2013-03-27
Research Office (W911NF-12-1-0023). Ab initio calculations have been performed to study the effects of solute atoms on the c/a ratio of magnesium alloys ... effects of alloying elements on the c/a ratio of magnesium were performed. The most commonly and extensively used alloying elements such as Al, Mn, and... Magnesium Alloy Design - Theoretical and Experimental Studies of the Influence of Alloying Elements on Deformation Twinning M.F. Horstemeyer
Willbold, Elmar; Gu, Xuenan; Albert, Devon; Kalla, Katharina; Bobe, Katharina; Brauneis, Maria; Janning, Carla; Nellesen, Jens; Czayka, Wolfgang; Tillmann, Wolfgang; Zheng, Yufeng; Witte, Frank
2015-01-01
Rare earth elements are promising alloying element candidates for magnesium alloys used as biodegradable devices in biomedical applications. Rare earth elements have significant effects on the high temperature strength as well as the creep resistance of alloys and they improve magnesium corrosion resistance. We focused on lanthanum, neodymium and cerium to produce magnesium alloys with commonly used rare earth element concentrations. We showed that low concentrations of rare earth elements do not promote bone growth inside a 750 μm broad area around the implant. However, increased bone growth was observed at a greater distance from the degrading alloys. Clinically and histologically, the alloys and their corrosion products caused no systematic or local cytotoxicological effects. Using microtomography and in vitro experiments, we could show that the magnesium-rare earth element alloys showed low corrosion rates, both in in vitro and in vivo. The lanthanum- and cerium-containing alloys degraded at comparable rates, whereas the neodymium-containing alloy showed the lowest corrosion rates. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials
Zhao, Nan; Zhu, Donghui
2016-01-01
Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018
Casting Characteristics of High Cerium Content Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, D; Rios, O R; Sims, Z C
This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less
Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F
2016-11-29
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
NASA Astrophysics Data System (ADS)
Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.
2016-11-01
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
Cytotoxicity of titanium and titanium alloying elements.
Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C
2010-05-01
It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.
Liu, B; Zheng, Y F
2011-03-01
Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a concluding remark, Co, W, C and S are recommended as alloying elements for biodegradable iron-based biomaterials. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
New Cu-Free Ti-Based Composites with Residual Amorphous Matrix
Nicoara, Mircea; Locovei, Cosmin; Șerban, Viorel Aurel; Parthiban, R.; Calin, Mariana; Stoica, Mihai
2016-01-01
Titanium-based bulk metallic glasses (BMGs) are considered to have potential for biomedical applications because they combine favorable mechanical properties and good biocompatibility. Copper represents the most common alloying element, which provides high amorphization capacity, but reports emphasizing cytotoxic effects of this element have risen concerns about possible effects on human health. A new copper-free alloy with atomic composition Ti42Zr10Pd14Ag26Sn8, in which Cu is completely replaced by Ag, was formulated based on Morinaga’s d-electron alloy design theory. Following this theory, the actual amount of alloying elements, which defines the values of covalent bond strength Bo and d-orbital energy Md, situates the newly designed alloy inside the BMG domain. By mean of centrifugal casting, cylindrical rods with diameters between 2 and 5 mm were fabricated from this new alloy. Differential scanning calorimetry (DSC) and X-rays diffraction (XRD), as well as microstructural analyses using optical and scanning electron microscopy (OM/SEM) revealed an interesting structure characterized by liquid phase-separated formation of crystalline Ag, as well as metastable intermetallic phases embedded in residual amorphous phases. PMID:28773455
Bond-strength inversion in (In,Ga)As semiconductor alloys
NASA Astrophysics Data System (ADS)
Eckner, Stefanie; Ritter, Konrad; Schöppe, Philipp; Haubold, Erik; Eckner, Erich; Rensberg, Jura; Röder, Robert; Ridgway, Mark C.; Schnohr, Claudia S.
2018-05-01
The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.
Precipitation Behavior of Magnesium Alloys Containing Neodymium and Yttrium
NASA Astrophysics Data System (ADS)
Solomon, Ellen L. S.
Magnesium is the lightest of the structural metals and has great potential for reducing the weight of transportation systems, which in turn reduces harmful emissions and improves fuel economy. Due to the inherent softness of Mg, other elements are typically added in order to form a fine distribution of precipitates during aging, which improves the strength by acting as barriers to moving dislocations. Mg-RE alloys are unique among other Mg alloys because they form precipitates that lie parallel to the prismatic planes of the Mg matrix, which is an ideal orientation to hinder dislocation slip. However, RE elements are expensive and impractical for many commercial applications, motivating the rapid design of alternative alloy compositions with comparable mechanical properties. Yet in order to design new alloys reproducing some of the beneficial properties of Mg-RE alloys, we must first fully understand precipitation in these systems. Therefore, the main objectives of this thesis are to identify the roles of specific RE elements (Nd and Y) on precipitation and to relate the precipitate microstructure to the alloy strength. The alloys investigated in this thesis are the Mg-Nd, Mg-Y, and Mg-Y-Nd systems, which contain the main alloying elements of commercial WE series alloys (Y and Nd). In all three alloy systems, a sequence of metastable phases forms upon aging. Precipitate composition, atomic structure, morphology, and spatial distribution are strongly controlled by the elastic strain energy originating from the misfitting coherent precipitates. The dominating role that strain energy plays in these alloy systems gives rise to very unique microstructures. The evolution of the hardness and precipitate microstructure with aging revealed that metastable phases are the primary strengthening phases of these alloys, and interact with dislocations by shearing. Our understanding of precipitation mechanisms and commonalities among the Mg-RE alloys provide future avenues to apply more efficient and targeted alloy design.
Reaction of Unalloyed and Cr-Mo Alloyed Steels with Nitrogen from the Sintering Atmosphere
NASA Astrophysics Data System (ADS)
Dlapka, Magdalena; Gierl-Mayer, Christian; Calderon, Raquel de Oro; Danninger, Herbert; Bengtsson, Sven; Dudrova, Eva
2016-12-01
Nitrogen is usually regarded as an inert sintering atmosphere for PM steels; however, this cannot be taken for granted in particular for steels alloyed with nitride forming elements. Among those elements, chromium has become more and more important as an alloying element in sintered low alloy structural steels in the last decade due to the moderate alloying cost and the excellent mechanical properties obtainable, in particular when sinter hardening is applied. The high affinity of Cr to oxygen and the possible ways to overcome related problems have been the subject of numerous studies, while the fact that chromium is also a fairly strong nitride forming element has largely been neglected at least for low alloy steel grades, although frequently used materials like steels from Cr and Cr-Mo prealloyed powders are commonly sintered in atmospheres consisting mainly of nitrogen. In the present study, nitrogen pickup during sintering at different temperatures and for varying times has been studied for Cr-Mo prealloyed steel grades as well as for unalloyed carbon steel. Also the effect of the cooling rate and its influence on the properties, of the microstructure and the composition have been investigated. It showed that the main nitrogen uptake occurs not during isothermal sintering but rather during cooling. It could be demonstrated that a critical temperature range exists within which the investigated CrM-based steel is particularly sensitive to nitrogen pickup.
NASA Technical Reports Server (NTRS)
Miner, R. V.
1997-01-01
Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.
Bolzoni, L; Ruiz-Navas, E M; Gordo, E
2017-03-01
Titanium and its alloys are common biomedical materials owing to their combination of mechanical properties, corrosion resistance and biocompatibility. Powder metallurgy (PM) techniques can be used to fabricate biomaterials with tailored properties because changing the processing parameters, such as the sintering temperature, products with different level of porosity and mechanical performances can be obtained. This study addresses the production of the biomedical Ti-6Al-7Nb alloy by means of the master alloy addition variant of the PM blending elemental approach. The sintering parameters investigated guarantee that the complete diffusion of the alloying elements and the homogenization of the microstructure is achieved. The sintering of the Ti-6Al-7Nb alloy induces a total shrinkage between 7.4% and 10.7% and the level of porosity decreases from 6.2% to 4.7% with the increment of the sintering temperature. Vickers hardness (280-300 HV30) and tensile properties (different combination of strength and elongation around 900MPa and 3%) are achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molybdenum-A Key Component of Metal Alloys
Kropschot, S.J.
2010-01-01
Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.
In vitro cytotoxicity evaluation of elemental ions released from different prosthodontic materials.
Elshahawy, Waleed M; Watanabe, Ikuya; Kramer, Phillip
2009-12-01
This study investigated the cytotoxicity of elemental ions contained in four fixed prosthodontic materials (gold, nickel-chromium, stainless-steel alloys and CAD-CAM ceramics). According to the determination of elements released from prosthodontic materials by using inductively coupled plasma mass spectroscopy, similar amounts of elements Pd, Ag, Zn, Cu, Ni, Cr, Mo, Be, Fe, Al, and K were prepared as salt solutions. Wells with a tenfold higher concentration of the tested elements were used as positive controls, while a well without any tested element was used as a negative control. These salt solutions were tested for cytotoxicity by culturing mouse L-929 fibroblasts in the salt solutions for a 7-day period of incubation. Then, the percentage of viable cells for each element was measured using trypan blue exclusion assay. The data (n=5) were statistically analyzed by ANOVA/Tukey test (p<0.05). The results showed a statistically significant difference for the cytotoxic effect of the tested elements salt solutions. For the released element concentrations the lowest percentage of viable cells (mean+/-SD) was evident with Zn, Cu or Ni indicating that they are the highly toxic elements. Be and Ag were found to be intermediate in cytotoxic effect. Fe, Cr, Mo, Al, Pd or K were found to be the least cytotoxic elements. Zn and Cu released from gold alloys, and Ni released from nickel-chromium alloys, which are commonly used as fixed prosthodontic restorations, show evidence of a high cytotoxic effect on fibroblast cell cultures.
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E [Ames, IA; Terpstra, Robert L [Ames, IA
2012-06-12
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E.; Terpstra, Robert L.
2010-04-20
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
Dispersoid reinforced alloy powder and method of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; Terpstra, Robert L.
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomizedmore » particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.« less
Dispersoid reinforced alloy powder and method of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; Terpstra, Robert L.
2017-10-10
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomizedmore » particles to a depth below the surface of said atomized particles. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.« less
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E; Rieken, Joel
2013-12-10
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with an introduced reactive species than does the alloying element and wherein one or more atomizing parameters is/are modified to controllably reduce the amount of the reactive species, such as oxygen, introduced into the atomized particles so as to reduce anneal times and improve reaction (conversion) to the desired strengthening dispersoids in the matrix. The atomized alloy particles are solidified as solidified alloy particles or as a solidified deposit of alloy particles. Bodies are made from the dispersion strengthened alloy particles, deposit thereof, exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures by virtue of the presence of the corrosion and/or oxidation resistance imparting alloying element in solid solution in the particle alloy matrix.
A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch
NASA Technical Reports Server (NTRS)
Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.
2005-01-01
Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.
The Fractional Step Method Applied to Simulations of Natural Convective Flows
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)
2002-01-01
This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The development of the momentum and continuity equations for natural convection in a fluid, a permeable medium, and in a binary alloy undergoing directional solidification will be presented. Finally, results for natural convection in a pure liquid, natural convection in a medium with a constant permeability, and for directional solidification will be presented.
Role of alloying elements in adhesive transfer and friction of copper-base alloys
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.
Effect of alloying elements on the physicomechanical properties of copper and tin bronze
NASA Astrophysics Data System (ADS)
Ri, Kh.; Komkov, V. G.; Ri, E. Kh.
2014-09-01
The effect of alloying elements (Al, Si, Mn, Zn, Ni, As) on the physicomechanical properties of copper and tin bronze (6 wt % Sn) is studied. These alloying elements are found to increase the hardness and the microhardness of the structural constituents of Cu- X alloys due to hardening the α solid solution and eutectoid, and this effect of alloying elements is most effective in tin bronze. Alloyed copper and tin bronze have a lower thermal conductivity and corrosion resistance as compared to plain copper and tin bronze.
NASA Astrophysics Data System (ADS)
Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog
Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.
Alloy hardening and softening in binary molybdenum alloys as related to electron concentration
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1972-01-01
An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.
In vitro element release and biological aspects of base–metal alloys for metal-ceramic applications
Holm, Charlotta; Morisbak, Else; Kalfoss, Torill; Dahl, Jon E.
2015-01-01
Abstract Objective: The aims of this study were to investigate the release of element from, and the biological response in vitro to, cobalt–chromium alloys and other base–metal alloys used for the fabrication of metal-ceramic restorations. Material and methods: Eighteen different alloys were investigated. Nine cobalt–chromium alloys, three nickel–chromium alloys, two cobalt–chromium–iron alloys, one palladium–silver alloy, one high-noble gold alloy, titanium grade II and one type III copper–aluminium alloy. Pure copper served as positive control. The specimens were prepared according to the ISO standards for biological and corrosion testing. Passive leaching of elements was measured by using Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) after incubation in cell culture media, MEM, for 3 days. Corrosion testing was carried out in 0.9% sodium chloride (NaCl) and 1% lactic acid for 7 days, and the element release was measured by Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES). The biological response from the extract solutions was measured though MTT cytotoxicity testing and the Hen's egg test-chorio-allantoic membrane (HET-CAM) technique for irritationt. Results: The corrosion test showed similar element release from base-metal alloys compared to noble alloys such as gold. Apart from the high-copper alloy, all alloys expressed low element release in the immersion test, no cytotoxic effect in the MTT test, and were rated non-irritant in the HET-CAM test. Conclusions: Minimal biological response was observed for all the alloys tested, with the exception of the high-copper alloy. PMID:28642904
Effect of Solution Treatment on Microstructure and Properties of Gd - AZ91 Magnesium Alloy
NASA Astrophysics Data System (ADS)
Li, Yao; Wang, Huiling
2018-01-01
In this paper, the Gd-AZ91 alloy was manufactured by adding rare earth element Gd in AZ91 magnesium alloy. The effects of solution treatment on the microstructures of rare earth elements Gd were investigated by means of optical microscopy, scanning electron microscopy, X-ray diffraction analysis and equipment for testing mechanical properties. The experimental results show that the addition of rare earth element Gd in AZ91 magnesium alloy can refine the alloy grain, turn β-Mg17Al12 phase into a discontinuous network or point structure, and produce granular compound Al2Gd in the alloy; when solution temperature is about 380 °C, the alloy structure is the best, the tensile strength of the alloy is the largest with the value larger than 250Mpa; when the solution temperature exceeds 380 °C, the alloy structure is coarsened and the mechanical properties of the alloy are reduced. With the increase of rare earth element Gd content, the tensile strength of the alloy shows a tendency to increase gradually, which Indicates that the addition of a certain amount of rare earth elements Gd can improve the plasticity of the alloy.
Alloy softening in binary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1972-01-01
An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.
Criticality in Bulk Metallic Glass Constituent Elements
NASA Astrophysics Data System (ADS)
Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan
2017-11-01
Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.
NASA Astrophysics Data System (ADS)
Lu, Xin; Matsubae, Kazuyo; Nakajima, Kenichi; Nakamura, Shinichiro; Nagasaka, Tetsuya
2016-06-01
Cobalt and nickel are high-value commodity metals and are mostly used in the form of highly alloyed materials. The alloying elements used may cause contamination problems during recycling. To ensure maximum resource efficiency, an understanding of the removability of these alloying elements and the controllability of some of the primary alloying elements is essential with respect to the recycling of end-of-life (EoL) nickel- and cobalt-based superalloys by remelting. In this study, the distribution behaviors of approximately 30 elements that are usually present in EoL nickel- and cobalt-based superalloys in the solvent metal (nickel, cobalt, or nickel-cobalt alloy), oxide slag, and gas phases during the remelting were quantitatively evaluated using a thermodynamic approach. The results showed that most of the alloying elements can be removed either in the slag phase or into the gas phase. However, the removal of copper, tin, arsenic, and antimony by remelting is difficult, and they remain as tramp elements during the recycling. On the other hand, the distribution tendencies of iron, molybdenum, and tungsten can be controlled by changing the remelting conditions. To increase the resource efficiency of recycling, preventing contamination by the tramp elements and identifying the alloying compositions of EoL superalloys are significantly essential, which will require the development of efficient prior alloy-sorting systems and advanced separation technologies.
The Release of Elements from Dental Casting Alloy into Cell-Culture Medium and Artificial Saliva
Can, Gülşen; Akpınar, Gül; Aydın, Ahmet
2007-01-01
Objectives The biocompatibility of dental casting alloys is a critical issue because these alloys are in long-term intimate contact with oral tissues. Since the biocompatibility of alloys is not completely known; the release of elements from the alloys has been studied. The aim of this study was to compare the elemental release from dental casting alloy during exposure to artificial saliva and cell-culture medium. Materials and Methods Twenty specimens made from Ni-Cr alloy were provided in the form of 5 mm diameter discs, 2 mm in thickness with a 7 mm stem attached to one face to facilitate handling. Ten of twenty samples were polished separately using a conventional technique. The remaining ten samples were left sandblasted with 50 μm Al203. Ten samples (5 polished, 5 sandblasted) were separately placed into cell-culture wells with Dulbecco’s Modified Eagle’s Medium. The other ten samples were placed separately into cell-culture wells with artificial saliva. The samples were subjected in contact with these medium for 30 days. These medium were collected every 7 days. The cell-culture medium and artificial saliva without alloy samples were subjected to elemental analyses as a control. At the end of the exposure time, Atomic Absorption Spectrometry (AAS) was used to determine the release of elements from the alloys into all collected medium. Statistical analyses were assessed with two-way ANOVA. Results In general, the elemental release occurred with in all medium. The elemental releases of sandblasted alloys were higher than polished alloys. Artificial saliva was found to cause more release from the samples. In both media, Ni released from polished and sandblasted alloys were higher than Cr and Mo. Conlusions The results suggest that the release of elements from the alloys might have correlated with the environments and the surface of dental alloy. PMID:19212482
The release of elements from dental casting alloy into cell-culture medium and artificial saliva.
Can, Gülşen; Akpınar, Gül; Aydın, Ahmet
2007-04-01
The biocompatibility of dental casting alloys is a critical issue because these alloys are in long-term intimate contact with oral tissues. Since the biocompatibility of alloys is not completely known; the release of elements from the alloys has been studied. The aim of this study was to compare the elemental release from dental casting alloy during exposure to artificial saliva and cell-culture medium. Twenty specimens made from Ni-Cr alloy were provided in the form of 5 mm diameter discs, 2 mm in thickness with a 7 mm stem attached to one face to facilitate handling. Ten of twenty samples were polished separately using a conventional technique. The remaining ten samples were left sandblasted with 50 mum Al(2)0(3). Ten samples (5 polished, 5 sandblasted) were separately placed into cell-culture wells with Dulbecco's Modified Eagle's Medium. The other ten samples were placed separately into cell-culture wells with artificial saliva. The samples were subjected in contact with these medium for 30 days. These medium were collected every 7 days. The cell-culture medium and artificial saliva without alloy samples were subjected to elemental analyses as a control. At the end of the exposure time, Atomic Absorption Spectrometry (AAS) was used to determine the release of elements from the alloys into all collected medium. Statistical analyses were assessed with two-way ANOVA. In general, the elemental release occurred with in all medium. The elemental releases of sandblasted alloys were higher than polished alloys. Artificial saliva was found to cause more release from the samples. In both media, Ni released from polished and sandblasted alloys were higher than Cr and Mo. The results suggest that the release of elements from the alloys might have correlated with the environments and the surface of dental alloy.
Accelerated exploration of multi-principal element alloys with solid solution phases
Senkov, O.N.; Miller, J.D.; Miracle, D.B.; Woodward, C.
2015-01-01
Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge—how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases present, their transformation temperatures and useful microstructures. We evaluate over 130,000 alloy systems, identifying promising compositions for more time-intensive experimental studies. We find the surprising result that solid solution alloys become less likely as the number of alloy elements increases. This contradicts the major premise of HEAs—that increased configurational entropy increases the stability of disordered solid solution phases. As the number of elements increases, the configurational entropy rises slowly while the probability of at least one pair of elements favouring formation of intermetallic compounds increases more rapidly, explaining this apparent contradiction. PMID:25739749
Two main and a new type rare earth elements in Mg alloys: A review
NASA Astrophysics Data System (ADS)
Kong, Linghang
2017-09-01
Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.
NASA Astrophysics Data System (ADS)
Lei, Qiantao; Liu, Ke; Gao, Jie; Li, Xiaolin; Shen, Hao; Li, Yan
2017-08-01
Nickel-based alloys as candidate materials for Thorium Molten Salt Reactor (TMSR), need to be used under high temperature in molten salt environment. In order to ensure the safety of the reactor running, it is necessary to study the elemental move characteristic of nickel-based alloys in the high temperature molten salts. In this work, the scanning nuclear microprobe at Fudan University was applied to study the elemental move. The Nickel-based alloy samples were corroded by molten salt at different temperatures. The element concentrations in the Nickel-based alloys samples were determined by the scanning nuclear microprobe. Micro-PIXE results showed that the element concentrations changed from the interior to the exterior of the alloy samples after the corrosion.
Mashing up metals with carbothermal shock
NASA Astrophysics Data System (ADS)
Skrabalak, Sara E.
2018-03-01
Different materials and the capabilities they enabled have marked the ages of civilization. For example, the malleable copper alloys of the Bronze Age provided harder and more durable tools. Most exploration of new alloys has focused on random alloys, in which the alloying metal sites have no metal preference. In binary and ternary metal systems, dissimilar elements do not mix readily at high concentrations, which has limited alloying studies to intermetallics (ordered multimetallic phases) and random alloys, in which minor components are added to a principal element. In 2004, crystalline metal alloys consisting of five or more principal elements in equal or nearly equal amounts (1, 2) were reported that were stabilized by their high configurational entropy. Unlike most random alloys, the “high-entropy” alloys (3, 4) reside in the centers of their multidimensional phase diagrams (see the figure, right). On page 1489 of this issue, Yao et al. (5) present an innovative and general route to high-entropy alloys that can mix up to eight elements into single-phase, size-controlled nanoparticles (NPs).
Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.
Study on corrosion resistance of high - entropy alloy in medium acid liquid and chemical properties
NASA Astrophysics Data System (ADS)
Florea, I.; Buluc, G.; Florea, R. M.; Soare, V.; Carcea, I.
2015-11-01
High-entropy alloy is a new alloy which is different from traditional alloys. The high entropy alloys were started in Tsing Hua University of Taiwan since 1995 by Yeh et al. Consisting of a variety of elements, each element occupying a similar compared with other alloy elements to form a high entropy. We could define high entropy alloys as having approximately equal concentrations, made up of a group of 5 to 11 major elements. In general, the content of each element is not more than 35% by weight of the alloy. During the investigation it turned out that this alloy has a high hardness and is also corrosion proof and also strength and good thermal stability. In the experimental area, scientists used different tools, including traditional casting, mechanical alloying, sputtering, splat-quenching to obtain the high entropy alloys with different alloying elements and then to investigate the corresponding microstructures and mechanical, chemical, thermal, and electronic performances. The present study is aimed to investigate the corrosion resistance in a different medium acid and try to put in evidence the mechanical properties. Forasmuch of the wide composition range and the enormous number of alloy systems in high entropy alloys, the mechanical properties of high entropy alloys can vary significantly. In terms of hardness, the most critical factors are: hardness/strength of each composing phase in the alloy, distribution of the composing phases. The corrosion resistance of an high entropy alloy was made in acid liquid such as 10%HNO3-3%HF, 10%H2SO4, 5%HCl and then was investigated, respectively with weight loss experiment. Weight loss test was carried out by put the samples into the acid solution for corrosion. The solution was maintained at a constant room temperature. The liquid formulations used for tests were 3% hydrofluoric acid with 10% nitric acid, 10% sulphuric acid, 5% hydrochloric acid. Weight loss of the samples was measured by electronic scale.
Influence of alloying elements on friction and wear of copper
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1972-01-01
The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.
R 5T 4 compounds - unique multifunctional intermetallics for basic research and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudryk, Yaroslav
The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd 2Fe 14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result ofmore » a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.« less
da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto
2011-05-01
The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
FCRD Advanced Reactor (Transmutation) Fuels Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn Elizabeth; Papesch, Cynthia Ann
2016-09-01
Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, importantmore » to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, the handbook attempts to provide information about how well the property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data. The Handbook is organized in two sections: one with information about the U-Pu-Zr ternary and one with information about other elements and binary and vi ternary alloys in the U-Np-Pu-Am-La-Ce-Pr-Nd-Zr system. Within each section, information about elements is presented first, followed by information about binary alloys, then information about ternary alloys. The order in which the elements in each alloy are mentioned follows the order in the first sentence of this paragraph. Much of the information on the U-Pu-Zr system repeats information from the FCRD Transmutation Fuels Handbook 2015. Most of the other data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data from Idaho National Laboratory is presented here for the first time. As the FCRD programmatic mission evolves, future editions of this handbook will begin to include other advanced reactor fuel designs and compositions. Hence, the title of the handbook will transition to the Advanced Reactor Fuels Handbook.« less
Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.
David, Stan A.; Miller, Roger G.; Feng, Zhili
2016-08-31
Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Stan A.; Miller, Roger G.; Feng, Zhili
Advances have been made in developing alloys for space power systems for spacecraft that travel long distances to various planets. The spacecraft are powered by radioisotope thermoelectric generators (RTGs) and the fuel element in RTGs is plutonia. For safety and containment of the radioactive fuel element, the heat source is encapsulated in iridium or platinum alloys. Ir and Pt alloys are the alloys of choice for encapsulating radioisotope fuel pellets. Ir and Pt alloys were chosen because of their high-temperature properties and compatibility with the oxide fuel element and the graphite impact shells. This review addresses the alloy design andmore » welding and weldability of Ir and Pt alloys for use in RTGs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalder, E; Goldberg, A
1995-11-30
Among the metallurgical factors that affect the performance of a material in a given environment are alloy composition, alloy segregation, depletion of alloying elements, non-uniform microstructures, precipitation leading to an increase in susceptibility to corrosion as well as decreases in ductility, residual plastic deformation, and residual stresses. Precipitation often occurs preferentially at grain boundaries, causing depletion of critical elements in regions adjacent to these boundaries. Continuous grain-boundary precipitates can lead to drops in ductility and toughness. The presence of non-metallic inclusions, if excessive and/or segregated, can also cause embrittlement. Segregation of alloying elements can result in localized galvanic action. Depletionmore » of alloying elements as well as segregation can result in reductions in the concentrations of critical elements below those necessary to resist localized corrosion. Segregation and alloy depletion can also facilitate precipitation that could lead to embrittlement.« less
Dispersoid reinforced alloy powder and method of making
Anderson, Iver E; Terpstra, Robert L
2014-10-21
A method of making dispersion-strengthened alloy particles involves melting an alloy having a corrosion and/or oxidation resistance-imparting alloying element, a dispersoid-forming element, and a matrix metal wherein the dispersoid-forming element exhibits a greater tendency to react with a reactive species acquired from an atomizing gas than does the alloying element. The melted alloy is atomized with the atomizing gas including the reactive species to form atomized particles so that the reactive species is (a) dissolved in solid solution to a depth below the surface of atomized particles and/or (b) reacted with the dispersoid-forming element to form dispersoids in the atomized particles to a depth below the surface of said atomized particles. Bodies made from the dispersion strengthened solidified particles exhibit enhanced fatigue and creep resistance and reduced wear as well as enhanced corrosion and/or oxidation resistance at high temperatures.
Predicting the properties of the lead alloys from DFT calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A.
2015-12-23
We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix formore » low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.« less
Guha, Subhendu; Ovshinsky, Stanford R.
1988-10-04
An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.
Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys
NASA Astrophysics Data System (ADS)
Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi
2017-03-01
The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂( c/ a)/∂ C. An alloying element that has a large value of ∂( c/ a)/∂ C effectively enhances the wear property.
Bian, Dong; Zhou, Weirui; Deng, Jiuxu; Liu, Yang; Li, Wenting; Chu, Xiao; Xiu, Peng; Cai, Hong; Kou, Yuhui; Jiang, Baoguo; Zheng, Yufeng
2017-12-01
From the perspective of element biosafety and dietetics, the ideal alloying elements for magnesium should be those which are essential to or naturally presented in human body. Element germanium is a unique metalloid in the carbon group, chemically similar to its group neighbors, Si and Sn. It is a dietary trace element that naturally presents in human body. Physiological role of Ge is still unanswered, but it might be necessary to ensure normal functioning of the body. In present study, novel magnesium alloys with dietary trace element Ge were developed. Feasibility of those alloys to be used as orthopaedic implant applications was systematically evaluated. Mg-Ge alloys consisted of α-Mg matrix and eutectic phases (α-Mg + Mg 2 Ge). Mechanical properties of Mg-Ge alloys were comparable to current Mg-Ca, Mg-Zn and Mg-Sr biodegradable metals. As-rolled Mg-3Ge alloy exhibited outstanding corrosion resistance in vitro (0.02 mm/y, electrochemical) with decent corrosion rate in vivo (0.6 mm/y, in rabbit tibia). New bone could directly lay down onto the implant and grew along its surface. After 3 months, bone and implant were closely integrated, indicating well osseointegration being obtained. Generally, this is a pioneering study on the in vitro and in vivo performances of novel Mg-Ge based biodegradable metals, and will benefit the future development of this alloy system. The ideal alloying elements for magnesium-based biodegradable metals should be those which are essential to or naturally presented in human body. Element germanium is a unique metalloid in the carbon group. It is a dietary trace element that naturally presents in human body. In present study, feasibility of Mg-Ge alloys to be utilized as orthopedic applications was systematically investigated, mainly focusing on the microstructure, mechanical property, corrosion behavior and biocompatibility. Our findings showed that Mg-3Ge alloy exhibited superior corrosion resistance to current Mg-Ca, Mg-Zn and Mg-Sr alloys with favorable biocompatibility. This is a pioneering study on the in vitro &in vivo performances of Mg-Ge biodegradable metals, and will benefit the future development of this alloy system. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wu, Haishu; Liu, Jihong; Liu, Xuecheng; Li, Changyi; Yu, Zhiwei
2002-07-01
To study micro morphology and element-mixing distribution of different alloys welded in laser and analyze the feasibility of laser welding different alloys. Alloys and titanium were matched into 4 groups: Au-Pt with Ni-Cr; Au-Pt with pure Ti; pure Ti with Ni-Cr; Ni-Cr with Co-Cr. They were welded in laser. Changes in metallography after hybridization of crystalline grain, ranges of heat-affected zone and pores were observed through SEM with ultra-thin windowed X-ray energy atlas. Meanwhile 10 testing points were chosen with area of 300 micro m x 900 micro m along the welding surface from the side A alloy to the side B alloy, than the element mixing distribution and tendency were analyzed with X-ray energy atlas. 1. Hybridization of different alloys: (l) in the group of Au-Pt with Ti, there was titanium element mixing into Au-Pt tissue gradually and evenly on the Au-Pt side of the interface without clear boundary and increasing in size of crystalline grain. However, there was titanium crystalline grain increasing in size, irregular morphology and small sacks on the titanium side with clear boundary. (2) in the group of Ni-Cr with Ti, there was mixing regularly, slow transition and interlocks between crystalline grains on the Ni-Cr side of the in terface. Poor transition, clear boundary and small cracks were observed on titanium side. (3) in the group of Co-Cr with Ni-Cr, there was good transition, obscure boundary on both sides resulting from network, cylinder and branch structure growing. 2. Element-mixing distribution of different alloys. In fusion zone, the metal elements in matched groups mixed well and hybridized into new alloys except titanium blocks. The location of wave peak depended on the composition of alloys. Most of elements were from the alloy far from the fusion zone. The hybridization between pure titanium and any other alloys is not good The effect of laser welding different alloys is ideal except with pure titanium.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Mina; Mohammadzadeh, Roghayeh
2017-11-01
The stacking fault energy (SFE) is an important parameter in the deformation mechanism of face centered cubic (fcc) iron-based alloy. In this study, the effect of interstitial (C and N) and substitution (Nb and Ti) alloying elements on the intrinsic SFE (ISFE) of nanocrystalline iron were investigated via molecular dynamics (MD) simulation. The modified embedded atom method (MEAM) inter-atomic potential was used in the MD simulations. The results demonstrate a strong dependence of ISFE with addition of interstitial alloying elements but only a mild increase in ISFE with addition of substitution alloying elements in the composition range of 0 < {CNb, CTi} < 3 (at%). Moreover, it is shown that alloying of fcc iron with N decreases ISFE, whereas it increases significantly by addition of carbon element [0 < {CC, CN} < 3.5 (at%)]. The simulation method employed in this work shows reasonable agreement with some published experimental/calculated data.
Tufekci, Eser; Mitchell, John C; Olesik, John W; Brantley, William A; Papazoglou, Efstratios; Monaghan, Peter
2002-01-01
The biocompatibility of high-palladium alloy restorations has been of some concern due to the release of palladium into the oral environment and sensitivity reactions in patients. This study measured the in vitro elemental release from a Pd-Cu-Ga alloy and a Pd-Ga alloy into a corrosion testing medium. Both alloys were cast into 12-mm-diameter x 1-mm-thick disks, subjected to heat treatment that simulated porcelain firing cycles, polished to a 0.05-mm surface finish, and ultrasonically cleaned in ethanol. Two specimens of each alloy were immersed 3 times (at 7, 70, and 700 hours) in an aqueous lactic acid/NaCl solution used for in vitro corrosion testing and maintained at 37 degrees C. The specimens were removed after each immersion time, and the elemental compositions of the solutions were analyzed with inductively coupled plasma-mass spectroscopy (ICP-MS). Elemental concentrations for the 2 alloys at each immersion time were compared with Student t test (alpha=.05). No significant differences in palladium release were found for the 7- and 70-hour solutions, but significant differences were found for the 700-hour solutions. Mean concentrations of palladium and gallium in the 700-hour solutions, expressed as mass per unit area of alloy surface, were 97 (Pd) and 46 (Ga) microg/cm(2) for the Pd-Cu-Ga alloy and 5 (Pd) and 18 (Ga) microg/cm(2) for the Pd-Ga alloy. Relative proportions of the elements in the solutions were consistent with the release of palladium and breakdown of microstructural phases found in the alloys. The results suggest that there may be a lower risk of adverse biological reactions with the Pd-Ga alloy than with the Pd-Cu-Ga alloy tested.
Effect of deformation twin on toughness in magnesium binary alloys
NASA Astrophysics Data System (ADS)
Somekawa, Hidetoshi; Inoue, Tadanobu; Tsuzaki, Kaneaki
2015-08-01
The impact of alloying elements on toughness was investigated using eight kinds of Mg-0.3 at.% X (X = Al, Ag, Ca, Gd, Mn, Pb, Y and Zn) binary alloys with meso-grained structures. These binary alloys had an average grain size of approximately 20 μm. The fracture toughness and crack propagation behaviour were influenced by the alloying elements; the Mg-Ag and Mg-Pb alloys had the highest and the lowest toughness amongst the alloys, respectively, irrespective of presence in their ? type deformation twins. The twin boundaries affected the crack propagation behaviour in most of the alloys; in contrast, not only was the fracture related to the twin boundaries, but also the intergranular fracture occurred in the alloys that included rare earth elements. The influential factor for toughness in the meso- and the coarse-grained magnesium alloys, which readily formed deformation twins during plastic deformation, was not the change in lattice parameter with chemical composition, but the twin boundary segregation energy.
Wang, C C; Hsu, C S
1996-06-01
The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized layer. 5. A white-grayish oxidized layer appeared at the metal-ceramic interfaces but the thickness of oxidized layer was not obviously different. 6. The use of bonding agent at metal-ceramic interface leads to the deposition of many Sn elements at about 40 microns range within the porcelain surface. 7. Second interaction phases at the porcelain layer appeared when gold bonding agent was used, and a 50-100 microns microleakage occurred at the metal-ceramic interface.
2017-08-29
contain IM phases when using TEM diffraction.1,2 High -Entropy Alloys: A Current Evaluation of Founding Ideas and Core Effects and Exploring ‘‘Nonlinear...obvious outsider. Specifically, an alloy with a high Tm need not contain only elements with high Tm, and it can include one or two elements of moderate or...AFRL-RX-WP-JA-2017-0383 HIGH ENTROPY ALLOYS: A CURRENT EVALUATION OF FOUNDING IDEAS AND CORE EFFECTS AND EXPLORING "NONLINEAR ALLOYS
NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS
Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.
1957-11-12
This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.
2014-04-01
PROPERTIES OF LOW-DENSITY, REFRACTORY MULTI-PRINCIPAL ELEMENT ALLOYS OF THE Cr– Nb –Ti–V– Zr SYSTEM (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b...element alloys of the Cr– Nb –Ti–V– Zr systemO.N. Senkov n, S.V. Senkova, D.B. Miracle, C. Woodward Air Force Research Laboratory, Materials and...densities below 7.0 g/cm3 have recently been produced by alloying Nb (rNb¼8.57 g/cm3) with four low density refractory elements, V (rV¼6.11 g/cm3), Zr
Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study
NASA Astrophysics Data System (ADS)
Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi
2015-07-01
Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.
Microalloying of transition metal silicides by mechanical activation and field-activated reaction
Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM
2003-09-02
Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.
Long-term strategies for increased recycling of automotive aluminum and its alloying elements.
Løvik, Amund N; Modaresi, Roja; Müller, Daniel B
2014-04-15
Aluminum recycling currently occurs in a cascading fashion, where some alloys, used in a limited number of applications, absorb most of the end-of-life scrap. An expected increase in scrap supply in coming decades necessitates restructuring of the aluminum cycle to open up new recycling paths for alloys and avoid a potential scrap surplus. This paper explores various interventions in end-of-life management and recycling of automotive aluminum, using a dynamic substance flow analysis model of aluminum and its alloying elements with resolution on component and alloy level (vehicle-component-alloy-element model). It was found that increased component dismantling before vehicle shredding can be an effective, so far underestimated, intervention in the medium term, especially if combined with development of safety-relevant components such as wheels from secondary material. In the long term, automatic alloy sorting technologies are most likely required, but could at the same time reduce the need for magnesium removal in refining. Cooperation between the primary and secondary aluminum industries, the automotive industry, and end-of-life vehicle dismantlers is therefore essential to ensure continued recycling of automotive aluminum and its alloying elements.
Effects of Zn-In-Sn elements on the electric properties of magnesium alloy anode materials.
Yu, Zhan; Ju, Dongying; Zhao, Hongyang; Hu, Xiaodong
2011-06-01
A new magnesium alloy anode is based on an environmentally friendly electrode that contains none of mercury, lead and chromate, but it can enhance the electric properties of alloy significantly. Magnesium alloy adding eco-friendly elements Zn-In-Sn which was developed by orthogonal design were obtained by two casting methods. The effect of additive elements on performance of electrode material was studied. The effects of elements addition and casting method on electric properties and corrosive properties of Mg-Zn-In-Sn alloys were investigated by using electrochemical measurements, corrosive tests and observation of surface structure. The results show that Mg-Zn-In-Sn alloy anode has higher electromotive force and more stable work potential than that commercial magnesium alloy AZ91. It is suitable for anode material of magnesium battery for its small hydrogen evolution, less self-corrosion rate and easy to shed corrosive offspring off. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys
Zhang, Yanwen; Jin, Ke; Xue, Haizhou; ...
