ERIC Educational Resources Information Center
Shic, Frederick; Smith, Daniel; Horsburgh, Brian; Hollander, Eric; Rehg, James M.; Goodwin, Matthew
2015-01-01
A gap exists between the expanding space of technological innovations to aid those affected by autism spectrum disorders, and the actual impact of those technologies on daily lives. This gap can be addressed through a very practical path of commercialization. However, the path from a technological innovation to a commercially viable product is…
ARPA-E: Guiding Technologies to Commercial Success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuttle, John; Aizenberg, Joanna; Madrone, Leila
ARPA-E’s Technology-to-Market Advisors work closely with each ARPA-E project team to develop and execute a commercialization strategy. ARPA-E requires our teams to focus on their commercial path forward, because we understand that to have an impact on our energy mission, technologies must have a viable path into the marketplace. ARPA-E Senior Commercialization Advisor Dr. John Tuttle discusses what this Tech-to-Market guidance in practice looks like with reference to two project teams. OPEN 2012 awardees from Harvard University and Sunfolding share their stories of how ARPA-E worked with their teams to analyze market conditions and identify commercial opportunities that ultimately convincedmore » them to pivot their technologies towards market applications with greater potential.« less
From the lab to commercial reality with biobased adhesives for wood
Charles R. Frihart; Michael J. Birkeland
2016-01-01
Many technologies can be demonstrated in the laboratory to give products that meet performance standards, but there are many hurdles to overcome before these products are commercially viable. Demonstrating performance under simulated commercial processes conditions is the first key step to be accomplished through using appropriate adhesive application, furnish...
NASA Technical Reports Server (NTRS)
Ferber, R. R.; Marriott, A. T.; Truscello, V.
1978-01-01
The Small Power Systems Applications (SPSA) Project has been established to develop and commercialize small solar thermal power plants. The technologies of interest include all distributed and central receiver technologies which are potentially economically viable in power plant sizes of one to 10 MWe. The paper presents an overview of the SPSA Project and briefly discusses electric utility involvement in the Project.
Show me the road to hydrogen : UTC/transportation fuel research and development
DOT National Transportation Integrated Search
2007-01-01
Hydrogen-powered fuel is an emerging technology that provides an alternative source of fuel to fossil fuel. Commercially viable technologies are emerging that are expected to allow for consumer vehicles powered by hydrogen as part of a growing hydrog...
This idea worth anything? Mechanics of technology transfer.
Goodson, J Max
2006-01-01
The path from a proven scientific idea to a commercially viable product is seldom easy. It often requires ten or more years and millions of dollars. The essential elements include a creative concept that has been proven sound, identification of the commercial applicability of the concept, and financing and management of the development process.
Progress in supersonic cruise aircraft technology
NASA Technical Reports Server (NTRS)
Driver, C.
1978-01-01
The supersonic cruise aircraft research program identified significant improvements in the technology areas of propulsion, aerodynamics, structures, takeoff and landing procedures, and advanced configuration concepts. Application of these technology areas to a commercial aircraft is discussed. An advanced SST family of aircraft which may be environmentally acceptable, have flexible range-payload capability, and be economically viable is projected.
Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; ...
2015-04-27
CO 2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO 2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO 2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the costmore » of production on the price of their product, due to the addition of CO 2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO 2 capture by using the CO 2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO 2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less
The Relevance and Future of Joint Logistics Over the Shore (JLOTS) Operations
2013-04-01
whether commercial or emerging technology, to ensure viable capability as older platforms and capability reach their economical useful life. 15...ensure viable capability as older platforms and capability reach their economical useful life. ii TABLE OF CONTENTS CHAPTER 1: INTRODUCTION...and in the Falklands, of course, out of the question.19 Therefore, when the military junta of Argentina invaded the Falklands on 2 April 1982
Fuel cells are a commercially viable alternative for the production of "clean" energy.
Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G
2016-01-01
Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, William; Mondt, William
The purpose of this CRADA was to develop a useful and commercially viable version of ERT technology for use in the oil, mining, engineering, and geotechnical industries. The goals required to accomplish these tasks included (1) developing commercial-grade data-acquisition systems and data analysis software, and (2) completing transfer of the state-of-the-art know-how, held by LLNL scientists and engineers, to personnel at RIMtech, Inc.
The technology and commercial status of powder-injection molding
NASA Astrophysics Data System (ADS)
Bose, Animesh
1995-08-01
The process of powder-injection molding (PIM) is a viable and competitive commercial technique that is being used to process complex-shaped parts of various materials in moderate to high volumes. The hey advantage of the process is its unique ability to combine materials selection flexibility with the complex shape-forming ability of plastics. Although the PIM process has been discussed in the open literature for more than quarter of a century, it has become a commercial reality only during the last decade or so. Currently, there is a tremendous interest in this unique technology throughout the world. As a result, the PIM industry is poised for significant growth.
NASA's commercial space program - Initiatives for the future
NASA Technical Reports Server (NTRS)
Rose, James T.; Stone, Barbara A.
1990-01-01
NASA's commercial development of the space program aimed at the stimulation and assistance of expanded private sector involvement and investment in civil space activities is discussed, focusing on major new program initiatives and their implementation. NASA's Centers for the Commercial Development of Space (CCDS) program, composed of competitively selected consortia of universities, industries, and government involved in early research and testing phases of potentially commercially viable technologies is described. The 16 centers concentrate on seven different technical areas such as automation and robotics; remote sensing; life sciences; and space power, propulsion, and structures. Private sector participation, CCDS technology development, government and commercially supplied access to space in support of CCDS programs, CCDS hardware development, and CCDS spinoffs are discussed together with various cooperative and reimbursable agreements between NASA and the private sector.
Commercialization of Plasma-Assisted Technologies: The Indian Experience
NASA Astrophysics Data System (ADS)
John, P. I.
The paper describes an initiative by the Institute for Plasma Research (IPR), India in establishing links with the Indian industry for developing and commercialising advanced plasma-based industrial technologies. This has culminated in the creation of a self-financing technology development, incubation, demonstration and delivery facility. A business plan for converting the knowledge base to commercially viable technologies conceived technology as a product and the industry as the market and addressed issues like resistance to new technologies, the key role of entrepreneur, thrust areas and the necessity of technology incubation and delivery. Success of this strategy is discussed in a few case studies. We conclude by identifying the cost, environmental, strategic and techno-economic aspects, which would be the prime drivers for plasma-assisted manufacturing technology in India.
Demonstrating a Total Transit Solution for Fuel Cell Electric Buses in Boston
DOT National Transportation Integrated Search
2017-05-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solu...
Thermal plasma technology for the treatment of wastes: a critical review.
Gomez, E; Rani, D Amutha; Cheeseman, C R; Deegan, D; Wise, M; Boccaccini, A R
2009-01-30
This review describes the current status of waste treatment using thermal plasma technology. A comprehensive analysis of the available scientific and technical literature on waste plasma treatment is presented, including the treatment of a variety of hazardous wastes, such as residues from municipal solid waste incineration, slag and dust from steel production, asbestos-containing wastes, health care wastes and organic liquid wastes. The principles of thermal plasma generation and the technologies available are outlined, together with potential applications for plasma vitrified products. There have been continued advances in the application of plasma technology for waste treatment, and this is now a viable alternative to other potential treatment/disposal options. Regulatory, economic and socio-political drivers are promoting adoption of advanced thermal conversion techniques such as thermal plasma technology and these are expected to become increasingly commercially viable in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.
CO 2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO 2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO 2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the costmore » of production on the price of their product, due to the addition of CO 2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO 2 capture by using the CO 2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO 2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less
Developing and Demonstrating the Next-Generation Fuel Cell Electric Bus Made in America
DOT National Transportation Integrated Search
2012-02-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. CALSTART is one of three non-profit consortia chosen to manage projects competitively selected u...
Gordon A. Enk; Stuart L. Hart
2003-01-01
A process was designed to evaluate the sustainability and potential marketability of USDA Forest Service patented technologies. The process was designed and tested jointly by the University of North Carolina, the University of Michigan, Partners for Strategic Change, and the USDA Forest Service. Two technologies were evaluated: a fiber-based product and a wood fiber/...
Payload Technologies for Remotely Piloted Aircraft
NASA Technical Reports Server (NTRS)
Wegener, Steve
2000-01-01
Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.
Payload Technologies For Remotely Piloted Aircraft
NASA Technical Reports Server (NTRS)
Wegener, Steve; Condon, Estelle (Technical Monitor)
2001-01-01
Matching the capabilities of Remotely Piloted Aircraft (RPA) to the needs of users defines the direction of future investment. These user needs and advances in payload capabilities are driving the evolution of a commercially viable RPA aerospace industry. New perspectives are needed to realize the potential of RPAs. Advances in payload technologies and the impact on RPA design and operations will be explored.
TRC research products: Components for service robots
NASA Technical Reports Server (NTRS)
Lob, W. Stuart
1994-01-01
Transitions Research Corporation has developed a variety of technologies to accomplish its central mission: the creation of commercially viable robots for the service industry. Collectively, these technologies comprise the TRC 'robot tool kit.' The company started by developing a robot base that serves as a foundation for mobile robot research and development, both within TRC and at customer sites around the world. A diverse collection of sensing techniques evolved more recently, many of which have been made available to the international mobile robot research community as commercial products. These 'tool-kit' research products are described in this paper. The largest component of TRC's commercial operation is a product called HelpMate for material transport and delivery in health care institutions.
DOT National Transportation Integrated Search
2011-07-01
The Federal Transit Administrations (FTA) National Fuel Cell Bus Program (NFCBP) focuses on developing commercially viable fuel cell bus technologies. The Northeast Advanced Vehicle Consortium (NAVC) is one of three non-profit consortia chosen to ...
Re-Purposing Commercial Entertainment Software for Military Use
2000-09-01
and simulation needs of the military can be awkward or impossible. Video games are designed to be both technologically advanced and flexible in design...We evaluated current games and modified Quake 3 Arena(Q3A) to serve as both an architectural walkthrough and a primitive team trainer. To accomplish...weapons models and characteristics, and overall game play. By re-purposing commercial entertainment software, we have produced a viable military virtual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume covermore » Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Xu, Jianfeng; Zhang, Ningning
2014-12-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world's first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher's disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable.
Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes.
Moschou, Despina; Greathead, Louise; Pantelidis, Panagiotis; Kelleher, Peter; Morgan, Hywel; Prodromakis, Themistoklis
2016-12-15
Lab-on-a-Chip (LoC) technology has the potential to revolutionize medical Point-of-Care diagnostics. Currently, considerable research efforts are focused on innovative production technologies that will make commercial upscaling of lab-on-chip products financially viable. Printed circuit board (PCB) manufacturing techniques have several advantages in this field. In this paper we focus on transferring a complete IFN-γ enzyme-linked immune-sorbent assay (ELISA) onto a commercial PCB electrochemical biosensing platform, We adapted a commercially available ELISA to detect the enzyme product TMB/H2O2 using amperometry, successfully reproducing the colorimetry-obtained ELISA standard curve. The results demonstrate the potential for the integration of these components into an automated, disposable, electronic ELISA Lab-on-PCB diagnostic platform. Copyright © 2016 Elsevier B.V. All rights reserved.
Shic, Frederick; Smith, Daniel; Horsburgh, Brian; Hollander, Eric; Rehg, James M.; Goodwin, Matthew
2015-01-01
A gap exists between the expanding space of technological innovations to aid those affected by autism spectrum disorders, and the actual impact of those technologies on daily lives. This gap can be addressed through a very practical path of commercialization. However, the path from a technological innovation to a commercially viable product is fraught with challenges. These challenges can be mitigated through small business funding agencies, which are, more and more, catalyzing the dissemination of innovation by fostering social entrepreneurship through capital support and venture philanthropy. This letter describes the differences and nature of these agencies, and their importance in facilitating the translational and real-world impact of technological and scientific discoveries. PMID:26481385
Shic, Frederick; Smith, Daniel; Horsburgh, Brian; Hollander, Eric; Rehg, James M; Goodwin, Matthew
2015-12-01
A gap exists between the expanding space of technological innovations to aid those affected by autism spectrum disorders, and the actual impact of those technologies on daily lives. This gap can be addressed through a very practical path of commercialization. However, the path from a technological innovation to a commercially viable product is fraught with challenges. These challenges can be mitigated through small business funding agencies, which are, more and more, catalyzing the dissemination of innovation by fostering social entrepreneurship through capital support and venture philanthropy. This letter describes the differences and nature of these agencies, and their importance in facilitating the translational and real-world impact of technological and scientific discoveries.
Invited review article: Large ring lasers for rotation sensing.
Schreiber, Karl Ulrich; Wells, Jon-Paul R
2013-04-01
Over the last two decades a series of large ring laser gyroscopes have been built having an unparalleled scale factor. These upscaled devices have improved the sensitivity and stability for rotation rate measurements by six orders of magnitude when compared to previous commercial developments. This progress has made possible entirely new applications of ring laser gyroscopes in the fields of geophysics, geodesy, and seismology. Ring lasers are currently the only viable measurement technology, which is directly referenced to the instantaneous rotation axis of the Earth. The sensor technology is rapidly developing. This is evidenced by the first experimentally viable proposals to make terrestrial tests of general relativistic effects such as the frame dragging of the rotating Earth.
Moschou, Despina; Trantidou, Tatiana; Regoutz, Anna; Carta, Daniela; Morgan, Hywel; Prodromakis, Themistoklis
2015-01-01
Lab-on-Chip is a technology that could potentially revolutionize medical Point-of-Care diagnostics. Considerable research effort is focused towards innovating production technologies that will make commercial upscaling financially viable. Printed circuit board manufacturing techniques offer several prospects in this field. Here, we present a novel approach to manufacturing Printed Circuit Board (PCB)-based Ag/AgCl reference electrodes, an essential component of biosensors. Our prototypes were characterized both structurally and electrically. Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS) were employed to evaluate the electrode surface characteristics. Electrical characterization was performed to determine stability and pH dependency. Finally, we demonstrate utilization along with PCB pH sensors, as a step towards a fully integrated PCB platform, comparing performance with discrete commercial reference electrodes. PMID:26213940
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jian; Shi, Jian; Murthy Konda, N. V. S. N.
Background Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before an IL pretreatment technology can become commercially viable. One of the most significant challenges is the affordable and scalable recovery and recycle of the IL itself. Pervaporation (PV) is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration. Results We evaluated a commercially available PV system formore » IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C 2 C 1 Im][OAc] ) that has been proven to be very effective as a biomass pretreatment solvent. Separation factors as high as 1500 were observed. We demonstrate that > 99.9 wt% [C 2 C 1 Im][OAc] can be recovered from aqueous solution (≤20 wt% IL) and recycled five times. A preliminary technoeconomic analysis validated the promising role of PV in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. Conclusions These findings establish the foundation for further development of PV as an effective method of recovering and recycling ILs using a commercially viable process technology.« less
Sun, Jian; Shi, Jian; Murthy Konda, N. V. S. N.; ...
2017-06-15
Background Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before an IL pretreatment technology can become commercially viable. One of the most significant challenges is the affordable and scalable recovery and recycle of the IL itself. Pervaporation (PV) is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration. Results We evaluated a commercially available PV system formore » IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C 2 C 1 Im][OAc] ) that has been proven to be very effective as a biomass pretreatment solvent. Separation factors as high as 1500 were observed. We demonstrate that > 99.9 wt% [C 2 C 1 Im][OAc] can be recovered from aqueous solution (≤20 wt% IL) and recycled five times. A preliminary technoeconomic analysis validated the promising role of PV in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. Conclusions These findings establish the foundation for further development of PV as an effective method of recovering and recycling ILs using a commercially viable process technology.« less
Enhanced Mixed Feedstock Processing Using Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Blake A
2016-10-22
Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before IL pretreatment technology becomes commercially viable. Once of the most significant challenges is the affordable and scalable recovery and recycle or the IL itself. Pervaporation is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration than traditional solvent extraction processes, as well as efficient and energetically more advantageousmore » than standard evaporative techniques. In this study we evaluated a commercially available pervaporation system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution and recycled at least five times. A preliminary techno-economic analysis validated the promising role of pervaporation in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. These findings establish the foundation for further development of pervaporation as an effective method of recovering and recycling ILs using a commercially viable process technology.« less
Xu, Jianfeng; Zhang, Ningning
2014-01-01
Plant cell culture is emerging as an alternative bioproduction system for recombinant pharmaceuticals. Growing plant cells in vitro under controlled environmental conditions allows for precise control over cell growth and protein production, batch-to-batch product consistency and a production process aligned with current good manufacturing practices. With the recent US FDA approval and commercialization of the world’s first plant cell-based recombinant pharmaceutical for human use, β-glucocerebrosidase for treatment of Gaucher’s disease, a new era has come in which plant cell culture shows high potential to displace some established platform technologies in niche markets. This review updates the progress in plant cell culture processing technology, highlights recent commercial successes and discusses the challenges that must be overcome to make this platform commercially viable. PMID:25621170
NASA Technical Reports Server (NTRS)
2000-01-01
A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.
White Paper on Dish Stirling Technology: Path Toward Commercial Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, Charles E.; Stechel, Ellen; Becker, Peter
2016-07-01
Dish Stirling energy systems have been developed for distributed and large-scale utility deployment. This report summarizes the state of the technology in a joint project between Stirling Energy Systems, Sandia National Laboratories, and the Department of Energy in 2011. It then lays out a feasible path to large scale deployment, including development needs and anticipated cost reduction paths that will make a viable deployment product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Hao; Dunn, Jennifer; Pegallapati, Ambica
The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims to develop and deploy technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2016). BETO and its national laboratory teams conduct in-depth technoeconomic assessments (TEA) of biomass feedstock supply and logistics and conversion technologies to produce biofuels, and life-cycle analysis of overall system sustainability.
Systems study of transport aircraft incorporating advanced aluminum alloys
NASA Technical Reports Server (NTRS)
Sakata, I. F.
1982-01-01
A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.
A Policy and Program for Invigorating Science and Technology for National Security
2014-04-01
technical support – academia competes against industry often appearing as cheap labour but then without generating commercially viable or sustainable...have new technology approved too bureaucratic keeping SME’s out of the market DSTO provide greater transparency of S&T goals to enable industry to...national security S&T. In endeavouring to meet the Government’s desire to reduce red tape and cognisant of the tight financial environment, consideration
2012-04-01
chlorine dioxide (CD) or vapor hydrogen peroxide ( VHP ). A wide-area release and contamination of building exteriors and the outdoors would likely...from the panels. Depending on the surface composition and the decontamination technology tested, viable spore recovery from the panels varied after
Arshad, Muhammad; Hussain, Tariq; Iqbal, Munawar; Abbas, Mazhar
Very high gravity (VHG) technology was employed on industrial scale to produce ethanol from molasses (fermented) as well as by-products formation estimation. The effect of different Brix° (32, 36 and 40) air-flow rates (0.00, 0.20, 0.40, and 0.60vvm) was studied on ethanol production. The maximum ethanol production was recorded to be 12.2% (v/v) at 40 Brix° with 0.2vvm air-flow rate. At optimum level aeration and 40 Brix° VHG, the residual sugar level was recorded in the range of 12.5-18.5g/L, whereas the viable cell count remained constant up to 50h of fermentation and dry matter production increased with fermentation time. Both water and steam consumption reduced significantly under optimum conditions of Brix° and aeration rate with compromising the ethanol production. Results revealed VHG with continuous air flow is viable technique to reduce the ethanol production cost form molasses at commercial scale. Copyright © 2017. Published by Elsevier Editora Ltda.
Projection displays and MEMS: timely convergence for a bright future
NASA Astrophysics Data System (ADS)
Hornbeck, Larry J.
1995-09-01
Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.
Biological processing in oscillatory baffled reactors: operation, advantages and potential
Abbott, M. S. R.; Harvey, A. P.; Perez, G. Valente; Theodorou, M. K.
2013-01-01
The development of efficient and commercially viable bioprocesses is essential for reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, health products and precursor compounds for plastics are being synthesized using bioprocessing routes as opposed to more traditional chemical technologies. Production vessels or reactors are required for synthesis of crude product before downstream processing for extraction and purification. Reactors are operated either in discrete batches or, preferably, continuously in order to reduce waste, cost and energy. This review describes the oscillatory baffled reactor (OBR), which, generally, has a niche application in performing ‘long’ processes in plug flow conditions, and so should be suitable for various bioprocesses. We report findings to suggest that OBRs could increase reaction rates for specific bioprocesses owing to low shear, good global mixing and enhanced mass transfer compared with conventional reactors. By maintaining geometrical and dynamic conditions, the technology has been proved to be easily scaled up and operated continuously, allowing laboratory-scale results to be easily transferred to industrial-sized processes. This is the first comprehensive review of bioprocessing using OBRs. The barriers facing industrial adoption of the technology are discussed alongside some suggested strategies to overcome these barriers. OBR technology could prove to be a major aid in the development of commercially viable and sustainable bioprocesses, essential for moving towards a greener future. PMID:24427509
Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology
NASA Astrophysics Data System (ADS)
Bahl, Inder J.
Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.
USDA-ARS?s Scientific Manuscript database
A sustainable biorefinery must convert a broad range of renewable feedstocks into a variety of product streams, including fuels, power, and value-added bioproducts. To accomplish this, microbial-based technologies that enable new commercially viable coproducts from corn-to-ethanol biofuel fermentati...
Implications of previous space commercialization experiences for the reusable launch vehicle
NASA Astrophysics Data System (ADS)
Obermann, Richard M.; Williamson, Ray A.
2003-07-01
The United States' 1994 National Space Transportation Policy directed the National Aeronautics and Space Administration (NASA) to work with industry on the development of technologies required for a reusable launch vehicle (RLV). In the partnership that has evolved from that directive, NASA envisions its role as providing support for technological risk reduction and for developing space transportation to serve government needs. NASA officials assume that the development of an operational, commercial RLV will be carried out by the private sector without use of government funds. Under that scenario, the Federal government will simply become a customer for commercial RLV services. In evaluating the prospects for the development of a commercially viable RLV, it may be useful to examine "lessons learned" from previous space commercialization efforts—both those that succeeded and those that did not. It can be argued that several distinct streams of market and technological development may have to converge for successful commercialization of space systems to occur. Potential factors influencing the prospects for commercialization include the size and growth rate of the potential customer base, the extent to which a governmental customer exists to underpin the market, the development of associated "value-added" markets, the stability of governmental policies, the levels of technological and business risk, and the degree to which competitive markets exist. This paper examines two previous space commercialization experiences, evaluates the relative importance of the various factors that influence the prospects for success of commercialization efforts, and assesses the implications of those factors for the commercial viability of the proposed RLV.
NASA Technical Reports Server (NTRS)
Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.
1994-01-01
A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume dealmore » with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
Space commerce - Preparing for the next century
NASA Technical Reports Server (NTRS)
Stone, Barbara A.
1991-01-01
The role of NASA in space commerce is discussed in terms of providing direct assistance to the private sector and in terms of the most suitable industrial areas for such support. The primary mechanism for such support is the program of Centers for the Commercial Development of Space (CCDS) which selects industrial high-technology projects to help make them viable. The research spans such fields as remote sensing, crop forecasting, and microgravity materials processing. The collaboration of NASA and private industry is discussed in terms of sounding-rocket projects, the Commercial Experiment Transporter, and academic/industrial programs designed to generate enthusiasm for commercial space research. The future of such research is expected to focus on CCDSs for microgravity-developed products, commercial infrastructure, SEI, and commercial use of the Space Station Freedom.
Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrike W. Tschirner; Timothy Smith
2007-03-31
Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraftmore » mills). Provide background to most effectively transfer this new technology to commercial mills.« less
Propulsion technology challenges for turn-of-the-century commercial aircraft
NASA Technical Reports Server (NTRS)
Ziemianski, Joseph A.; Ball, Calvin L.
1993-01-01
This paper highlights the efforts being performed or sponsored by NASA, in cooperation with the U.S. civil aviation industry, to address the propulsion system technological challenges that must be met in order to ensure a viable future for the industry. Both the subsonic and supersonic aeropropulsion programs are considered. Subsonic transport propulsion program elements, including ultra-high-bypass-ratio turbofans with attendant noise reduction efforts, high-efficiency cores, and combustor emissions reductions are discussed in terms of goals, technical issues, and problem solutions. Similarly, the high-speed research propulsion efforts addressing a high-speed commercial transport are reviewed in terms of environmental barrier issues, such as oxides of nitrogen and noise reduction, and the related economic issues.
Towards Dynamic Authentication in the Grid — Secure and Mobile Business Workflows Using GSet
NASA Astrophysics Data System (ADS)
Mangler, Jürgen; Schikuta, Erich; Witzany, Christoph; Jorns, Oliver; Ul Haq, Irfan; Wanek, Helmut
Until now, the research community mainly focused on the technical aspects of Grid computing and neglected commercial issues. However, recently the community tends to accept that the success of the Grid is crucially based on commercial exploitation. In our vision Foster's and Kesselman's statement "The Grid is all about sharing." has to be extended by "... and making money out of it!". To allow for the realization of this vision the trust-worthyness of the underlying technology needs to be ensured. This can be achieved by the use of gSET (Gridified Secure Electronic Transaction) as a basic technology for trust management and secure accounting in the presented Grid based workflow. We present a framework, conceptually and technically, from the area of the Mobile-Grid, which justifies the Grid infrastructure as a viable platform to enable commercially successful business workflows.
The development of nickel-metal hydride technology for use in aerospace applications
NASA Technical Reports Server (NTRS)
Rampel, Guy; Johnson, Herschel; Dell, Dan; Wu, Tony; Puglisi, Vince
1992-01-01
The nickel metal hydride technology for battery application is relatively immature even though this technology was made widely known by Philips' scientists as long ago as 1970. Recently, because of the international environmental regulatory pressures being placed on cadmium in the workplace and in disposal practices, battery companies have initiated extensive development programs to make this technology a viable commercial operation. These hydrides do not pose a toxilogical threat as does cadmium. Also, they provide a higher energy density and specific energy when compared to the other nickel based battery technologies. For these reasons, the nickel metal hydride electrochemisty is being evaluated as the next power source for varied applications such as laptop computers, cellular telephones, electric vehicles, and satellites. A parallel development effort is under way to look at aerospace applications for nickel metal hydride cells. This effort is focused on life testing of small wound cells of the commercial type to validate design options and development of prismatic design cells for aerospace applications.
From Prototype to Product: Making Participatory Design of mHealth Commercially Viable.
Andersen, Tariq O; Bansler, Jørgen P; Kensing, Finn; Moll, Jonas
2017-01-01
This paper delves into the challenges of engaging patients, clinicians and industry stakeholders in the participatory design of an mHealth platform for patient-clinician collaboration. It follows the process from the development of a research prototype to a commercial software product. In particular, we draw attention to four major challenges of (a) aligning the different concerns of patients and clinicians, (b) designing according to clinical accountability, (c) ensuring commercial interest, and (d) dealing with regulatory constraints when prototyping safety critical health Information Technology. Using four illustrative cases, we discuss what these challenges entail and the implications they pose to Participatory Design. We conclude the paper by presenting lessons learned.
Fly-by-light technology development plan
NASA Technical Reports Server (NTRS)
Todd, J. R.; Williams, T.; Goldthorpe, S.; Hay, J.; Brennan, M.; Sherman, B.; Chen, J.; Yount, Larry J.; Hess, Richard F.; Kravetz, J.
1990-01-01
The driving factors and developments which make a fly-by-light (FBL) viable are discussed. Documentation, analyses, and recommendations are provided on the major issues pertinent to facilitating the U.S. implementation of commercial FBL aircraft before the turn of the century. Areas of particular concern include ultra-reliable computing (hardware/software); electromagnetic environment (EME); verification and validation; optical techniques; life-cycle maintenance; and basis and procedures for certification.
Algae to Economically Viable Low-Carbon-Footprint Oil.
Bhujade, Ramesh; Chidambaram, Mandan; Kumar, Avnish; Sapre, Ajit
2017-06-07
Algal oil as an alternative to fossil fuel has attracted attention since the 1940s, when it was discovered that many microalgae species can produce large amounts of lipids. Economics and energy security were the motivational factors for a spurt in algae research during the 1970s, 1990s, and early 2000s. Whenever crude prices declined, research on algae stopped. The scenario today is different. Even given low and volatile crude prices ($30-$50/barrel), interest in algae continues all over the world. Algae, with their cure-all characteristics, have the potential to provide sustainable solutions to problems in the energy-food-climate nexus. However, after years of effort, there are no signs of algae-to-biofuel technology being commercialized. This article critically reviews past work; summarizes the current status of the technology; and based on the lessons learned, provides a balanced perspective on a potential path toward commercialization of algae-to-oil technology.
NASA Technical Reports Server (NTRS)
Francoeur, J. R.
1992-01-01
The Strategic Technologies in Automation and Robotics (STEAR) program is managing a number of development contracts to improve the protection of spacecraft materials from the Low Earth Orbit (LEO) space environment. The project is structured in two phases over a 3 to 4 year period with a budget of 3 to 4 million dollars. Phase 1 is designed to demonstrate the technical feasibility and commercial potential of a coating/substrate system and its associated application process. The objective is to demonstrate a prototype fabrication capability using a full scale component of a commercially viable process for the protection of materials and surface finishes from the LEO space environment, and to demonstrate compliance with a set of performance requirements. Only phase 1 will be discussed in this paper.
Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing
NASA Technical Reports Server (NTRS)
Khattak, C. P.; Schmid, F.; Smith, M. B.
1982-01-01
A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.
Passive bistatic radar analysis
NASA Astrophysics Data System (ADS)
O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim
2009-06-01
Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.
The LunaRace - a public outreach, involvement, education and support mission
NASA Astrophysics Data System (ADS)
Spitzl, H.; Bouquet, F.; Arafune, K.; Contino, M.-C.; Fontaine, T. H.; Freihoefer, J.; Grey, I.; Leindecker, W.; Lintchik, E.; Meierink, G.; Pauly, K.; Shen, Z.; Simi, N.; Summerer, L.; Weinmann, G.; Yoon, J.
2002-10-01
Today's level of technology allows for many fantastic missions to space. Funding of these missions is a problem, because government are cutting space budgets and commercial expenditure in space is minimal. The major obstacle to achieving global involvement into large scale, economically viable space enterprises is the lack of public involvement, education and support. At the 1999 Summer Session of the International Space University, the LunaRace (LR) mission has been desgined. With its extensive public outreach program before, during and after the race, this mission could be the first to bridge the gap between space and public. In national and international design contests, the most promising rover designs will be selected. Similar to the Tour de France and Paris-Dakar, the LR will be a staged event from the Apollo 17 to the Luna 21 landing site and back, during one Lunar Day. During the remaining sunlight after the race the surviving rovers will be used for public outreach purposes. This LunaRace will be a stepping stone for future human space exploration beyond low Earth orbit. Next to the technology pull it implies, it has a high chance of boosting public support and education that brings the institution of commercially viable space enterprises a step closer.
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.
2017-01-01
NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL (Technology Readiness Level) level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT - NASA’s Electric Aircraft Testbed) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST - Hybrid-Electric Integrated Systems Testbed) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.
Large-Scale Power Production Potential on U.S. Department of Energy Lands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandt, Alicen J.; Elgqvist, Emma M.; Gagne, Douglas A.
This report summarizes the potential for independent power producers to generate large-scale power on U.S. Department of Energy (DOE) lands and export that power into a larger power market, rather than serving on-site DOE loads. The report focuses primarily on the analysis of renewable energy (RE) technologies that are commercially viable at utility scale, including photovoltaics (PV), concentrating solar power (CSP), wind, biomass, landfill gas (LFG), waste to energy (WTE), and geothermal technologies. The report also summarizes the availability of fossil fuel, uranium, or thorium resources at 55 DOE sites.
NASA Technical Reports Server (NTRS)
Baughan, Jim; Calta, David; Cross, Victor; Habashi, Mozhi; Mathias, Donovan; Northrup, Patti
1992-01-01
When asked by the Aeronautical Engineering staff to design a viable supersonic commercial transport, most of the students were well aware that Boeing, McDonnell Douglas, and other aircraft companies had been studying a cadre of transports for more than 30 years and had yet to present a viable aircraft. In the spirit of aviation progress and with much creative license, the TBD design team spearheaded the problem with the full intention of presenting a marketable high speed civil transport in spring of 1992. The project commenced with various studies of future market demands. With the market expansion of American business overseas, the airline industry projects a boom of over 200 million passengers by the year 2000. This will create a much higher demand for time efficient and cost effective inter-continental travel; this is the challenge of the high speed civil transport. The TBD(exp 3), a 269 passenger, long-range civil transport was designed to cruise at Mach 3.0 utilizing technology predicted to be available in 2005. Unlike other contemporary commercial airplane designs, the TBD(exp 3) incorporates a variable geometry wing for optimum performance. This design characteristic enabled the TBD(exp 3) to be efficient in both subsonic and supersonic flight. The TBD(exp 3) was designed to be economically viable for commercial airline purchase, be comfortable for passengers, meet FAR Part 25, and the current FAR 36 Stage 3 noise requirements. The TBD(exp 3) was designed to exhibit a long service life, maximize safety, ease of maintenance, as well as be fully compatible with all current high-traffic density airport facilities.
Neurotechnology: expanding opportunities for funding at the National Institute of Mental Health.
Huerta, M F; Curvey, M F; Koslow, S H
1994-10-01
The National Institute of Mental Health recognizes the importance that creative development of technology and methodology play in brain and behavioral science research. This institute is making major efforts to support such development through specific initiatives, like the Human Brain Project. In addition, this Institute is actively building bridges between business and academic research communities to make optical use of funds for the research and development of commercially viable technologies relevant to all aspects of the Institute's mission through the Small Business Innovation Research and Small Business Technology Transfer Programs. Together, these efforts will culminate in a more vigorous scientific enterprise, and ultimately benefit the entire mental health community and society.
Park, Junyeong; Jones, Brandon; Koo, Bonwook; Chen, Xiaowen; Tucker, Melvin; Yu, Ju-Hyun; Pschorn, Thomas; Venditti, Richard; Park, Sunkyu
2016-01-01
Mechanical refining is widely used in the pulp and paper industry to enhance the end-use properties of products by creating external fibrillation and internal delamination. This technology can be directly applied to biochemical conversion processes. By implementing mechanical refining technology, biomass recalcitrance to enzyme hydrolysis can be overcome and carbohydrate conversion can be enhanced with commercially attractive levels of enzymes. In addition, chemical and thermal pretreatment severity can be reduced to achieve the same level of carbohydrate conversion, which reduces pretreatment cost and results in lower concentrations of inhibitors. Refining is versatile and a commercially proven technology that can be operated at process flows of ∼ 1500 dry tons per day of biomass. This paper reviews the utilization of mechanical refining in the pulp and paper industry and summarizes the recent development in applications for biochemical conversion, which potentially make an overall biorefinery process more economically viable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dual Arm Work Platform teleoperated robotics system. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The US Department of Energy (DOE) and the Federal Energy Technology Center (FETC) has developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial Deactivation and Decommissioning (D and D) technologies in comparison with current baseline technologies. The Dual Arm Work Platform (DAWP) demonstration focused on the use of the DAWP to segment and dismantle the CP-5 reactor tank and surrounding bio-shield components (including the graphite block reflector, lead and boral sheeting) and performing some minor tasks best suited for themore » use of teleoperated robotics that were not evaluated in this demonstration. The DAWP system is not a commercially available product at this time. The CP-5 implementation was its first D and D application. The demonstration of the DAWP was to determine the areas on which improvements must be made to make this technology commercially viable. The results of the demonstration are included in this greenbook. It is the intention of the developers to incorporate lessons learned at this demonstration and current technological advancements in robotics into the next generation of the DAWP.« less
Review of Biojet Fuel Conversion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer
Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less
Commercial use of remote sensing in agriculture: a case study
NASA Astrophysics Data System (ADS)
Gnauck, Gary E.
1999-12-01
Over 25 years of research have clearly shown that an analysis of remote sensing imagery can provide information on agricultural crops. Most of this research has been funded by and directed toward the needs of government agencies. Commercial use of agricultural remote sensing has been limited to very small-scale operations supplying remote sensing services to a few selected customers. Datron/Transco Inc. undertook an internally funded remote sensing program directed toward the California cash crop industry (strawberries, lettuce, tomatoes, other fresh vegetables and cotton). The objectives of this program were twofold: (1) to assess the need and readiness of agricultural land managers to adopt remote sensing as a management tool, and (2) determine what technical barriers exist to large-scale implementation of this technology on a commercial basis. The program was divided into three phases: Planning, Engineering Test and Evaluation, and Commercial Operations. Findings: Remote sensing technology can deliver high resolution multispectral imagery with rapid turnaround, that can provide information on crop stress insects, disease and various soil parameters. The limiting factors to the use of remote sensing in agriculture are a lack of familiarization by the land managers, difficulty in translating 'information' into increased revenue or reduced cost for the land manager, and the large economies of scale needed to make the venture commercially viable.
Status of EUVL mask development in Europe (Invited Paper)
NASA Astrophysics Data System (ADS)
Peters, Jan H.
2005-06-01
EUV lithography is the prime candidate for the next generation lithography technology after 193 nm immersion lithography. The commercial onset for this technology is expected for the 45 nm half-pitch technology or below. Several European and national projects and quite a large number of companies and research institutions in Europe work on various aspects of the technological challenges to make EUV a commercially viable technology in the not so far future. Here the development of EUV sources, the development of an EUV exposure tools, metrology tools dedicated for characterization of mask, the production of EUV mask blanks and the mask structuring itself are the key areas in which major activities can be found. In this talk we will primarily focus on those activities, which are related to establish an EUV mask supply chain with all its ingredients from substrate production, polishing, deposition of EUV layers, blank characterization, mask patterning process and the consecutive metrology and defect inspection as well as shipping and handling from blank supply to usage in the wafer fab. The EUV mask related projects on the national level are primarily supported by the French Ministry of Economics and Finance (MinEFi) and the German Ministry of Education and Research (BMBF).
NASA Astrophysics Data System (ADS)
Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.
1998-03-01
The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.
Final Report for NIREC Renewable Energy Research & Development Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, Walt
This report is a compilation of progress reports and presentations submitted by NIREC to the DOE’s Solar Energy Technologies Office for award number DE-FG36-08GO88161. This compilation has been uploaded to OSTI by DOE as a substitute for the required Final Technical Report, which was not submitted to DOE by NIREC or received by DOE. Project Objective: The primary goal of NIREC is to advance the transformation of the scientific innovation of the institutional partner’s research in renewable energy into a proof of the scientific concept eventually leading to viable businesses with cost effective solutions to accelerate the widespread adoption ofmore » renewable energy. NIREC will a) select research projects that are determined to have significant commercialization potential as a result of vetting by the Technology and commercialization Advisory Board, b) assign an experienced Entrepreneur-in-Residence (EIR) to each manage the scientific commercialization-preparedness process, and c) facilitate connectivity with venture capital and other private-sector capital sources to fund the rollout, scaling and growth of the resultant renewable energy business.« less
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.
2011-01-01
Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.
Hydrogen production by Cyanobacteria.
Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K
2005-12-21
The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.
Recent advances in basic and clinical nanomedicine.
Morrow, K John; Bawa, Raj; Wei, Chiming
2007-09-01
Nanomedicine is a global business enterprise. Industry and governments clearly are beginning to envision nanomedicine's enormous potential. A clear definition of nanotechnology is an issue that requires urgent attention. This problem exists because nanotechnology represents a cluster of technologies, each of which may have different characteristics and applications. Although numerous novel nanomedicine-related applications are under development or nearing commercialization, the process of converting basic research in nanomedicine into commercially viable products will be long and difficult. Although realization of the full potential of nanomedicine may be years or decades away, recent advances in nanotechnology-related drug delivery, diagnosis, and drug development are beginning to change the landscape of medicine. Site-specific targeted drug delivery and personalized medicine are just a few concepts that are on the horizon.
Subcutaneous insulin therapy - end of the road after 80 years?
Leifke, E; Strack, T R
2014-02-01
Subcutaneous (SC) insulin therapy has been a mainstay of pharmacological diabetes management from the moment insulin was successfully developed as treatment. Insulin formulations have become more refined and less allergenic over time, and ancillary technologies such as injection devices and glucose measurement tools have evolved to the extent of permitting closed-loop therapy. However, investigations have continued exploring alternative routes of administration with the ultimate goal of implantable islet replacements, whether cell- or "silicon"-based. Progress on these lines of research, however, has been slow to present patients with viable options: alternative delivery routes have failed to deliver insulin reliably and with commercially viable efficiency, while beta cell transplantation continues to struggle with tissue availability and in vivo viability. In the meantime, SC insulin formulations have advanced for rapid- and long-acting formulations, to better meet typical insulin requirements across the day. Thus, SC insulin will likely remain a key technology for the foreseeable future in order to address the needs of an ever larger number of insulin-dependent patients with diabetes. Copyright 2014 Prous Science, S.A.U. or its licensors. All rights reserved.
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.
2004-01-01
This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.
