benvenuti, E.

    1997-07-01

    This axial compressor design was primarily focused to increase the power rating of the current Nuovo Pignone PGT10 Heavy-Duty gas turbine by 10%. In addition, the new 11-stage design favorably compares with the existing 17-stage compressor in terms of simplicity and cost. By scaling the flowpath and blade geometry, the new aerodynamic design can be applied to gas turbines with different power ratings as well. The reduction in the stage number was achieved primarily through the meridional flowpath redesign. The resulting higher blade peripheral speeds achieve larger stage pressure ratios without increasing the aerodynamic loadings. Wide chord blades keep the overall length unchanged thus assuring easy integration with other existing components. The compressor performance map was extensively checked over the speed range required for two-shaft gas turbines. The prototype unit was installed on a special PGT10 gas turbine setup, that permitted the control of pressure ratio independently from the turbine matching requirements. The flowpath instrumentation included strain gages, dynamic pressure transducers, and stator vane leading edge aerodynamic probes to determine individual stage characteristics. The general blading vibratory behavior was proved fully satisfactory. With minor adjustments to the variable stator settings, the front stage aerodynamic matching was optimized and the design performance was achieved.

  16. Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine

    SciTech Connect

    O'Connor, Jacqueline; Musculus, Mark P. B.; Pickett, Lyle M.

    2016-05-30

    This work explores the mechanisms by which a post injection can reduce unburned hydrocarbon (UHC) emissions in heavy-duty diesel engines operating at low-temperature combustion conditions. Post injections, small, close-coupled injections of fuel after the main injection, have been shown to reduce UHC in the authors’ previous work. In this work, we analyze optical data from laser-induced fluorescence of both CH2O and OH and use chemical reactor modeling to better understand the mechanism by which post injections reduce UHC emissions. The results indicate that post-injection efficacy, or the extent to which a post injection reduces UHC emissions, is a strong function of the cylinder pressure variation during the post injection. However, the data and analysis indicate that the pressure and temperature rise from the post injection combustion cannot solely explain the UHC reduction measured by both engine-out and optical diagnostics. In conclusion, the fluid-mechanic, thermal, and chemical interaction of the post injection with the main-injection mixture is a key part of UHC reduction; the starting action of the post jet and the subsequent entrainment of surrounding gases are likely both important processes in reducing UHC with a post injection.

  17. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt

    2015-04-21

    Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.

  18. Heavy duty piezoresistivity induced strain sensing natural rubber/carbon black nanocomposites reinforced with different carbon nanofillers

    NASA Astrophysics Data System (ADS)

    He, Qingliang; Yuan, Tingting; Zhang, Xi; Guo, Shimei; Liu, Jingjing; Liu, Jiurong; Liu, Xinyu; Sun, Luyi; Wei, Suying; Guo, Zhanhu

    2014-09-01

    Durable piezoresistive effects of natural rubber nanocomposites have been demonstrated, i.e., with stable and reversible electrical resistance change within the tested 3000 cycles upon applying a small compressive strain (˜16.7%) under a relatively high frequency (0.5 Hz, 2 s/cycle). This unique function was achieved for the first time by combining carbon nanotubes and carbon nanofibers with natural rubber composites pretreated with carbon black. Even though the combination of different carbon nanomaterials, such as graphene nanosheets and carbon nanotubes, can improve the dispersion quality of both the nanostructures in solution or in polymer matrices, this type of synergistic effect between carbon nanotubes and carbon nanofibers in producing stable and reversible piezoresistive effect has been rarely reported. Besides, the strong reinforcement (compressive stress at a maximum strain of 16.7% was increased from 12.6 for untreated to 18.5 MPa for the natural rubber/carbon black composites treated with a combination of 1.0 wt% carbon nanotubes and 1.0 wt% carbon nanofibers) makes the as-prepared composites promising for heavy duty pressure sensors, i.e., healthy motion monitoring of industrial machinery vibrations.

  19. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    PubMed

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  20. Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

    SciTech Connect

    Daw, C. Stuart; Gao, Zhiming; Smith, David E.; Laclair, Tim J.; Pihl, Josh A.; Edwards, K. Dean

    2013-04-08

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  1. Size-resolved emissions of organic tracers from light- and heavy-duty vehicles measured in a California roadway tunnel.

    PubMed

    Phuleria, Harish C; Geller, Michael D; Fine, Philip M; Sioutas, Constantinos

    2006-07-01

    Individual organic compounds found in particulate emissions from vehicles have proven useful in source apportionment of ambient particulate matter. Species of interest include the hopanes, originating in lube oil, and selected PAHs generated via combustion. Most efforts to date have focused on emissions and apportionment PM10 or PM2.5 However, examining how these compounds are segregated by particle size in both emissions and ambient samples will help efforts to apportion size-resolved PM, especially ultrafine particles which have been shown to be more potent toxicologically. To this end, high volume size-resolved (coarse, accumulation, and ultrafine) PM samples were collected inside the Caldecott tunnel in Orinda, California to determine the relative emission factors for these compounds in different size ranges. Sampling occurred in two bores, one off-limits to heavy-duty diesel vehicles, which allows determination of the different emissions profiles for diesel and gasoline vehicles. Although tunnel measurements do not measure emissions over a full engine duty cycle, they do provide an average emissions profile over thousands of vehicles that can be considered characteristic of "freeway" emissions. Results include size-fractionated emission rates for hopanes, PAHs, elemental carbon, and other potential organic markers apportioned to diesel and gasoline vehicles. The results are compared to previously conducted PM2.5 emissions testing using dynamometer facilities and othertunnel environments.

  2. First online measurements of sulfuric acid gas in modern heavy-duty diesel engine exhaust: implications for nanoparticle formation.

    PubMed

    Arnold, F; Pirjola, L; Rönkkö, T; Reichl, U; Schlager, H; Lähde, T; Heikkilä, J; Keskinen, J

    2012-10-16

    To mitigate the diesel particle pollution problem, diesel vehicles are fitted with modern exhaust after-treatment systems (ATS), which efficiently remove engine-generated primary particles (soot and ash) and gaseous hydrocarbons. Unfortunately, ATS can promote formation of low-vapor-pressure gases, which may undergo nucleation and condensation leading to formation of nucleation particles (NUP). The chemical nature and formation mechanism of these particles are only poorly explored. Using a novel mass spectrometric method, online measurements of low-vapor-pressure gases were performed for exhaust of a modern heavy-duty diesel engine operated with modern ATS and combusting low and ultralow sulfur fuels and also biofuel. It was observed that the gaseous sulfuric acid (GSA) concentration varied strongly, although engine operation was stable. However, the exhaust GSA was observed to be affected by fuel sulfur level, exhaust after-treatment, and driving conditions. Significant GSA concentrations were measured also when biofuel was used, indicating that GSA can be originated also from lubricant oil sulfur. Furthermore, accompanying NUP measurements and NUP model simulations were performed. We found that the exhaust GSA promotes NUP formation, but also organic (acidic) precursor gases can have a role. The model results indicate that that the measured GSA concentration alone is not high enough to grow the particles to the detected sizes.

  3. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    PubMed

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10(12) to 2.29 × 10(13) particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10(11) to 1.31 × 10(13) particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  4. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks

    SciTech Connect

    Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R. ); Simoneit, B.R.T. )

    1993-04-01

    Gasoline- and diesel-powered vehicles are known to contribute appreciable amounts of inhalable fine particulate matter to the atmosphere in urban areas. Internal combustion engines burning gasoline and diesel fuel contribute more than 21% of the primary fine particulate organic carbon emitted to the Los Angeles atmosphere. In the present study, particulate (d[sub p] [le] 2 [mu]m) exhaust emissions from six noncatalyst automobiles, seven catalyst-equipped automobiles, and two heavy-duty diesel trucks are examined by gas chromatography/mass spectrometry. The purposes of this study are as follows: (a) to search for conservative marker compounds suitable for tracing the presence of vehicular particulate exhaust emissions in the urban atmosphere, (b) to compile quantitative source profiles, and (c) to study the contributions of fine organic particulate vehicular exhaust to the Los Angeles atmosphere. More than 100 organic compounds are quantified, including n-alkanes, n-alkanoic acids, benzoic acids, benzaldehydes, PAH, oxy-PAH, steranes, pentacyclic triterpanes, azanaphthalenes, and others. Although fossil fuel markers such as steranes and pentacyclic triterpanes can be emitted from other sources, it can be shown that their ambient concentrations measured in the Los Angeles atmosphere are attributable mainly to vehicular exhaust emissions. 102 refs., 9 figs., 6 tabs.

  5. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads.

    PubMed

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-10-30

    Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study.

  6. Development of high temperature liquid lubricants for low-heat rejection: Heavy duty diesel engines

    NASA Technical Reports Server (NTRS)

    Wiczynski, P. D.; Marolewski, T. A.

    1993-01-01

    The objective of this DOE program was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and sump temperatures approaching 250 C. The lubricants developed demonstrated at marginal increase in sump temperature capability, approximately 15 C, and an increase in top ring reversal temperature. A 15W-40 synthetic lubricant designated HTL-4 was the best lubricant developed in terms of stability, wear control, deposit control dispersancy, and particulate emissions.

  7. A computer program (HEVSIM) for heavy duty vehicle fuel economy and performance simulation. Volume II: Users' manual. Final report Mar-Oct 80

    SciTech Connect

    Buck, R.E.

    1981-09-01

    Volume II is the second volume of a three volume document describing the computer program HEVSIM for use with buses and heavy duty trucks. This volume is a user's manual describing how to prepare data input and execute the program. A strong effort has been made to prepare this manual from a user's viewpoint. Sample cases have been included to illustrate the various simulation methods available, and the most frequently used HEVSIM options.

  8. Metabolic Engineering for Advanced Biofuels Production and Recent Advances Toward Commercialization.

    PubMed

    Meadows, Corey W; Kang, Aram; Lee, Taek S

    2017-07-21

    Research on renewable biofuels produced by microorganisms has enjoyed considerable advances in academic and industrial settings. As the renewable ethanol market approaches maturity, the demand is rising for the commercialization of more energy-dense fuel targets. Many strategies implemented in recent years have considerably increased the diversity and number of fuel targets that can be produced by microorganisms. Moreover, strain optimization for some of these fuel targets has ultimately led to their production at industrial scale. In this review, the recent metabolic engineering approaches for augmenting biofuel production derived from alcohols, isoprenoids, and fatty acids in several microorganisms are discussed. In addition, the successful commercialization ventures for each class of biofuel targets are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of high temperature liquid lubricants for low-heat rejection heavy duty diesel engines

    SciTech Connect

    Wiczynski, T.A.; Marolewski, T.A.

    1993-03-01

    Objective was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and lubricant sump temperatures approaching 250 C. Base stock screening showed that aromatic esters and diesters has the lowest deposit level, compared to polyol esters, poly-alpha-olefins, or refined mineral oil of comparable viscosity. Classical aryl and alkyl ZDP antiwear additives are ineffective in reducing wear with aromatic esters; the phosphate ester was a much better antiwear additive, and polyol esters are more amenable to ZDP treatment. Zeolites and clays were evaluated for filtration.

  10. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  11. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  12. Commercial space opportunities - Advanced concepts and technology overview

    NASA Technical Reports Server (NTRS)

    Reck, Gregory M.

    1993-01-01

    The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.

  13. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards.

    PubMed

    Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara

    2011-04-01

    As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was

  14. 77 FR 19030 - Automated Commercial Environment Required for the Transmission of Advance Ocean and Rail Cargo...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    .... 12-06] Automated Commercial Environment Required for the Transmission of Advance Ocean and Rail Cargo... Automated Commercial Environment (ACE) for the transmission of advance ocean and rail cargo information... controlled environment.\\3\\ M1 test participants were chosen based on the specific type of software format...

  15. An airline study of advanced technology requirements for advanced high speed commercial engines. 3: Propulsion system requirements

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 3 effort cover the requirements and objectives for future aircraft propulsion systems. These requirements reflect the results of the Task 1 and 2 efforts and serve as a baseline for future evaluations, specification development efforts, contract/purchase agreements, and operational plans for future subsonic commercial engines. This report is divided into five major sections: (1) management objectives for commercial propulsion systems, (2) performance requirements for commercial transport propulsion systems, (3) design criteria for future transport engines, (4) design requirements for powerplant packages, and (5) testing.

  16. Aftertreatment Technologies for Off-Highway Heavy-Duty Diesel Engines

    SciTech Connect

    Kass, M.D.

