Park, Joonhong; Kim, Myungshin; Jang, Woori; Chae, Hyojin; Kim, Yonggoo; Chung, Nack-Gyun; Lee, Jae-Wook; Cho, Bin; Jeong, Dae-Chul; Park, In Yang; Park, Mi Sun
2015-05-01
A common ancestral haplotype is strongly suggested in the Korean and Japanese patients with Fanconi anemia (FA), because common mutations have been frequently found: c.2546delC and c.3720_3724delAAACA of FANCA; c.307+1G>C, c.1066C>T, and c.1589_1591delATA of FANCG. Our aim in this study was to investigate the origin of these common mutations of FANCA and FANCG. We genotyped 13 FA patients consisting of five FA-A patients and eight FA-G patients from the Korean FA population. Microsatellite markers used for haplotype analysis included four CA repeat markers which are closely linked with FANCA and eight CA repeat markers which are contiguous with FANCG. As a result, Korean FA-A patients carrying c.2546delC or c.3720_3724delAAACA did not share the same haplotypes. However, three unique haplotypes carrying c.307+1G>C, c.1066C > T, or c.1589_1591delATA, that consisted of eight polymorphic loci covering a flanking region were strongly associated with Korean FA-G, consistent with founder haplotypes reported previously in the Japanese FA-G population. Our finding confirmed the common ancestral haplotypes on the origins of the East Asian FA-G patients, which will improve our understanding of the molecular population genetics of FA-G. To the best of our knowledge, this is the first report on the association between disease-linked mutations and common ancestral haplotypes in the Korean FA population. © 2015 John Wiley & Sons Ltd/University College London.
Ancestral effect on HOMA-IR levels quantitated in an American population of Mexican origin.
Qu, Hui-Qi; Li, Quan; Lu, Yang; Hanis, Craig L; Fisher-Hoch, Susan P; McCormick, Joseph B
2012-12-01
An elevated insulin resistance index (homeostasis model assessment of insulin resistance [HOMA-IR]) is more commonly seen in the Mexican American population than in European populations. We report quantitative ancestral effects within a Mexican American population, and we correlate ancestral components with HOMA-IR. We performed ancestral analysis in 1,551 participants of the Cameron County Hispanic Cohort by genotyping 103 ancestry-informative markers (AIMs). These AIMs allow determination of the percentage (0-100%) ancestry from three major continental populations, i.e., European, African, and Amerindian. We observed that predominantly Amerindian ancestral components were associated with increased HOMA-IR (β = 0.124, P = 1.64 × 10(-7)). The correlation was more significant in males (Amerindian β = 0.165, P = 5.08 × 10(-7)) than in females (Amerindian β = 0.079, P = 0.019). This unique study design demonstrates how genomic markers for quantitative ancestral information can be used in admixed populations to predict phenotypic traits such as insulin resistance.
Origin of Bacteriochlorophyll a and the Early Diversification of Photosynthesis.
Cardona, Tanai
2016-01-01
Photosynthesis originated in the domain Bacteria billions of years ago; however, the identity of the last common ancestor to all phototrophic bacteria remains undetermined and speculative. Here I present the evolution of BchF or 3-vinyl-bacteriochlorophyll hydratase, an enzyme exclusively found in bacteria capable of synthetizing bacteriochlorophyll a. I show that BchF exists in two forms originating from an early divergence, one found in the phylum Chlorobi, including its paralogue BchV, and a second form that was ancestral to the enzyme found in the remaining anoxygenic phototrophic bacteria. The phylogeny of BchF is consistent with bacteriochlorophyll a evolving in an ancestral phototrophic bacterium that lived before the radiation event that gave rise to the phylum Chloroflexi, Chlorobi, Acidobacteria, Proteobacteria, and Gemmatimonadetes, but only after the divergence of Type I and Type II reaction centers. Consequently, it is suggested that the lack of phototrophy in many groups of extant bacteria is a derived trait.
Homology and phylogeny and their automated inference
NASA Astrophysics Data System (ADS)
Fuellen, Georg
2008-06-01
The analysis of the ever-increasing amount of biological and biomedical data can be pushed forward by comparing the data within and among species. For example, an integrative analysis of data from the genome sequencing projects for various species traces the evolution of the genomes and identifies conserved and innovative parts. Here, I review the foundations and advantages of this “historical” approach and evaluate recent attempts at automating such analyses. Biological data is comparable if a common origin exists (homology), as is the case for members of a gene family originating via duplication of an ancestral gene. If the family has relatives in other species, we can assume that the ancestral gene was present in the ancestral species from which all the other species evolved. In particular, describing the relationships among the duplicated biological sequences found in the various species is often possible by a phylogeny, which is more informative than homology statements. Detecting and elaborating on common origins may answer how certain biological sequences developed, and predict what sequences are in a particular species and what their function is. Such knowledge transfer from sequences in one species to the homologous sequences of the other is based on the principle of ‘my closest relative looks and behaves like I do’, often referred to as ‘guilt by association’. To enable knowledge transfer on a large scale, several automated ‘phylogenomics pipelines’ have been developed in recent years, and seven of these will be described and compared. Overall, the examples in this review demonstrate that homology and phylogeny analyses, done on a large (and automated) scale, can give insights into function in biology and biomedicine.
The origin of Huntington's chorea in the Afrikaner population of South Africa.
Hayden, M R; Hopkins, H C; Macrea, M; Beighton, P H
1980-08-02
Huntington's chorea is prevalent among the Afrikaner population of South Africa. The origin of the gene for the disorder in this population group has been traced over 14 generations from the present time to the days of the first free burghers at the Cape of Good Hope. Over 200 affected individuals in more than 50 supposedly unrelated families have been found to be ancestrally related through a common progenitor in the 17th century.
Ito, Tsuyoshi; Osawa, Susumu; Shibata, Hideshi; Kanda, Naotoshi
2007-12-01
Mus musculus (M. m.) molossinus has been considered an independent subspecies of Mus musculus. To elucidate the evolutional origin of this subspecies, we carried out double-color FISH using 18s-28s ribosomal DNA and mouse chromosome paint probes. Among eleven rDNA loci detected, five loci on chromosomes 12, 15, 16, 18 and 19 were common to both Mus musculus (M. m.) musculus and M. m. molossinus and the other six loci, on chromosomes 1, 5, 10, 11, 13 and 17, were characteristic in M. m. molossinus. As M. m. molossinus is thought to originate from a hybrid between ancestral colonies of M. m. musculus and Mus musculus castaneus, we supposed that these six rDNA loci might have evolved after geographical isolation of the ancestral hybrid animals from M. m. musculus and M. m. castaneus.
A relative shift in cloacal location repositions external genitalia in amniote evolution.
Tschopp, Patrick; Sherratt, Emma; Sanger, Thomas J; Groner, Anna C; Aspiras, Ariel C; Hu, Jimmy K; Pourquié, Olivier; Gros, Jérôme; Tabin, Clifford J
2014-12-18
The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified. We re-examined this question using micro-computed tomography, lineage tracing in three amniote clades, and RNA-sequencing-based transcriptional profiling. Here we show that the developmental origin of external genitalia has shifted through evolution, and in some taxa limbs and genitals share a common primordium. In squamates, the genitalia develop directly from the budding hindlimbs, or the remnants thereof, whereas in mice the genital tubercle originates from the ventral and tail bud mesenchyme. The recruitment of different cell populations for genital outgrowth follows a change in the relative position of the cloaca, the genitalia organizing centre. Ectopic grafting of the cloaca demonstrates the conserved ability of different mesenchymal cells to respond to these genitalia-inducing signals. Our results support a limb-like developmental origin of external genitalia as the ancestral condition. Moreover, they suggest that a change in the relative position of the cloacal signalling centre during evolution has led to an altered developmental route for external genitalia in mammals, while preserving parts of the ancestral limb molecular circuitry owing to a common evolutionary origin.
Ferrier, David E K
2016-09-01
A key aim in evolutionary biology is to deduce ancestral states to better understand the evolutionary origins of clades of interest and the diversification process(es) that has/have elaborated them. These ancestral deductions can hit difficulties when undetected loss events are misinterpreted as ancestral absences. With the ever-increasing amounts of animal genomic sequence data, we are gaining a much clearer view of the preponderance of differential gene losses across animal lineages. This has become particularly clear with recent progress in our understanding of the origins of the Hox/ParaHox developmental control genes relative to the earliest branching lineages of the animal kingdom: the sponges (Porifera), comb jellies (Ctenophora) and placozoans (Placozoa). These reassessments of the diversity and complexity of developmental control genes in the earliest animal ancestors need to go hand-in-hand with complementary advances in comparative morphology, phylogenetics and palaeontology to clarify our understanding of the complexity of the last common ancestor of all animals. The field is currently undergoing a shift from the traditional consensus of a sponge-like animal ancestor from which morphological and molecular elaboration subsequently evolved, to a scenario of a more complex animal ancestor, with subsequent losses and simplifications in various lineages. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The USH2A c.2299delG mutation: dating its common origin in a Southern European population
Aller, Elena; Larrieu, Lise; Jaijo, Teresa; Baux, David; Espinós, Carmen; González-Candelas, Fernando; Nájera, Carmen; Palau, Francesc; Claustres, Mireille; Roux, Anne-Françoise; Millán, José M
2010-01-01
Usher syndrome type II is the most common form of Usher syndrome. USH2A is the main responsible gene of the three known to be disease causing. It encodes two isoforms of the protein usherin. This protein is part of an interactome that has an essential role in the development and function of inner ear hair cells and photoreceptors. The gene contains 72 exons spanning over a region of 800 kb. Although numerous mutations have been described, the c.2299delG mutation is the most prevalent in several populations. Its ancestral origin was previously suggested after the identification of a common core haplotype restricted to 250 kb in the 5′ region that encodes the short usherin isoform. By extending the haplotype analysis over the 800 kb region of the USH2A gene with a total of 14 intragenic single nucleotide polymorphisms, we have been able to define 10 different c.2299delG haplotypes, showing high variability but preserving the previously described core haplotype. An exhaustive c.2299delG/control haplotype study suggests that the major source of variability in the USH2A gene is recombination. Furthermore, we have evidenced twice the amount of recombination hotspots located in the 500 kb region that covers the 3′ end of the gene, explaining the higher variability observed in this region when compared with the 250 kb of the 5′ region. Our data confirm the common ancestral origin of the c.2299delG mutation. PMID:20145675
NASA Astrophysics Data System (ADS)
Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.
2016-06-01
Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.
Vernengo, Luis; Oliveira, Jorge; Krahn, Martin; Vieira, Emilia; Santos, Rosário; Carrasco, Luisa; Negrão, Luís; Panuncio, Ana; Leturcq, France; Labelle, Veronique; Bronze-da-Rocha, Elsa; Mesa, Rosario; Pizzarossa, Carlos; Lévy, Nicolas; Rodriguez, Maria-Mirta
2011-05-01
Primary dysferlinopathies are a group of recessive heterogeneous muscular dystrophies. The most common clinical presentations are Miyoshi myopathy and LGMD2B. Additional presentations range from isolated hyperCKemia to severe functional disability. Symptomatology begins in the posterior muscle compartment of the calf and its clinical course progresses slowly in Miyoshi myopathy whereas LGMD2B involves predominantly the proximal muscles of the lower limbs. The age of onset ranges from 13 to 60years in Caucasians. We present five patients that carry a novel mutation in the exon12/intron12 boundary: c.1180_1180+7delAGTGCGTG (r.1054_1284del). We provide evidence of a founder effect due to a common ancestral origin of this mutation, detected in heterozygosity in four patients and in homozygosity in one patient. Copyright © 2011 Elsevier B.V. All rights reserved.
Rapacz, J; Chen, L; Butler-Brunner, E; Wu, M J; Hasler-Rapacz, J O; Butler, R; Schumaker, V N
1991-01-01
The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes. PMID:1996341
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapacz, J.; Hasler-Rapacz, J.O.; Chen, L.