LEDs for solid state lighting and other emerging applications: status, trends, and challenges
NASA Astrophysics Data System (ADS)
Craford, M. George
2005-09-01
LEDs have been commercially available since the 1960's, but in recent years there have been remarkable improvements in performance. These technology developments have enabled the use of LEDs in a variety of colored and white lighting applications. Colored LEDs have already become the technology of choice for traffic signals, much of interior and exterior vehicle lighting, signage of various types often as a replacement for neon, and other areas. LEDs are expected to become the dominant technology for most colored lighting applications. LEDs are beginning to penetrate white lighting markets such as flashlights and localized task lighting. With further improvement LEDs have the potential to become an important technology for large area general illumination. White LED products already have performance of over 30 lumens/watt which is nearly 3x better than incandescents. White LEDs with outputs of more than 100 lumens are already available commercially, and higher power devices can be expected in the near future. LEDs can be used as point sources, or can be used with light guides of various types to provide distributed illumination. Developments that will need to occur for LEDs to be viable for large area general illumination are discussed.
Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.
2017-01-01
NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.
Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishik, Claire; Sheldon, Frederick T; Ott, David
Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutionsmore » are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.« less
Immersion Cooling of Electronics in DoD Installations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coles, Henry; Herrlin, Magnus
A considerable amount of energy is consumed to cool electronic equipment in data centers. A method for substantially reducing the energy needed for this cooling was demonstrated. The method involves immersing electronic equipment in a non-conductive liquid that changes phase from a liquid to a gas. The liquid used was 3M Novec 649. Two-phase immersion cooling using this liquid is not viable at this time. The primary obstacles are IT equipment failures and costs. However, the demonstrated technology met the performance objectives for energy efficiency and greenhouse gas reduction. Before commercialization of this technology can occur, a root cause analysismore » of the failures should be completed, and the design changes proven.« less
Systems Engineering Applied to the Development of a Wave Energy Farm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Bull, Diana L.; Costello, Ronan Patrick
A motivation for undertaking this stakeholder requirements analysis and Systems Engineering exercise is to document the requirements for successful wave energy farms to facilitate better design and better design assessments. A difficulty in wave energy technology development is the absence to date of a verifiable minimum viable product against which the merits of new products might be measured. A consequence of this absence is that technology development progress, technology value, and technology funding have largely been measured, associated with, and driven by technology readiness, measured in technology readiness levels (TRLs). Originating primarily from the space and defense industries, TRLs focusmore » on procedural implementation of technology developments of large and complex engineering projects, where cost is neither mission critical nor a key design driver. The key deficiency with the TRL approach in the context of wave energy conversion is that WEC technology development has been too focused on commercial readiness and not enough on the stakeholder requirements and particularly economic viability required for market entry.« less
Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena; Mundkur, Lakshmi
2018-01-01
Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856.
Majeed, Muhammed; Majeed, Shaheen; Nagabhushanam, Kalyanam; Punnapuzha, Ardra; Philip, Sheena
2018-01-01
Accurate enumeration of bacterial count in probiotic formulation is imperative to ensure that the product adheres to regulatory standards and citation in consumer product label. Standard methods like plate count, can enumerate only replicating bacterial population under selected culture conditions. Viable but non culturable bacteria (VBNC) retain characteristics of living cells and can regain cultivability by a process known as resuscitation. This is a protective mechanism adapted by bacteria to evade stressful environmental conditions. B. coagulans MTCC 5856(LactoSpore®) is a probiotic endospore which can survive for decades in hostile environments without dividing. In the present study, we explored the use of flow cytometry to enumerate the viable count of B. coagulans MTCC 5856 under acidic and alkaline conditions, high temperature and in commercial formulations like compressed tablets and capsules. Flow cytometry (FCM) was comparable to plate count method when the spores were counted at physiological conditions. We show that VBNC state is induced in B. coagulans MTCC 5856by high temperature and acidic pH. The cells get resuscitated under physiological conditions and FCM was sensitive to detect the VBNC spores. Flow cytometry showed excellent ability to assess the viable spore count in commercial probiotic formulations of B. coagulans MTCC 5856. The results establish Flow cytometry as a reliable method to count viable bacteria in commercial probiotic preparations. Sporulation as well as existence as VBNC could contribute to the extreme stability of B. coagulans MTCC 5856. PMID:29474436
Thermal Protection System (Heat Shield) Development - Advanced Development Project
NASA Technical Reports Server (NTRS)
Kowal, T. John
2010-01-01
The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.
Microalgae as sustainable renewable energy feedstock for biofuel production.
Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M
2015-01-01
The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.
Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production
Yusoff, Fatimah Md.; Shariff, M.
2015-01-01
The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216
Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.
Jung, Hyun Suk; Lee, Jung-Kun
2013-05-16
TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.
Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less
Hydrogen production by Cyanobacteria
Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K
2005-01-01
The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161
Challenges of International Programs in Commercial Wireless Power Trasmission
NASA Technical Reports Server (NTRS)
Dickinson, Richard M.
1993-01-01
The proposition is offered that only by forming international alliances will econmically viable commercial wireless poer transmission (WPT) result. Radio emissions from commercial WPT will likely extend beyond the borders of a single nation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adom, Felix K.; Cai, Hao; Dunn, Jennifer B.
2016-03-01
The Department of Energy’s (DOE) Bioenergy Technology Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO and its national laboratory teams conduct in-depth techno-economic assessments (TEA) of technologies to produce biofuels. These assessments evaluate feedstock production, logistics of transporting the feedstock, and conversion of the feedstock to biofuel. There are two general types of TEAs. A design case is a TEA that outlines a target case for a particular biofuel pathway. It enables identification of data gaps and research andmore » development needs, and provides goals and targets against which technology progress is assessed. On the other hand, a state of technology (SOT) analysis assesses progress within and across relevant technology areas based on actual experimental results relative to technical targets and cost goals from design cases, and includes technical, economic, and environmental criteria as available.« less
Ma, Ruoshui; Xu, Yan; Zhang, Xiao
2015-01-01
Transforming plant biomass to biofuel is one of the few solutions that can truly sustain mankind's long-term needs for liquid transportation fuel with minimized environmental impact. However, despite decades of effort, commercial development of biomass-to-biofuel conversion processes is still not an economically viable proposition. Identifying value-added co-products along with the production of biofuel provides a key solution to overcoming this economic barrier. Lignin is the second most abundant component next to cellulose in almost all plant biomass; the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective biorefinery lignin-to-bioproducts conversion processes will play a pivotal role in significantly improving the economic feasibility and sustainability of biofuel production from renewable biomass. The urgency and importance of this endeavor has been increasingly recognized in the last few years. This paper reviews state-of-the-art oxidative lignin depolymerization chemistries employed in the papermaking process and oxidative catalysts that can be applied to biorefinery lignin to produce platform chemicals including phenolic compounds, dicarboxylic acids, and quinones in high selectivity and yield. The potential synergies of integrating new catalysts with commercial delignification chemistries are discussed. We hope the information will build on the existing body of knowledge to provide new insights towards developing practical and commercially viable lignin conversion technologies, enabling sustainable biofuel production from lignocellulosic biomass to be competitive with fossil fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Microbially-based plant disease control products have achieved commercial market success, but the efficacy of such biocontrol products is sometimes deemed inconsistent. Improper processing of harvested microbial biomass or long-term storage can reduce the proportion of viable cells and necessitate t...
National Algal Biofuels Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, John; Sarisky-Reed, Valerie
The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less
Photovoltaic power - An important new energy option
NASA Technical Reports Server (NTRS)
Ferber, R. R.
1983-01-01
A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.
Photovoltaic power - An important new energy option
NASA Astrophysics Data System (ADS)
Ferber, R. R.
1983-12-01
A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.
A top-down approach to heliostat cost reduction
NASA Astrophysics Data System (ADS)
Larmuth, James N.; Landamn, Willem A.; Gauché, Paul
2016-05-01
The Technology Innovation Agency (TIA) has funded a South African central receiver collector technology development project, called Helio100. The project aims to provide South Africa's first commercially viable heliostat technology, which is both low in cost and offers high local content potential. A top-down approach is employed for heliostat cost reduction. This approach incorporates interlinked tools which move from high level cost analyses based on qualitative data during early stages of conceptual design, to detailed quantitative analyses in the final stages of design. Low cost heliostat designs are realized by the incorporation of both a top-down and bottom-up method. The current H100 design results in heliostat costs of 155/m2 at 20 000 units p.a. while further industrialisation results in heliostat costs of 126/m2 at 20 000 units.
JB-300: An advanced medium size transport for 2005
NASA Technical Reports Server (NTRS)
Debrouwer, Giles; Graham, Katherine; Ison, Jim; Juarez, Vince; Moskalik, Steve; Pankonin, Jon; Weinstein, Arnold
1993-01-01
In the fall of 1992, the TAC Team was presented with a Request for Proposal (PFP) for a mid-size (250-350 passenger) commercial transport. The aircraft was to be extremely competitive in the areas of passenger comfort, performance, and economic aspects. Through the use of supercritical airfoils, a technologically advanced Very High By-pass Ratio (VHBR) turbofan engine, a low overall drag configuration, a comparable interior layout, and mild use of composites, the JB-300 offers an economically viable choice to the airlines. The cents per passenger mile of the JB-300 is 1.76, which is considerably lower than current aircraft in the same range. Overall, the JB-300 is a technologically advanced aircraft, which will meet the demands of the 21st century.
Recent Advancements towards Full-System Microfluidics
Miled, Amine
2017-01-01
Microfluidics is quickly becoming a key technology in an expanding range of fields, such as medical sciences, biosensing, bioactuation, chemical synthesis, and more. This is helping its transformation from a promising R&D tool to commercially viable technology. Fuelling this expansion is the intensified focus on automation and enhanced functionality through integration of complex electrical control, mechanical properties, in situ sensing and flow control. Here we highlight recent contributions to the Sensors Special Issue series called “Microfluidics-Based Microsystem Integration Research” under the following categories: (i) Device fabrication to support complex functionality; (ii) New methods for flow control and mixing; (iii) Towards routine analysis and point of care applications; (iv) In situ characterization; and (v) Plug and play microfluidics. PMID:28757587
Architecture for Survivable System Processing (ASSP)
NASA Astrophysics Data System (ADS)
Wood, Richard J.
1991-11-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Bantam System Technology Project Ground System Operations Concept and Plan
NASA Technical Reports Server (NTRS)
Moon, Jesse M.; Beveridge, James R.
1997-01-01
The Low Cost Booster Technology Program, also known as the Bantam Booster program, is a NASA sponsored initiative to establish a viable commercial technology to support the market for placing small payloads in low earth orbit. This market is currently served by large boosters which orbit a number of small payloads on a single launch vehicle, or by these payloads taking up available space on major commercial launches. Even by sharing launch costs, the minimum cost to launch one of these small satellites is in the 6 to 8 million dollar range. Additionally, there is a shortage of available launch opportunities which can be shared in this manner. The goal of the Bantam program is to develop two competing launch vehicles, with launch costs in the neighborhood of 1.5 million dollars to launch a 150 kg payload into low earth orbit (200 nautical mile sun synchronous). Not only could the cost of the launch be significantly less than the current situation, but the payload sponsor could expect better service for his expenditure, the ability to specify his own orbit, and a dedicated vehicle. By developing two distinct launch vehicles, market forces are expected to aid in keeping customer costs low.
Architecture for Survivable System Processing (ASSP)
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1991-01-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Limitations of Commercializing Fuel Cell Technologies
NASA Astrophysics Data System (ADS)
Nordin, Normayati
2010-06-01
Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.
NASA Technical Reports Server (NTRS)
Davidoff, Larry D.; Reichert, Jack M.
1999-01-01
NASA continues to focus on improving safety and reliability while reducing the annual cost of meeting human space flight and unique ISS and exploration needs. NASA's Space Transportation Architecture Study (STAS) Phase 2 in early 1998 focused on space transportation options. Subsequently, NASA directed parallel industry and government teams to conduct the Integrated Space Transportation Plan effort (STAS Phase 3). The objective of ISTP was to develop technology requirements, roadmaps, and risk reduction portfolio that considered expanded definition of "clean-sheet" and Shuttle-derived second generation ETO transportation systems in support of a 2005 RLV competition for NASA missions beginning 2010. NASA provided top-level requirements for improvements in safety, reliability, and cost and a set of design reference missions representing NASA ISS, human exploration, commercial, and other civil and government needs. This paper addresses the challenges of meeting NASA's objectives while servicing the varied market segments represented in the ISTP design reference missions and provides a summary of technology development needs and candidate system concepts. A comparison of driving requirements, architectures and technology needs is discussed and descriptions of viable Shuttle-derived and next generation systems to meet the market needs are presented.
Power system requirements and concepts for a commercially viable lunar base architecture
NASA Astrophysics Data System (ADS)
Lenard, Roger X.; Binder, Alan B.
1999-01-01
Historically, space exploration has been the province of governments and major agencies within those governmental entities. Recent advances in the state-of-the-art in many subsystem technology areas and the revealed inadequacies of governments to singlehandedly underwrite major exploration ventures present the potential to expand the venue of space exploration to the commercial sector. Further, major international projects such as the International Space Station have revealed weaknesses in both international financing and management of such projects. Cost overruns are the rule and significant schedule slips and/or failures to deliver have resulted in an enormously costly and delayed program. The exorbitant costs have stymied exploration ventures beyond Earth orbit. There are many potential advantages to a commercial operation including cost, schedule and a distinct customer orientation to services. The objective of this paper is to describe the first phase of a phased strawman commercial lunar base concept which operates as a user facility for governmental entities, corporations and companies. The paper will discuss the power system options and conditions under which such a base can be made to become profitable.
Architecture Studies for Commercial Production of Propellants From the Lunar Poles
NASA Astrophysics Data System (ADS)
Duke, Michael B.; Diaz, Javier; Blair, Brad R.; Oderman, Mark; Vaucher, Marc
2003-01-01
Two architectures are developed that could be used to convert water held in regolith deposits within permanently shadowed lunar craters into propellant for use in near-Earth space. In particular, the model has been applied to an analysis of the commercial feasibility of using lunar derived propellant to convey payloads from low Earth orbit to geosynchronous Earth orbit. Production and transportation system masses were estimated for each architecture and cost analysis was made using the NAFCOM cost model. Data from the cost model were analyzed using a financial analysis tool reported in a companion paper (Lamassoure et al., 2002) to determine under what conditions the architectures might be commercially viable. Analysis of the architectural assumptions is used to identify the principal areas for further research, which include technological development of lunar mining and water extraction systems, power systems, reusable space transportation systems, and orbital propellant depots. The architectures and commercial viability are sensitive to the assumed concentration of ice in the lunar deposits, suggesting that further lunar exploration to determine whether higher-grade deposits exist would be economically justified.
Bayarri, Susana; Gracia, María J; Lázaro, Regina; Pe Rez-Arquillué, Consuelo; Barberán, Montserrat; Herrera, Antonio
2010-12-01
Toxoplasmosis is a zoonotic disease caused by the protozoan Toxoplasma gondii and distributed worldwide. Ingestion of viable cysts from infected raw or undercooked meat is an important route of horizontal transmission of the parasite to humans. Little information is available concerning the effect of commercial curing on cysts of T. gondii. This study is the first in which the influence of processing of cured ham on the viability of T. gondii has been evaluated, using bioassay to assess the risk of infection from eating this meat product. Naturally infected pigs were selected for the study, and a mouse concentration bioassay technique was used to demonstrate viable bradyzoites of T. gondii in porcine tissues and hams. No viable parasites were found in the final product (14 months of curing) based on results of the indirect immunofluorescence assay and histological and PCR analyses. Our results indicate that the consumption of hams cured as described here poses an insignificant risk of acquiring toxoplasmosis. However, additional studies are required to evaluate the safety of ham products cured under different conditions of curing time, salt, and nitrite concentration.
Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk
2015-01-01
Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. PMID:26109057
Towards stable and commercially available perovskite solar cells
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu; ...
2016-10-17
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
First Annual High-Speed Research Workshop, part 3
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
The First High-Speed Research (HSR) Workshop was hosted by NASA LaRC and was held 14-16 May 1991, in Williamsburg, Virginia. The purpose of the workshop was to provide a national forum for the government, industry, and university participants to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The workshop sessions are organized around the major task elements in NASA's Phase 1 High-Speed Research Program which basically addresses the environmental issues of atmospheric emissions, community noise, and sonic boom.
Lactate biosensors: current status and outlook.
Rassaei, Liza; Olthuis, Wouter; Tsujimura, Seiya; Sudhölter, Ernst J R; van den Berg, Albert
2014-01-01
Many research efforts over the last few decades have been devoted to sensing lactate as an important analytical target in clinical care, sport medicine, and food processing. Therefore, research in designing lactate sensors is no longer in its infancy and now is more directed toward viable sensors for direct applications. In this review, we provide an overview of the most immediate and relevant developments toward this end, and we discuss and assess common transduction approaches. Further, we critically describe the pros and cons of current commercial lactate sensors and envision how future sensing design may benefit from emerging new technologies.
The National Ignition Facility: The Path to a Carbon-Free Energy Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2011-03-16
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Federal Transit Administration's National Fuel Cell Bus Program focuses on developing commercially viable fuel cell bus technologies. Nuvera is leading the Massachusetts Fuel Cell Bus project to demonstrate a complete transit solution for fuel cell electric buses that includes one bus and an on-site hydrogen generation station for the Massachusetts Bay Transportation Authority (MBTA). A team consisting of ElDorado National, BAE Systems, and Ballard Power Systems built the fuel cell electric bus, and Nuvera is providing its PowerTap on-site hydrogen generator to provide fuel for the bus.
The National Ignition Facility: the path to a carbon-free energy future.
Stolz, Christopher J
2012-08-28
The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.
Sakurai, Hidehiro; Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito
2015-01-01
Photobiological production of H2 by cyanobacteria is considered to be an ideal source of renewable energy because the inputs, water and sunlight, are abundant. The products of photobiological systems are H2 and O2; the H2 can be used as the energy source of fuel cells, etc., which generate electricity at high efficiencies and minimal pollution, as the waste product is H2O. Overall, production of commercially viable algal fuels in any form, including biomass and biodiesel, is challenging, and the very few systems that are operational have yet to be evaluated. In this paper we will: briefly review some of the necessary conditions for economical production, summarize the reports of photobiological H2 production by cyanobacteria, present our schemes for future production, and discuss the necessity for further progress in the research needed to achieve commercially viable large-scale H2 production. PMID:25793279
Fabrication & characterization of thin film Perovskite solar cells under ambient conditions
NASA Astrophysics Data System (ADS)
Shah, Vivek T.
High efficiency solar cells based on inorganic materials such as silicon have been commercialized and used to harness energy from the sun and convert it into electrical energy. However, they are energy-intensive and rigid. Thin film solar cells based on inorganic-organic hybrid lead halide perovskite compounds have the potential to be a disruptive technology in the field of renewable energy sector of the economy. Perovskite solar cell (PSC) technology is a viable candidate for low-cost large scale production as it is solution processable at low temperature on a flexible substrate. However, for commercialization, PSCs need to compete with the cost and efficiency of crystalline silicon solar cells. High efficiency PSCs have been fabricated under highly controlled conditions in what is known as a glove-box, which adds to the cost of fabrication of PSCs. This additional cost can be significantly reduced by eliminating the use of glove-box for fabrication. Therefore, in this work, thin film PSCs were fabricated at ambient conditions on glass substrates. A power conversion efficiency of 5.6% was achieved with optimum fabrication control and minimal exposure to moisture.
Grids, Clouds, and Virtualization
NASA Astrophysics Data System (ADS)
Cafaro, Massimo; Aloisio, Giovanni
This chapter introduces and puts in context Grids, Clouds, and Virtualization. Grids promised to deliver computing power on demand. However, despite a decade of active research, no viable commercial grid computing provider has emerged. On the other hand, it is widely believed - especially in the Business World - that HPC will eventually become a commodity. Just as some commercial consumers of electricity have mission requirements that necessitate they generate their own power, some consumers of computational resources will continue to need to provision their own supercomputers. Clouds are a recent business-oriented development with the potential to render this eventually as rare as organizations that generate their own electricity today, even among institutions who currently consider themselves the unassailable elite of the HPC business. Finally, Virtualization is one of the key technologies enabling many different Clouds. We begin with a brief history in order to put them in context, and recall the basic principles and concepts underlying and clearly differentiating them. A thorough overview and survey of existing technologies provides the basis to delve into details as the reader progresses through the book.
Advancing Transportation through Vehicle Electrification - PHEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazzi, Abdullah; Barnhart, Steven
2014-12-31
FCA US LLC viewed the American Recovery and Reinvestment Act (ARRA) as an historic opportunity to learn about and develop PHEV technologies and create the FCA US LLC engineering center for Electrified Powertrains. The ARRA funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies for production on future programs. FCA US LLC intended to develop the next-generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components and common modules. To support the developmentmore » of a strong, commercially viable supplier base, FCA US LLC also utilized this opportunity to evaluate various designated component and sub-system suppliers. The original proposal of this project was submitted in May 2009 and selected in August 2009. The project ended in December 2014.« less
Thermoelectric silicides: A review
NASA Astrophysics Data System (ADS)
Nozariasbmarz, Amin; Agarwal, Aditi; Coutant, Zachary A.; Hall, Michael J.; Liu, Jie; Liu, Runze; Malhotra, Abhishek; Norouzzadeh, Payam; Öztürk, Mehmet C.; Ramesh, Viswanath P.; Sargolzaeiaval, Yasaman; Suarez, Francisco; Vashaee, Daryoosh
2017-05-01
Traditional research on thermoelectric materials focused on improving the figure-of-merit z T to enhance the energy conversion efficiency. With further growth and commercialization of thermoelectric technology beyond niche applications, other factors such as materials availability, toxicity, cost, recyclability, thermal stability, chemical and mechanical properties, and ease of fabrication become important for making viable technologies. Several silicide alloys were identified that have the potential to fulfill these requirements. These materials are of interest due to their abundancy in earth’s crust (e.g., silicon), non-toxicity, and good physical and chemical properties. In this paper, an overview of the silicide thermoelectrics from traditional alloys to advanced material structures is presented. In addition, some of the most effective approaches as well as fundamental physical concepts for designing and developing efficient thermoelectric materials are presented and future perspectives are discussed.
Rani, D Amutha; Boccaccini, A R; Deegan, D; Cheeseman, C R
2008-11-01
Current disposal options for APC residues in the UK and alternative treatment technologies developed world-wide have been reviewed. APC residues are currently landfilled in the UK where they undergo in situ solidification, although the future acceptability of this option is uncertain because the EU waste acceptance criteria (WAC) introduce strict limits on leaching that are difficult to achieve. Other APC residue treatment processes have been developed which are reported to reduce leaching to below relevant regulatory limits. The Ferrox process, the VKI process, the WES-PHix process, stabilisation/solidification using cementitious binders and a range of thermal treatment processes are reviewed. Thermal treatment technologies convert APC residues combined with other wastes into inert glass or glass-ceramics that encapsulate heavy metals. The waste management industry will inevitably use the cheapest available option for treating APC residues and strict interpretation and enforcement of waste legislation is required if new, potentially more sustainable technologies are to become commercially viable.
Sodium-Oxygen Battery: Steps Toward Reality.
Landa-Medrano, Imanol; Li, Chunmei; Ortiz-Vitoriano, Nagore; Ruiz de Larramendi, Idoia; Carrasco, Javier; Rojo, Teófilo
2016-04-07
Rechargeable metal-oxygen batteries are receiving significant interest as a possible alternative to current state of the art lithium ion batteries due to their potential to provide higher gravimetric energies, giving significantly lighter or longer-lasting batteries. Recent advances suggest that the Na-O2 battery, in many ways analogous to Li-O2 yet based on the reversible formation of sodium superoxide (NaO2), has many advantages such as a low charge overpotential (∼100 mV) resulting in improved efficiency. In this Perspective, we discuss the current state of knowledge in Na-O2 battery technology, with an emphasis on the latest experimental studies, as well as theoretical models. We offer special focus on the principle outstanding challenges and issues and address the advantages/disadvantages of the technology when compared with Li-O2 batteries as well as other state-of-the-art battery technologies. We finish by detailing the direction required to make Na-O2 batteries both commercially and technologically viable.
Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II
NASA Technical Reports Server (NTRS)
Gray, D. E.; Gardner, W. B.
1983-01-01
The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.
Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred Mitlitsky; Sara Mulhauser; David Chien
2009-11-14
The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements.more » The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.« less
Technology enablers for improved aerospace x-ray NDE
NASA Astrophysics Data System (ADS)
Strabel, George; Ross, Joseph; Graham, Larry; Smith, Kevin
1996-11-01
In the current climate of reduced Military spending and lower commercial demand for aerospace products, it is of critical importance to allocate scarce technology development resources to meet projected needs. During the past decade, dramatic advances in x-ray nondestructive evaluation (NDE) technology have results in commercially viable digital radiography (DR) and computed tomography (CT) systems. X-ray CT has become an important NDE technique that not only provides data about material integrity, but also valuable volumetric data which is finding applications in reverse engineering, rapid prototyping, process control and 3D metrology. Industrial DR and CT systems have been available for almost 10 years, but are very costly, generally designed for specific applications and have well known limitations for both process development and final inspection. They have inadequate energy/flux to penetrate many large components and structures. In order to support the US Aerospace Industry in its drive towards global competitiveness, it is imperative that key enabling tools such as DR and CT be improved, made affordable, and implemented to meet the anticipated needs of the next decade of aerospace applications. This paper describes a strategy for a consortium of suppliers and users of x-ray NDE systems, academia and national laboratories to work together to attain this goal.
Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei; Won, Wangyun; Hosseinaei, Omid; Tao, Jingming; Garcia-Negron, Valerie; Motagamwala, Ali Hussain; Mellmer, Max A.; Huang, Kefeng; Houtman, Carl J.; Labbé, Nicole; Harper, David P.; Maravelias, Christos T.; Runge, Troy; Dumesic, James A.
2017-01-01
The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels. PMID:28560350
Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei
The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical);more » and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.« less
On the Uncertain Future of the Volumetric 3D Display Paradigm
NASA Astrophysics Data System (ADS)
Blundell, Barry G.
2017-06-01
Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available. Consequently, in this paper we review aspects of the volumetric paradigm and identify important issues which have, to date, precluded their successful commercialization. Potentially advantageous characteristics are outlined and demonstrate that significant research is still needed in order to overcome barriers which continue to hamper the effective exploitation of this display modality. Given the recent resurgence of interest in developing commercially viable general purpose volumetric systems, this discussion is of particular relevance.
Prince, Roger C; Kheshgi, Haroon S
2005-01-01
Photosynthetic microorganisms can produce hydrogen when illuminated, and there has been considerable interest in developing this to a commercially viable process. Its appealing aspects include the fact that the hydrogen would come from water, and that the process might be more energetically efficient than growing, harvesting, and processing crops. We review current knowledge about photobiological hydrogen production, and identify and discuss some of the areas where scientific and technical breakthroughs are essential for commercialization. First we describe the underlying biochemistry of the process, and identify some opportunities for improving photobiological hydrogen production at the molecular level. Then we address the fundamental quantum efficiency of the various processes that have been suggested, technological issues surrounding large-scale growth of hydrogen-producing microorganisms, and the scale and efficiency on which this would have to be practiced to make a significant contribution to current energy use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Nam-Gyu; Grätzel, Michael; Miyasaka, Tsutomu
Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. But, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. We propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures ismore » important not only for achieving high efficiency but also for hysteresis-free and stable performance. Here, we argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material.« less
Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei; ...
2017-05-19
The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical);more » and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.« less
Issues deserve attention in encapsulating probiotics: Critical review of existing literature.
Chen, Jun; Wang, Qi; Liu, Cheng-Mei; Gong, Joshua
2017-04-13
Probiotic bacteria are being increasingly added to food for developing products with health-promoting properties. However, the efficacy of probiotics in commercial products is often questioned due to the loss of their viability during shelf storage and in human gastrointestinal tracts. Encapsulation of probiotics has been expected to provide protection to probiotics, but not many commercial products contain encapsulated and viable probiotic cells owing to various reasons. To promote the development and application of encapsulation technologies, this paper has critically reviewed previous publications with a focus on the areas where studies have fallen short, including insufficient consideration of structural effects of encapsulating material, general defects in encapsulating methods and issues in evaluation methodologies and risk assessments for application. Corresponding key issues that require further studies are highlighted. Some emerging trends in the field, such as current treads in encapsulating material and recently advanced encapsulation techniques, have also been discussed.
McPherson, Marc A; Yang, Rong-Cai; Good, Allen G; Nielson, Ryan L; Hall, Linda M
2009-04-01
Safflower has been transformed for field scale molecular farming of high-value proteins including several pharmaceuticals. Viable safflower seed remaining in the soil seed bank after harvest could facilitate seed and pollen-mediated gene flow. Seeds may germinate in subsequent years and volunteer plants may flower and potentially outcross with commodity safflower and/or produce seed. Seeds from volunteers could become admixed with conventional crops at harvest, and/or replenish the seed bank. Seed in following crops could be transported locally and internationally and facilitate gene flow in locations where regulatory thresholds and public acceptance differ from Canada. Seed-mediated gene flow was examined in three studies. Safflower seed loss and viability following harvest of commercial fields of a non-transgenic cultivar were determined. We assessed seed longevity of transgenic and non-transgenic safflower, on the soil surface and buried at two depths. Finally, we surveyed commercial safflower fields at different sites and measured density and growth stage of safflower volunteers, in other crops the following year and documented volunteer survival and viable seed production. Total seed loss at harvest in commercial fields, ranged from 231 to 1,069 seeds m(-2) and the number of viable seeds ranged from 81 to 518 seeds m(-2). Safflower has a relatively short longevity in the seed bank and no viable seeds were found after 2 years. Based on the seed burial studies it is predicted that winter conditions would reduce safflower seed viability on the soil surface by >50%, leaving between 40 and 260 viable seeds m(-2). The density of safflower volunteers emerging in the early spring of the following year ranged from 3 to 11 seedlings m(-2). Safflower volunteers did not survive in fields under chemical fallow, but in some cereal fields small numbers of volunteers did survive and generate viable seed. Results will be used to make recommendations for best management practices to reduce seed-mediated gene flow from commercial production of plant molecular farming with safflower.
Study of high-speed civil transports
NASA Technical Reports Server (NTRS)
1989-01-01
A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.
Freund, Nathaniel W; Croughan, Matthew S
2018-01-28
Fed-batch animal cell culture is the most common method for commercial production of recombinant proteins. However, higher cell densities in these platforms are still limited due to factors such as excessive ammonium production, lactic acid production, nutrient limitation, and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid production-termed Lactate Supplementation and Adaptation (LSA) technology-through the use of CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of LSA technology in animal cell culture is worthy of further consideration and may lead to process conditions more favorable for advanced industrial applications.
Ando, Akira; Suzuki, Chise; Shima, Jun
2005-11-01
Although genetic engineering techniques for baker's yeast might improve the yeast's fermentation characteristics, the lack of scientific data on the survival of such strains in natural environments as well as the effects on human health prevent their commercial use. Disruption of acid trehalase gene (ATH1) improves freeze tolerance, which is a crucial characteristic in frozen-dough baking. In this study, ATH1 disruptants constructed by genetic modification (GM) and self-cloning (SC) techniques were used as models to study such effects because these strains have higher freeze tolerance and are expected to be used commercially. Behavior of the strains in simulated natural environments, namely, in soil and water, was studied by measuring the change in the number of viable cells and in the concentration of DNA that contains ATH1 loci. Measurements were made using a real-time PCR method during 40 days of cultivation. Results showed that the number of viable cells of GM and SC strains decreased in a time-dependent manner and that the decrease rate was nearly equal to or higher than that for wild-type (WT) yeast. For all three strains (SC, GM, and WT) in the two simulated natural environments (water and soil), the DNA remained longer than did viable cells but the decrease patterns of either the DNA or the viable cells of SC and GM strains had tendencies similar to those of the WT strain. In conclusion, disruption of ATH1 by genetic engineering apparently does not promote the survival of viable cells and DNA in natural environments.
Hydrogen Fuel Cell on a Helicopter: A System Engineering Approach
NASA Astrophysics Data System (ADS)
Nesheiwat, Rod
Hydrogen fuel cells have been previously investigated as a viable replacement to traditional gas turbine auxiliary power unit onboard fixed wing commercial jets. However, so far no study has attempted to extend their applicability to rotary wing aircrafts. To aid in the advancement of such innovative technologies, a holistic technical approach is required to ensure risk reduction and cost effectiveness throughout the product lifecycle. This paper will evaluate the feasibility of replacing a gas turbine auxiliary power unit on a helicopter with a direct hydrogen, air breathing, proton exchange membrane fuel cell, all while emphasizing a system engineering approach that utilize a specialized set of tools and artifacts.
First Annual High-Speed Research Workshop, part 1
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr. (Compiler)
1992-01-01
The workshop was presented to provide a national forum for the government, industry, and university participants in the program to present and discuss important technology issues related to the development of a commercially viable, environmentally compatible U.S. High Speed Civil Transport. The workshop sessions were organized around the major task elements in NASA's Phase 1 High Speed Research Program which basically addressed the environmental issues of atmospheric emissions, community noise, and sonic boom. This volume is divided into three sessions entitled: Plenary Session (which gives overviews from NASA, Boeing, Douglas, GE, and Pratt & Whitney on the HSCT program); Airframe Systems Studies; and Atmospheric Effects.
Compact Ceramic Microchannel Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewinsohn, Charles
The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisz, J. F.
2012-11-01
The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less
NASA Technical Reports Server (NTRS)
1993-01-01
Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.
Assessment of the commercial viability of selected options for on-orbit servicing (OOS)
NASA Astrophysics Data System (ADS)
Graham, Andrew Robert; Kingston, Jennifer
2015-12-01
The aim of this paper is to determine the commercial viability of on-orbit servicing of communications satellites in geostationary orbit. Previous studies have shown the technical feasibility of servicing as well as the financial viability of some missions, in particular refuelling, therefore this paper analyses these repair missions and life extension missions. A simple parametric model for simulating communications satellite revenue streams is developed and the results are used to determine the maximum possible revenue for a servicing satellite operator. From this, the maximum cost of the servicing satellite as a proportion of the cost of the communications satellite is determined under three profit scenarios representing zero profit, acceptable profit to an operator in a mature industry and acceptable profit to an operator in an emerging industry. The results show that while servicing is financially viable (zero profit scenario), those missions which result in an increase in Comsat life which is a multiple of the mission duration are more likely to be commercially viable. Refuelling is therefore viable in all cases but life extension in most cases is only marginally viable. Repair missions to satellites which are partially operable are also unlikely to deliver sufficient value to justify carrying out servicing. Also the timing of a servicing mission in relation to the expected remaining life expectancy is a major factor in determining the mission's viability.
Elastic memory composites (EMC) for deployable industrial and commercial applications
NASA Astrophysics Data System (ADS)
Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken
2005-05-01
The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.
Guidelines for use of Hydrogen Fuel in Commercial Vehicles
DOT National Transportation Integrated Search
2008-01-01
Over the next 50 years, hydrogen use is expected to grow dramatically as an automotive and electrical power source fuel. As hydrogen becomes commercially viable, the safety concerns associated with hydrogen systems, equipment, and operation are of co...
Benintende, S
2010-01-01
In view of the inoculant production technology available, quality control is a necessary tool to improve soybean inoculants commercialized in Argentina. In 1988, the Facultad de Ciencias Agropecuarias de la Universidad Nacional de Entre Ríos (Argentina) created a quality control service for soybean crop inoculants to offer to farmers. The aim of this study was to evaluate the quality of soybean crop inoculants for seven cropping seasons and to contrast these results with those from previous investigations conducted in our country. This work was developed using 128 inoculant samples from 30 different trade names. The analyzed variables were: inoculant label information, number of viable rhizobia and presence of contaminants. Twenty per cent of the labels showed defects that did not comply with the Argentine legislation. The detected problems in inoculant labels were related to lot numbers or the expiry date, which lacked, was easy to remove or not visible. Eighty seven per cent of the analyzed inoculants were formulated in liquid carriers. Seventy six per cent of the samples had a number of rhizobia above 10(8) CFU/g or ml, the minimum quantity required by the legislation. Thirty per cent of the analyzed inoculants had contaminants and their presence was related to low rhizobia counts, as shown in a correspondence analysis. The relationship between liquid inoculants and the absence of contaminants was expressed. It can be concluded from the comparison of results found in this investigation with those in previous works published on Argentinean inoculants, that inoculant quality has been improved, although the situation is far from ideal. Adequate manufacturing and commercialization controls are necessary to ensure product quality.
Alabama, 2010 forest inventory and analysis factsheet
Andrew J. Hartsell
2011-01-01
FIA was initially established to monitor the Nationâs timber supply and the amount of commercially available resources. These early surveys were not concerned with the forests, species, and tree sizes that were not considered commercially viable. Early FIA reported only on growing-stock trees on timberlands, i.e., commercially important tree species and sizes on...
Process to Selectively Distinguish Viable from Non-Viable Bacterial Cells
NASA Technical Reports Server (NTRS)
LaDuc, Myron T.; Bernardini, Jame N.; Stam, Christina N.
2010-01-01
The combination of ethidium monoazide (EMA) and post-fragmentation, randomly primed DNA amplification technologies will enhance the analytical capability to discern viable from non-viable bacterial cells in spacecraft-related samples. Intercalating agents have been widely used since the inception of molecular biology to stain and visualize nucleic acids. Only recently, intercalating agents such as EMA have been exploited to selectively distinguish viable from dead bacterial cells. Intercalating dyes can only penetrate the membranes of dead cells. Once through the membrane and actually inside the cell, they intercalate DNA and, upon photolysis with visible light, produce stable DNA monoadducts. Once the DNA is crosslinked, it becomes insoluble and unable to be fragmented for post-fragmentation, randomly primed DNA library formation. Viable organisms DNA remains unaffected by the intercalating agents, allowing for amplification via post-fragmentation, randomly primed technologies. This results in the ability to carry out downstream nucleic acid-based analyses on viable microbes to the exclusion of all non-viable cells.
Selection of Sustainable Technology for VOC Abatement in an Industry: An Integrated AHP-QFD Approach
NASA Astrophysics Data System (ADS)
Gupta, Alok Kumar; Modi, Bharat A.
2018-04-01
Volatile organic compounds (VOCs) are universally present in global atmospheric pollutants. These VOCs are responsible for photo chemical reaction in atmosphere leading to serious harmful effects on human health and environment. VOCs are produced from both natural and man-made sources and may have good commercial value if it can be utilized as alternate fuel. As per data from US EPA, 15% of total VOC emissions are generated from surface coating industry but VOC concentration and exhaust air volume varies to a great extent and is dependent on processes used by industry. Various technologies are available for abatement of VOCs. Physical, Chemical and Biological technologies are available to remove VOCs by either recovery or destruction with many advantages and limitations. With growing environmental awareness and considering the resource limitations of medium and small scale industries, requirement of a tool for selecting appropriate techno economically viable solution for removal of VOCs from industrial process exhaust is envisaged. The aim of the present study is to provide management a tool to determine the overall effect of implementation of VOC abatement technology on business performance and VOC emissions. The primary purpose of this work is to outline a methodology to rate various VOC abatement technologies with respect to the constraint of meeting current and foreseeable future regulatory requirements, operational flexibility and Over All Economics Parameters considering conservation of energy. In this paper an integrated approach has been proposed to select most appropriate abatement technology strategically. Analytical hierarchy process and Quality function deployment have been integrated for Techno-commercial evaluation. A case study on selection of VOC abatement technology for a leading aluminium foil surface coating, lamination and printing facility using this methodology is presented in this study.
ACES: An Enabling Technology for Next Generation Space Transportation
NASA Astrophysics Data System (ADS)
Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.
2004-02-01
Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.
Chen, Chun-Yen; Yeh, Kuei-Ling; Aisyah, Rifka; Lee, Duu-Jong; Chang, Jo-Shu
2011-01-01
Microalgae have the ability to mitigate CO(2) emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. Copyright © 2010 Elsevier Ltd. All rights reserved.
Enhancing the capability of the research fleet.
NASA Astrophysics Data System (ADS)
Pinkel, R.
2012-12-01
While the performance and economics of our vessels and manned platforms are fixed by fundamental principles, their scientific capabilities can be considerably extended through the development of new technology. Potential future systems include multi-beam swath- mapping sonars for 3-D imaging of plankton patchiness, wire-guided profiling velocity sensors for establishing full-ocean-depth velocity profiles, shipboard HF radar (CODAR) for mapping energetic currents, and shipboard Doppler radar for mapping the surface wave spectrum. Research vessel users should have access to undersea gliders and autonomous aircraft as well as the current AUVs. In addition, the use of manned stable platforms in an observatory setting deserves further consideration. As well as providing an ideal mount for meteorological and oceanographic sensors, the platforms can provide electrical power and a "heavy lift" capability for sea floor and water column studies. Concerted community effort will be required to develop these new technologies, not all of which will be commercially viable. A strong academic technology base is necessary.
Principles and application of high pressure-based technologies in the food industry.