    2008-07-15

    The objective of this program was to explore a combination of advanced injection control and urea-selective catalytic reduction (SCR) to reduce the emissions of oxides of nitrogen (NOx) and particulate matter (PM) from a Tier 2 off-highway diesel engine to Tier 3 emission targets while maintaining fuel efficiency. The engine used in this investigation was a 2004 4.5L John Deere PowerTechTM; this engine was not equipped with exhaust gas recirculation (EGR). Under the original CRADA, the principal objective was to assess whether Tier 3 PM emission targets could be met solely by increasing the rail pressure. Although high rail pressure will lower the total PM emissions, it has a contrary effect to raise NOx emissions. To address this effect, a urea-SCR system was used to determine whether the enhanced NOx levels, associated with high rail pressure, could be reduced to Tier 3 levels. A key attraction for this approach is that it eliminates the need for a Diesel particulate filter (DPF) to remove PM emissions. The original CRADA effort was also performed using No.2 Diesel fuel having a maximum sulfur level of 500 ppm. After a few years, the CRADA scope was expanded to include exploration of advanced injection strategies to improve catalyst regeneration and to explore the influence of urea-SCR on PM formation. During this period the emission targets also shifted to meeting more stringent Tier 4 emissions for NOx and PM, and the fuel type was changed to ultra-low sulfur Diesel (ULSD) having a maximum sulfur concentration of 15 ppm. New discoveries were made regarding PM formation at high rail pressures and the influences of oxidation catalysts and urea-SCR catalysts. These results are expected to provide a pathway for lower PM and NOx emissions for both off- and on-highway applications. Industrial in-kind support was available throughout the project period. Review of the research results were carried out on a regular basis (annual reports and meetings) followed by

  17. Chemical characterization of PM2.5 emitted from on-road heavy-duty diesel trucks in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yingzhi; Yao, Zhiliang; Shen, Xianbao; Liu, Huan; He, Kebin

    2015-12-01

    Heavy-duty diesel trucks (HDDTs) are gaining more attention because of their contribution to NOX and PM2.5 emissions. To evaluate their contribution to ambient fine particulate matter (PM2.5), not only their emission factors, but also their source profile is required. We conducted on-road emissions tests to characterize the PM2.5 emission, documenting per second mass emission rates from in-use HDDTs in China, using portable emissions measurement systems. The average PM2.5 emission factors for pre-EURO and EURO 1 HDDTs were 1.104 g/km and 0.822 g/km, equivalent to 6.106 g/kg and 3.132 g/kg based on fuel consumption. Element carbon (EC) and organic carbon (OC) were the major components: EC accounted for 45-65% of PM2.5 for pre-EURO HDDTs and 36-69% for EURO 1 HDDTs, while the OC fraction for pre-EURO and EURO 1 HDDTs ranged from 20 to 31% and 19-31%, respectively. Thus, the average EC emission factors for pre-EURO and EURO 1 HDDTs were 0.667 g/km and 0.502 g/km, showing that implementation of tighter emission standards resulted in a 25% EC output reduction from pre-EURO to EURO 1 vehicles. Sulfate, comprising about 1% of PM2.5 mass, is still an abundant species in PM2.5 from HDDTs because of the high sulfur content in diesel fuel in China. Using these data, we updated national PM2.5 emission profiles for pre-EURO and EURO 1 HDDTs.

  18. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    PubMed

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  19. Ammonia concentration distribution measurements in the exhaust of a heavy duty diesel engine based on limited data absorption tomography.

    PubMed

    Stritzke, Felix; van der Kley, Sani; Feiling, Alexander; Dreizler, Andreas; Wagner, Steven

    2017-04-03

    A multichannel tunable diode laser absorption spectrometer is used to measure absolute ammonia concentrations and their distributions in exhaust gas applications with intense CO2 and H2O background. Designed for in situ diagnostics in SCR after treatment systems with temperatures up to 800 K, the system employs a fiber coupled near-infrared distributed feedback diode laser. With the laser split into eight coplanar beams crossing the exhaust pipe, the sensor provides eight concentration measurements simultaneously. Three ammonia ro-vibrational transitions coinciding near 2200.5 nm with rather weak temperature dependency and negligible CO2/H2O interference were probed during the measurements. The line-of-sight averaged channel concentrations are transformed into 2-D ammonia distributions using limited data IR species tomography based on Tikhonov regularization. This spectrometer was successfully applied in the exhaust system of a 340 kW heavy duty diesel engine operated without oxidation catalyst or particulate filter. In this harsh environment the multi-channel sensor achieved single path ammonia detection limits of 25 to 80 ppmV with a temporal resolution of 1 Hz whereas, while operated as a single-channel sensor, these characteristics improved to 10 ppmV and 100 Hz. Spatial averaging of the reconstructed 2-D ammonia distributions shows good agreement to cross-sectional extractive measurements. In contrast to extractive methods more information about spatial inhomogeneities and transient operating conditions can be derived from the new spectrometer.

  20. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    PubMed

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  1. Effects of Particle Filters and Selective Catalytic Reduction on In-Use Heavy-Duty Diesel Truck Emissions

    NASA Astrophysics Data System (ADS)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2016-12-01

    Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.

  2. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  3. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Wu, Ye; Zhang, Shaojun; Baldauf, Richard W.; Zhang, K. Max; Hu, Jingnan; Li, Zhenhua; Fu, Lixin; Hao, Jiming

    2016-09-01

    The black carbon (BC) emitted from heavy-duty diesel vehicles (HDDVs) is an important source of urban atmospheric pollution and creates strong climate-forcing impacts. The emission ratio of BC to total particle mass (PM) (i.e., BC/PM ratio) is an essential variable used to estimate total BC emissions from historical PM data; however, these ratios have not been measured using portable emission measurement systems (PEMS) in order to obtain real-world measurements over a wide range of driving conditions. In this study, we developed a PEMS platform by integrating two Aethalometers and an electric low pressure impactor to realize the joint measurement of real-world BC and PM emissions for ten HDDVs in China. Test results showed that the average BC/PM ratio for five HDDVs equipped with mechanical fuel injection (MI) engines was 0.43 ± 0.06, significantly lower (P < 0.05) than another five HDDVs equipped with electronically-controlled fuel injection (EI) engines (0.56 ± 0.12). Traffic conditions also affected the BC/PM ratios with higher ratios on freeway routes than on local roads. Furthermore, higher ratios were observed for HDDVs equipped with EI engines than for the MI engines for the highway and local road routes. With an operating mode binning approach, we observed that the instantaneous BC/PM ratios of EI engine vehicles were above those of the MI engine vehicles in all operating modes except for the braking mode (i.e., Bin 0). Therefore, the complex impacts from engine technology and traffic conditions on BC/PM ratios should be carefully considered when estimating real-world BC emissions from HDDVs based on overall PM emissions data.

  4. Dependence between nonvolatile nucleation mode particle and soot number concentrations in an EGR equipped heavy-duty Diesel engine exhaust.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Virtanen, Annele; Solla, Anu; Kytö, Matti; Söderström, Christer; Keskinen, Jorma

    2010-04-15

    Heavy duty diesel engine exhaust characteristics were studied with direct tailpipe sampling on an engine dynamometer. The exhaust particle size distributions, total particle mass, and gaseous emissions were measured with different load conditions without after-treatment. The measured particle size distributions were bimodal; distinctive accumulation and nucleation modes were detected for both volatile and dry particle samples. The condensing volatile compounds changed the characteristics of the nonvolatile nucleation mode while the soot/accumulation mode characteristics (concentration and diameter) were unchanged. A clear dependence between the soot and the nonvolatile nucleation mode number concentrations was detected. While the concentration of the soot mode decreased, the nonvolatile nucleation mode concentration increased. The soot mode number concentration decrease was related to soot-NOx trade-off; the decrease of the exhaust gas recirculation rate decreased soot emission and increased NOx emission. Simultaneously detected increase of the nonvolatile nucleation mode concentration may be caused by the decrease of the soot mode sink or by changed combustion characteristics. However, the total particle number concentration increased with decreasing soot mode number concentration. The proportion of the particle number concentration between the nonvolatile nucleation and soot mode followed the NO2:NO ratio linearly. While ratio NO2:NO increased the proportion of soot mode number concentration in total number concentration increased. Regardless of the mechanism that causes the balance between the soot mode and the nonvolatile nucleation mode emissions, the changes in the particle number size distribution should be taken into account while the particle mass emissions are controlled with combustion optimization.

  5. Lubricating oil and fuel contributions to particulate matter emissions from light-duty gasoline and heavy-duty diesel vehicles.

    PubMed

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A

    2008-01-01

    Size-resolved particulate matter emissions from heavy-duty diesel vehicles (HDDVs) and light-duty gasoline vehicles (LDGVs) operated under realistic driving cycles were analyzed for elemental carbon (EC), organic carbon (OC), hopanes, steranes, and polycyclic aromatic hydrocarbons. Measured hopane and sterane size distributions did not match the total carbon size distribution in most cases, suggesting that lubricating oil was not the dominant source of particulate carbon in the vehicle exhaust. A regression analysis using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and benzo[ghi/perylene as a tracer for gasoline showed that gasoline fuel and lubricating oil both make significant contributions to particulate EC and OC emissions from LDGVs. A similar regression analysis performed using 17alpha(H)-21beta(H)-29-norhopane as a tracer for lubricating oil and flouranthene as a tracerfor diesel fuel was able to explain the size distribution of particulate EC and OC emissions from HDDVs. The analysis showed that EC emitted from all HDDVs operated under relatively high load conditions was dominated by diesel fuel contributions with little EC attributed to lubricating oil. Particulate OC emitted from HDDVs was more evenly apportioned between fuel and oil contributions. EC emitted from LDGVs operated underfuel-rich conditions was dominated by gasoline fuel contributions. OC emitted from visibly smoking LDGVs was mostly associated with lubricating oil, but OC emitted from all other categories of LDGVs was dominated by gasoline fuel. The current study clearly illustrates that fuel and lubricating oil make separate and distinct contributions to particulate matter emissions from motor vehicles. These particles should be tracked separately during ambient source apportionment studies since the atmospheric evolution and ultimate health effects of these particles may be different. The source profiles for fuel and lubricating oil contributions to EC and OC

  6. Combustion of hydrotreated vegetable oil and jatropha methyl ester in a heavy duty engine: emissions and bacterial mutagenicity.

    PubMed

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Rosenkranz, Nina; Schröder, Olaf; Schaak, Jens; Pabst, Christoph; Brüning, Thomas; Bünger, Jürgen

    2013-06-04

    Research on renewable fuels has to assess possible adverse health and ecological risks as well as conflicts with global food supply. This investigation compares the two newly developed biogenic diesel fuels hydrotreated vegetable oil (HVO) and jatropha methyl ester (JME) with fossil diesel fuel (DF) and rapeseed methyl ester (RME) for their emissions and bacterial mutagenic effects. Samples of exhaust constituents were compared after combustion in a Euro III heavy duty diesel engine. Regulated emissions were analyzed as well as particle size and number distributions, carbonyls, polycyclic aromatic hydrocarbons (PAHs), and bacterial mutagenicity of the exhausts. Combustion of RME and JME resulted in lower particulate matter (PM) compared to DF and HVO. Particle numbers were about 1 order of magnitude lower for RME and JME. However, nitrogen oxides (NOX) of RME and JME exceeded the Euro III limit value of 5.0 g/kWh, while HVO combustion produced the smallest amount of NOX. RME produced the lowest emissions of hydrocarbons (HC) and carbon monoxide (CO) followed by JME. Formaldehyde, acetaldehyde, acrolein, and several other carbonyls were found in the emissions of all investigated fuels. PAH emissions and mutagenicity of the exhausts were generally low, with HVO revealing the smallest number of mutations and lowest PAH emissions. Each fuel showed certain advantages or disadvantages. As proven before, both biodiesel fuels produced increased NOX emissions compared to DF. HVO showed significant toxicological advantages over all other fuels. Since jatropha oil is nonedible and grows in arid regions, JME may help to avoid conflicts with the food supply worldwide. Hydrogenated jatropha oil should now be investigated if it combines the benefits of both new fuels.

  7. Advancing teaching opportunities through pre-commercial photonic devices

    NASA Astrophysics Data System (ADS)

    Slusarczuk, Marko M. G.

    2007-06-01

    The Photonics Technology Access Program [PTAP] provides academic researchers with pre-commercial photonic devices. Since one of the goals of PTAP is to promote teaching, the program has developed several approaches to expand teaching opportunities with the processes used to provide the devices.

  8. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses.

    PubMed

    Holmén, Britt A; Ayala, Alberto

    2002-12-01

    This paper addresses how current technologies effective for reducing PM emissions of heavy-duty engines may affect the physical characteristics of the particles emitted. Three in-use transit bus configurations were compared in terms of submicron particle size distributions using simultaneous SMPS measurements under two dilution conditions, a minidiluter and the legislated constant volume sampler (CVS). The compressed natural gas (CNG)-fueled and diesel particulate filter (DPF)-equipped diesel configurations are two "green" alternatives to conventional diesel engines. The CNG bus in this study did not have an oxidation catalyst whereas the diesel configurations (with and without particulate filter) employed catalysts. The DPF was a continuously regenerating trap (CRT). Particle size distributions were collected between 6 and 237 nm using 2-minute SMPS scans during idle and 55 mph steady-state cruise operation. Average particle size distributions collected during idle operation of the diesel baseline bus operating on ultralow sulfur fuel showed evidence for nanoparticle growth under CVS dilution conditions relative to the minidiluter. The CRT effectively reduced both accumulation and nuclei mode concentrations by factors of 10-100 except under CVS dilution conditions where nuclei mode concentrations were measured during 55 mph steady-state cruise that exceeded baseline diesel concentrations. The CVS data suggest some variability in trap performance. The CNG bus had accumulation mode concentrations 10-100x lower than the diesel baseline but often displayed large nuclei modes, especially under CVS dilution conditions. Partly this may be explained by the lack of an oxidation catalyst on the CNG, but differences between the minidiluter and CVS size distributions suggest that dilution ratio, temperature-related wall interactions, and differences in tunnel background between the diluters contributed to creating nanoparticle concentrations that sometimes exceeded diesel

  9. Comparison of particle mass and solid particle number (SPN) emissions from a heavy-duty diesel vehicle under on-road driving conditions and a standard testing cycle.

    PubMed

    Zheng, Zhongqing; Durbin, Thomas D; Xue, Jian; Johnson, Kent C; Li, Yang; Hu, Shaohua; Huai, Tao; Ayala, Alberto; Kittelson, David B; Jung, Heejung S

    2014-01-01

    It is important to understand the differences between emissions from standard laboratory testing cycles and those from actual on-road driving conditions, especially for solid particle number (SPN) emissions now being regulated in Europe. This study compared particle mass and SPN emissions from a heavy-duty diesel vehicle operating over the urban dynamometer driving schedule (UDDS) and actual on-road driving conditions. Particle mass emissions were calculated using the integrated particle size distribution (IPSD) method and called MIPSD. The MIPSD emissions for the UDDS and on-road tests were more than 6 times lower than the U.S. 2007 heavy-duty particulate matter (PM) mass standard. The MIPSD emissions for the UDDS fell between those for the on-road uphill and downhill driving. SPN and MIPSD measurements were dominated by nucleation particles for the UDDS and uphill driving and by accumulation mode particles for cruise and downhill driving. The SPN emissions were ∼ 3 times lower than the Euro 6 heavy-duty SPN limit for the UDDS and downhill driving and ∼ 4-5 times higher than the Euro 6 SPN limit for the more aggressive uphill driving; however, it is likely that most of the "solid" particles measured under these conditions were associated with a combination release of stored sulfates and enhanced sulfate formation associated with high exhaust temperatures, leading to growth of volatile particles into the solid particle counting range above 23 nm. Except for these conditions, a linear relationship was found between SPN and accumulation mode MIPSD. The coefficient of variation (COV) of SPN emissions of particles >23 nm ranged from 8 to 26% for the UDDS and on-road tests.