1991-02-15
The probable ancestral haplotype for human apolipoprotein B (apoB) has been identified through immunological analysis of chimpanzee and gorilla serum and sequence analysis of their DNA. Moreover, the frequency of this ancestral apoB haplotype among different human populations provides strong support for the African origin of Homo sapiens sapiens and their subsequent migration from Africa to Europe and to the Pacific. The approach used here for the identification of the ancestral human apoB haplotype is likely to be applicable to many other genes.
ERIC Educational Resources Information Center
Guindon, Rene; Poulin, Pierre
This text examines the ties that bind Francophones across Canada to illustrate the diversity and depth of the Canadian Francophone community. Observations are organized into seven chapters. The first looks at the kinship ties of Canadian Francophones, including common ancestral origins, settlement of the Francophone regions, and existence of two…
Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements.
Lewis, Samuel H; Quarles, Kaycee A; Yang, Yujing; Tanguy, Melanie; Frézal, Lise; Smith, Stephen A; Sharma, Prashant P; Cordaux, Richard; Gilbert, Clément; Giraud, Isabelle; Collins, David H; Zamore, Phillip D; Miska, Eric A; Sarkies, Peter; Jiggins, Francis M
2018-01-01
In animals, small RNA molecules termed PIWI-interacting RNAs (piRNAs) silence transposable elements (TEs), protecting the germline from genomic instability and mutation. piRNAs have been detected in the soma in a few animals, but these are believed to be specific adaptations of individual species. Here, we report that somatic piRNAs were probably present in the ancestral arthropod more than 500 million years ago. Analysis of 20 species across the arthropod phylum suggests that somatic piRNAs targeting TEs and messenger RNAs are common among arthropods. The presence of an RNA-dependent RNA polymerase in chelicerates (horseshoe crabs, spiders and scorpions) suggests that arthropods originally used a plant-like RNA interference mechanism to silence TEs. Our results call into question the view that the ancestral role of the piRNA pathway was to protect the germline and demonstrate that small RNA silencing pathways have been repurposed for both somatic and germline functions throughout arthropod evolution.
The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.
Cavalier-Smith, T
2002-03-01
Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast ancestrally biciliate clade, named 'bikonts'. The apparently conflicting rRNA and protein trees can be reconciled with each other and this ultrastructural interpretation if long-branch distortions, some mechanistically explicable, are allowed for. Bikonts comprise two groups: corticoflagellates, with a younger anterior cilium, no centrosomal cone and ancestrally a semi-rigid cell cortex with a microtubular band on either side of the posterior mature centriole; and Rhizaria [a new infrakingdom comprising Cercozoa (now including Ascetosporea classis nov.), Retaria phylum nov., Heliozoa and Apusozoa phylum nov.], having a centrosomal cone or radiating microtubules and two microtubular roots and a soft surface, frequently with reticulopodia. Corticoflagellates comprise photokaryotes (Plantae and chromalveolates, both ancestrally with cortical alveoli) and Excavata (a new protozoan infrakingdom comprising Loukozoa, Discicristata and Archezoa, ancestrally with three microtubular roots). All basal eukaryotic radiations were of mitochondrial aerobes; hydrogenosomes evolved polyphyletically from mitochondria long afterwards, the persistence of their double envelope long after their genomes disappeared being a striking instance of membrane heredity. I discuss the relationship between the 13 protozoan phyla recognized here and revise higher protozoan classification by updating as subkingdoms Lankester's 1878 division of Protozoa into Corticata (Excavata, Alveolata; with prominent cortical microtubules and ancestrally localized cytostome--the Parabasalia probably secondarily internalized the cytoskeleton) and Gymnomyxa [infrakingdoms Sarcomastigota (Choanozoa, Amoebozoa) and Rhizaria; both ancestrally with a non-cortical cytoskeleton of radiating singlet microtubules and a relatively soft cell surface with diffused feeding]. As the eukaryote root almost certainly lies within Gymnomyxa, probably among the Sarcomastigota, Corticata are derived. Following the single symbiogenetic origin of chloroplasts in a corticoflagellate host with cortical alveoli, this ancestral plant radiated rapidly into glaucophytes, green plants and red algae. Secondary symbiogeneses subsequently transferred plastids laterally into different hosts, making yet more complex cell chimaeras--probably only thrice: from a red alga to the corticoflagellate ancestor of chromalveolates (Chromista plus Alveolata), from green algae to a secondarily uniciliate cercozoan to form chlorarachneans and independently to a biciliate excavate to yield photosynthetic euglenoids. Tertiary symbiogenesis involving eukaryotic algal symbionts replaced peridinin-containing plastids in two or three dinoflagellate lineages, but yielded no major novel groups. The origin and well-resolved primary bifurcation of eukaryotes probably occurred in the Cryogenian Period, about 850 million years ago, much more recently than suggested by unwarranted backward extrapolations of molecular 'clocks' or dubious interpretations as 'eukaryotic' of earlier large microbial fossils or still more ancient steranes. The origin of chloroplasts and the symbiogenetic incorporation of a red alga into a corticoflagellate to create chromalveolates may both have occurred in a big bang after the Varangerian snowball Earth melted about 580 million years ago, thereby stimulating the ensuing Cambrian explosion of animals and protists in the form of simultaneous, poorly resolved opisthokont and anterokont radiations.
Buckley, Christopher D.
2012-01-01
The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data. PMID:23272211
Adaptive Memory: Ancestral Priorities and the Mnemonic Value of Survival Processing
ERIC Educational Resources Information Center
Nairne, James S.; Pandeirada, Josefa N. S.
2010-01-01
Evolutionary psychologists often propose that humans carry around "stone-age" brains, along with a toolkit of cognitive adaptations designed originally to solve hunter-gatherer problems. This perspective predicts that optimal cognitive performance might sometimes be induced by ancestrally-based problems, those present in ancestral environments,…
Kang, Ji Hyoun; Schartl, Manfred; Walter, Ronald B; Meyer, Axel
2013-01-29
Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.
Shibata, Darryl K; Kern, Scott E
2008-01-01
Cancer stem cells either could be rare or common in tumors, constituting the major distinction between the two fundamentally opposed theoretical models of tumor progression: A newer and restrictive stem cell propagation model, in which the stem cells are a small and special minority of the tumor cells, and a standard older model, an unrestricted cell proliferation theory, in which many or most tumor cells are capable of indefinite generations of cell division. Stem cells of tumors are difficult to quantitate using functional assays, and the validity of the most common assays is seriously questioned. Nonetheless, stem cells are an essential component of any tumorigenesis model. Alternative approaches to studying tumor stem cells should be explored. Cell populations can be conceived of as having a genealogy, a relationship of cells to their ancestral lineage, from the zygote to the adult cells or neoplasms. Models using ancestral trees thus offer an anatomic and genetic means to "observe" stem cells independent of artificial conditions. Ancestral trees broaden our attention backward along a lineage, to the zygote stage, and thereby add insight into how the mutations of tumors accumulate. It is possible that a large fraction of mutations in a tumor originate from normal, endogenous, replication errors (nearly all being passenger mutations) occurring prior to the emergence of the first transformed cell. Trees can be constructed from experimental measurements - molecular clocks - of real human tissues and tumors. Detailed analysis of single-cell methylation patterns, heritable yet slightly plastic, now can provide this information in the necessary depth. Trees based on observations of molecular clocks may help us to distinguish between competing theories regarding the proliferative properties among cells of actual human tumors, to observe subtle and difficult phenomena such as the extinction of stem lineages, and to address the origins and rates of mutations in various normal, hormone-stimulated, aging, or neoplastic tissues. The simple concept that cancers arise from the transformation of a normal stem cell, the stem cell origination theory, is sometimes superficially and confusingly referred to as "the stem cell theory". This concept is compatible with but not a requisite assumption for both of the major competing theories of tumor progression, and plays essentially no role in clarifying the nature of tumor progression.
Molecular phylogeography of canine distemper virus: Geographic origin and global spreading.
Panzera, Yanina; Sarute, Nicolás; Iraola, Gregorio; Hernández, Martín; Pérez, Ruben
2015-11-01
Canine distemper virus (CDV) (Paramyxoviridae-Morbillivirus) is a worldwide spread virus causing a fatal systemic disease in a broad range of carnivore hosts. In this study we performed Bayesian inferences using 208 full-length hemagglutinin gene nucleotide sequences isolated in 16 countries during 37 years (1975-2011). The estimated time to the most recent common ancestor suggested that current CDV strains emerged in the United States in the 1880s. This ancestor diversified through time into two ancestral clades, the current America 1 lineage that recently spread to Asia, and other ancestral clade that diversified and spread worldwide to originate the remaining eight lineages characterized to date. The spreading of CDV was characterized by several migratory events with posterior local differentiation, and expansion of the virus host range. A significant genetic flow between domestic and wildlife hosts is displayed; being domestic hosts the main viral reservoirs worldwide. This study is an extensive and integrative description of spatio/temporal population dynamics of CDV lineages that provides a novel evolutionary paradigm about the origin and dissemination of the current strains of the virus. Copyright © 2015 Elsevier Inc. All rights reserved.
Wu, Yonghua; Wang, Haifeng; Hadly, Elizabeth A
2017-04-20
Nocturnality is a key evolutionary innovation of mammals that enables mammals to occupy relatively empty nocturnal niches. Invasion of ancestral mammals into nocturnality has long been inferred from the phylogenetic relationships of crown Mammalia, which is primarily nocturnal, and crown Reptilia, which is primarily diurnal, although molecular evidence for this is lacking. Here we used phylogenetic analyses of the vision genes involved in the phototransduction pathway to predict the diel activity patterns of ancestral mammals and reptiles. Our results demonstrated that the common ancestor of the extant Mammalia was dominated by positive selection for dim-light vision, supporting the predominate nocturnality of the ancestral mammals. Further analyses showed that the nocturnality of the ancestral mammals was probably derived from the predominate diurnality of the ancestral amniotes, which featured strong positive selection for bright-light vision. Like the ancestral amniotes, the common ancestor of the extant reptiles and various taxa in Squamata, one of the main competitors of the temporal niches of the ancestral mammals, were found to be predominate diurnality as well. Despite this relatively apparent temporal niche partitioning between ancestral mammals and the relevant reptiles, our results suggested partial overlap of their temporal niches during crepuscular periods.
Jaruzelska, J; Zietkiewicz, E; Batzer, M; Cole, D E; Moisan, J P; Scozzari, R; Tavaré, S; Labuda, D
1999-01-01
With 10 segregating sites (simple nucleotide polymorphisms) in the last intron (1089 bp) of the ZFX gene we have observed 11 haplotypes in 336 chromosomes representing a worldwide array of 15 human populations. Two haplotypes representing 77% of all chromosomes were distributed almost evenly among four continents. Five of the remaining haplotypes were detected in Africa and 4 others were restricted to Eurasia and the Americas. Using the information about the ancestral state of the segregating positions (inferred from human-great ape comparisons), we applied coalescent analysis to estimate the age of the polymorphisms and the resulting haplotypes. The oldest haplotype, with the ancestral alleles at all the sites, was observed at low frequency only in two groups of African origin. Its estimated age of 740 to 1100 kyr corresponded to the time to the most recent common ancestor. The two most frequent worldwide distributed haplotypes were estimated at 550 to 840 and 260 to 400 kyr, respectively, while the age of the continentally restricted polymorphisms was 120 to 180 kyr and smaller. Comparison of spatial and temporal distribution of the ZFX haplotypes suggests that modern humans diverged from the common ancestral stock in the Middle Paleolithic era. Subsequent range expansion prevented substantial gene flow among continents, separating African groups from populations that colonized Eurasia and the New World. PMID:10388827
Jaruzelska, J; Zietkiewicz, E; Batzer, M; Cole, D E; Moisan, J P; Scozzari, R; Tavaré, S; Labuda, D
1999-07-01
With 10 segregating sites (simple nucleotide polymorphisms) in the last intron (1089 bp) of the ZFX gene we have observed 11 haplotypes in 336 chromosomes representing a worldwide array of 15 human populations. Two haplotypes representing 77% of all chromosomes were distributed almost evenly among four continents. Five of the remaining haplotypes were detected in Africa and 4 others were restricted to Eurasia and the Americas. Using the information about the ancestral state of the segregating positions (inferred from human-great ape comparisons), we applied coalescent analysis to estimate the age of the polymorphisms and the resulting haplotypes. The oldest haplotype, with the ancestral alleles at all the sites, was observed at low frequency only in two groups of African origin. Its estimated age of 740 to 1100 kyr corresponded to the time to the most recent common ancestor. The two most frequent worldwide distributed haplotypes were estimated at 550 to 840 and 260 to 400 kyr, respectively, while the age of the continentally restricted polymorphisms was 120 to 180 kyr and smaller. Comparison of spatial and temporal distribution of the ZFX haplotypes suggests that modern humans diverged from the common ancestral stock in the Middle Paleolithic era. Subsequent range expansion prevented substantial gene flow among continents, separating African groups from populations that colonized Eurasia and the New World.