Balasubramaniam, V M Bala; Martínez-Monteagudo, Sergio I; Gupta, Rockendra
2015-01-01
High pressure processing (HPP) has emerged as a commercially viable food manufacturing tool that satisfies consumers' demand for mildly processed, convenient, fresh-tasting foods with minimal to no preservatives. Pressure treatment, with or without heat, inactivates pathogenic and spoilage bacteria, yeast, mold, viruses, and also spores and extends shelf life. Pressure treatment at ambient or chilled temperatures has minimal impact on product chemistry. The product quality and shelf life are often influenced more by storage conditions and packaging material barrier properties than the treatment itself. Application of pressure reduces the thermal exposure of the food during processing, thereby protecting a variety of bioactive compounds. This review discusses recent scientific advances of high pressure technology for food processing and preservation applications such as pasteurization, sterilization, blanching, freezing, and thawing. We highlight the importance of in situ engineering and thermodynamic properties of food and packaging materials in process design. Current and potential future promising applications of pressure technology are summarized.
Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Michael; Ruhl, Robert
2012-05-01
Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes thatmore » > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.« less
NASA Astrophysics Data System (ADS)
Salomon, Patric R.
2003-01-01
According to the latest release of the NEXUS market study, the market for MEMS or Microsystems Technology (MST) is predicted to grow to $68B by the year 2005, with systems containing these components generating even higher revenues and growth. The latest advances in MST/MEMS technology have enabled the design of a new generation of microsystems that are smaller, cheaper, more reliable, and consume less power. These integrated systems bring together numerous analog/mixed signal microelectronics blocks and MEMS functions on a single chip or on two or more chips assembled within an integrated package. In spite of all these advances in technology and manufacturing, a system manufacturer either faces a substantial up-front R&D investment to create his own infrastructure and expertise, or he can use design and foundry services to get the initial product into the marketplace fast and with an affordable investment. Once he has a viable product, he can still think about his own manufacturing efforts and investments to obtain an optimized high volume manufacturing for the specific product. One of the barriers to successful exploitation of MEMS/MST technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities, including packaging and test. This paper discusses Multi-project wafer (MPW) runs, requirements for foundries and gives some examples of foundry business models. Furthermore, this paper will give an overview on MST/MEMS services that are available in Europe, including pure commercial activities, European project activities (e.g. Europractice), and some academic services.
Single-stage-to-orbit: Meeting the challenge
NASA Astrophysics Data System (ADS)
Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene
1995-10-01
There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.
Single-stage-to-orbit — Meeting the challenge
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Austin, Robert Eugene
1996-02-01
There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.
Sycamore produces viable seed after six years
A. F. Ike
1966-01-01
In the early stages of any tree improvement program it is desirable to know how soon progenies of selected parents can themselves be included in a breeding program. How soon will they produce viable pollen and seed? In the case of sycamore (Platanus occidentalis L.), the information is meager: the Woody- Plant Seed Manual lists the minimum commercial seedbearing age...
Bao, Jie; Ryu, Dewey D Y
2007-09-01
Polymerase chain reaction (PCR) and other PCR applications for DNA synthesis require deoxynucleoside triphosphates (dNTP) as the essential precursors and substrates. Currently, the dNTP is commercially produced by a chemical method which is environmentally hazardous and costly due to its low yields in both the synthetic reaction and purification processes. In this study, a enzyme technology for the total integrated biosynthesis of all dNTP components is presented. The bioprocess technology developed and reported here involves two sequential enzymatic phosphorylation reactions coupled with the cofactor regeneration starting from deoxynucleoside monophosphates (dNMP) to deoxynucleoside diphosphates (dNDP) in the first reaction step and to dNTP in the second reaction step in the same bioreactor. The four genes encoding these deoxynucleoside monophosphate kinases were cloned into the recombinant E. coli and expressed using the recombinant E. coli strains. The reaction mechanisms and kinetics of the four kinase enzymes are studied and reported. The total enzymatic syntheses of the four dNTP products were carried out in four separate operations under the high substrate concentrations which emulate the practical application. The optimal process conditions were carefully investigated and complete conversion of dNMP to dNTP at high substrate concentration have been achieved. The purity and quality of dNTP products obtained from this work were analyzed and found to be at least equivalent or better than the commercially available dNTP products. The PCR application of dNTP products obtained from this work were also evaluated for isolating and amplifying genes of different sizes from different organisms. The PCR performance test also showed an equivalent quality as compared to the commercially available dNTP. The bioprocess technology developed and reported here for production of dNTP will provide economically competitive and environmentally friendly viable technology for the industry and research community as compared to the chemical technology currently in use.
Synthetic vision in the cockpit: 3D systems for general aviation
NASA Astrophysics Data System (ADS)
Hansen, Andrew J.; Rybacki, Richard M.; Smith, W. Garth
2001-08-01
Synthetic vision has the potential to improve safety in aviation through better pilot situational awareness and enhanced navigational guidance. The technological advances enabling synthetic vision are GPS based navigation (position and attitude) systems and efficient graphical systems for rendering 3D displays in the cockpit. A benefit for military, commercial, and general aviation platforms alike is the relentless drive to miniaturize computer subsystems. Processors, data storage, graphical and digital signal processing chips, RF circuitry, and bus architectures are at or out-pacing Moore's Law with the transition to mobile computing and embedded systems. The tandem of fundamental GPS navigation services such as the US FAA's Wide Area and Local Area Augmentation Systems (WAAS) and commercially viable mobile rendering systems puts synthetic vision well with the the technological reach of general aviation. Given the appropriate navigational inputs, low cost and power efficient graphics solutions are capable of rendering a pilot's out-the-window view into visual databases with photo-specific imagery and geo-specific elevation and feature content. Looking beyond the single airframe, proposed aviation technologies such as ADS-B would provide a communication channel for bringing traffic information on-board and into the cockpit visually via the 3D display for additional pilot awareness. This paper gives a view of current 3D graphics system capability suitable for general aviation and presents a potential road map following the current trends.
First NASA/Industry High Speed Research Program Nozzle Symposium
NASA Technical Reports Server (NTRS)
Long-Davis, Mary Jo
1999-01-01
The First High Speed Research (HSR) Nozzle Symposium was hosted by NASA Lewis Research Center on November 17-19, 1992 in Cleveland, Ohio, and was sponsored by the HSR Source Noise Working Group. The purpose of this symposium was to provide a national forum for the government, industry, and university participants in the program to present and discuss important low noise nozzle research results and technology issues related to the development of appropriate nozzles for a commercially viable, environmentally compatible, U.S. High-Speed Civil Transport. The HSR Phase I research program was initiated in FY90 and is approaching the first major milestone (end of FY92) relative to an initial FAR 36 Stage 3 nozzle noise assessment. Significant research results relative to that milestone were presented. The opening session provided a brief overview of the Program and status of the Phase H plan. The next five sessions were technically oriented and highlighted recent significant analytical and experimental accomplishments. The last Session included a panel discussion by the Session Chairs, summarizing the progress seen to date and discussing issues relative to further advances in technology necessary to achieve the Program Goals. Attendance at the Symposium was by invitation only and included only industry, academic, and government participants who are actively involved in the High-Speed Research Program. The technology presented in this meeting is considered commercially sensitive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, V.K.
1992-01-01
The new impending environmental law in Poland provides for strict environmental guidelines for coal preparation, washing, mine desalination, and application of commercially viable and economical clean coal technologies for utilization of coal. The government of Poland requested the U.S. Trade and Development Program (TDP) carry out a Definitional Mission to Poland to define the requirements of the Polish authorities and to prepare specific recommendations for follow on actions by TDP. The technical assistance package proposed to be funded by TDP includes two specific activities. These are (i) an orientation visit to review selected clean coal technology projects in the U.S.,more » and (ii) preparation of a compendium of the main coal sector requirements in Poland and the types of technologies needed. The Definitional Mission has prepared a Scope of Work which recommends that TDP allocate a fund to finance the cost of the above technical assistance activities. It is further recommended that TDP enlist the assistance of a non-profit trade organization to provide this assistance to the Polish government.« less
High-speed civil transport study. Summary
NASA Technical Reports Server (NTRS)
1989-01-01
A system of study of the potential for a high speed commercial transport aircraft addressed technology, economic, and environmental constraints. Market projections indicated a need for fleets of transport with supersonic or greater cruise speeds by the years 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5000 to 6000 nautical miles. The study was initially unconstrained in terms of vehicle characteristics, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high speed civil transport. Significant advances are needed to take off gross weight and allow for both economic attractiveness and environment acceptability. Specific technological requirements were identified to meet these needs.
Gene Technology for Papaya Ringspot Virus Disease Management
Azad, Md. Abul Kalam; Sidik, Nik Marzuki
2014-01-01
Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawls, G.
ASME is evaluating the use of additive manufacturing (AM) for the construction of pressure equipment. The information in this report assesses available AM technologies for direct metal fabrication of pressure equipment. Background information is included in the report to provide context for those not experienced in AM technology. Only commercially available technologies for direct metal fabrication are addressed in the report because these AM methods are the only viable approaches for the construction of pressure equipment. Metal AM technologies can produce near-net shape parts by using multiple layers of material from a three dimensional (3D) design model of the geometry.more » Additive manufacturing of metal components was developed from polymer based rapid prototyping or 3D printing. At the current maturity level, AM application for pressure equipment has the potential to reduce delivery times and costs for complex shapes. AM will also lead to a reduction in the use of high cost materials, since parts can be created with corrosion resistant layers of high alloy material and structural layers of lower cost materials.« less
Advanced supersonic propulsion study. [with emphasis on noise level reduction
NASA Technical Reports Server (NTRS)
Sabatella, J. A. (Editor)
1974-01-01
A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.
High-speed civil transport study
NASA Technical Reports Server (NTRS)
1989-01-01
A system study of the potential for a high-speed commercial transport has addressed technological, economic, and environmental constraints. Market projections indicate a need for fleets of transports with supersonic or greater cruise speeds by the year 2000 to 2005. The associated design requirements called for a vehicle to carry 250 to 300 passengers over a range of 5,000 to 6,000 nautical miles. The study was initially unconstrained in terms of vehicle characteristic, such as cruise speed, propulsion systems, fuels, or structural materials. Analyses led to a focus on the most promising vehicle concepts. These were concepts that used a kerosene-type fuel and cruised at Mach numbers between 2.0 to 3.2. Further systems study identified the impact of environmental constraints (for community noise, sonic boom, and engine emissions) on economic attractiveness and technological needs. Results showed that current technology cannot produce a viable high-speed civil transport; significant advances are required to reduce takeoff gross weight and allow for both economic attractiveness and environmental accepatability. Specific technological requirements were identified to meet these needs.
Gene technology for papaya ringspot virus disease management.
Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki
2014-01-01
Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.
The science, development, and commercialization of postharvest biocontrol products
USDA-ARS?s Scientific Manuscript database
Postharvest biological control agents as a viable alternative to the use of synthetic chemicals have been the focus of considerable research for the last 30 years by many scientists and several commercial companies worldwide. Several antagonists of postharvest pathogens have been identified and tes...
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Olson, Erik D.
2002-01-01
This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C. F.; Wood, D.
This project represents a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Rhyolite Technology Group, Inc. (Rhyolite) to develop concepts and designs for a consumer ultraviolet (UV) biodosimeter based on the human biochemistry of Vitamin D synthesis. Rhyolite was established to engage in product development, licensing and consulting for the manufacture and supply of new products worldwide. Rhyolite worked jointly with LLNL and the Kiev Institute of Physics (KIP) in Ukraine to leverage previously developed UV sensor technologies by extending the previous work into commercially viable products. The projectmore » consisted primarily of the scientific, engineering and business activities needed to develop the UV bio-dosimeter for applications that include health and industrial measurement of ultraviolet radiation.« less
Supersonic Retropropulsion Flight Test Concepts
NASA Technical Reports Server (NTRS)
Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.
2011-01-01
NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.
High peak power solid-state laser for micromachining of hard materials
NASA Astrophysics Data System (ADS)
Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike
2003-06-01
Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.
First principles approach to the magneto caloric effect: Application to Ni2MnGa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, Don M; Odbadrakh, Khorgolkhuu; Rusanu, Aurelian
2011-01-01
The magneto-caloric effect (MCE) is a possible route to more efficient heating and cooling of residential and commercial buildings. The search for improved materials is important to the development of a viable MCE based heat pump technology. We have calculated the magnetic structure of a candidate MCE material: Ni2MnGa. The density of magnetic states was calculated with the Wang Landau statistical method utilizing energies fit to those of the locally self-consistent multiple scattering method. The relationships between the density of magnetic states and the field induced adiabatic temperature change and the isothermal entropy change are discussed. (C) 2011 American Institutemore » of Physics.« less
Strategies For Human Exploration Leading To Human Colonization of Space
NASA Technical Reports Server (NTRS)
Smitherman, David; Everett, Harmon
2009-01-01
Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.
Springer, Jessica Collins; Harrysson, Ola L A; Marcellin-Little, Denis J; Bernacki, Susan H
2014-10-01
Transdermal osseointegrated prostheses (TOPs) are emerging as an alternative to socket prostheses. Electron beam melting (EBM) is a promising additive manufacturing technology for manufacture of custom, freeform titanium alloy (Ti6Al4V) implants. Skin ongrowth for infection resistance and mechanical stability are critically important to the success of TOP, which can be influenced by material composition and surface characteristics. We assessed viability and proliferation of normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF) on several Ti6Al4V surfaces: solid polished commercial, solid polished EBM, solid unpolished EBM and porous unpolished EBM. Cell proliferation was evaluated at days 2 and 7 using alamarBlue(®) and cell viability was analyzed with a fluorescence-based live-dead assay after 1 week. NHDF and NHEK were viable and proliferated on all Ti6Al4V surfaces. NHDF proliferation was highest on commercial and EBM polished surfaces. NHEK was highest on commercial polished surfaces. All EBM Ti6Al4V discs exhibited an acceptable biocompatibility profile compared to solid Ti6Al4V discs from a commercial source for dermal and epidermal cells. EBM may be considered as an option for fabrication of custom transdermal implants. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors
Lee, Wookyu; Koo, Hyunmo; Sun, Junfeng; Noh, Jinsoo; Kwon, Kye-Si; Yeom, Chiseon; Choi, Younchang; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
Roll-to-roll (R2R) printing has been pursued as a commercially viable high-throughput technology to manufacture flexible, disposable, and inexpensive printed electronic devices. However, in recent years, pessimism has prevailed because of the barriers faced when attempting to fabricate and integrate thin film transistors (TFTs) using an R2R printing method. In this paper, we report 20 × 20 active matrices (AMs) based on single-walled carbon nanotubes (SWCNTs) with a resolution of 9.3 points per inch (ppi) resolution, obtained using a fully R2R gravure printing process. By using SWCNTs as the semiconducting layer and poly(ethylene terephthalate) (PET) as the substrate, we have obtained a device yield above 98%, and extracted the key scalability factors required for a feasible R2R gravure manufacturing process. Multi-touch sensor arrays were achieved by laminating a pressure sensitive rubber onto the SWCNT-TFT AM. This R2R gravure printing system overcomes the barriers associated with the registration accuracy of printing each layer and the variation of the threshold voltage (Vth). By overcoming these barriers, the R2R gravure printing method can be viable as an advanced manufacturing technology, thus enabling the high-throughput production of flexible, disposable, and human-interactive cutting-edge electronic devices based on SWCNT-TFT AMs. PMID:26635237
Commercial Research and Development: Power to Explore, Opportunities from Discovery
NASA Technical Reports Server (NTRS)
Casas, Joseph C.; Nall, Mark; Powers, C. Blake; Henderson, Robin N. (Technical Monitor)
2002-01-01
The technical and economic goals of commercial use of space are laudable, and are addressed as a high priority by almost every national space program and most major aerospace companies the world over. Yet, the focus of most organizational agendas and discussions tends to focus on one or two very narrow enabling aspects of this potentially large technological and economic opportunity. While government sponsored commercial launch activities and private space platforms are an integral part of efforts to leverage the commercial use of space, these activities are possibly one of the smallest parts of creating, a viable and sustainable market for the commercial use of space. Most of the current programs usually do not appropriately address some of the critical issues of the current, already interested, potential space user communities. Current programs place the focus of the majority of the user requirements on the vehicle payload weight and mass performance considerations as the primary payload economical factor in providing a commercial market with a stimulating price for gaining access to the space environment. The larger user challenges of transformation from Earth-based research and development approaches to space environment approaches are not addressed early enough in programs to impact the new business considerations of potential users. Currently, space-based research and development user activities require a large user investment in time, in development of new areas of support expertise, in development of new systems, in risk of schedule to completion, and in long term capital positioning. The larger opportunities for stimulating a strong market driven interest in commercial use of space that could result from the development of vehicle payload "leap ahead technologies" for users are being missed, and there is a real risk of limiting the potentially broader market base to support a more technologically advanced and economically lucrative outcome. A major driving force for strengthening the commercial space activities is not only the technological advances in launch vehicle, or newer satellites, but the myriad of enabling payloads technologies that could, as a goal, result in an almost transparent facilitation to regular CD a, -n access to space and microgravity environments by the future users from the existing Earth-based research and development organizations market segments. Rather than focusing only on developing high lift performance launch vehicles and then developing payloads to fit them, the real focus from a business model perspective should to be on the customer payloads requirements, and on designing launch vehicles and platforms systems for a space transportation and facility infrastructure to support all aspects of the business model for the user market. To harness the full potential of space commercialization, new efforts need to be made to comprehensively examine all the critical business model areas for commercial research, development, and manufacturing in space so as to identify specific products and efforts; to determine how such operations must be both similar to and different from current Earth-based activities; to evaluate the enabling technological devices, processes and efforts so that like efforts can be addressed in a synergistic fashion for maximum user cost effectiveness; to delineate the services that are both needed and can be provided by such activities; and to use this information to drive design and development of space commercialization efforts and policy.
Miller, Michael J; Walsh, Michael R; Shrake, Jerry L; Dukes, Randall E; Hill, Daniel B
2009-01-01
This paper describes the use of the BioVigilant IMD-A, a real-time and continuous monitoring technology based on optical spectroscopy, to simultaneously and instantaneously detect, size, and enumerate both viable and nonviable particles in a variety of filling and transfer isolator environments during an aseptic fill, transfer of sterilized components, and filling interventions. Continuous monitoring of three separate isolators for more than 16 h and representing more than 28 m3 of air per isolator (under static conditions) yielded a mean viable particle count of zero (0) per cubic meter. Although the mean count per cubic meter was zero, the detection of very low levels of single viable particles was randomly observed in each of these sampling runs. No viable particles were detected during the manual transfer of sterilized components from transfer isolators into a filling isolator, and similar results were observed during an aseptic fill, a filling needle change-out procedure, and during disassembly, movement, and reassembly of a vibrating stopper bowl. During the continuous monitoring of a sample transfer port and a simulated mousehole, no viable particles were detected; however, when the sampling probe was inserted beyond the isolator-room interface, the IMD-A instantaneously detected and enumerated both viable and nonviable particles originating from the surrounding room. Data from glove pinhole studies showed no viable particles being observed, although significant viable particles were immediately detected when the gloves were removed and a bare hand was allowed to introduce microorganisms into the isolator. The IMD-A technology offers the industry an unprecedented advantage over growth-based bioaerosol samplers for monitoring the state of microbiological control in pharmaceutical manufacturing environments, and represents significant progress toward the acceptance of microbiology process analytical technology solutions for the industry.
Cowling, Ellis B; Furiness, Carl S
2005-12-01
Commercial forests in many parts of the world are deficient in nitrogen and phosphorus. These nutrient-deficient forests often exist in close proximity to large animal feeding operations, meat processing and other food, textile, or other biomass-processing plants, and municipal waste treatment facilities. Many of these facilities produce large surpluses of nitrogen, phosphorus, and organic matter as gaseous ammonia, urea, uric acid, phosphorus compounds, bacterial sludges, and partially treated municipal wastewaters. These co-existing and substantial nutrient deficiencies and surpluses offer ready-made opportunities for discovery, demonstration, and commercial development of science-based, technology-facilitated, environmentally sound, economically viable, and socially acceptable "win-win alliances" among these major industries based on the principles of industrial ecology and sustainable development. The major challenge is to discover practical means to capture the surplus nutrients and put them to work in forest stands from which value-added products can be produced and sold at a profit.
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Lee, Geoffrey S.
2006-01-01
The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.
Stabilizing lithium metal using ionic liquids for long-lived batteries
Basile, A.; Bhatt, A. I.; O'Mullane, A. P.
2016-01-01
Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652
Improving the feasibility of producing biofuels from microalgae using wastewater.
Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F
2013-01-01
Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production.
Microgravity strategic plan, 1990
NASA Technical Reports Server (NTRS)
1990-01-01
The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.
Comparison of selective transmitters for solar thermal applications.
Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P
2016-05-10
Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent optics for solar thermal collectors.
Toward An Affordable Commercial Fuel Cell (LBNL Summer Lecture Series)
Visco, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
2018-02-16
Steve Visco, a materials scientist, has come up with a solid oxide fuel cell that promises to generate electricity as cheaply as the most efficient gas turbine engine. But there's a lot more work to do before commercially viable fuel cells and pollution-free power generators become reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, David, W.
2012-02-14
Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology formore » air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.« less
Vertical-cavity surface-emitting lasers: present and future
NASA Astrophysics Data System (ADS)
Morgan, Robert A.
1997-04-01
This manuscript reviews the present status of 'commercial- grade,' state-of-the-art planar, batch-fabricable, vertical- cavity surface-emitting lasers (VCSELs). Commercial-grade performance on all fronts for high-speed data communications is clearly established. In discussing the 'present,' we focus on the entrenched proton-implanted AlGaAs-based (emitting near 850 nm) technology. Renditions of this VCSEL design exist in commercial products and have enabled numerous application demonstrations. Our designs more than adequately meet producibility, performance, and robustness stipulations. Producibility milestones include greater than 99% device yield across 3-in-dia metal-organic vapor phase epitaxy (MOVPE)-grown wafers and wavelength operation across greater than 100-nm range. Progress in performance includes the elimination of the excessive voltage-drop that plagued VCSELs as recently as 2 to 3 years ago. Threshold voltages as low as Vth equals 1.53 V (and routinely less than 1.6 V) are now commonplace. Submilliamp threshold currents (Ith equals 0.68 mA) have even been demonstrated with this planar structure. Moreover, continuous wave (cw) power Pcw greater than 59 mW and respectable wall-plug efficiencies ((eta) wp equals 28%) have been demonstrated. VCSEL robustness is evidenced by maximum cw lasing temperature T equals 200 degrees Celsius and temperature ranges of 10 K to 400 K and minus 55 degrees Celsius to 155 degrees Celsius on a single VCSEL. These characteristics should enable great advances in VCSEL-based technologies and beckon the notion that 'commercial-grade' VCSELs are viable in cryogenic and avionics/military environments. We also discuss what the future may hold in extensions of this platform to different wavelengths, increased integration, and advanced structures. This includes low-threshold, high- speed, single-mode VCSELs, hybrid VCSEL transceivers, and self-pulsating VCSELs.
Large-Scale Production of Fuel and Feed from Marine Microalgae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntley, Mark
2015-09-30
In summary, this Consortium has demonstrated a fully integrated process for the production of biofuels and high-value nutritional bioproducts at pre-commercial scale. We have achieved unprecedented yields of algal oil, and converted the oil to viable fuels. We have demonstrated the potential value of the residual product as a viable feed ingredient for many important animals in the global food supply.
Bahreini, Rassol; Currie, Robert W
2015-08-01
The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Subsurface drip irrigation for native wildflower seed production
Clint C. Shock; Erik Feibert; Lamont Saunders; Nancy Shaw
2008-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is stable and consistent seed productivity over years. Variations in spring rainfall and soil moisture...
Native wildflower seed production with limited subsurface drip irrigation
Clinton C. Shock; Erik B. G. Feibert; Lamont D. Saunders; Nancy Shaw
2010-01-01
Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years. Variations in spring rainfall and...
Native wildflower seed production with limited subsurface drip irrigation
Clint C. Shock; Erik Feibert; Lamont Saunders; Nancy Shaw
2009-01-01
Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years. Variations in spring rainfall and...
Nut production handbook for Eastern black walnut
James E. Jones; Rita Mueller; J.W. Van Sambeek
1998-01-01
Interest in the species of Eastern Black Walnut (Juglans nigra L.) for commercial nut production continues to increase. During the past several years interested growers have intensified tree care and evaluated several varieties and selections. It is believed that we have arrived at an economically viable threshold for commercial nut production. While we are...
Studies on nonsense mediated decay reveal novel therapeutic options for genetic diseases.
Bashyam, Murali D
2009-01-01
Scientific breakthroughs have often led to commercially viable patents mainly in the field of engineering. Commercialization in the field of medicine has been restricted mostly to machinery and engineering on the one hand and therapeutic drugs for common chronic ailments such as cough, cold, headache, etc, on the other. Sequencing of the human genome has attracted the attention of pharmaceutical companies and now biotechnology has become a goldmine for commercialization of products and processes. Recent advances in our understanding of basic biological processes have resulted in the opening of new avenues for treatment of human genetic diseases, especially single gene disorders. A significant proportion of human genetic disorders have been shown to be caused due to degradation of transcripts for specific genes through a process called nonsense mediated decay (NMD). The modulation of NMD provides a viable therapeutic option for treatment of several genetic disorders and therefore has been a good prospect for patenting and commercialization. In this review the molecular basis for NMD and attempts to treat genetic diseases which result from NMD are discussed.
U.S. shale gas trends - economic and global implications
NASA Astrophysics Data System (ADS)
Murphy, T.
2016-09-01
Natural gas from shale has moved the U.S., and North America more broadly, to become one of the largest producers of the commodity worldwide. Large technological gains have allowed reservoirs of unconventional hydrocarbons to become commercially viable to extract and market. The addition of this growing supply into the global marketplace, has upended longstanding trading patterns, and created new economic outcomes worth noting. This paper will discuss the recent trends of shale energy development in the U.S., the impact it is having on domestic and international markets, and the implications as the world shifts to a new low carbon energy paradigm. It will cover changes in workforce, midstream build out, power generation trends, petrochemicals, and emerging LNG export capacities.
Recent advances and progress in photonic crystal-based gas sensors
NASA Astrophysics Data System (ADS)
Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan
2017-05-01
This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.
Recombination Catalysts for Hypersonic Fuels
NASA Technical Reports Server (NTRS)
Chinitz, W.
1998-01-01
The goal of commercially-viable access to space will require technologies that reduce propulsion system weight and complexity, while extracting maximum energy from the products of combustion. This work is directed toward developing effective nozzle recombination catalysts for the supersonic and hypersonic aeropropulsion engines used to provide such access to space. Effective nozzle recombination will significantly reduce rk=le length (hence, propulsion system weight) and reduce fuel requirements, further decreasing the vehicle's gross lift-off weight. Two such catalysts have been identified in this work, barium and antimony compounds, by developing chemical kinetic reaction mechanisms for these materials and determining the engine performance enhancement for a typical flight trajectory. Significant performance improvements are indicated, using only 2% (mole or mass) of these compounds in the combustor product gas.
Environmental Assessment Expanded Ponnequin Wind Energy Project Weld County, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
1999-03-02
The U.S.Department of Energy (DOE) has considered a proposal from the State of Colorado, Office of Energy Conservation (OEC), for funding construction of the Expanded Ponnequin Wind Project in Weld County, Colorado. OEC plans to enter into a contracting arrangement with Public Service Company of Colorado (PSCO) for the completion of these activities. PSCo, along with its subcontractors and business partners, are jointly developing the Expanded Ponnequin Wind Project. DOE completed an environmental assessment of the original proposed project in August 1997. Since then, the geographic scope and the design of the project changed, necessitating additional review of the projectmore » under the National Environmental Policy Act. The project now calls for the possible construction of up to 48 wind turbines on State and private lands. PSCo and its partners have initiated construction of the project on private land in Weld County, Colorado. A substation, access road and some wind turbines have been installed. However, to date, DOE has not provided any funding for these activities. DOE, through its Commercialization Ventures Program, has solicited applications for financial assistance from state energy offices, in a teaming arrangement with private-sector organizations, for projects that will accelerate the commercialization of emerging renewable energy technologies. The Commercialization Ventures Program was established by the Renewable Energy and Energy Efficiency Technology Competitiveness Act of 1989 (P.L. 101-218) as amended by the Energy Policy Act of 1992 (P.L. 102-486). The Program seeks to assist entry into the marketplace of newly emerging renewable energy technologies, or of innovative applications of existing technologies. In short, an emerging renewable energy technology is one which has already proven viable but which has had little or no operational experience. The Program is managed by the Department of Energy, Office of Energy Efficiency and Renewable Energy. The Federal action triggering the preparation of this EA is the need for DOE to decide whether to release the requested funding to support the construction of the Expanded Ponnequin Wind Project. The purpose of this Final Environmental Assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with the Expanded Ponnequin Wind Energy Project. This EA, and public comments received on it, were used in DOE's deliberations on whether to release funding for the expanded project under the Commercialization Ventures Program.« less
NASA Technical Reports Server (NTRS)
Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.
2013-01-01
Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.
Wind Energy Program Summary. Volume 2: Research summaries, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-04-01
Activities by the Federal Wind Energy program since the early 1980s have focused on developing a technology base necessary for industry to demonstrate the viability of wind energy as an alternative energy supply. The Federal Wind Energy Program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. These efforts have resulted in major advancements toward the development and commercialization of wind technology as an alternative energy source. The installation of more than 16,000 wind turbines in California by the end of 1987 provides evidence that commercial use of wind energy technology can be a viable source of electric power. Research in wind turbine sciences has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. As outlines in the projects that are described in this document, advancements in atmospheric fluid dynamics have been made through the development and refinement of wind characterization models and wind/rotor interaction prediction codes. Recent gains in aerodynamics can be attributed to a better understanding of airfoil operations, using innovative research approaches such as flow-visualization techniques. Qualitative information and data from laboratory and field tests are being used to document fatigue damage processes. These data are being used to develop new theories and data bases for structural dynamics, and will help to achieve long-term unit life and lower capital and maintenance costs. Material characterization and modeling techniques have been improved to better analyze effects of stress and fatigue on system components.
Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.
Kang, Hongkyu; Kim, Geunjin; Kim, Junghwan; Kwon, Sooncheol; Kim, Heejoo; Lee, Kwanghee
2016-09-01
The past two decades of vigorous interdisciplinary approaches has seen tremendous breakthroughs in both scientific and technological developments of bulk-heterojunction organic solar cells (OSCs) based on nanocomposites of π-conjugated organic semiconductors. Because of their unique functionalities, the OSC field is expected to enable innovative photovoltaic applications that can be difficult to achieve using traditional inorganic solar cells: OSCs are printable, portable, wearable, disposable, biocompatible, and attachable to curved surfaces. The ultimate objective of this field is to develop cost-effective, stable, and high-performance photovoltaic modules fabricated on large-area flexible plastic substrates via high-volume/throughput roll-to-roll printing processing and thus achieve the practical implementation of OSCs. Recently, intensive research efforts into the development of organic materials, processing techniques, interface engineering, and device architectures have led to a remarkable improvement in power conversion efficiencies, exceeding 11%, which has finally brought OSCs close to commercialization. Current research interests are expanding from academic to industrial viewpoints to improve device stability and compatibility with large-scale printing processes, which must be addressed to realize viable applications. Here, both academic and industrial issues are reviewed by highlighting historically monumental research results and recent state-of-the-art progress in OSCs. Moreover, perspectives on five core technologies that affect the realization of the practical use of OSCs are presented, including device efficiency, device stability, flexible and transparent electrodes, module designs, and printing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic behavior of gasoline fuel cell electric vehicles
NASA Astrophysics Data System (ADS)
Mitchell, William; Bowers, Brian J.; Garnier, Christophe; Boudjemaa, Fabien
As we begin the 21st century, society is continuing efforts towards finding clean power sources and alternative forms of energy. In the automotive sector, reduction of pollutants and greenhouse gas emissions from the power plant is one of the main objectives of car manufacturers and innovative technologies are under active consideration to achieve this goal. One technology that has been proposed and vigorously pursued in the past decade is the proton exchange membrane (PEM) fuel cell, an electrochemical device that reacts hydrogen with oxygen to produce water, electricity and heat. Since today there is no existing extensive hydrogen infrastructure and no commercially viable hydrogen storage technology for vehicles, there is a continuing debate as to how the hydrogen for these advanced vehicles will be supplied. In order to circumvent the above issues, power systems based on PEM fuel cells can employ an on-board fuel processor that has the ability to convert conventional fuels such as gasoline into hydrogen for the fuel cell. This option could thereby remove the fuel infrastructure and storage issues. However, for these fuel processor/fuel cell vehicles to be commercially successful, issues such as start time and transient response must be addressed. This paper discusses the role of transient response of the fuel processor power plant and how it relates to the battery sizing for a gasoline fuel cell vehicle. In addition, results of fuel processor testing from a current Renault/Nuvera Fuel Cells project are presented to show the progress in transient performance.
NASA Astrophysics Data System (ADS)
Engel, Pierre
1999-12-01
The presentation is organized around three themes: (1) The decrease of reception equipment costs allows non-Remote Sensing organization to access a technology until recently reserved to scientific elite. What this means is the rise of 'operational' executive agencies considering space-based technology and operations as a viable input to their daily tasks. This is possible thanks to totally dedicated ground receiving entities focusing on one application for themselves, rather than serving a vast community of users. (2) The multiplication of earth observation platforms will form the base for reliable technical and financial solutions. One obstacle to the growth of the earth observation industry is the variety of policies (commercial versus non-commercial) ruling the distribution of the data and value-added products. In particular, the high volume of data sales required for the return on investment does conflict with traditional low-volume data use for most applications. Constant access to data sources supposes monitoring needs as well as technical proficiency. (3) Large volume use of data coupled with low- cost equipment costs is only possible when the technology has proven reliable, in terms of application results, financial risks and data supply. Each of these factors is reviewed. The expectation is that international cooperation between agencies and private ventures will pave the way for future business models. As an illustration, the presentation proposes to use some recent non-traditional monitoring applications, that may lead to significant use of earth observation data, value added products and services: flood monitoring, ship detection, marine oil pollution deterrent systems and rice acreage monitoring.
Rapid cell separation with minimal manipulation for autologous cell therapies
NASA Astrophysics Data System (ADS)
Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.
2017-02-01
The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.
Dynamic beam steering at submm- and mm-wave frequencies using an optically controlled lens antenna
NASA Astrophysics Data System (ADS)
Gallacher, T. F.; Søndenâ, R.; Robertson, D. A.; Smith, G. M.
2013-05-01
We present details of our work which has been focused on improving the efficiency and scan rate of the photo-injected Fresnel zone plate antenna (piFZPA) technique which utilizes commercially available visible display technologies. This approach presents a viable low-cost solution for non-mechanical beam steering, suitable for many applications at (sub) mm-wave frequencies that require rapid beam steering capabilities in order to meet their technological goals, such as imaging, surveillance, and remote sensing. This method has the advantage of being comparatively low-cost, is based on a simple and flexible architecture, enabling rapid and precise arbitrary beam forming, and which is scalable to higher frame-rates and higher submm-wave frequencies. We discuss the various optimization stages of a range of piFZPA designs that implement fast visible projection displays, enabling up to 30,000 beams per second. We also outline the suitability of this technology across mm-wave and submm-wave frequencies as a low-cost and simple solution for dynamic optoelectronic beam steering.
2016-04-15
natural gas is commercially viable as an automobile fuel in Afghanistan and to promote its wider use in the country. According to TFBSO documents, the... commercial fashion industry, which is the primary end user for cashmere.98 When the project began, Afghanistan...from suppliers is far more expensive than sustainable grazing, and this additional expenditure directly affected the commercial viability of the farm
Dental technology services and industry trends in New Zealand from 2010 to 2012.
Alameri, S S; Aarts, J M; Smith, M; Waddell, J N
2014-06-01
To provide a snapshot of the New Zealand dental technology industry and influencing factors. Developing an understanding of the commercial dental laboratory environment in New Zealand can provide insight into the entire dental industry. A web-based survey was the primary method for data collection, with separate questionnaires used for dental laboratory owners and dental technician employees. The mean net income for dental laboratory owners in New Zealand was similar to that of the United Kingdom, at $40.50 per hour. Clinical dental technicians are the highest paid employees, with a mean of $33.49 per hour. The mean technical charge for complete dentures was $632.59; including clinical services, it was $1907.00. The mean charge for a porcelain-fused-to-metal (PFM) crown was $290.27. Dental laboratory owners expressed fear about the possibility of losing dental clients to overseas laboratories due to the availability and cheap charge of offshore work. Only 25.4% of dental laboratories surveyed had computer-aided design (CAD) facilities, and even fewer (7.9%) had computer-aided manufacturing (CAM) systems. Clinical dental technology appears to be prospering. The dental technology industry appears to be adapting and remains viable, despite facing many challenges.
A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air
NASA Technical Reports Server (NTRS)
LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg
2006-01-01
Both culture-based and culture-independent, biomarker-targeted microbial enumeration and identification technologies were employed to estimate total microbial and viral burden and diversity within the cabin air of commercial airliners. Samples from each of twenty flights spanning three commercial carriers were collected via air-impingement. When the total viable microbial population was estimated by assaying relative concentrations of the universal energy carrier ATP, values ranged from below detection limits (BDL) to 4.1 x 106 cells/cubic m of air. The total viable microbial population was extremely low in both of Airline A (approximately 10% samples) and C (approximately 18% samples) compared to the samples collected aboard flights on Airline A and B (approximately 70% samples). When samples were collected as a function of time over the course of flights, a gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in microbial abundance and viability from the initiation of descent through landing. It is concluded in this study that only 10% of the viable microbes of the cabin air were cultivable and suggested a need to employ state-of-the art molecular assay that measures both cultivable and viable-but-non-cultivable microbes. Among the cultivable bacteria, colonies of Acinetobacter sp. were by far the most profuse in Phase I, and Gram-positive bacteria of the genera Staphylococcus and Bacillus were the most abundant during Phase II. The isolation of the human pathogens Acinetobacter johnsonii, A. calcoaceticus, Janibacter melonis, Microbacterium trichotecenolyticum, Massilia timonae, Staphylococcus saprophyticus, Corynebacterium lipophiloflavum is concerning, as these bacteria can cause meningitis, septicemia, and a handful of sometimes fatal diseases and infections. Molecular microbial community analyses exhibited presence of the alpha-, beta-, gamma-, and delta- proteobacteria, as well as Gram-positive bacteria, Fusobacteria, Cyanobacteria, Deinococci, Bacterioidetes, Spirochetes, and Planctomyces in varying abundance. Neisseria meningitidis rDNA sequences were retrieved in great abundance from Airline A followed by Streptococcus oralis/mitis sequences. Pseudomonas synxantha sequences dominated Airline B clone libraries, followed by those of N. meningitidis and S. oralis/mitis. In Phase II, Airline C, sequences representative of more than 113 species, enveloping 12 classes of bacteria, were retrieved. Proteobacterial sequences were retrieved in greatest frequency (58% of all clone sequences), followed in short order by those stemming from Gram-positives bacteria (31% of all clone sequences). As for overall phylogenetic breadth, Gram-positive and alpha-proteobacteria seem to have a higher affinity for international flights, whereas beta-and gamma-proteobacteria are far more common about domestic cabin air parcels in Airline C samples. Ultimately, the majority of microbial species circulating throughout the cabin airs of commercial airliners are commensal, infrequently pathogenic normal flora of the human nasopharynx and respiratory system. Many of these microbes likely originate from the oral and nasal cavities, and lungs of passengers and flight crew and are disseminated unknowingly via routine conversation, coughing, sneezing, and stochastic passing of fomites. The data documented in this study will be useful to generate a baseline microbial population database and can be utilized to develop biosensor instrumentation for monitoring microbial quality of cabin or urban air.
Native perennial forb tolerance to rates and mixtures of postemergence herbicides
Clinton C. Shock; Erik Feibert; Nancy Shaw
2009-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is weed competition. Weeds are adapted to growing in disturbed soil, and native forbs are not competitive...
Native perennial forb tolerance to repeated annual applications of postemergence herbicides
Clinton C. Shock; Joey Ishida; Erik Feibert; Nancy Shaw
2009-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is weed competition. Weeds are adapted to growing in disturbed soil, and native forbs are not competitive...
Tolerance of seven native forbs to preemergence and postemergence herbicides
Clinton C. Shock; Joey Ishida; Corey V. Ransom
2007-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is weed competition. Weeds are adapted to growing in disturbed soil, and native forbs are not competitive...
Alabama, 2012 - forest inventory and analysis factsheet
Andrew J. Hartsell
2013-01-01
These early surveys were not concerned with the forests, species, and tree sizes that were not considered commercially viable. Early surveys reported only on growing-stock trees on timberlands, i.e. commercially important tree species and tree sizes on forests that could sustain harvest operations. Currently, FIA reports on all of the forest lands regardless of site...
Code of Federal Regulations, 2010 CFR
2010-04-01
... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...