  10. Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks.

    PubMed

    Dallmann, Timothy R; Kirchstetter, Thomas W; DeMartini, Steven J; Harley, Robert A

    2013-12-03

    Vehicle emissions of nitrogen oxides (NOx), carbon monoxide (CO), fine particulate matter (PM2.5), organic aerosol (OA), and black carbon (BC) were measured at the Caldecott tunnel in the San Francisco Bay Area. Measurements were made in bore 2 of the tunnel, where light-duty (LD) vehicles accounted for >99% of total traffic and heavy-duty trucks were not allowed. Prior emission studies conducted in North America have often assumed that route- or weekend-specific prohibitions on heavy-duty truck traffic imply that diesel contributions to pollutant concentrations measured in on-road settings can be neglected. However, as light-duty vehicle emissions have declined, this assumption can lead to biased results, especially for pollutants such as NOx, OA, and BC, for which diesel-engine emission rates are high compared to corresponding values for gasoline engines. In this study, diesel vehicles (mostly medium-duty delivery trucks with two axles and six tires) accounted for <1% of all vehicles observed in the tunnel but were nevertheless responsible for (18 ± 3)%, (22 ± 6)%, and (45 ± 8)% of measured NOx, OA, and BC concentrations. Fleet-average OA and BC emission factors for light-duty vehicles are, respectively, 10 and 50 times lower than for heavy-duty diesel trucks. Using measured emission factors from this study and publicly available data on taxable fuel sales, as of 2010, LD gasoline vehicles were estimated to be responsible for 85%, 18%, 18%, and 6% of emissions of CO, NOx, OA, and BC, respectively, from on-road motor vehicles in the United States.

  11. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    SciTech Connect

    LeePhD, John; TzanetakisPhD, Tom; Travers, Michael; Storey, John Morse; DeBusk, Melanie Moses; Lance, Michael J; Partridge Jr, William P

    2017-01-01

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modification to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.

  12. Jumbo battery-powered cargo transporter begins work at flying tigers: latest in growing line of heavy-duty electric vehicles for industry

    SciTech Connect

    Not Available

    1986-04-01

    A first-of-its-kind lead battery-powered cargo transporter has been placed in service by Flying Tigers Line, Inc., temporarily for test in Chicago. The jumbo electric transporter, being used by Flying Tigers to more economically and efficiently load and unload its planes is described. The recent introducing of this 31,000-lb. gross weight (including batteries) tractor-flatbed roller combination electric vehicle is the latest in a growing number of heavy-duty electrics coming into wide-spread use in the airline, ocean shipping, mining, agricultural, manufacturing, and other industries.

  13. Evaluation of Cu-PPHs as active catalysts for the SCR process to control NOx emissions from heavy duty diesel vehicles.

    PubMed

    Moreno-Tost, Ramón; Oliveira, Mona Lisa; Eliche-Quesada, Dolores; Jiménez-Jiménez, José; Jiménez-López, Antonio; Rodríguez-Castellón, Enrique

    2008-06-01

    Copper based catalysts supported on mesoporous materials, which were in turn based on a surfactant expanded zirconium phosphate for the formation of silica galleries in the interlayer space, were prepared by the impregnation method. They were then characterised and tested in the selective catalytic reduction of NO with ammonia as active catalysts for the control of the NOx emissions from heavy duty vehicles. Copper catalysts displayed a high catalytic performance, even in the presence of 14% (v/v) of H2O and 100 ppm of SO2. They also displayed improved catalytic behaviour when compared to a CuZSM5 catalyst.

  14. Recent advances in environmental monitoring using commercial microwave links

    NASA Astrophysics Data System (ADS)

    Alpert, Pinhas; David, Noam; Messer-Yaron, Hagit; Samuels, Rana

    2013-04-01

    The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the by the United States- Israel BINATIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342). References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", Atmos. Meas. Tech. Discuss, 5, 5725-5752, 2012.

  15. Adaptation of commercial microscopes for advanced imaging applications

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Poon, Kelvin; Stys, Peter

    2015-03-01

    Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.

  16. Update on major commercial advancement by ammonia FGD

    SciTech Connect

    Ellison, W.

    1999-07-01

    Extensive use of wet scrubbing processes since the 1970s has presented challenging problems, particularly in high-sulfur coal applications, a service most common in the US, eastern Europe and parts of Asia. For thirty years plant Owners have sought commercial availability and introduction of FGD processes that minimize operating and maintenance costs, complications and compromises. This continues, internationally, to be an important goal for the electric power industry. Moreover, markets for usable, high quality gypsum from commonly applied, wet lime/limestone FGD operation have become saturated in major areas by this rapidly growing, powerplant-byproduct output. Important system design and operational progress, particularly via German firms in the early 1990s, has made a major success of lime-using dry scrubbers of the circulating-fluid-bed type. However, lacking a sulfurous byproduct that is commercially salable in major markets, this process design may not be broadly applicable in large, worldwide powerplants. This paper describes the technical and environmental aspects of ammonia FGD; economics; wet ammonia FGD; dry ammonia FGD; the role of a substantially growing ammonium sulfate supply in worldwide agriculture; and extent of worldwide byproduct market.

  17. Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles.

    PubMed

    Bukowiecki, Nicolas; Lienemann, Peter; Hill, Matthias; Figi, Renato; Richard, Agnes; Furger, Markus; Rickers, Karen; Falkenberg, Gerald; Zhao, Yongjing; Cliff, Steven S; Prevot, Andre S H; Baltensperger, Urs; Buchmann, Brigitte; Gehrig, Robert

    2009-11-01

    Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon.

  18. Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry.

    PubMed

    Toner, Stephen M; Sodeman, David A; Prather, Kimberly A

    2006-06-15

    The aerodynamic size and chemical composition of individual ultrafine and accumulation mode particle emissions (Da = 50-300 nm) were characterized to determine mass spectral signatures for heavy duty diesel vehicle (HDDV) emissions that can be used for atmospheric source apportionment. As part of this study, six in-use HDDVs were operated on a chassis dynamometer using the heavy heavy-duty diesel truck (HHDDT) five-cycle driving schedule under different simulated weight loads. The exhaust emissions were passed through a dilution/residence system to simulate atmospheric dilution conditions, after which an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS) was used to sample and characterize the HDDV exhaust particles in real-time. This represents the first study where refractory species including elemental carbon and metals are characterized directly in HDDV emissions using on-line mass spectrometry. The top three particle classes observed with the UF-ATOFMS comprise 91% of the total particles sampled and show signatures indicative of a combination of elemental carbon (EC) and engine lubricating oil. In addition to the vehicle make/year, the effects of driving cycle and simulated weight load on exhaust particle size and composition were investigated.

  19. Comparison of the particle size distribution of heavy-duty diesel exhaust using a dilution tailpipe sampler and an in-plume sampler during on-road operation.

    PubMed

    Brown, J E; Clayton, M J; Harris, D B; King, F G

    2000-08-01

    Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point approximately 11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample.

  20. Simultaneous determination of carbonyls and NO2 in exhausts of heavy-duty diesel trucks and transit buses by HPLC following 2,4-dinitrophenylhydrazine cartridge collection.

    PubMed

    Tang, Shida; Graham, Lisa; Shen, Ling; Zhou, Xianliang; Lanni, Thomas

    2004-11-15

    A method combining 2,4-dinitrophenylhydrazine (DNPH) cartridge sampling and high-performance liquid chromatography (HPLC) analysis has been used for the measurement of carbonyl and NO2 emissions from heavy-duty diesel trucks and transit buses. The reaction of NO2 with DNPH allows for the simultaneous and unambiguous determination of NO2 and carbonyl concentrations in exhaust samples. The potential coelution of the NO2-DNPH derivative with the formaldehyde-DNPH derivative under certain chromatographic conditions was investigated. Successful separation of these two species was achieved allowing for simultaneous determination of carbonyls and NO2 in the exhaust samples collected from heavy-duty diesel (HDD) trucks and diesel, diesel/electric hybrid, diesel equipped with the continuously regenerating technology (CRT) particle traps, and compressed natural gas (CNG) transit buses tested over various drive cycles. Elevated NO2 emissions from CRT-equipped buses were observed. The NO2/NOx volume ratios for HDD trucks and transit buses are discussed. A comparison of the DNPH derivatization with HPLC/UV-visible detection method with a chemiluminescence analyzer method for NO2 measurement is presented for a limited number of diesel/CRT and CNG buses.

  1. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  2. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  3. Fan Atomized Burner design advances & commercial development progress

    SciTech Connect

    Kamath, B.; Butcher, T.A.

    1996-07-01

    As a part of the Oil Heat Research and Development program, sponsored by the US Department of Energy, Brookhaven National Laboratory (BNL) has an on-going interest in advanced combustion technologies. This interest is aimed at: improving the initial efficiency of heating equipment, reducing long term fouling and efficiency degradation, reducing air pollutant emissions, and providing practical low-firing rate technologies which may lead to new, high efficiency oil-fired appliances. The Fan-Atomized Burner (FAB) technology is being developed at BNL as part of this general goal. The Fan-Atomized Burner uses a low pressure, air atomizing nozzle in place of the high pressure nozzle used in conventional burners. Because it is air-atomized the burner can operate at low firing rates without the small passages and reliability concerns of low input pressure nozzles. Because it uses a low pressure nozzle the burner can use a fan in place of the small compressor used in other air-atomized burner designs. High initial efficiency of heating equipment is achieved because the burner can operate at very low excess air levels. These low excess air levels also reduce the formation of sulfuric acid in flames. Sulfuric acid is responsible for scaling and fouling of heat exchanger surfaces.

  4. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    SciTech Connect

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    enzymes are generally not available commercially, however, and those that are can be quite expensive. Accordingly, the genes responsible for enzyme synthesis were inserted into other microorganisms in order to accelerate enzyme production. This was demonstrated for two of the required enzymes in the overall series. In the MOF project, a number of new MOF compounds were synthesized and characterized, as well as some common MOFs well-known for their adsorption properties. Selectivity for specific gases such as CO{sub 2} and H{sub 2} was demonstrated, although it was seen that water vapor would frequently act as an interferent. This work underscored the need to test MOF compounds under real world conditions, i.e., room temperature and above instead of liquid N{sub 2} temperature, and testing adsorption using blends of gases instead of pure components. In the solar membrane project, thin films of CdTe and WO{sub 3} were applied to steel substrates and used as p-type and n-type semiconductors, respectively, in the production of H{sub 2} and O{sub 2}. Testing with {sup 2}H and {sup 18}O isotopically labeled water enabled substantiation of net water-splitting.

  5. Effects of Particle Filters and Accelerated Engine Replacement on Heavy-Duty Diesel Vehicle Emissions of Black Carbon, Nitrogen Oxides, and Ultrafine Particles

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.

    2013-12-01

    Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately

  6. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 1: Engine design study assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial tranport engine are presented. The results of the phase 1 study effort cover the following areas: (1) statement of an airline's major objectives for future transport engines, (2) airline's method of evaluating engine proposals, (3) description of an optimum engine for a long range subsonic commercial transport including installation and critical design features, (4) discussion of engine performance problems and experience with performance degradation, (5) trends in engine and pod prices with increasing technology and objectives for the future, (6) discussion of the research objectives for composites, reversers, advanced components, engine control systems, and devices to reduce the impact of engine stall, and (7) discussion of the airline objectives for noise and pollution reduction.

  7. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  8. Microgravity polymer and crystal growth at the Advanced Materials Center for the Commercial Development of Space

    NASA Technical Reports Server (NTRS)

    Mccauley, Lisa A.

    1990-01-01

    The microgravity research programs currently conducted by the Advanced Materials Center for the Commercial Development of Space (CCDS) are briefly reviewed. Polymer processing in space, which constitutes the most active microgravity program at the Advanced Materials CCDS, is conducted in three areas: membrane processing, multiphase composite behavior, and plasma polymerization. Current work in microgravity crystal growth is discussed with particular reference to the development of the Zeolite Crystal Growth facility.

  9. Real-world emissions of carbonyl compounds from in-use heavy-duty diesel trucks and diesel Back-Up Generators (BUGs)

    NASA Astrophysics Data System (ADS)

    Sawant, Aniket A.; Shah, Sandip D.; Zhu, Xiaona; Miller, J. Wayne; Cocker, David R.

    Emissions of carbonyl compounds such as formaldehyde, acetaldehyde, and acrolein are of interest to the scientific and regulatory communities due to their suspected or likely impacts on human health. The present work investigates emissions of carbonyl compounds from nine Class 8 heavy-duty diesel (HDD) tractors and also from nine diesel-powered backup generators (BUGs); the former were chosen because of their ubiquity as an emission source, and the latter because of their proximity to centers of human activity. The HDD tractors were operated on the ARB 4-Mode heavy heavy-duty diesel truck (HHDDT) driving cycle, while the BUGs were operated on the ISO 8178 Type D2 5-mode steady-state cycle and sampled using a mobile emissions laboratory (UCR MEL) equipped with a full-scale dilution tunnel. Samples were analyzed using the SAE930142 (Auto/Oil) method for 11 aldehydes, from formaldehyde to hexanaldehyde, and 2 ketones (acetone and methyl ethyl ketone). Although absolute carbonyl emissions varied widely by BUG, the relative contributions of the different carbonyls were similar (e.g., median: 56% for formaldehyde). A slight increasing trend with engine load was observed for relative formaldehyde contribution, but not for acetaldehyde contribution, for the BUGs. On-road per-mile carbonyl emission factors were a strong function of operating mode of the ARB HHDDT cycle, and found to decrease in the order Creep>Transient>Cruise. This order is qualitatively similar to emission factors for PAHs and n-alkanes determined for the same set of Class 8 diesel tractors in an earlier work. In general, relative carbonyl contributions for the HDD tractors were similar to those for BUGs (e.g., median: 54% for formaldehyde). These results indicate that while engine operating mode and application appear to exert a strong influence on the total absolute mass emission rate of the carbonyls measured, they do not appear to exert as strong an influence on the relative mass emission rates of

  10. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    EPA Science Inventory

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  11. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    EPA Science Inventory

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  12. Advanced Controls and Communications for Demand Response andEnergy Efficiency in Commercial Buildings

    SciTech Connect

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-17

    Commercial buildings account for a large portion of summer peak demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial building's contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. This paper discusses recent research results and new opportunities for advanced building control systems to provide demand response (DR) to improve electricity markets and reduce electric grid problems. The main focus of this paper is the role of new and existing control systems for HVAC and lighting in commercial buildings. A demand-side management framework from building operations perspective with three main features: daily energy efficiency, daily peak load management and event driven, dynamic demand response is presented. A general description of DR, its benefits, and nationwide potential in commercial buildings is outlined. Case studies involving energy management and control systems and DR savings opportunities are presented. The paper also describes results from three years of research in California to automate DR in buildings. Case study results and research on advanced buildings systems in New York are also presented.