2016-08-01
We report that historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel setmore » of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. Finally, the insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B
2013-11-01
More recently, alloys using a variety of the rare earth elements have been developed. Typically, these alloys have shown significant improvements...in mechanical properties and to a lesser degree in corrosion performance. However, rare earth elements are often costly and heavier than Mg. Thus...1.0 0.004 Max — — Note: Fe = iron; RE = rare earth . SEM micrograph and energy-dispersive x-ray (EDX) results for selected alloys are shown in
NASA Astrophysics Data System (ADS)
Pan, Yong; Shi, Chang-Shuai
2018-04-01
Although PtAl2 is a promising high-temperature alloy, the improvement of its strength is still a big challenge. To solve this problem, we apply first-principles calculations to study the influence of alloying elements on the structural stability, elastic properties and brittle-or-ductile behavior of PtAl2. The results show that alloying elements prefer to occupy the Al site in comparison to the Pt site. Importantly, the calculated bulk modulus of doped PtAl2 is much larger than that of the parent PtAl2 due to the formation of TM-Pt and TM-Al bonds. In addition, alloying elements effectively improve the ductility of PtAl2. Finally, our work can provide new information to improve the mechanical properties of Pt-Al high-temperature materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen
2015-05-14
We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmissionmore » electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced amorphization occurs at 100 degrees C. Furthermore, dose and temperature seem to be the main factors governing the dissolution of SPPs and redistribution of alloying elements, which in turn controls the nucleation and growth of < c >-component loops. The correlation between the microstructural evolution and microchemistry has been found by EDS and is discussed in detail.« less
A theoretical study of thorium titanium-based alloys
NASA Astrophysics Data System (ADS)
Obodo, K. O.; Chetty, N.
2013-09-01
Using theoretical quantum chemical methods, we investigate the dearth of ordered alloys involving thorium and titanium. Whereas both these elements are known to alloy very readily with various other elements, for example with oxygen, current experimental data suggests that Th and Ti do not alloy very readily with each other. In this work, we consider a variety of ordered alloys at varying stoichiometries involving these elements within the framework of density functional theory using the generalized gradient approximation for the exchange and correlation functional. By probing the energetics, electronic, phonon and elastic properties of these systems, we confirm the scarcity of ordered alloys involving Th and Ti, since for a variety of reasons many of the systems that we considered were found to be unfavorable. However, our investigations resulted in one plausible ordered structure: We propose ThTi3 in the Cr3Si structure as a metastable ordered alloy.
Schaeffler-Type Phase Diagram of Ti-Based Alloys
NASA Astrophysics Data System (ADS)
Ishida, K.
2017-10-01
The α(hcp)/β(bcc) phase equilibria of Ti-based multi-component alloys can be described by a Schaeffler-type diagram, where Al and Mo equivalents (Aleq and Moeq) are used. Aleq is thermodynamically defined by the ratio of partial molar free energy changes transfer of one mole of each α forming element and Al from a dilute solution of α to β phases, while Moeq is also deduced by similar thermodynamic quantities of β forming element and Mo. Aleq and Moeq for 40 alloying elements are estimated from the thermodynamic parameters assessed by Kaufman and Murray. It is shown that three types of Ti alloys, i.e., α and near α, α+β, and β alloys, can be exactly classified using Aleq and Moeq. The Ms and β transus temperatures can also be predicted by Aleq and Moeq. The proposed Aleq and Moeq are very useful for alloy design, heat treatment, and microstructural evolution of Ti-based alloys.
Exploring As-Cast PbCaSn-Mg Anodes for Improved Performance in Copper Electrowinning
NASA Astrophysics Data System (ADS)
Yuwono, Jodie A.; Clancy, Marie; Chen, Xiaobo; Birbilis, Nick
2018-06-01
Lead calcium tin (PbCaSn) alloys are the common anodes used in copper electrowinning (Cu EW). Given a large amount of energy consumed in Cu EW process, anodes with controlled oxygen evolution reaction (OER) kinetics and a lower OER overpotential are advantageous for reducing the energy consumption. To date, magnesium (Mg) has never been studied as an alloying element for EW anodes. As-cast PbCaSn anodes with the addition of Mg were examined herein, revealing an improved performance compared to that of the industrial standard PbCaSn anode. The alloy performances in the early stages of anode life and passivation were established from electrochemical studies which were designed to simulate industrial Cu EW process. The 24-hour polarization testing revealed that the Mg alloying depolarizes the anode potential up to 80 mV; thus, resulting in a higher Cu EW efficiency. In addition, scanning electron microscopy and X-ray photoelectron spectroscopy revealed that the alteration of the alloy microstructure and the corresponding interfacial reactions contribute to the changes of the anode electrochemical performances. The present study reveals for the first time the potency of Mg alloying in reducing the overpotential of PbCaSn anode.
NASA Technical Reports Server (NTRS)
Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.
1992-01-01
The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.
In vitro corrosion and biocompatibility of binary magnesium alloys.
Gu, Xuenan; Zheng, Yufeng; Cheng, Yan; Zhong, Shengping; Xi, Tingfei
2009-02-01
As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium was used as control. Their mechanical properties, corrosion properties and in vitro biocompatibilities (cytotoxicity and hemocompatibility) were evaluated by SEM, XRD, tensile test, immersion test, electrochemical corrosion test, cell culture and platelet adhesion test. The results showed that the addition of alloying elements could influence the strength and corrosion resistance of Mg. The cytotoxicity tests indicated that Mg-1Al, Mg-1Sn and Mg-1Zn alloy extracts showed no significant reduced cell viability to fibroblasts (L-929 and NIH3T3) and osteoblasts (MC3T3-E1); Mg-1Al and Mg-1Zn alloy extracts indicated no negative effect on viabilities of blood vessel related cells, ECV304 and VSMC. It was found that hemolysis and the amount of adhered platelets decreased after alloying for all Mg-1X alloys as compared to the pure magnesium control. The relationship between the corrosion products and the in vitro biocompatibility had been discussed and the suitable alloying elements for the biomedical applications associated with bone and blood vessel had been proposed.
NASA Astrophysics Data System (ADS)
Hu, Q.; Guo, S.; Wang, J. M.; Yan, Y. H.; Chen, S. S.; Lu, D. P.; Liu, K. M.; Zou, J. Z.; Zeng, X. R.
2017-01-01
Chemical and topological parameters have been widely used for predicting the phase selection in high-entropy alloys (HEAs). Nevertheless, previous studies could be faulted due to the small number of available data points, the negligence of kinetic effects, and the insensitivity to small compositional changes. Here in this work, 92 TiZrHfM, TiZrHfMM, TiZrHfMMM (M = Fe, Cr, V, Nb, Al, Ag, Cu, Ni) HEAs were prepared by melt spinning, to build a reliable and sufficiently large material database to inspect the robustness of previously established parameters. Modification of atomic radii by considering the change of local electronic environment in alloys, was critically found out to be superior in distinguishing the formation of amorphous and crystalline alloys, when compared to using atomic radii of pure elements in topological parameters. Moreover, crystal structures of alloying element were found to play an important role in the amorphous phase formation, which was then attributed to how alloying hexagonal-close-packed elements and face-centered-cubic or body-centered-cubic elements can affect the mixing enthalpy. Findings from this work not only provide parametric studies for HEAs with new and important perspectives, but also reveal possibly a hidden connection among some important concepts in various fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanwen; Jin, Ke; Xue, Haizhou
We report that historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel setmore » of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. Finally, the insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt)
NASA Astrophysics Data System (ADS)
Dai, Fu-Zhi; Zhou, Yanchun
2017-02-01
Activating the plasticity of ZrB2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB2, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B π orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB2 based materials, especially for improving their mechanical properties.
Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt)
Dai, Fu-Zhi; Zhou, Yanchun
2017-01-01
Activating the plasticity of ZrB2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB2, which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B π orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB2 based materials, especially for improving their mechanical properties. PMID:28233838
Reducing the Ideal Shear Strengths of ZrB2 by High Efficient Alloying Elements (Ag, Au, Pd and Pt).
Dai, Fu-Zhi; Zhou, Yanchun
2017-02-24
Activating the plasticity of ZrB 2 is a promising approach to improve its key properties for applications in hypersonic vehicles, including high temperature strength and thermal shock resistance. The present work demonstrates that ideal shear strength of ZrB 2 , which is a good indicator of the critical stress for dislocation nucleation, can be significantly reduced by dissolving of appropriate alloying elements. Analyzing on the bonding nature of ZrB 2 reveals that choosing alloying elements with low energy valence electrons will prevent electron transferring from alloying element to the electron deficient B-B π orbits, which will reduce the local stability of the region surrounding the alloying element. Under the criterion, elements with d electrons tending to be full-filled (Ag, Au, Pd and Pt, the full-filled state is associated with low energy level) are selected as promising candidates with their prominent efficiency in reducing ideal shear strengths verified by first-principles calculations. The results provide useful guidelines for further designs of ZrB 2 based materials, especially for improving their mechanical properties.
THE PARTITIONING OF ALLOYING ELEMENTS IN MALLEABLE IRONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoz, G.
1958-12-23
The partitioning of a number of alloying elements between the cementite and austenite phases of irons during first-stage graphitization has been determined. For the most part, the data were obtained by chemical analyses of the cementite chemically extracted from irons quenched after selected periods at l650 F. Spot checks of these results and some explorations of alloy distribution in the matrix were made with the electron probe microanalyzer. The results show that the elements V, Cr, Mo, and Mn (not combined with S) concentrate in the cementite phase and may further enrich in this phase during graphitization. Small but measurablemore » amounts of the elements Si, Cu, Ni, Co, and Al are also found in the cementite phase. Sulfur dissolves partially in the cementite phase but is removed insofar as MnS is formed. The finding of significant amounts of every alloying element investigated in the cementite phase suggests that the mechanism by which alloying elements influenee graphitization kinetics may involve a change in the thermodynamic stability of the cementite phase. (auth)« less
Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading
NASA Astrophysics Data System (ADS)
Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.
2017-12-01
Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C., E-mail: lichun@nwpu.edu.cn; Shang, J.; Yue, Z.
2015-07-15
In this paper, the basic electronic structures and elastic properties of Ni{sub 3}Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni{sub 3}Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the othermore » elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.« less
NASA Astrophysics Data System (ADS)
Ogawa, Yurie; Matsuda, Kenji; Kawabata, Tokimasa; Uetani, Yasuhiro; Ikeno, Susumu
It has been known that transition metals improve the mechanical property of Al-Mg-Si alloy. The thermo-mechanical treatment is also effective to improve the strength of Al-Mg-Si alloy. In this work, the aging behavior of deformed excess Mg-type Al-Mg-Si alloy including Ag,Cu,Pt was investigated by hardness test and TEM observation. The value of the maximum hardness increased and the aging time to the maximum hardness became shorter by increasing the amount of the deformation. The age-hardening ability (ΔHV) was decreased with increasing amount of the deformation. The effect of additional element on AHV was also similar to the result of the deformation described above. Comparing the value of the maximum hardness for the alloys aged at 423-523 K, the ex. Mg-Cu alloy was the highest, the ex. Mg-Ag alloy was middle, and the ex. Mg and ex. Mg-Pt alloys were the lowest because of total amounts of added elements.
NASA Astrophysics Data System (ADS)
Li, Hui; Zhang, Jiansheng; Ding, Rongrong
2017-11-01
The effects of alloying elements on the macrostructures, microstructures and tensile strength of AZ80 Mg alloy weldments were studied in the present study. The results indicate that with the decrease of Al element content of filler wire, the welding defects of seam are gradually eliminated and the β-Mg17Al12 phases at α-Mg boundaries are refined and become discontinuous, which are beneficial to the improvement of tensile strength. With AZ31 Mg alloy filler wire, the maximum tensile strength of AZ80 weldment is 220 MPa and fracture occurs at the welding seam of joint. It is experimentally proved that robust AZ80 Mg alloy joints can be obtained by tungsten inert gas (TIG) welding process with AZ31 Mg alloy filler wire. However, further study is required to improve the microstructures and reduce welding defects of joint in order to further improve the joining strength of AZ80 Mg alloy joint.
Hydrogen pickup mechanism of zirconium alloys
NASA Astrophysics Data System (ADS)
Couet, Adrien
Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes to directly measure the evolution of sigma oxe as function of exposure time. The results show that sigmao xe decreases as function of exposure time and that its variations are directly correlated to the instantaneous hydrogen pickup fraction variations. The electron transport through the oxide layer is thus altered as the oxide grows, reasons for which are yet to be exactly determined. Preliminary results also show that sigma oxe of ZrNb alloys would be much higher compared with Zircaloy-4. Thus, it is confirmed that sigmaox e is a key parameter in the hydrogen and oxidation mechanism. Because the mechanism whereby alloying elements are incorporated into the oxide layer is critical to changing sigmao xe, the evolution of the oxidation state of two common alloying elements, Fe and Nb, when incorporated into the growing oxide layers is investigated using X-Ray Absorption Near-Edge Spectroscopy (XANES) using micro-beam synchrotron radiation on cross sectional oxide samples. The results show that the oxidation of both Fe and Nb is delayed in the oxide layer compared to that of Zr, and that this oxidation delay is related to the variations of the instantaneous hydrogen pick-up fraction with exposure time. The evolution of Nb oxidation as function of oxide depth is also compatible with space charge compensation in the oxide and with an increase in sigmaox e of ZrNb alloys compared to Zircaloys. Finally, various successively complex models from the well-known Wagner oxidation theory to the more complex effect of space charge on oxidation kinetics have been developed. The general purpose of the modeling effort is to provide a rationale for the sub-parabolic oxidation kinetics and demonstrate the correlation with hydrogen pickup fraction. It is directly demonstrated that parabolic oxidation kinetics is associated with high sigmao xe and low space charges in the oxide whereas sub-parabolic oxidation kinetics is associated with lower sigmaox e and higher space charge in the oxide. All these observations helped us to propose a general corrosion mechanism of zirconium alloys involving both oxidation and hydrogen pickup mechanism to better understand and predict the effect of alloying additions on the behavior of zirconium alloys.
Effect of Copper and Silicon on Al-5%Zn Alloy as a Candidate Low Voltage Sacrificial Anode
NASA Astrophysics Data System (ADS)
Pratesa, Yudha; Ferdian, Deni; Togina, Inez
2017-05-01
One common method used for corrosion protection is a sacrificial anode. Sacrificial anodes that usually employed in the marine environment are an aluminum alloy sacrificial anode, especially Al-Zn-In. However, the electronegativity of these alloys can cause corrosion overprotection and stress cracking (SCC) on a high-strength steel. Therefore, there is a development of the sacrificial anode aluminum low voltage to reduce the risk of overprotection. The addition of alloying elements such as Cu, Si, and Ge will minimize the possibility of overprotection. This study was conducted to analyze the effect of silicon and copper addition in Al-5Zn. The experiment started from casting the sacrificial anode aluminum uses electrical resistance furnace in a graphite crucible in 800°C. The results alloy was analyzed using Optical emission spectroscopy (OES), Differential scanning calorimetry, electrochemical impedance spectroscopy, and metallography. Aluminum alloy with the addition of a copper alloy is the most suitable and efficient to serve as a low-voltage sacrificial anode aluminum. Charge transfer resistivity of copper is smaller than silicon which indicates that the charge transfer between the metal and the electrolyte is easier t to occur. Also, the current potential values in coupling with steel are also in the criteria range of low-voltage aluminum sacrificial anodes.
Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments
Yamaguchi, Seiji; Hashimoto, Hideki; Nakai, Ryusuke; Takadama, Hiroaki
2017-01-01
Titanium metal (Ti) and its alloys are widely used in orthopedic and dental fields. We have previously shown that acid and heat treatment was effective to introduce bone bonding, osteoconduction and osteoinduction on pure Ti. In the present study, acid and heat treatment with or without initial NaOH treatment was performed on typical Ti-based alloys used in orthopedic and dental fields. Dynamic movements of alloying elements were developed, which depended on the kind of treatment and type of alloy. It was found that the simple acid and heat treatment enriched/remained the alloying elements on Ti–6Al–4V, Ti–15Mo–5Zr–3Al and Ti–15Zr–4Nb–4Ta, resulting in neutral surface charges. Thus, the treated alloys did not form apatite in a simulated body fluid (SBF) within 3 days. In contrast, when the alloys were subjected to a NaOH treatment prior to an acid and heat treatment, alloying elements were selectively removed from the alloy surfaces. As a result, the treated alloys became positively charged, and formed apatite in SBF within 3 days. Thus, the treated alloys would be useful in orthopedic and dental fields since they form apatite even in a living body and bond to bone. PMID:28946646
NASA Astrophysics Data System (ADS)
Vodičková, Věra; Hanus, Pavel; Vlasák, Tomáš; Švec, Martin
2018-03-01
Iron aluminides were developed as an alternative to stainless steels after World War II. The main intended impact was to save strategic elements (chromium or nickel). The result of these investigations was development of registered alloys as Pyroferal (Czechoslovak Republic), Thugal (Soviet Union) or Thermagal (France). The investigation of these type alloys continued in the nineties thanks to technological progress. In this time iron aluminides seems to be promising material with very good corrosive and environment resistivity. The mechanical properties of binary iron aluminides (Fe-Al) are average at higher temperatures but strengthening effect of alloying elements is significant. The aim of the article is to show influence of non-critical additives (such as C, Ti, Zr) and also “slightly critical” elements as e.g. Ce, Nb on high temperature creep properties of alloys.
Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; ...
2015-01-20
The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al 1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide rangemore » of complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less
Evaluation of the new TAMZ titanium alloy for dental cast application.
Zhang, Y M; Guo, T W; Li, Z C
2000-12-01
To reveal the potential of the new titanium alloy as dental prosthodontic materials. Dental castings of TAMZ alloy were investigated in the casting machine specially designed for titanium. A mesh pattern was used to count the castability value. The mechanical properties were measured by means of a universal testing machine. Optical micrography was done on the exposed cross-section of TAMZ alloy casting. From the surface to the inner part the Knoop hardness in reacted layer of TAMZ alloy casting was measured. The structure and elemental analyses of the reacted layer were made by SEM and element line scanning observation. The castability value (Cv = 98%) and the tensile test (sigma b = 850 Mpa, sigma 0.2 = 575 Mpa, delta = 7.33%) data were collected. The castings microstructure showed main alpha phase and small beta phase. Knoop hardness in the surface reacted layer was greater than that in the inner part. From the SEM and element line scanning observation, there are three different layers in the surface reacted layer of the TAMZ alloy castings, and higher level of element of O, Al, Si and Zr were found in the reacted layer while the Si permeated deeper than others. TAMZ alloy can be accepted as a material for dental alloy in prosthodontics.
Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys
NASA Astrophysics Data System (ADS)
Granberg, F.; Djurabekova, F.; Levo, E.; Nordlund, K.
2017-02-01
A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.
High energy product permanent magnet having improved intrinsic coercivity and method of making same
Ramesh, Ramamoorthy; Thomas, Gareth
1990-01-01
A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.
Headridge, J B; Smith, D R
1972-07-01
An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.
Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; ...
2016-02-01
We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less
NASA Astrophysics Data System (ADS)
Allenou, J.; Tougait, O.; Pasturel, M.; Iltis, X.; Charollais, F.; Anselmet, M. C.; Lemoine, P.
2011-09-01
Si addition to Al is considered as a promising route to reduce (U,Mo)-Al interaction kinetics, due to its accumulation in the interaction layer, yielding the formation of silicide phases. The (U,Mo) alloy microstructure, and especially its homogenization state, could play a role on this accumulation process. The addition of a third element in γ(U,Mo) could also influence diffusion mechanisms of Al and Si. These two parameters were studied by means of diffusion couple experiments by joining γU based alloys with Al and (Al,Si) alloy. Chemical elements X added into γ(U,Mo) were thoroughly chosen on the following criteria: (i) the potential solubility of the alloying element into the γ(U,Mo) matrix, (ii) its capability to form the ternary aluminides based on the CeCr 2Al 20 and Ho 6Mo 4Al 43 - types, and (iii) the feasibility to control the microstructure of the alloys. On this basis, a test matrix is defined. It concerns γ(U80,Mo15,X5) alloys (in at.%) with X = Y, Cu, Zr, Ti or Cr. These alloys were homogenized and coupled with Al or (Al,Si) alloy. Results evidenced, first, the importance of the state of homogenization of the γ(U,Mo) binary alloy on interaction processes with (Al,Si) alloy, and the benefit on the diffusion of Si through the interaction layer, as observed on the elementary concentration profiles, when the third element X has some solubility into γ(U,Mo) alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braszczyńska-Malik, K.N., E-mail: kacha@wip.pcz.pl; Grzybowska, A.
2016-05-15
The microstructure and mechanical properties investigations of two AME503 and AME505 experimental alloys in as-cast conditions were presented. The investigated materials were fabricated on the basis of the AM50 commercial magnesium alloy with 3 and 5 wt.% cerium rich mischmetal. In the as-cast condition, both experimental alloys were mainly composed of α-Mg, Al{sub 11}RE{sub 3} and Al{sub 10}RE{sub 2}Mn{sub 7} intermetallic phases. Additionally, due to non-equilibrium solidification conditions, a small amount of α + γ divorced eutectic and Al{sub 2}RE intermetallic phase were revealed. The obtained results also show a significant influence of rare earth elements on Brinell hardness, tensilemore » and compression properties at ambient temperature and especially on creep properties at 473 K. Improved alloy properties with a rise in rare earth elements mass fraction results from an increase in Al{sub 11}RE{sub 3} phase volume fraction and suppression of α + γ eutectic volume fraction in the alloy microstructure. Additionally, the influence of rare earth elements on the dendrite arm space value was discussed. The presented results also proved the thermal stability of the intermetallic phases during creep testing. - Highlights: • Two different Mg-5Al-0.4Mn alloys containing 3 and 5 wt.% of rare earth elements were fabricated. • Addition of rare earth elements leads to a reduction of dendrite arm spaces. • Mechanical properties depend on the phase composition of the alloys. • The increase of the rare earth elements content causes rise of the creep resistance.« less
Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor
2013-06-01
Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.
Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.
Alloy Effects on the Gas Nitriding Process
NASA Astrophysics Data System (ADS)
Yang, M.; Sisson, R. D.
2014-12-01
Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.
Passivation and alloying element retention in gas atomized powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.
A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
NUCLEAR REACTOR COMPENENT CLADDING MATERIAL
Draley, J.E.; Ruther, W.E.
1959-01-27
Fuel elements and coolant tubes used in nuclear reactors of the heterogeneous, water-cooled type are described, wherein the coolant tubes extend through the moderator and are adapted to contain the fuel elements. The invention comprises forming the coolant tubes and the fuel element cladding material from an alloy of aluminum and nickel, or an alloy of aluminum, nickel, alloys are selected to prevent intergranular corrosion of these components by water at temperatures up to 35O deg C.
Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya
2013-05-07
Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use.
Effects of alloying elements on thermal desorption of helium in Ni alloys
NASA Astrophysics Data System (ADS)
Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.
2012-12-01
It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.
NASA Astrophysics Data System (ADS)
Shuxia, ZHAO; Lei, ZHANG; Jiajia, HOU; Yang, ZHAO; Wangbao, YIN; Weiguang, MA; Lei, DONG; Liantuan, XIAO; Suotang, JIA
2018-03-01
The chemical composition of alloys directly determines their mechanical behaviors and application fields. Accurate and rapid analysis of both major and minor elements in alloys plays a key role in metallurgy quality control and material classification processes. A quantitative calibration-free laser-induced breakdown spectroscopy (CF-LIBS) analysis method, which carries out combined correction of plasma temperature and spectral intensity by using a second-order iterative algorithm and two boundary standard samples, is proposed to realize accurate composition measurements. Experimental results show that, compared to conventional CF-LIBS analysis, the relative errors for major elements Cu and Zn and minor element Pb in the copper-lead alloys has been reduced from 12%, 26% and 32% to 1.8%, 2.7% and 13.4%, respectively. The measurement accuracy for all elements has been improved substantially.
Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K
2012-12-19
A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.
New eutectic alloys and their heats of transformation
NASA Technical Reports Server (NTRS)
Farkas, D.; Birchenall, C. E.
1985-01-01
Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.
NASA Technical Reports Server (NTRS)
King, W. E.; Ethridge, E. C.
1985-01-01
The role of trace additions of reactive elements like Y, Ce, Th, or Hf to Cr bearing alloys was studied by applying a new developed technique of transverse section analytical electron microscopy. This reactive-element effect improves the high temperature oxidation resistance of alloys by strongly reducing the high temperature oxidation rate and enhancing the adhesion of the oxide scale, however, the mechanisms for this important effect remain largely unknown. It is indicated that the presence of yttrium affects the oxidation of Fe-Cr-Y alloys in at least two ways. The reactive element alters the growth mechanism of the oxide scale as evidenced by the marked influence of the reactive element on the oxide scale microstructure. The present results also suggest that reactive-element intermetallic compounds, which internally oxidize in the metal during oxidation, act as sinks for excess vacancies thus inhibiting vacancy condensation at the scale-metal interface and possibly enhancing scale adhesion.
Agarwal, Sankalp; Curtin, James; Duffy, Brendan; Jaiswal, Swarna
2016-11-01
Magnesium (Mg) and its alloys have been extensively explored as potential biodegradable implant materials for orthopaedic applications (e.g. Fracture fixation). However, the rapid corrosion of Mg based alloys in physiological conditions has delayed their introduction for therapeutic applications to date. The present review focuses on corrosion, biocompatibility and surface modifications of biodegradable Mg alloys for orthopaedic applications. Initially, the corrosion behaviour of Mg alloys and the effect of alloying elements on corrosion and biocompatibility is discussed. Furthermore, the influence of polymeric deposit coatings, namely sol-gel, synthetic aliphatic polyesters and natural polymers on corrosion and biological performance of Mg and its alloy for orthopaedic applications are presented. It was found that inclusion of alloying elements such as Al, Mn, Ca, Zn and rare earth elements provides improved corrosion resistance to Mg alloys. It has been also observed that sol-gel and synthetic aliphatic polyesters based coatings exhibit improved corrosion resistance as compared to natural polymers, which has higher biocompatibility due to their biomimetic nature. It is concluded that, surface modification is a promising approach to improve the performance of Mg-based biomaterials for orthopaedic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aburada, Tomohiro
2011-12-01
The effects and mechanistic roles of a minor alloying element, Ni, on the localized corrosion behavior were explored by studying (Al75Cu 17Mg8)97Ni3 and Al70Cu 18Mg12 amorphous alloys. To explore the minor alloying element limited to the outer surface layers, the corrosion behavior of Al70Cu 18Mg12 amorphous alloy in solutions with and without Ni 2+ was also studied. Both Ni alloying and Ni2+ in solution improved the localized corrosion resistance of the alloys by ennobling the pitting and repassivation potentials. Pit growth by the selective dissolution of Al and Mg was also suppressed by Ni alloying. Remaining Cu and Ni reorganized into a Cu-rich polycrystalline nanoporous structure with continuous ligaments in pits. The minor Ni alloying and Ni2+ in solution suppressed the coarsening of the ligaments in the dealloyed nanoporous structure. The presence of relatively immobile Ni atoms at the surface suppressed the surface diffusion of Cu, which reduced the coarsening of the nanoporous structure, resulting in the formation of 10 to 30 nm wide Cu ligaments. Two mechanistic roles of minor alloying elements in the improvement of the pitting corrosion resistance of the solid solution alloys are elucidated. The first role is the suppression of active dissolution by altering the atomic structure. Ni in solid solution formed stronger bonds with Al, and reduces the probability of weaker Al-Al bonds. The second role is to hinder dissolution by producing a greater negative shift of the true interfacial potential at the dissolution front under the dealloyed layer due to the greater Ohmic resistance through the finer porous structure. These effects contributed to the elevation of pitting potentials by ennobling the applied potential required to produce enough dissolution for the stabilization of pits. Scientifically, this thesis advances the state of understanding of alloy dissolution, particularly the role of minor alloying elements on preferential oxidation at the atomic, nanometer, and micrometer scales. Technological implementations of the findings of the research are also discussed, including a new route to synthesize nanoporous materials with tunable porosity and new corrosion mitigation strategies for commercial Al-based alloys containing the detrimental Al2CuMg phase.
NASA Astrophysics Data System (ADS)
Zhang, Shengjun
2006-12-01
Aluminum and magnesium alloys are widely used in the automobile and aerospace industries as structural materials due to their light weight, high specific strength and good formability. However, they suffer from the poor hot rolling characteristics due to undesired impurities like calcium, potassium, lithium and sodium. They increase the hydrogen solubility in the melt and promote the formation of porosity in aluminum castings. During fabrication of aluminum alloys, they cause the hot-shortness and embrittlement due to cracking. They also led to "blue haze" corrosion which promotes the discoloration of aluminum under humid condition. The removal of these elements increases overall melt loss of aluminum alloys when aluminum products are remelted and recast. Na is one of the common impurities in the Al and Mg alloys. In industry, primary Al is produced by the Hall-Heroult process, through the electrolysis of the mixture of molten alumina and cryolite (Al2O3+Na 3AlF6), the latter being added to lower the melting point. Therefore, Al inevitably contains some Na (>0.002%) without further treatment. The Na content in Al is influenced by the thermodynamics and kinetics of the electrolysis. Similarly, in the electrolytic production and subsequent processing of Mg, Mg is commonly in contact with molten salt mixtures of NaCl and MgCl 2. Consequently, 2--20 wt. ppm Na is often found in Mg alloys. Besides originating from the industrial production process, Na can be introduced in laboratory experiments from alumina crucibles by the reaction between the molten Al-Mg alloys and the Na2O impurity in the alumina crucible. The trace element K plays a similar role in Al alloys although it is seldom discussed. No systematic theoretic research has been carried out to investigate the behavior of these impurities during the processing of aluminum alloys. The thermodynamic description of the Al-Ca-K-Li-Mg-Na system is needed to understand the effects of Ca, K, Li and Na on phase stability of aluminum and magnesium alloys. As the first step of the thermodynamic description of the high-order system, the constitutive-binary systems were modeled in the present work using the CALPHAD technique combined with first-principles calculations. Then, ternaries and higher order systems can be modeled. For ternary systems without experimental data, the thermodynamic description is extrapolated by combining three constitutive-binary systems. Alkali-metal induced high temperature embrittlement (HTE) and loss of ductility were investigated in Al-Li, Al-Mg and Mg-Li alloys. It was discovered that the alkali-metal-rich liquid-2 phase is the cause of HTE and the loss of ductility is proportional to the mole fraction of the liquid phase and the grain size. The calculated results are consistent with experimental observations in the literature and were used to determine HTE safe and sensitive zones, maximum and critical hot-rolling temperatures and the maximum allowable Na content in alloys, which can be used to industrial processing of Al and Mg alloys. The degree of HTE is proportional to the mole fraction of the liquid-2 phase and the grain size.
Determination of alloy content from plume spectral measurements
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1991-01-01
The mathematical derivation for a method to determine the identities and amounts of alloys present in a flame where numerous alloys may be present is described. This method is applicable if the total number of elemental species from all alloys that may be in the flame is greater than or equal to the total number of alloys. Arranging the atomic spectral line emission equations for the elemental species as a series of simultaneous equations enables solution for identity and amount of the alloy present in the flame. This technique is intended for identification and quantification of alloy content in the plume of a rocket engine. Spectroscopic measurements reveal the atomic species entrained in the plume. Identification of eroding alloys may lead to the identification of the eroding component.
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.
Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L
2015-05-29
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr
Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.
2015-01-01
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878
NASA Astrophysics Data System (ADS)
Suresh, Pooja
2014-05-01
Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.
Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys
Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...
2017-06-23
Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
[Metallurgical differentiation of cobalt-chromium alloys for implants].
Holzwarth, U; Thomas, P; Kachler, W; Göske, J; Schuh, A
2005-10-01
Cobalt Chromium alloys are used in cemented total hip or knee arthroplasty as well as in metal-on-metal bearings in total hip arthroplasty. An increasing number of publications report about (allergic) reactions to wear particles of Cobalt Chromium alloys. Reactions to nickel are more frequent in comparison to Cobalt or Chromium particles. It is well known that different kinds of Cobalt Chromium alloys contain different amounts of alloying elements; nevertheless. The aim of the current work was to compare the different Cobalt Chromium alloys according to ASTM F or ISO standards in respect to the different alloying elements. Co28Cr6Mo casting alloys according to ASTM F 75 or ISO 5832-4 as well as forging alloy types according to ASTM F 799 and ISO 5832 such as Co20Cr15W10Ni, Co35Ni20Cr, Fe40Co20Cr10Ni, Co20Cr20Ni, and Co28Cr6Mo were analyzed in respect to their element content of Co, Cr, Ni, Mo, Fe, W, and Mn. In 1935 the Cobalt based alloy "Vitallium" Co30Cr5Mo basically used in the aircraft industry was introduced into medicine. The chemical composition of this alloy based on Cobalt showed 30 wt.% Chromium and 5 wt.% Molybdenum. The differentiation using alloy names showed no Nickel information in single alloy names. The information given about different alloys can lead to an unprecise evaluation of histopathological findings in respect to alloys or alloying constituents. Therefore, implant manufacturers should give the exact information about the alloys used and adhere to European law, Euronorm 93/42/EWG.
NASA Astrophysics Data System (ADS)
Nezafati, Marjan
Magnesium-based (Mg and/or Mg alloys) materials possess many advantageous physicochemical/biological characteristics such as good biocompatibility and similarity of the mechanical properties to the human bone tissue, which renders this material a promising candidate for the biomedical and implant applications. One of the most attractive features of Mg-based materials is the degradability in the physiological environment. With the burst of research on the biodegradable materials for the healthcare device applications, Mg and its alloys attracted a strong attention in the bioengineering field in recent years. However, the major limitation of applying Mg-based materials to biomedical applications is the fast degradation/corrosion rate with regards to the healing process time-span. In the present thesis, an atomistic model employing the density-functional theory (DFT) has been developed to study the hydrolysis process by understanding the influences of commonly used alloying elements (zinc (Zn), calcium (Ca), aluminum (Al), and yttrium (Y)) and the crystallographic orientation of the dissolution surfaces (basal (0001), prism (1010), and pyramidal (1011) planes) on the corrosion behavior. These parameters are known to strongly impact the initial hydrolysis phenomena of Mg-based materials. To develop the atomistic computational model, we have implemented the Dmol3 software package in conjunction with PBE (Perdew, Burke and Ernzerhof) correlation energy functional in the GGA (generalized gradient approximation) scheme. Throughout the thesis, we performed three sets of calculations, i) surface energy, ii) dissolution potential, and iii) water adsorption computations, to examine the hydrolysis mechanism and the subsequent corrosion/degradation of Mg/Mg alloys. The total energy changes of various Mg-based systems in different conditions for these surface energies, dissolution behavior, and tendency of the system for adsorbing the water molecule were quantified. The results obtained from the atomistic model showed that these structural/compositional parameters (i.e., different types of alloying elements and surface planes) can considerably impact the stability of surfaces that are in contact with the corrosion media. The dissolution potential change computation predicted that Al can prevent the dissolution of Mg atoms from the surface of Mg-Al systems. In addition, it was found that the trend of water adsorption phenomena with different alloying elements/planes can be well-explained by the stability of corrosion surface.
Assessment of the factors affecting protective alumina formation under hot corrosion conditions
NASA Astrophysics Data System (ADS)
Task, Michael Nathan
In this study, the influence of microstructure, composition, and phase constitution on the Type I (900°C) and Type II (700°C) hot corrosion resistance of MCrAlY and β-NiAl base alloys was investigated. The Type II hot corrosion resistance of MCrAlY alloys is generally enhanced by microstructural refinement. This can be attributed to the more rapid establishment of a protective Al2O3-rich scale due to the higher density of short-circuit diffusion paths for Al (phase boundaries). However, it was shown that for a given bulk composition, the compositions of the individual phases is also extremely important. If one phase is lean in an element which is highly beneficial from a hot corrosion standpoint, e.g., Cr, Type II hot corrosion resistance is quite poor, regardless of the microstructural scale. In addition, coarse reactive-element-rich phases, which are commonly found in MCrAlY alloys, can be incorporated into the thermally grown Al2O 3 scale and act as initiation sites for Type II attack. This stresses the importance of reactive element content and distribution in MCrAlY coatings. During Type I hot corrosion exposure of β-Ni-36Al (at. %) base alloys, the incubation stage is greatly extended by the addition of 5% Pt, Co, or Cr. In each case, the beneficial effects can be linked to an enhanced ability to rapidly form a protective Al2O3 scale, and to heal this scale when it sustains damage during exposure. With regard to Type II hot corrosion, individual additions of 5 at. % Pt or Cr are beneficial, largely for the same reason; however, additions of 5 at. % Co and co-additions of 5 at. % Pt + 5 at. % Cr result in a decrease in the duration of the incubation stage. Subsurface phase transformations that occur in the latter systems prevent the alloy from maintaining the growth of the Al2O3 scale. This mechanism is discussed in detail. Finally, the influence of alloy composition and exposure environment on the kinetics of the θ→α Al2O3 transformation in scales grown on β-NiAl alloys at 900°C was thoroughly investigated. The relative importance of the kinetics of this transformation during Type I hot corrosion exposure is discussed.
Laser-assisted development of titanium alloys: the search for new biomedical materials
NASA Astrophysics Data System (ADS)
Almeida, Amelia; Gupta, Dheeraj; Vilar, Rui
2011-02-01
Ti-alloys used in prosthetic applications are mostly alloys initially developed for aeronautical applications, so their behavior was not optimized for medical use. A need remains to design new alloys for biomedical applications, where requirements such as biocompatibility, in-body durability, specific manufacturing ability, and cost effectiveness are considered. Materials for this application must present excellent biocompatibility, ductility, toughness and wear and corrosion resistance, a large laser processing window and low sensitivity to changes in the processing parameters. Laser deposition has been investigated in order to access its applicability to laser based manufactured implants. In this study, variable powder feed rate laser cladding has been used as a method for the combinatorial investigation of new alloy systems that offers a unique possibility for the rapid and exhaustive preparation of a whole range of alloys with compositions variable along a single clad track. This method was used as to produce composition gradient Ti-Mo alloys. Mo has been used since it is among the few elements biocompatible, non-toxic β-Ti phase stabilizers. Alloy tracks with compositions in the range 0-19 wt.%Mo were produced and characterized in detail as a function of composition using microscale testing procedures for screening of compositions with promising properties. Microstructural analysis showed that alloys with Mo content above 8% are fully formed of β phase grains. However, these β grains present a cellular substructure that is associated to a Ti and Mo segregation pattern that occurs during solidification. Ultramicroindentation tests carried out to evaluate the alloys' hardness and Young's modulus showed that Ti-13%Mo alloys presented the lowest hardness and Young's modulus (70 GPa) closer to that of bone than common Ti alloys, thus showing great potential for implant applications.
Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrois, Martin; Jablonski, Paul D.
Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficialmore » to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.« less
Alloy Design Data Generated for B2-Ordered Compounds
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Bozzolo, Guillermo; Abel, Phillip B.