Code of Federal Regulations, 2013 CFR
2013-04-01
... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...
Code of Federal Regulations, 2012 CFR
2012-04-01
... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...
Code of Federal Regulations, 2011 CFR
2011-04-01
... weight polysaccharides produced by bacterial fermentation of sucrose. Commercially available dextrans are... purification of the fermented mixture shall produce a product that is free of viable microorganisms. (b) The...
Future Perspective and Long-Term Strategy of the Indian EO Programme
NASA Astrophysics Data System (ADS)
Rao, Mukund; Jayaraman, V.; Sridhara Murthi, K. R.; Kasturirangan, K.
EO technology development will continue to have profound effects on spatial information activities, as we are seeing it today - the changing demand of GIS technology to understanding processes around us and its representation as maps. In the longer term, information needs will drive further RS and GIS technological developments - creating stringent demands for technology solutions for spatial data capture, integration and representation. The emergence of Spatial Business from the highly volatile and dynamic synergy of information, technology and access will see a truly Spatial Society. EO will have a major impact on day-to-day life of nations, communities and even an individual. It will become the One-stop source for information - spatial information at that - thus enabling not only development oriented activities but also Business GIS, quality research and Info-savvy communities. Internationally, there will be a mix of Government and Commercial satellites vying to provide information services to a wide variety of users. EO satellites are also becoming smaller, efficient and less costlier. Almost 5-6 commercial systems will orbit around the Earth in the foreseeable future to generate massive, seamless archives of high-resolution panchromatic and multispectral images - almost reducing the need for aerial surveys for photography and mapping. Reaching resolution of cm level and covering narrower and more spectral bands, the trend is to IMAGE the Earth in its entirety and organize Image Infrastructures. The race will be to imaginatively capture the market with the fullest archive of the globe and cater to any imaging demand of users. One will also see efficient satellite operations that will enable imaging any part of the globe with minimum turn-around time - reaching concepts of IMAGING ON DEMAND. The need of the hour is looking forward now towards how the EO technology can adapt itself to the changing scenario and the steps to be taken to sustain use of EO data it in the future. The continuity of the EO services in India is the fundamental requirement for sustenance and further development of the technology and its utilisation, the stage is now set for transitioning the EO technology by initiating policy adjustments for the commercial use of space-based EO. Orientation needs to change from a "facility concept", which was the adage for the "promotional" era, to "Services concept" for the RS technology. The orientation also needs to change from RS data to Spatial Information and GIS databases. Demand for information would increase with a larger involvement of players in the developmental activities and catering to the information needs is what would be the driver for the commercial development. To that extent, the commercial development of Spatial Information needs to be thrusted forward and RS technology will be the back-bone for this information services initiative, because EO has the capability to provide accurate and timely information at large-scales in a repeated manner which is directly amenable to GIS manipulation. The thrust has to be towards developing an independent sector for Spatial Information with the active involvement of users, private entrepreneurs and other agencies to develop space-based RS market segments. This paper discusses the policy adjustments that will be required to be done for developing a viable and effective commercial EO programme in the country with a major thrust of initial government and industry partnership ultimately leading to a true industry sector for Spatial Information services.
A Curious Conundrum; The State of Holographic Portraiture in the 21st Century
NASA Astrophysics Data System (ADS)
Taylor, R.
2013-02-01
The technology of producing (true) hologram portraits was first introduced in the late 1960's. From this time, a number of individuals and organizations worldwide have specialized in providing holographic portraiture services with varying degrees of achievement. Yet today, some 45 years later, holographic portraiture remains an obscure and niche form of displaying an individual's likeness. Despite all of this technology's promising and unique attributes, and the astonishing fact of holography being the most accurate and realistic form of imaging available today; true holographic portraits continues to be a form of portraiture largely unknown to the general public and has never achieved large-scale commercial success. This paper will present a brief history of holographic portraiture, designating the different types of 3-D hologram portraits available today, and their uses. Emphasis will be given to true holographic pulsed portraiture in which the subject itself is recorded holographically using high-energy pulsed lasers. Possible cause and effect for explaining the present demise of this type of portrait making will be discussed along with recent advancements and future developments in this fledgling field which could ultimately lead to a "tipping point" in large-scale consumer and commercial awareness and desirability of the medium. The author will share his experiences in operating pulsed holographic portraiture studios for over the last 15 years including the vision of a new type of holographic portrait studio for the 21st century which he hopes will attain the level of success enabling a next generation of commercially viable holographic portrait studios for the future.
Solar thermal repowering utility value analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.; Day, J.; Reed, B.
The retrofit of solar central receiver energy supply systems to existing steam-electric generating stations (repowering) is being considered as a major programmatic thrust by DOE. The determination of a government response appropriate to the opportunities of repowering is an important policy question, and is the major reason for the analysis. The study objective is to define a government role in repowering that constitutes an efficient program investment in pursuit of viable private markets for heliostat-based energy systems. In support of that objective, the study is designed to identify the scope and nature of the repowering opportunity within the larger contextmore » of its contributions to central receiver technology development and commercialization. The Supply and Integration Tasks are documented elsewhere. This report documents the Demand Task, determining and quantifying the sources of the value of repowering and of central receiver technology in general to electric utilities. The modeling tools and assumptions used in the Demand Task are described and the results are presented and interpreted. (MCW)« less
Flow Cytometric Methods for Circulating Tumor Cell Isolation and Molecular Analysis.
Bhagwat, Neha; Carpenter, Erica L
2017-01-01
Circulating tumor cells provide a non-invasive source of tumor material that can be valuable at all stages of disease management, including screening and early diagnosis, monitoring response to therapy, identifying therapeutic targets, and assessing development of drug resistance. Cells isolated from the blood of cancer patients can be used for phenotypic analysis, tumor genotyping, transcriptional profiling, as well as for ex vivo culture of isolated cells. There are a variety of novel technologies currently being developed for the detection and analysis of rare cells in circulation of cancer patients. Flow cytometry is a powerful cell analysis platform that is increasingly being used in this field of study due to its relatively high throughput and versatility with respect to the large number of commercially available antibodies and fluorescent probes available to translational and clinical researchers. More importantly, it offers the ability to easily recover viable cells with high purity that are suitable for downstream molecular analysis, thus making it an attractive technology for cancer research and as a diagnostic tool.
Cunliffe, Jennifer M; Maloney, Todd D
2007-12-01
Fused-Core particles have recently been introduced as an alternative to using sub-2-microm particles in chromatographic separations. Fused-Core particles are composed of a 1.7 microm solid core surrounded by a 0.5 microm porous silica layer (d(p) = 2.7 microm) to reduce mass transfer and increase peak efficiency. The performance of two commercially available Fused-Core particles (Advanced Materials Technology Halo C18 and Supelco Ascentis Express C18) was compared with sub-2-microm particles from Waters, Agilent, and Thermo Scientific. Although the peak efficiencies were only approximately 80% of those obtained by the Waters Acquity particles, the 50% lower backpressure allowed columns to be coupled in series to increase peak efficiency to 92,750 plates. The low backpressure and high efficiencies of the Fused-Core particles offer a viable alternative to using sub-2-microm particles and very-high-pressure LC instrumentation.
Performance Evaluation of a UWB-RFID System for Potential Space Applications
NASA Technical Reports Server (NTRS)
Phan, Chan T.; Arndt, D.; Ngo, P.; Gross, J.; Ni, Jianjun; Rafford, Melinda
2006-01-01
This talk presents a brief overview of the ultra-wideband (UWB) RFID system with emphasis on the performance evaluation of a commercially available UWB-RFID system. There are many RFID systems available today, but many provide just basic identification for auditing and inventory tracking. For applications that require high precision real time tracking, UWB technology has been shown to be a viable solution. The use of extremely short bursts of RF pulses offers high immunity to interference from other RF systems, precise tracking due to sub-nanosecond time resolution, and robust performance in multipath environments. The UWB-RFID system Sapphire DART (Digital Active RFID & Tracking) will be introduced in this talk. Laboratory testing using Sapphire DART is performed to evaluate its capability such as coverage area, accuracy, ease of operation, and robustness. Performance evaluation of this system in an operational environment (a receiving warehouse) for inventory tracking is also conducted. Concepts of using the UWB-RFID technology to track astronauts and assets are being proposed for space exploration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trost, Alan L.
The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutionsmore » that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.« less
Graphene: an emerging electronic material.
Weiss, Nathan O; Zhou, Hailong; Liao, Lei; Liu, Yuan; Jiang, Shan; Huang, Yu; Duan, Xiangfeng
2012-11-14
Graphene, a single layer of carbon atoms in a honeycomb lattice, offers a number of fundamentally superior qualities that make it a promising material for a wide range of applications, particularly in electronic devices. Its unique form factor and exceptional physical properties have the potential to enable an entirely new generation of technologies beyond the limits of conventional materials. The extraordinarily high carrier mobility and saturation velocity can enable a fast switching speed for radio-frequency analog circuits. Unadulterated graphene is a semi-metal, incapable of a true off-state, which typically precludes its applications in digital logic electronics without bandgap engineering. The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies. Many challenges remain before this relatively new material becomes commercially viable, but laboratory prototypes have already shown the numerous advantages and novel functionality that graphene provides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New developments in optical phase-change memory
NASA Astrophysics Data System (ADS)
Ovshinsky, Stanford R.; Czubatyj, Wolodymyr
2001-02-01
Phase change technology has progressed from the original invention of Ovshinsky to become the leading choice for rewritable optical disks. ECD's early work in phase change materials and methods for operating in a direct overwrite fashion were crucial to the successes that have been achieved. Since the introduction of the first rewritable phase change products in 1991, the market has expanded from CD-RW into rewritable DVD with creative work going on worldwide. Phase change technology is ideally suited to address the continuous demand for increased storage capacity. First, laser beams can be focused to ever-smaller spot sizes using shorter wavelength lasers and higher performance optics. Blue lasers are now commercially viable and high numerical aperture and near field lenses have been demonstrated. Second, multilevel approaches can be used to increase capacity by a factor of three or more with concomitant increases in data transfer rate. In addition, ECD has decreased manufacturing costs through the use of innovative production technology. These factors combine to accelerate the widespread use of phase change technology. As in all our technologies, such as thin film photovoltaics, nickel metal hydride batteries, hydrogen storage systems, fuel cells, electrical memory, etc., we have invented the materials, the products, the production machines and the production processes for high rate, low-cost manufacture.
Ceramic oxygen transport membrane array reactor and reforming method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles
2016-11-08
The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.
Wu, Xiaodan; Marincola, Francesco M; Liebman, Michael N; Wang, Xiangdong
2013-01-08
Translational science consists of research and development that integrates multiple resources to expedite the successful treatment of disease. The International Park of Translational BioMedicine (IPTBM) is currently being developed within the interface between Zhejiang Province and Shanghai Municipality. IPTBM has been designed to pioneer comprehensive biomedical research that spans the continuum from the education of young scientists to providing the infrastructure necessary for clinical testing and direct observation to better understand human biology while promoting viable commercial results within a vibrant biotechnology community. IPTBM's goal is to attract global partners organized around five fundamental pillars: 1) Institutional Development, 2) Project Implementation, 3) Development and Production, 4) Investment and 5) Regulatory Clusters to address the needs of an international platform of scientists, institutes, universities, commercial enterprises, investors, politicians, and other stakeholders. The IPTBM differs from existing models including CTSA's (US, NIH) technology because of its comprehensive approach to merge education, research, innovation, and development to translate clinical and public health needs into target-oriented and cost-efficient projects.
NASA Astrophysics Data System (ADS)
Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason
2016-10-01
This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.
2013-01-01
Translational science consists of research and development that integrates multiple resources to expedite the successful treatment of disease. The International Park of Translational BioMedicine (IPTBM) is currently being developed within the interface between Zhejiang Province and Shanghai Municipality. IPTBM has been designed to pioneer comprehensive biomedical research that spans the continuum from the education of young scientists to providing the infrastructure necessary for clinical testing and direct observation to better understand human biology while promoting viable commercial results within a vibrant biotechnology community. IPTBM’s goal is to attract global partners organized around five fundamental pillars: 1) Institutional Development, 2) Project Implementation, 3) Development and Production, 4) Investment and 5) Regulatory Clusters to address the needs of an international platform of scientists, institutes, universities, commercial enterprises, investors, politicians, and other stakeholders. The IPTBM differs from existing models including CTSA’s (US, NIH) technology because of its comprehensive approach to merge education, research, innovation, and development to translate clinical and public health needs into target-oriented and cost-efficient projects. PMID:23298286
Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics.
Mahato, Kuldeep; Maurya, Pawan Kumar; Chandra, Pranjal
2018-03-01
Among various problems faced by mankind, health-related concerns are prevailing since long which are commonly found in the form of infectious diseases and different metabolic disorders. The clinical cure and management of such abnormalities are greatly dependent on the availability of their diagnoses. The conventional diagnostics used for such purposes are extremely powerful; however, most of these are limited by time-consuming protocols and require higher volume of test sample, etc. A new evolving technology called "biosensor" in this context shows an enormous potential for an alternative diagnostic device, which constantly compliments the conventional diagnoses. In this review, we have summarized different kinds of biosensors and their fundamental understanding with various state-of-the-art examples. A critical examination of different types of biosensing mechanisms is also reported highlighting the advantages of electrochemical biosensors for its great potentials in next-generation commercially viable modules. In recent years, a number of nanomaterials are extensively used to enhance not only the performance of biosensing mechanism, but also obtain robust, cheap, and fabrication-friendly durable mechanism. Herein, we have summarized the importance of nanomaterials in biosensing mechanism, their syntheses as well as characterization techniques. Subsequently, we have discussed the probe fabrication processes along with various techniques for assessing its analytical performances and potentials for commercial viability.
Having your cake and eating it too; effective engagement in start-ups from an academic seat
NASA Astrophysics Data System (ADS)
Mirkin, Chad
2012-02-01
In order for scientific advances to have a positive impact on society, they must be successfully transitioned from conceptually fundamental endeavors in academic research laboratories to valuable enabling technologies at start-up companies. Nanosphere, NanoInk, and AuraSense are three start-up companies that have been spun out of Northwestern based on research initiated in my laboratory. These companies are focused on commercializing nanotechnology-based applications in the life science and semiconductor industries and have turned discoveries from my lab into viable commercial products. For example, several of the systems developed at these start-ups are in the clinical trial phase, with one already approved by the FDA, and they are poised to have a positive world-wide impact. Herein, I discuss the challenges associated with identifying commercial value in academic research projects, securing intellectual property, forming a company as a legal entity, and locating sources of start-up funds. Further, I will discuss the rewards of venturing into such enterprises and the ways of ensuring a start-up company's long-term success, while juggling the numerous responsibilities of an academic seat. I argue that these two activities are done not in competition, but rather are integral for driving the type of high-level, synergistic scientific research that is being done today.
Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stull, Dean P.
The purpose of this work was to complete a proof of concept study to apply and validate a novel method developed by Tusaar for the capture and recovery of rare earth elements (known as REEs) and other critical and valuable elements from geothermal waters produced from deep within the earth. Geothermal water provides heat for power production at many geothermal power plants in the western United States. The target elements, the REEs, are vital to modern day electronics, batteries, motors, automobiles and many other consumer favorites and necessities. Currently there are no domestic sources of REEs while domestic and internationalmore » demand for the products they are used in continues to rise. Many of the REEs are considered “strategically” important. A secure supply of REEs in the USA would benefit consumers and the country at large. A new method to recover these REEs from geothermal waters used at existing geothermal power plants around the country is a high priority and would benefit consumers and the USA. The result of this project was the successful development and demonstration of an integrated process for removal and recovery of the REEs from synthetic geothermal brines on a small laboratory scale. The work included preparation of model geothermal brines to test, selection of the most effective proprietary sorbent media to capture the REEs and testing of the media under a variety of potential operating conditions. Geothermal brines are generally very high in salt content and contain a wide range of elements and anions associated with the rock layers from which they are produced. Processing the geothermal water is difficult because it is corrosive and the dissolved minerals in the water precipitate easily once the temperature and pressure change. No commercial technologies have been shown to be effective or robust enough under these geothermal brine conditions to be commercially viable for removal of REEs. Technologies including ion exchange, traditional sorptive media and membrane concentration are too expensive, difficult or impossible to regenerate and easily rendered ineffective under these working conditions. The work completed during this project has demonstrated that a selective media that is robust and durable under the conditions associated with geothermal brines is possible. The initial economic analysis indicates that the process would not be financially viable at current market prices for REEs. The world market price for REEs has been turbulent over the past several years and are currently near historical lows. Historical trends and market forces suggest that the world price is stabilizing and will rise. At the same time, further development has the potential to reduce the costs associated with the technology. This work opened the door to the idea that a large scale process for removal and recovery of REEs from geothermal brines is possible. Upward price pressures coupled with technology improvements suggest that this process has the opportunity to be commercially successful at a point in the future.« less
Seed production of native forbs shows little response to irrigation in a wet year
Clinton C. Shock; Erik B. G. Feibert; Lamont D. Saunders; Nancy Shaw; Ann DeBolt
2007-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is stable and consistent seed productivity over years. Variations in spring rainfall and soil moisture...
Native wildflowers grown for seed production show tolerance to conventional postemergence herbicides
Clinton C. Shock; Joey Ishida; Erik Feibert
2008-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is weed competition. Weeds are adapted to growing in disturbed soil, and native forbs are not competitive...
Native perennial forb tolerance to rates and mixtures of postemergence herbicides, 2009
Clinton C. Shock; Erik Feibert; Nancy Shaw
2010-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is weed competition. Weeds are adapted to growing in disturbed soil, and native forbs are not competitive...
Native perennial forb tolerance to repeated annual applications of postemergence herbicides, 2009
Clinton C. Shock; Joey Ishida; Erik Feibert; Nancy Shaw
2010-01-01
Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is weed competition. Weeds are adapted to growing in disturbed soil, and native forbs are not competitive...
Methane Recovery from Animal Manures The Current Opportunities Casebook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lusk, P.
1998-09-22
Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewablemore » fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naughton, R.J.
1993-04-01
The National Energy Strategy of 1991/1992 provides only the broadest of Outlines for a strategy to ensure a viable nuclear energy generation capability for electrical power. The FY 93 and FY 94 federal defense budgets provide minimum support to maintain a nuclear powered shipbuilding capability within the United States. These two industries are closely related and are vital strategic assets. The United States must implement a more comprehensive strategy to Preserve the core design and production technologies of the nuclear power industry. This paper examines the background of both the commercial nuclear and nuclear shipbuilding industries, then proposes modifications tomore » the National Energy Strategy and the Defense Department procurement strategy to save these industries.« less
Hofmann, Isa
2007-01-01
Healthcare markets and healthcare systems worldwide will be undergoing tremendous changes in the upcoming 5-10 years. We will experience a paradigm shift in the personal awareness and responsibility of disease prevention and health management. Skyrocketing costs, an ageing population and a variety of technical innovations that enhance the quality of life of patients with chronic diseases or suffering from geriatric ailments will open up new horizons for a variety of partly textile based preventative, therapeutic & diagnostic systems, devices & technologies. Mainly these innovations are geared to optimize the patients comfort and concedes more freedom of mobility. However all partners in the healthcare value distribution chain need to cooperate in vue of the patients empowerment to bring innovations quicker to the market and find viable and cost efficient solutions.
Long-Wave Infrared Thermophotonic Imaging of Demineralization in Dental Hard Tissue
NASA Astrophysics Data System (ADS)
Ojaghi, A.; Parkhimchyk, A.; Tabatabaei, N.
2016-08-01
Dental caries remains the most prevalent chronic disease in both children and adults worldwide. To address this prevalence through disease prevention and management, dentists need tools capable of detecting caries at early stages of formation. Looking into the physics of light propagation in teeth, this study presents a clinically and commercially viable platform technology for thermophotonic detection of early dental caries using an inexpensive long-wavelength infrared (LWIR; 8 μm to 14 μm) camera. The developed system incorporates intensity-modulated light to generate a thermal-wave field inside enamel and uses the subsequent infrared emission of the thermal-wave field to detect early caries. It was found that the greater light absorption at caries sites shifts the thermal-wave field centroid, providing contrast between early caries and intact enamel. Use of LWIR detection band in dental samples is novel and beneficial over the conventional mid-wavelength infrared band (3 μm to 5 μm) as it suppresses the masking effect of the instantaneous radiative emission from subsurface features due to the minimal transmittance of enamel in the LWIR band. The efficacy of the LWIR system is verified though experiments carried out on nonbiological test samples as well as on teeth with natural and artificially induced caries. The results suggest that the developed LWIR technology is an affordable early dental caries detection system suitable for commercialization/translation to Dentistry.
Current and Prospective Li-Ion Battery Recycling and Recovery Processes
NASA Astrophysics Data System (ADS)
Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan
2016-10-01
The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Murphy, Richard W.; Rice, C. Keith
DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service aftermore » the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).« less
The potential of quantum technology gravity sensors in civil engineering
NASA Astrophysics Data System (ADS)
Tuckwell, G.; Metje, N.; Boddice, D.; Usher, C.
2017-12-01
Potential field techniques have advantages over active geophysical techniques as they are not limited to the depth they can image features, provided the signals of interest are detectable amongst the other variations recorded by the instrument. A new generation of gravity instruments based on quantum technology promise greatly increased measurement sensitivity, but with this comes significant challenges in data processing and noise suppression. In the UK Innovate UK funded SIGMA project (http://www.rsksigma.co.uk/) the field of opportunity for a step change in gravity sensor accuracy has been evaluated by comparison with existing geophysical sensors, identifying the range of targets and depths of interest to commercial end users that are currently undetectable and might become visible. Forward modelling was used to quantify the potential of a Quantum Technology (QT) gravity and gravity gradiometer sensor. A substantive improvement in detectability of targets is predicted, which can be considered as a factor of 1.5 to 2 increase in the depth of detectability, or in the reduction of the size of the feature of interest. To take further advantage of new instrument sensitivity, new survey workflows are required. The accuracy of measured gravity maps is limited by environmental vibration noise, and by the accuracy with which tidal variations and terrain signals can be removed. It is still common practice in engineering scale surveys for gravity values to be reduced to Bouguer residuals. However, with a more sensitive instrument comes the need to measure the terrain more accurately. This can be achieved within a commercially viable workflow using a laser scanner for rapid data acquisition and advanced processing to produce an accurate DEM. Initial tests on 4 commercial sites have shown that an improvement of 10s of mGal can be achieved if applying a full digital terrain model correction to the microgravity data even on sites with very minor topographic height variations. At the same time, the new algorithms developed by the project can reduce the computational time by a factor of 20. This will have implications on the commercial viability of a QT gravity instrument.
A study of factors related to commercial space platform services
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1986-01-01
In the past four years, the issue of the commercial development of space has come to the forefront of the U. S. national space policy. Though the Administration, Congress and NASA have all shown strong support for encouraging the private sector to become more actively involved in the commercial utilization of space, the question remains whether they must do more to foster the creation and development of a viable U. S. commercial space industry. Marketing aspects, insurance and risk loss, tax related factors, space transportation, termination liability, institutional barriers, and procurement laws and regulations are discussed.
Control of the sheep blowfly in Australia and New Zealand--are we there yet?
Sandeman, R M; Levot, G W; Heath, A C G; James, P J; Greeff, J C; Scott, M J; Batterham, P; Bowles, V M
2014-10-15
The last 50 years of research into infections in Australia and New Zealand caused by larvae of the sheep blowfly, Lucilia cuprina, have significantly advanced our understanding of this blowfly and its primary host, the sheep. However, apart from some highly effective drugs it could be argued that no new control methodologies have resulted. This review addresses the major areas of sheep blowfly research over this period describing the significant outcomes and analyses, and what is still required to produce new commercial control technologies. The use of drugs against this fly species has been very successful but resistance has developed to almost all current compounds. Integrated pest management is becoming basic to control, especially in the absence of mulesing, and has clearly benefited from computer-aided technologies. Biological control has more challenges but natural and perhaps transformed biopesticides offer possibilities for the future. Experimental vaccines have been developed but require further analysis of antigens and formulations to boost protection. Genetic technologies may provide potential for long-term control through more rapid indirect selection of sheep less prone to flystrike. Finally in the future, genetic analysis of the fly may allow suppression and perhaps eradication of blowfly populations or identification of new and more viable targets for drug and vaccine intervention. Clearly all these areas of research offer potential new controls but commercial development is perhaps inhibited by the success of current chemical insecticides and certainly requires a significant additional injection of resources. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Reusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene
1996-01-01
Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.
Muskmelon embryo rescue techniques using in vitro embryo culture.
Nuñez-Palenius, Hector Gordon; Ramírez-Malagón, Rafael; Ochoa-Alejo, Neftalí
2011-01-01
Among the major cucurbit vegetables, melon (Cucumis melo) has one of the greatest polymorphic fruit types and botanical varieties. Some melon fruits have excellent aroma, variety of flesh colors, deeper flavor, and more juice compared to other cucurbits. Despite numerous available melon cultivars, some of them are exceedingly susceptible to several diseases. The genetic background carrying the genes for tolerance and/or resistance for those diseases is found in wild melon landraces. Unfortunately, the commercial melon varieties are not able to produce viable hybrids when crossed with their wild melon counterparts. Plant tissue culture techniques are needed to surpass those genetic barriers. In vitro melon embryo rescue has played a main role to obtain viable hybrids originated from commercial versus wild melon crosses. In this chapter, an efficient and simple embryo rescue melon protocol is thoroughly described.
Downey, Brandon J; Graham, Lisa J; Breit, Jeffrey F; Glutting, Nathaniel K
2014-01-01
Online monitoring of viable cell volume (VCV) is essential to the development, monitoring, and control of bioprocesses. The commercial availability of steam-sterilizable dielectric-spectroscopy probes has enabled successful adoption of this technology as a key noninvasive method to measure VCV for cell-culture processes. Technological challenges still exist, however. For some cell lines, the technique's accuracy in predicting the VCV from probe-permittivity measurements declines as the viability of the cell culture decreases. To investigate the cause of this decrease in accuracy, divergences in predicted vs. actual VCV measurements were directly related to the shape of dielectric frequency scans collected during a cell culture. The changes in the shape of the beta dispersion, which are associated with changes in cell state, are quantified by applying a novel “area ratio” (AR) metric to frequency-scanning data from the dielectric-spectroscopy probes. The AR metric is then used to relate the shape of the beta dispersion to single-frequency permittivity measurements to accurately predict the offline VCV throughout an entire fed-batch run, regardless of cell state. This work demonstrates the possible feasibility of quantifying the shape of the beta dispersion, determined from frequency-scanning data, for enhanced measurement of VCV in mammalian cell cultures by applying a novel shape-characterization technique. In addition, this work demonstrates the utility of using changes in the shape of the beta dispersion to quantify cell health. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:479–487, 2014 PMID:24851255
Power system applications of high temperature superconductors
NASA Astrophysics Data System (ADS)
Garlick, W. G.
This paper presents an overview of potential applications for high temperature superconductors (HTSs) in the field of power engineering. For almost 10 years material scientists, chemists and physicists have had the freedom to find, explore and characterize the properties of new HTS materials. 10 years is not a long time in the development of a revolutionary technology, but it seems like an age to the engineer who has recognized its potential and waits impatiently for the technology to stabilize in order to apply it. Largely due to Government and Industry partnerships, only a few years after the discovery of HTS, electrical power applications based on HTS are now being designed and tested. These applications offer many benefits to the resident electrical system: increased energy efficiency, smaller equipment, reduced emissions, increased stability and reliability, deferred expansion and flexible transmission and distribution. They have a common focus: lower electricity costs, improved environmental quality and more competitive products for a global market. For HTS to become a commercial success, the development of materials technologies is necessary but not sufficient on its own; the development of a capability to design and manufacture products that use the materials is also fundamental to a viable and successful industrial base.
DARPA Orbital Express program: effecting a revolution in space-based systems
NASA Astrophysics Data System (ADS)
Whelan, David A.; Adler, E. A.; Wilson, Samuel B., III; Roesler, Gordon M., Jr.
2000-11-01
A primary goal of the Defense Advanced Research Projects Agency is to develop innovative, high-risk technologies with the potential of a revolutionary impact on missions of the Department of Defense. DARPA is developing a space experiment to prove the feasibility of autonomous on- orbit servicing of spacecraft. The Orbital Express program will demonstrate autonomous on-orbit refueling, as well as autonomous delivery of a small payload representing an avionics upgrade package. The maneuverability provided to spacecraft from a ready refueling infrastructure will enable radical new capabilities for the military, civil and commercial spacecraft. Module replacement has the potential to extend bus lifetimes, and to upgrade the performance of key subsystems (e.g. processors) at the pace of technology development. The Orbital Express technology development effort will include the necessary autonomy for a viable servicing infrastructure; a universal interface for docking, refueling and module transfers; and a spacecraft bus design compatible with this servicing concept. The servicer spacecraft of the future may be able to act as a host platform for microsatellites, extending their capabilities while reducing risk. An infrastructure based on Orbital Express also benefits from, and stimulates the development of, lower-cost launch strategies.
Product reliability and thin-film photovoltaics
NASA Astrophysics Data System (ADS)
Gaston, Ryan; Feist, Rebekah; Yeung, Simon; Hus, Mike; Bernius, Mark; Langlois, Marc; Bury, Scott; Granata, Jennifer; Quintana, Michael; Carlson, Carl; Sarakakis, Georgios; Ogden, Douglas; Mettas, Adamantios
2009-08-01
Despite significant growth in photovoltaics (PV) over the last few years, only approximately 1.07 billion kWhr of electricity is estimated to have been generated from PV in the US during 2008, or 0.27% of total electrical generation. PV market penetration is set for a paradigm shift, as fluctuating hydrocarbon prices and an acknowledgement of the environmental impacts associated with their use, combined with breakthrough new PV technologies, such as thin-film and BIPV, are driving the cost of energy generated with PV to parity or cost advantage versus more traditional forms of energy generation. In addition to reaching cost parity with grid supplied power, a key to the long-term success of PV as a viable energy alternative is the reliability of systems in the field. New technologies may or may not have the same failure modes as previous technologies. Reliability testing and product lifetime issues continue to be one of the key bottlenecks in the rapid commercialization of PV technologies today. In this paper, we highlight the critical need for moving away from relying on traditional qualification and safety tests as a measure of reliability and focus instead on designing for reliability and its integration into the product development process. A drive towards quantitative predictive accelerated testing is emphasized and an industrial collaboration model addressing reliability challenges is proposed.
Revolutionary optical sensor for physiological monitoring in the battlefield
NASA Astrophysics Data System (ADS)
Kingsley, Stuart A.; Sriram, Sriram; Pollick, Andrea; Marsh, John
2004-09-01
SRICO has developed a revolutionary approach to physiological status monitoring using state-of-the-art optical chip technology. The company"s patent pending Photrode is a photonic electrode that uses unique optical voltage sensing technology to measure and monitor electrophysiological parameters. The optical-based monitoring system enables dry-contact measurements of EEG and ECG signals that require no surface preparation or conductive gel and non-contact measurements of ECG signals through the clothing. The Photrode applies high performance optical integrated circuit technology, that has been successfully implemented in military & commercial aerospace, missile, and communications applications for sensing and signal transmission. SRICO"s award winning Photrode represents a new paradigm for the measurement of biopotentials in a reliable, convenient, and non-intrusive manner. Photrode technology has significant applications on the battlefield for rapid triage to determine the brain dead from those with viable brain function. An ECG may be obtained over the clothing without any direct skin contact. Such applications would enable the combat medic to receive timely medical information and to make important decisions regarding identification, location, triage priority and treatment of casualties. Other applications for the Photrode include anesthesia awareness monitoring, sleep medicine, mobile medical monitoring for space flight, emergency patient care, functional magnetic resonance imaging, various biopotential signal acquisition (EMG, EOG), and routine neuro and cardio diagnostics.
Manzo, Ricardo M; de Sousa, Marylane; Fenoglio, Cecilia L; Gonçalves, Luciana Rocha Barro; Mammarella, Enrique J
2015-10-01
D-tagatose is produced from D-galactose by the enzyme L-arabinose isomerase (L-AI) in a commercially viable bioprocess. An active and stable biocatalyst was obtained by modifying chitosan gel structure through reaction with TNBS, D-fructose or DMF, among others. This led to a significant improvement in L-AI immobilization via multipoint covalent attachment approach. Synthetized derivatives were compared with commercial supports such as Eupergit(®) C250L and glyoxal-agarose. The best chitosan derivative for L-AI immobilization was achieved by reacting 4 % (w/v) D-fructose with 3 % (w/v) chitosan at 50 °C for 4 h. When compared to the free enzyme, the glutaraldehyde-activated chitosan biocatalyst showed an apparent activity of 88.4 U g (gel) (-1) with a 211-fold stabilization factor while the glyoxal-agarose biocatalyst gave an apparent activity of 161.8 U g (gel) (-1) with an 85-fold stabilization factor. Hence, chitosan derivatives were comparable to commercial resins, thus becoming a viable low-cost strategy to obtain high active L-AI insolubilized derivatives.
Advanced Reactor Technologies - Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne L.
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland
This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However,more » it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.« less
A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture
Freund, Nathaniel W.; Croughan, Matthew S.
2018-01-01
Fed-batch animal cell culture is the most common method for commercial production of recombinant proteins. However, higher cell densities in these platforms are still limited due to factors such as excessive ammonium production, lactic acid production, nutrient limitation, and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid production—termed Lactate Supplementation and Adaptation (LSA) technology—through the use of CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of LSA technology in animal cell culture is worthy of further consideration and may lead to process conditions more favorable for advanced industrial applications. PMID:29382079
Development Status of PEM Non-Flow-Through Fuel Cell System Technology for NASA Applications
NASA Technical Reports Server (NTRS)
Hoberecht, Mark A.; Jakupca, Ian J.
2011-01-01
Today s widespread development of proton-exchange-membrane (PEM) fuel cell technology for commercial users owes its existence to NASA, where fuel cell technology saw its first applications. Beginning with the early Gemini and Apollo programs, and continuing to this day with the Shuttle Orbiter program, fuel cells have been a primary source of electrical power for many NASA missions. This is particularly true for manned missions, where astronauts are able to make use of the by-product of the fuel cell reaction, potable water. But fuel cells also offer advantages for unmanned missions, specifically when power requirements exceed several hundred watts and primary batteries are not a viable alternative. In recent years, NASA s Exploration Technology Development Program (ETDP) funded the development of fuel cell technology for applications that provide both primary power and regenerative fuel cell energy storage for planned Exploration missions that involved a return to the moon. Under this program, the Altair Lunar Lander was a mission requiring fuel cell primary power. There were also various Lunar Surface System applications requiring regenerative fuel cell energy storage, in which a fuel cell and electrolyzer combine to form an energy storage system with hydrogen, oxygen, and water as common reactants. Examples of these systems include habitat modules and large rovers. In FY11, the ETDP has been replaced by the Enabling Technology Development and Demonstration Program (ETDDP), with many of the same technology goals and requirements applied against NASA s revised Exploration portfolio.
Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations
NASA Technical Reports Server (NTRS)
Behar, Alberto E.; Stam, Christina N.; Smiley, Ronald
2013-01-01
This method uses a photoaffinity label that recognizes DNA and can be used to distinguish populations of bacterial cells from bacterial spores without the use of heat shocking during conventional culture, and live from dead bacterial spores using molecular-based methods. Biological validation of commercial sterility using traditional and alternative technologies remains challenging. Recovery of viable spores is cumbersome, as the process requires substantial incubation time, and the extended time to results limits the ability to quickly evaluate the efficacy of existing technologies. Nucleic acid amplification approaches such as PCR (polymerase chain reaction) have shown promise for improving time to detection for a wide range of applications. Recent real-time PCR methods are particularly promising, as these methods can be made at least semi-quantitative by correspondence to a standard curve. Nonetheless, PCR-based methods are rarely used for process validation, largely because the DNA from dead bacterial cells is highly stable and hence, DNA-based amplification methods fail to discriminate between live and inactivated microorganisms. Currently, no published method has been shown to effectively distinguish between live and dead bacterial spores. This technology uses a DNA binding photoaffinity label that can be used to distinguish between live and dead bacterial spores with detection limits ranging from 109 to 102 spores/mL. An environmental sample suspected of containing a mixture of live and dead vegetative cells and bacterial endospores is treated with a photoaffinity label. This step will eliminate any vegetative cells (live or dead) and dead endospores present in the sample. To further determine the bacterial spore viability, DNA is extracted from the spores and total population is quantified by real-time PCR. The current NASA standard assay takes 72 hours for results. Part of this procedure requires a heat shock step at 80 degC for 15 minutes before the sample can be plated. Using a photoaffinity label would remove this step from the current assay as the label readily penetrates both live and dead bacterial cells. Secondly, the photoaffinity label can only penetrate dead bacterial spores, leaving behind the viable spore population. This would allow for rapid bacterial spore detection in a matter of hours compared to the several days that it takes for the NASA standard assay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.
The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less
Luminescent solar concentrators utilizing stimulated emission.
Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander
2016-03-21
Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.
Recovery Act: Waste Energy Project at AK Steel Corporation Middletown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, Jeffrey
2012-06-30
In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives bymore » demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.« less
Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.
Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted,more » bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.« less
NASA HPCC Technology for Aerospace Analysis and Design
NASA Technical Reports Server (NTRS)
Schulbach, Catherine H.
1999-01-01
The Computational Aerosciences (CAS) Project is part of NASA's High Performance Computing and Communications Program. Its primary goal is to accelerate the availability of high-performance computing technology to the US aerospace community-thus providing the US aerospace community with key tools necessary to reduce design cycle times and increase fidelity in order to improve safety, efficiency and capability of future aerospace vehicles. A complementary goal is to hasten the emergence of a viable commercial market within the aerospace community for the advantage of the domestic computer hardware and software industry. The CAS Project selects representative aerospace problems (especially design) and uses them to focus efforts on advancing aerospace algorithms and applications, systems software, and computing machinery to demonstrate vast improvements in system performance and capability over the life of the program. Recent demonstrations have served to assess the benefits of possible performance improvements while reducing the risk of adopting high-performance computing technology. This talk will discuss past accomplishments in providing technology to the aerospace community, present efforts, and future goals. For example, the times to do full combustor and compressor simulations (of aircraft engines) have been reduced by factors of 320:1 and 400:1 respectively. While this has enabled new capabilities in engine simulation, the goal of an overnight, dynamic, multi-disciplinary, 3-dimensional simulation of an aircraft engine is still years away and will require new generations of high-end technology.
Organic materials for printed electronics
NASA Astrophysics Data System (ADS)
Berggren, M.; Nilsson, D.; Robinson, N. D.
2007-01-01
Organic materials can offer a low-cost alternative for printed electronics and flexible displays. However, research in these systems must exploit the differences - via molecular-level control of functionality - compared with inorganic electronics if they are to become commercially viable.
Rethinking chiller plant design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1998-07-01
While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiency (because of transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and, therefore, are economically viable alternatives. Recent advances in gas engine-driven and DFA absorption chillers, and in commercially viable solid and liquid desiccant-cooling systems, suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less
Rethinking chiller plant design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1998-01-01
While most refrigeration chillers operate today on electricity, the use of natural gas is becoming an increasingly attractive alternative. This is largely because electricity does not use energy very efficiently (due to transmission and combustion fuel losses), high demand charges, and the high incremental cost of electricity to operate chillers. The use of gas engine-driven chillers eliminates the high incremental cost of electricity. Additionally, gas engine-driven systems can operate with COPs up to 1.8 and therefore are economically viable alternatives. Recent advances in gas engine-driven and direct-fired absorption chillers and in commercially viable solid- and liquid-desiccant cooling systems suggest amore » bright future for the gas industry. The use of such equipment in conjunction with or in place of commercially available electrical-powered alternatives can significantly impact demand-side management savings for utility ratepayers in the short run and provide significant hybrid opportunities for deregulated markets in the intermediate to long term.« less
Space transfer services as a precursor to space business parks
NASA Astrophysics Data System (ADS)
Smitherman, David V.
1998-01-01
Boeing Defense and Space Group and NASA, Marshall Space Flight Center conducted a study in 1996-1997 on the topic of commercial space business parks under the sponsorship of the former Office of Advanced Concepts at NASA Headquarters (Marshall 1997). The findings of this 7-month study are used to present possible strategies for near-term commercial developments in space. Related data from NASA studies on public space travel, and commercial space transportation are included along with the author's observations. It is hoped that this analysis will assist future entrepreneurs in the development of commercial space business parks. In conclusion, it appears that a market could soon become viable for commercial space transfer services, and that this market could form the infrastructure to grow the first commercial space business park.
Nuclear Cryogenic Propulsion Stage Affordable Development Strategy
NASA Technical Reports Server (NTRS)
Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.
2014-01-01
The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.