  13. An airline study of advanced technology requirements for advanced high speed commercial transport engines. 2: Engine preliminary design assessment

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1973-01-01

    The advanced technology requirements for an advanced high speed commercial transport engine are presented. The results of the phase 2 study effort cover the following areas: (1) general review of preliminary engine designs suggested for a future aircraft, (2) presentation of a long range view of airline propulsion system objectives and the research programs in noise, pollution, and design which must be undertaken to achieve the goals presented, (3) review of the impact of propulsion system unreliability and unscheduled maintenance on cost of operation, (4) discussion of the reliability and maintainability requirements and guarantees for future engines.

  14. Advanced Collaborative Emissions Study (ACES)

    SciTech Connect

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon; Shaikh, Rashid; Bailey, Brent; Tennant, Chris; Khalek, Imad; Mauderly, Joe; McDonald, Jacob; Zielinska, Barbara; Bemis, Jeffrey; Storey, John; Hallberg, Lance; Clark, Nigel

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested engines was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.

  15. Advances in commercial, mode-locked vertical external cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Hempler, Nils; Lubeigt, Walter; Bialkowski, Bartlomiej; Hamilton, Craig J.; Maker, Gareth T.; Malcolm, Graeme P. A.

    2016-03-01

    In launching the Dragonfly, M Squared Lasers has successfully commercialized recent advances in mode-locked vertical external cavity surface emitting laser technologies operating between 920 nm - 1050 nm. This paper will describe the latest advances in the development of a new generation of Dragonfly lasers. The improved system has been engineered to utilise low-cost semiconductor gain media and integrated diode pumping, whilst exhibiting minimal footprint, diffraction limited beam quality and low intrinsic noise. Early experiments have resulted in pulses with 540mW of average output power and 150fs of duration at 200MHz pulse repetition frequency.

  16. Controlling & understanding the variables: Key to commercializing micowave processing of advanced materials

    SciTech Connect

    Garard, R.S.

    1995-12-31

    Commercial use of microwave energy for processing advanced materials has been a {open_quotes}promising new development{close_quotes} for over a decade. However, the realization of actual commercial use in most advanced material cases has not yet been achieved. As with any new processing technique, the control and application of process conditions must be reliable, repeatable, and thoroughly understood. This paper will discuss the variables associated with both economic analysis and material properties when determining the potential of microwave processing for a given application. The importance of having a microwave system capable of controlling those variables and distributing the microwave energy uniformly over large volumes within a microwave oven is reviewed. The need for a production equipment supplier to combine materials science expertise with strong microwave engineering background is also discussed with emphasis on ensuring that a good understanding of the material/microwave interaction exists for each specific application.

  17. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    SciTech Connect

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

  18. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    NASA Astrophysics Data System (ADS)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  19. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    PubMed

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  20. The role of big data and advanced analytics in drug discovery, development, and commercialization.

    PubMed

    Szlezák, N; Evers, M; Wang, J; Pérez, L

    2014-05-01

    In recent years, few ideas have captured the imagination of health-care practitioners as much as the advent of "big data" and the advanced analytical methods and technologies used to interpret it-it is a trend seen as having the potential to revolutionize biology, medicine, and health care.(1,2,3) As new types of data and tools become available, a unique opportunity is emerging for smarter and more effective discovery, development, and commercialization of innovative biopharmaceutical drugs.

  1. Development of a direct-injected natural gas engine system for heavy-duty vehicles: Final report phase 2

    SciTech Connect

    Cox, G.B.; DelVecchio, K.A.; Hays, W.J.; Hiltner, J.D.; Nagaraj, R.; Emmer, C.

    2000-03-02

    This report summarizes the results of Phase 2 of this contract. The authors completed four tasks under this phase of the subcontract. (1) They developed a computational fluid dynamics (CFD) model of a 3500 direct injected natural gas (DING) engine gas injection/combustion system and used it to identify DING ignition/combustion system improvements. The results were a 20% improvement in efficiency compared to Phase 1 testing. (2) The authors designed and procured the components for a 3126 DING engine (300 hp) and finished assembling it. During preliminary testing, the engine ran successfully at low loads for approximately 2 hours before injector tip and check failures terminated the test. The problems are solvable; however, this phase of the program was terminated. (3) They developed a Decision & Risk Analysis model to compare DING engine technology with various other engine technologies in a number of commercial applications. The model shows the most likely commercial applications for DING technology and can also be used to identify the sensitivity of variables that impact commercial viability. (4) MVE, Inc., completed a preliminary design concept study that examines the major design issues involved in making a reliable and durable 3,000 psi LNG pump. A primary concern is the life of pump seals and piston rings. Plans for the next phase of this program (Phase 3) have been put on indefinite hold. Caterpillar has decided not to fund further DING work at this time due to limited current market potential for the DING engine. However, based on results from this program, the authors believe that DI natural gas technology is viable for allowing a natural gas-fueled engine to achieve diesel power density and thermal efficiency for both the near and long terms.

  2. Propulsion system studies for an advanced high subsonic, long range jet commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Propulsion system characteristics for a long range, high subsonic (Mach 0.90 - 0.98), jet commercial transport aircraft are studied to identify the most desirable cycle and engine configuration and to assess the payoff of advanced engine technologies applicable to the time frame of the late 1970s to the mid 1980s. An engine parametric study phase examines major cycle trends on the basis of aircraft economics. This is followed by the preliminary design of two advanced mixed exhaust turbofan engines pointed at two different technology levels (1970 and 1985 commercial certification for engines No. 1 and No. 2, respectively). The economic penalties of environmental constraints - noise and exhaust emissions - are assessed. The highest specific thrust engine (lowest bypass ratio for a given core technology) achievable with a single-stage fan yields the best economics for a Mach 0.95 - 0.98 aircraft and can meet the noise objectives specified, but with significant economic penalties. Advanced technologies which would allow high temperature and cycle pressure ratios to be used effectively are shown to provide significant improvement in mission performance which can partially offset the economic penalties incurred to meet lower noise goals. Advanced technology needs are identified; and, in particular, the initiation of an integrated fan and inlet aero/acoustic program is recommended.

  3. Effect of fuel composition and engine operating conditions on polycyclic aromatic hydrocarbon emissions from a fleet of heavy-duty diesel buses

    NASA Astrophysics Data System (ADS)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Rohan Jayaratne, E.

    Emissions from 12 in-service heavy-duty buses powered by low- (LSD) and ultra low-sulfur (ULSD) diesel fuels were measured with the aim to characterize the profile of polycyclic aromatic hydrocarbons (PAHs) in the exhaust and to identify the effect of different types of fuels on the emissions. To mimic on-road conditions as much as possible, sampling was conducted on a chassis dynamometer at four driving modes, namely: mode 7 or idle (0% power), mode 11 (25% power), mode 10 (50% power) and mode 8 (100% power). Irrespective of the type of fuel used, naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, fluorene, fluoranthene and pyrene were found to be the dominant PAHs in the exhaust emissions of the buses. However, the PAH composition in the exhausts of ULSD buses were up to 91±6% less than those in the LSD buses. In particular, three- and four-ringed PAHs were more abundant in the later than in the former. Lowering of fuel sulfur content not only reduced PAH emission, but also decreased the benzo(a)pyrene equivalent (BAP eq) and hence the toxicity of the exhaust. Result from multicriteria decision-making and multivariate data analysis techniques showed that the use of ULSD afforded cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained by the use of LSD.

  4. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Carder, Daniel K; Oshinuga, Adewale; Gautam, Mridul

    2012-02-07

    The experiments aimed at investigating the effect of real-world engine load conditions on nanoparticle emissions from a Diesel Particulate Filter and Selective Catalytic Reduction after-treatment system (DPF-SCR) equipped heavy-duty diesel engine. The results showed the emission of nucleation mode particles in the size range of 6-15 nm at conditions with high exhaust temperatures. A direct result of higher exhaust temperatures (over 380 °C) contributing to higher concentration of nucleation mode nanoparticles is presented in this study. The action of an SCR catalyst with urea injection was found to increase the particle number count by over an order of magnitude in comparison to DPF out particle concentrations. Engine operations resulting in exhaust temperatures below 380 °C did not contribute to significant nucleation mode nanoparticle concentrations. The study further suggests the fact that SCR-equipped engines operating within the Not-To-Exceed (NTE) zone over a critical exhaust temperature and under favorable ambient dilution conditions could contribute to high nanoparticle concentrations to the environment. Also, some of the high temperature modes resulted in DPF out accumulation mode (between 50 and 200 nm) particle concentrations an order of magnitude greater than typical background PM concentrations. This leads to the conclusion that sustained NTE operation could trigger high temperature passive regeneration which in turn would result in lower filtration efficiencies of the DPF that further contributes to the increased solid fraction of the PM number count.

  5. Genotoxicity assessment of particulate matter emitted from heavy-duty diesel-powered vehicles using the in vivo Vicia faba L. micronucleus test.

    PubMed

    Corrêa, Albertina X R; Cotelle, Sylvie; Millet, Maurice; Somensi, Cleder A; Wagner, Theodoro M; Radetski, Claudemir M

    2016-05-01

    Diesel exhaust particulate matter (PM) can have an impact on the environment due to its chemical constitution. A large number of substances such as organic compounds, sulfates, nitrogen derivatives and metals are adsorbed to the particles and desorption of these contaminants could promote genotoxic effects. The objective of this study was to assess the in vivo genotoxicity profile of diesel exhaust PM from heavy-duty engines. Extracts were obtained through leaching with pure water and chemical extraction using three organic solvents (dichloromethane, hexane, and acetone). The in vivo Vicia faba micronucleus test (ISO 29200 protocol) was used to assess the environmental impact of the samples collected from diesel exhaust PM. The solid diesel PM (soot) dissolved in water, and the different extracts, showed positive results for micronucleus formation. After the addition of EDTA, the aqueous extracts did not show a genotoxic effect. The absence of metals in the organic solvent extract indicated that organic compounds also had a genotoxic effect, which was not observed for a similar sample cleaned in a C18 column. Thus, considering the ecological importance of higher plants in relation to ecosystems (in contrast to Salmonella spp., which are commonly used in mutagenicity studies), the Vicia micronucleus test was demonstrated to be appropriate for complementing prokaryotic or in vitro tests on diesel exhaust particulate matter included in risk assessments. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A new alternative paraffinic-palmbiodiesel fuel for reducing polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from heavy-duty diesel engines.

    PubMed

    Lin, Yuan-Chung; Liu, Shou-Heng; Chen, Yan-Min; Wu, Tzi-Yi

    2011-01-15

    Polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) emissions from heavy-duty diesel engines (HDDEs) fuelled with paraffinic-palmbiodiesel blends have been rarely addressed in the literature. A high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS) was used to analyze 17 PCDD/F species. Experimental results indicate that the main species of PCDD/Fs were OCDD (octachlorinated debenzo-p-dioxin) and OCDF (octachlorodibenzofuran), and they accounted for 40-50% of the total PCDD/Fs for all test fuels. Paraffinic-palmbiodiesel blends decreased PCDD/Fs by 86.1-88.9%, toxic PCDD/Fs by 91.9-93.0%, THC (total hydrocarbons) by 13.6-23.3%, CO (carbon monoxide) by 27.2-28.3%, and PM (particulate matter) by 21.3-34.2%. Using biodiesel blends, particularly BP9505 or BP8020, instead of premium diesel fuel (PDF) significantly reduced emissions of both PCDD/Fs and traditional pollutants. Using BP9505 (95vol% paraffinic fuel+5vol% palmbiodiesel) and BP8020 instead of PDF can decrease PCDD/F emissions by 5.93 and 5.99gI-TEQyear(-1) in Taiwan, respectively.

  7. Wind tunnel measurements of the dilution of tailpipe emissions downstream of a car, a light-duty truck, and a heavy-duty truck tractor head.

    PubMed

    Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn

    2009-06-01

    The particle and gaseous pollutants in vehicle exhaust emissions undergo rapid dilution with ambient air after exiting the tailpipe. The rate and extent of this dilution can greatly affect both the size evolution of primary exhaust particles and the potential for formation of ultrafine particles. Dilution ratios were measured inside of a wind tunnel in the region immediately downstream of the tailpipe using model vehicles (approximately one-fifth to one-seventh scale models) representing a light-duty truck, a passenger car, and a heavy-duty tractor head (without the trailer). A tracer gas (ethene) was released at a measured flow rate from the tailpipe, and 60 sampling probes placed downstream of the vehicle simultaneously sampled gas tracer concentrations in the near-wake (first few vehicle heights) and far-wake regions (beyond 10 vehicle heights). Tests using different tunnel wind speeds show the range of dilution ratios that can be expected as a function of vehicle type and downstream distance (i.e., time). The vehicle shape quite strongly influences dilution profiles in the near-wake region but is much less important in the far-wake region. The tractor generally produces higher dilution rates than the automobile and light-duty truck under comparable conditions.