2003-01-01
Developing alloys based on ordered compounds is significantly more complicated than developing designs based on disordered materials. In ordered compounds, the major constituent elements reside on particular sublattices. Therefore, the addition of a ternary element to a binary-ordered compound is complicated by the manner in which the ternary addition is made (at the expense of which binary component). When ternary additions are substituted for the wrong constituent, the physical and mechanical properties usually degrade. In some cases the resulting degradation in properties can be quite severe. For example, adding alloying additions to NiAl in the wrong combination (i.e., alloying additions that prefer the Al sublattice but are added at the expense of Ni) will severely embrittle the alloy to the point that it can literally fall apart during processing on cooling from the molten state. Consequently, alloying additions that strongly prefer one sublattice over another should always be added at the expense of that component during alloy development. Elements that have a very weak preference for a sublattice can usually be safely added at the expense of either element and will accommodate any deviation from stoichiometry by filling in for the deficient component. Unfortunately, this type of information is not known beforehand for most ordered systems. Therefore, a computational survey study, using a recently developed quantum approximate method, was undertaken at the NASA Glenn Research Center to determine the preferred site occupancy of ternary alloying additions to 12 different B2-ordered compounds including NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. Some of these compounds are potential high temperature structural alloys; others are used in thin-film magnetic and other electronic applications. The results are summarized. The italicized elements represent the previous sum total alloying information known and verify the computational method used to establish the table. Details of the computational procedures used to determine the preferred site occupancy can be found in reference 2. As further substantiation of the validity of the technique, and its extension to even more complicated systems, it was applied to two simultaneous alloying additions in an ordered alloy.
NASA Astrophysics Data System (ADS)
Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence
2016-06-01
Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.
Dahlqvist, Martin; Lu, Jun; Meshkian, Rahele; Tao, Quanzheng; Hultman, Lars; Rosen, Johanna
2017-01-01
The enigma of MAX phases and their hybrids prevails. We probe transition metal (M) alloying in MAX phases for metal size, electronegativity, and electron configuration, and discover ordering in these MAX hybrids, namely, (V2/3Zr1/3)2AlC and (Mo2/3Y1/3)2AlC. Predictive theory and verifying materials synthesis, including a judicious choice of alloying M from groups III to VI and periods 4 and 5, indicate a potentially large family of thermodynamically stable phases, with Kagomé-like and in-plane chemical ordering, and with incorporation of elements previously not known for MAX phases, including the common Y. We propose the structure to be monoclinic C2/c. As an extension of the work, we suggest a matching set of novel MXenes, from selective etching of the A-element. The demonstrated structural design on simultaneous two-dimensional (2D) and 3D atomic levels expands the property tuning potential of functional materials. PMID:28776034
NASA Astrophysics Data System (ADS)
Voronin, S. V.; Chaplygin, K. K.
2017-12-01
Computer simulation of upsetting the finite element models (FEMs) of an isotropic 5056 aluminum alloy sample and a 5056 aluminum alloy sample with consideration of microstructure is carried out. The stress and strain distribution patterns at different process stages are obtained. The strain required for the deformation of the FEMs of 5056 alloy samples is determined. The influence of the material microstructure on the stress-strain behavior and technological parameters are demonstrated.
Feyerabend, Frank; Fischer, Janine; Holtz, Jakob; Witte, Frank; Willumeit, Regine; Drücker, Heiko; Vogt, Carla; Hort, Norbert
2010-05-01
Degradable magnesium alloys for biomedical application are on the verge of being used clinically. Rare earth elements (REEs) are used to improve the mechanical properties of the alloys, but in more or less undefined mixtures. For some elements of this group, data on toxicity and influence on cells are sparse. Therefore in this study the in vitro cytotoxicity of the elements yttrium (Y), neodymium (Nd), dysprosium (Dy), praseodymium (Pr), gadolinium (Gd), lanthanum (La), cerium (Ce), europium (Eu), lithium (Li) and zirconium (Zr) was evaluated by incubation with the chlorides (10-2000 microM); magnesium (Mg) and calcium (Ca) were tested at higher concentrations (200 and 50mM, respectively). The influence on viability of human osteosarcoma cell line MG63, human umbilical cord perivascular (HUCPV) cells and mouse macrophages (RAW 264.7) was determined, as well as the induction of apoptosis and the expression of inflammatory factors (TNF-alpha, IL-1alpha). Significant differences between the applied cells could be observed. RAW exhibited the highest and HUCPV the lowest sensitivity. La and Ce showed the highest cytotoxicity of the analysed elements. Of the elements with high solubility in magnesium alloys, Gd and Dy seem to be more suitable than Y. The focus of magnesium alloy development for biomedical applications should include most defined alloy compositions with well-known tissue-specific and systemic effects. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Alloying effect on the room temperature creep characteristics of a Ti-Zr-Be bulk metallic glass
NASA Astrophysics Data System (ADS)
Gong, Pan; Wang, Sibo; Li, Fangwei; Wang, Xinyun
2018-02-01
The effect of alloying elements (e.g. Fe, Al, and Ni) on the room temperature creep behavior of a lightweight Ti41Zr25Be34 bulk metallic glass (BMG) was investigated via nanoindentation tests. The generalized Kelvin model was adopted to describe the creep curves. The strain rate sensitivity m has been derived as a measure of the creep resistance. The compliance spectrum and retardation spectrum were also derived. The results show that the creep resistance of Ti41Zr25Be34 alloy can be obviously improved with the addition of alloying elements, and the most effective element is found to be Al. The mechanism for enhancing the creep resistance was discussed in terms of the scale variation of the shear transformation zone induced by alloying.
NASA Astrophysics Data System (ADS)
Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat
2017-10-01
Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.
Shape memory alloy thaw sensors
Shahinpoor, M.; Martinez, D.R.
1998-04-07
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.
Shape memory alloy thaw sensors
Shahinpoor, Mohsen; Martinez, David R.
1998-01-01
A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.
NASA Astrophysics Data System (ADS)
Kumar, P.; Singh, A.
2018-04-01
The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.
Ohno, Hajime; Matsubae, Kazuyo; Nakajima, Kenichi; Kondo, Yasushi; Nakamura, Shinichiro; Fukushima, Yasuhiro; Nagasaka, Tetsuya
2017-11-21
Importance of end-of-life vehicles (ELVs) as an urban mine is expected to grow, as more people in developing countries are experiencing increased standards of living, while the automobiles are increasingly made using high-quality materials to meet stricter environmental and safety requirements. While most materials in ELVs, particularly steel, have been recycled at high rates, quality issues have not been adequately addressed due to the complex use of automobile materials, leading to considerable losses of valuable alloying elements. This study highlights the maximal potential of quality-oriented recycling of ELV steel, by exploring the utilization methods of scrap, sorted by parts, to produce electric-arc-furnace-based crude alloy steel with minimal losses of alloying elements. Using linear programming on the case of Japanese economy in 2005, we found that adoption of parts-based scrap sorting could result in the recovery of around 94-98% of the alloying elements occurring in parts scrap (manganese, chromium, nickel, and molybdenum), which may replace 10% of the virgin sources in electric arc furnace-based crude alloy steel production.
Initial results of metal waste form development activities at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, D.D. Jr.; Westphal, B.R.; Hersbt, R.S.
1997-10-01
Argonne National Laboratory is developing a metal alloy to contain metallic waste constituents from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately}15 wt.% zirconium (from alloy fuel), fission products noble to the process (e.g., Ru, Pd, Tc, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using Ar cover gas. This paper discusses results from the meltingmore » campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with Tc and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment. 3 refs.« less
Initial results of metal waste-form development activities at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, D.D. Jr.; Westphal, B.R.; Herbst, R.S.
1997-12-01
Argonne National Laboratory (ANL) is developing a metal alloy to contain metallic waste constituent residual from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately} 15 wt% zirconium (from alloy fuel), fission products noble to the process (e.g., ruthenium, palladium, technetium, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using argon cover gas. This paper discusses resultsmore » from the melting campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with technetium and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment.« less
Dynamic-Data Driven Modeling of Uncertainties and 3D Effects of Porous Shape Memory Alloys
2014-02-03
takes longer since cooling is required. In fact, five to ten times longer is common. Porous SMAs using an appropriately cold liquid is one of the...deploying solar panels, space station component joining, vehicular docking, and numerous Mars rover components. On airplanes or drones, jet engine...Presho, G. Li. Generalized multiscale finite element methods. Nonlinear elliptic equations, Communication in Computational Physics, 15 (2014), pp
Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements.
Nicoara, M; Raduta, A; Parthiban, R; Locovei, C; Eckert, J; Stoica, M
2016-05-01
A new a biocompatible Ti42Zr40Ta3Si15 (atomic %) porous bulk glassy alloy was produced by combination of rapid solidification and powder metallurgy techniques. Amorphous alloy ribbons were fabricated by melt spinning, i.e. extremely fast quenching the molten alloy with 10(6)K/s from T=1973K down to room temperature. The ribbons were then cryo-milled at liquid nitrogen temperature in order to produce powder, which was subsequently hot pressed. The resulting thick pellets have a porosity of about 14vol%, a high compression strength of 337MPa and a Young's modulus of about E=52GPa, values very close to those characteristic of cortical bone. Moreover, the morphology of the samples is very similar to that of cortical bone. The biocompatibility, which is due to the absence of any toxic element in the chemical composition, together with the suitable mechanical behavior, make these samples promising for orthopedic and dentistry applications. Ti-based alloys are nowadays the standard solution for biomedical implants. However, both the conventional crystalline and amorphous alloys have higher rigidity as the human bone, leading to the damage of the bone at the interface, and contains harmful elements like vanadium, aluminum, nickel or beryllium. The hierarchical porous structures based on glassy alloys with biocompatible elements is a much better alternative. This work presents for the first time the manufacturing of such porous bodies starting from Ti-based amorphous alloy ribbons, which contains only non-harmful elements. The morphology and the compressive mechanical properties of these new products are analyzed in regard with those characteristic to the cortical bone. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Srinivasan, Srikant; Broderick, Scott R; Zhang, Ruifeng; Mishra, Amrita; Sinnott, Susan B; Saxena, Surendra K; LeBeau, James M; Rajan, Krishna
2015-12-18
A data driven methodology is developed for tracking the collective influence of the multiple attributes of alloying elements on both thermodynamic and mechanical properties of metal alloys. Cobalt-based superalloys are used as a template to demonstrate the approach. By mapping the high dimensional nature of the systematics of elemental data embedded in the periodic table into the form of a network graph, one can guide targeted first principles calculations that identify the influence of specific elements on phase stability, crystal structure and elastic properties. This provides a fundamentally new means to rapidly identify new stable alloy chemistries with enhanced high temperature properties. The resulting visualization scheme exhibits the grouping and proximity of elements based on their impact on the properties of intermetallic alloys. Unlike the periodic table however, the distance between neighboring elements uncovers relationships in a complex high dimensional information space that would not have been easily seen otherwise. The predictions of the methodology are found to be consistent with reported experimental and theoretical studies. The informatics based methodology presented in this study can be generalized to a framework for data analysis and knowledge discovery that can be applied to many material systems and recreated for different design objectives.
Effect of Alloy Elements on Microstructures and Mechanical Properties in Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Kato, Yoshikazu; Hisayuki, Koji; Sakaguchi, Masashi; Higashi, Kenji
Microstructures and mechanical properties in the modified Al-Mg-Si alloys with variation in the alloy elements and their contents were investigated to enhance higher strength and ductility. Optimizing both the alloy element design and the industrial processes including heat-treatments and extrusion technology was carried out along the recent suggestion from the first principles calculation. The investigation concluded that the addition of Fe and/or Cu could recovery their lost ductility, furthermore increase their tensile strength up to 420 MPa at high elongation of 24 % after T6 condition for Al-0.8mass%Mg-1.0mass%Si-0.8mass%Cu-0.5mass%Fe alloy with excess Si content. The excellent combination between strength and ductility could be obtained by improvement to the grain boundary embitterment caused by grain boundary segregation of Si as a result from the interaction of Si with Cu or Fe with optimizing the amount of Cu and Fe contents.
Casting of superconducting composite materials (M-4)
NASA Technical Reports Server (NTRS)
Togano, Kazumasa
1993-01-01
An aluminum-lead-bismuth alloy is a flexible alloy and is promising for easily workable embedded-type, filament-dispersed superconducting wire material. It is difficult to produce homogeneous ingots of this material because it is easily separated into elements when melted on Earth due to the large specific gravity differences. In this experiment, a homogeneous alloy will first be produced in molten state in microgravity. It will then be returned to Earth and processed into a wire or tape form. It will then be dispersed as the second phase in micro texture form into the primary phase of aluminum. Superconducting wire material with high-critical-magnetic-field characteristics will be produced. The texture of the material will be observed, and its performance will be evaluated. In addition to the above alloy, a four-element alloy will be produced from silver, a rare Earth element, barium, and copper. The alloys will be oxidized and drawn into wire after being returned to Earth. The materials are expected to be forerunners in obtaining superconducting wire materials from oxide superconductors.
NASA Astrophysics Data System (ADS)
Jha, Rajesh
AlNiCo magnets are known for high-temperature stability and superior corrosion resistance and have been widely used for various applications. Reported magnetic energy density ((BH) max) for these magnets is around 10 MGOe. Theoretical calculations show that ((BH) max) of 20 MGOe is achievable which will be helpful in covering the gap between AlNiCo and Rare-Earth Elements (REE) based magnets. An extended family of AlNiCo alloys was studied in this dissertation that consists of eight elements, and hence it is important to determine composition-property relationship between each of the alloying elements and their influence on the bulk properties. In the present research, we proposed a novel approach to efficiently use a set of computational tools based on several concepts of artificial intelligence to address a complex problem of design and optimization of high temperature REE-free magnetic alloys. A multi-dimensional random number generation algorithm was used to generate the initial set of chemical concentrations. These alloys were then examined for phase equilibria and associated magnetic properties as a screening tool to form the initial set of alloy. These alloys were manufactured and tested for desired properties. These properties were fitted with a set of multi-dimensional response surfaces and the most accurate meta-models were chosen for prediction. These properties were simultaneously extremized by utilizing a set of multi-objective optimization algorithm. This provided a set of concentrations of each of the alloying elements for optimized properties. A few of the best predicted Pareto-optimal alloy compositions were then manufactured and tested to evaluate the predicted properties. These alloys were then added to the existing data set and used to improve the accuracy of meta-models. The multi-objective optimizer then used the new meta-models to find a new set of improved Pareto-optimized chemical concentrations. This design cycle was repeated twelve times in this work. Several of these Pareto-optimized alloys outperformed most of the candidate alloys on most of the objectives. Unsupervised learning methods such as Principal Component Analysis (PCA) and Heirarchical Cluster Analysis (HCA) were used to discover various patterns within the dataset. This proves the efficacy of the combined meta-modeling and experimental approach in design optimization of magnetic alloys.
NASA Astrophysics Data System (ADS)
Yan, Ruey-Fong
The addition of some reactive element oxides, e.g. Ysb2Osb3 or ZrOsb2, has significant effects, e.g. improvement in scale adhesion and reduction in oxidation rate, on the oxidation behavior of chromia and alumina scale forming alloys at high temperatures. However, there is little agreement about how a small addition of an oxygen-active element can cause such profound effects. It was the goal of this project to study the growth kinetics of an oxide scale when different reactive-element oxides were added to pure Ni and Ni-Cr alloys and, consequently, to aid in clarifying the mechanism of reactive element effects. The oxidation kinetics were measured using a thermogravimetric analysis (TGA) method and the material characterization of oxide scale was conducted. The relationship between point defect structures and oxidation kinetics was discussed. The results in this research showed that Ysb2Osb3 and ZrOsb2 exhibited the reactive element effects on the oxidation behaviors of Ni and Ni-Cr alloys. In addition, the point defect concentrations of the reactive element oxide, Ysb2Osb3, were changed by doping of different valent oxides. The modification of point defect concentrations of the reactive element oxide dispersed phases did change the oxidation kinetics of the pure Ni and Ni-Cr alloys containing Ysb2Osb3. These results indicate that the transport properties of the reactive element oxide dispersed phases are one of the important factors in determining the growth rate of an oxide scale.
NASA Astrophysics Data System (ADS)
Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.
2017-04-01
Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also discussed.
Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G
2017-04-18
Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also discussed.
Alloying Elements Transition Into the Weld Metal When Using an Inventor Power Source
NASA Astrophysics Data System (ADS)
Mamadaliev, R. A.; Kuskov, V. N.; Popova, A. A.; Valuev, D. V.
2016-04-01
The temperature distribution over the surface of the welded 12Kh18N10T steel plates using the inventor power source ARC-200 has been calculated. In order to imitate multipass welding when conducting the thermal analysis the initial temperature was changed from 298K up to 798K in 100K increments. It has been determined that alloying elements transition into the weld metal depends on temperature. Using an inventor power source facilitates a uniform distribution of alloying elements along the length and height of the weld seam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin
To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less
Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin
2016-11-01
To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less
Zhang, R. L.; Damewood, L.; Fong, C. Y.; ...
2016-11-02
For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constantmore » of 5.803Å, and has the maximum atomic-like magnetic moment of 5μ B. In conclusion, the challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed.« less
Anawati, Anawati; Asoh, Hidetaka; Ono, Sachiko
2016-01-01
Effects of alloying element Ca on the corrosion behavior and bioactivity of films formed by plasma electrolytic oxidation (PEO) on AM60 alloys were investigated. The corrosion behavior was studied by conducting electrochemical tests in 0.9% NaCl solution while the bioactivity was evaluated by soaking the specimens in simulated body fluid (SBF). Under identical anodization conditions, the PEO film thicknesses increased with increasing Ca content in the alloys, which enhanced the corrosion resistance in NaCl solution. Thicker apatite layers grew on the PEO films of Ca-containing alloys because Ca was incorporated into the PEO film and because Ca was present in the alloys. Improvement of corrosion resistance and bioactivity of the PEO-coated AM60 by alloying with Ca may be beneficial for biodegradable implant applications. PMID:28772371
High-Temperature Cast Aluminum for Efficient Engines
NASA Astrophysics Data System (ADS)
Bobel, Andrew C.
Accurate thermodynamic databases are the foundation of predictive microstructure and property models. An initial assessment of the commercially available Thermo-Calc TCAL2 database and the proprietary aluminum database of QuesTek demonstrated a large degree of deviation with respect to equilibrium precipitate phase prediction in the compositional region of interest when compared to 3-D atom probe tomography (3DAPT) and transmission electron microscopy (TEM) experimental results. New compositional measurements of the Q-phase (Al-Cu-Mg-Si phase) led to a remodeling of the Q-phase thermodynamic description in the CALPHAD databases which has produced significant improvements in the phase prediction capabilities of the thermodynamic model. Due to the unique morphologies of strengthening precipitate phases commonly utilized in high-strength cast aluminum alloys, the development of new microstructural evolution models to describe both rod and plate particle growth was critical for accurate mechanistic strength models which rely heavily on precipitate size and shape. Particle size measurements through both 3DAPT and TEM experiments were used in conjunction with literature results of many alloy compositions to develop a physical growth model for the independent prediction of rod radii and rod length evolution. In addition a machine learning (ML) model was developed for the independent prediction of plate thickness and plate diameter evolution as a function of alloy composition, aging temperature, and aging time. The developed models are then compared with physical growth laws developed for spheres and modified for ellipsoidal morphology effects. Analysis of the effect of particle morphology on strength enhancement has been undertaken by modification of the Orowan-Ashby equation for 〈110〉 alpha-Al oriented finite rods in addition to an appropriate version for similarly oriented plates. A mechanistic strengthening model was developed for cast aluminum alloys containing both rod and plate-like precipitates. The model accurately accounts for the temperature dependence of particle nucleation and growth, solid solution strengthening, Si eutectic strength, and base aluminum yield strength. Strengthening model predictions of tensile yield strength are in excellent agreement with experimental observations over a wide range of aluminum alloy systems, aging temperatures, and test conditions. The developed models enable the prediction of the required particle morphology and volume fraction necessary to achieve target property goals in the design of future aluminum alloys. The effect of partitioning elements to the Q-phase was also considered for the potential to control the nucleation rate, reduce coarsening, and control the evolution of particle morphology. Elements were selected based on density functional theory (DFT) calculations showing the prevalence of certain elements to partition to the Q-phase. 3DAPT experiments were performed on Q-phase containing wrought alloys with these additions and show segregation of certain elements to the Q-phase with relative agreement to DFT predictions.
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Titran, R. H.
1992-01-01
The intermetallic compounds Beta-NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at percent alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.
New alloys to conserve critical elements
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1978-01-01
Based on availability of domestic reserves, chromium is one of the most critical elements within the U.S. metal industry. New alloys having reduced chromium contents which offer potential as substitutes for higher chromium containing alloys currently in use are being investigated. This paper focuses primarily on modified Type 304 stainless steels having one-third less chromium, but maintaining comparable oxidation and corrosion properties to that of type 304 stainless steel, the largest single use of chromium. Substitutes for chromium in these modified Type 304 stainless steel alloys include silicon and aluminum plus molybdenum.
Preliminary Material Properties Handbook, SI Units
1999-12-01
5.5 Beta, Near-Beta, and Metastable Titanium Alloys 5-11 References 5-17 Chapter 6. Heat-Resistant Alloys 6.1 General 6-1 6.2 Iron- Chromium ...elements as vanadium, molybdenum, iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be...ALLOYS Heat-resistant alloys are arbitrarily defined as iron alloys richer in alloy content than the 18 percent chromium , 8 percent nickel types
Li, H. F.; Qiu, K. J.; Yuan, W.; Zhou, F. Y.; Wang, B. L.; Li, L.; Zheng, Y. F.; Liu, Y. H.
2016-01-01
In the present study, the microstructure, mechanical property, castability, corrosion behavior and in vitro cytocompatibility of binary Ti–2X alloys with various alloying elements, including Ag, Bi, Ga, Ge, Hf, In, Mo, Nb, Sn and Zr, were systematically investigated, in order to assess their potential applications in dental field. The experimental results showed that all binary Ti‒2X alloys consisted entirely α–Ti phase. The tensile strength and microhardness of Ti were improved by adding alloying elements. The castability of Ti was significantly improved by separately adding 2 wt.% Bi, Ga, Hf, Mo, Nb, Sn and Zr. The corrosion resistance of Ti in both normal artificial saliva solution (AS) and extreme artificial saliva solution (ASFL, AS with 0.2 wt.% NaF and 0.3 wt.% lactic acid) has been improved by separately adding alloying elements. In addition, the extracts of studied Ti‒2X alloys produced no significant deleterious effect to both fibroblasts L929 cells and osteoblast-like MG63 cells, indicating a good in vitro cytocompatibility, at the same level as pure Ti. The combination of enhanced mechanical properties, castability, corrosion behavior, and in vitro cytocompatibility make the developed Ti‒2X alloys have great potential for future stomatological applications. PMID:27874034
NASA Astrophysics Data System (ADS)
Arunkumar, S.; Baskaralal, V. P. M.; Muthuraman, V.
2017-03-01
The rudimentary steps of the modal analysis and simulation are carried out. The modal analysis is carried out on the different Aluminum Alloys cantilever beam. The cantilever beam is designed in the graphical environment of the ANSYS. The cantilever beam was fine-tuned on one end with all degree of liberation on this end were taken, beam cannot move and rotate. Mode shapes and natural frequencies are premeditated in platforms ANSYS with arithmetical formulation of the direct solver including the block Lanczos method. Aluminum alloys are widely utilized in much application due to their estimable weight to vigor property. Many examination works have been distributed out to make developments the mechanical properties of aluminum alloys. The composition of alloying elements plays a consequential role in deciding the properties of an alloy. In this study a numerical analysis implement i.e., finite element analysis (FEA) is utilized. The work obtainable in this paper is aimed at the study of effect of modal analysis of different aluminum alloys. The modeling and analysis is carried out utilizing ANSYS FEA software. A modal analysis is carried out to understand the modes of frequency demeanor of the material considered. The modal analysis play a vital role in the design of components subjected to high vibration.
Preliminary Material Properties Handbook, English Units
1999-12-01
References 5-17 Chapter 6. Heat-Resistant Alloys 6.1 General 6-1 6.2 Iron- Chromium -Nickel-Base Alloys 6-3 6.3 Nickel-Base Alloys 6-3 6.4...elements as vanadium, molybdenum, iron, or chromium . In addition to strengthening of titanium by the alloying additions, alpha-beta alloys may be...alloys are arbitrarily defined as iron alloys richer in alloy content than the 18 percent chromium , 8 percent nickel types, or as alloys with a base
Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper
NASA Astrophysics Data System (ADS)
Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan
2018-06-01
Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.
THE HOT HARDNESS OF TITANIUM AND TITANIUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, F.R.
1958-07-01
The hot hardness of 27 different heats of titanium and titunium alloys was studied. Tests were conducted on a modified Rockwell machine in an argon atmosphere. Results indicate that low alloy heats lose their hardnesses at a fairly high even rate. On thc other hand, high alloy heats hold their hardnesses well up to about 1100 d F, and then the hardness drops off very sharply with increasing temperature. The influence of alloying elements in promoting resistance to softening was evaluated at 900 d F. Iron was found to be the most effective with the other elements being arranged inmore » order of decreasing effect, as follows: manganese, (auth)« less
Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert
2017-06-01
Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.
Finite Element Analysis of Composite Aircraft Fuselage Frame
NASA Astrophysics Data System (ADS)
Dandekar, Aditya Milind
Composites have been introduced in aircraft industries, for their stronger, stiffer, and lighter properties than their metal-alloys counterparts. The general purpose of an aircraft is to transport commercial or military payload. Aircraft frames primarily maintains the shape of fuselage and prevent instability of the structure. Fuselage is similar as wing in construction which consist of longitudinal elements (longerons and stringers), transverse elements (frames and bulkheads) and its external skin. The fuselage is subjected to forces such as the wing reactions, landing gear reaction, empennage reaction, inertia forces subjected due to size and weight, internal pressure forces due to high altitude. Frames also ensure fail-safe design against skin crack propagation due to hoops stress. Ideal fuselage frames cross section is often circular ring shape with a frame cap of Z section. They are mainly made up of light alloy commonly used is aluminium alloys such as Al-2024, Al-7010, Al-7050, Al-7175. Aluminium alloys have good strength to density ratios in compression and bending of thin plate. A high strength to weight ratio of composite materials can result in a lighter aircraft structure or better safety factor. This research focuses on analysis of fuselage frame under dynamic load condition with change in material. Composites like carbon fibre reinforced plastics [CFRP] and glass fibre reinforced plastics [GFRP] are compared with traditional aluminium alloy Al-7075. The frame is subjected to impact test by dropping it at a velocity of 30 ft. / secs from a height of 86 inch from its centre of gravity. These parameters are considered in event of failure of landing gear, and an aircraft is subject to belly landing or gear-up landing. The shear flow is calculated due to impact force which acts in radial direction. The frame is analysed under static structural and explicit dynamic load conditions. Geometry is created in ANSYS Design Modeler. Analysis setup is created using ANSYS Explicit Dynamic (AUTODYN) and ANSYS Composite PrepPost (ACP-Pre) modules. Shear flow and Stress Flow equations are solved by generating a MATLAB code.
Bacchi, Ataís; Consani, Rafael L X; Mesquita, Marcelo F; dos Santos, Mateus B F
2013-09-01
The purpose of this study was to evaluate the influence of superstructure material and vertical misfits on the stresses created in an implant-supported partial prosthesis. A three-dimensional (3-D) finite element model was prepared based on common clinical data. The posterior part of a severely resorbed jaw with two osseointegrated implants at the second premolar and second molar regions was modeled using specific modeling software (SolidWorks 2010). Finite element models were created by importing the solid model into mechanical simulation software (ANSYS Workbench 11). The models were divided into groups according to the prosthesis framework material (type IV gold alloy, silver-palladium alloy, commercially pure titanium, cobalt-chromium alloy, or zirconia) and vertical misfit level (10 µm, 50 µm, and 100 µm) created at one implant-prosthesis interface. The gap of the vertical misfit was set to be closed and the stress values were measured in the framework, porcelain veneer, retention screw, and bone tissue. Stiffer materials led to higher stress concentration in the framework and increased stress values in the retention screw, while in the same circumstances, the porcelain veneer showed lower stress values, and there was no significant difference in stress in the peri-implant bone tissue. A considerable increase in stress concentration was observed in all the structures evaluated within the misfit amplification. The framework material influenced the stress concentration in the prosthetic structures and retention screw, but not that in bone tissue. All the structures were significantly influenced by the increase in the misfit levels.
Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development
Sims, Zachary C.; Weiss, David; McCall, S. K.; ...
2016-05-23
Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less
Khaksar, Ladan; Shirokoff, John
2017-04-20
The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.
THORIUM-SILICON-BERYLLIUM ALLOYS
Foote, F.G.
1959-02-10
Th, Si, anol Bt alloys where Be and Si are each present in anmounts between 0.1 and 3.5% by weight and the total weight per cent of the minor alloying elements is between 1.5 and 4.5% are discussed. These ternary alloys show increased hardness and greater resistant to aqueous corrosion than is found in pure Th, Th-Si alloys, or Th-Be alloys.
Serrated yielding in Al-Li alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, S.; McShane, H.B.
1993-05-01
Serrated yielding (SY) during tensile testing has been observed in Al-Li alloys, both in the binary and the commercial quaternary alloys, in single crystal as well as polycrystalline materials. Serrated yielding is commonly explained by a dynamic strain aging (DSA) model developed by McCormick and van den Beukel. All the solute elements present in Al-Li alloys, viz., Mg, Cu and Li are known to give DSA and SY. Several researchers believe the DSA to be the cause of SY and they attribute the disappearance of SY simply to the removal of solute from the matrix with aging. However, this argumentmore » has serious flaws. The present paper examines this aspect critically. The authors concluded that Al-Li alloys the disappearance of serrated yielding at a certain stage of aging is not due to removal of the solute from the matrix but due to the change in the nature of the metastable [delta][prime] precipitates - from fine coherent shearable precipitates to larger noncoherent nonshearable precipitates - which prevents the formation of the deformation bands. The serrated yielding reappears with extensive over aging due to the dissolution of these precipitates in favor of the equilibrium precipitates. The equilibrium precipitates, being widely spaced, are ineffective in preventing the formation of deformation bands.« less
Oxidation resistant coating for titanium alloys and titanium alloy matrix composites
NASA Technical Reports Server (NTRS)
Brindley, William J. (Inventor); Smialek, James L. (Inventor); Rouge, Carl J. (Inventor)
1992-01-01
An oxidation resistant coating for titanium alloys and titanium alloy matrix composites comprises an MCrAlX material. M is a metal selected from nickel, cobalt, and iron. X is an active element selected from Y, Yb, Zr, and Hf.
TERNARY ALLOY-CONTAINING PLUTONIUM
Waber, J.T.
1960-02-23
Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.
Nano-size metallic oxide particle synthesis in Fe-Cr alloys by ion implantation
NASA Astrophysics Data System (ADS)
Zheng, C.; Gentils, A.; Ribis, J.; Borodin, V. A.; Delauche, L.; Arnal, B.
2017-10-01
Oxide Dispersion Strengthened (ODS) steels reinforced with metal oxide nanoparticles are advanced structural materials for nuclear and thermonuclear reactors. The understanding of the mechanisms involved in the precipitation of nano-oxides can help in improving mechanical properties of ODS steels, with a strong impact for their commercialization. A perfect tool to study these mechanisms is ion implantation, where various precipitate synthesis parameters are under control. In the framework of this approach, high-purity Fe-10Cr alloy samples were consecutively implanted with Al and O ions at room temperature and demonstrated a number of unexpected features. For example, oxide particles of a few nm in diameter could be identified in the samples already after ion implantation at room temperature. This is very unusual for ion beam synthesis, which commonly requires post-implantation high-temperature annealing to launch precipitation. The observed particles were composed of aluminium and oxygen, but additionally contained one of the matrix elements (chromium). The crystal structure of aluminium oxide compound corresponds to non-equilibrium cubic γ-Al2O3 phase rather than to more common corundum. The obtained experimental results together with the existing literature data give insight into the physical mechanisms involved in the precipitation of nano-oxides in ODS alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, A M
2001-05-01
In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less
Jia, La-jiang; Jin, Pu-jun
2015-01-01
The present paper analyzes the interior rust that occurred in bronze alloy sample from 24 pieces of Early Qin bronze wares. Firstly, samples were processed by grinding, polishing and ultrasonic cleaning-to make a mirror surface. Then, a confocal micro-Raman spectrometer was employed to carry out spectroscopic study on the inclusions in samples. The conclusion indicated that corrosive phases are PbCO3 , PbO and Cu2O, which are common rusting production on bronze alloy. The light-colored circular or massive irregular areas in metallographic structure of samples are proved as Cu2O, showing that bronze wares are not only easy to be covered with red Cu2O rusting layer, but also their alloy is easy to be eroded by atomic oxygen. In other words, the rust Cu2O takes place in both the interior and exterior parts of the bronze alloy. In addition, Raman spectrum analysis shows that the dark grey materials are lead corrosive products--PbCO3 and PbO, showing the corroding process of lead element as Pb -->PbO-->PbCO3. In the texture of cast state of bronze alloy, lead is usually distributed as independent particles between the different alloy phases. The lead particles in bronze alloy would have oxidation reaction and generate PbO when buried in the soil, and then have chemical reaction with CO3(2-) dissolved in the underground water to generate PbCO3, which is a rather stable lead corrosive production. A conclusion can be drawn that the external corrosive factors (water, dissolved oxygen and carbonate, etc) can enter the bronze ware interior through the passageway between different phases and make the alloy to corrode gradually.
Influence of Cobalt on the Properties of Load-Sensitive Magnesium Alloys
Klose, Christian; Demminger, Christian; Mroz, Gregor; Reimche, Wilfried; Bach, Friedrich-Wilhelm; Maier, Hans Jürgen; Kerber, Kai
2013-01-01
In this study, magnesium is alloyed with varying amounts of the ferromagnetic alloying element cobalt in order to obtain lightweight load-sensitive materials with sensory properties which allow an online-monitoring of mechanical forces applied to components made from Mg-Co alloys. An optimized casting process with the use of extruded Mg-Co powder rods is utilized which enables the production of magnetic magnesium alloys with a reproducible Co concentration. The efficiency of the casting process is confirmed by SEM analyses. Microstructures and Co-rich precipitations of various Mg-Co alloys are investigated by means of EDS and XRD analyses. The Mg-Co alloys' mechanical strengths are determined by tensile tests. Magnetic properties of the Mg-Co sensor alloys depending on the cobalt content and the acting mechanical load are measured utilizing the harmonic analysis of eddy-current signals. Within the scope of this work, the influence of the element cobalt on magnesium is investigated in detail and an optimal cobalt concentration is defined based on the performed examinations. PMID:23344376
The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements
NASA Astrophysics Data System (ADS)
Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe
2014-04-01
The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.
NASA Astrophysics Data System (ADS)
Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo
2014-03-01
To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.
Bolzoni, L; Weissgaerber, T; Kieback, B; Ruiz-Navas, E M; Gordo, E
2013-04-01
The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kobayashi, Hirokazu; Kusada, Kohei; Kitagawa, Hiroshi
2015-06-16
Currently 118 known elements are represented in the periodic table. Of these 118 elements, only about 80 elements are stable, nonradioactive, and widely available for our society. From the viewpoint of the "elements strategy", we need to make full use of the 80 elements to bring out their latent ability and create innovative materials. Furthermore, there is a strong demand that the use of rare or toxic elements be reduced or replaced while their important properties are retained. Advanced science and technology could create higher-performance materials even while replacing or reducing minor or harmful elements through the combination of more abundant elements. The properties of elements are correlated directly with their electronic states. In a solid, the magnitude of the density of states (DOS) at the Fermi level affects the physical and chemical properties. In the present age, more attention has been paid to improving the properties of materials by means of alloying elements. In particular, the solid-solution-type alloy is advantageous because the properties can be continuously controlled by tuning the compositions and/or combinations of the constituent elements. However, the majority of bulk alloys are of the phase-separated type under ambient conditions, where constituent elements are immiscible with each other. To overcome the challenge of the bulk-phase metallurgical aspects, we have focused on the nanosize effect and developed methods involving "nonequilibrium synthesis" or "a process of hydrogen absorption/desorption". We propose a new concept of "density-of-states engineering" for the design of materials having the most desirable and suitable properties by means of "interelement fusion". In this Account, we describe novel solid-solution alloys of Pd-Pt, Ag-Rh, and Pd-Ru systems in which the constituent elements are immiscible in the bulk state. The homogeneous solid-solution alloys of Pd and Pt were created from Pd core/Pt shell nanoparticles using a hydrogen absorption/desorption process as a trigger. Several atom percent replacements of Pd with Pt atoms resulted in a significantly enhanced hydrogen absorption capacity compared with Pd nanoparticles. AgxRh1-x and PdxRu1-x solid-solution alloy nanoparticles were also developed by nonequilibrium synthesis based on a polyol method. The AgxRh1-x nanoparticles demonstrated hydrogen storage properties, although pure metal nanoparticles of each constituent element do not adsorb hydrogen. AgxRh1-x is therefore considered to possess a similar electronic structure to Pd as a synthetic pseudo-palladium. The PdxRu1-x nanoparticles showed enhanced catalytic activity for CO oxidation, with the highest catalytic activity found using the equimolar Pd0.5Ru0.5 nanoparticles. The catalytic activity of the Pd0.5Ru0.5 nanoparticles exceeds that of the widely used and best-performing Ru catalysts for CO oxidation and is also higher than that of neighboring Rh on the periodic table. Our present work provides a guiding principle for the design of a suitable DOS shape according to the intended physical and/or chemical properties and a method for the development of novel solid-solution alloys.
NASA Technical Reports Server (NTRS)
Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.
1974-01-01
The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.
Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys
Ovshinsky, Stanford R.; Fetcenko, Michael A.
1996-01-01
An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.
NASA Astrophysics Data System (ADS)
Zeng, Ying; Jiang, Bin; Shi, Ouling; Quan, Gaofen; Al-Ezzi, Salih; Pan, FuSheng
2018-07-01
Some alloying elements (Al, Er, Gd, Li, Mn, Sn, Y, Zn) were proved recently by calculations or experiments to improve the formability of Mg alloys, but ignoring their site preference in Mg crystals during the calculated process. A crystallographic model was built via first principle calculations to predict the site preferences of these elements. Regularities between doping elements and site preferences were summarized. Meanwhile, in the basis of the crystallographic model, a series of formulas were deduced combining the diffraction law. It predicted that a crystal plane with abnormal XRD peak intensity of the Mg-based solid solutions, compared to that of the pure Mg, prefers to possess solute atoms. Thus, three single-phase solid solution alloys were then prepared through an original In-situ Solution Treatment, and their XRD patterns were compared. Finally, the experiment further described the site preferences of these solute atoms in Mg crystal, verifying the calculation results.
NASA Astrophysics Data System (ADS)
Zeng, Ying; Jiang, Bin; Shi, Ouling; Quan, Gaofen; Al-Ezzi, Salih; Pan, FuSheng
2018-03-01
Some alloying elements (Al, Er, Gd, Li, Mn, Sn, Y, Zn) were proved recently by calculations or experiments to improve the formability of Mg alloys, but ignoring their site preference in Mg crystals during the calculated process. A crystallographic model was built via first principle calculations to predict the site preferences of these elements. Regularities between doping elements and site preferences were summarized. Meanwhile, in the basis of the crystallographic model, a series of formulas were deduced combining the diffraction law. It predicted that a crystal plane with abnormal XRD peak intensity of the Mg-based solid solutions, compared to that of the pure Mg, prefers to possess solute atoms. Thus, three single-phase solid solution alloys were then prepared through an original In-situ Solution Treatment, and their XRD patterns were compared. Finally, the experiment further described the site preferences of these solute atoms in Mg crystal, verifying the calculation results.
Physical Properties of NiFeCrCo-based High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Zaddach, Alexander Joseph
Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.