Wu, Yonghua; Wang, Haifeng; Hadly, Elizabeth A.
2017-01-01
Nocturnality is a key evolutionary innovation of mammals that enables mammals to occupy relatively empty nocturnal niches. Invasion of ancestral mammals into nocturnality has long been inferred from the phylogenetic relationships of crown Mammalia, which is primarily nocturnal, and crown Reptilia, which is primarily diurnal, although molecular evidence for this is lacking. Here we used phylogenetic analyses of the vision genes involved in the phototransduction pathway to predict the diel activity patterns of ancestral mammals and reptiles. Our results demonstrated that the common ancestor of the extant Mammalia was dominated by positive selection for dim-light vision, supporting the predominate nocturnality of the ancestral mammals. Further analyses showed that the nocturnality of the ancestral mammals was probably derived from the predominate diurnality of the ancestral amniotes, which featured strong positive selection for bright-light vision. Like the ancestral amniotes, the common ancestor of the extant reptiles and various taxa in Squamata, one of the main competitors of the temporal niches of the ancestral mammals, were found to be predominate diurnality as well. Despite this relatively apparent temporal niche partitioning between ancestral mammals and the relevant reptiles, our results suggested partial overlap of their temporal niches during crepuscular periods. PMID:28425474
2013-01-01
Background Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. Conclusions This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally. PMID:23360326
Kretschmer, Rafael; de Oliveira Furo, Ivanete; Gunski, Ricardo José; Del Valle Garnero, Analía; Pereira, Jorge C; O'Brien, Patricia C M; Ferguson-Smith, Malcolm A; de Oliveira, Edivaldo Herculano Corrêa; de Freitas, Thales Renato Ochotorena
2018-06-07
Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the karyotype evolution within Columbiformes remains unclear. To delineate the synteny-conserved segments and karyotypic differences among four Columbidae species, we used chromosome painting from Gallus gallus (GGA, 2n = 78) and Leucopternis albicollis (LAL, 2n = 68). Besides that, a set of painting probes for the eared dove, Zenaida auriculata (ZAU, 2n = 76), was generated from flow-sorted chromosomes. Chromosome painting with GGA and ZAU probes showed conservation of the first ten ancestral pairs in Z. auriculata, Columba livia, and Columbina picui, while in Leptotila verreauxi, fusion of the ancestral chromosomes 6 and 7 was observed. However, LAL probes revealed a complex reorganization of ancestral chromosome 1, involving paracentric and pericentric inversions. Because of the presence of similar intrachromosomal rearrangements in the chromosomes corresponding to GGA1q in the Columbidae and Passeriformes species but without a common origin, these results are consistent with the recent proposal of divergence within Neoaves (Passerea and Columbea). In addition, inversions in chromosome 2 were identified in C. picui and L. verreauxi. Thus, in four species of distinct genera of the Columbidae family, unique chromosomal rearrangements have occurred during karyotype evolution, confirming that despite conservation of the ancestral syntenic groups, these chromosomes have been modified by the occurrence of intrachromosomal rearrangements.
A phylogeographic investigation of the hybrid origin of a species of swordtail fish from Mexico.
Jones, Julia C; Perez-Sato, Juan-Antonio; Meyer, Axel
2012-06-01
Hybrid speciation may contribute significantly to generating biodiversity, but only a few well-documented examples for it exist so far that do not involve polyploidization as a mechanism. The swordtail fish, Xiphophorus clemenciae, shows common hallmarks of a hybrid origin and still overlaps in its current geographic distribution with its putative ancestral species (Xiphophorus hellerii and Xiphophorus maculatus). Xiphophorus clemenciae provides an ideal system for investigating the possible continued genetic interactions between a hybrid and its parental species. Here, we use microsatellite and mitochondrial markers to investigate the population structure of these species of swordtails and search for signs of recent hybridization. Individuals were sampled from 21 localities across the known range of X. clemenciae- the Isthmus of Tehuantepec (IT) Mexico, and several environmental parameters that might represent barriers to dispersal were recorded. The hybridization event that gave rise to X. clemenciae appears to be rather ancient, and a single origin is likely. We find negligible evidence for ongoing hybridization and introgression between the putative ancestral species, because they now occupy distinct ecological niches, and a common haplotype is shared by most populations of X. clemenciae. The population structure within these species shows an isolation-by-distance (IBD) pattern and genetic differentiation between most populations is significant and high. We infer that tectonic evolution in the Isthmus has greatly restricted gene flow between the southern and central IT populations of X. clemenciae and X. helleriii and provide preliminary information to aid in conservation management of this geographically restricted hybrid species, X. clemenciae. © 2012 Blackwell Publishing Ltd.
Shinomiya, Kazunori; Takemura, Shin-ya; Rivlin, Patricia K.; Plaza, Stephen M.; Scheffer, Louis K.; Meinertzhagen, Ian A.
2015-01-01
Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin. PMID:26217193
A Universal Trend among Proteomes Indicates an Oily Last Common Ancestor
Mannige, Ranjan V.; Brooks, Charles L.; Shakhnovich, Eugene I.
2012-01-01
Despite progresses in ancestral protein sequence reconstruction, much needs to be unraveled about the nature of the putative last common ancestral proteome that served as the prototype of all extant lifeforms. Here, we present data that indicate a steady decline (oil escape) in proteome hydrophobicity over species evolvedness (node number) evident in 272 diverse proteomes, which indicates a highly hydrophobic (oily) last common ancestor (LCA). This trend, obtained from simple considerations (free from sequence reconstruction methods), was corroborated by regression studies within homologous and orthologous protein clusters as well as phylogenetic estimates of the ancestral oil content. While indicating an inherent irreversibility in molecular evolution, oil escape also serves as a rare and universal reaction-coordinate for evolution (reinforcing Darwin's principle of Common Descent), and may prove important in matters such as (i) explaining the emergence of intrinsically disordered proteins, (ii) developing composition- and speciation-based “global” molecular clocks, and (iii) improving the statistical methods for ancestral sequence reconstruction. PMID:23300421
Hernández Torres, Jorge; Papandreou, Nikolaos; Chomilier, Jacques
2009-05-01
The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR-DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR-DP domains.
The evolution of vertebral formulae in Hominoidea.
Thompson, Nathan E; Almécija, Sergio
2017-09-01
Primate vertebral formulae have long been investigated because of their link to locomotor behavior and overall body plan. Knowledge of the ancestral vertebral formulae in the hominoid tree of life is necessary to interpret the pattern of evolution among apes, and to critically evaluate the morphological adaptations involved in the transition to hominin bipedalism. Though many evolutionary hypotheses have been proposed based on living and fossil species, the application of quantitative phylogenetic methods for thoroughly reconstructing ancestral vertebral formulae and formally testing patterns of vertebral evolution is lacking. To estimate the most probable scenarios of hominoid vertebral evolution, we utilized an iterative ancestral state reconstruction approach to determine likely ancestral vertebral counts in apes, humans, and other anthropoid out-groups. All available ape and hominin fossil taxa with an inferred regional vertebral count were included in the analysis. Sensitivity iterations were performed both by changing the phylogenetic position of fossil taxa with a contentious placement, and by changing the inferred number of vertebrae in taxa with uncertain morphology. Our ancestral state reconstruction results generally support a short-backed hypothesis of human evolution, with a Pan-Homo last common ancestor possessing a vertebral formulae of 7:13:4:6 (cervical:thoracic:lumbar:sacral). Our results indicate that an initial reduction in lumbar vertebral count and increase in sacral count is a synapomorphy of crown hominoids (supporting an intermediate-backed hypothesis for the origins of the great ape-human clade). Further reduction in lumbar count occurs independently in orangutans and African apes. Our results highlight the complexity and homoplastic nature of vertebral count evolution, and give little support to the long-backed hypothesis of human evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peng, Yingmei; Cai, Jing; Wang, Wen; Su, Bing
2012-01-01
Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.
Cardona-Castro, Nora; Cortés, Edwin; Beltrán, Camilo; Romero, Marcela; Badel-Mogollón, Jaime E; Bedoya, Gabriel
2015-01-01
Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean) in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers), Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations.
Cardona-Castro, Nora; Cortés, Edwin; Beltrán, Camilo; Romero, Marcela; Badel-Mogollón, Jaime E.; Bedoya, Gabriel
2015-01-01
Recent reports have suggested that leprosy originated in Africa, extended to Asia and Europe, and arrived in the Americas during European colonization and the African slave trade. Due to colonization, the contemporary Colombian population is an admixture of Native-American, European and African ancestries. Because microorganisms are known to accompany humans during migrations, patterns of human migration can be traced by examining genomic changes in associated microbes. The current study analyzed 118 leprosy cases and 116 unrelated controls from two Colombian regions endemic for leprosy (Atlantic and Andean) in order to determine possible associations of leprosy with patient ancestral background (determined using 36 ancestry informative markers), Mycobacterium leprae genotype and/or patient geographical origin. We found significant differences between ancestral genetic composition. European components were predominant in Andean populations. In contrast, African components were higher in the Atlantic region. M. leprae genotypes were then analyzed for cluster associations and compared with the ancestral composition of leprosy patients. Two M. leprae principal clusters were found: haplotypes C54 and T45. Haplotype C54 associated with African origin and was more frequent in patients from the Atlantic region with a high African component. In contrast, haplotype T45 associated with European origin and was more frequent in Andean patients with a higher European component. These results suggest that the human and M. leprae genomes have co-existed since the African and European origins of the disease, with leprosy ultimately arriving in Colombia during colonization. Distinct M. leprae strains followed European and African settlement in the country and can be detected in contemporary Colombian populations. PMID:26360617
Jackson, Hazel; Strubbe, Diederik; Tollington, Simon; Prys-Jones, Robert; Matthysen, Erik; Groombridge, Jim J
2015-01-01
Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring-necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring-necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences. PMID:26172573
Jackson, Hazel; Strubbe, Diederik; Tollington, Simon; Prys-Jones, Robert; Matthysen, Erik; Groombridge, Jim J
2015-08-01
Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring-necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring-necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences. © 2015 John Wiley & Sons Ltd.
Dusatkova, Petra; Pfäffle, Roland; Brown, Milton R; Akulevich, Natallia; Arnhold, Ivo J P; Kalina, Maria A; Kot, Karolina; Krzisnik, Ciril; Lemos, Manuel C; Malikova, Jana; Navardauskaite, Ruta; Obermannova, Barbora; Pribilincova, Zuzana; Sallai, Agnes; Stipancic, Gordana; Verkauskiene, Rasa; Cinek, Ondrej; Blum, Werner F; Parks, John S; Austerlitz, Frederic; Lebl, Jan
2016-03-01
Two variants (c.[301_302delAG];[301_302delAG] and c.[150delA];[150delA]) in the PROP1 gene are the most common genetic causes of recessively inherited combined pituitary hormones deficiency (CPHD). Our objective was to analyze in detail the origin of the two most prevalent variants. In the multicentric study were included 237 patients with CPHD and their 15 relatives carrying c.[301_302delAG];[301_302delAG] or c.[150delA];[150delA] or c.[301_302delAG];[ 150delA]. They originated from 21 different countries worldwide. We genotyped 21 single-nucleotide variant markers flanking the 9.6-Mb region around the PROP1 gene that are not in mutual linkage disequilibrium in the general populations--a finding of a common haplotype would be indicative of ancestral origin of the variant. Haplotypes were reconstructed by Phase and Haploview software, and the variant age was estimated using an allelic association method. We demonstrated the ancestral origin of both variants--c.[301_302delAG] was carried on 0.2 Mb-long haplotype in a majority of European patients arising ~101 generations ago (confidence interval 90.1-116.4). Patients from the Iberian Peninsula displayed a different haplotype, which was estimated to have emerged 23.3 (20.1-29.1) generations ago. Subsequently, the data indicated that both the haplotypes were transmitted to Latin American patients ~13.8 (12.2-17.0) and 16.4 (14.4-20.1) generations ago, respectively. The c.[150delA] variant that was carried on a haplotype spanning about 0.3 Mb was estimated to appear 43.7 (38.4-52.7) generations ago. We present strong evidence that the most frequent variants in the PROP1 gene are not a consequence of variant hot spots as previously assumed, but are founder variants.