  8. PM2.5 emissions from different types of heavy-duty truck: a case study and meta-analysis of the Beijing-Tianjin-Hebei region.

    PubMed

    Song, Liying; Song, Hongqing; Lin, Jingyi; Wang, Cheng; Yu, Mingxu; Huang, Xiaoxia; Guan, Yu; Wang, Xing; Du, Li

    2017-03-14

    Beijing-Tianjin-Hebei (BTH) region in China is affected seriously by the hazy weather that has a large impact on human health. PM2.5 is one of the most important reasons for hazy weather. Understanding the PM2.5 emission characteristics from different types of heavy-duty trucks (HDTs) is valuable in policies and regulations to improve urban air quality and mitigate vehicle emission in China. The investigation and analysis on HDT population and PM2.5 emission in BTH region are carried out. The results show that the population and PM2.5 emission of HDTs in BTH has risen for the last four consecutive years, from 404 thousand and 1795 tons in 2012 to 551 thousand and 2303 tons in 2015. The PM2.5 emission from HDTs in Hebei is about 10 times more than that of Beijing and 9 times more than that of Tianjin. The proportion of natural gas HDTs is about 5%; however, its PM2.5 emission only accounts for 0.94% in 2015, which indicates the utilization of HDTs powered by natural gas facilitate PM2.5 mitigation more than diesel in BTH. The tractor and pickup trucks are the main source of PM2.5 emission from different types of HDT, while special and dump trucks are relatively clean. This study has provided insights for management method and policy-making of vehicle in terms of environmental demand.

  9. High-resolution diffraction for residual stress determination in the NiCrMoV wheel of an axial compressor for a heavy-duty gas turbine

    NASA Astrophysics Data System (ADS)

    Rogante, M.; Török, G.; Ceschini, G. F.; Tognarelli, L.; Füzesy, I.; Rosta, L.

    2004-07-01

    The wheel of an axial compressor for a heavy-duty gas turbine has been investigated for residual stresses (RS) evaluation of the teeth-section where SANS measurements have previously been performed. Such a component can contain internal RS, either due to the manufacturing process, or to the operating cycles fatigue. The constitutive material is a NiCrMoV steel to ASTM A 471 (type 2) norms (equivalent to B50A420B10); this material is usually adopted in the manufacturing of forged components for gas turbines. Internal radial and hoop RS have been determined, whose values are under the limit of 200kPa. Hoop RS, in general, resulted in higher value than the radial ones. The present experiment represents a particularly important step in the RS determination for gas turbine components, since the measurements reveal that the fatigue of the wheel is also a lifetime limiting factor although, in the same technological field, the available data in the actual neutron techniques literature mainly concern turbine buckets.

  10. Emission characterization of an alcohol/diesel-pilot fueled compression-ignition engine and its heavy-duty diesel counterpart. Final report, August 1980-August 1981

    SciTech Connect

    Ullman, T.L.; Hare, C.T.

    1981-08-01

    This report describes results from emissions testing of a prototype diesel engine, developed by Volvo Truck Corporation of Sweden, which uses pilot injection of diesel fuel for compression ignition of alcohol fuel injection for main combustion. In addition to this dual-fuel engine, emission testing was also conducted on a heavy-duty diesel engine of similar design. Both engines were tested over the 1979 13-mode FTP, or shorter versions of this modal test, and over the 1984 Transient FTP as well as an experimental bus cycle. The dual-fuel engine was characterized with methanol, ethanol and ethanol with 30 percent water (wt %). An oxidation catalyst was also used with methanol and ethanol. Emission characterization included regulated emissions (HC, CO, and NOX) along with total particulate, unburned alcohols, individual hydrocarbons, aldehydes, phenols, and odor. The particulate matter was characterized in terms of particle size distribution, sulfate content, C, H, S, metal content, and soluble organic fraction. The soluble organic fraction was studied by determining its elemental composition (C,H,S,N), boiling point distribution, BaP content, relative make-up of polar compounds, and bioactivity by Ames testing.

  11. Impact of biodiesel on regulated and unregulated emissions, and redox and proinflammatory properties of PM emitted from heavy-duty vehicles.

    PubMed

    Karavalakis, Georgios; Gysel, Nicholas; Schmitz, Debra A; Cho, Arthur K; Sioutas, Constantinos; Schauer, James J; Cocker, David R; Durbin, Thomas D

    2017-04-15

    The emissions and the potential health effects of particulate matter (PM) were assessed from two heavy-duty trucks with and without emission control aftertreatment systems when operating on CARB ultra-low sulfur diesel (ULSD) and three different biodiesel blends. The CARB ULSD was blended with soy-based biodiesel, animal fat biodiesel, and waste cooking oil biodiesel at 50vol%. Testing was conducted over the EPA Urban Dynamometer Driving Schedule (UDDS) in triplicate for both trucks. The aftertreatment controls effectively decreased PM mass and number emissions, as well as the polycyclic aromatic hydrocarbons (PAHs) compared to the uncontrolled truck. Emissions of nitrogen oxides (NOx) exhibited increases with the biodiesel blends, showing some feedstock dependency for the controlled truck. The oxidative potential of the emitted PM, measured by means of the dithiothreitol (DTT) assay, showed reductions with the use of biodiesel blends relative to CARB ULSD for the uncontrolled truck. Overall, the cellular responses to the particles from each fuel were reflective of the chemical content, i.e., particles from CARB ULSD were the most reactive and exhibited the highest cellular responses.

  12. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    PubMed

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Comparison of Vehicle-Broadcasted Fuel Consumption Rates against Precise Fuel Measurements for Medium- and Heavy-Duty Vehicles and Engines

    DOE PAGES

    Pink, Alex; Ragatz, Adam; Wang, Lijuan; ...

    2017-03-28

    Vehicles continuously report real-time fuel consumption estimates over their data bus, known as the controller area network (CAN). However, the accuracy of these fueling estimates is uncertain to researchers who collect these data from any given vehicle. To assess the accuracy of these estimates, CAN-reported fuel consumption data are compared against fuel measurements from precise instrumentation. The data analyzed consisted of eight medium/heavy-duty vehicles and two medium-duty engines. Varying discrepancies between CAN fueling rates and the more accurate measurements emerged but without a vehicular trend-for some vehicles the CAN under-reported fuel consumption and for others the CAN over-reported fuel consumption.more » Furthermore, a qualitative real-time analysis revealed that the operating conditions under which these fueling discrepancies arose varied among vehicles. A drive cycle analysis revealed that while CAN fueling estimate accuracy differs for individual vehicles, that CAN estimates capture the relative fuel consumption differences between drive cycles within 4% for all vehicles and even more accurately for some vehicles. Furthermore, in situations where only CAN-reported data are available, CAN fueling estimates can provide relative fuel consumption trends but not accurate or precise fuel consumption rates.« less

  14. Ceramic technology for advanced heat engines

    SciTech Connect

    Johnson, D.R.; Schulz, R.B.

    1994-10-01

    The Ceramic Technology Project was initiated in 1983 for the purpose of developing highly reliable structural ceramics for applications in advanced heat engines, such as automotive gas turbines and advanced heavy duty diesel engines. The reliability problem was determined to be a result of uncontrolled populations of processing flaws in the brittle, flaw-sensitive materials, along with microstructural features, such as grain boundary phases, that contribute to time dependent strength reduction in service at high temperatures. The approaches taken to develop high reliability ceramics included the development of tougher materials with greater tolerance to microstructural flaws, the development of advanced processing technology to minimize the size and number of flaws, and the development of mechanical testing methodology and the characterization of time dependent mechanical behavior, leading to a life prediction methodology for structural ceramics. The reliability goals of the program were largely met by 1993, but commercial implementation of ceramic engine components has been delayed by the high cost of the components. A new effort in Cost Effective Ceramics for Heat Engines was initiated in 1993 and is expected to develop the manufacturing technology leading to an order of magnitude cost reduction. The program has been planned for a five year period.

  15. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  16. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect

    Spencer, D.F.

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  17. Study of advanced fuel system concepts for commercial aircraft and engines

    NASA Technical Reports Server (NTRS)

    Versaw, E. F.; Brewer, G. D.; Byers, W. D.; Fogg, H. W.; Hanks, D. E.; Chirivella, J.

    1983-01-01

    The impact on a commercial transport aircraft of using fuels which have relaxed property limits relative to current commercial jet fuel was assessed. The methodology of the study is outlined, fuel properties are discussed, and the effect of the relaxation of fuel properties analyzed. Advanced fuel system component designs that permit the satisfactory use of fuel with the candidate relaxed properties in the subject aircraft are described. The two fuel properties considered in detail are freezing point and thermal stability. Three candidate fuel system concepts were selected and evaluated in terms of performance, cost, weight, safety, and maintainability. A fuel system that incorporates insulation and electrical heating elements on fuel tank lower surfaces was found to be most cost effective for the long term.

  18. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  19. A study on the utilization of advanced composites in commercial aircraft wing structure

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  20. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  1. Light- and Heavy-Duty Vehicle Emission Factors of PM Species Based on Freeway Measurements and Comparison With Tunnel and Dynamometer Studies

    NASA Astrophysics Data System (ADS)

    Ning, Z.; Polidori, A.; Schauer, J. J.; Sioutas, C.

    2007-12-01

    Emission factors of various particle species from light- and heavy-duty vehicles (LDVs and HDVs, respectively), including organic and elemental carbon (OC and EC), sulfate, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, trace metals, elements, and particle number (PN), were estimated based on roadway measurements. Sampling campaigns were conducted at two different roadways: the CA-110 highway (where only gasoline-powered vehicles are allowed), and the I-710 freeway (where about 20 % of the total number of vehicles are diesel-powered trucks). The PM emission factors determined in these roadways were compared to those reconstructed from recent source emission data from the Caldecott tunnel, and those from previous tunnel and chassis dynamometer studies. Very good agreement between estimated and reconstructed emission factors was found for PN, EC, sulfate, high molecular weight (MW) PAHs, hopanes and steranes. This suggests that PM speciated chemical data collected at roadsides can be used to calculate reliable emission factors for several important particulate species at other locations characterized by a similar mix of on-road motor vehicles. The agreement between our results and other studies in the emission factors of trace elements and metals varied from very good (for species such as Cu, Mo, Ba, Pb) to poor (for species such as Mg, Fe, Ca) probably because the atmospheric concentrations of the latter elements are associated with both traffic and non-traffic sources, and the relative abundances of Mg, Ca, and Fe in road dust varies considerably across locations. The emission factors of OC and EC were clearly highest for HDVs, and those of PAHs, hopanes, and steranes from our roadway measurements were well within the range of values reported in the literature from tunnel and dynamometer studies. The approach presented in this study allows for a straightforward estimation of PM emission factors from ambient, near-freeway measurements. Our results were

  2. Reducing carbonyl emissions from a heavy-duty diesel engine at US transient cycle test by use of paraffinic/biodiesel blends

    NASA Astrophysics Data System (ADS)

    Yuan, Chung-Shin; Lin, Yuan-Chung; Tsai, Cheng-Hsien; Wu, Chia-Chieh; Lin, Yu-Sheng

    2009-12-01

    Formaldehyde and acetaldehyde are toxic carcinogens so their reductions in diesel-engine emissions are desirable. This study investigated emissions of carbonyl compounds (CBCs) from an HDDE (heavy-duty diesel engine) at US transient cycle test, using five test fuels: premium diesel fuel (D100), P100 (100% palm-biodiesel), P20 (20% palm-biodiesel + 80% premium diesel fuel), PF80P20 (80% paraffinic fuel + 20% palm-biodiesel), and PF95P05 (95% paraffinic fuel + 5% palm-biodiesel). Experimental results indicate that formaldehyde was the major carbonyl in the exhaust, accounting for 70.1-76.2% of total CBC concentrations for all test fuels. In comparison with D100 (172 mg BHP -1 h -1), the reductions of formaldehyde and acetaldehyde emission factor for P100, P20, PF80P20, and PF95P05 were (-16.8%, -61.8%), (-10.0%, -39.0%), (21.3%, 1.10%), and (31.1%, 19.5%), respectively. Using P100 and P20 instead of D100 in the HDDE increased CBC concentrations by 14.5% and 3.28%, respectively, but using PF80P20 and PF95P05 significantly reduced CBC concentrations by 30.3% and 23.7%, respectively. Using P100 and P20 instead of D100 (2867 ton yr -1) in the HDDE increased CBC emissions by 240 and 224 ton yr -1, respectively, but using PF80P20, and PF95P05 instead of D100 in the HDDE decreased CBC emissions by 711 and 899 ton yr -1, respectively. The above results indicate that the wide usage of paraffinic-palmbiodiesel blends as alternative fuels could protect the environment.

  3. Real-world PM, NO x, CO, and ultrafine particle emission factors for military non-road heavy duty diesel vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, Dongzi; Nussbaum, Nicholas J.; Kuhns, Hampden D.; Chang, M.-C. Oliver; Sodeman, David; Moosmüller, Hans; Watson, John G.

    2011-05-01

    Training on US military bases involves nonroad diesel vehicles with emissions that can affect base personnel, nearby communities, and attainment of air quality standards. Nonroad diesel engines contribute 44% of diesel PM and 12% of total NO x emissions from mobile sources nationwide. Although military sector fuel use accounts for only ≈0.4% of distillate fuel use in US, emissions factors measured for these engines improve the representation of the relatively small (as compared to onroad sources) database of nonroad emission factors. Heavy-duty multi-axle, all-wheel drive military trucks are not compatible with regular single-axle dynamometers and their emissions cannot be measured under standard laboratory conditions. We have developed a novel in-plume technique to measure in-use emissions from vehicles with elevated stack. Real-world gaseous and particulate matter (PM) emission factors (EFs) from ten 7-ton 6-wheel drive trucks and two 8-wheel drive heavy tactical Logistics Vehicle System (LVS) vehicles were measured using in-plume sampling. The EFs of these trucks are comparable to those of onroad trucks while the PM EFs of 2-stroke LVS are ≈10 times higher than those of onroad vehicles. Lower EC/PM ratio was observed for LVS compared with MTVR. PM number emission factors were 5.9 × 10 14 particles km -1 for the trucks and 2.5 × 10 16 particles km -1 for the LVSs, three orders of magnitude higher than the proposed European Union standard of 6 × 10 11 particles km -1. The EFs sampled can be extended to engines used in the broader nonroad sector including agriculture and mining and used as inputs to the NONROAD model.