Electrochemical photovoltaic cell having ternary alloy film
Russak, Michael A.
1984-01-01
A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.
Security assessment of magnesium alloys used as biodegradable implant material.
Sun, X; Cao, Z Y; Liu, J G; Feng, C
2015-01-01
The security risk of magnesium alloys used as biodegradable implant material was evaluated in this study. Dose-response assessment was conducted by using toxicological data from authoritative public health agencies (World Health Organization) and assuming 1~3 years of uniform corrosion. Through modification calculation, the tolerable corrosion rate of biodegradable magnesium alloys in vivo was proposed, which theoretically ensured the bio-safety of the degradation products. The tolerable limits corresponding to various component elements in magnesium alloys were considered separately, although there are deficits in the toxicological data of some component elements. The influence of corrosion on the strength of magnesium alloys was evaluated, which would contribute to the rationally utilization of magnesium alloys as degradable implant materials. This study illustrates that not only toxicological calculations but also mechanical performance should be taken into consideration when developing novel degradable metallic implant.
Kinetic model of mass transfer through gas liquid interface in laser surface alloying
NASA Astrophysics Data System (ADS)
Gnedovets, A. G.; Portnov, O. M.; Smurov, I.; Flamant, G.
1997-02-01
In laser surface alloying from gas atmosphere neither surface concentration nor the flux of the alloying elements are known beforehand. They should be determined from the combined solution of heat and mass transfer equations with an account for the kinetics of interaction of a gas with a melt. Kinetic theory description of mass transfer through the gas-liquid interface is applied to the problem of laser surface alloying of iron from the atmosphere of molecular nitrogen. The activation nature of gas molecules dissociation at the surface is considered. It is shown that under pulsed-periodic laser action the concentration profiles of the alloying element have maxima situated close to the surface of the metal. The efficiency of surface alloying increases steeply under laser-plasma conditions which results in the formation of highly supersaturated gas solutions in the metal.
Finite Element Simulation of Shot Peening: Prediction of Residual Stresses and Surface Roughness
NASA Astrophysics Data System (ADS)
Gariépy, Alexandre; Perron, Claude; Bocher, Philippe; Lévesque, Martin
Shot peening is a surface treatment that consists of bombarding a ductile surface with numerous small and hard particles. Each impact creates localized plastic strains that permanently stretch the surface. Since the underlying material constrains this stretching, compressive residual stresses are generated near the surface. This process is commonly used in the automotive and aerospace industries to improve fatigue life. Finite element analyses can be used to predict residual stress profiles and surface roughness created by shot peening. This study investigates further the parameters and capabilities of a random impact model by evaluating the representative volume element and the calculated stress distribution. Using an isotropic-kinematic hardening constitutive law to describe the behaviour of AA2024-T351 aluminium alloy, promising results were achieved in terms of residual stresses.
NASA Astrophysics Data System (ADS)
Chun, Y. B.; Kang, S. H.; Noh, S.; Kim, T. K.; Lee, D. W.; Cho, S.; Jeong, Y. H.
2014-12-01
As part of an alloy development program for Korean reduced-activation ferritic-martensitic (RAFM) steel, a total of 37 program alloys were designed and their mechanical properties were evaluated with special attention being paid to the effects of alloying elements and heat treatments. A reduction of the normalizing temperature from 1050 °C to 980 °C was found to have a positive effect on the impact resistance, resulting in a decrease in ductile-brittle transition-temperature (DBTT) of the program alloys by an average of 30 °C. The yield strength and creep rupture time are affected strongly by the tempering time at 760 °C but at the expense of ductility. Regarding the effects of the alloying elements, the addition of trace amounts of Zr enhances both the creep and impact resistance: the lowest DBTT was observed for the alloys containing 0.005 wt.% Zr, whereas the addition of 0.01 wt.% Zr extends the creep rupture-time under an accelerated condition. The enhanced impact resistance owing to the normalizing at lower temperature is attributed to a more refined grain structure, which provides more barriers to the propagation of cleavage cracks. Solution softening by Zr addition is suggested as a possible mechanism for enhanced resistance to both impact and creep of the program alloys.
Bugga, Ratnakumar V.; Halpert, Gerald; Fultz, Brent; Witham, Charles K.; Bowman, Robert C.; Hightower, Adrian
1997-01-01
An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.
Iron aluminide useful as electrical resistance heating elements
Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.
1997-04-15
The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gschneidner, Jr., Karl A.; Schmidt, Frederick A.
A carbothermic reduction method is provided for reducing a La-, Ce-, MM-, and/or Y-containing oxide in the presence of carbon and a source of a reactant element comprising Si, Ge, Sn, Pb, As, Sb, Bi, and/or P to form an intermediate alloy material including a majority of La, Ce, MM, and/or Y and a minor amount of the reactant element. The intermediate material is useful as a master alloy for in making negative electrode materials for a metal hydride battery, as hydrogen storage alloys, as master alloy additive for addition to a melt of commercial Mg and Al alloys, steels,more » cast irons, and superalloys; or in reducing Sm.sub.2O.sub.3 to Sm metal for use in Sm--Co permanent magnets.« less
Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr
NASA Astrophysics Data System (ADS)
Senkova, S. V.; Senkov, O. N.; Miracle, D. B.
2006-12-01
The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.
Bolzoni, L; Esteban, P G; Ruiz-Navas, E M; Gordo, E
2012-11-01
The fabrication of the workhorse Ti-6Al-4V alloy and of the Ti-3Al-2.5V alloy was studied considering the master alloy addition variant of the blending elemental approach conventionally used for titanium powder metallurgy. The powders were characterised by means thermal analysis and X-ray diffraction and shaped by means of uniaxial pressing. The microstructural evolution with the sintering temperature (900-1400 °C) was evaluated by SEM and EDS was used to study the composition. XRD patterns as well as the density by Archimedes method were also obtained. The results indicate that master alloy addition is a suitable way to fabricate well developed titanium alloy but also to produce alloy with the desired composition, not available commercially. Density of 4.3 g/cm³ can be obtained where a temperature higher than 1200 °C is needed for the complete diffusion of the alloying elements. Flexural properties comparable to those specified for wrought Ti-6Al-4V medical devices are, generally, obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Farina, Simone; Thepsonti, Thanongsak; Ceretti, Elisabetta; Özel, Tugrul
2011-05-01
Titanium alloys offer superb properties in strength, corrosion resistance and biocompatibility and are commonly utilized in medical devices and implants. Micro-end milling process is a direct and rapid fabrication method for manufacturing medical devices and implants in titanium alloys. Process performance and quality depend upon an understanding of the relationship between cutting parameters and forces and resultant tool deflections to avoid tool breakage. For this purpose, FE simulations of chip formation during micro-end milling of Ti-6Al-4V alloy with an ultra-fine grain solid carbide two-flute micro-end mill are investigated using DEFORM software. At first, specific forces in tangential and radial directions of cutting during micro-end milling for varying feed advance and rotational speeds have been determined using designed FE simulations for chip formation process. Later, these forces are applied to the micro-end mill geometry along the axial depth of cut in 3D analysis of ABAQUS. Consequently, 3D distributions for tool deflections & von Misses stress are determined. These analyses will yield in establishing integrated multi-physics process models for high performance micro-end milling and a leap-forward to process improvements.
Effect of alloying elements Al and Ca on corrosion resistance of plasma anodized Mg alloys
NASA Astrophysics Data System (ADS)
Anawati, Asoh, Hidetaka; Ono, Sachiko
2016-04-01
Plasma anodizing is a surface treatment used to form a ceramic-type oxide film on Mg alloys by the application of a high anodic voltage to create intense plasma near the metal surface. With proper selection of the process parameters, the technique can produce high quality oxide with superior adhesion, corrosion resistance, micro-hardness, wear resistance and strength. The effect of alloying element Al on plasma anodizing process of Mg alloys was studied by comparing the anodizing curves of pure Mg, AZ31, and AZ61 alloys while the effect of Ca were studied on AZ61 alloys containing 0, 1, and 2 wt% Ca. Anodizing was performed in 0.5 M Na3PO4 solution at a constant current density of 200 Am-2 at 25°C. Anodic oxide films with lava-like structure having mix composition of amorphous and crystal were formed on all of the alloys. The main crystal form of the oxide was Mg3(PO4)2 as analyzed by XRD. Alloying elements Al and Ca played role in modifying the plasma lifetime during anodization. Al tended to extend the strong plasma lifetime and therefore accelerated the film thickening. The effect of Ca on anodizing process was still unclear. The anodic film thickness and chemical composition were altered by the presence of Ca in the alloys. Electrochemical corrosion test in 0.9% NaCl solution showed that the corrosion behavior of the anodized specimens depend on the behavior of the substrate. Increasing Al and Ca content in the alloys tended to increase the corrosion resistance of the specimens. The corrosion resistance of the anodized specimens improved significantly about two orders of magnitude relative to the bare substrate.
Theory study on the bandgap of antimonide-based multi-element alloys
NASA Astrophysics Data System (ADS)
An, Ning; Liu, Cheng-Zhi; Fan, Cun-Bo; Dong, Xue; Song, Qing-Li
2017-05-01
In order to meet the design requirements of the high-performance antimonide-based optoelectronic devices, the spin-orbit splitting correction method for bandgaps of Sb-based multi-element alloys is proposed. Based on the analysis of band structure, a correction factor is introduced in the InxGa1-xAsySb1-y bandgaps calculation with taking into account the spin-orbit coupling sufficiently. In addition, the InxGa1-xAsySb1-y films with different compositions are grown on GaSb substrates by molecular beam epitaxy (MBE), and the corresponding bandgaps are obtained by photoluminescence (PL) to test the accuracy and reliability of this new method. The results show that the calculated values agree fairly well with the experimental results. To further verify this new method, the bandgaps of a series of experimental samples reported before are calculated. The error rate analysis reveals that the α of spin-orbit splitting correction method is decreased to 2%, almost one order of magnitude smaller than the common method. It means this new method can calculate the antimonide multi-element more accurately and has the merit of wide applicability. This work can give a reasonable interpretation for the reported results and beneficial to tailor the antimonides properties and optoelectronic devices.
Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; ...
2018-02-13
Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, a laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising of copper and aluminum alloys and data were collected from the samples’ surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectramore » were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument’s ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in-situ, as a starting point for undertaking future complex material characterization work.« less
NASA Astrophysics Data System (ADS)
Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.
2018-03-01
Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, B. N.; Martin, M. Z.; Leonard, D. N.
Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, a laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising of copper and aluminum alloys and data were collected from the samples’ surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectramore » were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument’s ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in-situ, as a starting point for undertaking future complex material characterization work.« less
Anodes for rechargeable lithium batteries
Thackeray, Michael M.; Kepler, Keith D.; Vaughey, John T.
2003-01-01
A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.
Microstructures and Mechanical Properties of Mg-1at%X Alloys Processed with High-Pressure Torsion
NASA Astrophysics Data System (ADS)
Kawabata, Hiroyuki; Kuramoto, Shigeru; Oh-ishi, Keiichiro
A number of researchers have reported the mechanical properties of Mg alloys processed with high-pressure torsion (HPT), which is a typical method of severe plastic deformation. However, the effect of alloying elements on the mechanical properties of HPT-processed Mg alloys was unclear.
Liu, Yu; Huang, Yuanchun; Xiao, Zhengbing; Jia, Guangze
2017-07-19
To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al₂O₃, MgO and Al₄C₃, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al₄C₃ and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al₂O₃ and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al₂O₃, compared with other sites. It was found that alloying elements Cu and Mn and including Al₂O₃ may increase the hydrogen adsorption in the molten 2219 Al alloy with Al₂O₃ being the most sensitive component in this regard.
Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W
2013-02-01
Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.
Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Pollock, W. D.
1997-01-01
A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.
2016-02-02
Earths ”, MS&T15-Materials Science and Technology 2015 Conference, Columbus, Ohio, October 4-8, 2015. 3. Dulikrvich, G.S., Reddy, S., Orlande, H.R.B...Schwartz, J.and Koch, C.C., “Multi-Objective Design and Optimization of Hard Magnetic Alloys Free of Rare Earths ”, MS&T15-Materials Science and Technology...AFRL-AFOSR-VA-TR-2016-0091 (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements George
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.
2002-01-01
Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.
NASA Astrophysics Data System (ADS)
Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.
2011-07-01
The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.
High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum
NASA Astrophysics Data System (ADS)
Jia, Peng; Zhang, Jinyang; Geng, Haoran; Teng, Xinying; Zhao, Degang; Yang, Zhongxi; Wang, Yi; Hu, Song; Xiang, Jun; Hu, Xun
2018-05-01
The inhibition of gravity segregation has been a long-standing challenge in fabrication and applications of homogeneous immiscible alloys. Therefore, the effect of rare-earth La on the gravity segregation of Al-Bi immiscible alloys was investigated to understand the homogenization mechanism. The results showed that the addition of La can completely suppress the gravity segregation. This is attributed to the nucleation of Bi-rich liquid phase on the in-situ produced LaBi2 phase and the change of the shape of LaBi2@Bi droplets. In addition, a novel strategy is developed to prepare the homogeneous immiscible alloys through the addition of rare-earth elements. This strategy not only is applicable to other immiscible alloys, but also is conducive to finding more elements to suppress the gravity segregation. This study provided a useful reference for the fabrication of the homogeneous immiscible alloys.
NASA Astrophysics Data System (ADS)
Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku
2017-05-01
The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.
Substitutional alloy of Ce and Al
Zeng, Qiao-Shi; Ding, Yang; Mao, Wendy L.; Luo, Wei; Blomqvist, Andreas; Ahuja, Rajeev; Yang, Wenge; Shu, Jinfu; Sinogeikin, Stas V.; Meng, Yue; Brewe, Dale L.; Jiang, Jian-Zhong; Mao, Ho-kwang
2009-01-01
The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce3Al intermetallic compound >15 GPa or the Ce3Al metallic glass >25 GPa. Synchrotron X-ray diffraction, Ce L3-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions. PMID:19188608
NASA Astrophysics Data System (ADS)
Shen, J.; Chen, B.; Umeda, J.; Kondoh, K.
2018-03-01
Titanium and its alloys are recognized for their attractive properties. However, high-performance Ti alloys are often alloyed with rare or noble-metal elements. In the present study, Ti alloys doped with only ubiquitous elements were produced via powder metallurgy. The experimental results showed that pure Ti with 1.5 wt.% AlN incorporated exhibited excellent tensile properties, superior to similarly extruded Ti-6Al-4V. Further analysis revealed that its remarkably advanced strength could primarily be attributed to nitrogen solid-solution strengthening, accounting for nearly 80% of the strength increase of the material. In addition, despite the ultrahigh nitrogen concentration up to 0.809 wt.%, the Ti-1.5AlN sample showed elongation to failure of 10%. This result exceeds the well-known limitation for nitrogen (over 0.45 wt.%) that causes embrittlement of Ti alloys.
Bioaccessibility of metals in alloys: Evaluation of three surrogate biofluids
Hillwalker, Wendy E.; Anderson, Kim A.
2014-01-01
Bioaccessibility in vitro tests measure the solubility of materials in surrogate biofluids. However, the lack of uniform methods and the effects of variable test parameters on material solubility limit interpretation. One aim of this study was to measure and compare bioaccessibility of selected economically important alloys and metals in surrogate physiologically based biofluids representing oral, inhalation and dermal exposures. A second aim was to experimentally test different biofluid formulations and residence times in vitro. A third aim was evaluation of dissolution behavior of alloys with in vitro lung and dermal biofluid surrogates. This study evaluated the bioaccessibility of sixteen elements in six alloys and 3 elemental/metal powders. We found that the alloys/metals, the chemical properties of the surrogate fluid, and residence time all had major impacts on metal solubility. The large variability of bioaccessibility indicates the relevancy of assessing alloys as toxicologically distinct relative to individual metals. PMID:24212234
NASA Astrophysics Data System (ADS)
Zhang, Dalong
Mg and its alloys are promising candidates for light-weight structural applications, e.g., aircraft, automobile, electronic, etc. However, the inherent hexagonal close packed crystal structure makes the deformation of Mg anisotropic, namely deformation only occurs predominantly by dislocation slip in the close-packed (0001) plane (i.e., basal plane), or by deformation twinning in {101¯2} planes. Both basal slip and twinning cause the crystal to re-orient. Consequently, polycrystalline Mg alloys that have undergone thermomechanical processing usually contain strong texture, i.e., preferred crystallographic orientation in grains. The texture in turn leads to anisotropic deformation in wrought Mg alloys. For example, in extruded Mg alloys, the compressive yield strength is usually much lower than the tensile yield strength (so-called yield asymmetry and strength differential). It is the anisotropy that hinders the broader application of Mg alloys. Recent modeling studies on Mg predict that certain alloying elements, particularly rare-earth elements (e.g., Y, Ce, Nd, Gd, etc.), could alter the active deformation modes and enhance homogeneous deformation and overall mechanical properties in Mg. Therefore, the objective of this dissertation research is to investigate experimentally the effects of alloying element Y in reducing the intrinsic and extrinsic anisotropy, modifying texture, and enhancing the overall strength and ductility for Mg. In addition, the research also uncovered some unexpected "side effects" of Y and these phenomena were studied and explained from a fundamental perspective. The methodology used in this work is described as follows. Ultrafine grained Mg 2.5 at.% Y alloy (UFG Mg-2.5Y) was prepared by powder metallurgy method, including gas atomization for producing Mg-2.5Y powder, degassing and hot isostatic pressing (HIP), and hot extrusion. Both the as-HIPed and the as-extruded materials were characterized by electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM), and/or atom probe tomography (APT). It is noted that different configurations of stacking faults (all in basal plane, i.e., basal stacking faults, BSFs for short) were observed in the as-extruded Mg-2.5Y, whereas no BSFs were documented in the as-HIPed alloy. Feasible models to explain the formation of BSFs were proposed based on the activity of different dislocations. Tension and compression tests were carried out along the extrusion direction (ED) for UFG Mg-2.5Y. Unlike common Mg alloys exhibiting yield asymmetry, the UFG Mg-2.5Y exhibits yield "symmetry" and significantly reduced strength differential. Namely, the deformation is more isotropic. In addition to post-mortem TEM characterization for deformed UFG Mg-2.5Y, in-situ TEM was also performed, in an effort to understand the fundamental deformation mechanisms in UFG Mg-Y that lead to reduced anisotropy. In-situ TEM for single-crystal Mg-Y nano-pillars reveals that deformation twinning is replaced by dislocation slip in non-basal planes (i.e., prismatic planes), which diametrically differs from any other Mg alloys. However, it is noted that deformation twinning still occurs in the polycrystalline UFG Mg-2.5Y occasionally, and a new type of stacking faults (i.e., prismatic stacking faults, PSFs for short) may be present in the vicinity of twins. Feasible mechanisms explaining the formation of PSFs are proposed.
NASA Astrophysics Data System (ADS)
Ma, Yun-long; Li, Jin-feng
2017-09-01
The effect of small rare earth (RE) addition of 0.11%Ce, 0.2%Er and 0.082%Sc on aging precipitates and mechanical strength of an Al-(3.3-4.2)Cu-1.2Li-X alloy were investigated. It is found that Cu-rich residual particles containing RE element exist in the solutionized alloy, which leads to a decrease of dissolved Cu concentration in the solutionized matrix. Like RE-free alloy, the main aging precipitate types in RE-containing alloy are T1 (Al2CuLi) and θ' (Al2Cu), but their fraction is decreased. The strength of the corresponding alloys is therefore lowered by the small RE addition. Combined with the analysis of some reported references, it is proposed that the effect of small RE addition on Al-Cu-Li alloy strength is also associated with the Cu and Li concentrations and their ratio.
Iron aluminide useful as electrical resistance heating elements
Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton
1997-01-01
The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.
Iron aluminide useful as electrical resistance heating elements
Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton
1999-01-01
The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.
Iron aluminide useful as electrical resistance heating elements
Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton
2001-01-01
The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.
The Effect of Hydrogen Annealing on the Impurity Content of Alumina-Forming Alloys
NASA Technical Reports Server (NTRS)
Smialek, James L.
2000-01-01
Previously, the effect of hydrogen annealing on increasing the adhesion of Al2O3 scales had been related to the effective desulfurization that occurred during this process. The simultaneous reduction of other impurities has now been re-examined for up to 20 impurity elements in the case of five different alloys (NiCrAl, FeCrAl, PWA 1480, Rene'142, and Rene'N5). Hydrogen annealing produced measurable reductions in elemental concentration for B, C, Na, Mg, P, K, Sr, or Sn in varying degrees for at least one and up to three of these alloys. No single element was reduced by hydrogen annealing for all the alloys except sulfur. In many cases spalling occurred at low levels of these other impurities, while in other cases the scales were adherent at high levels of the impurities. No impurity besides sulfur was strongly correlated with adhesion.
A review on magnesium alloys as biodegradable materials
NASA Astrophysics Data System (ADS)
Gu, Xue-Nan; Zheng, Yu-Feng
2010-06-01
Magnesium alloys attracted great attention as a new kind of degradable biomaterials. One research direction of biomedical magnesium alloys is based on the industrial magnesium alloys system, and another is the self-designed biomedical magnesium alloys from the viewpoint of biomaterials. The mechanical, biocorrosion properties and biocompatibilities of currently reported Mg alloys were summarized in the present paper, with the mechanical properties of bone tissue, the healing period postsurgery, the pathophysiology and toxicology of the alloying elements being discussed. The strategy in the future development of biomedical Mg alloys was proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J.; Jiang, C.; Zhang, Y.
This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less
The effect of segregation on the austemper transformation and toughness of ductile irons
NASA Astrophysics Data System (ADS)
Lin, B. Y.; Chen, E. T.; Lei, T. S.
1998-06-01
The effect of segregation of alloying elements on the phase transformation of ductile iron during austempering was investigated. Four heats, each containing 0.4%Mn, 1% Cu, 1.5% Ni, or 0.4% Mo (wt%) separately, were melted; then three different sizes of casting bars (3,15, and 75 mm diameter) were poured from each heat. The distribution and the degree of segregation of certain elements were quantitatively analyzed using an electron microprobe. A personal computer (PC)-controlled heat treating system was used to measure electrical resistivity, and the information on resistivity variations was used to analyze the effect of segregation on phase transformations during austempering. Also, Charpy impact and Rockwell hardness tests were performed to determine the effect of segregation on properties. Results of the electron microprobe analysis showed that the degree of segregation of alloy elements increases with an increase in diameter of the casting bars (i.e., an increase of solidification time of castings). The degree of segregation of alloy elements, represented by segregation ratio (SR) (the maximum concentration of element in cell divided by the minimum concentration of element in cell), varied linearly with the casting modulus (M) (volume of casting divided by surface area of casting). Regarding the segregating tendency among alloy elements, positive segregating elements Mn and Mo showed more segregation than the negative segregating elements Si, Cu, and Ni. In addition, segregation of Mo was more significant than Mn, and that for Cu was greater than Ni and Si. Between the time of finishing the first stage and beginning the second stage of bainite reaction in ductile irons, there is a significant “processing window,” At;, for austempering to obtain optimum mechanical properties. From the electrical resistivity data, it was observed that the austempering temperature plays a major role in the processing window. There was a narrow window at 400 ‡C but a larger one at 350 ‡C. Additionally, the microsegregation of alloying elements led to variation of the time of phase transformation for various regions in the grain cells of ductile iron which caused the processing window to decrease. The span of the processing window decreased with an increase in degree of segregation. There was no significant difference in the hardness of the alloys in various diameter specimens. However, the impact toughness was significantly affected by the segregation. The impact values in 15 mm specimens with less degree of segregation were greater than those in 75 mm specimens with significant segregation. The Ni, Cu, and Mn alloys that were austempered to complete the first stage of bainite formation had approximately the same impact values for all diameter samples. The Mo alloy upon austempering produced no bainite, but it had much untransformed retained austenite in the intercellular regions and, therefore, had lower impact values.
Elastoviscoplastic snap-through behavior of shallow arches subjected to thermomechanical loads
NASA Technical Reports Server (NTRS)
Simitses, George J.; Song, Yuzhao; Sheinman, Izhak
1991-01-01
The problem of snap-through buckling of clamped shallow arches under thermomechanical loads is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations. A finite element approach is employed to predict the, in general, inelastic buckling behavior. The construction material is alloy B1900 + Hf, which is commonly utilized in high-temperature environments. The effect of several parameters is assessed. These parameters include the rise parameter and temperature. Comparison between elastic and elastoviscoplastic responses is also presented.
Hot Deformation of Ti-6Al-4V Single-Colony Samples (Preprint)
2008-02-01
Journal Article Preprint 4 . TITLE AND SUBTITLE HOT DEFORMATION OF Ti-6Al-4V SINGLE-COLONY SAMPLES (PREPRINT) 5a. CONTRACT NUMBER In-house 5b...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) A.A. Salem (Universal Technology Corp.) S.L. Semiatin (AFRL/RXLMP) 5d. PROJECT...strength, corrosion resistance, and low density, Ti-6Al-4V is the most commonly used alpha/beta titanium alloy. It accounts for approximately 80
McGeary, R.K.; Justusson, W.M.
1959-11-24
A fuel element for a nuclear reactor is described comprising an alloy containing uranium and from 7 to 20 wt.% niobium, the alloy being substantially in the gamma phase and having been produced by working an ingot of the alloy into the desired shape, homogenizing it by annealing it at a temperature in the gamma phase field, and quenching it to retain the gamma phase structure of the alloy.
Fuel element design for the enhanced destruction of plutonium in a nuclear reactor
Crawford, Douglas C.; Porter, Douglas L.; Hayes, Steven L.; Hill, Robert N.
1999-01-01
A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both.
Mechanism of abnormally slow crystal growth of CuZr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, X. Q.; Lü, Y. J., E-mail: yongjunlv@bit.edu.cn; State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027
2015-10-28
Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. Wemore » find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.« less
4-d magnetism: Electronic structure and magnetism of some Mo-based alloys
NASA Astrophysics Data System (ADS)
Liu, Yong; Bose, S. K.; Kudrnovský, J.
2017-02-01
We report results of a first-principles density-functional study of alloys of the 4 d -element Mo with group IV elements Si, Ge and Sn in zinc blende (ZB) and rock salt (RS) structures. The study was motivated by a similar study of ours based on the 4 d -element Tc, which showed the presence of half-metallic states with integer magnetic moment (1μB) per formula unit in TcX (X=C, Si, Ge) alloys. The calculated Curie temperatures for the ferromagnetic (FM) phases were low, around or less than 300 K. Searching for the possibility of 4 d -based alloys with higher Curie temperatures we have carried out the study involving the elements Mo, Ru and Rh. Among these the most promising case appears to be that involving the element Mo. Among the MoX (X=Si, Ge, Sn) alloys in ZB and RS structures, both MoGe and MoSn in ZB structures are found to possess an integer magnetic moment of 2μB per formula unit. ZB MoSn can be classified as a marginal/weak half-metal or a spin gapless semiconductor, while ZB MoGe would be best described as a gapless magnetic semiconductor. The calculated Curie temperatures are in the range 300-700 K. Considering the theoretical uncertainty in the band gaps due not only to the treatment of exchange and correlation effects, but density functional theory itself, these classifications may change somewhat, but both merit investigation from the viewpoint of potential spintronic application. Based on their higher Curie temperatures, Mo-based alloys would serve such purpose better than the previously reported Tc-based ones.
Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Kang, E-mail: du126kang@126.com; Zhu, Qiang, E-mail: zhu.qiang@grinm.com; Li, Daquan, E-mail: lidaquan@grinm.com
Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at variousmore » temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.« less
Analyzing For Light Elements By X-Ray Scattering
NASA Technical Reports Server (NTRS)
Ross, H. Richard
1993-01-01
Nondestructive method of determining concentrations of low-atomic-number elements in liquids and solids involves measurements of Compton and Rayleigh scattering of x rays. Applied in quantitative analysis of low-atomic-number constituents of alloys, of contaminants and corrosion products on surfaces of alloys, and of fractions of hydrogen in plastics, oils, and solvents.
Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials
NASA Astrophysics Data System (ADS)
Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang
2015-10-01
Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.
NASA Astrophysics Data System (ADS)
Imandoust, Aidin
The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermo-mechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses. Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into low-angle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within RE grains favored their growth by setting the boundary migration direction toward grains with higher dislocation density, thereby decreasing the system energy. We investigated the influence of RE elements on extension twinning induced hardening. RE addition enhanced tensile twinning induced hardening significantly. EBSD analysis illustrated that tensile twins cross low angle grain boundaries in Mg-RE alloys, which produced large twins and facilitated transmutation of basal to prismatic dislocations. Higher activity of pyramidal II dislocations in Mg-RE alloys resulted in higher twinning induced hardening.
Marukawa, Eriko; Tamai, Masato; Takahashi, Yukinobu; Hatakeyama, Ichiro; Sato, Masaru; Higuchi, Yusuke; Kakidachi, Hiroshi; Taniguchi, Hirofumi; Sakamoto, Takamitsu; Honda, Jun; Omura, Ken; Harada, Hiroyuki
2016-10-01
The aims of this study were to evaluate in vivo the biological responses to implants composed of biodegradable anodized WE43 (containing magnesium yttrium, rare earth elements and zirconium; Elektron SynerMag®) magnesium alloy, monolithic WE43 magnesium alloy and poly-l-lactic acid (PLLA), which are commonly used materials in clinic settings, and to evaluate the effectiveness of the materials as bone screws. The effectiveness of the magnesium alloy implants in osteosynthesis was evaluated using a bone fracture model involving the tibia of beagle dogs. For the monolithic WE43 implants, radiological, and histological evaluation revealed that bone trabeculae around the implanted monolithic WE43 decreased because of an inflammatory response. However, there was no damage due to hydrogen gas or inflammatory response in the bone tissue around the anodized WE43 implants. After 4 weeks, all the PLLA implants (n = 3) had broken but the WE43 implants had not (n = 6). These results suggest that the WE43 implants had sufficient strength to fix bone fractures at load-bearing sites in orthopedic and oral maxillofacial surgery. Therefore, these biodegradable magnesium alloys are good candidates for replacing biodegradable polymers. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1282-1289, 2016. © 2015 Wiley Periodicals, Inc.
Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc
Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; ...
2016-01-11
Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less
Assessment of in vitro temporal corrosion and cytotoxicity of AZ91D alloy.
Del Gaudio, Costantino; Bagalà, Paolo; Venturini, Marco; Grandi, Claudio; Parnigotto, Pier Paolo; Bianco, Alessandra; Montesperelli, Giampiero
2012-10-01
Magnesium alloys represent a valuable option for the production of bioresorbable implantable medical devices aimed to improve the therapeutic approach and minimize the potential risks related to biostable materials. In this regard, the degradation process needs to be carefully evaluated in order to assess the effectiveness of the regenerative support and the eventual toxic effects induced by the released corrosion products. Aluminium is one of the most common alloying element that raised several safety concerns, contributing to shift the investigation toward Al-free alloys. To delve into this issue, a long-term investigation (up to 28 days) was performed using AZ91D alloy, due to its relevant Al content. Immersion tests in phosphate buffered saline (PBS) solution was performed following the ASTM standards and the corrosion behaviour was evaluated at fixed time points by means of electrochemical techniques. Cytotoxic effects were assessed by culturing human neuroblastoma cells with conditioned medium derived from immersion tests at different dilution degree. An increase in the resistance corrosion with the time was observed. In all the investigated cases the presence of Al in the conditioned media did not induce significant toxic effects directly correlated to its content. A decrease of cell viability was only observed in the case of 50 % dilution of PBS conditioned for the longest immersion period (i.e., 28 days).
Magnetization curves of sintered heavy tungsten alloys for applications in MRI-guided radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolling, Stefan; Oborn, Bradley M.; Keall, Paul J., E-mail: paul.keall@sydney.edu.au
2014-06-15
Purpose: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. Methods: Sintered heavy tungsten alloys typically contain >90 % tungsten and <10 % of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic momentm was measured for eachmore » sample as a function of applied external field H{sub 0} and the BH curve derived. Results: The iron content of the alloys was found to play a dominant role, directly influencing the magnetizationM and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%–16% was measured. Conclusions: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys.« less
A useful and non-invasive microanalysis method for dental restoration materials
NASA Astrophysics Data System (ADS)
Hosoki, M.; Satsuma, T.; Nishigawa, K.; Takeuchi, H.; Asaoka, K.
2012-12-01
The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was <20 μg. An energy dispersive X-ray fluorescence spectrometer was used to carry out the elementary analysis of the metal dust on the polyethylene film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.
Narrow band gap amorphous silicon semiconductors
Madan, A.; Mahan, A.H.
1985-01-10
Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.
Zhang, Erlin; Wang, Xiaoyan; Chen, Mian; Hou, Bing
2016-12-01
Ti-Cu alloys have exhibited strong antibacterial ability, but Ti-Cu alloys prepared by different processes showed different antibacterial ability. In order to reveal the controlling mechanism, Ti-Cu alloys with different existing forms of Cu element were prepared in this paper. The effects of the Cu existing form on the microstructure, mechanical, corrosion and antibacterial properties of Ti-Cu alloys have been systematically investigated. Results have shown that the as-cast Ti-Cu alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate (51-64%) but a relatively lower corrosion resistance than pure titanium. Treatment at 900°C/2h (T4) significantly increased the hardness and the strength, improved the corrosion resistance but had little effect on the antibacterial property. Treatment at 900°C/2h+400°C/12h (T6) increased further the hardness and the mechanical strength, improved the corrosion resistance and but also enhanced the antibacterial rate (>90%) significantly. It was demonstrated that the Cu element in solid solution state showed high strengthening ability but low antibacterial property while Cu element in Ti2Cu phase exhibited strong strengthening ability and strong antibacterial property. Ti2Cu phase played a key role in the antibacterial mechanism. The antibacterial ability of Ti-Cu alloy was strongly proportional to the Cu content and the surface area of Ti2Cu phase. High Cu content and fine Ti2Cu phase would contribute to a high strength and a strong antibacterial ability. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, C.; Lin, J. F.; Liu, Y.; Feng, S.; Jin, C.; Yoshino, T.
2017-12-01
Thermal conductivity of iron alloy in the Earth's core plays a crucial role in constraining the energetics of the geodynamo and the thermal evolution of the planet. Studies on the thermal conductivity of iron reveal the importance of the effects of light elements and high temperature. Carbon has been proposed to be a candidate light element in Earth's core for its meteoritic abundance and high-pressure velocity-density profiles of iron carbides (e.g., Fe7C3). In this study, we employed four-probe van der Pauw method in a diamond anvil cell to measure the electrical resistivity of pure iron, iron carbon alloy, and iron carbides at high pressures. These studies were complimented with synchrotron X-ray diffraction and focused ion beam (FIB) analyses. Our results show significant changes in the electrical conductivity of these iron-carbon alloys that are consistent previous reports with structural and electronic transitions at high pressures, indicating that these transitions should be taken into account in evaluating the electrical and thermal conductivity at high pressure. To apply our results to understand the thermal conduction in the Earth's core, we have compared our results with literature values for the electrical and thermal conductivity of iron alloyed with light elements (C, Si) at high pressures. These comparisons permit the validity of the Wiedemann-Franz law and Matthiessen's rule for the effects of light elements on the thermal conductivity of the Earth's core. We found that an addition of a light element such as carbon has an strong effect on the reducing the thermal conductivity of Earth's core, but the magnitude of the alloying effect strongly depends on the identity of the light element and the crystal and electronic structures. Based on our results and literature values, we have modelled the electrical and thermal conductivity of iron-carbon alloy at Earth's core pressure-temperature conditions to the effects on the heat flux in the Earth's core. In this presentation, we will address how carbon as a potential light element in the Earth's core can significantly affect our view of the heat flux across the core-mantle boundary and geodynamo of our planet.
[Analysis and prevention of dust pollution caused by 5 common prosthetic materials].
Yang, Xiang-Wen; Wei, Bin; Zhu, Cao-Yun; Qian, Liang; Li, Yi-Han
2017-10-01
To analyze and evaluate dust pollution in prosthodontic clinic and make proposal for reasonable protection. This study analyzed the particle size, element composition and dust concentration of 5 materials which were commonly used in dental restorations (veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin, advanced artificial teeth) by using scanning electron microscopy (SEM), X-ray energy dispersive spectrometer(EDS) and dust concentration laser tester, in order to assess the effects of prosthodontic dust posed on medical staff health and put forward reasonable suggestions for prevention and control of dust pollution. The particle size of veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin and advanced artificial teeth was (2.15±3.00), (33.78±24.33), (7.78±11.86), (31.16±44.35) and (28.45±39.21)μm, respectively. The time weighted average respirable dust concentration of veneering ceramics was 0.393 mg/m 2 which was beyond the scope of national security. Dust pollution is serious in prosthodontic clinic to which we should pay more attention and take appropriate prevention measures.
Correction factors for on-line microprobe analysis of multielement alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Brewer, W. D.
1977-01-01
An on-line correction technique was developed for the conversion of electron probe X-ray intensities into concentrations of emitting elements. This technique consisted of off-line calculation and representation of binary interaction data which were read into an on-line minicomputer to calculate variable correction coefficients. These coefficients were used to correct the X-ray data without significantly increasing computer core requirements. The binary interaction data were obtained by running Colby's MAGIC 4 program in the reverse mode. The data for each binary interaction were represented by polynomial coefficients obtained by least-squares fitting a third-order polynomial. Polynomial coefficients were generated for most of the common binary interactions at different accelerating potentials and are included. Results are presented for the analyses of several alloy standards to demonstrate the applicability of this correction procedure.
Using rapid infrared forming to control interfaces in titanium-matrix composites
NASA Technical Reports Server (NTRS)
Warrier, Sunil G.; Lin, Ray Y.
1993-01-01
Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), the interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques.
Fuel element design for the enhanced destruction of plutonium in a nuclear reactor
Crawford, D.C.; Porter, D.L.; Hayes, S.L.; Hill, R.N.
1999-03-23
A uranium-free fuel for a fast nuclear reactor comprising an alloy of Pu, Zr and Hf, wherein Hf is present in an amount less than about 10% by weight of the alloy. The fuel may be in the form of a Pu alloy surrounded by a Zr--Hf alloy or an alloy of Pu--Zr--Hf or a combination of both. 7 figs.
Effect of Nb on magnetic and mechanical properties of TbDyFe alloys
NASA Astrophysics Data System (ADS)
Wang, Naijuan; Liu, Yuan; Zhang, Huawei; Chen, Xiang; Li, Yanxiang
2018-03-01
The intrinsic brittleness in giant magnetostrictive material TbDyFe alloy has devastating influence on the machinability and properties of the alloy, thus affecting its applications. The purpose of this paper is to study the mechanical properties of the TbDyFe alloy by alloying with Nb element. The samples (Tb0.3Dy0.7)xFe2xNby (y = 0, 0.01, 0.04, 0.07, 0.1; 3x + y = 1) were melted in an arc melting furnace under high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance of the alloys were studied systematically. The results showed that NbFe2 phases were observed in the alloys with the addition of Nb. Moreover, both the NbFe2 phases and rare earth (RE)-rich phases were increased with the increasing of Nb element. The mechanical properties results revealed that the fracture toughness of the alloy with the addition of Nb enhanced 1.5-5 times of the Nb-free alloy. Both the NbFe2 phase and the RE-rich phase had the ability to prevent crack propagation, so that they can strengthen the REFe2 body. However, NbFe2 phase is a paramagnetic phase, which can reduce the magnetostrictive properties of the alloy by excessive precipitation.