High-Efficiency Polycrystalline CdS/CdTe Solar Cells on Buffered Commercial TCO-Coated Glass
NASA Astrophysics Data System (ADS)
Colegrove, E.; Banai, R.; Blissett, C.; Buurma, C.; Ellsworth, J.; Morley, M.; Barnes, S.; Gilmore, C.; Bergeson, J. D.; Dhere, R.; Scott, M.; Gessert, T.; Sivananthan, Siva
2012-10-01
Multiple polycrystalline CdS/CdTe solar cells with efficiencies greater than 15% were produced on buffered, commercially available Pilkington TEC Glass at EPIR Technologies, Inc. (EPIR, Bolingbrook, IL) and verified by the National Renewable Energy Laboratory (NREL). n-CdS and p-CdTe were grown by chemical bath deposition (CBD) and close space sublimation, respectively. Samples with sputter-deposited CdS were also investigated. Initial results indicate that this is a viable dry-process alternative to CBD for production-scale processing. Published results for polycrystalline CdS/CdTe solar cells with high efficiencies are typically based on cells using research-grade transparent conducting oxides (TCOs) requiring high-temperature processing inconducive to low-cost manufacturing. EPIR's results for cells on commercial glass were obtained by implementing a high-resistivity SnO2 buffer layer and by optimizing the CdS window layer thickness. The high-resistivity buffer layer prevents the formation of CdTe-TCO junctions, thereby maintaining a high open-circuit voltage and fill factor, whereas using a thin CdS layer reduces absorption losses and improves the short-circuit current density. EPIR's best device demonstrated an NREL-verified efficiency of 15.3%. The mean efficiency of hundreds of cells produced with a buffer layer between December 2010 and June 2011 is 14.4%. Quantum efficiency results are presented to demonstrate EPIR's progress toward NREL's best-published results.
Nanopatents and their impact on the medical environment.
Lacour, Stéphanie
2011-01-01
The nano-medical field is seen, by governments as well as the business sector as a very promising one. The process of converting basic research in nanomedecine into commercially viable products has already begun, even if it might be long and difficult. Part of the difficulties that could occur comes from regulatory and safety issues. Some of them are also coming from patent uncertainty in the global nanotechnology field. Indeed, the rush towards patents in the nanotechnology arena has already begun. Nanopatents are about to alter the legal landscape of the innovation economy, of research and development, and of industry--no doubt to an unprecedented extent because of the scope covered by these technologies. From a global point of view, the very delineation of the scope of nanotechnologies confronts patent law with complex problems of definition. The emergence and characteristics of this technology are also giving rise to a reassessment of the criteria for patentability that could be prejudicial to innovation. In the medical environment, this issue is even exacerbated in the real challenges which pharmaceutical companies are running up against.
Cobalt: A GPU-based correlator and beamformer for LOFAR
NASA Astrophysics Data System (ADS)
Broekema, P. Chris; Mol, J. Jan David; Nijboer, R.; van Amesfoort, A. S.; Brentjens, M. A.; Loose, G. Marcel; Klijn, W. F. A.; Romein, J. W.
2018-04-01
For low-frequency radio astronomy, software correlation and beamforming on general purpose hardware is a viable alternative to custom designed hardware. LOFAR, a new-generation radio telescope centered in the Netherlands with international stations in Germany, France, Ireland, Poland, Sweden and the UK, has successfully used software real-time processors based on IBM Blue Gene technology since 2004. Since then, developments in technology have allowed us to build a system based on commercial off-the-shelf components that combines the same capabilities with lower operational cost. In this paper, we describe the design and implementation of a GPU-based correlator and beamformer with the same capabilities as the Blue Gene based systems. We focus on the design approach taken, and show the challenges faced in selecting an appropriate system. The design, implementation and verification of the software system show the value of a modern test-driven development approach. Operational experience, based on three years of operations, demonstrates that a general purpose system is a good alternative to the previous supercomputer-based system or custom-designed hardware.
Metabolic Design and Control for Production in Prokaryotes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhabra, Swapnil R.; Keasling, J.D.
2010-11-10
Prokaryotic life on earth is manifested by its diversity and omnipresence. These microbes serve as natural sources of a large variety of compounds with the potential to serve the ever growing, medicinal, chemical and transportation needs of the human population. However, commercially viable production of these compounds can be realized only through significant improvement of the native production capacity of natural isolates. The most favorable way to achieve this goal is through the genetic manipulation of metabolic pathways that direct the production of these molecules. While random mutagenesis and screening have dominated the industrial production of such compounds in themore » past our increased understanding of microbial physiology over the last five decades has shifted this trend towards rational approaches for metabolic design. Major drivers of this trend include recombinant DNA technology, high throughput characterization of macromolecular cellular components, quantitative modeling for metabolic engine ring, targeted combinatorial engineering and synthetic biology. In this chapter we track the evolution of microbial engineering technologies from the black box era of random mutagenesis to the science and engineering-driven era of metabolic design.« less
Energy scavenging sources for biomedical sensors.
Romero, E; Warrington, R O; Neuman, M R
2009-09-01
Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed.
Fabrication and comparison of selective, transparent optics for concentrating solar systems
NASA Astrophysics Data System (ADS)
Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.
2015-09-01
Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.
Chart Venture Partners' perspective on dual-use CBRNE technologies
NASA Astrophysics Data System (ADS)
Van Nice, C. S.; Gardner, P. J.
2008-04-01
Chart Venture Partners' (CVP) approach to investing in Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) detection technologies can be best understood in the context of the unique partnership between the firm's two founding institutions. CVP was founded as a partnership between the Chart Group, a New York-based merchant banking and venture capital boutique, and InSitech Incorporated, a 501(c)(3) non-profit commercial partnership intermediary for the U.S. Army's Armament Research Development and Engineering Center (ARDEC) at Picatinny Arsenal in New Jersey. The partnership between Chart Group and Insitech has yielded a new investment model. Unlike most venture funds, CVP operates with a singular focus on early-stage defense and security technologies, with the important caveat that everything we invest in must also have dual-use application in large-scale commercial markets. CVP believes that early-stage CBRNE companies require five qualities to be viable investment candidates and successful start-up companies: Great Science, Strong IP Positions, Recognized Scientific Champions, Identified Dual-Use Market Pull, and "Real World" Technical Performance Data. When earlystage CBRNE companies decide to seek venture capital and pursue higher growth dual-use business models, we often find that certain issues arise that are not always fully contemplated at the outset, and that can create gaps between what the start-up companies are offering to investors and what those investors are seeking from their potential portfolio companies. These same issues can have significant positive or negative impact on shareholder value over time, depending on how they are managed. Specifically, startups should consider carefully their strategies related to business development, market positioning, government funding, and investment syndicate formation.
Steffan, Shawn A; Chasen, Elissa M; Deutsch, Annie E; Mafra-Neto, Agenor
2017-01-01
Pheromone-based mating disruption has proven to be a powerful pest management tactic in many cropping systems. However, in the cranberry system, a viable mating disruption program does not yet exist. There are commercially available pheromones for several of the major pests of cranberries, including the cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae) and blackheaded fireworm, Rhopobota naevana (Hübner) (Lepidoptera: Tortricidae). Previous studies have shown that mating disruption represents a promising approach for R. naevana management although carrier and delivery technologies have remained unresolved. The present study examined the suitability of Specialized Pheromone & Lure Application Technology (SPLAT; ISCA Technologies, Inc., Riverside, CA), a proprietary wax and oil blend, to serve as a pheromone carrier in the cranberry system. In 2013 and 2014, we tested a blend of pheromones targeting A. vaccinii and R. naevana in field-scale, replicated trials. Pheromones were loaded into SPLAT and the resulting "SPLAT BFW CFW" formulation was deployed in commercial cranberry marshes. We compared moth trap-catch counts within SPLAT-treated blocks to those of conventionally managed blocks. In 2013, applications of SPLAT BFW CFW resulted in highly successful disruption of R. naevana and promising, though inconsistent, disruption of A. vaccinii. To improve disruption of A. vaccinii, the pheromone load was increased in 2014, providing 92% and 74% reductions in trap-catch for R. naevana and A. vaccinii, respectively. Importantly, larval infestation rates in SPLAT-treated blocks were lower than those of conventionally managed blocks. These results suggest that a multispecies mating disruption system (SPLAT BFW CFW) may represent an effective pesticide-alternative for serious pests of cranberries. Published by Oxford University Press on behalf of the Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carols H. Rentel
2007-03-31
Eaton, in partnership with Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) has completed a project that applies a combination of wireless sensor network (WSN) technology, anticipatory theory, and a near-term value proposition based on diagnostics and process uptime to ensure the security and reliability of critical electrical power infrastructure. Representatives of several Eaton business units have been engaged to ensure a viable commercialization plan. Tennessee Valley Authority (TVA), American Electric Power (AEP), PEPCO, and Commonwealth Edison were recruited as partners to confirm and refine the requirements definition from the perspective of the utilities that actually operatemore » the facilities to be protected. Those utilities have cooperated with on-site field tests as the project proceeds. Accomplishments of this project included: (1) the design, modeling, and simulation of the anticipatory wireless sensor network (A-WSN) that will be used to gather field information for the anticipatory application, (2) the design and implementation of hardware and software prototypes for laboratory and field experimentation, (3) stack and application integration, (4) develop installation and test plan, and (5) refinement of the commercialization plan.« less
Commercial Vehicle Technologies | Transportation Research | NREL
Commercial Vehicle Technologies Commercial Vehicle Technologies Photo of medium-duty truck with the commercial vehicle technologies, comparing the performance of advanced medium- and heavy-duty fleet vehicles operational goals. Performed in partnership with commercial and government fleets across the nation, these
Programmatic and economic challenges for commercial space processing
NASA Astrophysics Data System (ADS)
Overfelt, Tony; Watkins, John
1997-01-01
The International Space Station is the largest cooperative space project in history and is likely to be industry's most viable access to the low-g environment for long duration materials processing experiments. Such access will provide unique and competitive research capabilities to industry if private sector entities can commercially utilize the Space Station for their industrial projects. Although ``commercial utilization'' implies a variety of things to different people, the key industrial issues are frequent, reliable, and economical access to space as well as protection of private sector intellectual property rights. This paper discusses how these key issues will influence the programmatic and economic challenges for commercial space processing in the future Space Station era.
Energy Efficient Community Development in California: Chula Vista Research Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gas Technology Institute
2009-03-31
In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, themore » central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.« less
Technology Utilization Conference Series, volume 1
NASA Technical Reports Server (NTRS)
1975-01-01
The design, development, and results of a series of technology utilization conferences are presented. The conference series represents the development of a viable and successful means of encouraging the transfer of technology to the minority business community.
Microbial assessment of cabin air quality on commercial airliners
NASA Technical Reports Server (NTRS)
La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri
2005-01-01
The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.
Requirements and approach for a space tourism launch system
NASA Astrophysics Data System (ADS)
Penn, Jay P.; Lindley, Charles A.
2003-01-01
Market surveys suggest that a viable space tourism industry will require flight rates about two orders of magnitude higher than those required for conventional spacelift. Although enabling round-trip cost goals for a viable space tourism business are about 240/pound (529/kg), or 72,000/passenger round-trip, goals should be about 50/pound (110/kg) or approximately 15,000 for a typical passenger and baggage. The lower price will probably open space tourism to the general population. Vehicle reliabilities must approach those of commercial aircraft as closely as possible. This paper addresses the development of spaceplanes optimized for the ultra-high flight rate and high reliability demands of the space tourism mission. It addresses the fundamental operability, reliability, and cost drivers needed to satisfy this mission need. Figures of merit similar to those used to evaluate the economic viability of conventional commercial aircraft are developed, including items such as payload/vehicle dry weight, turnaround time, propellant cost per passenger, and insurance and depreciation costs, which show that infrastructure can be developed for a viable space tourism industry. A reference spaceplane design optimized for space tourism is described. Subsystem allocations for reliability, operability, and costs are made and a route to developing such a capability is discussed. The vehicle's ability to satisfy the traditional spacelift market is also shown.
Polymerase chain reaction-based discrimination of viable from non-viable Mycoplasma gallisepticum.
Tan, Ching Giap; Ideris, Aini; Omar, Abdul R; Yii, Chen Pei; Kleven, Stanley H
2014-09-02
The present study was based on the reverse transcription polymerase chain reaction (RT-PCR) of the 16S ribosomal nucleic acid (rRNA) of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20-25 h at 37 °C, 22-25 h at 16 °C, and 23-27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h). The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.
Commercial space opportunities - Advanced concepts and technology overview
NASA Technical Reports Server (NTRS)
Reck, Gregory M.
1993-01-01
The paper discusses the status of current and future commercial space opportunities. The goal is to pioneer innovative, customer-focused space concepts and technologies, leveraged through industrial, academic, and government alliance, to ensure U.S. commercial competitiveness and preeminence in space. The strategy is to develop technologies which enable new products and processes, deploy existing technology into commercial and military products and processes, and integrate military and commercial research and production activities. Technology development areas include information infrastructure, electronics design and manufacture, health care technology, environment technology, and aeronautical technologies.
Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles.
Isabettini, Stéphane; Stucki, Sandro; Massabni, Sarah; Baumgartner, Mirjam E; Reckey, Pernille Q; Kohlbrecher, Joachim; Ishikawa, Takashi; Windhab, Erich J; Fischer, Peter; Kuster, Simon
2018-03-14
Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln 3+ )-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH 2 )-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm 3+ and Dy 3+ . These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide numerous perspectives for future development of tomorrow's smart materials and technologies.
Upadhyayula, Venkata K K; Meyer, David E; Curran, Mary Ann; Gonzalez, Michael A
2014-01-21
Carbon nanotube (CNT) field emission displays (FEDs) are currently in the product development stage and are expected to be commercialized in the near future because they offer image quality and viewing angles comparable to a cathode ray tube (CRT) while using a thinner structure, similar to a liquid crystal display (LCD), and enable more efficient power consumption during use. To address concerns regarding the environmental performance of CNT-FEDs, a screening-level, cradle-to-grave life cycle assessment (LCA) was conducted based on a functional unit of 10,000 viewing hours, the viewing lifespan of a CNT-FED. Contribution analysis suggests the impacts for material acquisition and manufacturing are greater than the combined impacts for use and end-of-life. A scenario analysis of the CNT paste composition identifies the metal components used in the paste are key contributors to the impacts of the upstream stages due to the impacts associated with metal preparation. Further improvement of the manufacturing impacts is possible by considering the use of plant-based oils, such as rapeseed oil, as alternatives to organic solvents for dispersion of CNTs. Given the differences in viewing lifespan, the impacts of the CNT-FED were compared with a LCD and a CRT display to provide more insight on how to improve the CNT-FED to make it a viable product alternative. When compared with CRT technology, CNT-FEDs show better environmental performance, whereas a comparison with LCD technology indicates the environmental impacts are roughly the same. Based on the results, the enhanced viewing capabilities of CNT-FEDs will be a more viable display option if manufacturers can increase the product's expected viewing lifespan.
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Rosen, Lee J.; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.
2016-09-27
A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.
50 CFR 660.408 - Annual actions.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., but not limited to, controlling ocean harvest impacts on depressed, viable natural stocks within... the Salmon FMP. (c) Allowable ocean harvest levels. Allowable ocean harvest levels must ensure that... met. The allowable ocean harvest for commercial, recreational, and treaty Indian fishing may be...
50 CFR 660.408 - Annual actions.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., but not limited to, controlling ocean harvest impacts on depressed, viable natural stocks within... the Salmon FMP. (c) Allowable ocean harvest levels. Allowable ocean harvest levels must ensure that... met. The allowable ocean harvest for commercial, recreational, and treaty Indian fishing may be...
Physiology limits commercially viable photoautotrophic production of microalgal biofuels.
Kenny, Philip; Flynn, Kevin J
2017-01-01
Algal biofuels have been offered as an alternative to fossil fuels, based on claims that microalgae can provide a highly productive source of compounds as feedstocks for sustainable transport fuels. Life cycle analyses identify algal productivity as a critical factor affecting commercial and environmental viability. Here, we use mechanistic modelling of the biological processes driving microalgal growth to explore optimal production scenarios in an industrial setting, enabling us to quantify limits to algal biofuels potential. We demonstrate how physiological and operational trade-offs combine to restrict the potential for solar-powered algal-biodiesel production in open ponds to a ceiling of ca. 8000 L ha -1 year -1 . For industrial-scale operations, practical considerations limit production to ca. 6000 L ha -1 year -1 . According to published economic models and life cycle analyses, such production rates cannot support long-term viable commercialisation of solar-powered cultivation of natural microalgae strains exclusively as feedstock for biofuels. The commercial viability of microalgal biofuels depends critically upon limitations in microalgal physiology (primarily in rates of C-fixation); we discuss the scope for addressing this bottleneck concluding that even deployment of genetically modified microalgae with radically enhanced characteristics would leave a very significant logistical if not financial burden.
The future of very large subsonic transports
NASA Technical Reports Server (NTRS)
Justice, R. Steven; Hays, Anthony P.; Parrott, Ed L.
1996-01-01
The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and modular design. The VLST will encounter severe restrictions on weight, ground flotation, span, length, and door height to operate at current airports/bases, gates, and cargo loading systems. One option under consideration is for a sea-based VLST, either a conventional seaplane or Wing-In-Ground effect (WIG) vehicle, which would allow greater operational flexibility, while introducing other design challenges such as water impact loads and salt-water corrosion. Lockheed Martin is currently developing a floatplane version of the C-130 Hercules which will provide experience with a modern sea-based aircraft. In addition to its own ongoing research activities, Lockheed Martin is also participating in the NASA Advanced Subsonic Technology, High Speed Research (HSR), and other programs which address some of the technologies needed for the VLST. The VLST will require NASA and US aerospace companies to work together to develop new capabilities and technologies for make the VLST a viable part of transportation beyond 2000.
Ultra-High Temperature Thermal Barrier Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Eric; Gell, Maurice; Wang, Jiwen
In this project, HiFunda LLC worked with the University of Connecticut (UConn) to demonstrate an attractive option for thermal barrier coatings (TBCs), namely yttrium aluminum garnet (YAG), which was well known to have proven thermal stability and excellent high-temperature mechanical properties. YAG and other higher temperature TBCs have not been used to date because they exhibit inadequate durability, resulting from (a) poor erosion resistance and (b) greater thermal expansion mismatch strains compared to 7YSZ. UConn had previously demonstrated that the solution precursor plasma spray (SPPS) process could produce a durable 7YSZ TBC resulting from a highly strain tolerant microstructure, consistingmore » of through-coating-thickness vertical cracks. HiFunda/UConn reasoned at the start of Phase I that such a strain-tolerant microstructure could produce durable, higher temperature TBCs. The Phase I work demonstrated the feasibility of that concept and of SPPS YAG TBCs. The Phase II work demonstrated that SPPS YAG coating possessed the necessary range of properties to be a viable high temperature TBC, including cyclic durability and reduced elevated temperature thermal conductivity. The SPPS YAG TBCs were shown to have the potential to be used at temperatures 200°C higher than APS YSZ, based on thermal stability, sinter resistance, and CMAS resistance. The overall technical objectives of this Phase 2A project were to further improve the commercial viability of SPPS by improving their performance capabilities and manufacturing economics. The improved performance capability was to be achieved through: (1) further reductions in thermal conductivity, which allows higher gas temperatures and/or thinner coatings to achieve similar gas temperatures; and (2) improved resistance to calcium magnesium alumnoslicate (CMAS) attack of the TBCs, which can yield improved lifetimes. The improved thermal conductivity and CMAs resistance was to be accomplished through compositional and microstructural optimization. Finally, the key metrics to improve the process economics were increased deposition rate and efficiency. In addition to these technical objectives, there were commercialization objectives of getting key commercialization partners to evaluate and qualify the SPPS YAG technology independently so that the technology readiness level (TRL) of the technology could be sufficiently advanced to facilitate Phase III strategic partnerships, leading to eventual commercialization consistent with the overall objectives of the DOE SBIR/STTR program. All the Phase 2A goals were successfully achieved.« less
NASA Technical Reports Server (NTRS)
2000-01-01
Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.
Irradiated foods: current trends and technologies
USDA-ARS?s Scientific Manuscript database
Additional demands on keeping food safe and palatable through longer distribution chains have led industry executives to reconsider irradiation and other technologies as viable processing alternatives for many foods. Other intervention technologies (precision thermal, UV, and novel sanitizer formula...
The economics of mining the Martian moons
NASA Technical Reports Server (NTRS)
Leonard, Raymond S.; Blacic, James D.; Vaniman, David T.
1987-01-01
The costs for extracting and shipping volatiles such as water, carbon, and nitrogen that might be found on Phobos and Deimos are estimated. The costs are compared to the cost of shipping the same volatiles from earth, assuming the use of nuclear powered mining facilities and freighters. Mineral resources and possible products from the Martian moons, possible markets for these products, and the costs of transporting these resources to LEO or GEO or to transportation nodal points are examined. Most of the technology needed to mine the moons has already been developed. The need for extraterrestrial sources of propellants for ion propulsion systems and ways in which the mining of the moons would reduce the cost of space operations near earth are discussed. It is concluded that it would be commercially viable to mine the Martian moons, making a profit of at least a 10 percent return on capital.
Nano-Composite Material Development for 3-D Printers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satches, Michael Randolph
Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matricesmore » and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.« less
NASA Astrophysics Data System (ADS)
Chinga-Carrasco, Gary
2011-06-01
During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils.
MEMS reliability: coming of age
NASA Astrophysics Data System (ADS)
Douglass, Michael R.
2008-02-01
In today's high-volume semiconductor world, one could easily take reliability for granted. As the MOEMS/MEMS industry continues to establish itself as a viable alternative to conventional manufacturing in the macro world, reliability can be of high concern. Currently, there are several emerging market opportunities in which MOEMS/MEMS is gaining a foothold. Markets such as mobile media, consumer electronics, biomedical devices, and homeland security are all showing great interest in microfabricated products. At the same time, these markets are among the most demanding when it comes to reliability assurance. To be successful, each company developing a MOEMS/MEMS device must consider reliability on an equal footing with cost, performance and manufacturability. What can this maturing industry learn from the successful development of DLP technology, air bag accelerometers and inkjet printheads? This paper discusses some basic reliability principles which any MOEMS/MEMS device development must use. Examples from the commercially successful and highly reliable Digital Micromirror Device complement the discussion.
Reflections on the present and future of upper limb prostheses.
Farina, Dario; Amsüss, Sebastian
2016-01-01
Despite progress in research and media attention on active upper limb prostheses, presently the most common commercial upper limb prosthetic devices are not fundamentally different from solutions offered almost one century ago. Limited information transfer for both control and sensory-motor integration and challenges in socket technology have been major obstacles. By analysing the present state-of-the-art and academic achievements, we provide our opinion on the future of upper limb prostheses. We believe that surgical procedures for muscle reinnervation and osseointegration will become increasingly clinically relevant; muscle electrical signals will remain the main clinical means for prosthetic control; and chronic electrode implants, first in muscles (control), then in nerves (sensory feedback), will become viable clinical solutions. After decades of suspended clinically relevant progress, it is foreseeable that a new generation of upper limb prostheses will enter the market in the near future based on such advances, thereby offering substantial clinical benefit for patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorpette, G.
This paper reports that in a forest on the island of Hawaii, legal and regulatory activity has postponed the start-up of a small new power plant and imperilled the design and construction of several facilities like it. The same old story Hardly. The power plants at stake are not nuclear or coal- or even oil-fired, but geothermal, widely considered one of the more environmentally benign ways of generating electricity. In a further twist, the opposition is coming not only from the usual citizens; and environmental groups, but also from worshippers of a native good and, it has been alleged, growersmore » of marijuana, a lucrative local crop. The clash occurs just as geothermal power sources have finally proven commercially viable, experts say, adding that technological advances and industry trends in the United States and elsewhere seem to factor great expansion in its use.« less
Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites
NASA Technical Reports Server (NTRS)
Hoffman, Douglas C.; Potter, Benjamin
2013-01-01
Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For each desired property for knife fabrication and performance, there is an alloy development strategy that optimizes behavior. Although BMG knives have been demonstrated as far back as 1995, they never found commercial success because they had to be ground (which presented problems because the alloys contained beryllium), they weren't low cost (because they weren't cast to a net-shape), they were brittle (because they were made with a low-quality commercial material), and they had extremely poor corrosion resistance (because corrosion was not well-understood in these materials). Ultimately, these shortcomings prevented the widespread commercialization. In the current work, the inventors have applied more than a decade of research on BMGs from Caltech and JPL to develop a better understanding of how to make BMG knives that exhibit an optimal combination of properties, processing and cost. Alloys have been developed based in titanium (and other metals), that exhibit high toughness, high hardness, excellent corrosion resistance, no ferromagnetism, edge-retaining selfsharpening, and the ability to be cast like a plastic using commercially available casting techniques (currently used by commercial companies such as Liquidmetal Technologies and Visser Precision Casting). The inventors argue that depending on the application (diving, military, tactical, utility, etc.) there is an optimal combination of design and alloy composition. Moreover, with new casting technologies not available at the inception of these materials, net-shaped knives can be cast into complex shapes that require no aftermarket forming, except for sharpening using water-cooled polishing wheel. These combinations of discoveries seek to make low-cost BMG knives commercially viable products that have no equal among metal or ceramic knives. Current work at JPL focuses on net-shape casting of these alloys and testing their mechanical properties versus commercially available knives to demonstrate their benefits.
NASA Astrophysics Data System (ADS)
Barasinski, Anaïs; Tertrais, Hermine; Bechtel, Stéphane; Chinesta, Francisco
2018-05-01
Welding primary structure thermoplastic composites parts is still an issue today, many technologies have been extensively studied: induction, ultrasonic, resistive welding, none is today entirely viable for this application due to various implementation reasons. On the other hand, microwave solutions are not very common in composites forming process, although being widespread in homes. Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred from an electromagnetic field to materials that can absorb it at specific frequencies. Volumetric heating enables better process temperature control and less overall energy losses, which can results in shorter processing cycles and higher process efficiency. Nowadays, the main drawback of this technology is that the complex physics involved in the conversion of electromagnetic energy in thermal energy (heating) is not entirely understood and controlled for complex materials. In that work, the authors propose to look deeper in that way, first proposing a simulation tool, based on a coupling between a commercial code and a home made one, allowing the following of the electromagnetic field very precisely in the thickness of a laminate composite part, the last consisting of a stack of layers with different orientations, each layer made of a resin matrix and carbon fibers. Thermal fields are then computed and validated by experimental measurements. In a second part, the authors propose to look at a common welding case of a stringer, on a skin.
NASA's Research in Aircraft Vulnerability Mitigation
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
2005-01-01
Since its inception in 1958, the National Aeronautics and Space Administration s (NASA) role in civil aeronautics has been to develop high-risk, high-payoff technologies to meet critical national aviation challenges. Following the events of Sept. 11, 2001, NASA recognized that it now shared the responsibility for improving homeland security. The NASA Strategic Plan was modified to include requirements to enable a more secure air transportation system by investing in technologies and collaborating with other agencies, industry, and academia. NASA is conducting research to develop and advance innovative and commercially viable technologies that will reduce the vulnerability of aircraft to threats or hostile actions, and identify and inform users of potential vulnerabilities in a timely manner. Presented in this paper are research plans and preliminary status for mitigating the effects of damage due to direct attacks on civil transport aircraft. The NASA approach to mitigation includes: preventing loss of an aircraft due to a hit from man-portable air defense systems; developing fuel system technologies that prevent or minimize in-flight vulnerability to small arms or other projectiles; providing protection from electromagnetic energy attacks by detecting directed energy threats to aircraft and on/off-board systems; and minimizing the damage due to high-energy attacks (explosions and fire) by developing advanced lightweight, damage-resistant composites and structural concepts. An approach to preventing aircraft from being used as weapons of mass destruction will also be discussed.
Technology Evaluation for Environmental Risk Mitigation Compendium
NASA Technical Reports Server (NTRS)
Meinhold, A.; Greene, B.; Dussich, J.; Sorkin, A.; Olsen, W.
2017-01-01
The Technology Evaluation for Environmental Risk Mitigation (TEERM) Principal Center and its predecessor organization the Acquisition Pollution Prevention Program (AP2) supported the National Aeronautics and Space Administration (NASA) in identifying technology solutions to risks and costs to NASA programs driven by environmental regulations and requirements. TEERM researched the commercial and government marketplace to locate viable and available technologies that met NASAs needs. TEERM focused on addressing environmentally-driven risks of direct concern to NASA programs and facilities, including hazardous materials in NASA operations and materials that became obsolescent because of environmental regulations. TEERM projects aimed to reduce cost; ensure the health and safety of people, assets, and the environment; promote efficiency; and minimize duplication. Major TEERM and AP2 projects focused on waste minimization and hazardous waste treatment, recycling, corrosion prevention and control, solvent and ozone depleting substances substitution, and aqueous based cleaners. In 2017, NASA made the decision to terminate the TEERM Principal Center. This Compendium Report documents TEERM and AP2 project successes. The Compendium Report traces the evolution of TEERM based on evolving risks and requirements for NASA and its relationship to the Space Shuttle Program, the United States Department of Defense, the European Space Agency, and other public and private stakeholders. This Compendium Report also documents project details from Project Summaries and Joint Test Plans and describes project stakeholders and collaborative effort results.
Space Solar Power Demonstrations: Challenges and Progress
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)
2002-01-01
The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).
CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
Rehl, T; Müller, J
2013-01-15
Biogas will be of increasing importance in the future as a factor in reducing greenhouse gas emissions cost-efficiently by the optimal use of available resources and technologies. The goal of this study was to identify the most ecological and economical use of a given resource (organic waste from residential, commercial and industry sectors) using one specific treatment technology (anaerobic digestion) but applying different energy conversion technologies. Average and marginal abatement costs were calculated based on Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) methodologies. Eight new biogas systems producing electricity, heat, gas or automotive fuel were analyzed in order to identify the most cost-efficient way of reducing GHG emissions. A system using a combined heat and power station (which is connected to waste treatment and digestion operation facilities and located nearby potential residential, commercial or industrial heat users) was found to be the most cost-efficient biogas technology for reducing GHG emissions. Up to € 198 per tonne of CO(2) equivalents can be saved by replacing the "business as usual" systems based on fossil resources with ones based on biogas. Limited gas injection (desulfurized and dried biogas, without compression and upgrading) into the gas grid can also be a viable option with an abatement cost saving of € 72 per tonne of CO(2) equivalents, while a heating plant with a district heating grid or a system based on biogas results in higher abatement costs (€ 267 and € 270 per tonne CO(2) eq). Results from all systems are significantly influenced by whether average or marginal data are used as a reference. Beside that energy efficiency, the reference system that was replaced and the by-products as well as feedstock and investment costs were identified to be parameters with major impacts on abatement costs. The quantitative analysis was completed by a discussion of the role that abatement cost methodology can play in decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.
TechTracS: NASA's commercial technology management system
NASA Astrophysics Data System (ADS)
Barquinero, Kevin; Cannon, Douglas
1996-03-01
The Commercial Technology Mission is a primary NASA mission, comparable in importance to those in aeronautics and space. This paper will discuss TechTracS, NASA Commercial Technology Management System that has been put into place in FY 1995 to implement this mission. This system is designed to identify and capture the NASA technologies which have commercial potential into an off-the-shelf database application, and then track the technologies' progress in realizing the commercial potential through collaborations with industry. The management system consists of four stages. The first is to develop an inventory database of the agency's entire technology portfolio and assess it for relevance to the commercial marketplace. Those technologies that are identified as having commercial potential will then be actively marketed to appropriate industries—this is the second stage. The third stage is when a NASA-industry partnership is entered into for the purposes of commercializing the technology. The final stage is to track the technology's success or failure in the marketplace. The collection of this information in TechTracS enables metrics evaluation and can accelerate the establishment on direct contacts between and NASA technologist and an industry technologist. This connection is the beginning of the technology commercialization process.
In the past five years, a multitude of new inspection technologies have emerged as viable sources of pipeline condition data. Furthermore, many of these new technologies provide quantitative (versus qualitative) data that can significantly improve diagnostic and predictive capab...
The Human Interface Technology Laboratory.
ERIC Educational Resources Information Center
Washington Univ., Seattle. Washington Technology Center.
This booklet contains information about the Human Interface Technology Laboratory (HITL), which was established by the Washington Technology Center at the University of Washington to transform virtual world concepts and research into practical, economically viable technology products. The booklet is divided into seven sections: (1) a brief…
DNAseq Workflow in a Diagnostic Context and an Example of a User Friendly Implementation.
Wolf, Beat; Kuonen, Pierre; Dandekar, Thomas; Atlan, David
2015-01-01
Over recent years next generation sequencing (NGS) technologies evolved from costly tools used by very few, to a much more accessible and economically viable technology. Through this recently gained popularity, its use-cases expanded from research environments into clinical settings. But the technical know-how and infrastructure required to analyze the data remain an obstacle for a wider adoption of this technology, especially in smaller laboratories. We present GensearchNGS, a commercial DNAseq software suite distributed by Phenosystems SA. The focus of GensearchNGS is the optimal usage of already existing infrastructure, while keeping its use simple. This is achieved through the integration of existing tools in a comprehensive software environment, as well as custom algorithms developed with the restrictions of limited infrastructures in mind. This includes the possibility to connect multiple computers to speed up computing intensive parts of the analysis such as sequence alignments. We present a typical DNAseq workflow for NGS data analysis and the approach GensearchNGS takes to implement it. The presented workflow goes from raw data quality control to the final variant report. This includes features such as gene panels and the integration of online databases, like Ensembl for annotations or Cafe Variome for variant sharing.
Solar powered Stirling cycle electrical generator
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.
1991-01-01
Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.
UTILIZING LOW VOLATILE ORGANIC CONTENT EXTERIOR COATINGS FOR WOOD FURNITURE
This report provides an evaluation of commercially viable source reduction techniques implemented by a manufacturer of wood chairs, bar stools and settees in various styles ranging from classic American to European contemporary. As federal EPA regulations became more stringent fo...
Fate of Engineered Nanoparticles: Implications in the Environment
The increased flux of the engineered nanoparticles (ENPs) in consumer and commercial products has become a viable threat, particularly if their release affects the environment. The aim of this paper is to review the recent literature results pertaining to the underlying mechanism...
Construction of high-density bacterial colony arrays and patterns by the ink-jet method.
Xu, Tao; Petridou, Sevastioni; Lee, Eric H; Roth, Elizabeth A; Vyavahare, Narendra R; Hickman, James J; Boland, Thomas
2004-01-05
We have developed a method for fabricating bacterial colony arrays and complex patterns using commercially available ink-jet printers. Bacterial colony arrays with a density of 100 colonies/cm(2) were obtained by directly ejecting Escherichia coli (E. coli) onto agar-coated substrates at a rapid arraying speed of 880 spots per second. Adjusting the concentration of bacterial suspensions allowed single colonies of viable bacteria to be obtained. In addition, complex patterns of viable bacteria as well as bacteria density gradients were constructed using desktop printers controlled by a simple software program. Copyright 2003 Wiley Periodicals, Inc.
Status of NASA High-Speed Research Program
NASA Technical Reports Server (NTRS)
Whitehead, Allen H., Jr.
1998-01-01
This paper provides an overview of the NASA High-Speed Research (HSR) Program dedicated to establishing the technology foundation to support the US transport industry's decision for an environmentally acceptable, economically viable 300 passenger, 5000 n.mi., Mach 2.4 aircraft. The HSR program, begun in 1990, is supported by a team of US aerospace companies. The international economic stakes are high. The projected market for more than 500 High-Speed Civil Transport (HSCT) airplanes introduced between the years 2000 and 2015 translates to more than $200 billion in aircraft sales, and the potential of 140,000 new jobs. The paper addresses the history of supersonic commercial air transportation beginning with the Concorde and TU-144 developments in the early 1960 time period. The technology goals for the HSR program are derived from market study results, projections on environmental requirements, and technical goals for each discipline area referenced to the design and operational features of the Concorde. Progress since the inception of the program is reviewed and a summary of some of the lessons learned will be highlighted. An outline is presented of the remaining technological challenges. Emphasis in this paper will be on the traditional aeronautical technologies that lead to higher performance to ensure economic viability. Specific discussion will center around aerodynamic performance, flight deck research, materials and structures development and propulsion systems. The environmental barriers to the HSCT and that part of the HSR program that addresses those technologies are reviewed and assessed in a companion paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.C. Winkleman; T.V. Giel; Jason Cunningham
1999-07-30
The recent achievements of critical currents in excess of 1 x 10{sup 6} amp/cm{sup 2} at 77 K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the US DOE's sponsorship, the University of Tennessee Space Institute performed an extensive evaluation of leading coated conductor processing options. In general, it is their feeling that the science and chemistry that are being developed in the coated conductor wire program now need proper engineeringmore » evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less
Hypersonic airbreathing vehicle conceptual design (focus on aero-space plane)
NASA Technical Reports Server (NTRS)
Hunt, James L.; Martin, John G.
1989-01-01
The airbreathing single stage to orbit (SSTO) vehicle design environment is variable-rich, intricately networked and sensitivity intensive. As such, it represents a tremondous technology challenge. Creating a viable design will require sophisticated configuration/synthesis and the synergistic integration of advanced technologies across the discipline spectrum. In design exercises, reductions in the fuel weight-fraction requirements projected for an orbital vehicle concept can result from improvements in aerodynamics/controls, propulsion efficiencies and trajectory optimization; also, gains in the fuel weight-fraction achievable for such a concept can result from improvements in structural design, heat management techniques, and material properties. As these technology advances take place, closure on a viable vehicle design will be realizable.
ALKALI-ACTIVATED CEMENT (AAC) AS A SUSTAINABLE BUILDING MATERIAL
It is expected that this project will result in 1) production of technical paper(s) and presentations that better explains the relationships between chemical, microstructural, and performance properties of AACs, 2) commercially viable AAC formulae that pass the ASTM C1157 stan...
Ethical Tensions and Academic Leaders
ERIC Educational Resources Information Center
Ehrich, Lisa Catherine; Kimber, Megan; Cranston, Neil; Starr, Karen
2011-01-01
Internationally universities have been characterised by shrinking government funding, fierce competition for student enrolments, and greater pressures to become commercially viable. It is against this complex background that academic leaders have been required to confront and resolve a multitude of conflicting interests as they seek to balance a…
150 Passenger Commercial Aircraft
NASA Technical Reports Server (NTRS)
Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica
2002-01-01
It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated to determine the physical compatibility of integrating multiple technologies and then the impact on the design, both improvements and degradations, must be determined. These technologies are assessed deterministically. Again, Response Surface Equations (RSEs) are developed to allow for a full factorial evaluation of the combinations of the technologies. The best combination of technologies is selected and then the design space is again reevaluated for feasibility and viability.
Designing Opportunities for Transformation with Emerging Technologies
ERIC Educational Resources Information Center
Veletsianos, George
2011-01-01
In this article, the author argues that technology use in education has focused on combating instructional problems and inefficiencies. While technology use for such purposes is viable and important, the author proposes that practitioners and researchers in this field utilize emerging technologies as a means to provide opportunities for personally…
NASA Technical Reports Server (NTRS)
Del Basso, Steve
2000-01-01
The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.
Experimental assessment of an RFID-based crack sensor for steel structures
NASA Astrophysics Data System (ADS)
E Martínez-Castro, R.; Jang, S.; Nicholas, J.; Bansal, R.
2017-08-01
The use of welded steel cover plates had been a common design practice to increase beam section capacity in regions of high moment for decades. Many steel girder bridges with cover plates are still in service. Steel girder bridges are subject to cyclic loading, which can initiate crack formation at the toe of the weld and reduce beam capacity. Thus, timely detection of fatigue cracks is of utmost importance in steel girder bridge monitoring. To date, crack monitoring methods using in-house radio frequency identification (RFID)-based sensors have been developed to complement visual inspection and provide quantitative information of damage level. Offering similar properties at a reduced cost, commercial ultra-high frequency (UHF) passive RFID tags have been identified as a more financially viable option for pervasive crack monitoring using a dense array of sensors. This paper presents a study on damage sensitivity of low-cost commercial UHF RFID tags for crack detection and monitoring on metallic structures. Using backscatter power as a parameter for damage identification, a crack sensing system has been developed for single and multiple tag configurations for increased sensing pervasiveness. The effect on backscatter power of the existence and stage of crack propagation has been successfully characterized. For further automation of crack detection, a damage index based on the variation of backscatter power has also been established. The tested commercial RFID-based crack sensor contributes to the usage of this technology on steel girder bridges.
A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels
Park, Joshua I.; Steen, Eric J.; Burd, Helcio; Evans, Sophia S.; Redding-Johnson, Alyssa M.; Batth, Tanveer; Benke, Peter I.; D'haeseleer, Patrik; Sun, Ning; Sale, Kenneth L.; Keasling, Jay D.; Lee, Taek Soon; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Singer, Steven W.; Simmons, Blake A.; Gladden, John M.
2012-01-01
Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels. PMID:22649505
Analysis of the costs of fuel supply for wood-fired electric power plants in rural Liberia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlack, R.D.; Barron, W.F.; Samuels, G.