  4. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: assessment of pollutant dispersion and health risk.

    PubMed

    Tadano, Yara S; Borillo, Guilherme C; Godoi, Ana Flávia L; Cichon, Amanda; Silva, Thiago O B; Valebona, Fábio B; Errera, Marcelo R; Penteado Neto, Renato A; Rempel, Dennis; Martin, Lucas; Yamamoto, Carlos I; Godoi, Ricardo H M

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions.

  5. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  6. Emissions of organic aerosol mass, black carbon, particle number, and regulated and unregulated gases from scooters and light and heavy duty vehicles with different fuels

    NASA Astrophysics Data System (ADS)

    Chirico, R.; Clairotte, M.; Adam, T. W.; Giechaskiel, B.; Heringa, M. F.; Elsasser, M.; Martini, G.; Manfredi, U.; Streibel, T.; Sklorz, M.; Zimmermann, R.; DeCarlo, P. F.; Astorga, C.; Baltensperger, U.; Prevot, A. S. H.

    2014-06-01

    A sampling campaign with seven different types of vehicles was conducted in 2009 at the vehicle test facilities of the Joint Research Centre (JRC) in Ispra (Italy). The vehicles chosen were representative of some categories circulating in Europe and were fueled either with standard gasoline or diesel and some with blends of rapeseed methyl ester biodiesel. The aim of this work was to improve the knowledge about the emission factors of gas phase and particle-associated regulated and unregulated species from vehicle exhaust. Unregulated species such as black carbon (BC), primary organic aerosol (OA) content, particle number (PN), monocyclic and polycyclic aromatic hydrocarbons (PAHs) and a~selection of unregulated gaseous compounds, including nitrous acid (N2O), ammonia (NH3), hydrogen cyanide (HCN), formaldehyde (HCHO), acetaldehyde (CH3CHO), sulfur dioxide (SO2), and methane (CH4), were measured in real time with a suite of instruments including a high-resolution aerosol time-of-flight mass spectrometer, a resonance enhanced multi-photon ionization time-of-flight mass spectrometer, and a high resolution Fourier transform infrared spectrometer. Diesel vehicles, without particle filters, featured the highest values for particle number, followed by gasoline vehicles and scooters. The particles from diesel and gasoline vehicles were mostly made of BC with a low fraction of OA, while the particles from the scooters were mainly composed of OA. Scooters were characterized by super high emissions factors for OA, which were orders of magnitude higher than for the other vehicles. The heavy duty diesel vehicle (HDDV) featured the highest nitrogen oxides (NOx) emissions, while the scooters had the highest emissions for total hydrocarbons and aromatic compounds due to the unburned and partially burned gasoline and lubricant oil mixture. Generally, vehicles fuelled with biodiesel blends showed lower emission factors of OA and total aromatics than those from the standard fuels

  7. 'Oorja' in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households.

    PubMed

    Thurber, Mark C; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2014-04-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 "Oorja" stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of "agricultural waste" to make

  8. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  9. A study of engine variable geometry systems for an advanced high subsonic long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Compagnon, M. A.

    1973-01-01

    Several variable geometry high Mach inlet concepts, aimed at meeting a system noise objective of 15 EPNdB below FAR part 36, for a long range, Mach 0.9 advanced commercial transport are assessed and compared to a fixed geometry inlet with multiple splitters. The effects of a variable exhaust nozzle (mixed exhaust engine) on noise, inlet geometry requirements, and economics are also presented. The best variable geometry inlet configuration identified is a variable cowl design which relies on a high throat Mach number for additional inlet noise suppression only at takeoff, and depends entirely on inlet wall treatment for noise suppression at approach power. Relative economic penalties as a function of noise level are also presented.

  10. Proteomic characterization of intermediate and advanced glycation end-products in commercial milk samples.

    PubMed

    Renzone, Giovanni; Arena, Simona; Scaloni, Andrea

    2015-03-18

    The Maillard reaction consists of a number of chemical processes affecting the structure of the proteins present in foods. We previously accomplished the proteomic characterization of the lactosylation targets in commercial milk samples. Although characterizing the early modification derivatives, this analysis did not describe the corresponding advanced glycation end-products (AGEs), which may be formed from the further oxidation of former ones or by reaction of oxidized sugars with proteins, when high temperatures are exploited. To fill this gap, we have used combined proteomic procedures for the systematic characterization of the lactosylated and AGE-containing proteins from the soluble and milk fat globule membrane fraction of various milk products. Besides to confirm all lactulosyl-lysines described previously, 40 novel lactosylation sites were identified. More importantly, 308 additional intermediate and advanced glyco-oxidation derivatives (including cross-linking adducts) were characterized in 31 proteins, providing the widest qualitative inventory of modified species ascertained in commercial milk samples so far. Amadori adducts with glucose/galactose, their dehydration products, carboxymethyllysine and glyoxal-, 3-deoxyglucosone/3-deoxygalactosone- and 3-deoxylactosone-derived dihydroxyimidazolines and/or hemiaminals were the most frequent derivatives observed. Depending on thermal treatment, a variable number of modification sites was identified within each protein; their number increased with harder food processing conditions. Among the modified proteins, species involved in assisting the delivery of nutrients, defense response against pathogens and cellular proliferation/differentiation were highly affected by AGE formation. This may lead to a progressive decrease of the milk nutritional value, as it reduces the protein functional properties, abates the bioavailability of the essential amino acids and eventually affects food digestibility. These aspects

  11. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  12. Advances in commercial application of gamma radiation in tropical fruits at Brazil

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Silva, J. M.; Cruz, J. N.; Broisler, P. O.; Rela, P. R.; Salmieri, S.; Lacroix, M.

    2009-07-01

    All regions of Brazil are potential areas for growing tropical fruits. As this country is already a great producer and exporter of tropical fruits, ionizing radiation has been the subject of studies in many commodities. An important project has been carried out to increase the commercial use of gamma radiation in our country. Instituto de Pesquisas Energeticas e Nucleares (IPEN)-CNEN/SP together with field producers in northeast region and partners like International Atomic Energy Agency (IAEA), CIC, Empresa Brasileira Pesquisa na Agricultura (EMBRAPA) joined to demonstrate this technology, its application and commercial feasibility. The objective of this study is to show advances in feasibility demonstrate the quality of the irradiated fruits in an international consignment from Brazil to Canada. In this work, Tommy Atkins mangoes harvested in northeast region of Brazil were sent to Canada. The fruits were treated in a gamma irradiation facility at doses 0.4 and 1.0 kGy. The control group was submitted to hydrothermal treatment (46 °C for 110 min). The fruits were stored at 11 °C for 10 days until the international transportation and kept at an environmental condition (22 °C) for 12 days, where their physical-chemical and sensorial properties were evaluated. The financial part of the feasibility study covers the scope of the investment, including the net working capital and production costs.

  13. Characterization of particle- and vapor-phase organic fraction emissions from a heavy-duty diesel engine equipped with a particle trap and regeneration controls.

    PubMed

    Bagley, S T; Gratz, L D; Leddy, D G; Johnson, J H

    1993-07-01

    The effects of a ceramic particle trap on the chemical and biological character of the exhaust from a heavy-duty diesel engine have been studied during steady-state operation and during periods of trap regeneration. Phase I of this project involved developing and refining the methods using a Caterpillar 3208 engine, and Phase II involved more detailed experiments with a Cummins LTA10-300 engine, which met Federal 1988 particulate matter standards, and a ceramic particle trap with built-in regeneration controls. During the Phase I experiments, samples wee collected at the Environmental Protection Agency (EPA)* steady-state mode 4 (50% load at intermediate speed). Varying the dilution ratio to obtain a constant filter-face temperature resulted in less variability in total particulate matter (TPM), particle-associated soluble organic fraction (SOF), solids (SOL), and polynuclear aromatic hydrocarbon (PAH) levels than sampling with a constant dilution ratio and allowing filter-face temperature to vary. A modified microsuspension Ames assay detected mutagenicity in the SOF samples, and in the semivolatile organic fraction extracted from XAD-2 resin (XAD-2 resin organic component, XOC) with at least 10 times less sample mass than the standard plate incorporation assay. Measurement techniques for PAH and nitro-PAH in the SOF and XOC also were developed during this portion of the project. For the Phase II work, two EPA steady-state rated speed modes were selected: mode 11 (25% load) and mode 9 (75% load). With or without the trap, filter-face temperatures were kept at 45 degrees +/- 2 degrees C, nitrogen dioxide (NO2) levels less than 5 parts per million (ppm), and sampling times less than 60 minutes. Particle sizes were determined using an electrical aerosol analyzer. Similar sampling methods were used when the trap was regenerated, except that a separate dilution tunnel and sampling system was designed and built to collect all of the regeneration emissions. The SOF and

  14. Effects on aerosol size distribution of polycyclic aromatic hydrocarbons from the heavy-duty diesel generator fueled with feedstock palm-biodiesel blends

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Tsai, Cheng-Hsien; Yang, Chi-Ru; Wu, C. H. Jim; Wu, Tzi-Yi; Chang-Chien, Guo-Ping

    Biodiesels are promoted as alternatives to fossil fuels and their applications in diesel engine have been studied extensively. However, the size distribution of polycyclic aromatic hydrocarbons (PAHs) and generator particulate material (GPM) emitted from heavy-duty diesel generator fueled with biodiesel blends has seldom been addressed. Seven different biodiesel blends with volume fractions of biodiesel ranging from 0% to 30% were studied. Experimental results indicate that the mean reductions of sum of PAHi/GPM 0.056-18 (generator particulate material with aerodynamic diameter 0.056-18 μm) and BaP eqi [=(benzo[ a]pyrene equivalent)i]/GPM 0.056-18 of B5, B10, B15, B20, B25 and B30 are (-8.21%, -5.72%), (-36.7%, -29.7%), (-1.25%, 2.32%), (16.2%, 18.6%), (33.4%, 35.0%) and (40.5%, 42.4), respectively, compared with B0. Both PAHi/GPMi and BaP eqi/GPMi in stage 1 (0.056 - 0.166 μm) and stage 2 (0.166 - 0.31 μm) of all test fuels are higher than those in the other stages due to higher specific surface area of smaller particles. It is also observed that there are more highly toxic PAHs in stage 2. It should be noticed that the trend of particle-phase PAH contents is different from the trend of particle-phase PAH concentration and opposite to the trend of total GPM 0.056-18 emission. The differences are due to a higher number of particles with diameters between 0.056 and 0.31 μm. The above results indicate that fuel blends with less than 15% biodiesel would increase PAH content at particle size between 0.056 and 0.31 μm. Therefore, the blending fraction should be between 15% and 30%. Moreover, particle-size control is needed in future emission regulations which would necessitate further improvements in combustion quality. Besides, researches on health effects of biodiesel blends are needed as well.

  15. Changing the academic culture: Valuing patents and commercialization toward tenure and career advancement

    PubMed Central

    Sanberg, Paul R.; Gharib, Morteza; Harker, Patrick T.; Kaler, Eric W.; Marchase, Richard B.; Sands, Timothy D.; Arshadi, Nasser; Sarkar, Sudeep

    2014-01-01

    There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future. PMID:24778248

  16. Changing the academic culture: valuing patents and commercialization toward tenure and career advancement.

    PubMed

    Sanberg, Paul R; Gharib, Morteza; Harker, Patrick T; Kaler, Eric W; Marchase, Richard B; Sands, Timothy D; Arshadi, Nasser; Sarkar, Sudeep

    2014-05-06

    There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future.

  17. Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, April 1--June 30, 1996

    SciTech Connect

    1996-09-09

    This report covers the period April--June, 1996 for the utility advanced turbine systems (ATS) technical readiness testing and pre-commercial demonstration program. The topics of the report include NEPA information, ATS engine design, integrated program plan, closed loop cooling, thin wall casting development, rotor air sealing development, compressor aerodynamic development, turbine aerodynamic development, phase 3 advanced air sealing development, active tip clearance control, combustion system development, ceramic ring segment, advanced thermal barrier coating development, steam cooling effects, directionally solidified blade development, single crystal blade development program, advanced vane alloy development, blade and vane life prediction, nickel based alloy rotor, and plans for the next reporting period.

  18. 41 CFR 302-10.300 - May I receive an advance of funds when a commercial carrier transports the mobile home?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false May I receive an advance of funds when a commercial carrier transports the mobile home? 302-10.300 Section 302-10.300 Public... Advance of Funds § 302-10.300 May I receive an advance of funds when a commercial carrier transports...

  19. Fleet test evaluation of fully formulated heavy-duty coolant technology maintained with a delayed-release filter compared with coolant inhibited with a nitrited organic acid technology: An interim report

    SciTech Connect

    Aroyan, S.S.; Eaton, E.R.

    1999-08-01

    This paper is a controlled extended service interval (ESI) study of the comparative behaviors of a nitrite/borate/low-silicate, low total dissolved solids (TDS) coolant maintained with delayed-release filters, and an organic acid inhibited coolant technology in heavy-duty engines. It reports both laboratory and fleet test data from 66 trucks, powered with different makes of heavy-duty diesel engines. The engines were cooled with three different types of inhibitors and two different glycol base (ethylene glycol and propylene glycol) coolants for an initial period exceeding two years and 500,000 km (300,000 miles). The data reported include chemical depletion rates, periodic coolant chemical analyses, and engine/cooling system reliability experience. The ongoing test will continue for approximately five years and a 1.6 million km (1 million miles) duration. Thirteen trucks were retained as controls, operating with ASTM D 4985 specification (GM-6038 type) coolant maintained with a standard ASTM D 57542 supplemental coolant additive (SCA). Engines produced by Caterpillar, Detroit Diesel Corp., Cummins Engine Co., and Mack Trucks are included in the test mix.