Effect of Vanadium and Sodium Compounds on Accelerated Oxidation of Nickel-Base Alloys.
The product of the reaction between V2O5 and the substrates is dependent upon the alloying elements present in the alloy. In the absence of alloying...reaction appears to be a glass . The study is related to corrosion inhibitions in vanadium containing fuels in gas turbines. (Modified author abstract)
Wang, R.; Merz, M.D.
1980-04-09
Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.
Ni3Al-based alloys for die and tool application
Liu, Chain T.; Bloom, Everett E.
2001-01-01
A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.
PLUTONIUM-URANIUM-TITANIUM ALLOYS
Coffinberry, A.S.
1959-07-28
A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.
Fe-Al-Mn-C lightweight structural alloys: a review on the microstructures and mechanical properties.
Kim, Hansoo; Suh, Dong-Woo; Kim, Nack J
2013-02-01
Adding a large amount of light elements such as aluminum to steels is not a new concept recalling that several Fe-Al-Mn-C alloys were patented in 1950s for replacement of nickel or chromium in corrosion resistance steels. However, the so-called lightweight steels or low-density steels were revisited recently, which is driven by demands from the industry where steel has served as a major structural material. Strengthening without loss of ductility has been a triumph in steel research, but lowering the density of steel by mixing with light elements will be another prospect that may support the competitiveness against emerging alternatives such as magnesium alloys. In this paper, we review recent studies on lightweight steels, emphasizing the concept of alloy design for microstructures and mechanical properties. The influence of alloying elements on the phase constituents, mechanical properties and the change of density is critically reviewed. Deformation mechanisms of various lightweight steels are discussed as well. This paper provides a reason why the success of lightweight steels is strongly dependent on scientific achievements even though alloy development is closely related to industrial applications. Finally, we summarize some of the main directions for future investigations necessary for vitalizing this field of interest.
Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties
Kim, Hansoo; Suh, Dong-Woo; Kim, Nack J
2013-01-01
Adding a large amount of light elements such as aluminum to steels is not a new concept recalling that several Fe–Al–Mn–C alloys were patented in 1950s for replacement of nickel or chromium in corrosion resistance steels. However, the so-called lightweight steels or low-density steels were revisited recently, which is driven by demands from the industry where steel has served as a major structural material. Strengthening without loss of ductility has been a triumph in steel research, but lowering the density of steel by mixing with light elements will be another prospect that may support the competitiveness against emerging alternatives such as magnesium alloys. In this paper, we review recent studies on lightweight steels, emphasizing the concept of alloy design for microstructures and mechanical properties. The influence of alloying elements on the phase constituents, mechanical properties and the change of density is critically reviewed. Deformation mechanisms of various lightweight steels are discussed as well. This paper provides a reason why the success of lightweight steels is strongly dependent on scientific achievements even though alloy development is closely related to industrial applications. Finally, we summarize some of the main directions for future investigations necessary for vitalizing this field of interest. PMID:27877553
Liu, Yu; Huang, Yuanchun; Jia, Guangze
2017-01-01
To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al2O3, MgO and Al4C3, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al4C3 and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al2O3 and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al2O3, compared with other sites. It was found that alloying elements Cu and Mn and including Al2O3 may increase the hydrogen adsorption in the molten 2219 Al alloy with Al2O3 being the most sensitive component in this regard. PMID:28773185
Synthesis of Amorphous Powders of Ni-Si and Co-Si Alloys by Mechanical Alloying
NASA Astrophysics Data System (ADS)
Omuro, Keisuke; Miura, Harumatsu
1991-05-01
Amorphous powders of the Ni-Si and Co-Si alloys are synthesized by mechanical alloying (MA) from crystalline elemental powders using a high energy ball mill. The alloying and amorphization process is examined by X-ray diffraction, differential scanning calorimetry (DSC), and scanning electron microscopy. For the Ni-Si alloy, it is confirmed that the crystallization temperature of the MA powder, measured by DSC, is in good agreement with that of the powder sample prepared by mechanical grinding from the cast alloy ingot products of the same composition.
A new magnesium alloy system: TEXAS
NASA Astrophysics Data System (ADS)
Wiese, Björn; Mendis, Chamini; Blawert, Carsten; Nyberg, Eric; Kainer, Karl Ulrich; Hort, Norbert
A new TEXAS alloy system (Mg-Sn-Nd-Ca-Al-Si) is presented in order to extend the range of applications for magnesium alloys. The alloy has been produced by permanent mould direct chill casting, a process that provides a homogenous distribution of alloying elements throughout the entire casting. This work presents microstructural features and a new Mg-Sn-Ca phase with the morphology of hexagonal platelets. Additionally mechanical properties and the corrosion behaviour of TEXAS alloys are presented in as cast and heat treated conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
..., we preliminarily determine that producers accounting for substantially all of the production of the... contains manganese as the major alloying element, with manganese accounting for not more than 3.0 percent... alloying elements, with magnesium accounting for at least 0.1 percent but not more than 2.0 percent of...
A comprehensive review on cold work of AISI D2 tool steel
NASA Astrophysics Data System (ADS)
Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin
2017-11-01
As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.
Atomization methods for forming magnet powders
Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.
2000-01-01
The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.
New alloys to conserve critical elements. [replacing chromium in steels
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1978-01-01
Previous studies and surveys on availability of domestic reserves have shown that chromium is a most critical element within the U.S. metal industry. More precisely, the bulk of chromium is consumed in the production of stainless steels, specifically Type 304 stainless steel (304SS) which contains 18% Cr. The present paper deals with means of reducing chromium in commercial stainless steels by substituting more abundant or less expensive elements with the intent of maintaining the properties of 304SS. The discussion focuses on some of the oxidation and corrosion properties of new substitute stainless steels with only 12% Cr, which represents a potential saving of 33% of the chromium consumed in the production of 304SS. The alloying elements substituted for Cr in 304SS are selected according to their potential for protective oxide formation during high-temperature oxidation; these are Al, Si, Ti, Y, and misch metal which is 99.7% rare-earth metals containing 50 to 55% cerium. Other alloying elements to impart corrosion resistance are Mn, Mo, and V.
Interplay of water and reactive elements in oxidation of alumina-forming alloys.
Mortazavi, N; Geers, C; Esmaily, M; Babic, V; Sattari, M; Lindgren, K; Malmberg, P; Jönsson, B; Halvarsson, M; Svensson, J E; Panas, I; Johansson, L G
2018-06-11
High-temperature alloys are crucial to many important technologies that underpin our civilization. All these materials rely on forming an external oxide layer (scale) for corrosion protection. Despite decades of research on oxide scale growth, many open questions remain, including the crucial role of the so-called reactive elements and water. Here, we reveal the hitherto unknown interplay between reactive elements and water during alumina scale growth, causing a metastable 'messy' nano-structured alumina layer to form. We propose that reactive-element-decorated, hydroxylated interfaces between alumina nanograins enable water to access an inner cathode in the bottom of the scale, at odds with the established scale growth scenario. As evidence, hydride-nanodomains and reactive element/hydrogen (deuterium) co-variation are observed in the alumina scale. The defect-rich alumina subsequently recrystallizes to form a protective scale. First-principles modelling is also performed to validate the RE effect. Our findings open up promising avenues in oxidation research and suggest ways to improve alloy properties.
Bian, Dong; Deng, Jiuxu; Li, Nan; Chu, Xiao; Liu, Yang; Li, Wenting; Cai, Hong; Xiu, Peng; Zhang, Yu; Guan, Zhenpeng; Zheng, Yufeng; Kou, Yuhui; Jiang, Baoguo; Chen, Rongshi
2018-02-07
Ternary magnesium alloys with low combined addition of elements gadolinium and zinc were developed in the present work, with their microstructures, mechanical properties, in vitro degradation behaviors, and cytotoxicity being systematically studied. Furthermore, the Mg-1.8Zn-0.2Gd alloy, with the best in vitro performance, was implanted into Sprague Dawley rats to examine its in vivo degradation performance for up to 6 months. It was found that Mg-1.8Zn-0.2Gd, composed of a single α-Mg phase, owned excellent strength and toughness that were comparable to the CE marked MAGNEZIX, the mischmetal added Mg alloy. Owing to the uniform single-phased microstructure, the degradation rate of this alloy was around 0.12 mm/y measured by electrochemical testing, which was comparable to high purity magnesium. Moreover, the Mg-1.8Zn-0.2Gd alloy exhibited no cytotoxicity to L929, MG63, and VSMC cells. In vivo degradation characterized by micro-computed tomography revealed that the Mg-1.8Zn-0.2Gd implant could maintain structural integrity in the first 2 months, and serious degradation could be observed after 6 months. A remarkable 100% survival rate of experimental animals was observed with no negative effects on bone tissues. The implant and the surrounding bone were well integrated within 2 months, implying good biocompatibility and osteoconductivity of the experimental alloy. On the basis of the above findings, the feasibility of Mg-Zn-Gd alloys for use as orthopedic implants was systematically discussed. This study provides a new strategy for development of high-performance Mg-rare earth (RE)-based alloys with superior mechanical properties and corrosion resistance while effectively avoiding the possible standing toxic effect of RE elements.
Deformation behaviour of a new magnesium ternary alloy
NASA Astrophysics Data System (ADS)
Guglielmi, P.; Kaya, A. Arslan; Sorgente, D.; Palumbo, G.
2018-05-01
Magnesium based alloys are yet to fill a greater niche especially in the automotive and aeronautical industry. In fact, such alloys have a big weight saving potential, together with good damping characteristics. However, nowadays about 90% of Magnesium products are produced by casting, mainly using two alloy systems, namely Mg-Al-Zn (AZ91D) and Mg-Al (AM50, AM60). Now the emphasis, especially after having achieved considerable success in creep resistance and understanding of the deformation behaviour of Magnesium, has been shifted towards wrought alloys; AZ31, in this case, is the most popular. In this work a multi-element Magnesium alloy, developed to improve the deformation capacity of such a lightweight material, has been investigated and compared to a commercial AZ31B. The possibility of adopting such a multi-element Magnesium alloy for manufacturing components via unconventional sheet forming (such as superplastic forming, warm hydroforming, incremental forming) has been proved in the present work focusing the attention on the superplastic field. Free inflation tests were thus conducted at 450°C setting constant pressure to investigate the superplastic behaviour (in terms of dome height and strain rate sensitivity index) of both the multi-element Magnesium alloy (Mg-2Zn-Ce) and the commercial one (AZ31B). To enhance information on the thickness distribution and investigate the microstructure evolution, metallographic analyses on the samples used to carry out free inflation tests were also performed. The developed ternary alloy manifested quite a good deformation behaviour (high strain rate sensitivity index), even being tested in the as cast condition; in addition a limited grain coarsening was observed in the specimens after deformation.
In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model.
Rössig, Christina; Angrisani, Nina; Helmecke, Patrick; Besdo, Silke; Seitz, Jan-Marten; Welke, Bastian; Fedchenko, Nickolay; Kock, Heiko; Reifenrath, Janin
2015-10-01
The biocompatibility and the degradation behavior of the LAE442 magnesium-based intramedullary interlocked nailing system (IM-NS) was assessed in vivo in a comparative study (stainless austenitic steel 1.4441LA) for the first time. IM-NS was implanted into the right tibia (24-week investigation period; nails/screws diameter: 9 mm/3.5 mm, length: 130 mm/15-40 mm) of 10 adult sheep (LAE442, stainless steel, n=5 each group). Clinical and radiographic examinations, in vivo computed tomography (CT), ex vivo micro-computed tomography (μCT), mechanical and histological examinations and element analyses of alloying elements in inner organs were performed. The mechanical examinations (four-point bending) revealed a significant decrease of LAE442 implant stiffness, force at 0.2% offset yield point and maximum force. Periosteal (new bone formation) and endosteal (bone decline) located bone alterations occurred in both groups (LAE442 alloy more pronounced). Moderate gas formation was observed within the LAE442 alloy group. The CT-measured implant volume decreased slightly (not significant). Histologically a predominantly direct bone-to-implant interface existed within the LAE442 alloy group. Formation of a fibrous tissue capsule around the nail occurred in the steel group. Minor inflammatory infiltration was observed in the LAE442 alloy group. Significantly increased quantities of rare earth elements were detected in the LAE442 alloy group. μCT examination showed the beginning of corrosion in dependence of the surrounding tissue. After 24 weeks the local biocompatibility of LAE442 can be considered as suitable for a degradable implant material. An application oriented interlocked intramedullary nailing system in a comparative study (degradable magnesium-based LAE442 alloy vs. steel alloy) was examined in a sheep model for the first time. We focused in particular on the examination of implant degradation by means of (μ-)CT, mechanical properties (four-point bending), clinical compatibility, local bone reactions (X-ray and histology) and possible systemic toxicity (histology and element analyses of inner organs). A significant decrease of magnesium (LAE442 alloy) implant stiffness and maximum force occurred. Moderate not clinically relevant gas accumulation was determined. A predominantly direct bone-to-implant contact existed within the magnesium (LAE442 alloy) group compared to an indirect contact in the steel group. Rare earth element accumulation could be observed in inner organs but H&E staining was inconspicuous. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy
NASA Astrophysics Data System (ADS)
Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.
2017-12-01
Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.
Structural transformations of heat treated Co-less high entropy alloys
NASA Astrophysics Data System (ADS)
Mitrica, D.; Tudor, A.; Rinaldi, A.; Soare, V.; Predescu, C.; Berbecaru, A.; Stoiciu, F.; Badilita, V.
2018-03-01
Co is considered to be one of the main ingredients in superalloys. Co is considered a critical element and its substitution is difficult due to its unique ability to form high temperature stable structures with high mechanical and corrosion/oxidation resistance. High entropy alloys (HEA) represent a relatively new concept in material design. HEA are characterised by a high number of alloying elements, in unusually high proportion. Due to their specific particularities, high entropy alloys tend to form predominant solid solution structures that develop potentially high chemical, physical and mechanical properties. Present paper is studying Co-less high entropy alloys with high potential in severe environment applications. The high entropy alloys based on Al-Cr-Fe-Mn-Ni system were prepared by induction melting and casting under protective atmosphere. The as-cast specimens were heat treated at various temperatures to determine the structure and property behaviour. Samples taken before and after heat treatment were investigated for chemical, physical, structural and mechanical characteristics. Sigma phase composition and heat treatment parameters had major influence over the resulted alloy structure and properties.
Laser Additive Manufacturing of Magnetic Materials
NASA Astrophysics Data System (ADS)
Mikler, C. V.; Chaudhary, V.; Borkar, T.; Soni, V.; Jaeger, D.; Chen, X.; Contieri, R.; Ramanujan, R. V.; Banerjee, R.
2017-03-01
While laser additive manufacturing is becoming increasingly important in the context of next-generation manufacturing technologies, most current research efforts focus on optimizing process parameters for the processing of mature alloys for structural applications (primarily stainless steels, titanium base, and nickel base alloys) from pre-alloyed powder feedstocks to achieve properties superior to conventionally processed counterparts. However, laser additive manufacturing or processing can also be applied to functional materials. This article focuses on the use of directed energy deposition-based additive manufacturing technologies, such as the laser engineered net shaping (LENS™) process, to deposit magnetic alloys. Three case studies are presented: Fe-30 at.%Ni, permalloys of the type Ni-Fe-V and Ni-Fe-Mo, and Fe-Si-B-Cu-Nb (derived from Finemet) alloys. All these alloys have been processed from a blend of elemental powders used as the feedstock, and their resultant microstructures, phase formation, and magnetic properties are discussed in this paper. Although these alloys were produced from a blend of elemental powders, they exhibited relatively uniform microstructures and comparable magnetic properties to those of their conventionally processed counterparts.
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Ikeda, Yuji; Tanaka, Isao
2017-11-01
Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical stabilities as well as structural compatibility with the parent phase. The B2, D03, and L21 crystal structures are considered as the parent phases, and the 2H and 6M structures are considered as the martensitic phases. In total, 3384 binary and 3243 ternary alloys with stoichiometric composition ratios are investigated. It is found that 187 alloys survive after the screening. Some of the surviving alloys are constituted by the chemical elements already widely used in SMAs, but other various metallic elements are also found in the surviving alloys. The energetic stability of the surviving alloys is further analyzed by comparison with the data in Materials Project Database (MPD) to examine the alloys whose martensitic structures may cause further phase separation or transition to the other structures.
Magnesium-based biodegradable alloys: Degradation, application, and alloying elements
Pogorielov, Maksym; Husak, Eugenia; Solodivnik, Alexandr; Zhdanov, Sergii
2017-01-01
In recent years, the paradigm about the metal with improved corrosion resistance for application in surgery and orthopedy was broken. The new class of biodegradable metal emerges as an alternative for biomedical implants. These metals corrode gradually with an appropriate host response and release of corrosion products. And it is absolutely necessary to use essential metals metabolized by hosting organism with local and general nontoxic effect. Magnesium serves this aim best; it plays the essential role in body metabolism and should be completely excreted within a few days after degradation. This review summarizes data from Mg discovery and its first experimental and clinical application of modern concept of Mg alloy development. We focused on biodegradable metal application in general surgery and orthopedic practice and showed the advantages and disadvantages Mg alloys offer. We focused on methods of in vitro and in vivo investigation of degradable Mg alloys and correlation between these methods. Based on the observed data, a better way for new alloy pre-clinical investigation is suggested. This review analyzes possible alloying elements that improve corrosion rate, mechanical properties, and gives the appropriate host response. PMID:28932493
Preliminary Material Properties Handbook. Volume 1: English Units
2000-07-01
6-1 6.2 Iron- Chromium -Nickel-Base Alloys...titanium but is stabilized to room temperature by sufficient quantities of beta stabilizing elements as vanadium, molybdenum, iron, or chromium . In...Designation 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.4 6.5 6.5.1 Iron- Chromium -Nickel-Base Alloys Nickel-Base Alloys AEREX® 350 alloy HAYNES® 230® alloy
A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys
Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K.; Amruthaluri, Sushma
2009-01-01
Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy. PMID:19956791
A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys
NASA Astrophysics Data System (ADS)
Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Gill, Puneet K. Singh; Amruthaluri, Sushma
2009-08-01
Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy.
A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys.
Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K; Amruthaluri, Sushma
2009-08-01
Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy.
NASA Astrophysics Data System (ADS)
Bazlov, A. I.; Tsarkov, A. A.; Ketov, S. V.; Suryanarayana, C.; Louzguine-Luzgin, D. V.
2018-02-01
Effect of multiple alloying elements on the glass-forming ability, thermal stability, and crystallization behavior of Zr-based glass-forming alloys were studied in the present work. We investigated the effect of complete or partial substitution of Ti and Ni with similar early and late transition metals, respectively, on the glass-forming ability and crystallization behavior of the Zr50Ti10Cu20Ni10Al10 alloy. Poor correlation was observed between different parameters indicating the glass-forming ability and the critical size of the obtained glassy samples. Importance of the width of the crystallization interval is emphasized. The kinetics of primary crystallization, i.e., the rate of nucleation and rate of growth of the nuclei of primary crystals is very different from that of the eutectic alloys. Thus, it is difficult to estimate the glass-forming ability only on the basis of the empirical parameters not taking into account the crystallization behavior and the crystallization interval.
The relationship between alloying elements and biologically produced ennoblement in natural waters.
Eashwar, M; Lakshman Kumar, A; Hariharasuthan, R; Sreedhar, G
2015-01-01
A range of stainless steels, nickel-chromium and nickel-chromium-molybdenum alloys were exposed to coastal seawater from Mandapam (Indian Ocean) and freshwater from a perennial pond. Biofilms from both test waters produced an ennoblement of the open circuit potential (OCP) on all alloys as expected, which was slower but substantially larger in freshwater. In both waters an interesting relationship was perceived between the plateau OCP (Emax) and the mass percentage of the major alloying elements. In particular, iron exhibited strong positive correlations with Emax (r(2) ≥ 0.77; p < 0.0005), while the sum of chromium, nickel and molybdenum presented significant negative correlations (r(2) ≤ -0.81; p = 0.0002). Consistent with the regression analyses, Euclidean distance clustering yielded patterns where Inconel-600 and the nickel-chromium-molybdenum alloys had the smallest similarities of OCP with other alloys. The results emphatically reinforce a key role for surface passive films in the ennoblement phenomenon in natural waters.
Joint Development of a Fourth Generation Single Crystal Superalloy
NASA Technical Reports Server (NTRS)
Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.
2004-01-01
A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.
Phase relations in Ti-Al-Nb alloys at 1200 degrees C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanarayana, C.; Lee, D.S.
1992-03-15
This paper reports that titanium aluminides based on both Ti{sub 3}Al ({alpha}{sub 2}) and TiAl ({gamma}) have received considerable attention during the past few years as potential candidates for high temperature structural applications in the aerospace industry. This has been due to the attractive combination of properties such as low density, high specific strength, elevated temperature strength and modulus retention, excellent creep resistance and high resistance to oxidation. A serious handicap in using these alloys has been their vary poor ductility. Refinement of grain size, addition of ternary and quaternary alloying elements (e.g., Nb, Mn and Ta) and microstructural refinementsmore » through either innovative heat treatments or by production of nanometer-sized grains through mechanical alloying or magnetron sputtering methods have been explored to increase the ductility. Amongst these approaches, addition of alloying elements, especially of niobium, has proven extremely beneficial. Thus, there have been several investigations in recent years on the constitution, microstructure and properties of ternary Ti-Al-Nb alloys.« less
Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daniel R.; National High Magnetic Field Laboratory, Tallahassee, FL 32310; Han, Ke
2016-05-15
Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealedmore » Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.« less
The solidification velocity of nickel and titanium alloys
NASA Astrophysics Data System (ADS)
Altgilbers, Alex Sho
2002-09-01
The solidification velocity of several Ni-Ti, Ni-Sn, Ni-Si, Ti-Al and Ti-Ni alloys were measured as a function of undercooling. From these results, a model for alloy solidification was developed that can be used to predict the solidification velocity as a function of undercooling more accurately. During this investigation a phenomenon was observed in the solidification velocity that is a direct result of the addition of the various alloying elements to nickel and titanium. The additions of the alloying elements resulted in an additional solidification velocity plateau at intermediate undercoolings. Past work has shown a solidification velocity plateau at high undercoolings can be attributed to residual oxygen. It is shown that a logistic growth model is a more accurate model for predicting the solidification of alloys. Additionally, a numerical model is developed from simple description of the effect of solute on the solidification velocity, which utilizes a Boltzmann logistic function to predict the plateaus that occur at intermediate undercoolings.
NASA Astrophysics Data System (ADS)
Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2018-03-01
We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruzic, Jamie J; Siegmund, Thomas; Tomar, Vikas
This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially availablemore » finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.« less
NASA Astrophysics Data System (ADS)
Cho, Lawrence; Kim, Myung Soo; Kim, Young Ha; De Cooman, Bruno C.
2014-09-01
The influence of the addition of minor alloying elements on the selective oxidation and the reactive wetting of CMnSi transformation-induced plasticity (TRIP) steels was studied by means of galvanizing simulator tests. Five TRIP steels containing small alloying additions of Cr, Ni, Ti, Cu, and Sn were investigated. After intercritical annealing (IA) at 1093 K (820 °C) in a N2 + 5 pct H2 gas atmosphere with a dew point of 213 K (-60 °C), two types of oxides were formed on the strip surface: Mn-rich xMnO·SiO2 ( x > 1.5) and Si-rich xMnO·SiO2 ( x < 0.3) oxides. The addition of the minor alloying elements changed the morphology of the Si-rich oxides from a continuous film to discrete islands and this improved the wettability by molten Zn. The improved wetting effect of the minor alloying elements was attributed to an increased area fraction of the surface where the oxides were thinner, enabling a direct unhindered reaction between Fe and the Al in the liquid Zn and the formation of the inhibition layer during the hot dip galvanizing. The addition of a small amount of Sn is shown to significantly decrease the density of Zn-coating defects on CMnSi TRIP steels.
NASA Astrophysics Data System (ADS)
Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya
2011-06-01
In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes.
Hiraki, Takehito; Takeda, Osamu; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya
2011-01-01
In this paper, the possibility of removing impurities during magnesium recycling with pyrometallurgical techniques has been evaluated by using a thermodynamic analysis. For 25 different elements that are likely to be contained in industrial magnesium alloys, the equilibrium distribution ratios between the metal, slag and gas phases in the magnesium remelting process were calculated assuming binary systems of magnesium and an impurity element. It was found that calcium, gadolinium, lithium, ytterbium and yttrium can be removed from the remelted end-of-life (EoL) magnesium products by oxidization. Calcium, cerium, gadolinium, lanthanum, lithium, plutonium, sodium, strontium and yttrium can be removed by chlorination with a salt flux. However, the other elements contained in magnesium alloy scrap are scarcely removed and this may contribute toward future contamination problems. The third technological option for the recycling of EoL magnesium products is magnesium recovery by a distillation process. Based on thermodynamic considerations, it is predicted that high-purity magnesium can be recovered through distillation because of its high vapor pressure, yet there is a limit on recoverability that depends on the equilibrium vapor pressure of the alloying elements and the large energy consumption. Therefore, the sustainable recycling of EoL magnesium products should be an important consideration in the design of advanced magnesium alloys or the development of new refining processes. PMID:27877407
METHOD OF SUPPRESSING UAl$sub 4$ FORMATION IN U-Al ALLOYS
Picklesimer, M.L.; Thurber, W.C.
1960-08-23
A method is given for suppressing the formation of UAl/sub 4/ in uranium- - aluminum alloys, thereby rendering these alloys more easily workable. The method comprises incorporating in the base alloy a Group Four element selected from the group consisting of Si, Ti, Ge, Zr, and Sn, the addition preferably being within the range of 0.5to20at.%.
An investigation of the initiation stage of hot corrosion in Ni-base alloys
NASA Technical Reports Server (NTRS)
Huang, T. T.; Meier, G. H.
1979-01-01
The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.
Nitriding of super alloys for enhancing physical properties
Purohit, A.
1984-06-25
The invention teaches the improvement of certain super alloys by exposing the alloy to an atmosphere of elemental nitrogen at elevated temperatures in excess of 750/sup 0/C but less than 1150/sup 0/C for an extended duration, viz., by nitriding the surface of the alloy, to establish barrier nitrides of the order of 25 to 100 micrometers thickness. These barrier
Amorphous metal alloy and composite
Wang, Rong; Merz, Martin D.
1985-01-01
Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.
Binary titanium alloys as dental implant materials-a review.
Liu, Xiaotian; Chen, Shuyang; Tsoi, James K H; Matinlinna, Jukka Pekka
2017-10-01
Titanium (Ti) has been used for long in dentistry and medicine for implant purpose. During the years, not only the commercially pure Ti but also some alloys such as binary and tertiary Ti alloys were used. The aim of this review is to describe and compare the current literature on binary Ti alloys, including Ti-Zr, Ti-In, Ti-Ag, Ti-Cu, Ti-Au, Ti-Pd, Ti-Nb, Ti-Mn, Ti-Mo, Ti-Cr, Ti-Co, Ti-Sn, Ti-Ge and Ti-Ga, in particular to mechanical, chemical and biological parameters related to implant application. Literature was searched using the PubMed and Web of Science databases, as well as google without limiting the year, but with principle key terms such as ' Ti alloy', 'binary Ti ', 'Ti-X' (with X is the alloy element), 'dental implant' and 'medical implant'. Only laboratory studies that intentionally for implant or biomedical applications were included. According to available literatures, we might conclude that most of the binary Ti alloys with alloying <20% elements of Zr, In, Ag, Cu, Au, Pd, Nb, Mn, Cr, Mo, Sn and Co have high potential as implant materials, due to good mechanical performance without compromising the biocompatibility and biological behaviour compare to cp-Ti.
Jiang, Tianlong; Guo, Lei; Ni, Shenghui; Zhao, Yuyan
2015-04-01
Magnesium (Mg) alloys have been demonstrated to be viable orthopedic implants because of mechanical and biocompatible properties similar to natural bone. In order to improve its osteogenic properties, a porous β-tricalcium phosphate (β-TCP) was coated on the Mg-3AI-1Zn alloy by alkali-heat treatment technique. The human bone-derived cells (SaOS-2) were cultured on (β-TCP)-Mg-3AI-1Zn in vitro, and the osteoblast response, the morphology and the elements on this alloy surface were investigated. Also, the regulation of key intracellular signalling proteins was investigated in the SaOS-2 cells cultured on alloy surface. The results from scanning electron microscope and immunofluorescence staining demonstrated that (β-TCP)-Mg-3AI-1Zn induced significant osteogenesis. SaOS-2 cell proliferation was improved by β-TCP coating. Moreover, the (β-TCP)-Mg-3AI-1Zn surface induced activation of key intracellular signalling proteins in SaOS-2 cells. We observed an enhanced activation of Src homology and collagen (Shc), a common point of integration between bone morphogenetic protein 2, and the Ras/mitogen-activated protein kinase (MAPK) pathway. ERK1/2 MAP kinase activation was also upregulated, suggesting a role in mediating osteoblastic cell interactions with biomaterials. The signalling pathway involving c-fos (member of the activated protein-1) was also shown to be upregulated in osteoblasts cultured on the (β-TCP)-Mg-3AI-1Zn. These results suggest that β-TCP coating may contribute to successful osteoblast function on Mg alloy surface. (β-TCP)-Mg-3AI-1Zn may upregulate cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on Mg alloy surface.
NASA Astrophysics Data System (ADS)
Ivanov, S. Yu.; Karkhin, V. A.; Mikhailov, V. G.; Martikainen, J.; Hiltunen, E.
2018-03-01
The microstructure and the distribution of chemical elements in laser-welded joints of Al - Mg - Si alloy 6005-T6 are studied. Segregations of chemical elements are detected over grain boundaries in the heat-affected zones of the welded joints. The joints fracture by the intergrain mechanism. A Gleeble 3800 device is used to determine the temperature dependences of the mechanical properties of the alloy with allowance for the special features of the welding cycle. Amethod for evaluating the sensitivity of welded joints of aluminum alloys to formation of liquation cracks with allowance for the local properties of the metal, the welding conditions, and the rigidity of the construction is suggested.
NASA Astrophysics Data System (ADS)
Mukhina, I. Yu.
2014-11-01
The effect of 26 alloying elements on the corrosion resistance of high-purity magnesium in a 0.5-n solution of sodium chloride and in a humid atmosphere (0.005 n) is studied. The Mg - Li, Mg - Ag, Mg - Zn, Mg - Cu, Mg - Gd, Mg - Al, Mg - Zr, Mg - Mn and other binary systems, which present interest as a base for commercial or perspective castable magnesium alloys, are studied. The characteristics of corrosion resistance of the binary alloys are analyzed in accordance with the group and period of the Mendeleev's periodic law. The roles of the electrochemical and volume factors and of the factor of the valence of the dissolved element are determined.
Microstructure and wear property of Fe-Cr13-C hardfacing alloy reinforced by WC particles
NASA Astrophysics Data System (ADS)
Yang, Ke; Li, Jiaqi; Bao, Yefeng; Jiang, Yongfeng
2017-07-01
Tungsten as the most effective carbide-forming element was added in the Fe-Cr13-C hardfacing alloy to precipitate WC particles. Optical microscope (OM), scanning electron microscope (SEM) and energy-dispersive spectrometer (EDS) were used to investigate the microstructures of the hardfacing alloy. The wear resistance was tested through a slurry rubber wheel abrasion test machine, and the wear behavior was also studied. The results indicate that the microstructures of the hardfacing alloy consist of lath martensite, residual austenite and WC particles. The wear resistance can be significantly improved through the addition of tungsten element being provided by the precipitation of WC particles. And the predominant wear mechanism was microcutting with shallow grooves and spalling.
Zhao, Nan; Watson, Nevija; Xu, Zhigang; Chen, Yongjun; Waterman, Jenora; Sankar, Jagannathan; Zhu, Donghui
2014-01-01
Magnesium (Mg) based alloys are the most advanced cardiovascular stent materials. This new generation of stent scaffold is currently under clinical evaluation with encouraging outcomes. All these Mg alloys contain a certain amount of rare earth (RE) elements though the exact composition is not yet disclosed. RE alloying can usually enhance the mechanical strength of different metal alloys but their toxicity might be an issue for medical applications. It is still unclear how RE elements will affect the magnesium (Mg) alloys intended for stent materials as a whole. In this study, we evaluated MgZnCaY-1RE, MgZnCaY-2RE, MgYZr-1RE, and MgZnYZr-1RE alloys for cardiovascular stents applications regarding their mechanical strength, corrosion resistance, hemolysis, platelet adhesion/activation, and endothelial biocompatibility. The mechanical properties of all alloys were significantly improved. Potentiodynamic polarization showed that the corrosion resistance of four alloys was at least 3–10 times higher than that of pure Mg control. Hemolysis test revealed that all the materials were non-hemolytic while little to moderate platelet adhesion was found on all materials surface. No significant cytotoxicity was observed in human aorta endothelial cells cultured with magnesium alloy extract solution for up to seven days. Direct endothelialization test showed that all the alloys possess significantly better capability to sustain endothelial cell attachment and growth. The results demonstrated the promising potential of these alloys for stent material applications in the future. PMID:24921251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinata, Shintaro; Research Fellowship Division Japan Society for the Promotion of Science; Yamane, Akira
2016-05-15
The effect of additional element on compositionally modulated atomic layered structure of hexagonal Co{sub 80}Pt{sub 20} alloy films with superlattice diffraction was investigated. In this study it is found that the addition of Cr or W element to Co{sub 80}Pt{sub 20} alloy film shows less deterioration of hcp stacking structure and compositionally modulated atomic layer stacking structure as compared to Si or Zr or Ti with K{sub u} of around 1.4 or 1.0 × 10{sup 7} erg/cm{sup 3} at 5 at.% addition. Furthermore, for O{sub 2} addition of O{sub 2} ≥ 5.0 × 10{sup −3} Pa to CoPt alloy, compositionallymore » modulated atomic layer stacking structure will be deteriorated with enhancement of formation of hcp stacking structure which leads higher K{sub u} of 1.0 × 10{sup 7} erg/cm{sup 3}.« less
NASA Astrophysics Data System (ADS)
Nakase, K.; Bernstein, I. M.
1988-11-01
The processes of ductile and brittle fracture in fully pearlitic steel and their relation to both the scale of the microstructure and the presence of substitutional alloy elements have been investigated at room temperature using smooth tensile and over a range of temperatures using V-notched Charpy impact specimens. The results show that the early stages of cracking, revealed in both types of specimen, are largely the result of shear cracking of the pearlite lamellae. These cracks grow and can reach a size when they impinge upon the prior austenite boundary; afterward the character of fracture can be either microvoid coalescence or cleavage, depending on test conditions and metallurgical variables. Further, the carbide plates of the pearlite lamellae can act as barriers to the movement of dislocations as is the case normally with grain boundaries. For pearlite an optimum spacing of approximately 0.2 μm resulting from a balance between carbide plate thickness and interlamellar spacing was found to enhance toughness, although such changes are much smaller than corresponding changes due to varying alloy elements. Specific alloy elements used herein strengthened the lamellar ferrite in pearlite, inhibiting the movement of dislocations while also usually decreasing the lamellar cementite plate thickness for the same spacing. This dual behavior results in enhanced resistance to the initiation and propagation of microcracks leading to an improvement in strength, ductility, and toughness. The most effective alloy elements for the composition ranges studied in fully pearlitic steels are Si and Ni for strength improvement, and Ni and Mn for toughness.
Sound velocity of iron-light element compounds and the chemical structure of the inner core
NASA Astrophysics Data System (ADS)
Ohtani, E.; Sakamaki, T.; Fukui, H.; Tanaka, R.; Shibazaki, Y.; Kamada, S.; Sakairi, T.; Takahashi, S.; Tsutsui, S.; Baron, A. Q. R.
2016-12-01
The light elements in the core could constrain the conditions of accretion, subsequent magma ocean, and core formation stages of the Earth. There are several studies for sound velocity measurements of the iron-light elements alloys. However, the measurements are not enough to constrain the light element abundance in the core tightly at present due to inter-laboratory inconsistencies using different methods which are originated from the difficulties to make such measurements under the extreme conditions. We measured the sound velocity of iron alloy compounds at high pressure and temperature relevant to the Earth's core using double-sided laser heating of a DAC combined with inelastic X-ray scattering at SPring-8. We measured the compressional velocity of hcp-Fe up to 166 GPa and 3000 K, and derived a clear temperature dependence of the Birch's law for hcp-Fe. We measured the compressional velocity of Fe0.89Si0.11 alloy and Fe3C at high pressure and temperature, and we could not detect temperature dependency in Birch's law in these compounds. Additionally, we measured the sound velocity of Fe3S, Fe0.83Ni0.09Si0.08 alloy, and FeH at high pressure. Combining our new data set which showed remarkable differences from previous data on the sound velocity, we present a model of the chemical structure of the inner core. The outer core composition was also estimated based on partitioning behaviors of these light elements between solid and liquid iron alloys under the core conditions.
Stability of Fe-Cr alloy interconnects under CH 4-H 2O atmosphere for SOFCs
NASA Astrophysics Data System (ADS)
Horita, Teruhisa; Xiong, Yueping; Yamaji, Katsuhiko; Sakai, Natsuko; Yokokawa, Harumi
The chemical stability of Fe-Cr alloys (ZMG232 and SUS430) was examined under humidified CH 4 gases at 1073 K to simulate the real anode atmosphere in SOFC operation. Surface microstructure change and oxide scale layer formation were observed on the oxidized Fe-Cr alloy surfaces. The main reaction products were Mn-Cr-(Fe) spinels for both alloys. Secondary ion mass spectrometry (SIMS) was applied to measure the elemental distribution of minor and major elements around the oxide scale/alloy interface. A high concentration of Mn on the oxide scale surface suggested the fast diffusion of Mn in the oxide scale to form the spinels. Annealing in CH 4-H 2O made the oxide scale thicker with duration time on the alloy surface. The parabolic growth rates ( kp) of oxide scale layer were evaluated from the thickness of oxide scales by secondary ion mass spectrometry (SIMS) depth profiles, which were calculated to the following: kp=6.25×10 -6 μm 2/s for SUS430 and kp=4.42×10 -6 μm 2/s for ZMG232. The electrical conductivity of oxidized alloys showed the semi-conductor temperature dependence for both alloys. The electrical conductivity of oxidized ZMG232 alloy was higher than that of oxidized SUS430.
Oxidation, carburization and/or sulfidation resistant iron aluminide alloy
Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton
2003-08-19
The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or Zro.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B. .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.
Topological Weyl semimetals in Bi1 -xSbx alloys
NASA Astrophysics Data System (ADS)
Su, Yu-Hsin; Shi, Wujun; Felser, Claudia; Sun, Yan
2018-04-01
We investigated Weyl semimetal (WSM) phases in bismuth antimony (Bi1 -xSbx ) alloys by combination of atomic composition and arrangement. Via first-principles calculations, we found two WSM states with Sb concentrations of x =0.5 and 0.83 with specific inversion-symmetry-broken elemental arrangement. The Weyl points are close to the Fermi level in both of these two WSM states. Therefore, it is likely to obtain Weyl points in Bi-Sb alloy. The WSM phase provides a reasonable explanation for the current transport study of Bi-Sb alloy with the violation of Ohm's law [D. Shin, Y. Lee, M. Sasaki, Y. H. Jeong, F. Weickert, J. B. Betts, H.-J. Kim, K.-S. Kim, and J. Kim, Nat. Mater. 16, 1096 (2017), 10.1038/nmat4965]. This paper shows that the topological phases in Bi-Sb alloys depend on both elemental composition and their specific arrangement.