1985-06-01
In recent years the quality of rural electric services in Liberia has been declining and the future economic viability of these power stations is a growing concern. Each of the ten operating and each of the planned rural public power stations is designed to operate exclusively on gas oil (diesel fuel). Fuel expenditures by the Liberian Electricity Corporation (LEC) for the rural public stations represent a major and growing burden on the financially hardpressed utility. Liberia has two potentially significant alternatives to oil-fired electric power for its up-country towns: small (1 to 5 MW) hydroelectric facilities, and wood-fired steam ormore » gasifier plants (0.2 to 2 MW). Although small hydroelectric facilities appear viable for several locations, they cannot serve all locations and will require thermal back-up. The economics of supplying wood to a rural electric power plant or rural grid were evaluated under several scenarios involving: (1) different sources of the feedstock, and (2) differences in wood supply requirements for plants based on the use of steam or gasifier technology, and variation in the utilization level for such plants. With a few minor exceptions, wood energy supplies are plentiful throughout Liberia. Liberia has four different potential sources of wood fuel supply: the commercial cutting of retired rubber trees; the harvesting of secondary growth forest just prior to the land returning to temporary cultivation as part of a system of shifting agriculture; adding to the system of shifting agriculture the planting of fast-growing wood species and harvesting these trees when the land again is brought back under cultivation (generally after about five to seven years); and the establishment of commercial short-rotation wood energy plantations. Results indicate that the use of wood to fuel rural power stations is a viable economic option.« less
Processing of Space Resources to Enable the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2006-01-01
The NASA human exploration program as directed by the Vision for Exploration (G.W. Bush, Jan. 14,2004) includes developing methods to process materials on the Moon and beyond to enable safe and affordable human exploration. Processing space resources was first popularized (O Neill 1976) as a technically viable, economically feasible means to build city sized habitats and multi GWatt solar power satellites in Earth/Moon space. Although NASA studies found the concepts to be technically reasonable in the post Apollo era (AMES 1979), the front end costs the limits of national or corporate investment. In the last decade analysis of space on has shown it to be economically justifiable even on a relatively small mission or commercial scenario basis. The Mars Reference Mission analysis (JSC 1997) demonstrated that production of return propellant on Mars can enable an order of magnitude decrease in the costs of human Mars missions. Analysis (by M. Duke 2003) shows that production of propellant on the Moon for the Earth based satellite industries can be commercially viable after a human lunar base is established. Similar economic analysis (Rapp 2005) also shows large cost benefits for lunar propellant production for Mars missions and for the use of lunar materials for the production of photovoltaic power (Freundlich 2005). Recent technologies could enable much smaller initial costs, to achieve mass, energy, and life support self sufficiency, than were achievable in the 1970s. If the Exploration Vision program is executed with a front end emphasis on space resources, it could provide a path for human self reliance beyond Earth orbit. This path can lead to an open, non-zero-sum, future for humanity with safer human competition with limitless growth potential. This paper discusses extension of the analysis for space resource utilization, to determine the minimum systems necessary for human self sufficiency and growth off Earth. Such a approach can provide a more compelling and comprehensive path to space resource utilization.
NASA Astrophysics Data System (ADS)
Baiden, Greg; Grenier, Louis; Blair, Brad
As the Space Shuttle, Candarm and Space Station near their useful extended lives before the end of this decade, the question "What will be the next frontier for humans and robots to explore and how will we get there?" needs to be considered. Several countries are planning their next take on the exploration of the solar system. The moon is still a viable destination for several countries for two main reasons: the recent discovery of water improves the prospects of a basic infrastructure capability that would enable future commercial interests to drive the impetus to deploy profitable operations in the near future. The commercial appeal to establish a permanent lunar base should rise in this decade with the prospect of using natural resources available, in particular recently found water. The ability to break water into hydrogen and oxygen for providing the main necessities of life, rocket fuel and air to breathe make this permanent base feasible. Furthermore, several significant environmental issues will force this permanent base underground. These issues include lunar radiation, solar flares, temperature extremes and micro-meteorites. Lunar radiation alone will force this move to rock shielding protection of astronauts as at least 10 metres of rock cover will be required to protect human, animals and plants. As early as 1959 the placecountry-regionUS army considered a permanent underground base on the moon. While the original underground idea has merit space pioneers have strayed from this sensible safe concept. Furthermore, advances in proven telerobotic min-ing technology for terrestrial purposes can provide the opportunity for the commercial interests and perhaps government space programs to consider the concept, design, build and implement an underground lunar habitat and a mining and processing operation from basic infrastructure to commercial deployment of profitable operations. This paper discusses a Canadian concept behind a permanent manned outpost on the moon. The discussion includes the need for an underground outpost, how it might be constructed and the terrestrial technologies that can enable this base to made and used to mine on the moon.
NASA Astrophysics Data System (ADS)
Faulkner, Ankita Shah
As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial electrodes. These parameters include surface morphology, electrode composition, electrode density, and operating temperature. Finally, the third aim is to investigate commercial viability of the electrode architecture. This will be accomplished by developing pouch cell prototypes using a high-rate and low cost scale-up process. Through this work, we aim to realize a commercially viable high-power electrode technology.
A methodology for the comparative evaluation of alternative bioseparation technologies.
Tran, Richard; Zhou, Yuhong; Lacki, Karol M; Titchener-Hooker, Nigel J
2008-01-01
Advances in upstream technologies and growing commercial demand have led to cell culture processes of ever larger volumes and expressing at higher product titers. This has increased the burden on downstream processing. Concerns regarding the capacity limitations of packed-bed chromatography have led process engineers to begin investigating new bioseparation techniques that may be considered as "alternatives" to chromatography, and which could potentially offer higher processing capacities but at a lower cost. With the wide range of alternatives, which are currently available, each with their own strengths and inherent limitations, coupled with the time pressures associated with process development, the challenge for process engineers is to determine which technologies are most worth investigating. This article presents a methodology based on a multiattribute decision making (MADM) analysis approach, utilizing both quantitative and qualitative data, which can be used to determine the "industrial attractiveness" of bioseparation technologies, accounting for trade-offs between their strengths and weaknesses. By including packed-bed chromatography in the analysis as a reference point, it was possible to determine the alternatives, which show the most promise for use in large-scale manufacturing processes. The results of this analysis show that although the majority of alternative techniques offer certain advantages over conventional packed-bed chromatography, their attractiveness overall means that currently none of these technologies may be considered as viable alternatives to chromatography. The methodology introduced in this study may be used to gain significant quantitative insight as to the key areas in which improvements are required for each technique, and thus may be used as a tool to aid in further technological development.
FuzzyCLIPS from research to product
NASA Technical Reports Server (NTRS)
Bochsler, Dan; Dohmann, Edgar
1994-01-01
This paper describes the commercial productization of FuzzyCLIPS which was developed under a NASA Phase 2 SBIR contract. The intent of this paper is to provide a general roadmap of the processes that are required to make a viable, marketable product once its concept and development are complete.
46 CFR 296.11 - Vessel requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... time of war or national emergency; and (ii) Determined by the Secretary to be commercially viable; (2... comply with the requirements of the MSA 2003. (c) Telecommunications and Other Electronic Equipment. The telecommunications and other electronic equipment on an existing vessel that is redocumented under the laws of the...
46 CFR 296.11 - Vessel requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... time of war or national emergency; and (ii) Determined by the Secretary to be commercially viable; (2... comply with the requirements of the MSA 2003. (c) Telecommunications and Other Electronic Equipment. The telecommunications and other electronic equipment on an existing vessel that is redocumented under the laws of the...
USDA-ARS?s Scientific Manuscript database
Augmentation biocontrol is a commercially viable pest management tactic in enclosed glasshouse environments, but is far less effective in open-field agriculture where newly released enemies rapidly disperse from release sites. We tested the potential for behavior-modifying semiochemicals to increase...
78 FR 41026 - Request for Proposals for 2013 Statewide Wood Energy Teams
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... Teams AGENCY: U.S. Forest Service, USDA. ACTION: Request for proposals. SUMMARY: The Department of... supports collaborative, statewide wood energy teams that advance the installation of commercially viable wood energy systems. Public-private statewide teams are invited to seek funding to support the...
Shackleton Energy enabling Space Resources Exploitation on the Moon within a Decade
NASA Astrophysics Data System (ADS)
Keravala, J.; Stone, B.; Tietz, D.; Frischauf, N.
2013-09-01
Access to in-space natural resources is a key requirement for increasing exploration and expansion of humanity off Earth. In particular, making use of the Moon's resources in the form of lunar polar ice to fuel propellant depots at key locations in near Earth space enables dramatic reductions in the cost of access and operations in space, while simultaneously leveraging reusable in-space transporters essential to opening the newspace highway system. Success of this private venture will provide for a sustained balance of our terrestrial economy and the growth of our civilisation. Establishing the cis-Lunar highway required to access lunar sourced water from the cold traps of the polar craters provides the backbone infrastructure for an exponential growth of a space-based economy. With that core infrastructure in place, space-based solar power generation systems, debris mitigation capabilities and planetary protection systems plus scientific and exploratory missions, among others, can become commercial realities in our lifetime. Shackleton Energy was founded from the space, mining, energy and exploration sectors to meet this challenge as a fully private venture. Following successful robotic precursor missions, our industrial astronauts combined with a robotic mining capability will make first landings at the South Pole of the Moon and begin deliveries of propellant to our depots in within a decade. Customers, partners, technologies and most importantly, the investor classes aligned with the risk profiles involved, have been identified and all the components for a viable business are available. Infrastructure investment in space programs has traditionally been the province of governments, but sustainable expansion requires commercial leadership and this is now the responsibility of a dynamic new industry. The technologies and know-how are ready to be applied. Launch services to LEO are available and the industrial capability exists in the aerospace, mining and energy sectors to enable Shackleton Energy to build an in-orbit and Lunar infrastructure on a fully commercial basis.
Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process
2010-01-01
Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal feeds. PMID:20426816
Evaluation of commercially available small RNASeq library preparation kits using low input RNA.
Yeri, Ashish; Courtright, Amanda; Danielson, Kirsty; Hutchins, Elizabeth; Alsop, Eric; Carlson, Elizabeth; Hsieh, Michael; Ziegler, Olivia; Das, Avash; Shah, Ravi V; Rozowsky, Joel; Das, Saumya; Van Keuren-Jensen, Kendall
2018-05-05
Evolving interest in comprehensively profiling the full range of small RNAs present in small tissue biopsies and in circulating biofluids, and how the profile differs with disease, has launched small RNA sequencing (RNASeq) into more frequent use. However, known biases associated with small RNASeq, compounded by low RNA inputs, have been both a significant concern and a hurdle to widespread adoption. As RNASeq is becoming a viable choice for the discovery of small RNAs in low input samples and more labs are employing it, there should be benchmark datasets to test and evaluate the performance of new sequencing protocols and operators. In a recent publication from the National Institute of Standards and Technology, Pine et al., 2018, the investigators used a commercially available set of three tissues and tested performance across labs and platforms. In this paper, we further tested the performance of low RNA input in three commonly used and commercially available RNASeq library preparation kits; NEB Next, NEXTFlex, and TruSeq small RNA library preparation. We evaluated the performance of the kits at two different sites, using three different tissues (brain, liver, and placenta) with high (1 μg) and low RNA (10 ng) input from tissue samples, or 5.0, 3.0, 2.0, 1.0, 0.5, and 0.2 ml starting volumes of plasma. As there has been a lack of robust validation platforms for differentially expressed miRNAs, we also compared low input RNASeq data with their expression profiles on three different platforms (Abcam Fireplex, HTG EdgeSeq, and Qiagen miRNome). The concordance of RNASeq results on these three platforms was dependent on the RNA expression level; the higher the expression, the better the reproducibility. The results provide an extensive analysis of small RNASeq kit performance using low RNA input, and replication of these data on three downstream technologies.
Cariogenicity induced by commercial carbonated beverages in an experimental biofilm-caries model
Giacaman, Rodrigo A.; Pailahual, Vanesa; Díaz-Garrido, Natalia
2018-01-01
Objectives: Frequent consumption of sugars-containing carbonated beverages has been associated with caries, but the consequences on the dental biofilm remain unclear. The aim was to evaluate the effect of commercial carbonated beverages and their sugar-free version on enamel and dentine demineralization and on the cariogenic properties of Streptococcus mutans biofilms. Materials and Methods: Biofilms of S. mutans UA159 were grown on enamel and dentin slabs and exposed 3 times/day for 5 min, to a commercial cola or orange-flavored carbonated beverage or to their sugar-free version. Biofilms/slabs were recovered to assess biomass, viable microorganisms, protein content and polysaccharides. Demineralization was estimated by the variation of Knoop surface microhardness. Results: Exposures to the biofilm with sugars-containing carbonated beverages resulted in similar biomass, viable microorganisms, proteins, and polysaccharides than sucrose (P < 0.05). The sugar-free cola and orange-flavored drink showed lower effect on the biofilm, as compared with sucrose or their sugared version (P < 0.05). All of the products tested, included the sugar-free, showed higher demineralization than the negative control (P < 0.05). Conclusions: Sugars-containing carbonated beverages enhance cariogenic activity of S. mutans biofilms, comparable with sucrose. Sugar-free carbonated beverages also have a high demineralizing potential, without affecting biofilm properties. PMID:29657522
Bovine Milk as a Source of Functional Oligosaccharides for Improving Human Health12
Zivkovic, Angela M.; Barile, Daniela
2011-01-01
Human milk oligosaccharides are complex sugars that function as selective growth substrates for specific beneficial bacteria in the gastrointestinal system. Bovine milk is a potentially excellent source of commercially viable analogs of these unique molecules. However, bovine milk has a much lower concentration of these oligosaccharides than human milk, and the majority of the molecules are simpler in structure than those found in human milk. Specific structural characteristics of milk-derived oligosaccharides are crucial to their ability to selectively enrich beneficial bacteria while inhibiting or being less than ideal substrates for undesirable and pathogenic bacteria. Thus, if bovine milk products are to provide human milk–like benefits, it is important to identify specific dairy streams that can be processed commercially and cost-effectively and that can yield specific oligosaccharide compositions that will be beneficial as new food ingredients or supplements to improve human health. Whey streams have the potential to be commercially viable sources of complex oligosaccharides that have the structural resemblance and diversity of the bioactive oligosaccharides in human milk. With further refinements to dairy stream processing techniques and functional testing to identify streams that are particularly suitable for enriching beneficial intestinal bacteria, the future of oligosaccharides isolated from dairy streams as a food category with substantiated health claims is promising. PMID:22332060
Bovine milk as a source of functional oligosaccharides for improving human health.
Zivkovic, Angela M; Barile, Daniela
2011-05-01
Human milk oligosaccharides are complex sugars that function as selective growth substrates for specific beneficial bacteria in the gastrointestinal system. Bovine milk is a potentially excellent source of commercially viable analogs of these unique molecules. However, bovine milk has a much lower concentration of these oligosaccharides than human milk, and the majority of the molecules are simpler in structure than those found in human milk. Specific structural characteristics of milk-derived oligosaccharides are crucial to their ability to selectively enrich beneficial bacteria while inhibiting or being less than ideal substrates for undesirable and pathogenic bacteria. Thus, if bovine milk products are to provide human milk-like benefits, it is important to identify specific dairy streams that can be processed commercially and cost-effectively and that can yield specific oligosaccharide compositions that will be beneficial as new food ingredients or supplements to improve human health. Whey streams have the potential to be commercially viable sources of complex oligosaccharides that have the structural resemblance and diversity of the bioactive oligosaccharides in human milk. With further refinements to dairy stream processing techniques and functional testing to identify streams that are particularly suitable for enriching beneficial intestinal bacteria, the future of oligosaccharides isolated from dairy streams as a food category with substantiated health claims is promising.
Effect of Induced Pluripotent Stem Cell Technology in Blood Banking
Focosi, Daniele
2016-01-01
Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256
Medical ultrasound education for bioengineers
NASA Astrophysics Data System (ADS)
Vaezy, Shahram
2005-04-01
The widespread adoption of ultrasound technologies in medicine has necessitated the development of educational programs to address the growing demand for trained expertise in both academia and industry. The demand has been especially great in the field of therapeutic ultrasound that has experienced a significant level of research and development activities in the past decade. The applications cover a wide range including cancer treatment, hemorrhage control, cardiac ablation, gene therapy, and cosmetic surgery. A comprehensive educational program in ultrasound is well suited for bioengineering departments at colleges and universities. Our educational program for students in Bioengineering at the University of Washington includes a year-long coursework covering theory and practice of ultrasound, conducting research projects, attending and presenting at weekly seminars on literature survey, presentations at scientific meetings, and attending specialized workshops offered by various institutions for specific topics. An important aspect of this training is its multi-disciplinary approach, encompassing science, engineering, and medicine. The students are required to build teams with expertise in these disciplines. Our experience shows that these students are well prepared for careers in academia, conducting cutting edge research, as well as industry, being involved in the transformation of research end-products to commercially viable technology.
Valorization of winery waste vs. the costs of not recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devesa-Rey, R., E-mail: rosa.devesa.rey@uvigo.es; Vecino, X.; Varela-Alende, J.L.
Graphical abstract: Highlights: > Lactic acid, biosurfactants, xylitol or ethanol may be obtained from wine residues. > By-products valorization turns wine wastes into products with industrial applications. > The costs of waste disposal enhances the search of economically viable solutions for valorizing residues. - Abstract: Wine production generates huge amounts of waste. Before the 1990s, the most economical option for waste removal was the payment of a disposal fee usually being of around 3000 Euros. However, in recent years the disposal fee and fines for unauthorized discharges have increased considerably, often reaching 30,000-40,000 Euros, and a prison sentence is sometimesmore » also imposed. Some environmental friendly technologies have been proposed for the valorization of winery waste products. Fermentation of grape marc, trimming vine shoot or vinification lees has been reported to produce lactic acid, biosurfactants, xylitol, ethanol and other compounds. Furthermore, grape marc and seeds are rich in phenolic compounds, which have antioxidants properties, and vinasse contains tartaric acid that can be extracted and commercialized. Companies must therefore invest in new technologies to decrease the impact of agro-industrial residues on the environment and to establish new processes that will provide additional sources of income.« less
Lemaillet, Paul; Cooksey, Catherine C; Levine, Zachary H; Pintar, Adam L; Hwang, Jeeseong; Allen, David W
2016-03-24
The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Khangaonkar, Tarang; Long, Wen
2014-02-07
In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less
NASA helicopter transmission system technology program
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1983-01-01
The purpose of the NASA Helicopter Transmission System Technology Program is to improve specific mechanical components and the technology for combining these into advanced drive systems to make helicopters more viable and cost competitive for commerical applications. The history, goals, and elements of the program are discussed.
Microalgae Feedstocks for Aviation Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wigmosta, Mark S.; Coleman, Andre; Venteris, Erik
There is significant global interest in developing, testing, and using alternative jet fuels for both commercial and military use in an effort to create a sustainable and stable fuel supply while reducing greenhouse gas emissions. Currently, the aviation industry is entirely dependent on a finite-supply of petroleum based fuel sourced in part by politically and economically unstable regions of the world. Commercial jet fuel use within the contiguous United States (CONUS) was 17.8 billion gallons per year (BGY) in 2009, while jet fuel use in 2010 by the U.S. Air Force (USAF), Navy, and Army was 1.5 BGY, 0.6 BGY,more » and 0.8 BGY, respectively (Carter et al., 2011). U.S. commercial and military aviation sectors have set ambitious near-term alternative fuel and environmental performance targets. This includes a tentative Federal Aviation Administration (FAA) goal of 1 BGY alternative fuel use by commercial aircraft by 2018. The USAF has set a target of 50% for USAF domestic aviation via alternative fuels by 2016 (0.73 BGY), and 50% of the Navy’s total energy consumption afloat (0.3 BGY) will come from alternative fuels by 2020 (Carter et al., 2011). If these targets become policy, at least 2 BGY of domestically-produced alternative jet fuel will be required by 2020. The Energy Independence and Security Act (EISA) of 2007 established production requirements for domestic alternative fuels under the Renewable Fuel Standard (RFS). For example, 36 billion gallons of renewable fuel must be produced by 2022, of which 21 billion gallons shall be advanced biofuels. EISA defines advanced biofuels as non-corn starch derived biofuels having lifecycle greenhouse gas emissions 50% lower than gasoline. There a number of potential fuel pathways for meeting the RFS. One of these is biomass-based diesel, including jet fuel (Schnepf and Yacobucci, 2013). The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) has a stated goal in its 2013 Multi-Year Program Plan (USDOE, 2013) to support the RFS through development of “…commercially viable biomass utilization technologies to encourage the creation of a new domestic bioenergy industry…”. BETO has also recognized the potential for aviation biofuels to support the bioenergy industry, seeing drop-in bio-based jet fuels one of the viable alternatives for the aviation industry and the military to meet their ambitious near-term GHG reduction targets (USDOE, 2014). One of the important Multi-year Program Plan Targets (USDOE, 2013) is to establish feedstock resource assessment models to evaluate the geographic, economic, quality and environmental criteria for which 20 million metric tons of ash free dry weight (AFDW) algal biomass can be produced by 2022. Toward meeting the EISA requirements, algal biofuels may offer a number of advantages. They can produce a range of biofuel feedstocks suitable for diesel and aviation fuels. Microalgae, on a strain-specific basis, can be cultivated using impaired water including saline, and/or brackish pumped groundwater or seawater, treated industrial wastewater, municipal sewage effluent, and produced water generated from oil and gas drilling operations. Additionally, microalgae require nitrogen and phosphates as essential nutrients and could provide water treatment co-benefits to municipalities, industry, and the environment.« less
Dissolvable tattoo sensors: from science fiction to a viable technology
NASA Astrophysics Data System (ADS)
Cheng, Huanyu; Yi, Ning
2017-01-01
Early surrealistic painting and science fiction movies have envisioned dissolvable tattoo electronic devices. In this paper, we will review the recent advances that transform that vision into a viable technology, with extended capabilities even beyond the early vision. Specifically, we focus on the discussion of a stretchable design for tattoo sensors and degradable materials for dissolvable sensors, in the form of inorganic devices with a performance comparable to modern electronics. Integration of these two technologies as well as the future developments of bio-integrated devices is also discussed. Many of the appealing ideas behind developments of these devices are drawn from nature and especially biological systems. Thus, bio-inspiration is believed to continue playing a key role in future devices for bio-integration and beyond.
NASA Astrophysics Data System (ADS)
Zhang, Yimin; Joshi, Satish; MacLean, Heather L.
2010-01-01
The feasibility of meeting California's low carbon fuel standard (LCFS) using ethanol from various feedstocks is assessed. Lifecycle greenhouse gas (GHG) emissions, direct agricultural land use, petroleum displacement directly due to ethanol blending, and production costs for a number of conventional and lignocellulosic ethanol pathways are estimated under various supply scenarios. The results indicate that after considering indirect land use effects, all sources of ethanol examined, except Midwest corn ethanol, are viable options to meet the LCFS. However, the required ethanol quantity depends on the GHG emissions performance and ethanol availability. The quantity of ethanol that can be produced from lignocellulosic biomass resources within California is insufficient to meet the year 2020 LCFS target. Utilizing lignocellulosic ethanol to meet the LCFS is more attractive than utilizing Brazilian sugarcane ethanol due to projected lower direct agricultural land use, dependence on imported energy, ethanol cost, required refueling infrastructure modifications and penetration of flexible fuel E85 vehicles. However, advances in cellulosic ethanol technology and commercial production capacity are required to support moderate- to large-scale introduction of low carbon intensity cellulosic ethanol. Current cellulosic ethanol production cost estimates suffer from relatively high uncertainty and need to be refined based on commercial scale production data when available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.
2000-08-25
This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scalemore » equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.« less
NASA Technical Reports Server (NTRS)
Perry, Boyd, III; Noll, Thomas E.; Scott, Robert C.
2000-01-01
By the 1960s, researchers began to investigate the feasibility of using active controls technology (ACT) for increasing the capabilities of military and commercial aircraft. Since then many researchers, too numerous to mention, have investigated and demonstrated the usefulness of ACT for favorably modifying the aeroelastic response characteristics of flight vehicles. As a result, ACT entered the limelight as a viable tool for answering some very difficult design questions and had the potential for obtaining structural weight reductions optimizing maneuvering performance, and satisfying the multimission requirements being imposed on future military and commercial aircraft designs. Over the past 40 years, the NASA Langley Research Center (LaRC) has played a major role in developing ACT in part by its participation in many wind-tunnel programs conducted in the Transonic Dynamics Tunnel (TDT). These programs were conducted for the purposes of: (1) establishing concept feasibility; (2) demonstrating proof of concept; and (3) providing data for validating new modeling, analysis, and design methods. This paper provides an overview of the ACT investigations conducted in the TDT. For each program discussed herein, the objectives of the effort, the testing techniques, the test results, any, signIficant findings, and the lessons learned with respect to ACT testing are presented.
Morris, Michael A; Padmanabhan, Sibu C; Cruz-Romero, Malco C; Cummins, Enda; Kerry, Joseph P
2017-10-01
Fresh and processed muscle-based foods are highly perishable food products and packaging plays a crucial role in providing containment so that the full effect of preservation can be achieved through the provision of shelf-life extension. Conventional packaging materials and systems have served the industry well, however, greater demands are being placed upon industrial packaging formats owing to the movement of muscle-based products to increasingly distant markets, as well as increased customer demands for longer product shelf-life and storage capability. Consequently, conventional packaging materials and systems will have to evolve to meet these challenges. This review presents some of the new strategies that have been developed by employing novel nanotechnological concepts which have demonstrated some promise in significantly extending the shelf-life of muscle-based foods by providing commercially-applicable, antimicrobially-active, smart packaging solutions. The primary focus of this paper is applied to subject aspects, such as; material chemistries employed, forming methods utilised, interactions of the packaging functionalities including nanomaterials employed with polymer substrates and how such materials ultimately affect microbes. In order that such materials become industrially feasible, it is important that safe, stable and commercially-viable packaging materials are shown to be producible and effective in order to gain public acceptance, legislative approval and industrial adoption. Copyright © 2017. Published by Elsevier Ltd.
Non-intrusive speed sensor. [space shuttle main engine turbopumps
NASA Technical Reports Server (NTRS)
Maram, J.; Wyett, L.
1984-01-01
A computerized literature search was performed to identify candidate technologies for remote, non-intrusive speed sensing applications in Space Shuttle Main Engine (SSME) turbopumps. The three most promising technologies were subjected to experimental evaluation to quantify their performance characteristics under the harsh environmental requirements within the turbopumps. Although the infrared and microwave approaches demonstrated excellent cavitation immunity in laboratory tests, the variable-source magnetic speed sensor emerged as the most viable approach. Preliminary design of this speed sensor encountered no technical obstacles and resulted in viable and feasible speed nut, sensor housing, and sensor coil designs.
Technology Transfer and Commercialization
NASA Technical Reports Server (NTRS)
Martin, Katherine; Chapman, Diane; Giffith, Melanie; Molnar, Darwin
2001-01-01
During concurrent sessions for Materials and Structures for High Performance and Emissions Reduction, the UEET Intellectual Property Officer and the Technology Commercialization Specialist will discuss the UEET Technology Transfer and Commercialization goals and efforts. This will include a review of the Technology Commercialization Plan for UEET and what UEET personnel are asked to do to further the goals of the Plan. The major goal of the Plan is to define methods for how UEET assets can best be infused into industry. The National Technology Transfer Center will conduct a summary of its efforts in assessing UEET technologies in the areas of materials and emissions reduction for commercial potential. NTTC is assisting us in completing an inventory and prioritization by commercialization potential. This will result in increased exposure of UEET capabilities to the private sector. The session will include audience solicitation of additional commercializable technologies.
Raymond, Yves; Champagne, Claude P
2015-04-01
The goals of this study were to evaluate the precision and accuracy of flow cytometry (FC) methodologies in the evaluation of populations of probiotic bacteria (Lactobacillus rhamnosus R0011) in two commercial dried forms, and ascertain the challenges in enumerating them in a chocolate matrix. FC analyses of total (FC(T)) and viable (FC(V)) counts in liquid or dried cultures were almost two times more precise (reproducible) than traditional direct microscopic counts (DCM) or colony forming units (CFU). With FC, it was possible to ascertain low levels of dead cells (FC(D)) in fresh cultures, which is not possible with traditional CFU and DMC methodologies. There was no interference of chocolate solids on FC counts of probiotics when inoculation was above 10(7) bacteria per g. Addition of probiotics in chocolate at 40 °C resulted in a 37% loss in viable cells. Blending of the probiotic powder into chocolate was not uniform which raised a concern that the precision of viable counts could suffer. FCT data can serve to identify the correct inoculation level of a sample, and viable counts (FCV or CFU) can subsequently be better interpreted. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2015-10-01
Policymakers typically favor renewable fuel mandates over taxes and cap and trade programs to : reduce greenhouse gas emissions from the transportation sector. Because of delays in the development : of commercially viable renewable fuels and importan...
Design Research Methods for Future Mapping
ERIC Educational Resources Information Center
Malhotra, Sugandh; Das, Lalit K.; Chariar, V. M.
2014-01-01
Although a strategy for business innovation is to turn a concept into something that's desirable, viable, commercially successful and that which adds value to people's lives but in the fast changing world, we are seeing weakening of relationship between product, user and the environment, thereby causing sustainability issues. A concrete futuristic…
USDA-ARS?s Scientific Manuscript database
Micropropagation of Psidium guajava L. (guava) is a viable alternative to currently adopted techniques for large-scale plant propagation of commercial cultivars. Assessment of clonal fidelity in micropropagated plants is the first step towards ensuring genetic uniformity in mass production of planti...
40 CFR 725.205 - Persons who may report under this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... viable improvement of a product already on the market; or (ii) The researcher has sought or is seeking... microorganism, including as part of a mixture, is processed, distributed in commerce, or used, for any commercial purpose other than research and development. (e) Quantities of the inactivated microorganism, or...
DOT National Transportation Integrated Search
2007-05-30
Research experiments were designed and initiated to determine if application placement technologies offer : a viable solution for vegetation management along North Carolina Roadsides. Select equipment was evaluated for : broomsedge (Andropogon virgin...
Current state of OLED technology relative to military avionics requirements
NASA Astrophysics Data System (ADS)
Tchon, Joseph L.; Barnidge, Tracy J.; Hufnagel, Bruce D.; Bahadur, Birendra
2014-06-01
The paper will review optical and environmental performance thresholds required for OLED technology to be used on various military platforms. Life study results will be summarized to highlight trends while identifying remaining performance gaps to make this technology viable for future military avionics platforms.
NASA Astrophysics Data System (ADS)
Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.
2017-11-01
Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.
Engine Technology Challenges for the High-Speed Civil Transport Plane
NASA Technical Reports Server (NTRS)
Plencner, Robert M.; Misra, Ajay; Graber, Edwin J., Jr.; Shaw, Robert J.; Seng, Gary T.
1998-01-01
Ongoing NASA-funded and privately funded studies continue to indicate that an opportunity exists for a second generation supersonic commercial airliner, or High-Speed Civil Transport (HSCT), to become a key part of the 21 st century international air transportation system. Long distance air travel is projected to be the fastest growing segment of the air transportation market by the turn of the century with increases at about 5 percent per annum over the next two decades. This projection suggests that by the year 2015, more than 600,000 passengers per day will be traveling long distances, predominantly over water. These routes would provide the greatest potential for an HSCT to become a significant part of the international air transportation system. The potential market for an HSCT is currently projected to be anywhere from 500-1500 aircraft over the 2005-2030 time period. Such an aircraft fleet size would represent a considerable share of the potential long-range aircraft market. However, this projected HSCT fleet can become a reality only if technologies are developed which will allow an HSCT design that is (1) environmentally compatible and (2) economically viable. Simply stated, the HSCT will be a technology driven airplane. Without significant advances in airframe and propulsion technologies over the levels currently available, there will be no second generation supersonic airliner! This paper will briefly describe the propulsion technology challenges which must be met prior to any product launch decision being made by industry and the progress toward meeting these challenges through NASAs High-Speed Research (HSR) Program, a partnership between NASA and Boeing, General Electric and Pratt & Whitney.
Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.
2012-01-01
Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.C. Winkleman; T.V. Giel, Jr.; J. Cunningham
1999-06-30
The recent achievements of critical currents in excess of 1x10{sup 6}amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential fabrication of these coated conductors as wire. Numerous approaches and manufacturing schemes for producing coated conductor wire are currently being developed. Recently, under the U. S. Department of Energy (DOE's) sponsorship, the University of Tennessee Space Institute (UTSI) performed an extensive evaluation of leading coated conductor processing options. In general, it is our feeling that the science and chemistry that are being developed in the coated conductor wire program now need propermore » engineering evaluation to define the most viable options for a commercial fabrication process. All fabrication processes will need process control measurements. This report provides a specific review of the needs and available technologies for process control for many of the coated conductor processing options. This report also addresses generic process monitoring areas in which additional research and development is needed. The concentration is on the two different approaches for obtaining the textured substrates that have been identified as viable candidates. These are the Los Alamos National Laboratory's (LANL) ion-beam assisted deposition, called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory's (ORNL) rolling assisted, bi-axially textured substrate option called RABiTS{trademark}.« less
NASA Astrophysics Data System (ADS)
Gohardani, Amir S.; Doulgeris, Georgios; Singh, Riti
2011-07-01
This paper highlights the role of distributed propulsion technology for future commercial aircraft. After an initial historical perspective on the conceptual aspects of distributed propulsion technology and a glimpse at numerous aircraft that have taken distributed propulsion technology to flight, the focal point of the review is shifted towards a potential role this technology may entail for future commercial aircraft. Technological limitations and challenges of this specific technology are also considered in combination with an all electric aircraft concept, as means of predicting the challenges associated with the design process of a next generation commercial aircraft.
ERIC Educational Resources Information Center
Mdee, Anna; Emmott, Richard
2008-01-01
Social enterprise and fair trade are seen increasingly as redefining capitalist relationships through revaluing social impact and ownership in enterprise activities. One of the dilemmas in such activities is the tension between operating a viable and commercially-sustainable enterprise and maximising social and developmental impacts. This article…
USDA-ARS?s Scientific Manuscript database
Seed oil from lesquerella (Physaria fendleri (Gray) O'Kane & Al-Shehbaz) can potentially supplement castor oil as a non-petroleum-based chemical feedstock in the production of many industrial products. However, before lesquerella will become commercially viable, further efforts are needed to address...
Diurnal effects on Mentha canadensis oil yields and composition at two different harvests
USDA-ARS?s Scientific Manuscript database
Japanese cornmint, also known as menthol mint, (Mentha canadensis L. syn M. arvensis var canadensis L.), is an essential oil crop cultivated in several countries in Asia and South America. The plant is currently the only commercially viable source for natural menthol due to the high concentration of...
Rapid Prototyping of Mobile Learning Games
ERIC Educational Resources Information Center
Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu
2014-01-01
This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…
Space tourism optimized reusable spaceplane design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penn, J.P.; Lindley, C.A.
Market surveys suggest that a viable space tourism industry will require flight rates about two orders of magnitude higher than those required for conventional spacelift. Although enabling round-trip cost goals for a viable space tourism business are about {dollar_sign}240 per pound ({dollar_sign}529/kg), or {dollar_sign}72,000 per passenger round-trip, goals should be about {dollar_sign}50 per pound ({dollar_sign}110/kg) or approximately {dollar_sign}15,000 for a typical passenger and baggage. The lower price will probably open space tourism to the general population. Vehicle reliabilities must approach those of commercial aircraft as closely as possible. This paper addresses the development of spaceplanes optimized for the ultra-high flightmore » rate and high reliability demands of the space tourism mission. It addresses the fundamental operability, reliability, and cost drivers needed to satisfy this mission need. Figures of merit similar to those used to evaluate the economic viability of conventional commercial aircraft are developed, including items such as payload/vehicle dry weight, turnaround time, propellant cost per passenger, and insurance and depreciation costs, which show that infrastructure can be developed for a viable space tourism industry. A reference spaceplane design optimized for space tourism is described. Subsystem allocations for reliability, operability, and costs are made and a route to developing such a capability is discussed. The vehicle{close_quote}s ability to also satisfy the traditional spacelift market is shown. {copyright} {ital 1997 American Institute of Physics.}« less
Are commercial providers a viable option for clinical bacterial sequencing?
Raven, Kathy; Blane, Beth; Churcher, Carol; Parkhill, Julian; Peacock, Sharon J
2018-04-05
Bacterial whole-genome sequencing in the clinical setting has the potential to bring major improvements to infection control and clinical practice. Sequencing instruments are not currently available in the majority of routine microbiology laboratories worldwide, but an alternative is to use external sequencing providers. To foster discussion around this we investigated whether send-out services were a viable option. Four providers offering MiSeq sequencing were selected based on cost and evaluated based on the service provided and sequence data quality. DNA was prepared from five methicillin-resistant Staphylococcus aureus (MRSA) isolates, four of which were investigated during a previously published outbreak in the UK together with a reference MRSA isolate (ST22 HO 5096 0412). Cost of sequencing per isolate ranged from £155 to £342 and turnaround times from DNA postage to arrival of sequence data ranged from 12 to 63 days. Comparison of commercially generated genomes against the original sequence data demonstrated very high concordance, with no more than one single nucleotide polymorphism (SNP) difference on core genome mapping between the original sequences and the new sequence for all four providers. Multilocus sequence type could not be assigned based on assembly for the two cheapest sequence providers due to fragmented assemblies probably caused by a lower output of sequence data per isolate. Our results indicate that external providers returned highly accurate genome data, but that improvements are required in turnaround time to make this a viable option for use in clinical practice.
Participant Observation: A Promising Research Approach for Educational Technology
ERIC Educational Resources Information Center
Dodge, Martin; Bogdan, Robert
1974-01-01
Symbolic interaction is a useful perspective, a viable theoretical approach to getting at answers to many important questions related to educational technology. Participant observation is a useful methodology for rooting answers out of the research setting. (Author)
NASA Astrophysics Data System (ADS)
Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan
2016-07-01
Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.
Servoss, Jonathan; Chang, Connie; Fay, Jonathan; Ward, Kevin
2017-04-01
Research produced by medical academicians holds promise for developing into biomedical innovations in therapeutics, devices, diagnostics, and health care information technology; however, the road to biomedical innovation is fraught with risk, including the challenge of moving from basic research insight onto a viable commercialization path. Compounding this challenge is the growing demand on medical academicians to be more productive in their clinical, teaching, and research duties within a resource-constrained environment. In 2014, the University of Michigan (UM) Medical School and College of Engineering codesigned and implemented an accelerated, biomedical-focused version of the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The UM Early Tech Development (ETD) Course, designed for medical academicians exploring the commercial potential of early-stage ideas, covers the NSF I-Corps concept; supports the formation of teams of faculty, graduate, and medical students; and accommodates medical academicians' schedules. From 2014 to 2015, the ETD Course graduated 39 project teams from UM and other institutions. One-third of the teams have continued to pursue their projects, receiving additional funding, engaging industry partners, or enrolling in the NSF I-Corps program. The ETD Course, a potential pipeline to the NSF I-Corps program, captures a target audience of medical academicians and others in academic medicine. To better understand the long-term effects of the course and its relationship to the NSF I-Corps program, the authors will conduct a study on the careers of all ETD Course graduates, including those who have enrolled in NSF I-Corps versus those who have not.
Chang, Connie; Fay, Jonathan; Ward, Kevin
2017-01-01
Problem Research produced by medical academicians holds promise for developing into biomedical innovations in therapeutics, devices, diagnostics, and health care information technology; however, the road to biomedical innovation is fraught with risk, including the challenge of moving from basic research insight onto a viable commercialization path. Compounding this challenge is the growing demand on medical academicians to be more productive in their clinical, teaching, and research duties within a resource-constrained environment. Approach In 2014, the University of Michigan (UM) Medical School and College of Engineering codesigned and implemented an accelerated, biomedical-focused version of the National Science Foundation (NSF) Innovation Corps (I-Corps) program. The UM Early Tech Development (ETD) Course, designed for medical academicians exploring the commercial potential of early-stage ideas, covers the NSF I-Corps concept; supports the formation of teams of faculty, graduate, and medical students; and accommodates medical academicians’ schedules. Outcomes From 2014 to 2015, the ETD Course graduated 39 project teams from UM and other institutions. One-third of the teams have continued to pursue their projects, receiving additional funding, engaging industry partners, or enrolling in the NSF I-Corps program. Next Steps The ETD Course, a potential pipeline to the NSF I-Corps program, captures a target audience of medical academicians and others in academic medicine. To better understand the long-term effects of the course and its relationship to the NSF I-Corps program, the authors will conduct a study on the careers of all ETD Course graduates, including those who have enrolled in NSF I-Corps versus those who have not. PMID:28351064
Commercial integration and partnering at Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, J.R.; Babione, R.A.; Shikashio, L.A.