The integumentary skeleton of tetrapods: origin, evolution, and development
Vickaryous, Matthew K; Sire, Jean-Yves
2009-01-01
Although often overlooked, the integument of many tetrapods is reinforced by a morphologically and structurally diverse assemblage of skeletal elements. These elements are widely understood to be derivatives of the once all-encompassing dermal skeleton of stem-gnathostomes but most details of their evolution and development remain confused and uncertain. Herein we re-evaluate the tetrapod integumentary skeleton by integrating comparative developmental and tissue structure data. Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans. As presently understood, all are derivatives of the ancestral cosmoid scale and all originate from scleroblastic neural crest cells. Osteoderms are plesiomorphic for tetrapods but demonstrate considerable lineage-specific variability in size, shape, and tissue structure and composition. While metaplastic ossification often plays a role in osteoderm development, it is not the exclusive mode of skeletogenesis. All osteoderms share a common origin within the dermis (at or adjacent to the stratum superficiale) and are composed primarily (but not exclusively) of osseous tissue. These data support the notion that all osteoderms are derivatives of a neural crest-derived osteogenic cell population (with possible matrix contributions from the overlying epidermis) and share a deep homology associated with the skeletogenic competence of the dermis. Gymnophionan dermal scales are structurally similar to the elasmoid scales of most teleosts and are not comparable with osteoderms. Whereas details of development are lacking, it is hypothesized that dermal scales are derivatives of an odontogenic neural crest cell population and that skeletogenesis is comparable with the formation of elasmoid scales. Little is known about the lamina calcarea. It is proposed that this tissue layer is also odontogenic in origin, but clearly further study is necessary. Although not homologous as organs, all elements of the integumentary skeleton share a basic and essential relationship with the integument, connecting them with the ancestral rhombic scale. PMID:19422424
Dusatkova, Petra; Pfäffle, Roland; Brown, Milton R; Akulevich, Natallia; Arnhold, Ivo JP; Kalina, Maria A; Kot, Karolina; Krzisnik, Ciril; Lemos, Manuel C; Malikova, Jana; Navardauskaite, Ruta; Obermannova, Barbora; Pribilincova, Zuzana; Sallai, Agnes; Stipancic, Gordana; Verkauskiene, Rasa; Cinek, Ondrej; Blum, Werner F; Parks, John S; Austerlitz, Frederic; Lebl, Jan
2016-01-01
Two variants (c.[301_302delAG][301_302delAG] and c.[150delA][150delA]) in the PROP1 gene are the most common genetic causes of recessively inherited combined pituitary hormones deficiency (CPHD). Our objective was to analyze in detail the origin of the two most prevalent variants. In the multicentric study were included 237 patients with CPHD and their 15 relatives carrying c.[301_302delAG][301_302delAG] or c.[150delA][150delA] or c.[301_302delAG][ 150delA]. They originated from 21 different countries worldwide. We genotyped 21 single-nucleotide variant markers flanking the 9.6-Mb region around the PROP1 gene that are not in mutual linkage disequilibrium in the general populations – a finding of a common haplotype would be indicative of ancestral origin of the variant. Haplotypes were reconstructed by Phase and Haploview software, and the variant age was estimated using an allelic association method. We demonstrated the ancestral origin of both variants – c.[301_302delAG] was carried on 0.2 Mb-long haplotype in a majority of European patients arising ~101 generations ago (confidence interval 90.1–116.4). Patients from the Iberian Peninsula displayed a different haplotype, which was estimated to have emerged 23.3 (20.1–29.1) generations ago. Subsequently, the data indicated that both the haplotypes were transmitted to Latin American patients ~13.8 (12.2–17.0) and 16.4 (14.4–20.1) generations ago, respectively. The c.[150delA] variant that was carried on a haplotype spanning about 0.3 Mb was estimated to appear 43.7 (38.4–52.7) generations ago. We present strong evidence that the most frequent variants in the PROP1 gene are not a consequence of variant hot spots as previously assumed, but are founder variants. PMID:26059845
Evolution of the Class IV HD-Zip Gene Family in Streptophytes
Zalewski, Christopher S.; Floyd, Sandra K.; Furumizu, Chihiro; Sakakibara, Keiko; Stevenson, Dennis W.; Bowman, John L.
2013-01-01
Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters. PMID:23894141
Lamy, Philippe; Nordentoft, Iver; Birkenkamp-Demtröder, Karin; Thomsen, Mathilde Borg Houlberg; Villesen, Palle; Vang, Søren; Hedegaard, Jakob; Borre, Michael; Jensen, Jørgen Bjerggaard; Høyer, Søren; Pedersen, Jakob Skou; Ørntoft, Torben F; Dyrskjøt, Lars
2016-10-01
Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR. ©2016 American Association for Cancer Research.
Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites.
Yonezawa, Takahiro; Segawa, Takahiro; Mori, Hiroshi; Campos, Paula F; Hongoh, Yuichi; Endo, Hideki; Akiyoshi, Ayumi; Kohno, Naoki; Nishida, Shin; Wu, Jiaqi; Jin, Haofei; Adachi, Jun; Kishino, Hirohisa; Kurokawa, Ken; Nogi, Yoshifumi; Tanabe, Hideyuki; Mukoyama, Harutaka; Yoshida, Kunio; Rasoamiaramanana, Armand; Yamagishi, Satoshi; Hayashi, Yoshihiro; Yoshida, Akira; Koike, Hiroko; Akishinonomiya, Fumihito; Willerslev, Eske; Hasegawa, Masami
2017-01-09
The Palaeognathae comprise the flightless ratites and the volant tinamous, and together with the Neognathae constitute the extant members of class Aves. It is commonly believed that Palaeognathae originated in Gondwana since most of the living species are found in the Southern Hemisphere [1-3]. However, this hypothesis has been questioned because the fossil paleognaths are mostly from the Northern Hemisphere in their earliest time (Paleocene) and possessed many putative ancestral characters [4]. Uncertainties regarding the origin and evolution of Palaeognathae stem from the difficulty in estimating their divergence times [1, 2] and their remarkable morphological convergence. Here, we recovered nuclear genome fragments from extinct elephant birds, which enabled us to reconstruct a reliable phylogenomic time tree for the Palaeognathae. Based on the tree, we identified homoplasies in morphological traits of paleognaths and reconstructed their morphology-based phylogeny including fossil species without molecular data. In contrast to the prevailing theories, the fossil paleognaths from the Northern Hemisphere were placed as the basal lineages. Combined with our stable divergence time estimates that enabled a valid argument regarding the correlation with geological events, we propose a new evolutionary scenario that contradicts the traditional view. The ancestral Palaeognathae were volant, as estimated from their molecular evolutionary rates, and originated during the Late Cretaceous in the Northern Hemisphere. They migrated to the Southern Hemisphere and speciated explosively around the Cretaceous-Paleogene boundary. They then extended their distribution to the Gondwana-derived landmasses, such as New Zealand and Madagascar, by overseas dispersal. Gigantism subsequently occurred independently on each landmass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pereira, Rui; Phillips, Christopher; Pinto, Nádia; Santos, Carla; dos Santos, Sidney Emanuel Batista; Amorim, António; Carracedo, Ángel; Gusmão, Leonor
2012-01-01
Ancestry-informative markers (AIMs) show high allele frequency divergence between different ancestral or geographically distant populations. These genetic markers are especially useful in inferring the likely ancestral origin of an individual or estimating the apportionment of ancestry components in admixed individuals or populations. The study of AIMs is of great interest in clinical genetics research, particularly to detect and correct for population substructure effects in case-control association studies, but also in population and forensic genetics studies. This work presents a set of 46 ancestry-informative insertion deletion polymorphisms selected to efficiently measure population admixture proportions of four different origins (African, European, East Asian and Native American). All markers are analyzed in short fragments (under 230 basepairs) through a single PCR followed by capillary electrophoresis (CE) allowing a very simple one tube PCR-to-CE approach. HGDP-CEPH diversity panel samples from the four groups, together with Oceanians, were genotyped to evaluate the efficiency of the assay in clustering populations from different continental origins and to establish reference databases. In addition, other populations from diverse geographic origins were tested using the HGDP-CEPH samples as reference data. The results revealed that the AIM-INDEL set developed is highly efficient at inferring the ancestry of individuals and provides good estimates of ancestry proportions at the population level. In conclusion, we have optimized the multiplexed genotyping of 46 AIM-INDELs in a simple and informative assay, enabling a more straightforward alternative to the commonly available AIM-SNP typing methods dependent on complex, multi-step protocols or implementation of large-scale genotyping technologies. PMID:22272242
Origin of life in a digital microcosm
NASA Astrophysics Data System (ADS)
C G, Nitash; LaBar, Thomas; Hintze, Arend; Adami, Christoph
2017-11-01
While all organisms on Earth share a common descent, there is no consensus on whether the origin of the ancestral self-replicator was a one-off event or whether it only represented the final survivor of multiple origins. Here, we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analysed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We also studied the differential ability of replicators to take over the population when competed against each other, akin to a primordial-soup model of biogenesis, and found that the probability of a self-replicator outcompeting the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Libiger, Ondrej; Schork, Nicholas J.
2013-01-01
The determination of the ancestry and genetic backgrounds of the subjects in genetic and general epidemiology studies is a crucial component in the analysis of relevant outcomes or associations. Although there are many methods for differentiating ancestral subgroups among individuals based on genetic markers only a few of these methods provide actual estimates of the fraction of an individual’s genome that is likely to be associated with different ancestral populations. We propose a method for assigning ancestry that works in stages to refine estimates of ancestral population contributions to individual genomes. The method leverages genotype data in the public domain obtained from individuals with known ancestries. Although we showcase the method in the assessment of ancestral genome proportions leveraging largely continental populations, the strategy can be used for assessing within-continent or more subtle ancestral origins with the appropriate data. PMID:23335941
Papandreou, Nikolaos; Chomilier, Jacques
2008-01-01
The co-chaperone Hop [heat shock protein (HSP) organising protein] is known to bind both Hsp70 and Hsp90. Hop comprises three repeats of a tetratricopeptide repeat (TPR) domain, each consisting of three TPR motifs. The first and last TPR domains are followed by a domain containing several dipeptide (DP) repeats called the DP domain. These analyses suggest that the hop genes result from successive recombination events of an ancestral TPR–DP module. From a hydrophobic cluster analysis of homologous Hop protein sequences derived from gene families, we can postulate that shifts in the open reading frames are at the origin of the present sequences. Moreover, these shifts can be related to the presence or absence of biological function. We propose to extend the family of Hop co-chaperons into the kingdom of bacteria, as several structurally related genes have been identified by hydrophobic cluster analysis. We also provide evidence of common structural characteristics between hop and hip genes, suggesting a shared precursor of ancestral TPR–DP domains. Electronic supplementary material The online version of this article (doi:10.1007/s12192-008-0083-8) contains supplementary material, which is available to authorized users. PMID:18987995
Lynch, Jeremy A.; Özüak, Orhan; Khila, Abderrahman; Abouheif, Ehab; Desplan, Claude; Roth, Siegfried
2011-01-01
The establishment of the germline is a critical, yet surprisingly evolutionarily labile, event in the development of sexually reproducing animals. In the fly Drosophila, germ cells acquire their fate early during development through the inheritance of the germ plasm, a specialized maternal cytoplasm localized at the posterior pole of the oocyte. The gene oskar (osk) is both necessary and sufficient for assembling this substance. Both maternal germ plasm and oskar are evolutionary novelties within the insects, as the germline is specified by zygotic induction in basally branching insects, and osk has until now only been detected in dipterans. In order to understand the origin of these evolutionary novelties, we used comparative genomics, parental RNAi, and gene expression analyses in multiple insect species. We have found that the origin of osk and its role in specifying the germline coincided with the innovation of maternal germ plasm and pole cells at the base of the holometabolous insects and that losses of osk are correlated with changes in germline determination strategies within the Holometabola. Our results indicate that the invention of the novel gene osk was a key innovation that allowed the transition from the ancestral late zygotic mode of germline induction to a maternally controlled establishment of the germline found in many holometabolous insect species. We propose that the ancestral role of osk was to connect an upstream network ancestrally involved in mRNA localization and translational control to a downstream regulatory network ancestrally involved in executing the germ cell program. PMID:21552321
The historical biogeography of Mammalia
Springer, Mark S.; Meredith, Robert W.; Janecka, Jan E.; Murphy, William J.