Vertical solidification of dendritic binary alloys
NASA Technical Reports Server (NTRS)
Heinrich, J. C.; Felicelli, S.; Poirier, D. R.
1991-01-01
Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.
NASA Astrophysics Data System (ADS)
Cueff, R.; Buscail, H.; Caudron, E.; Riffard, F.; Issartel, C.; El Messki, S.
2004-05-01
The influence of yttrium oxide coating (processed by the sol-gel method) on the oxidation behaviour of a commercial FeCrAl alloy (Kanthal A1) has been investigated during isothermal exposures in air at 1373 K. The scale growth kinetics of the uncoated alloy obey a parabolic rate law during the whole oxidation test, whereas the kinetic curves of the Y-coated specimen exhibit an initial transient stage for the first few hours, followed by a parabolic regime. The yttrium sol-gel coating deposited on the bare alloy does not provide the beneficial effect usually ascribed to reactive elements. No oxidation rate improvement of the coated alloy is observed, the parabolic rate constant values are strictly identical for both specimens. In situ X-ray diffraction reveals a marked influence of the reactive element on the composition of the oxide scale. The oxide layer formed on the yttrium-coated specimen comprised, in addition to α-alumina which is the main oxide also identified on the bare specimen, the presence of yttrium aluminates (YAlO 3, Y 3Al 5O 12) located in the outermost part of the layer.
NASA Astrophysics Data System (ADS)
Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.
The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.
NASA Astrophysics Data System (ADS)
Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao
2013-07-01
In this paper, Nb element was partially replaced by V element in Finemet-type Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1, 1.5, 2) alloys and the effect of annealing temperatures on the microstructure and AC magnetic properties of the samples are studied. The annealing temperatures affect the grain sizes of the bcc α-Fe phase greatly. When the annealing temperature is between 540-560°C, the samples have better AC magnetic properties than the samples annealed at other temperatures. The optimized annealing temperature of the studied samples is around 560°C. The coercivity and iron loss of the V2 sample is a little bit higher than that of V1 and V1.5 alloys while the amplitude permeability of V2 alloy is larger than that of V1 and V1.5, which indicate that the content of V element has strong influence on the magnetic properties of nanocrystalline soft magnetic alloys.
Ductile transplutonium metal alloys
Conner, W.V.
1981-10-09
Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.
Ductile transplutonium metal alloys
Conner, William V.
1983-01-01
Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.
Castable nickel aluminide alloys for structural applications
Liu, Chain T.
1992-01-01
The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.
Guha, Subhendu; Ovshinsky, Stanford R.
1990-02-02
A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
The COSAM program for reduction of the use of strategic alloying elements in nickel-based superalloys for gas turbine engines was reviewed. Sources, consumption, and pricing of cobalt, tantalum, columbium, and chromium are surveyed. Research projects in strategic element substitution, advanced processing concepts, and the development of alternate materials (intermetallics and iron-base alloys) are listed and research plans for FY 1983 and FY 1984 summarized.
Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Guo, Jun; Huang, Xuefei; Huang, Weigang
2017-07-01
FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.
Non-stoichiometric AB5 alloys for metal hydride electrodes
Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James
2001-01-01
The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB.sub.5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.
NASA Astrophysics Data System (ADS)
Razumov, Nikolay G.; Wang, Qing Sheng; Popovich, Anatoly A.; Shamshurin, Aleksey I.
2018-04-01
This paper describes the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a radio frequency thermal plasma. The as-milled powder with irregular particles were successfully converted into spherical high-nitrogen stainless steel powder alloy. Measurement of the residual nitrogen content in the obtained powder, shown that during the plasma spheroidization process, part of the nitrogen escapes from the alloy.
Smith, K.F.; Van Thyne, R.J.
1959-05-12
This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.
NASA Astrophysics Data System (ADS)
Schloffer, Daniel; Bozorgi, Salar; Sherstnev, Pavel; Lenardt, Christian; Gollas, Bernhard
2017-11-01
The fabrication of thin foils of magnesium for use as anode material in rechargeable magnesium ion batteries is described. In order to improve its workability, the magnesium was alloyed by melting metallurgy with zinc and/or gadolinium, producing saturated solid solutions. The material was extruded to thin foils and rolled to a thickness of approximately 100 μm. The electrochemical behavior of Mg-1.63 wt% Zn, Mg-1.55 wt% Gd and Mg-1.02 wt% Zn-1.01 wt% Gd was studied in (PhMgCl)2-AlCl3/THF electrolyte by cyclic voltammetry and galvanostatic cycling in symmetrical cells. Analysis of the current-potential curves in the Tafel region and the linear region close to the equilibrium potential show almost no effect of the alloying elements on the exchange current densities (5-45 μA/cm2) and the transfer coefficients. Chemical analyses of the alloy surfaces and the electrolyte demonstrate that the alloying elements not only dissolve with the magnesium during the anodic half-cycles, but also re-deposit during the cathodic half-cycles together with the magnesium and aluminum from the electrolyte. Given the negligible corrosion rate in aprotic electrolytes under such conditions, no adverse effects of alloying elements are expected for the performance of magnesium anodes in secondary batteries.
Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys
NASA Astrophysics Data System (ADS)
Chu, Peng-Wei
Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism, with the corrosion front propagating laterally a few mum inside the alloy and underneath the surface corrosion film, with finger-like features aligned with (0001) Mg basal planes at the localized corrosion/alloy interface. Rising streams of hydrogen bubbles were found to follow the anodic dissolution of Mg and formation of Mg(OH)2 corrosion products at the propagating localized corrosion fronts. Alloying elements segregation to the grain boundaries showed the ability to stop localized corrosion propagation momentarily. By revealing the microstructure of corrosion features on Mg alloys, a descriptive model was proposed. Relationships between the corrosion behavior and alloy microstructures were also identified. This microscopic information can serve as a guideline for future development of Mg alloys by tailoring the microstructure to achieve proper corrosion responses for applications under different environments.
Using rapid infrared forming to control interfaces in titanium-matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrier, S.G.; Lin, R.Y.
1993-03-01
Control of the fiber-matrix reaction during composite fabrication is commonly achieved by shortening the processing time, coating the reinforcement with relatively inert materials, or adding alloying elements to retard the reaction. To minimize the processing time, a rapid IR forming (RIF) technique for metal-matrix composite fabrication has been developed. Experiments have shown that the RIF technique is a quick, simple, and low-cost process to fabricate titanium-alloy matrix composites reinforced with either silicon carbide or carbon fibers. Due to short processing times (typically on the order of 1-2 minutes in an inert atmosphere for composites with up to eight-ply reinforcements), themore » interfacial reaction is limited and well controlled. Composites fabricated by this technique have mechanical properties that are comparable to (in several cases, superior to) those made with conventional diffusion-bonding techniques. 21 refs.« less
Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries
NASA Technical Reports Server (NTRS)
Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.
1993-01-01
Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.
[A surface reacted layer study of titanium-zirconium alloy after dental casting].
Zhang, Y; Guo, T; Li, Z; Li, C
2000-10-01
To investigate the influence of the mold temperature on the surface reacted layer of Ti-Zr alloy castings. Ti-Zr alloy was casted into a mold which was made of a zircon (ZrO2.SiO2) for inner coating and a phosphate-bonded material for outer investing with a casting machine (China) designed as vacuum, pressure and centrifuge. At three mold temperatures (room temperature, 300 degrees C, 600 degrees C) the Ti-Zr alloy was casted separately. The surface roughness of the castings was calculated by instrument of smooth finish (China). From the surface to the inner part the Knoop hardness and thickness in reacted layer of Ti-Zr alloy casting was measured. The structure of the surface reacted layer was analysed by SEM. Elemental analyses of the interfacial zone of the casting was made by element line scanning observation. The surface roughness of the castings was increased significantly with the mold temperature increasing. At a higher mold temperature the Knoop hardness of the reactive layer was increased. At the three mold temperature the outmost surface was very hard, and microhardness data decreased rapidly where they reached constant values. The thickness was about 85 microns for castings at room temperature and 300 degrees C, 105 microns for castings at 600 degrees C. From the SEM micrograph of the Ti-Zr alloy casting, the surface reacted layer could be divided into three different layers. The first layer was called non-structure layer, which thickness was about 10 microns for room temperature group, 20 microns for 300 degrees C and 25 microns for 600 degrees C. The second layer was characterized by coarse-grained acicular crystal, which thickness was about 50 microns for three mold temperatures. The third layer was Ti-Zr alloy. The element line scanning showed non-structure layer with higher level of element of O, Al, Si and Zr, The higher the mold temperature during casting, the deeper the Si permeating and in the second layer the element Si could also be found. The mold temperature is one of the major factors influencing to casting quality. In order to reduce the surface reacted layer of Ti-Zr alloy castings, the lower mold temperature and the investment without Si should be chosen.
NASA Astrophysics Data System (ADS)
Que, Zhongping; Wang, Yun; Fan, Zhongyun
2018-06-01
Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.
Anisotropy of the Hot Plastic Deformation of Ti-6Al-4V Single-Colony Samples (Preprint)
2009-04-01
April 2009 Journal Article Preprint 01 April 2009- 01 April 2009 4 . TITLE AND SUBTITLE ANISOTROPY OF THE HOT PLASTIC DEFORMATION OF Ti-6Al-4V SINGLE...COLONY SAMPLES (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) A.A. Salem and S.L...resistance, and low density, Ti-6Al-4V is the most commonly used alpha/beta titanium alloy. It accounts for approximately 80% of the total titanium used in
Dissolution Mechanism for High Melting Point Transition Elements in Aluminum Melt
NASA Astrophysics Data System (ADS)
Lee, Young E.; Houser, Stephen L.
When added cold in aluminum melt, the alloying process for compacts of transition metal elements such as Mn, Fe, Cr, Ni, Ti, Cu, and Zn takes a sequence of incubation, exothermic reactions to form intermetallic compounds, and dispersion of the alloying elements into aluminum melt. The experiments with Cr compacts show that the incubation period is affected by the content of ingredient Al and size of compacts and by size of Cr particles. Incubation period becomes longer as the content of ingredient aluminum in compact decreases, and this prolonged incubation period negatively impacts the dissolution of the alloying elements in aluminum. Once liquid aluminum forms at reaction sites, the exothermic reaction takes place quickly and significantly raises the temperature of the compacts. As the result of it, the compacts swell in volume with a sponge like structure. Such porous structure encourages the penetration of liquid aluminum from the melt. The compacts become weak mechanically, and the alloying elements are dispersed and entrained in aluminum melt as discrete and small sized units. When Cr compacts are deficient in aluminum, the unreacted Cr particles are encased by the intermetallic compounds in the dispersed particles. They are carried in the melt flow and continue the dissolution reaction in aluminum. The entire dissolution process of Cr compacts completes within 10 to 15 minutes with a full recovery when the aluminum content is 10 to 20% in compacts.
NASA Technical Reports Server (NTRS)
Rawdon, Henry S
1928-01-01
The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.
Hardness behavior of binary and ternary niobium alloys at 77 and 300 K
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1974-01-01
The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.
Combinatorial alloying improves bismuth vanadate photoanodes via reduced monoclinic distortion
Newhouse, P. F.; Guevarra, D.; Umehara, M.; ...
2018-01-01
Energy technologies are enabled by materials innovations, requiring efficient methods to search high dimensional parameter spaces, such as multi-element alloying for enhancing solar fuels photoanodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, Robert E.
2017-08-15
An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.
1975-01-01
the thermal expansion of metallic elements, alloys, and intermetallic compounds. We believe there is also much food for reflection by the specialist...24 39 Plutonium Pu ........ ............... 260 40’ t Polonium Po ..... ............... 270 41* Potassium K ..... ............... 271 42...923 209 NIckel-Palladium NI-Pd..................926 210 * Nickel-Pitaum Ni-Pt.................90 211 Nickel-Silicon NI-SI.................932 212
Corrosion-resistant high-entropy alloys: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yunzhu; Yang, Bin; Liaw, Peter
Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less
NASA Astrophysics Data System (ADS)
Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong
2017-10-01
The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.
Corrosion-resistant high-entropy alloys: A review
Shi, Yunzhu; Yang, Bin; Liaw, Peter
2017-02-05
Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods onmore » the corrosion resistance are analyzed in detail. Finally, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.« less
NASA Astrophysics Data System (ADS)
Leedy, Kevin Daniel
A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel plate showed the best overall mechanical properties of the studied bi-metallic bonded panels. Bond properties were nominally inferior to constituent bulk material properties and fracture toughness values, in particular, were quite low for all bonded laminates. Delamination near the copper alloy-stainless steel interface was the dominate failure mode in the bi-metallic panels. The joining processes caused microstructural alterations in the bond interfacial regions including: microporosity, new precipitate formation, existing precipitate morphology changes and interdiffusion of constituent elements.
In vivo corrosion of four magnesium alloys and the associated bone response.
Witte, F; Kaese, V; Haferkamp, H; Switzer, E; Meyer-Lindenberg, A; Wirth, C J; Windhagen, H
2005-06-01
Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone-implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation.
NASA Astrophysics Data System (ADS)
Suhandi, A.; Tayubi, Y. R.; Arifin, P.
2016-04-01
Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.
Effect of Ca and RE additions on microstructures and tensile properties of AZ31 alloys
NASA Astrophysics Data System (ADS)
Fu, Li; Le, Qichi; Tang, Yan; Sun, Jingying; Jia, Yonghui; Song, Zetian
2018-05-01
Microstructures and tensile properties of AZ31 magnesium alloys with the same amount of Ca and RE (Gd + La) additions are investigated. The results show that Al2Ca new phases form after adding Ca elements, Al2Gd and Al11La3 new phases form after adding Gd and La elements, and formations of Al-Ca and Al-RE phases could decrease Mg17Al12 phases and refine grains. Al2Ca and Al11La3 phases are crushed into granules because of severe deformation during hot extrusion, while Al2Gd phases are not. Room temperature (TR) and 150 °C (T150°C) tensile tests results reveal that both AZ31-1.5Ca and AZ31-1.5RE as-extruded alloys exhibit superior comprehensive tensile properties when compared to AZ31 as-extruded alloy, however, AZ31-1.5Ca as-extruded alloy could be a better choice in view of the costs. Textures images of as-extruded alloys indicate that 1.5 wt% Ca and RE additions affects little on textures of AZ31 as-extruded alloy, therefore, morphologies of second phases and average grain sizes are the leading cause of tensile properties of as-extruded alloys.
NASA Astrophysics Data System (ADS)
Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon
2008-08-01
Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.
Combined effect of Pt and W alloying elements on Ni-silicide formation
NASA Astrophysics Data System (ADS)
Luo, T.; Mangelinck, D.; Descoins, M.; Bertoglio, M.; Mouaici, N.; Hallén, A.; Girardeaux, C.
2018-03-01
A combinatorial study of the combined effect of Pt and W on Ni silicide formation is performed. Ni(Pt, W) films with thickness and composition gradients were prepared by a co-deposition composition spread technique using sputtering deposition from Pt, W, and Ni targets. The deposited Ni(Pt,W) films were characterized by X-ray diffraction, X-ray reflectivity, Rutherford backscattering, and atom probe tomography. The maximum content of alloying elements is close to 27 at. %. Simulations of the thickness and composition were carried out and compared with experimental results. In situ X-ray diffraction and atom probe tomography were used to study the phase formation. Both additive alloying elements (Pt + W) slow down the Ni consumption and the effect of W is more pronounced than the one of Pt. Regarding the effect of alloying elements on Ni silicides formation, three regions could be distinguished in the Ni(Pt,W)/Si wafer. For the region close to the Ni target, the low contents of alloying elements (Pt + W) have little impact on the phase sequence (δ-Ni2Si is the first silicide and NiSi forms when Ni is entirely consumed) but the kinetics of silicide formation slows down. The region close to the Pt target has high contents of (Pt + W) and is rich in Pt and a simultaneous phase formation of δ-Ni2Si and NiSi is observed. For the high (Pt + W) contents and W-rich region, NiSi forms unexpectedly before δ-Ni2Si and the subsequent growth of δ-Ni2Si is accompanied by the NiSi consumption. When Ni is entirely consumed, NiSi regrows at the expense of δ-Ni2Si.
NASA Astrophysics Data System (ADS)
Rodríguez, V. A. Peña; Medina, J. Medina; Marcatoma, J. Quispe; Ayala, Ch. Rojas; Landauro, C. V.; Baggio-Saitovitch, E. M.; Passamani, E. C.
2011-11-01
Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and \\upalpha-Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.
Ohno, H
1976-11-01
The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.
Research activities of biomedical magnesium alloys in China
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Gu, Xuenan
2011-04-01
The potential application of Mg alloys as bioabsorable/biodegradable implants have attracted much recent attention in China. Advances in the design and biocompatibility evaluation of bio-Mg alloys in China are reviewed in this paper. Bio-Mg alloys have been developed by alloying with the trace elements existing in human body, such as Mg-Ca, Mg-Zn and Mg-Si based systems. Additionally, novel structured Mg alloys such as porous, composited, nanocrystalline and bulk metallic glass alloys were tried. To control the biocorrosion rate of bio-Mg implant to match the self-healing/regeneration rate of the surrounding tissue in vivo, surface modification layers were coated with physical and chemical methods.
Maintainability Improvement Through Corrosion Prediction
1997-12-01
Aluminum base alloys - Mechanical properties; Lithium- Alloying elements; Crack propagation- Corrosion effects ; Fatigue life - Corrosion... effects on the corrosion fatigue life of 7075-T6 aluminum alloy . Ma,L CORPORATE SOURCE: University of Utah JOURNAL: Dissertation Abstracts International...Diffusion effects ; Hydrogen- Diffusion SECTION HEADINGS: 64 (Corrosion) 52. 715866 87-640094 The Life Prediction for 2024
The kinetics of composite particle formation during mechanical alloying
NASA Technical Reports Server (NTRS)
Aikin, B. J. M.; Courtney, T. H.
1993-01-01
The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.
[Differential study of the bonding characterization of dental porcelain to Ni-Cr alloys].
Wei, Fang; Zhan, De-song; Wang, Yan-yan
2008-10-01
To study the bonding capability when Ni-Cr porcelain alloy was added with Ti, compound rare earth metals and removed the element of Be. Ni-Cr-Ti porcelain alloys manufactured by Institute of Metal Research of Chinese Academy of Sciences were tested. The test alloys were divided into three groups according to whether containing Be and compound rare earth metals or not. And HI BOND Ni-Cr base-metal alloy was chosen as control. The metal-ceramic specimens were prepared for shear test, scanning electron microscope (SEM) and energy spectrum analysis. The shear bond strength of the four groups were analyzed. No significant difference were observed among them (P > 0.05). No crackle was found and they were contacted tightly between the porcelain and metal. The composition and contents of the four groups' interfaces were closed. The shear bond strength of the self-made Ni-Cr-Ti porcelain alloys all can satisfy the clinical requirements. Experimental groups containing Ti, compound rare earth metals and removing the element of Be can be used as better recommendation for clinical practice.
NASA Astrophysics Data System (ADS)
Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke
2018-03-01
For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.
Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys
Jin, Ke; Zhang, Yanwen; Bei, Hongbin
2015-09-09
In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less
Du, Jinglian; Guo, Zhipeng; Zhang, Ang; Yang, Manhong; Li, Mei; Xiong, Shoumei
2017-10-19
Both synchrotron X-ray tomography and EBSD characterization revealed that the preferred growth directions of magnesium alloy dendrite change as the type and amount of solute elements. Such growth behavior was further investigated by evaluating the orientation-dependent surface energy and the subsequent crystallographic anisotropy via ab-initio calculations based on density functional theory and hcp lattice structure. It was found that for most binary magnesium alloys, the preferred growth direction of the α-Mg dendrite in the basal plane is always [Formula: see text], and independent on either the type or concentration of the additional elements. In non-basal planes, however, the preferred growth direction is highly dependent on the solute concentration. In particular, for Mg-Al alloys, this direction changes from [Formula: see text] to [Formula: see text] as the Al-concentration increased, and for Mg-Zn alloys, this direction changes from [Formula: see text] to [Formula: see text] or [Formula: see text] as the Zn-content varied. Our results provide a better understanding on the dendritic orientation selection and morphology transition of magnesium alloys at the atomic level.
Al Jabbari, Youssef; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony
2008-04-01
This study involved testing and analyzing multiple retrieved prosthetic retaining screws after long-term use in vivo to: (1) detect manufacturing defects that could affect in-service behavior; (2) characterize the microstructure and alloy composition; and (3) further characterize the wear mechanism of the screw threads. Two new (control) screws from Nobel Biocare (NB) and 18 used (in service 18-120 months) retaining screws [12 from NB and 6 from Sterngold (SG)] were: (1) metallographically examined by light microscopy and scanning electron microscopy (SEM) to determine the microstructure; (2) analyzed by energy dispersive X-ray (EDX) microanalysis to determine the qualitative and semiquantitative average alloy and individual phase compositions; and (3) tested for Vickers microhardness. Examination of polished longitudinal sections of the screws using light microscopy revealed a significant defect in only one Group 4 screw. No significant defects in any other screws were observed. The defect was considered a "seam" originating as a "hot tear" during original casting solidification of the alloy. Additionally, the examination of longitudinal sections of the screws revealed a uniform homogeneous microstructure in some groups, while in other groups the sections exhibited rows of second phase particles. The screws for some groups demonstrated severe deformation of the lower threads and the bottom part of the screw leading to the formation of crevices and grooves. Some NB screws were comprised of Au-based alloy with Pt, Cu, and Ag as alloy elements, while others (Groups 4 and 19) were Pd-based with Ga, Cu, and Au alloy elements. The microstructure was homogeneous with fine or equiaxed grains for all groups except Group 4, which appeared inhomogeneous with anomalous grains. SG screws demonstrated a typical dendritic structure and were Au-based alloy with Cu and Ag alloy elements. There were differences in the microhardness of gold alloy screws from NB and SG as well as palladium alloy screws from NB. Significant differences within NB retaining screws and between NB and SG screws were found for microstructure, major alloy constituents, and microhardness.
NASA Astrophysics Data System (ADS)
Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.
2008-02-01
Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.
Recoverable immobilization of transuranic elements in sulfate ash
Greenhalgh, Wilbur O.
1985-01-01
Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.
LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugga, R.V.; Fultz, B.; Bowman, R.
1999-03-30
An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with themore » predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.« less
Element of an inductive coupler
Hall, David R.; Fox, Joe
2006-08-15
An element for an inductive coupler in a downhole component comprises magnetically conductive material, which is disposed in a recess in annular housing. The magnetically conductive material forms a generally circular trough. The circular trough comprises an outer generally U-shaped surface, an inner generally U-shaped surface, and two generally planar surfaces joining the inner and outer surfaces. The element further comprises pressure relief grooves in at least one of the surfaces of the circular trough. The pressure relief grooves may be scored lines. Preferably the pressure relief grooves are parallel to the magnetic field generated by the magnetically conductive material. The magnetically conductive material is selected from the group consisting of soft iron, ferrite, a nickel iron alloy, a silicon iron alloy, a cobalt iron alloy, and a mu-metal. Preferably, the annular housing is a metal ring.
LaNi.sub.5 is-based metal hydride electrode in Ni-MH rechargeable cells
Bugga, Ratnakumar V.; Fultz, Brent; Bowman, Robert; Surampudi, Subra Rao; Witham, Charles K.; Hightower, Adrian
1999-01-01
An at least ternary metal alloy of the formula AB.sub.(Z-Y) X.sub.(Y) is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB.sub.5 alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.
LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells
Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.
1999-03-30
An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.
NASA Astrophysics Data System (ADS)
Wen, Minru; Wang, Chong-Yu
2018-01-01
The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.
A comparison of deformation and failure behaviors of AZ31 and E-form Mg alloys under V-bending test
NASA Astrophysics Data System (ADS)
Choi, Shi-Hoon; Singh, Jaiveer; Kim, Min-Seong; Yoon, Jeong-Whan
2016-08-01
Deformation and failure behaviors of magnesium (Mg) alloys (AZ31 and E-form) were investigated using V-bending test. Formability of these Mg alloys was discussed in terms of minimum bending radius. Microtexture evolution in the deformed Mg alloys was examined via electron back-scattered diffraction (EBSD) technique. Two level simulation technique which combined continuum finite element method (FEM) and crystal plasticity FEM successfully simulated the microtexture evolution in Mg alloys during V-bending test. The effect of deformation twinning on the failure in Mg alloys was also examined.
Jin, K.; Lu, C.; Wang, L. M.; ...
2016-04-14
The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.
Anderson, Iver E.; Terpstra, Robert L.
2001-05-15
A Sn--Ag--Cu eutectic alloy is modified with one or more low level and low cost alloy additions to enhance high temperature microstructural stability and thermal-mechanical fatigue strength without decreasing solderability. Purposeful fourth or fifth element additions in the collective amount not exceeding about 1 weight % (wt. %) are added to Sn--Ag--Cu eutectic solder alloy based on the ternary eutectic Sn--4.7%Ag--1.7%Cu (wt. %) and are selected from the group consisting essentially of Ni, Fe, and like-acting elements as modifiers of the intermetallic interface between the solder and substrate to improve high temperature solder joint microstructural stability and solder joint thermal-mechanical fatigue strength.
Numerical model for dendritic solidification of binary alloys
NASA Technical Reports Server (NTRS)
Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.
1993-01-01
A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.
The Relation Between Alloy Chemistry and Hot-Cracking
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.; Talia, J. E.
2000-01-01
Hot cracking is a problem in welding 2195 aluminum-lithium alloy. Weld wire additives seem to reduce the problem. This study proposes a model intended to clarify the way alloying elements affect hot-cracking. The brittle temperature range of an alloy extends wherever the tensile stress required to move the meniscus of the liquid film at the grain/dendrite boundaries is less than the bulks flow stress Sigma(sub B) of the grains: 2gamma/delta <= sigma(sub B) + P where gamma is boundary film surface tension delta= boundary film thickness P = gas pressure (Some alloys outgas.) If the above condition is not met, the grains deform under stress and the liquid film remains in place. Curves of 2gamma/delta and sigma(sub B) vs. temperature in the range just below the melting temperature determine the hot cracking susceptibility of an alloy. Both are zero at onset of solidification. sigma(sub B) rises as the thermal activation of the slip mechanism is reduced. 2gamma/delta rises as the film thickness delta which can be estimated from the Scheil equation, drops. But, given an embrittled alloy, whether the alloy actually cracks is determined by the strain imposed upon it in the embrittled condition. A critical strain is estimated, Epsilon(sub C) on the order of Epsilon(sub C) is approximately delta/l where L = grain size and where the the volume increment due to the strain, concentrated at the liquid film, is on the order of the liquid film volume. In the early 80's an empirical critical strain cracking envelope Epsilon(sub C)(T) was incorporated into a damage criterion to estimate the effect of welding parameters on the formation of microfissures in a superalloy with good results. These concepts, liquid film decoherence vs. grain bulk deformation and critical strain, form the key elements of a quantitative theory of hot-cracking applicable for assessing the effect of alloying elements on hot-cracking during welding.
NASA Astrophysics Data System (ADS)
Syuhada Mangsor, Aneez; Haider Rizvi, Zuhaib; Chaudhary, Kashif; Safwan Aziz, Muhammad
2018-05-01
The study of atomic spectroscopy has contributed to a wide range of scientific applications. In principle, laser induced breakdown spectroscopy (LIBS) method has been used to analyse various types of matter regardless of its physical state, either it is solid, liquid or gas because all elements emit light of characteristic frequencies when it is excited to sufficiently high energy. The aim of this work was to analyse the signature spectrums of each element contained in three different types of samples. Metal alloys of Aluminium, Titanium and Brass with the purities of 75%, 80%, 85%, 90% and 95% were used as the manipulated variable and their LIBS spectra were recorded. The characteristic emission lines of main elements were identified from the spectra as well as its corresponding contents. Principal component analysis (PCA) was carried out using the data from LIBS spectra. Three obvious clusters were observed in 3-dimensional PCA plot which corresponding to the different group of alloys. Findings from this study showed that LIBS technology with the help of principle component analysis could conduct the variety discrimination of alloys demonstrating the capability of LIBS-PCA method in field of spectro-analysis. Thus, LIBS-PCA method is believed to be an effective method for classifying alloys with different percentage of purifications, which was high-cost and time-consuming before.
NASA Astrophysics Data System (ADS)
Cueff, R.; Buscail, H.; Caudron, E.; Riffard, F.; Issartel, C.; Perrier, S.; El Messki, S.
2004-11-01
The influence of yttrium oxide coating (processed by sol-gel method) on the oxidation behaviour of a commercial FeCrAl alloy (Kanthal A1) has been investigated during isothermal exposures in air at 1373K. The scale growth kinetic of the uncoated alloy obeys a parabolic rate law during the whole oxidation test whereas the kinetic curve of the Y-coated specimen exhibits an initial transient stage during the first hours, followed by a parabolic regime. The yttrium sol-gel coating deposited on the bare alloy does not conduct to the beneficial effect usually ascribed to the reactive elements. No oxidation rate improvement of the coated alloy is observed, the parabolic rate constants values are strictly identical for the both specimens. In situ X-ray diffraction reveals a marked influence of the reactive element on the composition of the oxide scale. The oxide layer formed on the yttrium-coated specimen revealed, in addition to α-alumina which is the main oxide also identified on the bare specimen, the presence of yttrium aluminates (YAlO{3}, Y{3}Al{5}O{12}) located in the outermost part of the layer.
Deformation behaviour of Rheocast A356 Al alloy at microlevel considering approximated RVEs
NASA Astrophysics Data System (ADS)
Islam, Sk. Tanbir; Das, Prosenjit; Das, Santanu
2015-03-01
A micromechanical approach is considered here to predict the deformation behaviour of Rheocast A356 (Al-Si-Mg) alloy. Two representative volume elements (RVEs) are modelled in the finite element (FE) framework. Two dimensional approximated microstructures are generated assuming elliptic grains, based on the grain size, shape factor and area fraction of the primary Al phase of the said alloy at different processing condition. Plastic instability is shown using stress and strain distribution between the Al rich primary and Si rich eutectic phases under different boundary conditions. Boundary conditions are applied on the approximated RVEs in such a manner, so that they represent the real life situation depending on their position on a cylindrical tensile test sample. FE analysis is carried out using commercial finite element code ABAQUS without specifying any damage or failure criteria. Micro-level in-homogeneity leads to incompatible deformation between the constituent phases of the rheocast alloy and steers plastic strain localisation. Plastic stain localised regions within the RVEs are predicted as the favourable sites for void nucleation. Subsequent growth of nucleated voids leads to final failure of the materials under investigation.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine
2005-01-01
Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element
Nanocrystal dispersed amorphous alloys
NASA Technical Reports Server (NTRS)
Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)
2001-01-01
Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-04-01
The NITON{reg_sign} 800 series analyzer is a hand-held, battery operated unit that measures 8-in x 3-in x 2-in and weighs 2.5 pounds. The analyzer uses x-ray fluorescence spectrum analysis to identify and quantify elements in metal and then compares the readings to a built-in library to determine a metal's alloy. The library contains 300 elements and alloys, and can be customized to identify other elements and alloys (depending on the sources in the instrument). The basic unit utilizes a Cadmium-109 source, but each analyzer unit can hold up to two sources. These sources include Iron-55 and Americium-241. Pushing a safetymore » button located on the side of the unit and placing it against a surface opens the shutter window. Within seconds the unit beeps, and displays the results. The analyzer stores up to 1,000 data sets, including sample identification codes using a barcode reader. The data is easily downloaded to a conventional computer when sampling has been completed. Batteries are good for 8-hrs and charge in less than 2 hours and it can be carried, shipped, or transported without exterior labeling, conforming to 49 CFR 143.421.« less
El Samrani, A G; Lartiges, B S; Ghanbaja, J; Yvon, J; Kohler, A
2004-04-01
The nature of trace element carriers contained in sewage and combined sewer overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During dry weather, chalcophile elements were found to accumulate in sewer sediments as early diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases and neoformed phosphate minerals such as anapaite. During rain events, the detailed characterization of individual mineral species allowed to differentiate the contributions from various specific sources. Metal plating particles, barite from automobile brake, or rare earth oxides from catalytic exhaust pipes, originate from road runoff, whereas PbSn alloys and lead carbonates are attributed to zinc-works from roofs and paint from building siding. Soil contribution can be traced by the presence of clay minerals, iron oxihydroxides, zircons and rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were the sulfide particles eroded from sewer sediments. The evolution of relative abundances of trace element carriers during a single storm event, suggests that the pollution due to the "first flush" effect principally results from the sewer stock of sulfides and previously deposited metal alloys, rather than from urban surface runoff.
Probabilistic fracture finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-01-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Probabilistic fracture finite elements
NASA Astrophysics Data System (ADS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-05-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.
Liu, Yong; Li, Kaiyang; Wu, Hong; Song, Min; Wang, Wen; Li, Nianfeng; Tang, Huiping
2015-11-01
In this work, powder metallurgical (PM) Ti-Ta alloys were sintered using blended elemental powders. A dual structure, consisting of Ti-rich and Ta-rich zones, was formed due to the insufficient diffusion between Ti and Ta powders. The microstructure, mechanical properties and in vitro biological properties of the alloys were studied. Results indicated that the alloys have inhomogenous microstructures and compositions, but the grain structures were continuous from the Ti-rich zone to the Ta-rich zone. The Ta-rich zone exhibited a much finer grain size than the Ti-rich zone. The alloys had a high relative density in the range of 95-98%, with the porosity increasing with the content of Ta due to the increased difficulty in sintering and the formation of Kirkendall pores. The alloys had a good combination of low elastic modulus and high tensile strength. The strength of alloys was almost doubled compared to that of the ingot metallurgy alloys with the same compositions. The low elastic modulus was due to the residual pores and the alloying effect of Ta, while the high tensile strength resulted from the strengthening effects of solid solution, fine grain size and α phase. The alloys had a high biocompatibility due to the addition of Ta, and were suitable for the attachment of cells due to the surface porosity. It was also indicated that PM Ti-(20-30)Ta alloys are promising for biomedical applications after the evaluations of both the mechanical and the biological properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Charge-density-shear-moduli relationships in aluminum-lithium alloys.
Eberhart, M
2001-11-12
Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.
NASA Astrophysics Data System (ADS)
Dobromyslov, A. V.; Taluts, N. I.
2017-06-01
Al-Fe alloys prepared by casting, rapid quenching from the melt, and mechanical alloying from elemental powders have been studied using X-ray diffraction analysis, optical metallography, transmission electron microscopy, and microhardness measurements in the initial state and after severe plastic deformation by high-pressure torsion using Bridgman anvils. The relationship between the phase composition, microstructure, and the microhardness of the investigated alloys has been established.
Rolling element fatigue testing of gear materials
NASA Technical Reports Server (NTRS)
Nahm, A. H.
1978-01-01
Rolling element fatigue lives of nine alloys were evaluated in Rolling Contact (RC) rigs. Test conditions included a Hertzian stress at 4,826 MPa (700 ksi), a rolling speed of 6.23 m/sec (245 in/sec.). Tests were run with a Type I oil (MIL-L-7808G) at room temperature. B-10 lives (10% failure rate) of alloys were compared versus reference alloys, VIM-VAR AISI M-50 and VAR AISI 9310. Six case carburizing alloys (AISI 9310, CBS600, CBS1000M, EX00014, Vasco X-2 and EX00053) and three through-hardening alloys (AISI M-50, VascoMax 350 and Vasco Matrix 2 evaluated, showed RCF performance inferior or equivalent to that of AISI 9310 and AISI M-50. It was also found that the effects of vacuum melting processes, different tempering temperatures, freezing cycle during heat treating, shot peening, gold plating and chrome plating employed in the present investigation did not significantly affect RCF life.
The thermodynamics of latent fingerprint corrosion of metal elements and alloys.
Bond, John W
2008-11-01
Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > approximately 40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques.
Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...
2015-10-28
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less
NASA Astrophysics Data System (ADS)
Koltsov, Alexey; Cretteur, Laurent
2018-03-01
The laser brazing process is successfully applied in automotive industry for joining of roofs and hatchbacks of vehicles. The bad wetting of the brazing alloy during the process can lead to the formation of random external porosities which are not allowed on visible parts. This paper describes the wettability and reactivity mechanisms at short contact time of Cu and Al matrix brazing alloys with different reactive elements (Si, Sn) on different steel products such as hot-dip galvanized steels, galvannealed steel and bare steel. Wetting experiments were carried out by the dispensed drop technique. The effects of alloying elements and brazing alloy matrix on interfacial reactivity are discussed. It was found that Cu matrix containing 3 wt.% Si is the most favorable for short time liquid/solid adhesion relatively to the other studied brazing alloy compositions. The brazing ability of different steel products is well correlated with the wettability and interfacial reactivity results.
Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys
NASA Astrophysics Data System (ADS)
La Roca, P.; Baruj, A.; Sade, M.
2017-03-01
Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.
Wrought cobalt- base superalloys
NASA Astrophysics Data System (ADS)
Klarstrom, D. L.
1993-08-01
Wrought cobalt-base superalloys are used extensively in gas turbine engines because of their excellent high-temperature creep and fatigue strengths and resistance to hot corrosion attack. In addition, the unique character of the oxide scales that form on some of the alloys provides outstanding resistance to high-temperature sliding wear. This article provides a review of the evolutionary development of wrought cobalt-base alloys in terms of alloy design and physical metallurgy. The topics include solid-so-lution strengthening, carbide precipitation characteristics, and attempts to introduce age hardening. The use of PHACOMP to enhance thermal stability characteristics and the incorporation of rare-earth ele-ments to improve oxidation resistance is also reviewed and discussed. The further development of cobalt-base superalloys has been severely hampered by past political events, which have accentuated the strategic vulnerability of cobalt as a base or as an alloying element. Consequently, alternative alloys have been developed that use little or no cobalt. One such alternative, Haynes® 230TMalloy, is discussed briefly.
Carroll, Robert; Lee, Chi; Tsai, Che-Wei; ...
2015-11-23
In this study, high-entropy alloys (HEAs) are new alloys that contain five or more elements in roughly-equal proportion. We present new experiments and theory on the deformation behavior of HEAs under slow stretching (straining), and observe differences, compared to conventional alloys with fewer elements. For a specific range of temperatures and strain-rates, HEAs deform in a jerky way, with sudden slips that make it difficult to precisely control the deformation. An analytic model explains these slips as avalanches of slipping weak spots and predicts the observed slip statistics, stress-strain curves, and their dependence on temperature, strain-rate, and material composition. Themore » ratio of the weak spots’ healing rate to the strain-rate is the main tuning parameter, reminiscent of the Portevin- LeChatellier effect and time-temperature superposition in polymers. Our model predictions agree with the experimental results. The proposed widely-applicable deformation mechanism is useful for deformation control and alloy design.« less
Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.
Song, Sol-Ji; Kim, Jung-Gu
2018-01-20
This study examined the synergic effect of alloying the element Cr and the environmental element Mg 2+ ions on the corrosion property of a low-alloy steel in seawater at 60 °C, by means of electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) tests and weight-loss tests. The Mg 2+ ions in seawater played an important role in lowering the electron transfer of the rust layer in the Cr-containing steel. The corrosion resistance of the Cr-containing steel is superior to that of blank steel in Mg 2+ ions containing seawater. XPS and XRD results indicated that the formation of MgFe₂O₄ and a mixed layer (Cr oxide + FeCr₂O₄ + MgCr₂O₄) improved the corrosion resistance of the low-alloy steel in the seawater.