  20. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    PubMed

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  1. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas

    PubMed Central

    2012-01-01

    Background One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used − rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. Results High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than

  2. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  3. An advanced Ka band phased array communication system at commercial frequencies

    NASA Astrophysics Data System (ADS)

    Wald, Lawrence; Kacpura, Thomas; Kershner, Dennis

    2000-01-01

    The Glenn Research Center (GRC) Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communication system that transmits information from a technology payload carried by the Space Shuttle in low-Earth orbit (LEO) to a small receiving terminal on the Earth. The Shuttle-based communications package will utilize a solid-state, Ka-band phased array antenna that electronically steers the 19.05 Ghz RF signal toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The project will also demonstrate new digital modulation and processing technology that will allow transmission of user/platform data at rates up to 1200 Mbits per second. This capability will enable the management of the substantially increased amounts of data to be collected from the International Space Station (ISS) or other LEO platforms directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. .

  4. How Past Loss of Control Accidents May Inform Safety Cases for Advanced Control Systems on Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, C. W.

    2008-01-01

    This paper describes five loss of control accidents involving commercial aircraft, and derives from those accidents three principles to consider when developing a potential safety case for an advanced flight control system for commercial aircraft. One, among the foundational evidence needed to support a safety case is the availability to the control system of accurate and timely information about the status and health of relevant systems and components. Two, an essential argument to be sustained in the safety case is that pilots are provided with adequate information about the control system to enable them to understand the capabilities that it provides. Three, another essential argument is that the advanced control system will not perform less safely than a good pilot.

  5. Degradation of a commercial textile biocide with advanced oxidation processes and ozone.

    PubMed

    Arslan-Alaton, Idil

    2007-01-01

    The occurrence of significant amounts of biocidal finishing agents in the environment as a consequence of intensive textile finishing activities has become a subject of major public health concern and scientific interest only recently. In the present study, the treatment efficiency of selected, well-known advanced oxidation processes (Fenton, Photo-Fenton, TiO(2)/UV-A, TiO(2)/UV-A/H(2)O(2)) and ozone was compared for the degradation and detoxification of a commercial textile biocide formulation containing a 2,4,4'-trichloro-2'-hydroxydiphenyl ether as the active ingredient. The aqueous biocide solution was prepared to mimic typical effluent originating from the antimicrobial finishing operation (BOD(5,o) < or =5 mg/L; COD(o)=200 mg/L; DOC(o) (dissolved organic carbon)=58 mg/L; AOX(o) (adsorbable organic halogens)=48 mg/L; LC(50,o) (lethal concentration causing 50% death or immobilization in Daphnia magna)=8% v/v). Ozonation experiments were conducted at different ozone doses (500-900 mg/h) and initial pH (7-12) to assess the effect of ozonation on degradation (COD, DOC removal), dearomatization (UV(280) and UV(254) abatement), dechlorination (AOX removal) and detoxification (changes in LC(50)). For the Fenton experiments, the effect of varying ferrous iron catalyst concentrations and UV-A light irradiation (the Photo-Fenton process) was examined. In the heterogenous photocatalytic experiments, Degussa P25-type TiO(2) was used as the catalyst and the effect of reaction pH (3, 7 and 12) and H(2)O(2) addition on the photocatalytic treatment efficiency was examined. Although in the photochemical (i.e. Photo-Fenton, TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)) experiments appreciably higher COD and DOC removal efficiencies were obtained, ozonation appeared to be equally effective to achieve dearomatization (UV(280) abatement) at all studied reaction pH. During ozonation of the textile biocide effluent, AOX abatement proceeded significantly faster than dearomatization and was

  6. Optical properties of urban aerosols, aircraft emissions, and heavy-duty diesel trucks using aerosol light extinction measurements by an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex)

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Massoli, P.; Wood, E. C.; Allan, J. D.; Fortner, E.; Yu, Z.; Herndon, S. C.; Miake-Lye, R. C.; Onasch, T. B.

    2010-12-01

    We present results of optical property characterization of ambient particulate during several field deployments where measurements of aerosol light extinction (σep) are obtained using an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex). The CAPS PMex is able to provide extinction measurements with 3-σ detection limit of 3 Mm-1 for 1s integration time. The CAPS PMex (630 nm) is integrated in the Aerodyne Research, Inc. (ARI) mobile laboratory where a co-located Multi Angle Absorption Photometer (MAAP) provides particle light absorption coefficient at 632 nm. The combination of the CAPS with the MAAP data allows estimating the single scattering albedo (ω) of the ambient aerosol particles. The ARI mobile laboratory was deployed in winter 2010 at the Chicago O’Hare International Airport to measure gas phase and particulate emissions from different aircraft engines, and during summer 2010 in Oakland, CA, to characterize vehicular gaseous and particulate emissions (mainly exhaust from heavy-duty diesel trucks) from the Caldecott Tunnel. We provide estimates of black carbon emission factors from individual aircraft engines and diesel trucks, in addition to characterizing the optical properties of these ambient samples studying fleet-average emissions for both light-duty passenger vehicles and heavy-duty diesel trucks. Two CAPS PMex instruments (measuring σep at 630 and 532 nm) were also deployed during the CalNex 2010 study (May 14 - June 16) at the CalTech ground site in Pasadena, CA. During the same time, a photo-acoustic spectrometer (PAS, DMT) and an aethalometer instrument (Magee Sci.) measured particle light absorption of submicron aerosol particles from the same sample line as the CAPS PMex monitors. We combine these data to provide multi-wavelength ω trends for the one-month campaign. Our results show the high potential of the CAPS as light weight, compact instrument to perform precise and accurate σep measurements of

  7. Proposed Rule and Related Materials for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Regulations Requiring Onboard Diagnostic Systems on 2010 and Later Heavy-Duty Engines Used in Highway Applications Over 14,000 Pounds

    EPA Pesticide Factsheets

    Proposed Rule and Related Materials for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Regulations Requiring Onboard Diagnostic Systems on 2010 and Later Heavy-Duty Engines Used in Highway Applications Over 14,000 Pounds

  8. Advanced Diesel Engine Component Development Program, final report - tasks 4-14

    SciTech Connect

    Kaushal, T.S.; Weber, K.E.

    1994-11-01

    The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year, multi-phase effort to develop and demonstrate the critical technology needed to advance the heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck market. The ADECD Program has been partitioned into two phases. The first phase, Phase 1, was completed in 1986, resulting in definition of the Advanced Diesel Reference Engine (ADRE)III. The second phase, Phase 11/111, examines the feasibility of the ADRE concepts for application to the on-highway diesel engine. Phase 11/111 is currently underway. This project is sponsored by the U.S. Department of Energy, Office of Transportation Technologies. The work has been performed by the Detroit Diesel Corporation (DDC) under Contract DEN3-329 with the NASA Lewis Research Center, who provide project management and technical direction.

  9. Advances in high-performance sensors for the military and commercial market

    NASA Astrophysics Data System (ADS)

    Brown, David; Daniel, Benton; Horikiri, Tad; King, P.; Nelson, David M.; Small, Michael

    2001-10-01

    The increasing proliferation of infrared technology, including domestic and international product development, is bringing very high performance systems into the commercial market. Raytheon Infrared Operations (RIO) programs have produced a variety of products that are economically viable for the commercial market and retain very high performance. These products include both cooled and uncooled sensors. Examples of these products range from high-resolution camera engines to high-performance focal planes. These sensors are available as commodity products directly from RIO, a merchant supplier.

  10. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  11. Evaluation of verticillium wilt resistance in commercial cultivars and advanced breeding lines of cotton

    USDA-ARS?s Scientific Manuscript database

    Verticillium wilt (VW), caused by Verticillium dahliae Kleb, is one of the most destructive diseases in cotton (Gossypium spp.). The most efficient and cost-effective method of controlling the disease is the use of resistant cotton cultivars. Most commercial cultivars and elite breeding lines are de...

  12. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  13. Study on utilization of advanced composites in commercial aircraft wing structures, volume 2

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.

    1978-01-01

    A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.

  14. The BioDyn facility on ISS: Advancing biomaterial production in microgravity for commercial applications

    NASA Astrophysics Data System (ADS)

    Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian

    1999-01-01

    The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.

  15. A study of rapid engine response systems for an advanced high subsonic, long range commercial aircraft

    NASA Technical Reports Server (NTRS)

    Barber, J. H.; Bennett, G. W.; Derosier, T. A.

    1973-01-01

    A dynamic model representing the characteristics of an advanced technology study engine (1985 certification time period) was constructed and programmed on an analogue/digital computer. This model was then exercised to study and evaluate a large number of techniques, singly and in combination, to improve engine response. Several effective methods to reduce engine accelerating time are identified.

  16. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  17. ‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households

    PubMed Central

    Thurber, Mark C.; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2015-01-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 “Oorja” stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of “agricultural waste” to

  18. Cost-Effective Fabrication Routes for the Production of Quantum Well Structures and Recovery of Waste Heat from Heavy Duty Trucks

    SciTech Connect

    Willigan, Rhonda

    2009-09-30

    The primary objectives of Phase I were: (a) carry out cost, performance and system level models, (b) quantify the cost benefits of cathodic arc and heterogeneous nanocomposites over sputtered material, (c) evaluate the expected power output of the proposed thermoelectric materials and predict the efficiency and power output of an integrated TE module, (d) define market acceptance criteria by engaging Caterpillar's truck OEMs, potential customers and dealers and identify high-level criteria for a waste heat thermoelectric generator (TEG), (e) identify potential TEG concepts, and (f) establish cost/kWatt targets as well as a breakdown of subsystem component cost targets for the commercially viable TEG.

  19. Advancement of braiding/resin transfer molding from commercial to aerospace applications

    NASA Astrophysics Data System (ADS)

    Sharpless, Garrett C.

    1991-03-01

    The braiding process, which produces dry fiber preforms fabricated to net shape for subsequent molding, and its compatible marriage to the resin transfer molding (RTM) process is producing a wide variety of composite products for commercial, recreational, and aircraft/aerospace applications. The design and fabrication of net-shaped braided preforms is the first step in the manufacture of braided/RTM composite parts. In most cases, braiding is the process of choice because the desired preform shape is usually complex. The stability of a braided structure makes it ideal for use in a subsequent RTM operation. The problems and techniques involved in the braiding of various complex preforms are discussed. The RTM process is then examined, along with its compatibility and flexibility with the braiding process in manufacturing. Examples are then presented of structurally demanding applications for braided/RTM composites in the aircraft and aerospace industries.

  20. Technological advances in CO2 conversion electro-biorefinery: A step toward commercialization.

    PubMed

    ElMekawy, Ahmed; Hegab, Hanaa M; Mohanakrishna, Gunda; Elbaz, Ashraf F; Bulut, Metin; Pant, Deepak

    2016-09-01

    The global atmospheric warming due to increased emissions of carbon dioxide (CO2) has attracted great attention in the last two decades. Although different CO2 capture and storage platforms have been proposed, the utilization of captured CO2 from industrial plants is progressively prevalent strategy due to concerns about the safety of terrestrial and aquatic CO2 storage. Two utilization forms were proposed, direct utilization of CO2 and conversion of CO2 to chemicals and energy products. The latter strategy includes the bioelectrochemical techniques in which electricity can be used as an energy source for the microbial catalytic production of fuels and other organic products from CO2. This approach is a potential technique in which CO2 emissions are not only reduced, but it also produce more value-added products. This review article highlights the different methodologies for the bioelectrochemical utilization of CO2, with distinctive focus on the potential opportunities for the commercialization of these techniques.

  1. Advancement in shampoo (a dermal care product): preparation methods, patents and commercial utility.

    PubMed

    Deeksha; Malviya, Rishabha; Sharma, Pramod K

    2014-01-01

    Shampoo is a cleaning aid for hair and is the most evolving beauty products in the present scenario. Today's shampoo products are of great importance as they provide cleaning of hair with the benefits of conditioning, smoothing and good health of hair i.e. dandruff, dirt, grease and lice free hair. Various types of shampoos depending upon function, nature of ingredient, and their special effects are elaborated in this study. Generally shampoos are evaluated in terms of physical appearance, detergency, surface tension, foam quality, pH, viscosity, and percent of solid content, flow property, dirt dispersion, cleaning action, stability and wetting time. The attention should be paid at its patent portion which attracts towards itself as it provides wide knowledge related to shampoo. This article reviews the various aspects of shampoo in terms of preparation methods, various patents and commercial value.

  2. Request for Information from entities interested in commercializing Laboratory-developed advanced in vitro assessment technology

    SciTech Connect

    Intrator, Miranda Huang

    2016-03-30

    Los Alamos National Security, LLC (LANS) is the manager and operator of Los Alamos National Laboratory (Los Alamos) for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52- 06NA25396. Los Alamos is a mission-centric Federally Funded Research and Development Center focused on solving critical national security challenges through science and engineering for both government and private customers. LANS is opening this formal Request for Information (RFI) to gauge interest in engaging as an industry partner to LANS for collaboration in advancing the bio-assessment platform described below. Please see last section for details on submitting a Letter of Interest.

  3. Reducing emissions of carbonyl compounds and regulated harmful matters from a heavy-duty diesel engine fueled with paraffinic/biodiesel blends at one low load steady-state condition

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Wu, Tzi-Yi; Ou-Yang, Wen-Chung; Chen, Chung-Bang

    This study investigated the emissions of carbonyl compounds (CBCs) and regulated harmful matters (traditional pollutants) from an HDDE (heavy-duty diesel engine) at one low load steady-state condition, 24.5% of the max load (40 km h -1), using five test fuels: premium diesel fuel (D100), P100 (100% palm-biodiesel), P20 (20% palm-biodiesel + 80% premium diesel fuel), PF80P20 (80% paraffinic fuel + 20% palm-biodiesel), and PF95P05 (95% paraffinic fuel + 5% palm-biodiesel). Experimental results indicate that formaldehyde was the major carbonyl in the exhaust, accounting for 70.3-75.4% of total CBC concentrations for all test fuels. Using P100 and P20 instead of D100 in the HDDE increased CBC concentrations by 9.74% and 2.89%, respectively. However, using PF80P20 and PF95P05 as alternative fuels significantly reduced CBC concentrations by 30.3% and 24.2%, respectively. Using PF95P05 instead of D100 decreased CBCs by 30.3%, PM by 11.1%, THC by 39.0%, CO by 34.0%, NOx by 24.3%, and CO 2 by 7.60%. The wide usage of paraffinic-palmbiodiesel blends as alternative fuels could protect the environment. However, it should be noted that only one engine operated at one low load steady-state condition was investigated.