2011-01-01
Palaeobiogeographic reconstructions are underpinned by phylogenies, divergence times and ancestral area reconstructions, which together yield ancestral area chronograms that provide a basis for proposing and testing hypotheses of dispersal and vicariance. Methods for area coding include multi-state coding with a single character, binary coding with multiple characters and string coding. Ancestral reconstruction methods are divided into parsimony versus Bayesian/likelihood approaches. We compared nine methods for reconstructing ancestral areas for placental mammals. Ambiguous reconstructions were a problem for all methods. Important differences resulted from coding areas based on the geographical ranges of extant species versus the geographical provenance of the oldest fossil for each lineage. Africa and South America were reconstructed as the ancestral areas for Afrotheria and Xenarthra, respectively. Most methods reconstructed Eurasia as the ancestral area for Boreoeutheria, Euarchontoglires and Laurasiatheria. The coincidence of molecular dates for the separation of Afrotheria and Xenarthra at approximately 100 Ma with the plate tectonic sundering of Africa and South America hints at the importance of vicariance in the early history of Placentalia. Dispersal has also been important including the origins of Madagascar's endemic mammal fauna. Further studies will benefit from increased taxon sampling and the application of new ancestral area reconstruction methods. PMID:21807730
Mitochondrial Capture Misleads about Ecological Speciation in the Daphnia pulex Complex
Marková, Silvia; Dufresne, France; Manca, Marina; Kotlík, Petr
2013-01-01
The North American ecological species Daphnia pulicaria and Daphnia pulex are thought to have diverged from a common ancestor by adaptation to sympatric but ecologically distinct lake and pond habitats respectively. Based on mtDNA relationships, European D . pulicaria is considered a different species only distantly related to its North American counterpart, but both species share a lactate dehydrogenase (Ldh) allele F supposedly involved in lake adaptation in North America, and the same allele is also carried by the related Holarctic Daphnia tenebrosa . The correct inference of the species’ ancestral relationships is therefore critical for understanding the origin of their adaptive divergence. Our species tree inferred from unlinked nuclear loci for D . pulicaria and D . pulex resolved the European and North American D . pulicaria as sister clades, and we argue that the discordant mtDNA gene tree is best explained by capture of D . pulex mtDNA by D . pulicaria in North America. The Ldh gene tree shows that F-class alleles in D . pulicaria and D . tenebrosa are due to common descent (as opposed to introgression), with D . tenebrosa alleles paraphyletic with respect to D . pulicaria alleles. That D . tenebrosa still segregates the ancestral and derived amino acids at the two sites distinguishing the pond and lake alleles suggests that D . pulicaria inherited the derived states from the D . tenebrosa ancestry. Our results suggest that some adaptations restricting the gene flow between D . pulicaria and D . pulex might have evolved in response to selection in ancestral environments rather than in the species’ current sympatric habitats. The Arctic ( D . tenebrosa ) populations are likely to provide important clues about these issues. PMID:23869244
Rebscher, Nicole; Deichmann, Christina; Sudhop, Stefanie; Fritzenwanker, Jens Holger; Green, Stephen; Hassel, Monika
2009-10-01
We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.
A Joint Prosodic Origin of Language and Music
Brown, Steven
2017-01-01
Vocal theories of the origin of language rarely make a case for the precursor functions that underlay the evolution of speech. The vocal expression of emotion is unquestionably the best candidate for such a precursor, although most evolutionary models of both language and speech ignore emotion and prosody altogether. I present here a model for a joint prosodic precursor of language and music in which ritualized group-level vocalizations served as the ancestral state. This precursor combined not only affective and intonational aspects of prosody, but also holistic and combinatorial mechanisms of phrase generation. From this common stage, there was a bifurcation to form language and music as separate, though homologous, specializations. This separation of language and music was accompanied by their (re)unification in songs with words. PMID:29163276
Recreating a functional ancestral archosaur visual pigment.
Chang, Belinda S W; Jönsson, Karolina; Kazmi, Manija A; Donoghue, Michael J; Sakmar, Thomas P
2002-09-01
The ancestors of the archosaurs, a major branch of the diapsid reptiles, originated more than 240 MYA near the dawn of the Triassic Period. We used maximum likelihood phylogenetic ancestral reconstruction methods and explored different models of evolution for inferring the amino acid sequence of a putative ancestral archosaur visual pigment. Three different types of maximum likelihood models were used: nucleotide-based, amino acid-based, and codon-based models. Where possible, within each type of model, likelihood ratio tests were used to determine which model best fit the data. Ancestral reconstructions of the ancestral archosaur node using the best-fitting models of each type were found to be in agreement, except for three amino acid residues at which one reconstruction differed from the other two. To determine if these ancestral pigments would be functionally active, the corresponding genes were chemically synthesized and then expressed in a mammalian cell line in tissue culture. The expressed artificial genes were all found to bind to 11-cis-retinal to yield stable photoactive pigments with lambda(max) values of about 508 nm, which is slightly redshifted relative to that of extant vertebrate pigments. The ancestral archosaur pigments also activated the retinal G protein transducin, as measured in a fluorescence assay. Our results show that ancestral genes from ancient organisms can be reconstructed de novo and tested for function using a combination of phylogenetic and biochemical methods.
Harrington, S; Reeder, T W
2017-02-01
The binary-state speciation and extinction (BiSSE) model has been used in many instances to identify state-dependent diversification and reconstruct ancestral states. However, recent studies have shown that the standard procedure of comparing the fit of the BiSSE model to constant-rate birth-death models often inappropriately favours the BiSSE model when diversification rates vary in a state-independent fashion. The newly developed HiSSE model enables researchers to identify state-dependent diversification rates while accounting for state-independent diversification at the same time. The HiSSE model also allows researchers to test state-dependent models against appropriate state-independent null models that have the same number of parameters as the state-dependent models being tested. We reanalyse two data sets that originally used BiSSE to reconstruct ancestral states within squamate reptiles and reached surprising conclusions regarding the evolution of toepads within Gekkota and viviparity across Squamata. We used this new method to demonstrate that there are many shifts in diversification rates across squamates. We then fit various HiSSE submodels and null models to the state and phylogenetic data and reconstructed states under these models. We found that there is no single, consistent signal for state-dependent diversification associated with toepads in gekkotans or viviparity across all squamates. Our reconstructions show limited support for the recently proposed hypotheses that toepads evolved multiple times independently in Gekkota and that transitions from viviparity to oviparity are common in Squamata. Our results highlight the importance of considering an adequate pool of models and null models when estimating diversification rate parameters and reconstructing ancestral states. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Borba, Ana Rita; Serra, Tânia S; Górska, Alicja; Gouveia, Paulo; Cordeiro, André M; Reyna-Llorens, Ivan; Knerová, Jana; Barros, Pedro M; Abreu, Isabel A; Oliveira, M Margarida; Hibberd, Julian M; Saibo, Nelson J M
2018-04-05
C4 photosynthesis has evolved repeatedly from the ancestral C3 state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialised form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C4 cycle is accomplished through cell-type specific accumulation of enzymes but cis-elements and transcription factors controlling C4 photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we tested whether mechanisms impacting on transcription in C4 plants evolved from ancestral components found in C3 species. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C4NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C3 and C4 Panicoid grass species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C3 state. We conclude that C4 photosynthesis has co-opted an ancient C3 regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C4 photosynthesis.
Yegorov, Sergey; Good, Sara
2012-01-01
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families. PMID:22470432
Ismail, Siti Izera; Batzer, Jean Carlson; Harrington, Thomas C; Crous, Pedro W; Lavrov, Dennis V; Li, Huanyu; Gleason, Mark L
2016-01-01
Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi. © 2016 by The Mycological Society of America.
Intricacies in arrangement of SNP haplotypes suggest "Great Admixture" that created modern humans.
Dutta, Rajib; Mainsah, Joseph; Yatskiv, Yuriy; Chakrabortty, Sharmistha; Brennan, Patrick; Khuder, Basil; Qiu, Shuhao; Fedorova, Larisa; Fedorov, Alexei
2017-06-05
Inferring history from genomic sequences is challenging and problematic because chromosomes are mosaics of thousands of small Identicalby-descent (IBD) fragments, each of them having their own unique story. However, the main events in recent evolution might be deciphered from comparative analysis of numerous loci. A paradox of why humans, whose effective population size is only 10 4 , have nearly three million frequent SNPs is formulated and examined. We studied 5398 loci evenly covering all human autosomes. Common haplotypes built from frequent SNPs that are present in people from various populations have been examined. We demonstrated highly non-random arrangement of alleles in common haplotypes. Abundance of mutually exclusive pairs of common haplotypes that have different alleles at every polymorphic position (so-called Yin/Yang haplotypes) was found in 56% of loci. A novel widely spread category of common haplotypes named Mosaic has been described. Mosaic consists of numerous pieces of Yin/Yang haplotypes and represents an ancestral stage of one of them. Scenarios of possible appearance of large number of frequent human SNPs and their habitual arrangement in Yin/Yang common haplotypes have been evaluated with an advanced genomic simulation algorithm. Computer modeling demonstrated that the observed arrangement of 2.9 million frequent SNPs could not originate from a sole stand-alone population. A "Great Admixture" event has been proposed that can explain peculiarities with frequent SNP distributions. This Great Admixture presumably occurred 100-300 thousand years ago between two ancestral populations that had been separated from each other about a million years ago. Our programs and algorithms can be applied to other species to perform evolutionary and comparative genomics.
Non-sister Sri Lankan white-eyes (genus Zosterops) are a result of independent colonizations
Wickramasinghe, Nelum; Robin, V. V.; Ramakrishnan, Uma; Reddy, Sushma
2017-01-01
Co-occurrence of closely related taxa on islands could be attributed to sympatric speciation or multiple colonization. Sympatric speciation is considered to be rare in small islands, however multiple colonizations are known to be common in both oceanic and continental islands. In this study we investigated the phylogenetic relatedness and means of origin of the two sympatrically co-occurring Zosterops white-eyes, the endemic Zosterops ceylonensis and its widespread regional congener Z. palpebrosus, in the island of Sri Lanka. Sri Lanka is a continental island in the Indian continental shelf of the Northern Indian Ocean. Our multivariate morphometric analyses confirmed the phenotypic distinctness of the two species. Maximum Likelihood and Bayesian phylogenetic analyses with ~2000bp from two mitochondrial (ND2 and ND3) and one nuclear (TGF) gene indicated that they are phylogenetically distinct, and not sister to each other. The two subspecies of the peninsula India; Z. p. egregius of Sri Lanka and India and Z. p. nilgiriensis of Western Ghats (India) clustered within the Z. palpebrosus clade having a common ancestor. In contrast, the divergence of the endemic Z. ceylonensis appears to be much deeper and is basal to the other Zosterops white-eyes. Therefore we conclude that the two Zosterops species originated in the island through independent colonizations from different ancestral lineages, and not through island speciation or multiple colonization from the same continental ancestral population. Despite high endemism, Sri Lankan biodiversity is long considered to be a subset of southern India. This study on a speciose group with high dispersal ability and rapid diversification rate provide evidence for the contribution of multiple colonizations in shaping Sri Lanka’s biodiversity. It also highlights the complex biogeographic patterns of the South Asian region, reflected even in highly vagile groups such as birds. PMID:28792950
Retracing Evolution of Red Fluorescence in GFP-Like Proteins from Faviina Corals
Field, Steven F.; Matz, Mikhail V.