NASA Astrophysics Data System (ADS)
von Rohr, Fabian O.; Cava, Robert J.
2018-03-01
High-entropy alloys (HEAs) are a new class of materials constructed from multiple principal elements statistically arranged on simple crystallographic lattices. Due to the large amount of disorder present, they are excellent model systems for investigating the properties of materials intermediate between crystalline and amorphous states. Here we report the effects of systematic isoelectronic replacements, using Mo-Y, Mo-Sc, and Cr-Sc mixtures, for the valence electron count 4 and 5 elements in the body-centered cubic (BCC) Ta-Nb-Zr-Hf-Ti high-entropy alloy (HEA) superconductor. We find that the superconducting transition temperature Tc strongly depends on the elemental makeup of the alloy, and not exclusively its electron count. The replacement of niobium or tantalum by an isoelectronic mixture lowers the transition temperature by more than 60%, while the isoelectronic replacement of hafnium, zirconium, or titanium has a limited impact on Tc. We further explore the alloying of aluminium into the nearly optimal electron count [TaNb] 0.67(ZrHfTi) 0.33 HEA superconductor. The electron count dependence of the superconducting Tc for (HEA)Al x is found to be more crystallinelike than for the [TaNb] 1 -x(ZrHfTi) x HEA solid solution. For an aluminum content of x =0.4 the high-entropy stabilization of the simple BCC lattice breaks down. This material crystallizes in the tetragonal β -uranium structure type and superconductivity is not observed above 1.8 K.
Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy
NASA Technical Reports Server (NTRS)
Westra, D. G.; Heinrich, J. C.; Poirier, D. R.
2003-01-01
Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value for the rate of change of fraction of liquid as the liquid in an element solidifies. The new method enables us to contrast results of simulations in which the alloy is subjected to no gravity or a steady-state acceleration versus simulations when the alloy is subjected to vibration disturbances; therefore, the effect of vibration disturbances can be assessed more accurately. To assess the impact of these vibration-perturbations, transient accelerometer data from a space shuttle mission are used as inputs for the simulation model. These on-orbit acceleration data were obtained from the Microgravity Science Division at Glenn Research Center (GRC- MSD) and are applied to the buoyancy term of the momentum equation in a simulation of a Pb-5.8 wt. % Sb alloy that solidifies in a thermal gradient of 4000 K/m and a translation velocity of 3 p d s . Figure 2 shows the vertical velocity of a node that begins in the all-liquid region and subsequently solidifies; the vibrations are applied at 5000 seconds in this simulation. An important difficulty, common to all solidification models based on finite elements or 2 The magnitudes of the velocity oscillations that are vibration-induced are very small and acceptable. The biggest concern is whether the concentration of the liquid near the dendrite tips is distorted because of the vibration-induced perturbations. Results for this case show no concentration oscillations present in the all-liquid region.
NASA Astrophysics Data System (ADS)
Gao, Qiong; Wang, Kehong
2016-03-01
This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.
1999-01-01
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.
1999-02-16
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.
Role of electron concentration in softening and hardening of ternary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1975-01-01
Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.
NASA Astrophysics Data System (ADS)
Drozdov, A. A.; Povarova, K. B.; Morozov, A. E.; Antonova, A. V.; Bulakhtina, M. A.; Alad'ev, N. A.
2015-07-01
The character of dendrite segregation in Ni3Al-based intermetallic VKNA-type alloy single crystals with a dendritic-cellular structure is studied. Distribution coefficient k d of an alloying element (AE) in the alloy during solidification k d = c d.a.I/ c 0 ( c 0 is the AE content in the alloy (liquid phase composition), c d.a.I is the AE content in primary dendrite arms of the alloy (in the solid phase)) and segregation coefficient k s = c d.a.I/ c i.d ( c i.d is the AE content in the interdendritic space) have been found. A comparative study of the dendrite segregation parameters in VKNA-nype Ni3Al-based intermetallic alloys and the well-known ZhS36-type nickel superalloy shows that the intermetallic alloys satisfy to the rule deduced for two- and three-component nickel-based superalloys: if an introduced AE increases the melting temperature of the basic metal, we have k d > 1 (Co, W, Re); if it decreases the melting temperature, we have k d < 1 (Al, Ti, Cr, Mo). Dendrite segregation coefficients k s are dependent on the proportion of the AE contents in the alloys. In nickel superalloys, the dendrite segregation of aluminum, tungsten, and rhenium is higher than that in the intermetallic alloys. The dendrite segregation coefficients of tungsten and rhenium is higher by a factor of 1.5-2 than that in the VKNA-type intermetallic alloys with a low content of refractory metals. This can be due to the retardation of diffusion of refractory metals in the solid phase of a nickel superalloy highly alloyed with these elements.
TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM
Foote, F.G.
1960-08-01
Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.
Nickel aluminide alloy suitable for structural applications
Liu, Chain T.
1998-01-01
Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.
High pressure/temperature equation of state of gold-silver alloys
NASA Astrophysics Data System (ADS)
Evans, W. J.; Jenei, Zs.; Sinogeikin, S. V.; Yang, W.; Shebanova, O.
2010-03-01
It has been reported previously (McKeehan Phys.Rev. 20 p424) that gold-silver alloys crystallize in face centered cubic structures, like their constituant pure elements and the cell parameter of the alloy has a linear relationship with the ratios of Ag/Au in the alloy. We investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.
3D elemental sensitive imaging using transmission X-ray microscopy.
Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero
2012-09-01
Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.
Siderophile trace element diffusion in Fe-Ni alloys
NASA Astrophysics Data System (ADS)
Watson, Heather C.; Watson, E. Bruce
2003-09-01
Experiments were performed in a piston cylinder apparatus to characterize the diffusion behavior of the siderophile elements, Mo, Cu, Pd, Au, and Re in solid Fe-Ni alloy (90 wt.% Fe, 10 wt.% Ni). All experiments were conducted at 1 GPa and temperatures ranging from 1175 to 1400 °C. Activation energies of all elements fall between 270 kJ/mol (Cu) and 360 kJ/mol (Mo). Mo, Cu, Pd, and Au all show similar diffusivities at the same conditions, but the diffusivity of Re was consistently close to an order of magnitude lower. Initial experiments on other refractory elements (Os, Pt, and Ir) indicate that their diffusivities are close to or slightly lower than that of Re.
McGeary, R.K.; Justusson, W.M.
1960-02-23
A reactor fuel element comprising a gamma-phase alloy consisting of 11 to 16 wt.% of molyhdenum and the balance uranium, annealed between 350 and 525 deg C and quenched to preserve the gamma phase, is reported.
Meadowcroft, Ronald Ross; Bain, Alastair Stewart
1977-01-01
A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.
Steel Structures for Civil Works, General Considerations for Design and Rehabilitation
1993-08-01
34Weathering Steel Requires Proper Detailing," Chicago, IL. US Army Corps of Engineers. 1989. "Mechanical Properties and Corrosion Behavior of Stainless...types of corrosion and corro- sion protection are addressed. In Part X, authored by Dr. John Jaeger, vari- ous cases of distressed hydraulic steel ...guide in selecting a steel appropriate for a given application. Effects of alloying elements 8. Alloying elements are added to steel to effect
Cobalt: A vital element in the aircraft engine industry
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1981-01-01
Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.
Equations of state and anisotropy of Fe-Ni-Si alloys
NASA Astrophysics Data System (ADS)
Morrison, R. A.; Jackson, J. M.; Sturhahn, W.; Zhang, D.; Greenberg, E.
2017-12-01
Seismic observations provide constraints on the density, bulk sound speed, and bulk modulus of Earth's inner core, and x-ray diffraction (XRD) experiments can experimentally constrain such properties of iron alloys. The deviation of these seismically-inferred values from the properties of iron suggests the presence of light elements (e.g. Si, O, S, C, H) inside the core. While cosmochemical studies suggest Earth's core is composed primarily of iron alloyed with 5 wt% nickel, existing experimental XRD studies constraining pressure-density relations have predominantly focused on iron and iron alloyed with light elements, while neglecting the effect of nickel. In this study, we present high-precision equations of state for bcc- and hcp-structured Fe0.91Ni0.09 and Fe0.80Ni0.10Si0.10 using powder XRD at room temperature up to 167 GPa and 175 GPa, respectively. By using tungsten powder as a pressure calibrant and helium as a pressure transmitting medium, we minimize error due to pressure calibration and non-hydrostatic stresses. The results are high fidelity equations of state (EOS). By systematically comparing our findings to an established EOS of hcp-Fe [Dewaele et al. 2006], we constrain the effect of nickel and silicon on the density, bulk sound speed, and bulk modulus of iron alloys, which is a critical step towards constraining the inner core's composition. We find that for iron alloys, high quality ambient temperature EOSs can dramatically improve the extrapolated high temperature equations of state to inner core conditions. By combining seismic observations and their associated uncertainties with our data and existing Fe light-element-alloy EOSs, we estimate their densities, bulk moduli, and bulk sound speeds at inner core conditions and propose an experimentally and seismologically consistent range of inner core compositions. Additionally, we obtain an unprecedented constraint on the effect of nickel and silicon on the axial ratio of iron alloys. Nickel has a measurably distinct effect on the c/a axial ratio of iron, as does alloying iron-nickel with silicon. We investigate the relationship between the c/a axial ratio and elastic anisotropy of iron alloys and discuss the implications for inner core seismic anisotropy.
Shape memory alloy heat engines and energy harvesting systems
Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan
2013-12-17
A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.
1985-09-27
REPORT & PERIOD COVERED -v Semiconductor Alloy Theory Annual 0) 84-9-1 to 85-8-31 M’) 6. PERFORMING OG. REPORT NUMBER 7. AUTHOR(@) 8. CONTRACT OR...GRANT NUMBER(s) An-Ban Chen AFOSR-84-0282 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & W R UNT NUMBERS Auburn...and the effective mass. We generalized the formula for indirect-gap alloys with multiple bands and applied it to SiGe alloy. Our results, correlated
NASA Astrophysics Data System (ADS)
Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.
2017-07-01
Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.
Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications
NASA Technical Reports Server (NTRS)
Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.
1999-01-01
Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.
Selective thermal transformation of old computer printed circuit boards to Cu-Sn based alloy.
Shokri, Ali; Pahlevani, Farshid; Cole, Ivan; Sahajwalla, Veena
2017-09-01
This study investigates, verifies and determines the optimal parameters for the selective thermal transformation of problematic electronic waste (e-waste) to produce value-added copper-tin (Cu-Sn) based alloys; thereby demonstrating a novel new pathway for the cost-effective recovery of resources from one of the world's fastest growing and most challenging waste streams. Using outdated computer printed circuit boards (PCBs), a ubiquitous component of e-waste, we investigated transformations across a range of temperatures and time frames. Results indicate a two-step heat treatment process, using a low temperature step followed by a high temperature step, can be used to produce and separate off, first, a lead (Pb) based alloy and, subsequently, a Cu-Sn based alloy. We also found a single-step heat treatment process at a moderate temperature of 900 °C can be used to directly transform old PCBs to produce a Cu-Sn based alloy, while capturing the Pb and antimony (Sb) as alloying elements to prevent the emission of these low melting point elements. These results demonstrate old computer PCBs, large volumes of which are already within global waste stockpiles, can be considered a potential source of value-added metal alloys, opening up a new opportunity for utilizing e-waste to produce metal alloys in local micro-factories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan
2015-03-01
Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.
Binary titanium alloys as dental implant materials—a review
Liu, Xiaotian; Chen, Shuyang; Matinlinna, Jukka Pekka
2017-01-01
Abstract Titanium (Ti) has been used for long in dentistry and medicine for implant purpose. During the years, not only the commercially pure Ti but also some alloys such as binary and tertiary Ti alloys were used. The aim of this review is to describe and compare the current literature on binary Ti alloys, including Ti–Zr, Ti–In, Ti–Ag, Ti–Cu, Ti–Au, Ti–Pd, Ti–Nb, Ti–Mn, Ti–Mo, Ti–Cr, Ti–Co, Ti–Sn, Ti–Ge and Ti–Ga, in particular to mechanical, chemical and biological parameters related to implant application. Literature was searched using the PubMed and Web of Science databases, as well as google without limiting the year, but with principle key terms such as ‘ Ti alloy’, ‘binary Ti ’, ‘Ti-X’ (with X is the alloy element), ‘dental implant’ and ‘medical implant’. Only laboratory studies that intentionally for implant or biomedical applications were included. According to available literatures, we might conclude that most of the binary Ti alloys with alloying <20% elements of Zr, In, Ag, Cu, Au, Pd, Nb, Mn, Cr, Mo, Sn and Co have high potential as implant materials, due to good mechanical performance without compromising the biocompatibility and biological behaviour compare to cp-Ti. PMID:29026646
High pressure/temperature equation of state of gold silver alloys
NASA Astrophysics Data System (ADS)
Jenei, Zsolt; Lipp, Magnus J.; Klepeis, Jae-Hyun P.; Cynn, Hyunchae; Evans, William J.; Park, Changyong
2012-02-01
Gold-silver alloys crystallize in face centered cubic structures, like their constituent pure elements [McKeehan -- Phys.Rev. 20, 424 (1922)]. The cell parameter of the alloys does not scale linearly with the ratio of Ag/Au. In this work we investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.
NASA Astrophysics Data System (ADS)
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2011-01-01
As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.
NASA Astrophysics Data System (ADS)
Wu, Dongsheng; Hua, Xueming; Ye, Youxiong; Huang, Lijin; Li, Fang; Huang, Ye
2018-05-01
A laser welding experiment with glass is conducted to directly observe the keyhole behavior and spatter formation in fiber laser welding of aluminum alloy. A 3D model is developed to investigate the spatter formation and composition change. An additional conservation equation is introduced to describe the Mg element distribution, and the Mg element loss due to evaporation is also considered. Based on numerical and experimental results, it is found that the keyhole geometry in laser welding of aluminum alloy is different from that in laser welding of steel. There are three required steps for spatter formation around the keyhole. The high momentum of the molten metal, the high recoil pressure and vapor shear stress, and the low surface tension around the keyhole contribute to the easy formation of spatter. The in-homogeneous distribution of Mg element in the weld can be attributable to the continuous evaporation of Mg element at the top surface of keyhole rear, the upward flow of low Mg element region from the bottom of the keyhole to the top surface of keyhole rear along the fusion line, the collapse of the keyhole, and the ejection of spatters.
NASA Astrophysics Data System (ADS)
Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.
2017-12-01
The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.
Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks
NASA Astrophysics Data System (ADS)
Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr
2018-02-01
In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.
Thermal Coefficient of Linear Expansion Modified by Dendritic Segregation in Nickel-Iron Alloys
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Maksimova, E. V.
2018-05-01
The paper presents investigations of thermal properties of Fe-Ni and Fe-Ni-Co casting alloys affected by the heterogeneous distribution of their chemical elements. It is shown that nickel dendritic segregation has a negative effect on properties of studied invars. A mathematical model is proposed to explore the influence of nickel dendritic segregation on the thermal coefficient of linear expansion (TCLE) of the alloy. A computer simulation of TCLE of Fe-Ni-Co superinvars is performed with regard to a heterogeneous distribution of their chemical elements over the whole volume. The ProLigSol computer software application is developed for processing the data array and results of computer simulation.
Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys
NASA Astrophysics Data System (ADS)
Filacchioni, G.; Casagrande, E.; De Angelis, U.; De Santis, G.; Ferrara, D.; Pilloni, L.
Two series of Reduced Activation Ferrous alloys (RAF) have been produced and studied by Casaccia's Laboratories. These martensitic alloys are named BATMAN steels. They are among the few presently developed RAF materials to exploit Ti as a carbide forming and grain size stabilizing element instead of Ta. In this work their mechanical properties are illustrated.
Coffinberry, A.S.; Schonfeld, F.W.
1959-09-01
Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.
A quantitative study on magnesium alloy stent biodegradation.
Gao, Yuanming; Wang, Lizhen; Gu, Xuenan; Chu, Zhaowei; Guo, Meng; Fan, Yubo
2018-06-06
Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Production of High-Purity Anhydrous Nickel(II) Perrhenate for Tungsten-Based Sintered Heavy Alloys
Leszczyńska-Sejda, Katarzyna; Benke, Grzegorz; Kopyto, Dorota; Majewski, Tomasz; Drzazga, Michał
2017-01-01
This paper presents a method for the production of high-purity anhydrous nickel(II) perrhenate. The method comprises sorption of nickel(II) ions from aqueous nickel(II) nitrate solutions, using strongly acidic C160 cation exchange resin, and subsequent elution of sorbed nickel(II) ions using concentrated perrhenic acid solutions. After the neutralization of the resulting rhenium-nickel solutions, hydrated nickel(II) perrhenate is then separated and then dried at 160 °C to obtain the anhydrous form. The resulting compound is reduced in an atmosphere of dissociated ammonia in order to produce a Re-Ni alloy powder. This study provides information on the selected properties of the resulting Re-Ni powder. This powder was used as a starting material for the production of 77W-20Re-3Ni heavy alloys. Microstructure examination results and selected properties of the produced sintered heavy alloys were compared to sintered alloys produced using elemental W, Re, and Ni powders. This study showed that the application of anhydrous nickel(II) perrhenate in the production of 77W-20Re-3Ni results in better properties of the sintered alloys compared to those made from elemental powders. PMID:28772808
Origin and tuning of the magnetic anisotropy in Fe2P-based alloys
NASA Astrophysics Data System (ADS)
Zhuravlev, Ivan; Antropov, V. P.; Belashchenko, K. D.
Fe2P-based alloys have been studied for years due to their potential magnetocaloric applications. In addition, Fe2P demonstrates record-high magnetocrystalline anisotropy (MCA) for systems with no heavy elements. While the Curie temperature TC in pure Fe2P is too low for applications, this system appears to be highly tunable, and its TC can be greatly increased by alloying with many other d and p elements. Here we present the electronic structure analysis of magnetic properties of these alloys, searching for systems with higher TC while preserving high MCA. The microscopic origin of the dominant contribution to MCA and its concentration dependence is revealed. We further find that co-alloying with Co or Ni and Si is a promising strategy for achieving high Curie temperature and MCA, which is more favorable compared to individual alloying by Co/Ni or Si due to the compensation of their effects on the band occupation. Work at UNL supported by NSF Grants DMR-1308751 and DMR-1609776. Work at Ames Lab was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE.
Song, Sol-Ji; Kim, Jung-Gu
2018-01-01
This study examined the synergic effect of alloying the element Cr and the environmental element Mg2+ ions on the corrosion property of a low-alloy steel in seawater at 60 °C, by means of electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) tests and weight-loss tests. The Mg2+ ions in seawater played an important role in lowering the electron transfer of the rust layer in the Cr-containing steel. The corrosion resistance of the Cr-containing steel is superior to that of blank steel in Mg2+ ions containing seawater. XPS and XRD results indicated that the formation of MgFe2O4 and a mixed layer (Cr oxide + FeCr2O4 + MgCr2O4) improved the corrosion resistance of the low-alloy steel in the seawater. PMID:29361710
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
NASA Astrophysics Data System (ADS)
Oddone, Valerio; Boerner, Benji; Reich, Stephanie
2017-12-01
High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.
New interatomic potential for Mg–Al–Zn alloys with specific application to dilute Mg-based alloys
NASA Astrophysics Data System (ADS)
Dickel, Doyl E.; Baskes, Michael I.; Aslam, Imran; Barrett, Christopher D.
2018-06-01
Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg–Al–Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg–Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.
Oddone, Valerio; Boerner, Benji; Reich, Stephanie
2017-01-01
Abstract High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal–graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied. PMID:28458742
Oddone, Valerio; Boerner, Benji; Reich, Stephanie
2017-01-01
High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.
Hosseini, Seyed Ali; Madar, Karim Zangeneh; Abbasi, Seyed Mehdi
2017-08-01
The segregation of the elements during solidification and the direct formation of destructive phases such as Laves from the liquid, result in in-homogeneity of the cast structure and degradation of mechanical properties. Homogenization heat treatment is one of the ways to eliminate destructive Laves from the cast structure of superalloys such as 718Plus. The collected data presents the effect of homogenization treatment conditions on the cast structure, hardness, and tensile properties of the alloy 718Plus in the presence of boron and zirconium additives. For this purpose, five alloys with different contents of boron and zirconium were cast by VIM/VAR process and then were homogenized at various conditions. The microstructural investigation by OM and SEM and phase analysis by XRD were done and then hardness and tensile tests were performed on the homogenized alloys.
Effect of Ag and Cu Contents on the Age Hardning Behavior of Al-Zn-Mg Alloys
NASA Astrophysics Data System (ADS)
Watanabe, Katsumi; Kawabata, Tokimasa; Ikeno, Susumu; Yoshida, Tomoo; Murakami, Satoshi; Matsuda, Kenji
Al-Zn-Mg alloy has been known as one of the aluminum alloys with the good age-hardening ability and the high strength among commercial aluminum alloys. The mechanical property of the limited ductility, however, is required to further improvement. In this work, three alloys, which were added Cu or Ag into the Al-Zn-Mg-Si alloy, were prepared to compare the effect of the additional elements on the aging behavior. The content of Ag and Cu were 0.2 at.% and 0.2at.%, respectively. The age-hardening behavior and microstructures of those alloys were investigated by hardness measurement, high resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) technique. Ag or Cu added alloy showed higher peak hardness than Ag or Cu free alloy. According to addition of Ag or Cu, the number density of the precipitates increased than Ag or Cu free alloy.
NASA Astrophysics Data System (ADS)
Alyaldin, Loay
In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a result of the presence of both Mg and Cu. These alloy types display excellent strength values at both low and high temperatures. Additions of Zr, Ni, Mn and Sc would be expected to maintain the performance of these alloys at still higher temperatures. Six alloys were prepared using 0.2 wt% Ti grain-refined 354 alloy, comprising alloy R (354 + 0.25wt% Zr) considered as the base or reference alloy, and five others, viz., alloys S, T, U, V, and Z containing various amounts of Ni, Mn, Sc and Zr, added individually or in combination. For comparison purposes, another alloy L was prepared from 398 (Al-16%Si) alloy, reported to give excellent high temperature properties, to which the same levels of Zr and Sc additions were made, as in alloy Z. Tensile test bars were prepared from the different 354 alloys using an ASTM B-108 permanent mold. The test bars were solution heat treated using a one-step or a multi-step solution heat treatment, followed by quenching in warm water, and then artificial aging employing different aging treatments (T5, T6, T62 and T7). The one-step (or SHT 1) solution treatment consisted of 5 h 495 °C) and the multi-step (or SHT 2) solution treatment comprised 5 h 495°C + 2 h 515°C + 2 h 530°C. Thermal analysis of the various 354 alloy melts was carried out to determine the sequence of reactions and phases formed during solidification under close-to-equilibrium cooling conditions. The main reactions observed comprised formation of the alpha-Al dendritic network at 598°C followed by precipitation of the Al-Si eutectic and post-eutectic beta-Al5FeSi phase at 560°C; Mg2Si phase and transformation of the beta-phase into pi-Al8Mg 3FeSi6 phase at 540°C and 525°C; and lastly, precipitation of Al2Cu and Q-Al5Mg8Cu2Si 6 almost simultaneously at 498°C and 488°C. Larger sizes of AlFeNi and AlCuNi phase particles were observed in T alloy with its higher Ni content of 4 wt%, when compared to those seen in S alloy at 2% Ni content. Mn addition in Alloy U helps in reducing the detrimental effect of the beta-iron phase by replacing it with the less-detrimental Chinese script alpha-Al 15(Fe,Mn)3Si2 phase and sludge particles.
Direct Metal Deposition of Refractory High Entropy Alloy MoNbTaW
NASA Astrophysics Data System (ADS)
Dobbelstein, Henrik; Thiele, Magnus; Gurevich, Evgeny L.; George, Easo P.; Ostendorf, Andreas
Alloying of refractory high entropy alloys (HEAs) such as MoNbTaW is usually done by vacuum arc melting (VAM) or powder metallurgy (PM) due to the high melting points of the elements. Machining to produce the final shape of parts is often needed after the PM process. Casting processes, which are often used for aerospace components (turbine blades, vanes), are not possible. Direct metal deposition (DMD) is an additive manufacturing technique used for the refurbishment of superalloy components, but generating these components from the bottom up is also of current research interest. MoNbTaW possesses high yield strength at high temperatures and could be an alternative to state-of-the-art materials. In this study, DMD of an equimolar mixture of elemental powders was performed with a pulsed Nd:YAG laser. Single wall structures were built, deposition strategies developed and the microstructure of MoNbTaW was analyzed by back scattered electrons (BSE) and energy dispersive X-ray (EDX) spectroscopy in a scanning electron microscope. DMD enables the generation of composition gradients by using dynamic powder mixing instead of pre-alloyed powders. However, the simultaneous handling of several elemental or pre-alloyed powders brings new challenges to the deposition process. The influence of thermal properties, melting point and vapor pressure on the deposition process and chemical composition will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosoda, Hideki; Mishima, Yoshinao; Suzuki, Tomoo
Yield stress and work hardening coefficient of B2-stabilized NiTi alloys are investigated using compression tests. Compositions of NiTi alloys are based on Ni-49mol.%Ti, to which Cr, Co and Al are chosen as ternary elements which reduce martensitic transformation temperatures of the B2 phase. Mechanical tests are carried out in liquid nitrogen at 77 K, air at room temperature (R.T.) and in an argon atmosphere between 473 K and 873 K. Only at 77 K, some alloys show characteristic stress-strain curves which indicate stress induced martensitic transformation (SIMT), but the others do not. Work hardening coefficient is found to be betweenmore » 2 and 11GPa in all the test temperature range. The values are extremely high compared with Young`s modulus of B2 NiTi. Yield stress and work hardening coefficient increase with test temperature between R.T. and about 650 K in most alloys. The anomalous temperature dependence of mechanical properties is not related to SIMT but to precipitation hardening and/or anomalous dislocation motion similar to B2-type CoTi. Solution hardening by adding ternary elements is evaluated to be small for Cr and Co additions, and large for Al addition, depending on difference in atomic size of the ternary element with respect to Ni or Ti.« less
On the corrosion behavior and biocompatibility of palladium-based dental alloys
NASA Astrophysics Data System (ADS)
Sun, Desheng
Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model. Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory. The release of elements from representative dental palladium alloys into cell culture media did not significantly affect the proliferation and viability of human fibroblast cells. Subcutaneous implantation of samples of one high-palladium alloy, one palladium-silver alloy and a gold alloy into mice did not cause any significant histological change in their skin and spleen. The presence of an oxide layer from dental laboratory processing of these alloys did not cause any adverse reactions from the cells or animals. The biocompatibility of the dental palladium-based alloys evaluated by the cell culture and animal models is satisfactory, suggesting that these alloys are safe for clinical usage.
A Critical Review of High Entropy Alloys and Related Concepts (Postprint)
2016-10-21
448e511 451The purpose of this paper is to critically assess the major ideas and proposed characteristics of high entropy and multi-principal element...re-introduced once again to put the modern HEA and MPEA concepts into his- torical perspective [17]. A second paper of historical note applied the...MPEA concept to metallic glasses [19]. This paper used equi- molar substitution of chemically similar elements in a known metallic glass alloy. This is
Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant
NASA Astrophysics Data System (ADS)
Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.
2007-09-01
A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.
NASA Astrophysics Data System (ADS)
Zhao, Xiaoli; Li, Chuanwei; Han, Lizhan; Gu, Jianfeng
2018-06-01
Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich M23C6, and most of them are V-rich MC, only very few are Cr-rich M23C6. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.
Nugroho, Aris W; Leadbeater, Garry; Davies, Ian J
2010-12-01
The authors have conducted a preliminary investigation with regard to the potential to manufacture porous titanium alloys for biomedical applications using toxic-free elemental powders, i.e., Ti, Nb, Ta, Zr, in combination with the pressurised gas bubble entrapment method and in contrast to standard processing routes that generally utilise prealloyed powder containing potentially toxic elements. Elemental powder compacts were either hot isostatic pressed (HIP-ed) at 1000°C and then foamed at 1150°C or else HIP-ed at 1100°C and foamed at 1350°C. Porous α + β alloys containing up to 45 vol% of porosity in the size range 20-200 μm were successfully produced, thus highlighting the potential of this manufacturing route. It was expected that further optimisation of the processing route would allow full development of the preferred β-Ti phase (from the point of view of elastic modulus compatibility between implant and bone) with this being the subject of future work by the authors.
Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys
Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...
2015-09-03
High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less
Shape memory alloys: Properties and biomedical applications
NASA Astrophysics Data System (ADS)
Mantovani, Diego
2000-10-01
Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life, and (c) concerns regarding the biocom-patibility properties of nickel-titanium alloys. In particular, the long-term challenges of using shape memory alloys will be discussed, regarding corrosion and potential leakage of elements and ions that could be toxic to cells, tissues and organs.
Obtaining and Mechanical Properties of Ti-Mo-Zr-Ta Alloys
NASA Astrophysics Data System (ADS)
Bălţatu, M. S.; Vizureanu, P.; Geantă, V.; Nejneru, C.; Țugui, C. A.; Focşăneanu, S. C.
2017-06-01
Ti-based alloys are successfully used in the area of orthopedic biomaterials for their enhanced biocompatibility, good corrosion and mechanical properties. The most suitable metals as an alloying element for orthopedic biomaterials are zirconium, molybdenum and tantalum because are non toxic and have good properties. The paper purpose development of two alloys of Ti-Mo-Zr-Ta (TMZT) prepared by arc-melting with several mechanical properties determined by microindentation. The mechanical properties analyzed was Vickers hardness and dynamic elasticity modulus. The investigated alloys presents a low Young’s modulus, an important condition of biomaterials for preventing stress shielding phenomenon.
Nitriding of super alloys for enhancing physical properties
Purohit, Ankur
1986-01-01
The invention teaches the improvement of certain super alloys by exposing the alloy to an atmosphere of elemental nitrogen at elevated temperatures in excess of 750.degree. C. but less than 1150.degree. C. for an extended duration, viz., by nitriding the surface of the alloy, to establish barrier nitrides of the order of 25-100 micrometers thickness. These barrier nitrides appear to shield the available oxidizing metallic species of the alloy for up to a sixfold improved resistance against oxidation and also appear to impede egress of surface dislocations for increased fatigue and creep strengths.
Oxide compounds on Ni-Cr alloys.
Baran, G R
1984-11-01
Five Ni-Cr alloys were studied in order to identify the compounds formed on the alloy surface during oxidation under conditions similar to those encountered during dental laboratory procedures prior to application of porcelain. After the alloys were oxidized, the films covering the surfaces were removed with the aid of a Br-methanol solution. X-ray diffraction was used to analyze the compounds formed. Oxides of nearly all elements contained by the alloys were found after low-temperature (650 degrees C) oxidation, while NiO and particularly Cr2O3 were predominant after oxidation at high temperatures (1000 degrees C).
Manufacturing process to reduce large grain growth in zirconium alloys
Rosecrans, P.M.
1984-08-01
It is an object of the present invention to provide a procedure for desensitizing zirconium-based alloys to large grain growth (LGG) during thermal treatment above the recrystallization temperature of the alloy. It is a further object of the present invention to provide a method for treating zirconium-based alloys which have been cold-worked in the range of 2 to 8% strain to reduce large grain growth. It is another object of the present invention to provide a method for fabricating a zirconium alloy clad nuclear fuel element wherein the zirconium clad is resistant to large grain growth.
Nickel aluminide alloy suitable for structural applications
Liu, C.T.
1998-03-10
Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.
Yang, Lei; Hort, Norbert; Laipple, Daniel; Höche, Daniel; Huang, Yuanding; Kainer, Karl Ulrich; Willumeit, Regine; Feyerabend, Frank
2013-11-01
The present work investigates the corrosion behaviour, the element distribution in the corrosion layer and the cytocompatibility of alloy Mg-10Dy. The corrosion experiments were performed in a cell culture medium (CCM) under cell culture conditions close to the in vivo environment. The element distribution on the surface as well as in cross-sections of the corrosion layer was investigated using scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and X-ray diffraction. The cytocompatibility of alloy Mg-10Dy with primary human osteoblasts was evaluated by MTT, cell adhesion and live/dead staining tests. The results show that the corrosion layer was enriched in Dy, while the P and Ca content gradually decreased from the surface to the bottom of the corrosion layer. In addition, large amounts of MgCO3·3H2O formed in the corrosion layer after 28 days immersion. Both extracts and the Dy-enriched corrosion layer of alloy Mg-10Dy showed no cytotoxicity to primary human osteoblasts. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core
NASA Astrophysics Data System (ADS)
Li, Yunguo; Vočadlo, Lidunka; Brodholt, John P.
2018-07-01
Geophysical and cosmochemical constraints suggest the inner-core is mainly composed of iron with a few percent of light elements. However, despite extensive studies over many years, no single alloying light-element has been found that is able to simultaneously match the observed inner-core density and both seismic velocities. This has motivated a number of suggestions of other mechanism to lower velocities, such as anelasticity or premelting. However, an unexplored possibility is that a combination of two or more light-elements might produce the desired reduction in velocities and densities of the inner core. In order to test this, we use ab initio molecular dynamics calculations to map the elastic property space of hcp-Fe alloyed with S, Si and C at 360 GPa up to the melting temperature. Based on a mixing solid solution model together with direct simulations on the ternaries, we found a number of compositions which are able to match the observed properties of the inner core. This is the first time that the density, VP, Vs and the Poisson's ratio of the inner core have been matched directly with an hcp-Fe alloy.
Process for massively hydriding zirconium--uranium fuel elements
Katz, N.H.
1973-12-01
A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)
Mallouk, Thomas E.; Chan, Benny C.; Reddington, Erik; Sapienza, Anthony; Chen, Guoying; Smotkin, Eugene; Gurau, Bogdan; Viswanathan, Rameshkrishnan; Liu, Renxuan
2001-09-04
Compositions for use as catalysts in electrochemical reactions are described. The compositions are alloys prepared from two or more elemental metals selected from platinum, molybdenum, osmium, ruthenium, rhodium, and iridium. Also described are electrode compositions including such alloys and electrochemical reaction devices including such catalysts.
PROTECTIVELY COVERED ARTICLE AND METHOD OF MANUFACTURE
Plott, R.F.
1958-10-28
A method of casting a protective jacket about a ura nium fuel element that will bond completely to the uranium without the use of stringers or supports that would ordinarily produce gaps in the cast metal coating and bond is presented. Preformed endcaps of alumlnum alloyed with 13% silicon are placed on the ends of the uranium fuel element. These caps will support the fuel element when placed in a mold. The mold is kept at a ing alloy but below that of uranium so the cast metal jacket will fuse with the endcaps forming a complete covering and bond to the fuel element, which would otherwise oxidize at the gaps or discontinuities lefi in the coating by previous casting methods.
NASA Astrophysics Data System (ADS)
Haces, C.; Furet, N. R.; Muleshkova, L.
1991-11-01
In this research, three Bulgarian steels were employed, one carbon (08KP) and other two low alloyed (KBC) and (KORAT). These three steels were exposed on a test site affected with industrial pollution in the Cuban climate, for a period of one, two and three years. The phase composition obtained by means of XRD and Mössbauer spectroscopy is mainly a mixture of Goethite (α-FeOOH) and Lepidocrocite (γ-FEOOH) in the three steels. The mean width of the Goethite reflexions, as determined in the diffractograms, is increased in the case of the low alloyed steels, while in Mössbauer spectra two types of magnetic arrangement for Goethite appear, one antiferromagnetic (sextet) and the other superparamagnetic (doublet). This behaviour is due to the effect of the small particle size and the presence of alloying elements in the structure. In this paper, the values of the areas of both effects are discussed from the greater formation of superparamagnetic Goethite in the KORAT steel which exibits the lowest corrosion rate.
Oliveira, Nilson T C; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso
2005-09-01
Different electrochemical studies were carried out for Zr and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in solutions simulating physiologic media, Ringer and PBS (phosphate buffered saline) solutions. The results from rest-potential measurements showed that the three materials are spontaneously passivated in both solutions and that the Ti-50Zr alloy has the greatest tendency for spontaneous oxide formation. Some corrosion parameters (such as the pitting and repassivation potentials) were obtained via cyclic voltammetry in both solutions, revealing that the Ti-50Zr has the best corrosion protection while Zr has the worst. On the other hand, the pre-anodization (up to 8 V vs. SCE) of the alloys in a 0.15 mol/L Na2SO4 solution led to a significant improvement in their protection against pitting corrosion when exposed to the Ringer solution. Elemental analyses by EDX showed that during pitting corrosion, there is no preferential corrosion of any of the alloying elements (Zr, Ti, Nb). Copyright (c) 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
de Prado, J.; Sánchez, M.; Ureña, A.
2017-07-01
80Cu-20Ti powders were evaluated for their use as filler alloy for high temperature brazing of tungsten to a reduced activation ferritic/martensitic steel (Eurofer), and its application for the first wall of the DEMO fusion reactor. The use of alloyed powders has not been widely considered for brazing purposes and could improve the operational brazeability of the studied system due to its narrower melting range, determined by DTA analysis, which enhances the spreading capabilities of the filler. Ti contained in the filler composition acts as an activator element, reacting and forming several interfacial layers at the Eurofer-braze, which enhances the wettability properties and chemical interaction at the brazing interface. Brazing thermal cycle also activated the diffusion phenomena, which mainly affected to the Eurofer alloying elements causing in it a softening band of approximately 400 μm of thickness. However, this softening effect did not degrade the shear strength of the brazed joints (94 ± 23 MPa), because failure during testing was always located at the tungsten-braze interface.
Unique Challenges for Modeling Defect Dynamics in Concentrated Solid-Solution Alloys
NASA Astrophysics Data System (ADS)
Zhao, Shijun; Weber, William J.; Zhang, Yanwen
2017-11-01
Recently developed concentrated solid solution alloys (CSAs) are shown to have improved performance under irradiation that depends strongly on the number of alloying elements, alloying species, and their concentrations. In contrast to conventional dilute alloys, CSAs are composed of multiple principal elements situated randomly in a simple crystalline lattice. As a result, the intrinsic disorder has a profound influence on energy dissipation pathways and defect evolution when these CSAs are subjected to energetic particle irradiation. Extraordinary irradiation resistance, including suppression of void formation by two orders of magnitude at an elevated temperature, has been achieved with increasing compositional complexity in CSAs. Unfortunately, the loss of translational invariance associated with the intrinsic chemical disorder poses great challenges to theoretical modeling at the electronic and atomic levels. Based on recent computer simulation results for a set of novel Ni-containing, face-centered cubic CSAs, we review theoretical modeling progress in handling disorder in CSAs and underscore the impact of disorder on defect dynamics. We emphasize in particular the unique challenges associated with the description of defect dynamics in CSAs.
NASA Astrophysics Data System (ADS)
Wei, Gang; Zhang, Wei; Xiao, Xinke; Guo, Zitao
2011-06-01
Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. Detailed computational results were provided to understand the deformation and failure mechanisms of the aluminum alloy plates.