  4. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  5. Chemistry to conservation: using otoliths to advance recreational and commercial fisheries management.

    PubMed

    Carlson, A K; Phelps, Q E; Graeb, B D S

    2017-02-01

    Otolith chemistry is an effective technique for evaluating fish environmental history, but its utility in fisheries management has not been comprehensively examined. Thus, a review of otolith chemistry with emphasis on management applicability is presented. More than 1500 otolith chemistry manuscripts published from 1967 to 2015 are reviewed and descriptive case studies are used to illustrate the utility of otolith chemistry as a fisheries management tool. Otolith chemistry publications span a wide variety of topics (e.g. natal origins, habitat use, movement, stock discrimination and statistical theory) and species in freshwater and marine systems. Despite the broad distribution of manuscripts in a variety of fisheries, environmental and ecological journals, the majority of publications (83%, n = 1264) do not describe implications or applications of otolith chemistry for fisheries management. This information gap is addressed through case studies that illustrate management applications of otolith chemistry. Case studies cover numerous topics (e.g. natal origins, population connectivity, stock enhancement, transgenerational marking, pollution exposure history and invasive species management) in freshwater and marine systems using sport fishes, invasive fishes, endangered fishes and species of commercial and aquaculture importance. Otolith chemistry has diverse implications and applications for fisheries management worldwide. Collaboration among fisheries professionals from academia, government agencies and non-governmental organizations will help bridge the research-management divide and establish otolith chemistry as a fisheries management tool. © 2016 The Fisheries Society of the British Isles.

  6. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  7. Optimization of engines for a commercial Mach 0.98 transport using advanced turbine cooling methods

    NASA Technical Reports Server (NTRS)

    Kraft, G. A.; Whitlow, J. B., Jr.

    1972-01-01

    A study was made of an advanced technology airplane using supercritical aerodynamics. Cruise Mach number was 0.98 at 40,000 feet altitude with a payload of 60,000 pounds and a range of 3000 nautical miles. Separate-flow turbofans were examined parametrically to determine the effect of sea-level-static design turbine-inlet-temperature and noise on takeoff gross weight (TOGW) assuming full-film turbine cooling. The optimum turbine inlet temperature was 2650 F. Two-stage-fan engines, with cruise fan pressure ratio of 2.25, achieved a noise goal of 103.5 EPNdB with todays noise technology while one-stage-fan engines, achieved a noise goal of 98 EPNdB. The take-off gross weight penalty to use the one-stage fan was 6.2 percent.

  8. Computer vision-based technologies and commercial best practices for the advancement of the motion imagery tradecraft

    NASA Astrophysics Data System (ADS)

    Phipps, Marja; Capel, David; Srinivasan, James

    2014-06-01

    Motion imagery capabilities within the Department of Defense/Intelligence Community (DoD/IC) have advanced significantly over the last decade, attempting to meet continuously growing data collection, video processing and analytical demands in operationally challenging environments. The motion imagery tradecraft has evolved accordingly, enabling teams of analysts to effectively exploit data and generate intelligence reports across multiple phases in structured Full Motion Video (FMV) Processing Exploitation and Dissemination (PED) cells. Yet now the operational requirements are drastically changing. The exponential growth in motion imagery data continues, but to this the community adds multi-INT data, interoperability with existing and emerging systems, expanded data access, nontraditional users, collaboration, automation, and support for ad hoc configurations beyond the current FMV PED cells. To break from the legacy system lifecycle, we look towards a technology application and commercial adoption model course which will meet these future Intelligence, Surveillance and Reconnaissance (ISR) challenges. In this paper, we explore the application of cutting edge computer vision technology to meet existing FMV PED shortfalls and address future capability gaps. For example, real-time georegistration services developed from computer-vision-based feature tracking, multiple-view geometry, and statistical methods allow the fusion of motion imagery with other georeferenced information sources - providing unparalleled situational awareness. We then describe how these motion imagery capabilities may be readily deployed in a dynamically integrated analytical environment; employing an extensible framework, leveraging scalable enterprise-wide infrastructure and following commercial best practices.

  9. Advanced oxidation of a commercially important nonionic surfactant: investigation of degradation products and toxicity.

    PubMed

    Karci, Akin; Arslan-Alaton, Idil; Bekbolet, Miray

    2013-12-15

    The evolution of degradation products and changes in acute toxicity during advanced oxidation of the nonionic surfactant nonylphenol decaethoxylate (NP-10) with the H2O2/UV-C and photo-Fenton processes were investigated. H2O2/UV-C and photo-Fenton processes ensured complete removal of NP-10, which was accompanied by the generation of polyethylene glycols with 3-8 ethoxy units. Formation of aldehydes and low carbon carboxylic acids was evidenced. According to the acute toxicity tests carried out with Vibrio fischeri, degradation products being more inhibitory than the original NP-10 solution were formed after the H2O2/UV-C process, whereas the photo-Fenton process appeared to be toxicologically safer since acute toxicity did not increase relative to the original NP-10 solution after treatment. Temporal evolution of the acute toxicity was strongly correlated with the identified carboxylic acids being formed during the application of H2O2/UV-C and photo-Fenton processes.

  10. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  11. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    PubMed

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Extraction of advanced geospatial intelligence (AGI) from commercial synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Berkay; Frakes, David

    2017-04-01

    The extraction of objects from advanced geospatial intelligence (AGI) products based on synthetic aperture radar (SAR) imagery is complicated by a number of factors. For example, accurate detection of temporal changes represented in two-color multiview (2CMV) AGI products can be challenging because of speckle noise susceptibility and false positives that result from small orientation differences between objects imaged at different times. These cases of apparent motion can result in 2CMV detection, but they obviously differ greatly in terms of significance. In investigating the state-of-the-art in SAR image processing, we have found that differentiating between these two general cases is a problem that has not been well addressed. We propose a framework of methods to address these problems. For the detection of the temporal changes while reducing the number of false positives, we propose using adaptive object intensity and area thresholding in conjunction with relaxed brightness optical flow algorithms that track the motion of objects across time in small regions of interest. The proposed framework for distinguishing between actual motion and misregistration can lead to more accurate and meaningful change detection and improve object extraction from a SAR AGI product. Results demonstrate the ability of our techniques to reduce false positives up to 60%.

  13. Utility Advanced Turbine Systems Program (ATS) Technical Readiness Testing and Pre-Commercial Demonstration

    SciTech Connect

    Siemens Westinghouse

    2001-09-30

    The objective of the ATS program is to develop ultra-high efficiency, environmentally superior and cost competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Specific performance targets have been set using natural gas as the primary fuel: (1) System efficiency that will exceed 60% (lower heating value basis) on natural gas for large scale utility turbine systems; for industrial applications, systems that will result in a 15% improvement in heat rate compared to currently available gas turbine systems. (2) An environmentally superior system that will not require the use of post combustion emissions controls under full load operating conditions. (3) Busbar energy costs that are 10% less than current state-of-the-art turbine systems, while meeting the same environmental requirements. (4) Fuel-flexible designs that will operate on natural gas but are capable of being adapted to operate on coal-derived or biomass fuels. (5) Reliability-Availability-Maintainability (RAM) that is equivalent to the current turbine systems. (6) Water consumption minimized to levels consistent with cost and efficiency goals. (7) Commercial systems that will enter the market in the year 2000. In Phase I of the ATS program, Siemens Westinghouse found that efficiency significantly increases when the traditional combined-cycle power plant is reconfigured with closed-loop steam cooling of the hot gas path. Phase II activities involved the development of a 318MW natural gas fired turbine conceptual design with the flexibility to burn coal-derived and biomass fuels. Phases I and II of the ATS program have been completed. Phase III, the current phase, completes the research and development activities and develops hardware specifications from the Phase II conceptual design. This report summarizes Phase III Extension activities for a three month period. Additional details may be found in monthly technical progress reports covering the

  14. Utility Advanced Turbine Systems Program (ATS) Technical Readiness Testing and Pre-Commercial Demonstration

    SciTech Connect

    Siemens Westinghouse

    2001-06-30

    The objective of the ATS program is to develop ultra-high efficiency, environmentally superior and cost competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Specific performance targets have been set using natural gas as the primary fuel: {lg_bullet} System efficiency that will exceed 60%(lower heating value basis) on natural gas for large scale utility turbine systems; for industrial applications, systems that will result in a 15% improvement in heat rate compared to currently available gas turbine systems. {lg_bullet} An environmentally superior system that will not require the use of post combustion emissions controls under full load operating conditions. {lg_bullet} Busbar energy costs that are 10% less than current state-of-the-art turbine systems, while meeting the same environmental requirements. {lg_bullet} Fuel-flexible designs that will operate on natural gas but are capable of being adapted to operate on coal-derived or biomass fuels. {lg_bullet} Reliability-Availability-Maintainability (RAM) that is equivalent to the current turbine systems. {lg_bullet} Water consumption minimized to levels consistent with cost and efficiency goals. {lg_bullet} Commercial systems that will enter the market in the year 2000. In Phase I of the ATS program, Siemens Westinghouse found that efficiency significantly increases when the traditional combined-cycle power plant is reconfigured with closed-loop steam cooling of the hot gas path. Phase II activities involved the development of a 318MW natural gas fired turbine conceptual design with the flexibility to burn coal-derived and biomass fuels. Phases I and II of the ATS program have been completed. Phase III, the current phase, completes the research and development activities and develops hardware specifications from the Phase II conceptual design. This report summarizes Phase III Extension activities for a three-month period. Additional details may be

  15. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; J. S. Herring

    2007-09-01

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

  16. Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors

    SciTech Connect

    Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong; Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

    2013-08-06

    This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

  17. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    PubMed

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  18. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    SciTech Connect

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  19. Oxidative potential of semi-volatile and non volatile particulate matter (PM) from heavy-duty vehicles retrofitted with emission control technologies.

    PubMed

    Biswas, Subhasis; Verma, Vishal; Schauer, James J; Cassee, Flemming R; Cho, Arthur K; Sioutas, Constantinos

    2009-05-15

    Advanced exhaust after-treatment devices for diesel vehicles are less effective in controlling semivolatile species than the refractory PM fractions. This study investigated the oxidative potential (OP) of PM from vehicles with six retrofitted technologies (vanadium and zeolite based selective catalytic reduction (V-SCRT, Z-SCRT), Continuously regenerating technology (CRT), catalyzed DPX filter, catalyzed continuously regenerating trap (CCRT), and uncatalyzed Horizon filter) in comparison to a "baseline" vehicle (without any control device). Vehicles were tested on a chassis dynamometer atthree driving conditions, i.e., cruise, transient urban dynamometer driving schedule (UDDS), and idle. The consumption rate of dithiothreitol (DTT), one of the surrogate measures of OP, was determined for PM samples collected at ambient and elevated temperatures (thermally denuded of semivolatile species). Control devices reduced the OP expressed per vehicle distance traveled by 60-98%. The oxidative potential per unit mass of PM however, was highest for the Horizon followed by CRT, DPX -Idle, SCRTs, and baseline vehicles. Significant reduction in OP (by 50-100%) was observed forthermally denuded PM from vehicles with retrofitted technologies (PM with significant semivolatile fraction), whereas particles emitted bythe baseline vehicle (with insignificant semivolatile fraction) did not demonstrate any measurable changes in oxidative activity. This suggests that the semivolatile fraction of particles are far more oxidative in nature than refractory particles-a conclusion further supported by previous tunnel and ambient studies, demonstrating a decline in PM oxidative activity with increasing atmospheric dilution. Correlation analysis performed between all the species, showed that OP is moderately associated (R = 0.76) with organic carbon (OC) and strongly associated (R = 0.94) with the water-soluble organic carbon (WSOC).

  20. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions.

    PubMed

    Mendoza-Villafuerte, Pablo; Suarez-Bertoa, Ricardo; Giechaskiel, Barouch; Riccobono, Francesco; Bulgheroni, Claudia; Astorga, Covadonga; Perujo, Adolfo

    2017-07-27

    Euro VI emission standards for heavy-duty vehicles (HDVs) introduced for the first time limits for solid particle number (PN) and NH3 emissions. EU regulation also includes a Portable Emissions Measurement System (PEMS) based test at type approval, followed by in-service conformity (ISC) testing. A comprehensive study on the real-time on-road emissions of NOx, NH3, N2O and PN from a Euro VI HDV equipped with a Diesel Oxidation Catalyst (DOC), a Diesel Particle Filter (DPF), a Selective Catalytic Reduction (SCR) system and an Ammonia Oxidation Catalyst (AMOX) is presented. Our analyses revealed that up to 85% of the NOx emissions measured during the tests performed are not taken into consideration if the boundary conditions for data exclusion set in the current legislation are applied. Moreover, it was found that the highest NOx emissions were measured during urban operation. Analyses show that a large fraction urban of operation is not considered when 20% power threshold as boundary condition is applied. They also show that cold start emissions account for a large fraction of the total NOx emitted. Low emissions of PN (2.8×10(10) to 6.5×10(10)#/kWh) and NH3 (1.0 to 2.2ppm) were obtained during the on-road tests, suggesting effectiveness of the vehicle's after-treatment (DPF and AMOX). Finally, a comparison between speed-based (as currently defined by Euro VI legislation) and land-use-based (using Geographic Information System (GIS)) calculation of shares of operation was performed. Results suggest that using GIS to categorize the shares of operation could result in different interpretations depending on the criteria adopted for their definition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.