2010-01-01
Proteins of the green fluorescent protein family represent a convenient experimental model to study evolution of novelty at the molecular level. Here, we focus on the origin of Kaede-like red fluorescent proteins characteristic of the corals of the Faviina suborder. We demonstrate, using an original approach involving resurrection and analysis of the library of possible evolutionary intermediates, that it takes on the order of 12 mutations, some of which strongly interact epistatically, to fully recapitulate the evolution of a red fluorescent phenotype from the ancestral green. Five of the identified mutations would not have been found without the help of ancestral reconstruction, because the corresponding site states are shared between extant red and green proteins due to their recent descent from a dual-function common ancestor. Seven of the 12 mutations affect residues that are not in close contact with the chromophore and thus must exert their effect indirectly through adjustments of the overall protein fold; the relevance of these mutations could not have been anticipated from the purely theoretical analysis of the protein's structure. Our results introduce a powerful experimental approach for comparative analysis of functional specificity in protein families even in the cases of pronounced epistasis, provide foundation for the detailed studies of evolutionary trajectories leading to novelty and complexity, and will help rational modification of existing fluorescent labels. PMID:19793832
The evolution of milk secretion and its ancient origins.
Oftedal, O T
2012-03-01
Lactation represents an important element of the life history strategies of all mammals, whether monotreme, marsupial, or eutherian. Milk originated as a glandular skin secretion in synapsids (the lineage ancestral to mammals), perhaps as early as the Pennsylvanian period, that is, approximately 310 million years ago (mya). Early synapsids laid eggs with parchment-like shells intolerant of desiccation and apparently dependent on glandular skin secretions for moisture. Mammary glands probably evolved from apocrine-like glands that combined multiple modes of secretion and developed in association with hair follicles. Comparative analyses of the evolutionary origin of milk constituents support a scenario in which these secretions evolved into a nutrient-rich milk long before mammals arose. A variety of antimicrobial and secretory constituents were co-opted into novel roles related to nutrition of the young. Secretory calcium-binding phosphoproteins may originally have had a role in calcium delivery to eggs; however, by evolving into large, complex casein micelles, they took on an important role in transport of amino acids, calcium and phosphorus. Several proteins involved in immunity, including an ancestral butyrophilin and xanthine oxidoreductase, were incorporated into a novel membrane-bound lipid droplet (the milk fat globule) that became a primary mode of energy transfer. An ancestral c-lysozyme lost its lytic functions in favor of a role as α-lactalbumin, which modifies a galactosyltransferase to recognize glucose as an acceptor, leading to the synthesis of novel milk sugars, of which free oligosaccharides may have predated free lactose. An ancestral lipocalin and an ancestral whey acidic protein four-disulphide core protein apparently lost their original transport and antimicrobial functions when they became the whey proteins β-lactoglobulin and whey acidic protein, which with α-lactalbumin provide limiting sulfur amino acids to the young. By the late Triassic period (ca 210 mya), mammaliaforms (mammalian ancestors) were endothermic (requiring fluid to replace incubatory water losses of eggs), very small in size (making large eggs impossible), and had rapid growth and limited tooth replacement (indicating delayed onset of feeding and reliance on milk). Thus, milk had already supplanted egg yolk as the primary nutrient source, and by the Jurassic period (ca 170 mya) vitellogenin genes were being lost. All primary milk constituents evolved before the appearance of mammals, and some constituents may have origins that predate the split of the synapsids from sauropsids (the lineage leading to 'reptiles' and birds). Thus, the modern dairy industry is built upon a very old foundation, the cornerstones of which were laid even before dinosaurs ruled the earth in the Jurassic and Cretaceous periods.
Mitogenomics and phylogenomics reveal priapulid worms as extant models of the ancestral Ecdysozoan.
Webster, Bonnie L; Copley, Richard R; Jenner, Ronald A; Mackenzie-Dodds, Jacqueline A; Bourlat, Sarah J; Rota-Stabelli, Omar; Littlewood, D T J; Telford, Maximilian J
2006-01-01
Research into arthropod evolution is hampered by the derived nature and rapid evolution of the best-studied out-group: the nematodes. We consider priapulids as an alternative out-group. Priapulids are a small phylum of bottom-dwelling marine worms; their tubular body with spiny proboscis or introvert has changed little over 520 million years and recognizable priapulids are common among exceptionally preserved Cambrian fossils. Using the complete mitochondrial genome and 42 nuclear genes from Priapulus caudatus, we show that priapulids are slowly evolving ecdysozoans; almost all these priapulid genes have evolved more slowly than nematode orthologs and the priapulid mitochondrial gene order may be unchanged since the Cambrian. Considering their primitive bodyplan and embryology and the great conservation of both nuclear and mitochondrial genomes, priapulids may deserve the popular epithet of "living fossil." Their study is likely to yield significant new insights into the early evolution of the Ecdysozoa and the origins of the arthropods and their kin as well as aiding inference of the morphology of ancestral Ecdysozoa and Bilateria and their genomes.
The ancestral flower of angiosperms and its early diversification
Sauquet, Hervé; von Balthazar, Maria; Magallón, Susana; Doyle, James A.; Endress, Peter K.; Bailes, Emily J.; Barroso de Morais, Erica; Bull-Hereñu, Kester; Carrive, Laetitia; Chartier, Marion; Chomicki, Guillaume; Coiro, Mario; Cornette, Raphaël; El Ottra, Juliana H. L.; Epicoco, Cyril; Foster, Charles S. P.; Jabbour, Florian; Haevermans, Agathe; Haevermans, Thomas; Hernández, Rebeca; Little, Stefan A.; Löfstrand, Stefan; Luna, Javier A.; Massoni, Julien; Nadot, Sophie; Pamperl, Susanne; Prieu, Charlotte; Reyes, Elisabeth; dos Santos, Patrícia; Schoonderwoerd, Kristel M.; Sontag, Susanne; Soulebeau, Anaëlle; Staedler, Yannick; Tschan, Georg F.; Wing-Sze Leung, Amy; Schönenberger, Jürg
2017-01-01
Recent advances in molecular phylogenetics and a series of important palaeobotanical discoveries have revolutionized our understanding of angiosperm diversification. Yet, the origin and early evolution of their most characteristic feature, the flower, remains poorly understood. In particular, the structure of the ancestral flower of all living angiosperms is still uncertain. Here we report model-based reconstructions for ancestral flowers at the deepest nodes in the phylogeny of angiosperms, using the largest data set of floral traits ever assembled. We reconstruct the ancestral angiosperm flower as bisexual and radially symmetric, with more than two whorls of three separate perianth organs each (undifferentiated tepals), more than two whorls of three separate stamens each, and more than five spirally arranged separate carpels. Although uncertainty remains for some of the characters, our reconstruction allows us to propose a new plausible scenario for the early diversification of flowers, leading to new testable hypotheses for future research on angiosperms. PMID:28763051
Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems
Kamhi, J. Frances; Arganda, Sara; Moreau, Corrie S.; Traniello, James F. A.
2017-01-01
Neuromodulators are conserved across insect taxa, but how biogenic amines and their receptors in ancestral solitary forms have been co-opted to control behaviors in derived socially complex species is largely unknown. Here we explore patterns associated with the functions of octopamine (OA), serotonin (5-HT) and dopamine (DA) in solitary ancestral insects and their derived functions in eusocial ants, bees, wasps and termites. Synthesizing current findings that reveal potential ancestral roles of monoamines in insects, we identify physiological processes and conserved behaviors under aminergic control, consider how biogenic amines may have evolved to modulate complex social behavior, and present focal research areas that warrant further study. PMID:29066958
Uhrhammer, Nancy; Lange, Ethan; Porras, Oscar; Naeim, Arash; Chen, Xiaoguang; Sheikhavandi, Sepideh; Chiplunkar, Sujata; Yang, Lan; Dandekar, Sugandha; Liang, Teresa; Patel, Nima; Teraoka, Sharon; Udar, Nitin; Calvo, Nidia; Concannon, Patrick; Lange, Kenneth; Gatti, Richard A.
1995-01-01
In an effort to localize a gene for ataxia-telangiectasia (A-T), we have genotyped 27 affected Costa Rican families, with 13 markers, in the chromosome 11q22-23 region. Significant linkage disequilibrium was detected for 9/13 markers between D11S1816 and D11S1391. Recombination events observed in these pedigrees places A-T between D11S1819 and D11S1960. One ancestral haplotype is common to 24/54 affected chromosomes and roughly two-thirds of the families. Inferred (ancestral) recombination events involving this common haplotype in earlier generations suggest that A-T is distal to D11S384 and proximal to D11S1960. Several other common haplotypes were identified, consistent with multiple mutations in a single gene. When considered together with all other evidence, this study further sublocalizes the major A-T locus to ≈200 kb, between markers S384 and S535. ImagesFigure 5 PMID:7611278
Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W
2011-08-01
The third chromosome of Drosophila pseudoobscura is polymorphic for numerous gene arrangements that form classical clines in North America. The polytene salivary chromosomes isolated from natural populations revealed changes in gene order that allowed the different gene arrangements to be linked together by paracentric inversions representing one of the first cases where genetic data were used to construct a phylogeny. Although the inversion phylogeny can be used to determine the relationships among the gene arrangements, the cytogenetic data are unable to infer the ancestral arrangement or the age of the different chromosome types. These are both important properties if one is to infer the evolutionary forces responsible for the spread and maintenance of the chromosomes. Here, we employ the nucleotide sequences of 18 regions distributed across the third chromosome in 80-100 D. pseudoobscura strains to test whether five gene arrangements are of unique or multiple origin, what the ancestral arrangement was, and what are the ages of the different arrangements. Each strain carried one of six commonly found gene arrangements and the sequences were used to infer their evolutionary relationships. Breakpoint regions in the center of the chromosome supported monophyly of the gene arrangements, whereas regions at the ends of the chromosome gave phylogenies that provided less support for monophyly of the chromosomes either because the individual markers did not have enough phylogenetically informative sites or genetic exchange scrambled information among the gene arrangements. A data set where the genetic markers were concatenated strongly supported a unique origin of the different gene arrangements. The inversion polymorphism of D. pseudoobscura is estimated to be about a million years old. We have also shown that the generated phylogeny is consistent with the cytological phylogeny of this species. In addition, the data presented here support hypothetical as the ancestral arrangement. One of the youngest arrangements, Arrowhead, has one of the highest population frequencies suggesting that selection has been responsible for its rapid increase.