1994-06-01
Savannah River Site (SRS), particularly the Savannah River Technology Center (SRTC) with the experience from the first successful Integrated Technology Demonstration, can provide an excellent foundation for meeting DOE-EM`s objectives with the new DOE-EM five focus area approach. With this in mind, SRTC established an activity to pursue full commercialization of environmental technologies. This report is an assessment of the status of commercialization at SRS and provides recommendations for enhancement as well as some tools critical to implementation. A review was made of the current situation at SRS with regards to taking technology development to commercial fruition. This was donemore » from the perspective of comparing it to known commercialization models and processes. It was found that SRTC already works through many of the steps in these processes. With integration and action-oriented efforts of the inclusion of business and market factors, SRTC could become an aggressive, successful developer of commercialized technologies. Commercial success criteria tools were developed with regards to integrating them with SRTC selection criteria to ensure that all critical factors are covered in technology commercialization project evaluations. Private investors are very clear that their interest lies in funding commercial enterprises, not merely technologies. Mobilizing private capital is critical to real job growth and long-term economic development. Also, potential industry partners were identified that are willing to be involved with SRS` technology applications and regional development efforts. As another important component to success, regional support organizations were reviewed and evaluated.« less
Is self-sufficiency financially viable and ethically justifiable?--a commercial viewpoint.
Christie, R B
1994-12-01
Manufacturers of blood products have to maintain the highest possible standards for plasma screening and good manufacturing practices to ensure maximum purity and viral safety. The private sector companies have much experience in implementing and complying with national and international regulations. These requirements involve considerable cost in the areas of (1) plasma collection facilities, (2) research and clinical research, (3) manufacture, and (4) quality control. Total self-sufficiency would mean the loss of many existing resources. An alternative would be a collaboration between the public and private sectors to meet the needs of all patients who require plasma derived products. The current definition of self-sufficiency suggests that it is not financially viable.
Where is the café? The challenge of making retail uses viable in mixed-use suburban developments.
Grant, Jill; Perrott, Katherine
2011-01-01
Contemporary planners see mixing residential, retail and other compatible uses as an essential planning principle. This paper explores the challenges that planners, developers and municipal councillors encounter in trying to implement retail uses as part of the mix in suburban areas in three Canadian cities. The study finds that planners employ evolutionary theories of urban development to naturalise their normative visions of walkable and sociable communities. By contrast, developers point to consumer behaviour to explain why planners' ideas on mix do not work. In a society where people shop at big-box outlets, making the local café or pub commercially viable proves increasingly challenging.
Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin
2013-01-01
Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2−xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm−2 at 600°C, representing an important step toward commercially viable SOFC technologies. PMID:23945630
Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.
Degradation of Silicone Encapsulants in CPV Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Can; Miller, David C.; Tappan, Ian A.
High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less
Degradation of Silicone Encapsulants in CPV Optics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Tappan, Ian A.; Cai, Can
High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less
An open source, web based, simple solution for seismic data dissemination and collaborative research
NASA Astrophysics Data System (ADS)
Diviacco, Paolo
2005-06-01
Collaborative research and data dissemination in the field of geophysical exploration need network tools that can access large amounts of data from anywhere using any PC or workstation. Simple solutions based on a combination of Open Source software can be developed to address such requests, exploiting the possibilities offered by the web technologies, and at the same time avoiding the costs and inflexibility of commercial systems. A viable solution consists of MySQL for data storage and retrieval, CWP/SU and GMT for data visualisation and a scripting layer driven by PHP that allows users to access the system via an Apache web server. In the light of the experience building the on-line archive of seismic data of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), we describe the solutions and the methods adopted, with a view to stimulate both the attitude of network collaborative research of other institutions similar to ours, and the development of different applications.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-06-11
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene-metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm(-3) and 1,400 mW cm(-3), respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices.
Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system
NASA Astrophysics Data System (ADS)
Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel
2000-04-01
Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-01-01
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene–metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm−3 and 1,400 mW cm−3, respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices. PMID:26068809
Producing fired bricks using coal slag from a gasification plant in indiana
Chen, L.-M.; Chou, I.-Ming; Chou, S.-F.J.; Stucki, J.W.
2009-01-01
Integrated gasification combined cycle (IGCC) is a promising power generation technology which increases the efficiency of coal-to-power conversion and enhances carbon dioxide concentration in exhaust emissions for better greenhouse gas capture. Two major byproducts from IGCC plants are bottom slag and sulfur. The sulfur can be processed into commercially viable products, but high value applications need to be developed for the slag material in order to improve economics of the process. The purpose of this study was to evaluate the technical feasibility of incorporating coal slag generated by the Wabash River IGCC plant in Indiana as a raw material for the production of fired bricks. Full-size bricks containing up to 20 wt% of the coal slag were successfully produced at a bench-scale facility. These bricks have color and texture similar to those of regular fired bricks and their water absorption properties met the ASTM specifications for a severe weathering grade. Other engineering properties tests, including compressive strength tests, are in progress.
Carbon recovery by fermentation of CO-rich off gases - Turning steel mills into biorefineries.
Molitor, Bastian; Richter, Hanno; Martin, Michael E; Jensen, Rasmus O; Juminaga, Alex; Mihalcea, Christophe; Angenent, Largus T
2016-09-01
Technological solutions to reduce greenhouse gas (GHG) emissions from anthropogenic sources are required. Heavy industrial processes, such as steel making, contribute considerably to GHG emissions. Fermentation of carbon monoxide (CO)-rich off gases with wild-type acetogenic bacteria can be used to produce ethanol, acetate, and 2,3-butanediol, thereby, reducing the carbon footprint of heavy industries. Here, the processes for the production of ethanol from CO-rich off gases are discussed and a perspective on further routes towards an integrated biorefinery at a steel mill is given. Recent achievements in genetic engineering as well as integration of other biotechnology platforms to increase the product portfolio are summarized. Already, yields have been increased and the portfolio of products broadened. To develop a commercially viable process, however, the extraction from dilute product streams is a critical step and alternatives to distillation are discussed. Finally, another critical step is waste(water) treatment with the possibility to recover resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shaikh, Faiq; Franc, Benjamin; Allen, Erastus; Sala, Evis; Awan, Omer; Hendrata, Kenneth; Halabi, Safwan; Mohiuddin, Sohaib; Malik, Sana; Hadley, Dexter; Shrestha, Rasu
2018-03-01
Enterprise imaging has channeled various technological innovations to the field of clinical radiology, ranging from advanced imaging equipment and postacquisition iterative reconstruction tools to image analysis and computer-aided detection tools. More recently, the advancement in the field of quantitative image analysis coupled with machine learning-based data analytics, classification, and integration has ushered in the era of radiomics, a paradigm shift that holds tremendous potential in clinical decision support as well as drug discovery. However, there are important issues to consider to incorporate radiomics into a clinically applicable system and a commercially viable solution. In this two-part series, we offer insights into the development of the translational pipeline for radiomics from methodology to clinical implementation (Part 1) and from that point to enterprise development (Part 2). In Part 2 of this two-part series, we study the components of the strategy pipeline, from clinical implementation to building enterprise solutions. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Adaptive control of artificial pancreas systems - a review.
Turksoy, Kamuran; Cinar, Ali
2014-01-01
Artificial pancreas (AP) systems offer an important improvement in regulating blood glucose concentration for patients with type 1 diabetes, compared to current approaches. AP consists of sensors, control algorithms and an insulin pump. Different AP control algorithms such as proportional-integral-derivative, model-predictive control, adaptive control, and fuzzy logic control have been investigated in simulation and clinical studies in the past three decades. The variability over time and complexity of the dynamics of blood glucose concentration, unsteady disturbances such as meals, time-varying delays on measurements and insulin infusion, and noisy data from sensors create a challenging system to AP. Adaptive control is a powerful control technique that can deal with such challenges. In this paper, a review of adaptive control techniques for blood glucose regulation with an AP system is presented. The investigations and advances in technology produced impressive results, but there is still a need for a reliable AP system that is both commercially viable and appealing to patients with type 1 diabetes.
Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin
2013-01-01
Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.
Eisenberg, S; Nielen, M; Hoeboer, J; Bouman, M; Heederik, D; Koets, A
2011-06-04
Settled dust samples were collected on a commercial dairy farm in the Netherlands with a high prevalence of Mycobacterium avium subspecies paratuberculosis (MAP) (barn A) and on a Dutch experimental cattle farm (barn B) stocked with cattle confirmed to be MAP shedders. Barns were sampled while animals were present, after both barns were destocked and cleaned by cold high-pressure cleaning, and after being kept empty for two weeks (barn A) or after additional disinfection (barn B). MAP DNA was detected by IS900 real-time PCR and viable MAP were detected by liquid culture. MAP DNA was detected in 78 per cent of samples from barn A and 86 per cent of samples from barn B collected while animals were still present. Viable MAP was detected in six of nine samples from barn A and in three of seven samples from barn B. After cold high-pressure cleaning, viable MAP could be detected in only two samples from each barn. After leaving barn A empty for two weeks, and following additional disinfection of barn B, no viable MAP could be detected in any settled dust sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
...). Section 615 authorizes exemption from the Buy American Act for acquisition of information technology that... acquisition of information technology that is a commercial item. This same exemption has appeared every year... applies. ``Information technology'' and ``Commercial item'' are already defined in FAR part 2. This is a...
Summary of Research Report Cooperative Agreement
NASA Technical Reports Server (NTRS)
1997-01-01
Several areas of work related to commercialization of technology developed at NASA Ames Research Center (ARC) are discussed in this report. The areas are: (1) perform a feasibility study to develop a software commercialization center is at ARC; (2) perform preliminary work for formation of joint development of sensor technology for telemedicine applications; (3) development of a discovery interview process and staff training to assist the commercialization of technology developed at Ames, specifically aimed at working with researchers; (4) develop partners to further develop and commercialize image compression technology developed at AMES; (5) assist efforts to commercialize a software technology which imparts the ability to establish relevance-based retrieval in the handling of large repositories of information; (6) explore the development of cryocooler technology using pulse tube refrigeration; (7) assess interest in commercialization of a new method of measuring skin friction drag on wind tunnel models using liquid crystal material; (8) attempt to incorporate emerging technologies in the infrastructure of natural hazards mitigation; and (9) forming a nonprofit organization, "The Bootstrap Alliance", whose mission is to promote the use of digital technologies for collaborative problem solving. The results of these initiatives are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.
2010-03-01
Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies.more » One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.« less
Bioremediation of wastewater using microalgae
NASA Astrophysics Data System (ADS)
Chalivendra, Saikumar
Population expansion and industrial development has deteriorated the quality of freshwater reservoirs around the world and has caused freshwater shortages in certain areas. Discharge of industrial effluents containing toxic heavy metals such as Cd and Cr into the environment have serious impact on human, animal and aquatic life. In order to solve these problems, the present study was focused on evaluating and demonstrating potential of microalgae for bioremediation of wastewater laden with nitrogen (N) in the form of nitrates, phosphorous (P) in the form of phosphates, chromium (Cr (VI)) and cadmium (Cd (II)). After screening several microalgae, Chlorella vulgaris and algae taken from Pleasant Hill Lake were chosen as candidate species for this study. The viability of the process was demonstrated in laboratory bioreactors and various experimental parameters such as contact time, initial metal concentration, algae concentration, pH and temperature that would affect remediation rates were studied. Based on the experimental results, correlations were developed to enable customizing and designing a commercial Algae based Wastewater Treatment System (AWTS). A commercial AWTS system that can be easily customized and is suitable for integration into existing wastewater treatment facilities was developed, and capital cost estimates for system including installation and annual operating costs were determined. The work concludes that algal bioremediation is a viable alternate technology for treating wastewater in an economical and sustainable way when compared to conventional treatment processes. The annual wastewater treatment cost to remove N,P is ~26x lower and to remove Cr, Cd is 7x lower than conventional treatment processes. The cost benefit analysis performed shows that if this technology is implemented at industrial complexes, Air Force freight and other Department of Defense installations with wastewater treatment plants, it could lead to millions of dollars in savings that could be repurposed for meeting other needs.
Design of a low cost miniaturized SFCW GPR with initial results
NASA Astrophysics Data System (ADS)
Duggal, Swati; Sinha, Piyush; Gupta, Manish; Patel, Anand; Vedam, V. V.; Mevada, Pratik; Chavda, Rajesh; Shah, Amita; Putrevu, Deepak
2016-05-01
This paper discusses about the design &developmental of Ground Penetrating Radar (GPR), various scientific and commercial applications of GPR along with the testing and results of GPR at Antarctica for Ice thickness measurement. GPR instruments are categorised as per their frequency of operation, which is inversely proportional to the depth of penetration. GPRs are also categorized as per method of operation which is time-domain or frequency-domain. Indian market is presently procuring GPRs from only foreign suppliers. Space Applications Centre (SAC) had taken up GPR as R&D Technological development with a view to benchmark the technology which may be transferred to local industry for mass production of instrument at a relatively cheaper cost (~20 times cheaper). Hence, this instrument presents a viable indigenous alternative. Also, the design and configuration was targeted for terrestrial as well as future interplanetary (Lander/Rover) missions of ISRO to map subsurface features. The developed GPR has a very large bandwidth (100%, i.e. bandwidth of 500MHz with centre-frequency of 500MHz) and high dynamic range along with the advantage of being highly portable (<10kg). The system was configured as a Stepped-Frequency-Continuous-Wave (SFCW) GPR which is a frequency domain GPR with the aim to increase the detection capabilities with respect to current systems. In order to achieve this goal, innovative electronic equipment have been designed and developed. Three prototypes were developed and two of them have been delivered for Indian Scientific Expedition to Antarctica (ISEA) in 2013 and 2014-15, respectively and promising results have been obtained. The results from the same closely compare with that from commercial GPR too.
DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry J. Mazanec
2008-09-30
The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Matthew; Simpkins, Travis; Cutler, Dylan
There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less
A Statistical Analysis of the Economic Drivers of Battery Energy Storage in Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Matthew; Simpkins, Travis; Cutler, Dylan
There is significant interest in using battery energy storage systems (BESS) to reduce peak demand charges, and therefore the life cycle cost of electricity, in commercial buildings. This paper explores the drivers of economic viability of BESS in commercial buildings through statistical analysis. A sample population of buildings was generated, a techno-economic optimization model was used to size and dispatch the BESS, and the resulting optimal BESS sizes were analyzed for relevant predictor variables. Explanatory regression analyses were used to demonstrate that peak demand charges are the most significant predictor of an economically viable battery, and that the shape ofmore » the load profile is the most significant predictor of the size of the battery.« less
Facility for orbital material processing
NASA Astrophysics Data System (ADS)
Starodubov, D.; McCormick, K.; Dellosa, M.; Erdelyi, E.; Volfson, L.
2018-05-01
The sustainable orbital manufacturing with commercially viable and profitable operation has tremendous potential for driving the space exploration industry and human expansion into outer space. This highly challenging task has never been accomplished before. The current relatively high delivery cost of materials represents the business challenge of value proposition for making products in space. FOMS Inc. team identified an opportunity of fluoride optical fiber manufacturing in space that can lead to the first commercial production on orbit. To address continued cost effective International Space Station (ISS) operations FOMS Inc. has developed and demonstrated for the first time a fully operational space facility for orbital remote manufacturing with up to 50 km fiber fabrication capability and strong commercial potential for manufacturing operations on board the ISS.
Perspectives for the industrial enzymatic production of glycosides.
de Roode, B Mattheus; Franssen, Maurice C R; van der Padt, Albert; Boom, Remko M
2003-01-01
Glycosides are of commercial interest for industry in general and specifically for the pharmaceutical and food industry. Currently chemical preparation of glycosides will not meet EC food regulations, and therefore chemical preparation of glycosides is not applicable in the food industry. Thus, enzyme-catalyzed reactions are a good alternative. However, until now the low yields obtained by enzymatic methods prevent the production of glycosides on a commercial scale. Therefore, high yields should be established by a combination of optimum reaction conditions and continuous removal of the product. Unfortunately, a bioreactor for the commercial scale production of glycosides is not available. The aim of this article is to discuss the literature with respect to enzymatic production of glycosides and the design of an industrially viable bioreactor system.
NASA Technical Reports Server (NTRS)
1997-01-01
Technology Access for Product Innovation (TAP-IN), the largest technology deployment project funded by TRP, was competitively selected through a national solicitation for proposals. TAP-IN was created to help companies access and apply defense technologies and help defense-dependent companies enter new commercial markets. Defense technologies included technologies developed by DoD, DOE, NASA, and their contractors. TAP-IN was structured to provide region-based technology access services that were able to draw on technology resources nationwide. TAP-IN provided expert assistance in all stages of the commercialization process from concept through prototype design to capital sourcing and marketing strategy. TAP-IN helped companies locate new technology, identify business partners, secure financing, develop ideas for new products, identify new markets, license technology, solve technical problems, and develop company-specific applications of federal technology. TAP-IN leveraged NASA's existing commercial technology network to create an integrated national network of organizations that assisted companies in every state. In addition to NASA's six regional technology transfer centers (RTTCs), TAP-IN included business and technology development organizations in every state, the Industrial Designers Society of America, and the Federal Laboratory Consortium (FLC).
Deckers, N; Dorny, P; Kanobana, K; Vercruysse, J; Gonzalez, A E; Ward, B; Ndao, M
2008-12-01
Taenia solium cysticercosis is a significant public health problem in endemic countries. The current serodiagnostic techniques are not able to differentiate between infections with viable cysts and infections with degenerated cysts. The objectives of this study were to identify specific novel biomarkers of these different disease stages in the serum of experimentally infected pigs using ProteinChip technology (Bio-Rad) and to validate these biomarkers by analyzing serum samples from naturally infected pigs. In the experimental sample set 30 discriminating biomarkers (p<0.05) were found, 13 specific for the viable phenotype, 9 specific for the degenerated phenotype and 8 specific for the infected phenotype (either viable or degenerated cysts). Only 3 of these biomarkers were also significant in the field samples; however, the peak profiles were not consistent among the two sample sets. Five biomarkers discovered in the sera from experimentally infected pigs were identified as clusterin, lecithin-cholesterol acyltransferase, vitronectin, haptoglobin and apolipoprotein A-I.
Commercial Vehicle Technology Evaluation Publications | Transportation
Research | NREL Commercial Vehicle Technology Evaluation Publications Commercial Vehicle Technology Evaluation Publications NREL publishes technical reports, fact sheets, and other documents about its fleet evaluation activities: Hybrid electric vehicle publications Electric and plug-in hybrid
NASA Technical Reports Server (NTRS)
2000-01-01
For the past 42 years, NASA has made special efforts to ensure the widest possible dissemination of its research and technology developments. We share the wealth of technology developed for our missions with the nation's industries to contribute to US economic strength and quality of life. For the past 27 years, this publication has provided you with over 1,200 examples of products and services developed as a direct result of commercial partnerships between NASA and the business community. Examples have covered products from fire retardant materials and air pollution monitors to non-invasive cardiac monitors and sensors for environmental control. In the Technology Transfer and Outreach section of Spinoff 2000, we highlight the activities of our Ames Research Center's Commercial Technology Office (CTO). Their efforts to facilitate and support technology commercialization are representative of the CTO at each field center. Increased activities to accelerate the dissemination of technologies, speed up the process of patent licensing, quicken the release of software for beta testing, support and manage incubators, and hasten the collaboration with commercial and academic organizations will continue to maximize the earliest potential commercial utilization of NASA's new inventions and technologies. Spinoff 2000 is organized into three sections: (1) Aerospace and Development highlights major research and development efforts currently carried out at the 10 NASA field centers; (2) Commercial Benefits-Spinoffs describes commercially available products and services resulting from the transfer of NASA technology; and (3) Technology Transfer and Outreach features this year's center spotlight, NASA's Ames Research Center, and its commercialization efforts, as well as the mechanisms in place nationwide to assist US industry in obtaining, transferring, and applying NASA technology, expertise, and assistance.
Seelbach, C
1995-01-01
The Colloquium on Human-Machine Communication by Voice highlighted the global technical community's focus on the problems and promise of voice-processing technology, particularly, speech recognition and speech synthesis. Clearly, there are many areas in both the research and development of these technologies that can be advanced significantly. However, it is also true that there are many applications of these technologies that are capable of commercialization now. Early successful commercialization of new technology is vital to ensure continuing interest in its development. This paper addresses efforts to commercialize speech technologies in two markets: telecommunications and aids for the handicapped. PMID:7479814
Renewable energy from corn residues by thermochemical conversion
NASA Astrophysics Data System (ADS)
Yu, Fei
Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great potential to become a commercial process according to the mass and energy balance. One-step global model and two-step consecutive-reaction kinetic model offered a clue to the key mechanistic steps in the overall pyrolysis of corn residues. These results should have a positive impact on advancing renewable energy technologies and establishing the University's leadership status in the area of renewable energy development.
Back-Up/ Peak Shaving Fuel Cell System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staudt, Rhonda L.
2008-05-28
This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated.more » The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold F. McFarlane; Terry Todd
2013-11-01
Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore.more » Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor fuels have been irradiated for different purposes, but the vast majority of commercial fuel is uranium oxide clad in zirconium alloy tubing. As a result, commercial reprocessing plants have relatively narrow technical requirements for used nuclear that is accepted for processing.« less
Economic benefits of commercial space activities
NASA Astrophysics Data System (ADS)
Stone, Barbara A.
Space is not only an endless frontier for exploration, but also a potentially rich arena for profitable commerce to benefit all mankind. Access to the unique environment of space provides opportunities for unprecedented kinds of research to develop new products and services. This research can lead to commercially viable enterprises, which will become permanent businesses, which will provide good jobs for workers, pay taxes to their governments, and return dividends to their investors. Seeking superior products and processes is vital if the economy is to grow and prosper. This paper discusses the current and potential impact on the economy of selected private sector space activities.
Comments on the commercialization of expendable launch vehicles
NASA Technical Reports Server (NTRS)
Trilling, D. R.
1984-01-01
The President's national space policy encourages private sector investment and involvement in civil space activities. Last November, the President designated the Department of Transportation as lead agency for the commercialization of expendable launch vehicles. This presents a substantial challenge to the United States Government, since the guidelines and requirements that are set now will have great influence on whether American firms can become a viable competitive industry in the world launch market. There is a dual need to protect public safety and free the private sector launch industry from needless regulatory barriers so that it can grow and prosper.
Training Programmes as Incubators.
ERIC Educational Resources Information Center
Erikson, Truls; Gjellan, Are
2003-01-01
A European technological university conducts quarterly incubator programs in which teams develop ideas into viable business plans. Analysis indicates that 57 of 102 ideas resulted in successful technology-based businesses and more than 400 students received hands-on experience in business start-up. (Contains 16 references.) (SK)
Hybrid Tandem Solar Cells | Photovoltaic Research | NREL
Hybrid Tandem Solar Cells Hybrid Tandem Solar Cells To achieve aggressive cost reductions in photovoltaics (PV) beyond the 6¢/kWh SunShot Initiative 2020 goal, module efficiency must be increased beyond on a silicon platform and that aim to provide viable prototypes for commercialization. PV Research
Study and program plan for improved heavy duty gas turbine engine ceramic component development
NASA Technical Reports Server (NTRS)
Helms, H. E.
1977-01-01
Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.
NASA Astrophysics Data System (ADS)
Borchert, James W.; Stewart, Ian E.; Ye, Shengrong; Rathmell, Aaron R.; Wiley, Benjamin J.; Winey, Karen I.
2015-08-01
Development of thin-film transparent conductors (TC) based on percolating networks of metal nanowires has leaped forward in recent years, owing to the improvement of nanowire synthetic methods and modeling efforts by several research groups. While silver nanowires are the first commercially viable iteration of this technology, systems based on copper nanowires are not far behind. Here we present an analysis of TCs composed of copper nanowire networks on sheets of polyethylene terephthalate that have been treated with various oxide-removing post treatments to improve conductivity. A pseudo-2D rod network modeling approach has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire TCs. In our analysis, we find that the copper nanowire TCs are capable of achieving comparable electrical performance to silver nanowire TCs with similar dimensions. Lastly, we present a method for more accurately determining the nanowire area coverage in a TC over a large area using Rutherford Backscattering Spectrometry (RBS) to directly measure the metal content in the TCs. These developments will aid research and industry groups alike in the characterization of nanowire based TCs.Development of thin-film transparent conductors (TC) based on percolating networks of metal nanowires has leaped forward in recent years, owing to the improvement of nanowire synthetic methods and modeling efforts by several research groups. While silver nanowires are the first commercially viable iteration of this technology, systems based on copper nanowires are not far behind. Here we present an analysis of TCs composed of copper nanowire networks on sheets of polyethylene terephthalate that have been treated with various oxide-removing post treatments to improve conductivity. A pseudo-2D rod network modeling approach has been modified to include lognormal distributions in length that more closely reflect experimental data collected from the nanowire TCs. In our analysis, we find that the copper nanowire TCs are capable of achieving comparable electrical performance to silver nanowire TCs with similar dimensions. Lastly, we present a method for more accurately determining the nanowire area coverage in a TC over a large area using Rutherford Backscattering Spectrometry (RBS) to directly measure the metal content in the TCs. These developments will aid research and industry groups alike in the characterization of nanowire based TCs. Electronic supplementary information (ESI) available: Contains calibration curve for %T vs. area fraction. See DOI: 10.1039/c5nr03671b
Commercial technologies from the SP-100 program
NASA Astrophysics Data System (ADS)
Truscello, Vincent C.; Fujita, Toshio; Mondt, Jack F.
1995-01-01
For more than a decade, the Jet Propulsion Labortory (JPL) and Los Alamos National Laboratory (LANL) have managed a multi-agency funded effort to develop a space reactor power system. This SP-100 Program has developed technologies required for space power systems that can be implemented in the industrial and commercial sectors to improve our competitiveness in the global economy. Initial steps taken to transfer this technology from the laboratories to industrial and commercial entities within the United States include: (1) identifying specific technologies having commercial potential; (2) distributing information describing the identified technologies and interacting with interested commercial and industrial entities to develop application-specific details and requirements; and (3) providing a technological data base that leads to transfer of technology or the forming of teaming arrangements to accomplish the transfer by tailoring the technology to meet application-specific requirements. SP-100 technologies having commercial potential encompass fabrication processes, devices, and components. Examples are a process for bonding refractory metals to graphite, a device to sense the position of an actuator and a component to enable rotating machines to operate without supplying lubrication ( a self-lubricating ball bearing). Shortly after the National Aeronautics and Space Administration (NASA) Regional Technology Transfer Centers widely disseminated information covering SP-100 technologies, over one hundred expressions of interest were received. These early responses indicate that there is a large potential benefit in transferring SP-100 technology. Interactions with industrial and commercial entities have identified a substantial need for creating teaming arrangements involving the interested entity and personnel from laboratories and their contractors, who have the knowledge and ability to tailor the technology to meet application-specific requirements.
Commercial viability of CNS drugs: balancing the risk/reward profile.
Johnson, Ginger S
2014-01-01
CNS has historically been a formidable therapeutic area in which to innovate owing to biological (e.g., complex neurobiology, difficulty reaching the target), as well as clinical (e.g., subjective clinical endpoints, high placebo response, lack of biomarkers) challenges. In the current market where many of the larger diseases are dominated by a generic standard of care, commercial challenges now make the triple threat of scientific-clinical-commercial risk too much for many players to tackle. However, opportunities do exist for smaller biotech companies to concentrate on narrowly focused patient populations associated with high unmet need for which risk can be tightly defined. In CNS, there are two major areas to balance the risk/reward profile and create commercially viable opportunities: To realize value, all companies (start-ups and big players) must define, measure and quantify clear and meaningful value to all stakeholders: physicians, patients, caregivers and payers. © 2013.
Advanced Thin Film Solar Arrays for Space: The Terrestrial Legacy
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Hepp, Aloysius; Raffaelle, Ryne; Flood, Dennis
2001-01-01
As in the case for single crystal solar cells, the first serious thin film solar cells were developed for space applications with the promise of better power to weight ratios and lower cost. Future science, military, and commercial space missions are incredibly diverse. Military and commercial missions encompass both hundreds of kilowatt arrays to tens of watt arrays in various earth orbits. While science missions also have small to very large power needs there are additional unique requirements to provide power for near sun missions and planetary exploration including orbiters, landers, and rovers both to the inner planets and the outer planets with a major emphasis in the near term on Mars. High power missions are particularly attractive for thin film utilization. These missions are generally those involving solar electric propulsion, surface power systems to sustain an outpost or a permanent colony on the surface of the Moon or Mars, space based lasers or radar, or large Earth orbiting power stations which can serve as central utilities for other orbiting spacecraft, or potentially beaming power to the Earth itself. This paper will discuss the current state of the art of thin film solar cells and the synergy with terrestrial thin film photovoltaic evolution. It will also address some of the technology development issues required to make thin film photovoltaics a viable choice for future space power systems.
A comprehensive review on nano-molybdenum disulfide/DNA interfaces as emerging biosensing platforms.
Kukkar, Manil; Mohanta, Girish C; Tuteja, Satish K; Kumar, Parveen; Bhadwal, Akhshay Singh; Samaddar, Pallabi; Kim, Ki-Hyun; Deep, Akash
2018-06-01
The development of nucleic acid-based portable platforms for the real-time analysis of diseases has attracted considerable scientific and commercial interest. Recently, 2D layered molybdenum sulfide (2D MoS 2 from here on) nanosheets have shown great potential for the development of next-generation platforms for efficient signal transduction. Through combination with DNA as a biorecognition medium, MoS 2 nanostructures have opened new opportunities to design and construct highly sensitive, specific, and commercially viable sensing devices. The use of specific short ssDNA sequences like aptamers has been proven to bind well with the unique transduction properties of 2D MoS 2 nanosheets to realize aptasensing devices. Such sensors can be operated on the principles of fluorescence, electro-cheumuluminescence, and electrochemistry with many advantageous features (e.g., robust biointerfacing through various conjugation chemistries, facile sensor assembly, high stability with regard to temperature/pH, and high affinity to target). This review encompasses the state of the art information on various design tactics and working principles of MoS 2 /DNA sensor technology which is emerging as one of the most sought-after and valuable fields with the advent of nucleic acid inspired devices. To help achieve a new milestone in biosensing applications, great potential of this emerging technique is described further with regard to sensitivity, specificity, operational convenience, and versatility. Copyright © 2018 Elsevier B.V. All rights reserved.
Nutrient and media recycling in heterotrophic microalgae cultures.
Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S
2016-02-01
In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work.
Technology to Market Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-02-01
This fact sheet is an overview of the Technology to Market subprogram at the U.S. Department of Energy SunShot Initiative. The SunShot Initiative’s Technology to Market subprogram builds on SunShot’s record of moving groundbreaking and early-stage technologies and business models through developmental phases to commercialization. Technology to Market targets two known funding gaps: those that occur at the prototype commercialization stage and those at the commercial scale-up stage.
Applied magnetism: A supply-driven materials challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; McCall, Scott K.
Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less
Fernández, Dennys; Robles, Irma; Rodríguez-Valadez, Francisco J; Godínez, Luis A
2018-05-01
A novel arrangement for an electro-Fenton reactor aimed to treat neutral wastewater is presented. The arrangement consists on three-compartments in series, two of them packed with a cation exchange resin and one positioned between these, containing a polarized activated carbon column where the electrochemical generation of the Fenton reagent takes place. While the hydroxyl radicals electrochemically produced in-situ, react with the pollutant species adsorbed on the activated carbon cathode, the resin compartments administrate and collect the iron cation and the hydrated proton species in alternating flow direction cycles. The resulting process is a system that does not require acid or iron chemical addition to the process while at the same time, renders decontaminated water free of iron-dissolved species at neutral pH. The proposed electrochemical reactor arrangement is therefore the basis for the design of commercially viable electro-Fenton reactors in which the addition and subsequent removal of acid and iron chemicals is avoided; two of the currently most limiting features for the development of electro-Fenton technology for treating wastewater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun
2016-02-01
With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.
Lemaillet, Paul; Cooksey, Catherine C.; Levine, Zachary H.; Pintar, Adam L.; Hwang, Jeeseong; Allen, David W.
2016-01-01
The National Institute of Standards and Technology (NIST) has maintained scales for reflectance and transmittance over several decades. The scales are primarily intended for regular transmittance, mirrors, and solid surface scattering diffusers. The rapidly growing area of optical medical imaging needs a scale for volume scattering of diffuse materials that are used to mimic the optical properties of tissue. Such materials are used as phantoms to evaluate and validate instruments under development intended for clinical use. To address this need, a double-integrating sphere based instrument has been installed to measure the optical properties of tissue-mimicking phantoms. The basic system and methods have been described in previous papers. An important attribute in establishing a viable calibration service is the estimation of measurement uncertainties. The use of custom models and comparisons with other established scales enabled uncertainty measurements. Here, we describe the continuation of those efforts to advance the understanding of the uncertainties through two independent measurements: the bidirectional reflectance distribution function and the bidirectional transmittance distribution function of a commercially available solid biomedical phantom. A Monte Carlo-based model is used and the resulting optical properties are compared to the values provided by the phantom manufacturer. PMID:27453623
Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator
NASA Astrophysics Data System (ADS)
Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul
2016-09-01
The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.
Vijayaraghavan, K; Balasubramanian, R
2015-09-01
For the past few decades, biosorption has been widely investigated for the removal of different contaminants in aqueous media. A number of biomasses of different genre have been identified to possess good biosorption capacity. Insights into biosorption mechanisms have been provided by various researchers in order to develop a fundamental scientific understanding of the biosorption process. However, biosorption has not been employed widely for its large-scale commercial applications. The key factors that affect the growth and evolution of biosorption as a practical technology for decontamination of wastewaters include, (1) lack of investigations on multi-component solutions and wastewaters with complex matrix effects, (2) incomplete understanding of physico-chemical characteristics of biomasses of different types, (3) lack of studies to improve the performance of biosorbents through surface functionalization, and (4) non-integration of biosorption in wastewater/water treatment plants. This critical review aims to identify and discuss the practical limitations of biosorption and provide future research directions to make biosorption a technologically viable process with emphasis on selection and modification of biomasses to suit desired treatment applications, identify appropriate operation modes for large-scale applications of biosorption, and perform techno-economic evaluation of overall biosorption processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Near-Earth Asteroid Retrieval Mission (ARM) Study
NASA Technical Reports Server (NTRS)
Brophy, John R.; Muirhead, Brian
2013-01-01
The Asteroid Redirect Mission (ARM) concept brings together the capabilities of the science, technology, and the human exploration communities on a grand challenge combining robotic and human space exploration beyond low Earth orbit. This paper addresses the key aspects of this concept and the options studied to assess its technical feasibility. Included are evaluations of the expected number of potential targets, their expected discovery rate, the necessity to adequately characterize candidate mission targets, the process to capture a non-cooperative asteroid in deep space, and the power and propulsion technology required for transportation back to the Earth-Moon system. Viable options for spacecraft and mission designs are developed. Orbits for storing the retrieved asteroid that are stable for more than a hundred years, yet allow for human exploration and commercial utilization of a redirected asteroid, are identified. The study concludes that the key aspects of finding, capturing and redirecting an entire small, near-Earth asteroid to the Earth-Moon system by the first half of the next decade are technically feasible. The study was conducted from January 2013 through March 2013 by the Jet Propulsion Laboratory (JPL) in collaboration with Glenn Research Center (GRC), Johnson Space Center (JSC), Langley Research Center (LaRC), and Marshall Space Flight Center (MSFC).
Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun
2016-01-01
With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW. PMID:26861412
Applied magnetism: A supply-driven materials challenge
Rios, Orlando; McCall, Scott K.
2016-05-27
Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less
Erectable space platform for space sciences and applications
NASA Technical Reports Server (NTRS)
1979-01-01
The specific objectives of the study were to: (1) identify a viable conceptual design for the service module/platform; (2) assess the technology issues that must be faced in planning development; and (3) prepare an initial plan for bringing critical technologies up to acceptable levels.
Asnuntuck Community College's Machine Technology Certificate and Degree Programs.
ERIC Educational Resources Information Center
Irlen, Harvey S.; Gulluni, Frank D.
2002-01-01
States that although manufacturing remains a viable sector in Connecticut, it is experiencing skills shortages in the workforce. Describes the machine technology program's purpose, the development of the Asnuntuck Community College's (Connecticut) partnership with private sector manufacturers, the curriculum, the outcomes, and benefits of…
University of Utah, Energy Commercialization Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, James
During the Energy Commercialization Center’s (ECC) three years in operation, the only thing constant was change. The world of commercialization and cleantech evolved significantly during the time the ECC was formed and operating, including: the availability of cleantech funding lessoned, the growth of incubators and accelerators skyrocketed, the State of Utah created an office dedicated to energy development, the University of Utah was both praised and criticized for its success in commercialization, and the Federal government temporarily shut down. During the three-year grant there were three principle investigators on the grant, as well as three directors for the University’s Commercializationmore » Office. Change can be hard for an organization,but as we instruct the companies we support, “Fail fast and fail often, because it is the fastest path to success.” Although there were some unanticipated challenges along the way, the local ecosystem is stronger because of the ECC’s efforts. Perhaps the greatest lesson learned was the importance of aligned incentives between key stakeholders in the commercialization process and the need for resources at the company and individual entrepreneur levels. The universities have systems and incentives to commercialize technologies, but creating value and companies generally rest with the individuals and entrepreneurs. Unfortunately the ECC was unable to create a viable mechanism to transfer the commercialization process that successfully aligned incentives and achieve a more effective ecosystem within the Rocky Mountain West. However, the ECC was successful in adding value to the individual ecosystems, and connecting national resources to regional and local needs. Regarding the ECC’s effectiveness in developing a cleantech commercialization ecosystem, initial inroads and relationships were established with key stakeholders. However, incentives, perceived or real competition, differences in commercialization processes, and culture all played a role in inhibiting the development and distribution of a regional ecosystem and commercialization process. Had the University and the ECC been able to develop a software platform, some of these challenges may have been overcome, but without the final development and release of the Western Innovation Network, the ECC realistically could not scale and distribute a commercialization platform. Further, cleantech startups need to engage in a more intensive customer validation process, and establish strong community connections if they are to succeed in commercializing their products. The university system incentivizes research and access to research funding and risk capital is competitive, so by nature collaboration on commercialization was difficult. Each of the local ecosystems within the Rocky Mountain West was unique. Utah did not, and does not, have a system outside of the universities to support entrepreneurs and cleantech commercialization. Through the ECC’s efforts developing a regional ecosystem, it became clear that successful ecosystems had a community and associated mechanisms that supported local entrepreneurs and startups. Most importantly the ECC aided in the creation of Utah’s cleantech ecosystem, one that supports entrepreneurs and startup companies that need help and support in their efforts to commercialize clean technologies. The absence of support for clean tech from state government and local organizations was a significant impediment to cleantech commercialization. To overcome this challenge, the ECC has formed Sustainable Startups. Sustainable Startups is a new non-profit organization designed to build a culture and community in Utah that supports and understands the importance of cleantech and sustainable development. While the ECC generated mixed success in building a regional commercialization ecosystem for cleantech, the organization did provide tremendous benefit to startups and the broader public. Over 60 companies were given direct business development support by the ECC, many of whom then generated direct economic development impacts. In addition, the ECC served an important role as community convener, educator and relationship builder through hosting numerous public and private events including: Energize 2013; Millennial Train whistle stop; business plan competition supporter; Clean Tech Open Accelerator organizer; Sustainable Startups Series developer, and much more. While the ECC did not fully apply, develop, and transmit the University of Utah’s TCO commercialization model to cleantech, it nevertheless assisted numerous inventors, entrepreneurs and institutions in furthering the growth of clean energy and energy efficiency technologies. The TCO’s commercialization model was not applied to regional clean tech initiatives for several main reasons. First, flaws with the commercialization model were realized after the ECC’s formation. Second, leadership changes within the TCO and ECC hampered early organizational development and implementation initiatives. Third, misaligned incentives between the ECC, regional universities, institutions, and the State of Utah resulted in a lack of collaboration and knowledge transfer regarding commercialization. In principle, everyone was aligned and willing to collaborate, but reality was much different and challenging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oney, Stephen K.; Hogan, Timothy; Steinbeck, John
Ocean thermal energy conversion (OTEC) is a marine renewable energy technology with the potential to contribute significantly to the baseload power needs of tropical island communities and remote U.S. military installations. As with other renewable energy technologies, however, there are potential challenges to its commercialization: technological, financial, social, and environmental. Given the large volumes of seawater required to drive the electricity-producing cycle, there is potential for the intakes to negatively impact the marine resources of the source waterbody through the impingement and entrainment of marine organisms. The goal of this project was to identify feasible warm water intake designs formore » a land-based OTEC facility proposed for development in Port Allen, Kauai and to characterize the populations of ichthyoplankton near the proposed warm water intake location that could be at risk of entrainment. The specific objectives of this project were to: • Complete a site-specific assessment of available and feasible warm water intake technologies to determine the best intake designs for minimizing impacts to aquatic organisms at the proposed land-based OTEC site in Port Allen, Kauai. • Complete a field sampling program to collect biological data to characterize the baseline populations of ichthyoplankton near the sites being considered for the warm water intake at the proposed land-based OTEC site in Port Allen, Kauai. Various intake design options are presented with the focus on providing adequate environmental protection to the local ichthyoplankton population while providing an economically viable intake option to the OTEC developer. Further definition by NOAA and other environmental regulators is required to further refine the designs presented to meet all US regulations for future OTEC development.« less
The attitudes of science policy, environmental, and utility leaders on US energy issues and fusion
NASA Astrophysics Data System (ADS)
Miller, J. D.