Fatigue Characterization of Alloy 10: a 1300F Disk Alloy for Small Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Gayda, John
2000-01-01
A detailed fatigue characterization of Alloy 10, a high strength nickel-based disk alloy, was conducted on test coupons machined from a 'pancake' forging. Smooth bar, strain controlled fatigue testing at various R-ratios was run at representative bore, 750 F, and rim, 1300 F, temperatures. This was followed by notch fatigue testing (Kt=2) run under load control. Analysis of the fatigue data using a Smith-Watson-Topper approach and finite element analysis of the notch root was employed to understand material behavior in these tests. Smooth bar fatigue data showed a significant R-ratio dependence at either test temperature which could be accounted for using a Smith-Watson-Topper parameter (SWT). In general, fatigue life was longer at 750 F than 1300 F for a given SWT. For notch fatigue tests, life was longer at 750 F than 1300 F but only at higher stresses. This was attributed to differences in alloy strength. At lower stresses, finite element analysis suggested that convergence of fatigue life at both temperatures resulted from relaxation of stresses at the notch root in the 1300 F tests.
NASA Astrophysics Data System (ADS)
Grabovetskaya, G. P.; Ratochka, I. V.; Mishin, I. P.; Zabudchenko, O. V.; Lykova, O. N.
2016-05-01
The effect of the initial phase composition of a Ti-Al-V-Mo alloy (VT16 according to Russian classification) on the evolution of its structural-phase state during the formation of ultrafine-grained structure and subsequent annealing is investigated by methods of optical and transmission electron microscopy and x-ray diffraction analysis. The structure is produced by cyclic pressing with a change of the deformation axis in each cycle combined with a gradual decrease of the pressing temperature from 1073 to 723 K. As this takes place, α″ → α + β and β → α phase transitions are found to develop in the test alloy. The phase state of the ultrafinegrained material thus produced depends for the most part on its elemental composition and severe plastic deformation regime. Annealing below the recrystallization temperature is shown to give rise to a β→α phase transition and alloying element redistribution. The foregoing processes allow for retaining a high level of the strength properties of the alloy.
NASA Astrophysics Data System (ADS)
Volkova, E. F.
2017-07-01
Results of a study of the interaction between iron impurity and manganese and aluminum alloying elements during formation of phase composition in alloys of the Mg - Mn, Mg - Al, Mg - Al - Mn, and Mg - Al - Zn - Mn systems are presented. It is proved that this interaction results in introduction of Fe into the intermetallic phase. The phase compositions of model magnesium alloys and commercial alloys MA2-1 and MA5 are studied. It is shown that both manganese and aluminum may bind the iron impurity into phases. Composite Fe-containing intermetallic phases of different compositions influence differently the corrosion resistance of magnesium alloys.
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; ...
2017-11-26
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability
Maziasz, P.J.; Goodwin, G.M.; Liu, C.T.
1996-08-13
This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding. 13 figs.
High-temperature corrosion-resistant iron-aluminide (FeAl) alloys exhibiting improved weldability
Maziasz, Philip J.; Goodwin, Gene M.; Liu, Chain T.
1996-01-01
This invention relates to improved corrosion-resistant iron-aluminide intermetallic alloys. The alloys of this invention comprise, in atomic percent, from about 30% to about 40% aluminum alloyed with from about 0.1% to about 0.5% carbon, no more than about 0.04% boron such that the atomic weight ratio of boron to carbon in the alloy is in the range of from about 0.01:1 to about 0.08:1, from about 0.01 to about 3.5% of one or more transition metals selected from Group IVB, VB, and VIB elements and the balance iron wherein the alloy exhibits improved resistance to hot cracking during welding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Li, Y. K.; Cheng, X. W.; Wu, C.; Cheng, B.
2018-05-01
Refractory high entropy alloys (RHEAs), with excellent properties at high temperature, have several applications. In this work, the ZrTiHfNbMox (x=0.5, 1.0, 1.5) alloys were prepared by arc melting. All these alloys form body centered cubic (BCC) structure without other intermediate phases. The Mo element contributes to the strength of alloys at high temperature, but too much of Mo decreases the plasticity severely and enhances the strength. The ZrTiHfNbMo alloy, whose compressive stress is 1099 MPa at 800° C, is a promising material for high-temperature applications.
Weldability of a high entropy CrMnFeCoNi alloy
Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...
2016-07-19
We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less
Fariñas, Juan C; Rucandio, Isabel; Pomares-Alfonso, Mario S; Villanueva-Tagle, Margarita E; Larrea, María T
2016-07-01
An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%. Three acid digestion procedures were performed at 110°C in closed PFA vessels heated in an oven, in closed TFM vessels heated in a microwave furnace, and in open polypropylene tubes with reflux caps heated in a graphite block. The three digestion procedures are suitable to put into solution the magnesium alloys samples. From the most sensitive lines, one analytical line with lack or low spectral interferences has been selected for each element. Mg, Rh and Sc have been studied as internal standards. Among them, Rh was selected as the best one by using Rh I 343.488nm and Rh II 249.078nm lines as a function of the analytical lines. The trueness and precision have been established by using the Certified Reference Material BCS 316, as well as by means of recovery studies. Quantification limits were between 0.1 and 9mgkg(-1) for Lu and Pr, respectively, in a 2gL(-1) magnesium matrix solution. The method developed has been applied to the commercial alloys AM60, AZ80, ZK30, AJ62, WE54 and AE44. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Drexler, Andreas; Ecker, Werner; Hessert, Roland; Oberwinkler, Bernd; Gänser, Hans-Peter; Keckes, Jozef; Hofmann, Michael; Fischersworring-Bunk, Andreas
2017-10-01
In this work the evolution of the residual stress field in a forged and heat treated turbine disk of Alloy 718 and its subsequent relaxation during machining was simulated and measured. After forging at around 1000 °C the disks were natural air cooled to room temperature and direct aged in a furnace at 720 °C for 8 hours and at 620 °C for 8 hours. The machining of the Alloy 718 turbine disk was performed in two steps: The machining of the Alloy 718 turbine disk was performed in two steps: First, from the forging contour to a contour used for ultra-sonic testing. Second, from the latter to the final contour. The thermal boundary conditions in the finite element model for air cooling and furnace heating were estimated based on analytical equations from literature. A constitutive model developed for the unified description of rate dependent and rate independent mechanical material behavior of Alloy 718 under in-service conditions up to temperatures of 1000 °C was extended and parametrized to meet the manufacturing conditions with temperatures up to 1000 °C. The results of the finite element model were validated with measurements on real-scale turbine disks. The thermal boundary conditions were validated in-field with measured cooling curves. For that purpose holes were drilled at different positions into the turbine disk and thermocouples were mounted in these holes to record the time-temperature curves during natural cooling and heating. The simulated residual stresses were validated by using the hole drilling method and the neutron diffraction technique. The accuracy of the finite element model for the final manufacturing step investigated was ±50 MPa.
NASA Astrophysics Data System (ADS)
Bannykh, I. O.
2017-11-01
The main mechanisms of hardening nitrogen-bearing austenitic steels that operate under various thermomechanical treatment conditions at various steel compositions are considered. The strength properties of the steels are shown to depend on the content of interstitial elements, namely, carbon and nitrogen, and the influence of these elements on the stacking fault energy is estimated. The ratios of the main alloying elements that favor an increase or a decrease in the stacking fault energy are found to achieve the desirable level of strain hardening provided that an austenitic structure of steel is retained.
Properties of iron alloys under the Earth's core conditions
NASA Astrophysics Data System (ADS)
Morard, Guillaume; Andrault, Denis; Antonangeli, Daniele; Bouchet, Johann
2014-05-01
The Earth's core is constituted of iron and nickel alloyed with lighter elements. In view of their affinity with the metallic phase, their relative high abundance in the solar system and their moderate volatility, a list of potential light elements have been established, including sulfur, silicon and oxygen. We will review the effects of these elements on different aspects of Fe-X high pressure phase diagrams under Earth's core conditions, such as melting temperature depression, solid-liquid partitioning during crystallization, and crystalline structure of the solid phases. Once extrapolated to the inner-outer core boundary, these petrological properties can be used to constrain the Earth's core properties.
Properties and microstructures for dual alloy combinations of three superalloys with alloy 901
NASA Technical Reports Server (NTRS)
Harf, F. H.
1985-01-01
Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.
Effect of alloy addition and growth conditions on the formation of Mg-based bioabsorbable thin films
NASA Astrophysics Data System (ADS)
Pursel, Sean M.; Petrilli, John D.; Horn, Mark W.; Shaw, Barbara A.
2008-08-01
Magnesium is an essential mineral in the human body and has recently been studied as a bioabsorbable material for use in cardiac stents. New areas of application can be found in bone plates, bone screws, and orthopedic implants. Magnesium alone has a corrosion rate much too high for use in such applications and has been alloyed with various elements to improve corrosion resistance. The use of vapor deposition to create Mg alloys for the above applications has not been attempted although certain properties of non-equilibrium alloys, namely corrosion resistance, can be improved. Using vapor deposition the characterization of the growth of magnesium alloy thin films has been done utilizing various alloying elements, substrate temperatures, post-deposition treatments, and substrate positions. The results point towards a growth mode controlled by crystallization of the Mg. Mg Sculptured thin films (STFs) are used to demonstrate these effects and potential solutions while also providing a route to control nanoscale surface morphology to enhance cell growth, cell attachment, and absorption properties. The results of the study are presented in terms of x-ray diffraction data, microscopy analysis of growth evolution, and corrosion testing. This magnesium alloy research utilizes a dual source deposition method that has also provided insight about some of the growth modes of other alloy STFs. Engineering of surface morphology using dip coatings and etching has been used in biomedical materials to enhance certain application specific surface properties. STF technology potentially provides a path to merge the advantages of non-equilibrium alloy formation and engineering nanoscale surface morphology.
Development of binary and ternary titanium alloys for dental implants.
Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R
2017-11-01
The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.
Lee, Chung-Hyo
2018-02-01
We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.
Microanalytical characterization of multi-rare earth nanocrystalline magnets by TEM and APT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y. Q.; Tang, W.; Miller, Michael K
2006-01-01
The partitioning behavior of various rare-earth (RE) elements during solidification and their segregation behavior at the grain boundaries were investigated in nanocrystalline (Y{sub 0.5}Dy{sub 0.5}{sub 2.2}Fe{sub 14}B and (Nd{sub 0.5}Y{sub 0.25}Dy{sub 0.25}){sub 1.8}Zr{sub 0.4}Co{sub 1.5}Fe{sub 12.5}B alloys by transmission electron microscopy and atom probe tomography. The best hard magnetic properties obtained are H{sub cj} = 22 kOe, B{sub r}=5.10 kG, and (BH){sub max} = 5.97 MG Oe for the Y-Dy-based alloy and H{sub cj}=10.6 kOe, B{sub r}=6.64 kG, and (BH){sub max}=9.56 MG Oe for the Y-Nd-Dy based alloy. The grain size of the Y-Dy based alloy was {approx} 50 nm.more » The Y-Nd-Dy based alloy had an overall finer, bimodal grain size. An intergranular (Y{sub 0.36}Dy{sub 0.64}){sub 6}Fe{sub 23} phase was detected in the Y-Dy based alloy. A uniform distribution of RE elements was found within the 2-14-1 grains in both alloys. The Y:(Dy+Nd) ratio in the Y-Nd-Dy alloy was lower than its nominal composition, indicating that the Y is segregating to grain boundaries or forming a second phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruzic, Jamie J.; Evans, T. Matthew; Greaney, P. Alex
The report describes the development of a discrete element method (DEM) based modeling approach to quantitatively predict deformation and failure of typical nickel based superalloys. A series of experimental data, including microstructure and mechanical property characterization at 600°C, was collected for a relatively simple, model solid solution Ni-20Cr alloy (Nimonic 75) to determine inputs for the model and provide data for model validation. Nimonic 75 was considered ideal for this study because it is a certified tensile and creep reference material. A series of new DEM modeling approaches were developed to capture the complexity of metal deformation, including cubic elasticmore » anisotropy and plastic deformation both with and without strain hardening. Our model approaches were implemented into a commercially available DEM code, PFC3D, that is commonly used by engineers. It is envisioned that once further developed, this new DEM modeling approach can be adapted to a wide range of engineering applications.« less
Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution
Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V. M.; Martinez-Gomez, L.
2015-01-01
Several austenitic stainless steels suitable for high temperature applications because of their high corrosion resistance and excellent mechanical properties were investigated as biomaterials for dental use. The steels were evaluated by electrochemical techniques such as potentiodynamic polarization curves, cyclic polarization curves, measurements of open circuit potential, and linear polarization resistance. The performance of steels was evaluated in two types of environments: artificial saliva and mouthwash solution at 37°C for 48 hours. In order to compare the behavior of steels, titanium a material commonly used in dental applications was also tested in the same conditions. Results show that tested steels have characteristics that may make them attractive as biomaterials for dental applications. Contents of Cr, Ni, and other minor alloying elements (Mo, Ti, and Nb) determine the performance of stainless steels. In artificial saliva steels show a corrosion rate of the same order of magnitude as titanium and in mouthwash have greater corrosion resistance than titanium. PMID:26064083
Modeling of Substitutional Site Preference in Ordered Intermetallic Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank
1998-01-01
We investigate the site substitution scheme of specific alloying elements in ordered compounds and the dependence of site occupancy on compound stoichiometry, alloy concentration. This basic knowledge, and the interactions with other alloying additions are necessary in order to predict and understand the effect of various alloying schemes on the physical properties of a material, its response to various temperature treatments, and the resulting mechanical properties. Many theoretical methods can provide useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. With this in mind, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed to overcome these limitations, with the intent of providing an useful tool for the theoretical prediction of fundamental properties and structure of complex systems. After a brief description of the BFS method, its use for the determination of site substitution schemes for individual as well as collective alloying additions to intermetallic systems is described, including results for the concentration dependence of the lattice parameter. Focusing on B2 NiAl, FeAl and CoAl alloys, the energetics of Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W alloying additions are surveyed. The effect of single additions as well as the result of two simultaneous additions, discussing the interaction between additions and their influence on site preference schemes is considered. Finally, the BFS analysis is extended to ternary L1(sub 2) (Heusler phase) alloys. A comparison between experimental and theoretical results for the limited number of cases for which experimental data is available is also included.
NASA Astrophysics Data System (ADS)
Park, Sang-Gyu; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon
2010-12-01
SA508 Gr.4N Ni-Mo-Cr low alloy steel has improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel, which has less than 1% Ni. Higher strength and fracture toughness of low alloy steels can be achieved by increasing the Ni and Cr contents. In this study, the effects of the alloying elements of Ni and Cr on the microstructural characteristics and mechanical properties of SA508 Gr.4N Ni-Mo-Cr low alloy steel are evaluated. Changes in the stable phases of SA508 Gr.4N low alloy steel with these alloying elements were evaluated using thermodynamic calculation software. These values were then compared with the observed microstructural results. Additionally, tensile tests and Charpy impact test were carried out to evaluate the mechanical properties. The thermodynamic calculations show that Ni mainly affects the change of the matrix phase of γ and α rather than the carbide phase. Contrary to the Ni effect, Cr and Mo primarily affect the precipitation behavior of the carbide phases of Cr 23C 6, Cr 7C 3 and Mo 2C. In the microscopic observations, the lath martensitic structure becomes finer as the Ni content increases without affecting the carbides. When the Cr content decreases, the Cr carbide becomes unstable and carbide coarsening occurs. Carbide Mo 2C in the form of fine needles were observed in the high-Mo alloy. Greater strength was obtained after additions of Ni and Mo and the transition properties were improved as the Ni and Cr contents increased. These results were correlated with the thermodynamic calculation results.
Identification of a cast iron alloy containing nonstrategic elements
NASA Technical Reports Server (NTRS)
Cooper, C. V.; Anton, D. L.; Lemkey, F. D.; Nowotny, H.; Bailey, R. S.; Favrow, L. H.; Smeggil, J. G.; Snow, D. B.
1989-01-01
A program was performed to address the mechanical and environmental needs of Stirling engine heater head and regenerator housing components, while reducing the dependence on strategic materials. An alloy was developed which contained no strategic elemental additions per se. The base is iron with additions of manganese, molybdenum, carbon, silicon, niobium, and ferro-chromium. Such an alloy should be producible on a large scale at very low cost. The resulting alloy, designated as NASAUT 4G-Al, contained 15 Mn, 15 Cr, 2 Mo, 1.5 C, 1.0 Si, 1.0 Nb (in weight percent) with a balance of Fe. This alloy was optimized for chemistry, based upon tensile strength, creep-rupture strength, fracture behavior, and fatigue resistance up to 800 C. Alloys were also tested for environmental compatibility. The microstructure and mechanic properties (including hardness) were assessed in the as-cast condition and following several heat treatments, including one designed to simulate a required braze cycle. The alloy was fabricated and characterized in the form of both equiaxed and columnar-grained castings. The columnar grains were produced by directional solidification, and the properties were characterized in both the longitudinal and transverse orientations. The NASAUT 4G-Al alloy was found to be good in cyclic-oxidation resistance and excellent in both hydrogen and hot-corrosion resistance, especially in comparison to the baseline XF-818 alloy. The mechanical properties of yield strength, stress-rupture life, high-cycle-fatigue resistance, and low-cycle-fatigue resistance were good to excellent in comparison to the current alloy for this application, HS-31 (X-40), with precise results depending in a complex manner on grain orientation and temperature. If required, the ductility could be improved by lowering the carbon content.
Germanium and Tin Based Anode Materials for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Ji, Dongsheng
The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.
NASA Technical Reports Server (NTRS)
HARTMANN E C; Stickley, G W
1942-01-01
Available information concerning spot welding as a means of joining aluminum-alloy parts has been summarized and comparisons have been made of the relative merits of spot-welded and riveted aluminum-alloy structural elements. The results indicated that spot welding was as satisfactory as riveting insofar as resistance to static loads is concerned. Spot welds showed slightly lower resistance to impact loads but definitely lower resistance to repeated loads than rivets.
ALLOY COMPOSITION FOR NEUTRONIC REACTOR CONTROL RODS
Lustman, B.; Losco, E.F.; Snyder, H.J.; Eggleston, R.R.
1963-01-22
This invention relates to alloy compositons suitable as cortrol rod material consisting of, by weight, from 85% to 85% Ag, from 2% to 20% In, from up to 10% of Cd, from up to 5% Sn, and from up to 1.5% Al, the amount of each element employed being determined by the equation X + 2Y + 3Z + 3W + 4V = 1.4 and less, where X, Y, Z, W, and V represent the atom fractions of the elements Ag, Cd, In, Al and Sn. (AEC)
Investigation of High Temperature Ductility Losses in Alpha-Beta Titanium Alloys
1988-04-01
Gleeble simulation of GTAW thermal _ cycles, Figure 1.1 (6). They found that Ti-6AI-4V (Ti-64), Ti-6A1-2Nb-lTa-0.8Mo (Ti-6211), and Ti-6AI suffered...or weak beta stabilizers depending on the other alloying elements present. Vanadium, molybdenum, tantalum, niobium, chromium , silicon, copper...elements. Chromium , - silicon, copper, manganese, cobalt, iron, and hydrogen are all eutectic formers. A schematic binary phase diagram of a 0 beta
Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2017-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.
Role of lead in electrochemical reaction of alloy 600, alloy 690, Ni, Cr, and Fe in water
NASA Astrophysics Data System (ADS)
Hwang, Seong Sik; Kim, Joung Soo; Kim, Ju Yup
2003-08-01
It has been reported that lead causes stress corrosion cracking (SCC) in the secondary side of steam generators (SG) in pressurized water reactors (PWR). The materials of SG tubings are alloy 600, alloy 690, or alloy 800, among which the main alloying elements are Ni, Cr, and Fe. The effect of lead on the electrochemical behaviors of alloy 600 and alloy 690 using an anodic polarization technique was evaluated. We also obtained polarization curves of pure Ni, Cr, and Fe in water containing lead. As the amount of lead in the solution increased, critical current densities and passive current densities of alloy 600 and alloy 690 increased, while the breakdown potential of the alloys decreased. Lead increased critical current density and the passive current of Cr in pH 4 and pH 10. The instability of passive film of steam generator tubings in water containing lead might arise from the instability of Cr passivity.
Microstructural aspects of precipitation and martensitic transformation in a Ti-rich Ni-Ti alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, H.F.; Salinas-Rodriguez, A.; Rodriguez-Galicia, J.L.
1996-02-15
Near-equiatomic NiTi alloys are among the most important shape memory alloys (SMA) due to their outstanding mechanical properties, corrosion resistance, and biocompatibility. In these alloys, thermal mechanical processing or additions of other elements are often used to modify the martensite-austenite (M-A) transformation temperatures, as well as the alloy strength. Nevertheless, in near-equiatomic Ni-Ti alloys, small deviations from stoichiometry can give rise to significant precipitation of second phases. This in turn affects both the alloy strength and the shape memory effect. Thus, it is the aim of the present work to investigate the metallurgical aspects associated with the precipitation reactions exhibitedmore » in a Ti-rich Ni-Ti alloy, as well as the role of thermal aging on the exhibited transformation temperatures.« less
NASA Astrophysics Data System (ADS)
Cha, Joon-Hyeon; Kim, Su-Hyeon; Lee, Yun-Soo; Kim, Hyoung-Wook; Choi, Yoon Suk
2016-09-01
Multi-layered Al alloy sheets can exhibit unique properties by the combination of properties of component materials. A poor corrosion resistance of high strength Al alloys can be complemented by having a protective surface with corrosion resistant Al alloys. Here, a special care should be taken regarding the heat treatment of multi-layered Al alloy sheets because dissimilar Al alloys may exhibit unexpected interfacial reactions upon heat treatment. In the present study, A6022/A7075/A6022 sheets were fabricated by a cold roll-bonding process, and the effect of the heat treatment on the microstructure and mechanical properties was examined. The solution treatment gave rise to the diffusion of Zn, Mg, Cu and Si elements across the core/clad interface. In particular, the pronounced diffusion of Zn, which is a major alloying element (for solid-solution strengthening) of the A7075 core, resulted in a gradual hardness change across the core/clad interface. Mg2Si precipitates and the precipitate free zone were also formed near the interface after the heat treatment. The heat-treated sheet showed high strengths and reasonable elongation without apparent deformation misfit or interfacial delamination during the tensile deformation. The high strength of the sheet was mainly due to the T4 and T6 heat treatment of the A7075 core.
NASA Astrophysics Data System (ADS)
Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang
2012-07-01
It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.
High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance
NASA Astrophysics Data System (ADS)
Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.
2014-04-01
This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, Sergey, E-mail: konovserg@gmail.com; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru; Kobzareva, Tatyana
The paper presents the results of the investigation of VT6 titanium alloy subjected to electro-explosion alloying with TiB{sub 2} and irradiation with pulsed electron beam. It was established that electro-explosion alloying resulted in a high level of roughness of the surface layer with high adhesion of the modified layer and matrix. Further irradiation of the material with electron beam resulted in the smoothing of the surface of alloying and formation of a porous structure with various scale levels in the surface layer. It was also established that the energetic exposure causes the formation of a gradient structure with a changingmore » elemental composition along the direction from the surface of alloying.« less
López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela
2008-05-01
Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.
Micro/nano-scale investigation on tin alloys and tin dioxide nanowires
NASA Astrophysics Data System (ADS)
Sun, Yong
Tin (Sn) and its alloys have been at people's service since 3000 BC when bronze (alloy of tin and copper) was produced in large scale. They have unique properties and find applications in various engineering fields. Correspondingly, there is abundant information waiting to be clarified surrounding these Sn-related materials. As the key element used for solder alloys, the properties of Sn alloys have been of great interest to the electronic packaging community. At the same time, the intriguing phenomenon of spontaneous Sn whisker growth from Sn / Sn-alloy thin films have bothered, yet also inspired materials scientists for over 60 years. The most commonly seen Sn-containing compound, SnO 2, is in high demand as well due to its exceptional electronic and chemical properties. In addition, nanostructures of SnO2 are intensively studied for their potential applications as solid-state sensors, transparent conducting materials, lithium-ion batteries, high-efficiency solar cell and recently, supercapacitors. The objective of this proposed research is to explore the amazing properties of Sn and Sn-alloys from several different perspectives. Firstly, ever since the banish of lead in solder alloys, lead-free alloys such as Sn-Ag-Cu (SAC) has been put under the spotlight. We intend to use our expertise in nanomechanics to give an in-depth and thorough investigation on a popular SAC387 alloy. The mechanical properties of each phase and the local deformation mechanisms have been considered. Secondly, the Sn whisker growth phenomenon is to be re-visited. With the aid of digital image correlation (DIC) techniques, it was found that magnitude of the strain gradient plays an important role in whisker growth. Moreover, DIC helps to visualize the dynamic growth process in which the alteration of strain field has been identified to cause growth of subsequent whiskers. Last but not least, the performance of SnO2 nanowires is to be evaluated in several aspects including mechanical properties, gas sensing properties and energy applications. Through state-of-the-art technologies such as high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and DIC, we have already successfully correlated the magnificent properties of SnO 2 nanowires with its atomistic structure near the surface.
Solid state thin film battery having a high temperature lithium alloy anode
Hobson, David O.
1998-01-01
An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.
Thermal expansion and microstructural analysis of experimental metal-ceramic titanium alloys.
Zinelis, Spiros; Tsetsekou, Athena; Papadopoulos, Triantafillos
2003-10-01
Statement of problem Low-fusing porcelains for titanium veneering have demonstrated inferior color stability and metal-ceramic longevity compared to conventional porcelains. This study evaluated the microstructure and thermal expansion coefficients of some experimental titanium alloys as alternative metallic substrates for low-fusing conventional porcelain. Commercially pure titanium (CP Ti) and various metallic elements (Al, Co, Sn, Ga, In, Mn) were used to prepare 8 titanium alloys using a commercial 2-chamber electric-arc vacuum/inert gas dental casting machine (Cyclarc). The nominal compositions of these alloys were the following (wt%): I: 80Ti-18Sn-1.5In-0.5Mn; II: 76Ti-12Ga-7Sn-4Al-1Co; III: 87Ti-13Ga; IV: 79Ti-13Ga-7Al-1Co; V: 82Ti-18In; VI: 75.5Ti-18In-5Al-1Co-0.5Mn; VII: 85Ti-10Sn-5Al; VIII: 78Ti-12Co-7Ga-3Sn. Six rectangular wax patterns for each test material (l = 25 mm, w = 3 mm, h = 1 mm) were invested with magnesia-based material and cast with grade II CP Ti (control) and the 8 experimental alloys. The porosity of each casting was evaluated radiographically, and defective specimens were discarded. Two cast specimens from CP Ti and alloys I-VIII were embedded in epoxy resin and, after metallographic grinding and polishing, were studied by means of scanning electron microscopy and wavelength dispersive electron probe microanalysis. One specimen of each material was utilized for the determination of coefficient of thermal expansion (CTE) with a dilatometer operating from room temperature up to 650 degrees C at a heating rate of 5 degrees C/minute. Secondary electron images (SEI) and compositional backscattered electron images (BEI-COMPO) revealed that all cast specimens consisted of a homogeneous matrix except Alloy VIII, which contained a second phase (possibly Ti(2)Co) along with the titanium matrix. The results showed that the coefficient of thermal expansion (CTE) varied from 10.1 to 13.1 x 10(-6)/ degrees C (25 degrees -500 degrees C), depending on the elemental composition. The CTE of titanium can be considerably changed by alloying. Two-phase alloys were developed when alloying elements were added in concentrations greater than the maximum solubility limit in alpha-titanium phase.
NASA Technical Reports Server (NTRS)
Powers, William O.
1987-01-01
A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.
Effects of H2 Atmospheres on Sintering of Low Alloy Steels Containing Oxygen-Sensitive Masteralloys
NASA Astrophysics Data System (ADS)
de Oro Calderon, Raquel; Jaliliziyaeian, Maryam; Gierl-Mayer, Christian; Danninger, Herbert
2017-04-01
Processing of novel sintered steels with compositions including oxygen-sensitive elements requires deep understanding of the chemistry of sintering. The use of H2 atmospheres alleviates the oxygen transference from the base powder to the oxygen-sensitive particles. However, in H2, methane formation at 700-1200°C causes dramatic homogeneous decarburization of the part that affects both mechanical behavior and dimensional stability. The intensity and the critical temperatures of this effect depend strongly on the alloying elements, being significantly enhanced in presence of Si. When combining the alloying elements as Fe-Mn-Si masteralloys, methane formation is enhanced around 760°C due to the high Mn content (40 wt.%) in the masteralloys. Nevertheless, the benefits of H2 towards oxide reduction can still be advantageously used if diluting it in the form of N2-H2 atmospheres, or if limiting the use of H2 to temperatures below 500°C. Thus, decarburization due to methane formation can be successfully controlled.
Effect of solute interactions in columbium /Nb/ on creep strength
NASA Technical Reports Server (NTRS)
Klein, M. J.; Metcalfe, A. G.
1973-01-01
The creep strength of 17 ternary columbium (Nb)-base alloys was determined using an abbreviated measuring technique, and the results were analyzed to identify the contributions of solute interactions to creep strength. Isostrength creep diagrams and an interaction strengthening parameter, ST, were used to present and analyze data. It was shown that the isostrength creep diagram can be used to estimate the creep strength of untested alloys and to identify compositions with the most economical use of alloy elements. Positive values of ST were found for most alloys, showing that interaction strengthening makes an important contribution to the creep strength of these ternary alloys.
Elliott, R.O.; Gschneidner, K.A. Jr.
1962-07-10
A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panikkar, S.K.; Char, T.L.R.
1958-02-01
Results of studies on the electrodeposition of nickel-zinc and nickel-- molybdenum alloys in a pyrophosphate bath using platinium electrodes are presented. The fects of varying current density and metal contents of the electrolyte on alloy deposit composition, cathode efficiency, and cathode potential are presented in tabular form. (J.R.D.) l2432 A study was made of the effect of homogenization on the mechanical properties of solution-treated and aged aluminum and the quantitative effects of several variables on hardness. The effect of alloying elements on the increase in hardness of aluminum is shown. (J.E.D.)
Solute effects on deformation and fracture of beta brass
NASA Technical Reports Server (NTRS)
Shea, M. M.; Stoloff, N. S.
1973-01-01
It is shown that the ductility of several ternary beta brass alloys in air and in several liquid metals can be related to the operative slip and grain boundary relaxation processes. Nickel and manganese were chosen as alloying elements because they are expected to respectively enhance and suppress cross slip in beta brass. Single-phase binary and ternary beta brass alloys were used in both polycrystalline and single crystal form.
REGENERATION OF REACTOR FUEL ELEMENTS
Roake, W.E.; Lyon, W.L.
1960-03-29
A process of concentrating by electrolysis the uraatum and/or plutonium of an aluminum alloy containing these actinides after the actinide has been partially consumed by neutron bombardment in a reactor is given. The alloy is made the anode in a system having an aluminum cathode and a cryolite electrolyte. Electrolysis from 22 to 28 ampere-hours removes a sufficient quantity of aluminum from the alloy to make it suitable for reuse.
Cobalt-Base Alloy Gun Barrel Study
2014-07-01
Cobalt-Base Alloy Gun Barrel Study by William S. de Rosset and Jonathan S. Montgomery ARL-RP-0491 July 2014 A reprint...21005-5069 ARL-RP-0491 July 2014 Cobalt-Base Alloy Gun Barrel Study William S. de Rosset and Jonathan S. Montgomery Weapons and Materials... Gun Barrel Study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William S. de Rosset and Jonathan S. Montgomery
Development of near β titanium alloy with high strength and superplastic properties
NASA Astrophysics Data System (ADS)
Naydenkin, E. V.; Ratochka, I. V.; Mishin, I. P.; Lykova, O. N.
2017-12-01
Ultrafine-grained (UFG) structure with an average element size of about 0.25 µm was obtained in a near β titanium alloy under severe plastic deformation by abc pressing. It is shown that the formation of such structure greatly increases the ultimate strength of the alloy compared to its coarse-grained state (up to 1610 MPa). In addition, the UFG alloy features improved superplastic characteristics under tension at temperatures of 973-1073 K: its elongation to failure exceeds 1300% and the flow stress decreases to several MPa.
Microstructural Evolution and Tensile Properties of SnAgCu Mixed with Sn-Pb Solder Alloys (Preprint)
2009-03-01
AFRL-RX-WP-TP-2009-4132 MICROSTRUCTURAL EVOLUTION AND TENSILE PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT...PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT) 5a. CONTRACT NUMBER FA8650-04-C-5704 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 Microstructural evolution and tensile properties of SnAgCu mixed with Sn-Pb solder alloys Fengjiang Wang,1 Matthew O’Keefe,1,2 and
Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint)
2014-04-01
ANSI Std. Z39-18 O.N. Senkov et al . / Journal of Alloys and Compounds 509 (2011) 6043–6048 6045 Fig. 3. SEM backscatter electron images of a...Senkov et al . / Journal of Alloys and Compounds 509 (2011) 6043–6048 Here ci is the atomic fraction of element i. The calculated (Calc.) amix is given...O.N. Senkov et al . / Journal of Alloys and Compounds 509 (2011) 6043–6048 6047 Table 4 Relative atomic size difference, ıaij (underlined numbers), and
Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui
2016-01-01
Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction. PMID:27466045
Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys
NASA Astrophysics Data System (ADS)
Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo
2018-03-01
The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.
He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...
2016-12-31
Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L1 0 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less
Soteriou, Despo; Ntasi, Argyro; Papagiannoulis, Lisa; Eliades, Theodore; Zinelis, Spiros
2014-02-01
The aim of this study was to evaluate the elemental alterations of Ag soldering alloys used in space maintainers after intra-oral exposure. Twenty devices were fabricated by using two different soldering alloys; US (Dentaurum Universal Silver Solder, n = 10) and OS (Leone Orthodontic Solder, n = 10). All devices were manufactured by the same technician. Surface morphology and elemental quantitative analysis of the soldering alloys before and after intra-oral placement in patients was determined by scanning electron microscopy and energy-dispersive X-ray microanalysis (SEM/EDX). Statistical analysis was performed by t-test, Mann Whitney tests and Pearson's correlation. For all tests a 95% confidence level was used (α = 0.05). Both soldering alloys demonstrated substantially increase in surface roughness after intra-oral aging. Statistical analysis illustrated a significant decrease in the Cu and Zn content after treatment. OS demonstrated higher Cu release than US (p < 0.05). The remaining relative concentrations of Cu and Zn after the treatment did not show any correlation (p > 0.05) with intra-oral exposure time, apart from Zn in OS (r = 0.840, p = 0.04). Both soldering alloys demonstrated a significant Cu and Zn reduction after intra-oral exposure that may raise biocompatibility concerns.
Myrissa, Anastasia; Braeuer, Simone; Martinelli, Elisabeth; Willumeit-Römer, Regine; Goessler, Walter; Weinberg, Annelie Martina
2017-01-15
Biodegradable magnesium implants are under investigation because of their promising properties as medical devices. For enhancing the mechanical properties and the degradation resistance, rare earth elements are often used as alloying elements. In this study Mg10Gd pins were implanted into Sprague-Dawley® rats. The pin volume loss and a possible accumulation of magnesium and gadolinium in the rats' organs and blood were investigated in a long-term study over 36weeks. The results showed that Mg10Gd is a fast disintegrating material. Already 12weeks after implantation the alloy is fragmented to smaller particles, which can be found within the intramedullary cavity and the cortical bones. They disturbed the bone remodeling until the end of the study. The results concerning the elements' distribution in the animals' bodies were even more striking, since an accumulation of gadolinium could be observed in the investigated organs over the whole time span. The most affected tissue was the spleen, with up to 3240μgGd/kg wet mass, followed by the lung, liver and kidney (up to 1040, 685 and 207μgGd/kg). In the brain, muscle and heart, the gadolinium concentrations were much smaller (less than 20μg/kg), but an accumulation could still be detected. Interestingly, blood serum samples showed no accumulation of magnesium and gadolinium. This is the first time that an accumulation of gadolinium in animal organs was observed after the application of a gadolinium-containing degradable magnesium implant. These findings demonstrate the importance of future investigations concerning the distribution of the constituents of new biodegradable materials in the body, to ensure the patients' safety. In the last years, biodegradable Mg alloys are under investigation due to their promising properties as orthopaedic devices used for bone fracture stabilization. Gadolinium as Rare Earth Element enhances the mechanical properties of Mg-Gd alloys but its toxicity in humans is still questionable. Up to now, there is no study investigating the elements' metabolism of a REE-containing Magnesium alloy in an animal model. In this study, we examined the gadolinium distribution and accumulation in rat organs during the degradation of Mg10Gd. Our findings showed that Gd is accumulating in the animal organs, especially in spleen, liver and kidney. This study is of crucial benefit regarding a safe application of REE-containing Magnesium alloys in humans. Copyright © 2016. Published by Elsevier Ltd.
Sjögren, G; Sletten, G; Dahl, J E
2000-08-01
Biocompatibility of dental materials is dependent on the release of elements from the materials. In addition, the composition, pretreatment, and handling of the materials influence the element release. This study evaluated the cytotoxicity of dental alloys, metals, and ceramics, with specific emphasis on the effects of altering the composition and the pretreatment. By using cells from a mouse fibroblast cell line and the agar overlay test, Millipore filter test, and MTT test, cytotoxicity of various metals, metal alloys, and ceramics for dental restoration were studied. Effects of altering the composition of a high noble gold alloy and of pretreatment of a ceramic-bonding alloy were also studied. In addition, the release of elements into the cell culture medium by the materials studied was measured using an inductively coupled plasma optical emission spectrophotometer. The results of the MTT test were analyzed statistically using ANOVA and Scheffé test at a significance level of P <.05. Specimens manufactured from materials intended for dental restorations and handled in accordance with the manufacturers' instructions were ranked from "noncytotoxic" to "mildly cytotoxic" according to the agar overlay and Millipore filter tests. For the MTT test, no significant differences were observed between these materials and controls, with the exception of JS C-gold and unalloyed titanium. The modified materials were ranked from "mildly cytotoxic" to "moderately cytotoxic" in the agar overlay and Millipore filter tests and from "noncytotoxic" to "moderately cytotoxic" in the MTT test. Thus, cytotoxicity was related to the alloy composition and treatment. The release of Cu and Zn seemed to be important for the cytotoxic effect. Alterations in the composition and the pretreatment can greatly influence the cytotoxicity, and the results stress the importance of carefully following the manufacturers' instructions when handling dental materials.
[Study on corrosion resistance of three non-noble porcelain alloys].
Wu, Zhikai; Xu, Sheng; Li, Wei; Teng, Jin; Li, Ning
2011-10-01
To study the electrochemical corrosion behavior of Co-Cr, Ni-Cr and Ni-Cr-Be based porcelain alloys in NaCl solution. Five samples of each alloy were made respectively, electric polarization curve of each alloy was obtained using potentiodynamic polarization technique. Self-corrosion potential (E(corr)), self-corrosion current density (I(corr), passive region and transpassivation potential were tested. Microstructure and constituent was examined using scanning electron microscopy and energy dispersive spectroscopy. Co-Cr alloy possessed the most desirable corrosion resistance because of its integrated, homogeneous and compact passive film. The poor compactness of Ni-Cr alloy's passive film decreased its corrosion resistance. Ni-Cr-Be alloy exhibited the worst corrosion resistance due to the Cr and Mo depleted Ni-Be eutectic phases in the alloy. Taking biological security into consideration, it is necessary to avoid the application of porcelain alloys with Be element. Co-Cr alloy with better biocompatibility possesses much broader prospect in the field of dental restoration.