2013-01-01
Introduction Many mammals have evolved highly adapted hearing associated with ecological specialisation. Of these, bats possess the widest frequency range of vocalisations and associated hearing sensitivities, with frequencies of above 200 kHz in some lineages that use laryngeal echolocation. High frequency hearing in bats appears to have evolved via structural modifications of the inner ear, however, studying these minute features presents considerable challenges and hitherto few such attempts have been made. To understand these adaptations more fully, as well as gain insights into the evolutionary origins of ultrasonic hearing and echolocation in bats, we undertook micro-computed tomography (μCT) scans of the cochleae of representative bat species from 16 families, encompassing their broad range of ecological diversity. To characterise cochlear gross morphology, we measured the relative basilar membrane length and number of turns, and compared these values between echolocating and non-echolocating bats, as well as other mammals. Results We found that hearing and echolocation call frequencies in bats correlated with both measures of cochlear morphology. In particular, relative basilar membrane length was typically longer in echolocating species, and also correlated positively with the number of cochlear turns. Ancestral reconstructions of these parameters suggested that the common ancestor of all extant bats was probably capable of ultrasonic hearing; however, we also found evidence of a significant decrease in the rate of morphological evolution of the basilar membrane in multiple ancestral branches within the Yangochiroptera suborder. Within the echolocating Yinpterochiroptera, there was some evidence of an increase in the rate of basilar membrane evolution in some tips of the tree, possibly associated with reported shifts in call frequency associated with recent speciation events. Conclusions The two main groups of echolocating bat were found to display highly variable inner ear morphologies. Ancestral reconstructions and rate shift analyses of ear morphology point to a complex evolutionary history, with the former supporting ultrasonic hearing in the common bat ancestor but the latter suggesting that morphological changes associated with echolocation might have occurred later. These findings are consistent with theories that sophisticated laryngeal echolocation, as seen in modern lineages, evolved following the divergence of the two main suborders. PMID:23360746
The origin of life in alkaline hydrothermal vents
NASA Astrophysics Data System (ADS)
Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.
2016-12-01
The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, I will show that an origin of life in alkaline hydrothermal vents can explain the deep divergence in cell membranes and active ion pumping between archaea and bacteria, from a vent-bound last universal common ancestor (LUCA). Life's most puzzling traits may give a pointer to its origin.
Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A
2016-11-01
Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.
Cavalier-Smith, T
2002-01-01
Prokaryotes constitute a single kingdom, Bacteria, here divided into two new subkingdoms: Negibacteria, with a cell envelope of two distinct genetic membranes, and Unibacteria, comprising the new phyla Archaebacteria and Posibacteria, with only one. Other new bacterial taxa are established in a revised higher-level classification that recognizes only eight phyla and 29 classes. Morphological, palaeontological and molecular data are integrated into a unified picture of large-scale bacterial cell evolution despite occasional lateral gene transfers. Archaebacteria and eukaryotes comprise the clade neomura, with many common characters, notably obligately co-translational secretion of N-linked glycoproteins, signal recognition particle with 7S RNA and translation-arrest domain, protein-spliced tRNA introns, eight-subunit chaperonin, prefoldin, core histones, small nucleolar ribonucleoproteins (snoRNPs), exosomes and similar replication, repair, transcription and translation machinery. Eubacteria (posibacteria and negibacteria) are paraphyletic, neomura having arisen from Posibacteria within the new subphylum Actinobacteria (possibly from the new class Arabobacteria, from which eukaryotic cholesterol biosynthesis probably came). Replacement of eubacterial peptidoglycan by glycoproteins and adaptation to thermophily are the keys to neomuran origins. All 19 common neomuran character suites probably arose essentially simultaneously during the radical modification of an actinobacterium. At least 11 were arguably adaptations to thermophily. Most unique archaebacterial characters (prenyl ether lipids; flagellar shaft of glycoprotein, not flagellin; DNA-binding protein lob; specially modified tRNA; absence of Hsp90) were subsequent secondary adaptations to hyperthermophily and/or hyperacidity. The insertional origin of protein-spliced tRNA introns and an insertion in proton-pumping ATPase also support the origin of neomura from eubacteria. Molecular co-evolution between histones and DNA-handling proteins, and in novel protein initiation and secretion machineries, caused quantum evolutionary shifts in their properties in stem neomura. Proteasomes probably arose in the immediate common ancestor of neomura and Actinobacteria. Major gene losses (e.g. peptidoglycan synthesis, hsp90, secA) and genomic reduction were central to the origin of archaebacteria. Ancestral archaebacteria were probably heterotrophic, anaerobic, sulphur-dependent hyperthermoacidophiles; methanogenesis and halophily are secondarily derived. Multiple lateral gene transfers from eubacteria helped secondary archaebacterial adaptations to mesophily and genome re-expansion. The origin from a drastically altered actinobacterium of neomura, and the immediately subsequent simultaneous origins of archaebacteria and eukaryotes, are the most extreme and important cases of quantum evolution since cells began. All three strikingly exemplify De Beer's principle of mosaic evolution: the fact that, during major evolutionary transformations, some organismal characters are highly innovative and change remarkably swiftly, whereas others are largely static, remaining conservatively ancestral in nature. This phenotypic mosaicism creates character distributions among taxa that are puzzling to those mistakenly expecting uniform evolutionary rates among characters and lineages. The mixture of novel (neomuran or archaebacterial) and ancestral eubacteria-like characters in archaebacteria primarily reflects such vertical mosaic evolution, not chimaeric evolution by lateral gene transfer. No symbiogenesis occurred. Quantum evolution of the basic neomuran characters, and between sister paralogues in gene duplication trees, makes many sequence trees exaggerate greatly the apparent age of archaebacteria. Fossil evidence is compelling for the extreme antiquity of eubacteria [over 3500 million years (My)] but, like their eukaryote sisters, archaebacteria probably arose only 850 My ago. Negibacteria are the most ancient, radiating rapidly into six phyla. Evidence from molecular sequences, ultrastructure, evolution of photosynthesis, envelope structure and chemistry and motility mechanisms fits the view that the cenancestral cell was a photosynthetic negibacterium, specifically an anaerobic green non-sulphur bacterium, and that the universal tree is rooted at the divergence between sulphur and non-sulphur green bacteria. The negibacterial outer membrane was lost once only in the history of life, when Posibacteria arose about 2800 My ago after their ancestors diverged from Cyanobacteria.
Chanderbali, André S.; Yoo, Mi-Jeong; Zahn, Laura M.; Brockington, Samuel F.; Wall, P. Kerr; Gitzendanner, Matthew A.; Albert, Victor A.; Leebens-Mack, James; Altman, Naomi S.; Ma, Hong; dePamphilis, Claude W.; Soltis, Douglas E.; Soltis, Pamela S.
2010-01-01
The origin and rapid diversification of the angiosperms (Darwin's “Abominable Mystery”) has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants. PMID:21149731
Chanderbali, André S; Yoo, Mi-Jeong; Zahn, Laura M; Brockington, Samuel F; Wall, P Kerr; Gitzendanner, Matthew A; Albert, Victor A; Leebens-Mack, James; Altman, Naomi S; Ma, Hong; dePamphilis, Claude W; Soltis, Douglas E; Soltis, Pamela S
2010-12-28
The origin and rapid diversification of the angiosperms (Darwin's "Abominable Mystery") has engaged generations of researchers. Here, we examine the floral genetic programs of phylogenetically pivotal angiosperms (water lily, avocado, California poppy, and Arabidopsis) and a nonflowering seed plant (a cycad) to obtain insight into the origin and subsequent evolution of the flower. Transcriptional cascades with broadly overlapping spatial domains, resembling the hypothesized ancestral gymnosperm program, are deployed across morphologically intergrading organs in water lily and avocado flowers. In contrast, spatially discrete transcriptional programs in distinct floral organs characterize the more recently derived angiosperm lineages represented by California poppy and Arabidopsis. Deep evolutionary conservation in the genetic programs of putatively homologous floral organs traces to those operating in gymnosperm reproductive cones. Female gymnosperm cones and angiosperm carpels share conserved genetic features, which may be associated with the ovule developmental program common to both organs. However, male gymnosperm cones share genetic features with both perianth (sterile attractive and protective) organs and stamens, supporting the evolutionary origin of the floral perianth from the male genetic program of seed plants.
Richardson, Aaron O; Rice, Danny W; Young, Gregory J; Alverson, Andrew J; Palmer, Jeffrey D
2013-04-15
The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.
Nakatani, Yoichiro; Takeda, Hiroyuki; Kohara, Yuji; Morishita, Shinichi
2007-09-01
Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.
Peris, David; Arias, Armando; Orlić, Sandi; Belloch, Carmela; Pérez-Través, Laura; Querol, Amparo; Barrio, Eladio
2017-03-01
Horizontal gene transfer (HGT) in eukaryotic plastids and mitochondrial genomes is common, and plays an important role in organism evolution. In yeasts, recent mitochondrial HGT has been suggested between S. cerevisiae and S. paradoxus. However, few strains have been explored given the lack of accurate mitochondrial genome annotations. Mitochondrial genome sequences are important to understand how frequent these introgressions occur, and their role in cytonuclear incompatibilities and fitness. Indeed, most of the Bateson-Dobzhansky-Muller genetic incompatibilities described in yeasts are driven by cytonuclear incompatibilities. We herein explored the mitochondrial inheritance of several worldwide distributed wild Saccharomyces species and their hybrids isolated from different sources and geographic origins. We demonstrated the existence of several recombination points in mitochondrial region COX2-ORF1, likely mediated by either the activity of the protein encoded by the ORF1 (F-SceIII) gene, a free-standing homing endonuclease, or mostly facilitated by A+T tandem repeats and regions of integration of GC clusters. These introgressions were shown to occur among strains of the same species and among strains of different species, which suggests a complex model of Saccharomyces evolution that involves several ancestral hybridization events in wild environments. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Xiyin; Guo, Hui; Wang, Jinpeng; Lei, Tianyu; Liu, Tao; Wang, Zhenyi; Li, Yuxian; Lee, Tae-Ho; Li, Jingping; Tang, Haibao; Jin, Dianchuan; Paterson, Andrew H
2016-02-01
The 'apparently' simple genomes of many angiosperms mask complex evolutionary histories. The reference genome sequence for cotton (Gossypium spp.) revealed a ploidy change of a complexity unprecedented to date, indeed that could not be distinguished as to its exact dosage. Herein, by developing several comparative, computational and statistical approaches, we revealed a 5× multiplication in the cotton lineage of an ancestral genome common to cotton and cacao, and proposed evolutionary models to show how such a decaploid ancestor formed. The c. 70% gene loss necessary to bring the ancestral decaploid to its current gene count appears to fit an approximate geometrical model; that is, although many genes may be lost by single-gene deletion events, some may be lost in groups of consecutive genes. Gene loss following cotton decaploidy has largely just reduced gene copy numbers of some homologous groups. We designed a novel approach to deconvolute layers of chromosome homology, providing definitive information on gene orthology and paralogy across broad evolutionary distances, both of fundamental value and serving as an important platform to support further studies in and beyond cotton and genomics communities. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European.
Olalde, Iñigo; Allentoft, Morten E; Sánchez-Quinto, Federico; Santpere, Gabriel; Chiang, Charleston W K; DeGiorgio, Michael; Prado-Martinez, Javier; Rodríguez, Juan Antonio; Rasmussen, Simon; Quilez, Javier; Ramírez, Oscar; Marigorta, Urko M; Fernández-Callejo, Marcos; Prada, María Encina; Encinas, Julio Manuel Vidal; Nielsen, Rasmus; Netea, Mihai G; Novembre, John; Sturm, Richard A; Sabeti, Pardis; Marquès-Bonet, Tomàs; Navarro, Arcadi; Willerslev, Eske; Lalueza-Fox, Carles
2014-03-13
Ancient genomic sequences have started to reveal the origin and the demographic impact of farmers from the Neolithic period spreading into Europe. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet. However, the limited data available from earlier hunter-gatherers preclude an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. Here we sequence an approximately 7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León, Spain, to retrieve a complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across western and central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer.
One-Seeded Fruits in the Core Caryophyllales: Their Origin and Structural Diversity
Sukhorukov, Alexander P.; Mavrodiev, Evgeny V.; Struwig, Madeleen; Nilova, Maya V.; Dzhalilova, Khalima Kh.; Balandin, Sergey A.; Erst, Andrey; Krinitsyna, Anastasiya A.