1986-11-01
One example of basic and applied research at LLNL that has produced major, highly visible scientific and engineering advances has been the research related to controlled fusion energy. Continuing experimentation at LLNL and elsewhere is likely to demonstrate that fusion is a viable, inexhaustible alternative source of energy. Having conducted major fusion energy experiments for over 30 years at LLNL, it scientists and engineers recognized the enormous challenges that lay ahead in this important endeavor. To be successful, it was clear that collaborative efforts with universities, private industry, and other national laboratories would need to be greatly expanded. Along with invention and scientific discovery would come the challenge of transferring the myriad of new technologies from the laboratories to the private sector for commercialization of the fusion energy process and the application of related technologies to yet unimagined new industries and products. Therefore, using fusion energy research as the focus, the Laboratory's Technology Transfer Initiatives Program contracted with the Public Opinion Laboratory to conduct a survey designed to promote a better understanding of effective technology transfer. As one of the recognized authorities on scientific surveys, Dr. Jon Miller of the POL worked with Laboratory scientists to understand the objectives of the survey. He then formulated the questions, designed the survey, and derived his survey sample from a qualified list developed at the POL, which has formed the basis for other survey panels. This report, prepared by Dr. Miller, describes the basis and methodology of this survey process and then presents the survey findings and some conclusions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
... 9000-AL62 Federal Acquisition Regulation; Buy American Exemption for Commercial Information Technology... from the Buy American Act for acquisition of information technology that is a commercial item. DATES: Effective Date: May 31, 2011. FOR FURTHER INFORMATION CONTACT: Ms. Cecelia L. Davis, Procurement Analyst, at...
Ocean energy program summary. Volume 2: Research summaries
NASA Astrophysics Data System (ADS)
1990-01-01
The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the Federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the U.S. Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW(sub e). Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the U.S. Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-08
This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Fluga
The US Department of Energy and Caterpillar entered a Cooperative Agreement to develop compression ignition engine technology suitable for the light truck/SUV market. Caterpillar, in collaboration with a suitable commercialization partner, developed a new Compression Ignition Direct Injection (CIDI) engine technology to dramatically improve the emissions and performance of light truck engines. The overall program objective was to demonstrate engine prototypes by 2004, with an order of magnitude emission reduction while meeting challenging fuel consumption goals. Program emphasis was placed on developing and incorporating cutting edge technologies that could remove the current impediments to commercialization of CIDI power sources inmore » light truck applications. The major obstacle to commercialization is emissions regulations with secondary concerns of driveability and NVH (noise, vibration and harshness). The target emissions levels were 0.05 g/mile NOx and 0.01 g/mile PM to be compliant with the EPA Tier 2 fleet average requirements of 0.07 g/mile and the CARB LEV 2 of 0.05 g/mile for NOx, both have a PM requirement of 0.01 g/mile. The program team developed a combustion process that fundamentally shifted the classic NOx vs. PM behavior of CIDI engines. The NOx vs. PM shift was accomplished with a form of Homogeneous Charge Compression Ignition (HCCI). The HCCI concept centers on appropriate mixing of air and fuel in the compression process and controlling the inception and rate of combustion through various means such as variable valve timing, inlet charge temperature and pressure control. Caterpillar has adapted an existing Caterpillar design of a single injector that: (1) creates the appropriate fuel and air mixture for HCCI, (2) is capable of a more conventional injection to overcome the low power density problems of current HCCI implementations, (3) provides a mixed mode where both the HCCI and conventional combustion are functioning in the same combustion cycle. Figure 1 illustrates the mixed mode injection system. Under the LTCD program Caterpillar developed a mixed mode injector for a multi-cylinder engine system. The mixed mode injection system represents a critical enabling technology for the implementation of HCCI. In addition, Caterpillar implemented variable valve system technology and air system technology on the multi-cylinder engine platform. The valve and air system technology were critical to system control. Caterpillar developed the combustion system to achieve a 93% reduction in NOx emissions. The resulting NOx emissions were 0.12 gm/mile NOx. The demonstrated emissions level meets the stringent Tier 2 Bin 8 requirement without NOx aftertreatment! However, combustion development alone was not adequate to meet the program goal of 0.05gm/mile NOx. To meet the program goals, an additional 60% NOx reduction technology will be required. Caterpillar evaluated a number of NOx reduction technologies to quantify and understand the NOx reduction potential and system performance implications. The NOx adsorber was the most attractive NOx aftertreatment option based on fuel consumption and NOx reduction potential. In spite of the breakthrough technology development conducted under the LTCD program there remains many significant challenges associated with the technology configuration. For HCCI, additional effort is needed to develop a robust control strategy, reduce the hydrocarbon emissions at light load condition, and develop a more production viable fuel system. Furthermore, the NOx adsorber suffers from cost, packaging, and durability challenges that must be addressed.« less
Homogeneous Bacterial Aerosols Produced with a Spinning-Disc Generator
Harstad, J. Bruce; Filler, Melvin E.; Hushen, William T.; Decker, Herbert M.
1970-01-01
Aerosols composed of viable particles of a uniform size were produced with a commercial spinning-disc generator from aqueous suspensions of Bacillus subtilis var. niger spores containing various amounts of an inert material, dextran, to regulate aerosol particle size. Aerosols composed of single naked spores having an equivalent spherical diameter of 0.87 μm were produced from spore suspensions without dextran, whereas aerosols produced from suspensions containing 0.001, 0.01, 0.1, and 1% dextran had median diameters of 0.90, 1.04, 1.80, and 3.62 μm, respectively. Such aerosols, both homogeneous and viable, would be useful for calibrating air sampling devices, evaluating air filter systems, or for employment wherever aerosol behavior may be size-dependent. Images PMID:4989672
2002-01-01
Green River Basin ............................... 28 4.1. Economically Recoverable Oil and Gas in the United States (USGS...viable gas and oil resource. The next step will be to apply this methodology to estimate the viable resource in individual basins . RAND will begin this...effort by analyzing the Green River Basin . The analysis will specify the relationships among gas and oil deposits, technological options, economic
Market Assessment and Commercialization Strategy for the Radial Sandia Cooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Shandross, Richard; Weintraub, Daniel
This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.
Development of the COMmerical Experiment Transporter (COMET)
NASA Technical Reports Server (NTRS)
Pawlick, Joseph F., Jr.
1990-01-01
In order to commercialize space, this nation must develop a well defined path through which the Centers for the Commercial Development of Space (CCDS's) and their industrial partners and counterparts can exploit the advantages of space manufacturing and processing. Such a capability requires systems, a supporting infrastructure, and funding to become a viable component of this nation's economic strength. This paper follows the development of the COMmercial Experiment Program (COMET) from inception to its current position as the country's first space program dedicated to satisfying the needs of industry: an industry which must investigate the feasibility of space based processes, materials, and prototypes. With proposals now being evaluated, much of the COMET story is yet to be written, however concepts and events which led to it's current status and the plans for implementation may be presented.
Translation of an experimental oral vaccine formulation into a commercial product.
Carter, K C; Ferro, V A; Alexander, J; Mullen, A B
2006-02-01
An effective experimental vaccine may fail to become a therapeutic reality for a number of scientific, regulatory or commercial reasons. In this review, we share some of our personal experiences as University-based researchers and provide an account of some of the problems that we have encountered during preliminary scale-up and assessment of an oral influenza vaccine formulation. Many of the problems we have faced have been non-scientific and related to identifying project-funding sources, finding suitable contract manufacturing companies that are GMP compliant, and protecting intellectual property generated from the scientific studies. The review is intended as a practical guide that will allow other researchers to adopt effective strategies to permit the translation of an effective experimental formulation to a viable commercial product.
A forecast of broadcast satellite communications
NASA Technical Reports Server (NTRS)
Martino, J. P.; Lenz, R. C., Jr.
1977-01-01
This paper presents forecasts of likely changes in broadcast satellite technology, the technology of ground terminals, and the technology of terrestrial communications competitive with satellites. The impacts of these changes in technology are then assessed, using a cross-impact model of U.S. domestic telecommunications, to determine the consequences of various possible changes in communications satellite technology. These consequences are discussed in terms of various possible services, for households, businesses, and specialized customers, which might become economically viable as a result of improvements in satellite technology.
Instrumentation for optimizing an underground coal-gasification process
NASA Astrophysics Data System (ADS)
Seabaugh, W.; Zielinski, R. E.
1982-06-01
While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.
Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies.
Chertok, Beata; Webber, Matthew J; Succi, Marc D; Langer, Robert
2013-10-07
Early science fiction envisioned the future of drug delivery as targeted micrometer-scale submarines and "cyborg" body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery: the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the predefined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics.
Drug Delivery Interfaces in the 21st Century: From Science Fiction Ideas to Viable Technologies
Chertok, Beata; Webber, Matthew J.; Succi, Marc D.; Langer, Robert S.
2013-01-01
Early science fiction envisioned the future of drug delivery as targeted micron-scale submarines and ‘Cyborg’ body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery – the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the pre-defined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics. PMID:23915375
SOLUTIONS TO OVERCOME BARRIERS TO IMPLEMENTATION OF TREATMENT TECHNOLOGIES
To make treatment a viable option for remediation you must first identify the barriers to implementing treatment. The primary barrier is economics. Treatment options are relatively expensive and there is a lack of funds for treatment. The cost of technologies can be lowered by 1)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galgani, Pietro, E-mail: p.galgani@hotmail.com; Voet, Ester van der; Korevaar, Gijsbert
2014-12-15
Highlights: • Economic–environmental assessment of combining composting with biogas and biochar in Ghana. • These technologies can save greenhouse gas emissions for up to 0.57 t CO{sub 2} eq/t of waste treated. • Labor intensive, small-scale organic waste management is not viable without financial support. • Carbon markets would make these technologies viable with carbon prices in the range of 30–84 EUR/t. - Abstract: In some areas of Sub-Saharan Africa appropriate organic waste management technology could address development issues such as soil degradation, unemployment and energy scarcity, while at the same time reducing emissions of greenhouse gases. This paper investigatesmore » the role that carbon markets could have in facilitating the implementation of composting, anaerobic digestion and biochar production, in the city of Tamale, in the North of Ghana. Through a life cycle assessment of implementation scenarios for low-tech, small scale variants of the above mentioned three technologies, the potential contribution they could give to climate change mitigation was assessed. Furthermore an economic assessment was carried out to study their viability and the impact thereon of accessing carbon markets. It was found that substantial climate benefits can be achieved by avoiding landfilling of organic waste, producing electricity and substituting the use of chemical fertilizer. Biochar production could result in a net carbon sequestration. These technologies were however found not to be economically viable without external subsidies, and access to carbon markets at the considered carbon price of 7 EUR/ton of carbon would not change the situation significantly. Carbon markets could help the realization of the considered composting and anaerobic digestion systems only if the carbon price will rise above 75–84 EUR/t of carbon (respectively for anaerobic digestion and composting). Biochar production could achieve large climate benefits and, if approved as a land based climate mitigation mechanism in carbon markets, it would become economically viable at the lower carbon price of 30 EUR/t of carbon.« less
An analysis of successful commercialization of federally funded R&D energy technologies
NASA Astrophysics Data System (ADS)
Asuquo, Gibson Esang
Several studies indicate that commercialization of federally funded R&D technologies to private sector remains low. In an extension of research demonstrating relative effectiveness of various technology-transfer mechanisms used by the Department of Energy (DOE) in transferring federally funded R&D technologies, this study quantitatively analyzed 52 Industrial Technology Program (ITP) funded R&D technologies, from 1993 through 2006, to understand commercialization success of DOE's funded R&D technologies, based on the correlative significance between independent variables (R&D durations and levels of funding) and dependent variable (technology commercialization output). No statistically significant linear relationship was found between the studied variables. The R2 (the coefficient of multiple determination) value indicates that only three percent (0.03) of the change in the output of commercialized technologies can be explained by the change in the two independent variables. The results of this study have led to an important conclusion that the research, development, and deployment (RD&D) of federally funded energy technologies is complex and a non-linear process. The problem requires a consideration of other factors and a research design that can accommodate the complexity involved. However, as determined by this study, the ITP technology commercialization output (success rate) of 22% is nearly two times as high as the 14% Booz-Allen estimate for the rest of U.S. industry. A quantitative research (such as this study) that attempts to understand the relative significance of correlational relationship between R&D variables appears to offer insufficient explanations as to why the federal government is not getting high technology commercialization output from its dollar investments in R&D. Some qualitative research approaches could move this important research to the next level in the future. Further research in this area should focus on causal effects between R&D variables. The study should attempt to identify the effect that could be caused by an early involvement of angel investors, venture capitalists, and end-users of technologies during RD&D. Successful commercialization of energy technologies requires targeting the most promising innovations that may be jointly supported by public and private sector. A few suggestions on how to improve commercialization of federally funded R&D are outlined in Section 10.3 of this study.
NASA Astrophysics Data System (ADS)
Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli
2011-06-01
The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the Country.
The 2018 GaN power electronics roadmap
NASA Astrophysics Data System (ADS)
Amano, H.; Baines, Y.; Beam, E.; Borga, Matteo; Bouchet, T.; Chalker, Paul R.; Charles, M.; Chen, Kevin J.; Chowdhury, Nadim; Chu, Rongming; De Santi, Carlo; Merlyne De Souza, Maria; Decoutere, Stefaan; Di Cioccio, L.; Eckardt, Bernd; Egawa, Takashi; Fay, P.; Freedsman, Joseph J.; Guido, L.; Häberlen, Oliver; Haynes, Geoff; Heckel, Thomas; Hemakumara, Dilini; Houston, Peter; Hu, Jie; Hua, Mengyuan; Huang, Qingyun; Huang, Alex; Jiang, Sheng; Kawai, H.; Kinzer, Dan; Kuball, Martin; Kumar, Ashwani; Boon Lee, Kean; Li, Xu; Marcon, Denis; März, Martin; McCarthy, R.; Meneghesso, Gaudenzio; Meneghini, Matteo; Morvan, E.; Nakajima, A.; Narayanan, E. M. S.; Oliver, Stephen; Palacios, Tomás; Piedra, Daniel; Plissonnier, M.; Reddy, R.; Sun, Min; Thayne, Iain; Torres, A.; Trivellin, Nicola; Unni, V.; Uren, Michael J.; Van Hove, Marleen; Wallis, David J.; Wang, J.; Xie, J.; Yagi, S.; Yang, Shu; Youtsey, C.; Yu, Ruiyang; Zanoni, Enrico; Zeltner, Stefan; Zhang, Yuhao
2018-04-01
Gallium nitride (GaN) is a compound semiconductor that has tremendous potential to facilitate economic growth in a semiconductor industry that is silicon-based and currently faced with diminishing returns of performance versus cost of investment. At a material level, its high electric field strength and electron mobility have already shown tremendous potential for high frequency communications and photonic applications. Advances in growth on commercially viable large area substrates are now at the point where power conversion applications of GaN are at the cusp of commercialisation. The future for building on the work described here in ways driven by specific challenges emerging from entirely new markets and applications is very exciting. This collection of GaN technology developments is therefore not itself a road map but a valuable collection of global state-of-the-art GaN research that will inform the next phase of the technology as market driven requirements evolve. First generation production devices are igniting large new markets and applications that can only be achieved using the advantages of higher speed, low specific resistivity and low saturation switching transistors. Major investments are being made by industrial companies in a wide variety of markets exploring the use of the technology in new circuit topologies, packaging solutions and system architectures that are required to achieve and optimise the system advantages offered by GaN transistors. It is this momentum that will drive priorities for the next stages of device research gathered here.
AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prof. Alan W. Camb; Prof. Anthony Rollett
2001-08-31
To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied inmore » carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.« less
Organic electronics on fibers for energy conversion applications
NASA Astrophysics Data System (ADS)
O'Connor, Brendan T.
Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.
VCSEL technology for medical diagnostics and therapeutics
NASA Astrophysics Data System (ADS)
Hibbs-Brenner, M. K.; Johnson, K. L.; Bendett, M.
2009-02-01
In the 1990's a new laser technology, Vertical Cavity Surface Emitting Lasers, or VCSELs, emerged and transformed the data communication industry. The combination of performance characteristics, reliability and performance/cost ratio allowed high data rate communication to occur over short distances at a commercially viable price. VCSELs have not been widely used outside of this application space, but with the development of new attributes, such as a wider range of available wavelengths, the demonstration of arrays of VCSELs on a single chip, and a variety of package form factors, VCSELs can have a significant impact on medical diagnostic and therapeutic applications. One area of potential application is neurostimulation. Researchers have previously demonstrated the feasibility of using 1850nm light for nerve stimulation. The ability to create an array of VCSELs emitting at this wavelength would allow significantly improved spatial resolution, and multiple parallel channels of stimulation. For instance, 2D arrays of 100 lasers or more can be integrated on a single chip less than 2mm on a side. A second area of interest is non-invasive sensing. Performance attributes such as the narrow spectral width, low power consumption, and packaging flexibility open up new possibilities in non-invasive and/or continuous sensing. This paper will suggest ways in which VCSELs can be implemented within these application areas, and the advantages provided by the unique performance characteristics of the VCSEL. The status of VCSEL technology as a function of available wavelength and array size and form factors will be summarized.
Technology Transition a Model for Infusion and Commercialization
NASA Technical Reports Server (NTRS)
McMillan, Vernotto C.
2006-01-01
The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.
Danny C. Lee; Larry L. Irwin
2005-01-01
Concern for viable spotted owl (Strix occidentalis) populations has played prominently in the management of western forests in the United States. Historically, much of the debate has focused on the impacts of commercial timber harvest. Increasingly, the conflict is shifting to the habitat needs of owls versus the need for active management of fire-...
Environmental Exposure Effects on Composite Materials for Commercial Aircraft
NASA Technical Reports Server (NTRS)
Hoffman, D. J.
1980-01-01
The test program concentrates on three major areas: flight exposure; ground based exposure; and accelerated environmental effects and data correlation. Among the parameters investigated were: geographic location, flight profiles, solar heating effects, ultraviolet degradation, retrieval times, and test temperatures. Data from the tests can be used to effectively plan the cost of production and viable alternatives in materials selection.
Capital Investment and Market Segmentation: Making Movies for Mormon Audiences
ERIC Educational Resources Information Center
Wright, Newell D.; Larsen, Val
2014-01-01
Is there a commercially viable market in the United States for movies made for Mormons? David "Dutch" Richards, a graduate of Brigham Young University's School of Film, thinks there is. He believes that in the Western United States, especially in Utah and the Intermountain West, there are enough Mormons who would pay to watch a film by,…
Marguerite Sykes; John Klungness; Freya Tan; Mathew Stroika; Said Abubakr
1999-01-01
Production of a lightweight, high opacity printing paper is a common goal of papermakers using virgin or recycled fibers. Fiber loading is an innovative, commercially viable process that can substantially upgrade and extend most types of wood fibers. Fiber loading, a process carried out at high consistency and high alkalinity, precipitates calcium carbonate (PCC) in...
C.H. Strauss
1991-01-01
Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the eastern U.S. Populus hybrid planted on good quality plantation sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year....
The Pilot Mentor-Protege Program: A Viable Program for Government Procurement
1993-06-01
Protege, Small Disadvantaged Business, Government Contracting 19 Abstract (continue on reverse if necessaryj and identif by block number) The Pilot Mentor...developmental assistance to Small Disadvantaged Businesses (SDBs). The developmental assistance provided should enhance the capabilities of SD)Bs to perform...as subcontractfors and suppliers under Government and commercial contracts and increase Small Disadvantaged Business participation in Department of
Donald L. Rockwood; Bijay Tamang; Matias Kirst; JY Zhu
2012-01-01
For several methods utilizing woody biomass for energy (Rockwood and others 2008), one of the challenges is the large, continuous fuel supply required. For example, proposed biomass plants in Florida may each require one million tons of biomass/year. When supplies of forest residues and urban wood wastes are limited, short rotation woody crops (SRWC) are a viable...
21 CFR 1240.62 - Turtles intrastate and interstate requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... live turtles with a carapace length of less than 4 inches shall not be sold, held for sale, or offered...; criminal penalties. (1) Any viable turtle eggs or live turtles with a carapace length of less than 4 inches... length of less than 4 inches which are held for sale or offered for any other type of commercial or...
2015-01-01
The aim of this study was to manufacture functional high protein fermented beverage, using whey protein concentrate (WPC) and Lactobacillus plantarum DK211 isolated from kimchi, and to evaluate the physicochemical, functional, and sensory properties of the resulting product. The fermented whey beverage (FWB) was formulated with whey protein concentrate 80 (WPC 80), skim milk powder, and sucrose; and fermented with Lactobacillus plantarum DK211 as single, or mixed with Lactococcus lactis R704, a commercial starter culture. The pH, titratable acidity, and viable cell counts during fermentation and storage were evaluated. It was found that the mixed culture showed faster acid development than the single culture. The resulting FWB had high protein (9%) and low fat content (0.2%). Increased viscosity, and antioxidant and antimicrobial activity were observed after fermentation. A viable cell count of 109 CFU/mL in FWB was achieved within 10 h fermentation, and it remained throughout storage at 15℃ for 28 d. Sensory analysis was also conducted, and compared to that of a commercial protein drink. The sensory scores of FWB were similar to those of the commercial protein drink in most attributes, except sourness. The sourness was highly related with the high lactic acid content produced during fermentation. The results showed that WPC and vegetable origin lactic acid bacteria isolated from kimchi might be used for the development of a high protein fermented beverage, with improved functionality and organoleptic properties. PMID:26761827
Spinoff 2001: Special Millennium Feature
NASA Technical Reports Server (NTRS)
2001-01-01
For the past 43 years, NASA has devoted its facilities, labor force, and expertise to sharing the abundance of technology developments used for its missions with the nation's industries. These countless technologies have not only successfully contributed to the growth of the U.S. economy, but also to the quality of life on Earth. For the past 25 years, NASA's Spinoff publication has brought attention to thousands of technologies, products, and services that were developed as a direct result of commercial partnerships between NASA and the private business sector. Many of these exciting technologies included advances in ceramics, computer technology, fiber optics, and remote sensing. New and ongoing research at the NASA field centers covers a full spectrum of technologies that will provide numerous advantages for the future, many of which have made significant strides in the commercial market. The NASA Commercial Technology Network plays a large role in transferring this progress. By applying NASA technologies such as data communication, aircraft de-icing technologies, and innovative materials to everyday functions, American consumers and the national economy benefit. Moving forward into the new millennium, these new technologies will further advance our country's position as the world leader in scientific and technical innovation. These cutting-edge innovations represent the investment of the U.S. citizen in the Space Program. Some of these technologies are highlighted in Spinoff 2001, an example of NASA's commitment to technology transfer and commercialization assistance. This year's issue spotlights the commercial technology efforts of NASA's John F. Kennedy Space Center. Kennedy's extensive network of commercial technology opportunities has enabled them to become a leader in technology transfer outreach. This kind of leadership is exemplified through Kennedy's recent partnership with the State of Florida, working toward the development of the Space Experiment Research and Processing Laboratory. The new laboratory is the first step toward the development of a proposed 400-acre Space Commerce Park, located at Kennedy Space Center. Spinoff, once again, successfully showcases the variety of commercial successes and benefits resulting from the transfer of NASA technology to private industry. It is with great pride and pleasure that we present Spinoff 2001 with a Special Millennium Feature. With help from U.S. industry and commercial technology programs, NASA will continue to assist in the presentation of innovative new products to our nation.
NASA Astrophysics Data System (ADS)
Hester, Michael Wayne
Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece pressing proved very successful. With three passes through the system, 4043 processed material experienced an 88.88% increase in microhardness, 203.4% increase in converted yield strength, and a 98.5% reduction in theoretical final grain size to 103 nanometers using the Hall-Petch relation. The process factor, number of passes, was statistically significant at the 95% confidence level; whereas, temperature was significant at the 90% confidence level. Limitations of system components precluded completion of studies involving continuous pressing. Proposed system redesigns, however, will ensure mainstream commercialization of continuous length work piece processing.
Instrumentation, metrology, and standards: key elements for the future of nanomanufacturing
NASA Astrophysics Data System (ADS)
Postek, Michael T.; Lyons, Kevin
2007-09-01
Nanomanufacturing is the essential bridge between the discoveries of nanoscience and real world nanotech products and is the vehicle by which the Nation and the World will realize the promise of major technological innovation across a spectrum of products that will affect virtually every industrial sector. For nanotech products to achieve the broad impacts envisioned, they must be manufactured in market-appropriate quantities in a reliable, repeatable, economical and commercially viable manner. In addition, they must be manufactured so that environmental and human health concerns are met, worker safety issues are appropriately assessed and handled, and liability issues are addressed. Critical to this realization of robust nanomanufacturing is the development of the necessary instrumentation, metrology, and standards. Integration of the instruments, their interoperability, and appropriate information management are also critical elements that must be considered for viable nanomanufacturing. Advanced instrumentation, metrology and standards will allow the physical dimensions, properties, functionality, and purity of the materials, processes, tools, systems, products, and emissions that will constitute nanomanufacturing to be measured and characterized. This will in turn enable production to be scaleable, controllable, predictable, and repeatable to meet market needs. If a nano-product cannot be measured it cannot be manufactured; additionally if that product cannot be made safely it should not be manufactured. This presentation introduces the Instrumentation, Metrology, and Standards for Nanomanufacturing Conference at the 2007 SPIE Optics and Photonics. This conference will become the leading forum for the exchange of foundational information and discussion of instrumentation, metrology and standards which are key elements for the success of nanomanufacturing.
Singh, Surendra; Datta, Pallavi
2006-01-01
Periodic applications of heavy dosages of herbicides in modern rice-agriculture are a necessary evil for obtaining high crop productivity. Such herbicides are not only detrimental to weeds but biofertilizer strains of diazotrophic cyanobacteria also. It is therefore, essential to screen and select such biofertilizer strains of diazotrophic cyanobacteria exhibiting natural tolerance to common rice-field herbicides that can be further improved by mutational techniques to make biofertilizer technology a viable one. Therefore, efforts have been made to screen five dominant diazotrophic cyanobacterial forms e.g. filamentous heterocystous Nostoc punctiforme , Nostoc calcicola , Anabaena variabilis and unicellular Gloeocapsa sp. and Aphanocapsa sp. along with standard laboratory strain Nostoc muscorum ISU against increasing concentrations (0-100 mg l(-1) of four commercial grade common rice-field herbicides i.e. Arozin, Butachlor, Alachlor and 2,4-D under diazotrophic growth conditions. The lethal and IGC(50) concentrations for all four herbicides tested were found highest for A. variabilis as compared to other test cyanobacteria. The lowest reduction in chlorophyll a content, photosynthetic oxygen evolution, and N(2)-fixation was found in A. variabilis as compared to other rice field isolates and standard laboratory strain N. muscorum ISU. On the basis of prolong survival potential and lowest reductions in vital metabolic activities tested at IGC(50) concentration of four herbicides, it is concluded that A. variabilis is the most potent and promising cyanobacterial isolate as compared with other forms. This could be further improved by mutational techniques for exploitation as most potential and viable biofertilizer strain.
Duan-Arnold, Yi; Gyurdieva, Alexandra; Johnson, Amy; Jacobstein, Douglas A.; Danilkovitch, Alla
2015-01-01
Objective: Regulation of oxidative stress and recruitment of key cell types are activities of human amniotic membrane (hAM) that contribute to its benefits for wound treatment. Progress in tissue preservation has led to commercialization of hAM. The majority of hAM products are devitalized with various degrees of matrix alteration. Data show the importance of hAM matrix preservation, but little is known about the advantages of retaining viable endogenous cells. In this study, we compared the antioxidant and chemoattractive properties of viable intact cryopreserved hAM (int-hAM) and devitalized cryopreserved hAM (dev-hAM) to determine the benefits of cell preservation. Approach: We evaluated the ability of int-hAM and dev-hAM to protect fibroblasts from oxidant-induced cell damage, to suppress oxidants, and to recruit fibroblasts and keratinocytes in vitro. Results: Both the int-hAM–derived conditioned medium (CM) and the int-hAM tissue rescued significantly more fibroblasts from oxidant-induced damage than dev-hAM (844% and 93% more, respectively). The int-hAM CM showed a 202% greater antioxidant capacity than dev-hAM. The int-hAM CM enhanced the recruitment of fibroblasts and normal and diseased keratinocytes to a greater extent than dev-hAM (1,555%, 315%, and 151% greater, respectively). Innovation and Conclusion: Int-hAM, in which all native components are preserved, including endogenous viable cells, demonstrated a significantly greater antioxidant and fibroblast and keratinocyte chemoattractive potential compared to dev-hAM, in which viable cells are destroyed. The release of soluble factors that protect fibroblasts from oxidative injury by hAM containing viable cells is a mechanism of hAM antioxidant activity, which is a novel finding of this study. PMID:26029483
Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.
Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter
2016-10-01
Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.
The design of a commercial space infrastructure
NASA Technical Reports Server (NTRS)
1989-01-01
Space Services and Logistics, Inc. represents the complete engineering design of a technically and financially viable commercial space company. The final proposal offers an economically sound program of space vehicles and systems designed to substantially affect a variety of space markets and produce a vertically integrated structure within the next 20 years. Throughout this design process, particular stress has been placed on attaining the highest possible levels of safety and reliability. The final program financial design requires a considerable initial outlay, but promises a relatively quick return on invested capital, culminating in large annual profits by the end of the 20-year scope of the cost outlook. The overall design has been extensively researched and was primarily driven by the present and near-term projected market demands for services uniquely or competitively offered only by space-oriented operations. Heretofore, available capabilities, rather than these market demands, have determined the degree and type of commercial market access. Removing this limitation through extensive use of modularity and reconfigurability allows the company to gear itself to the market, while still remaining extremely competitive with existing systems. The markets identified as lucrative, and that have governed much of the design requirements, are: low-cost launch services to LEO over a wide range of payload masses and inclinations; upper stage payload delivery from LEO to GEO; manned space operations and human transport to and from orbit; EVA assembly and maintenance of large space structures; satellite servicing and repair by both humans and telerobotic operations; a line of customized satellites designed for extended life and capable of reconfiguration or technology upgrade on orbit; small-scale microgravity experimentation and manufacturing supported by spacecraft retrieval capabilities for experimental specimens and manufactured goods; and a full-range of payload integration, testing, design, and support services before launch and once in orbit.
Jaramillo-López, P F; Ramírez, M I; Pérez-Salicrup, D R
2015-03-01
Community-based small-scale reforestation practices have been proposed as an alternative to low-efficiency massive reforestations conducted by external agents. These latter conventional reforestations are often carried out in soils that have been seriously degraded and this has indirectly contributed to the introduction of non-native species and/or acceptance of very low seedling survival rates. Bokashi is a fermented soil organic amendment that can be made from almost any available agricultural byproduct, and its beneficial effects in agriculture have been reported in various contexts. Here, we report the results of a community-based small-scale experimental reforestation where the provenance of pine seedlings (local and commercial) and the use of Bokashi as a soil amendment were evaluated. Bokashi was prepared locally by members of a small rural community in central Mexico. Almost two years after the establishment of the trial, survival rates for the unamended and amended local trees were 97-100% while survival of the commercial trees from unamended and amended treatments were 87-93%. Consistently through time, local and commercial seedlings planted in Bokashi-amended soils were significantly taller (x̅ = 152 cm) than those planted in unamended soils (̅x = 86 cm). An unplanned infection by Cronartium quercuum in the first year of the experiment was considered as a covariable. Infected seedlings showed malformations but this did not affect survival and growth rates. Bokashi amendment seems as an inexpensive, locally viable technology to increase seedling survival and growth and to help recover deforested areas where soils have been degraded. This allows local stakeholders to see more rapid results while helping them to maintain their interest in conservation activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
None
2017-12-27
In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "To learn what it really takes to make clean power sources a viable reality."
The Future of Product Design Utilising Printed Electronics
ERIC Educational Resources Information Center
York, Nicola; Southee, Darren; Evans, Mark
2017-01-01
This paper addresses the teaching of emerging technologies to design students, using "printed electronics" as an example as it recently became viable to mass manufacture and is ready for use in designs. Printed electronics is introduced as a disruptive technology, and approaches employed in knowledge transfer to industrial/product…
On Basic Needs and Modest Media.
ERIC Educational Resources Information Center
Gunter, Jock
1978-01-01
The need for grass-roots participation and local control in whatever technology is used to meet basic educational needs is stressed. Successful uses of the audio cassette recorder and the portable half-inch video recorder are described; the 8-mm sound camera and video player are also suggested as viable "modest" technologies. (JEG)
Permeable reactive barrier (PRB) technology is gradually being accepted as a viable alternative to conventional groundwater remediation systems such as pump and treat. PRB technology involves the placement or formation of a reactive treatment zone in the path of a dissolved conta...
Technology-Based Literacy Instruction for English Language Learners
ERIC Educational Resources Information Center
White, Erin L.; Gillard, Sharlett
2011-01-01
There is a growing need to implement an alternative and viable solution in U.S. K-12 schools that will address the ever-growing gap that the rapidly growing English language learner (ELL) population presents. This article examines various technology-based solutions, and their potential impact. The systematic implementation of these…
A Space Based Solar Power Satellite System
NASA Astrophysics Data System (ADS)
Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.
2002-01-01
(SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one. Based on the expected revenues from about 300 customers, SPoTS needs a significant contribution from public funding to be commercial viable. However, even though the system might seem to be a huge investment first, it provides a unique steppingstone for future space based wireless transfer of energy to the Earth. Also the public funding is considered as an interest free loan and is due to be paid back over de lifetime period of SPoTS. These features make the SPoTS very attractive in comparison to other space projects of the same science field.
How Magnets Attract and Repel: Interessement in a Technology Commercialization Competition
ERIC Educational Resources Information Center
Spinuzzi, Clay; Nelson, Scott; Thomson, Keela S.; Lorenzini, Francesca; French, Rosemary A.; Pogue, Gregory; London, Noelle
2016-01-01
K6015, a South Korean firm seeking to commercialize its magnet technology in the US market, entered a technology commercialization training program structured as a competition. Through this program, K6015 (and others in the program) used several genres to progressively interest different sets of stakeholders. To understand how K6015 applied these…
Fluorescence particle detector for real-time quantification of viable organisms in air
NASA Astrophysics Data System (ADS)
Luoma, Greg; Cherrier, Pierre P.; Piccioni, Marc; Tanton, Carol; Herz, Steve; DeFreez, Richard K.; Potter, Michael; Girvin, Kenneth L.; Whitney, Ronald
2002-02-01
The ability to detect viable organisms in air in real time is important in a number of applications. Detecting high levels of airborne organisms in hospitals can prevent post-operative infections and the spread of diseases. Monitoring levels of airborne viable organisms in pharmaceutical facilities can ensure safe production of drugs or vaccines. Monitoring airborne bacterial levels in meat processing plants can help to prevent contamination of food products. Monitoring the level of airborne organisms in bio-containment facilities can ensure that proper procedures are being followed. Finally, detecting viable organisms in real time is a key to defending against biological agent attacks. This presentation describes the development and performance of a detector, based on fluorescence particle counting technology, where an ultraviolet laser is used to count particles by light scattering and elicit fluorescence from specific biomolecules found only in living organisms. The resulting detector can specifically detect airborne particles containing living organisms from among the large majority of other particles normally present in air. Efforts to develop the core sensor technology, focusing on integrating an UV laser with a specially designed particle-counting cell will be highlighted. The hardware/software used to capture the information from the sensor, provide an alarm in the presence of an unusual biological aerosol content will also be described. Finally, results from experiments to test the performance of the detector will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, T.N.
The Global Environmental Technology Enterprise (GETE) was conceived to develop and implement strategies to facilitate the commercialization of innovative, cost-effective Department of Energy (DOE)-developed environmental technologies. These strategies are needed to aid DOE`s clean-up mission; to break down barriers to commercialization; and to build partnerships between the federal government and private industry in order to facilitate the development and use of innovative environmental technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report published in October 2017 updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.
Bett, B; Randolph, T F; Irungu, P; Nyamwaro, S O; Kitala, P; Gathuma, J; Grace, D; Vale, G; Hargrove, J; McDermott, J
2010-12-01
We conducted a field trial among Maasai cattle-keepers in Nkuruman and Nkineji areas of Kenya to evaluate the effectiveness of a synthetic tsetse-repellent technology developed for the control of trypanosomosis in cattle. The technology was a repellent (2-methoxy 4-methylphenol) emitted from dispensers attached to collars worn by cattle. Treatment was allocated at the herd level to ensure adequate protection of all the animals in a herd, with measurements of effectiveness conducted at the individual-animal level. The trial began in April 2005 and ran for 16 months including a baseline phase of 4 months. We recruited 12 herds in each area using a restricted random-sampling technique and distributed them equally into intervention (repellent) and control groups. Sample size was determined using a formal power calculation. Effectiveness or minimal worthwhile difference was defined as a 50% reduction in the incidence of trypanosome infection in the treated versus control group (effectiveness below which the technology was considered by experts as not viable compared to existing control techniques). All the animals in the recruited herds were screened monthly (buffy-coat technique) for trypanosome infections. The analysis followed the principle of intention-to-treat by which subjects are analysed according to their initial treatment assignment, regardless of the mechanical performance of the device. Crude and adjusted effects of the technology were 23% (p<0.001) and 18% (p=0.08) reduction in the infection incidence in the treatment compared to the control groups, respectively. The impact of the technology estimated in this study did not achieve the threshold of 50% reduction in the trypanosome infection incidence set a priori to indicate effectiveness (p<0.001). We therefore concluded that the prototype repellent technology package was not sufficiently effective in reducing trypanosome infection incidence under natural tsetse challenge to merit commercial development. Copyright © 2010 Elsevier B.V. All rights reserved.
76 FR 37344 - Technology Evaluation Process
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... is an extension of a prior RFI seeking comment on a proposed commercial buildings technology... seeks comments and information related to a commercial buildings technology evaluation process. DOE is...
76 FR 30696 - Technology Evaluation Process
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... technologies for commercial buildings based on the voluntary submittal of product test data. The program would...
R&D to Market Success: BTO-Supported Technologies Commercialized from 2010-2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2017-04-01
Technology commercialization plays an essential role in almost every facet of the U.S. economy. It spurs private sector funding that supports innovative breakthroughs, drives growth through increased productivity and product development, increases American competitiveness, and creates domestic jobs. The BTO Technology Commercialization report is an annual publication offering the latest information on successfully commercialized technologies resulting in part from BTO’s research partnerships. This report defines a “commercialized technology” as a process, technique, design, machine, tool, material, or software that was developed with funds provided at least in part by BTO, and that has resulted in domestic sales or is inmore » use in the U.S. This definition also applies to open-source software products developed with support from BTO, all of which are currently distributed freely but are actively used for commercial purposes.« less
ERIC Educational Resources Information Center
Nuttall, Joce; Edwards, Susan; Mantilla, Ana; Grieshaber, Sue; Wood, Elizabeth
2015-01-01
Digital technologies are increasingly accepted as a viable aspect of early childhood curriculum. However, teacher uptake of digital technologies in early childhood education and their use with young children in play-based approaches to learning have not been strong. Traditional approaches to the problem of teacher uptake of digital technologies in…
Campylobacter jejuni in commercial eggs.
Fonseca, Belchiolina Beatriz; Beletti, Marcelo Emílio; de Melo, Roberta Torres; Mendonça, Eliane Pereira; Coelho, Letícia Ríspoli; Nalevaiko, Priscila Christen; Rossi, Daise Aparecida
2014-01-01
This study evaluated the ability of Campylobacter jejuni to penetrate through the pores of the shells of commercial eggs and colonize the interior of these eggs, which may become a risk factor for human infection. Furthermore, this study assessed the survival and viability of the bacteria in commercial eggs. The eggs were placed in contact with wood shavings infected with C. jejuni to check the passage of the bacteria. In parallel, the bacteria were inoculated directly into the air chamber to assess the viability in the egg yolk. To determine whether the albumen and egg fertility interferes with the entry and survival of bacteria, we used varying concentrations of albumen and SPF and commercial eggs. C. jejuni was recovered in SPF eggs (fertile) after three hours in contact with contaminated wood shavings but not in infertile commercial eggs. The colonies isolated in the SPF eggs were identified by multiplex PCR and the similarity between strains verified by RAPD-PCR. The bacteria grew in different concentrations of albumen in commercial and SPF eggs. We did not find C. jejuni in commercial eggs inoculated directly into the air chamber, but the bacteria were viable during all periods tested in the wood shavings. This study shows that consumption of commercial eggs infected with C. jejuni does not represent a potential risk to human health.
Capabilities | Transportation Research | NREL
about: Energy storage Power electronics Climate control Medium- and Heavy-Duty Vehicle Technology viable in the marketplace. Learn more about: Power electronics Energy storage Transportation Data
DOE EiR at Oakridge National Lab 2008/09
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Michael
2012-11-30
This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOE's premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting inmore » five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however it's performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.« less