2015-01-01
The core Caryophyllales consist of approximately 30 families (12 000 species) distributed worldwide. Many members evolved one-seeded or conjoined fruits, but their origin and structural diversity have not been investigated. A comparative anatomical investigation of the one-seeded fruits within the core Caryophyllales was conducted. The origin of the one-seeded fruits and the evolutionary reconstructions of some carpological characters were traced using a tree based on rbcl and matK data in order to understand the ancestral characters and their changes. The one-seeded fruit type is inferred to be an ancestral character state in core Caryophyllales, with a subsequent increase in the seed number seen in all major clades. Most representatives of the ‘Earlier Diverging’ clade are distinguished in various carpological traits. The organization of the pericarp is diverse in many groups, although fruits with a dry, many-layered pericarp, consisting of sclerenchyma as outer layers and a thin-walled parenchyma below, with seeds occupying a vertical embryo position, are likely ancestral character states in the core Caryophyllales clade. Several carpological peculiarities in fruit and seed structure were discovered in obligate one-seeded Achatocarpaceae, Chenopodiaceae, Nyctaginaceae, Seguieriaceae and Sarcobataceae. The horizontal embryo evolved in only certain groups of Chenopodiaceae. The bar-thickening of endotegmen cells appears to be an additional character typical of core Caryophyllales. The syncarpy-to-lysicarpy paradigm in Caryophyllaceae needs to be reinterpreted. PMID:25710481
Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes
Wuichet, Kristin; Søgaard-Andersen, Lotte
2015-01-01
The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683
Sengupta, Dhriti; Choudhury, Ananyo; Basu, Analabha; Ramsay, Michèle
2016-01-01
Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto–Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India. PMID:27797945
Hou, Jing; Ye, Ning; Dong, Zhongyuan; Lu, Mengzhu; Li, Laigeng; Yin, Tongming
2016-01-01
Populus (poplar) and Salix (willow) are sister genera in the Salicaceae family. In both lineages extant species are predominantly diploid. Genome analysis previously revealed that the two lineages originated from a common tetraploid ancestor. In this study, we conducted a syntenic comparison of the corresponding 19 chromosome members of the poplar and willow genomes. Our observations revealed that almost every chromosomal segment had a parallel paralogous segment elsewhere in the genomes, and the two lineages shared a similar syntenic pinwheel pattern for most of the chromosomes, which indicated that the two lineages diverged after the genome reorganization in the common progenitor. The pinwheel patterns showed distinct differences for two chromosome pairs in each lineage. Further analysis detected two major interchromosomal rearrangements that distinguished the karyotypes of willow and poplar. Chromosome I of willow was a conjunction of poplar chromosome XVI and the lower portion of poplar chromosome I, whereas willow chromosome XVI corresponded to the upper portion of poplar chromosome I. Scientists have suggested that Populus is evolutionarily more primitive than Salix. Therefore, we propose that, after the “salicoid” duplication event, fission and fusion of the ancestral chromosomes first give rise to the diploid progenitor of extant Populus species. During the evolutionary process, fission and fusion of poplar chromosomes I and XVI subsequently give rise to the progenitor of extant Salix species. This study contributes to an improved understanding of genome divergence after ancient genome duplication in closely related lineages of higher plants. PMID:27352946
de la Estrella, Manuel; Forest, Félix; Wieringa, Jan J; Fougère-Danezan, Marie; Bruneau, Anne
2017-06-01
African tropical forests are generally considered less diverse than their Neotropical and Asian counterparts. By contrast, the Detarioideae is much more diverse in Africa than in South America and Asia. To better understand the evolution of this contrasting diversity pattern, we investigated the biogeographical and ecological origin of this subfamily, testing whether they originated in dry biomes surrounding the Tethys Seaway as currently hypothesized for many groups of Leguminosae. We constructed the largest time-calibrated phylogeny for the subfamily to date, reconstructed ancestral states for geography and biome/habitat, estimated diversification and extinction rates, and evaluated biome/habitat and geographic shifts in Detarioideae. The ancestral habitat of Detarioideae is postulated to be a primary forest (terra firme) originated in Africa-South America, in the early Palaeocene, after which several biome/habitat and geographic shifts occurred. The origin of Detarioideae is older than previous estimates, which postulated a dry (succulent) biome origin according to the Tethys Seaway hypothesis, and instead we reveal a post Gondwana and terra firme origin for this early branching clade of legumes. Detarioideae include some of the most dominant trees in evergreen forests and have likely played a pivotal role in shaping continental African forest diversity. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Melin, Amanda D; Matsushita, Yuka; Moritz, Gillian L; Dominy, Nathaniel J; Kawamura, Shoji
2013-05-22
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal-diurnal dichotomy that has long informed debate on the origin of anthropoid primates.
Melin, Amanda D.; Matsushita, Yuka; Moritz, Gillian L.; Dominy, Nathaniel J.; Kawamura, Shoji
2013-01-01
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates. PMID:23536597
Sugahara, Fumiaki; Murakami, Yasunori; Adachi, Noritaka; Kuratani, Shigeru
2013-08-01
The telencephalon, the most anterior part of the vertebrate central nervous system (CNS), is a highly diversified region of the vertebrate body. Its evolutionary origin remains elusive, especially with regard to the ancestral state of its architecture as well as the origin of telencephalon-specific neuron subtypes. Cyclostomes (lampreys and hagfish), the sister group of the gnathostomes (jawed vertebrates), serve as valuable models for studying the evolution of the vertebrate CNS. Here, we summarize recent studies on the development of the telencephalon in the lamprey. By comparing detailed developmental studies in mammals, we illustrate a possible ancestral developmental plan underlying the diversification of the vertebrate telencephalon and propose possible approaches for understanding the early evolution of the telencephalon. Copyright © 2013 Elsevier Ltd. All rights reserved.
Butzin, Nicholas C.; Lapierre, Pascal; Green, Anna G.; Swithers, Kristen S.; Gogarten, J. Peter; Noll, Kenneth M.
2013-01-01
The bacterial genomes of Thermotoga species show evidence of significant interdomain horizontal gene transfer from the Archaea. Members of this genus acquired many genes from the Thermococcales, which grow at higher temperatures than Thermotoga species. In order to study the functional history of an interdomain horizontally acquired gene we used ancestral sequence reconstruction to examine the thermal characteristics of reconstructed ancestral proteins of the Thermotoga lineage and its archaeal donors. Several ancestral sequence reconstruction methods were used to determine the possible sequences of the ancestral Thermotoga and Archaea myo-inositol-3-phosphate synthase (MIPS). These sequences were predicted to be more thermostable than the extant proteins using an established sequence composition method. We verified these computational predictions by measuring the activities and thermostabilities of purified proteins from the Thermotoga and the Thermococcales species, and eight ancestral reconstructed proteins. We found that the ancestral proteins from both the archaeal donor and the Thermotoga most recent common ancestor recipient were more thermostable than their descendants. We show that there is a correlation between the thermostability of MIPS protein and the optimal growth temperature (OGT) of its host, which suggests that the OGT of the ancestors of these species of Archaea and the Thermotoga grew at higher OGTs than their descendants. PMID:24391933
Filipec, Martin; Jirsova, Katerina; Reinstein Merjava, Stanislava; Deloukas, Panos; Webb, Tom R.; Bhattacharya, Shomi S.; Ebenezer, Neil D.; Morris, Alex G.; Hardcastle, Alison J.
2012-01-01
Posterior polymorphous corneal dystrophy (PPCD) is a rare autosomal dominant genetically heterogeneous disorder. Nineteen Czech PPCD pedigrees with 113 affected family members were identified, and 17 of these kindreds were genotyped for markers on chromosome 20p12.1- 20q12. Comparison of haplotypes in 81 affected members, 20 unaffected first degree relatives and 13 spouses, as well as 55 unrelated controls, supported the hypothesis of a shared ancestor in 12 families originating from one geographic location. In 38 affected individuals from nine of these pedigrees, a common haplotype was observed between D20S48 and D20S107 spanning approximately 23 Mb, demonstrating segregation of disease with the PPCD1 locus. This haplotype was not detected in 110 ethnically matched control chromosomes. Within the common founder haplotype, a core mini-haplotype was detected for D20S605, D20S182 and M189K2 in all 67 affected members from families 1–12, however alleles representing the core mini-haplotype were also detected in population matched controls. The most likely location of the responsible gene within the disease interval, and estimated mutational age, were inferred by linkage disequilibrium mapping (DMLE+2.3). The appearance of a disease-causing mutation was dated between 64–133 generations. The inferred ancestral locus carrying a PPCD1 disease-causing variant within the disease interval spans 60 Kb on 20p11.23, which contains a single known protein coding gene, ZNF133. However, direct sequence analysis of coding and untranslated exons did not reveal a potential pathogenic mutation. Microdeletion or duplication was also excluded by comparative genomic hybridization using a dense chromosome 20 specific array. Geographical origin, haplotype and statistical analysis suggest that in 14 unrelated families an as yet undiscovered mutation on 20p11.23 was inherited from a common ancestor. Prevalence of PPCD in the Czech Republic appears to be the highest worldwide and our data suggests that at least one other novel locus for PPCD also exists. PMID:23049806
The Origin of Floral Organ Identity Quartets
van Mourik, Hilda; Kaufmann, Kerstin
2017-01-01
The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones. Despite these morphological differences, gymnosperms and angiosperms possess a similar genetic toolbox consisting of phylogenetically related MADS domain proteins. Using ancestral MADS domain protein reconstruction, we trace the evolution of organ identity quartets along the stem lineage of crown angiosperms. We provide evidence that current floral quartets specifying male organ identity, which consist of four types of subunits, evolved from ancestral complexes of two types of subunits through gene duplication and integration of SEPALLATA proteins just before the origin of flowering plants. Our results suggest that protein interaction changes underlying this compositional shift were the result of a gradual and reversible evolutionary trajectory. Modeling shows that such compositional changes may have facilitated the evolution of the perfect, bisexual flower. PMID:28100708
The Origin of Floral Organ Identity Quartets.
Ruelens, Philip; Zhang, Zhicheng; van Mourik, Hilda; Maere, Steven; Kaufmann, Kerstin; Geuten, Koen
2017-02-01
The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones. Despite these morphological differences, gymnosperms and angiosperms possess a similar genetic toolbox consisting of phylogenetically related MADS domain proteins. Using ancestral MADS domain protein reconstruction, we trace the evolution of organ identity quartets along the stem lineage of crown angiosperms. We provide evidence that current floral quartets specifying male organ identity, which consist of four types of subunits, evolved from ancestral complexes of two types of subunits through gene duplication and integration of SEPALLATA proteins just before the origin of flowering plants. Our results suggest that protein interaction changes underlying this compositional shift were the result of a gradual and reversible evolutionary trajectory. Modeling shows that such compositional changes may have facilitated the evolution of the perfect, bisexual flower. © 2017 American Society of Plant Biologists. All rights reserved.
The evolution of dwarf shrubs in alpine environments: a case study of Alchemilla in Africa
Gehrke, Berit; Kandziora, Martha; Pirie, Michael D.
2016-01-01
Background and Aims Alpine and arctic environments worldwide, including high mountains, are dominated by short-stature woody plants (dwarf shrubs). This conspicuous life form asserts considerable influence on local environmental conditions above the treeline, creating its own microhabitat. This study reconstructs the evolution of dwarf shrubs in Alchemilla in the African tropical alpine environment, where they represent one of the largest clades and are among the most common and abundant plants. Methods Different phylogenetic inference methods were used with plastid and nuclear DNA sequence markers, molecular dating (BEAST and RelTime), analyses of diversification rate shifts (MEDUSA and BAMM) and ancestral character and area reconstructions (Mesquite). Key Results It is inferred that African Alchemilla species originated following long-distance dispersal to tropical East Africa, but that the evolution of dwarf shrubs occurred in Ethiopia and in tropical East Africa independently. Establishing a timeframe is challenging given inconsistencies in age estimates, but it seems likely that they originated in the Pleistocene, or at the earliest in the late Miocene. The adaptation to alpine-like environments in the form of dwarf shrubs has apparently not led to enhanced diversification rates. Ancestral reconstructions indicate reversals in Alchemilla from plants with a woody base to entirely herbaceous forms, a transition that is rarely reported in angiosperms. Conclusions Alchemilla is a clear example of in situ tropical alpine speciation. The dwarf shrub life form typical of African Alchemilla has evolved twice independently, further indicating its selective advantage in these harsh environments. However, it has not influenced diversification, which, although recent, was not rapid. PMID:26520565
Koblmüller, Stephan; Salzburger, Walter; Sturmbauer, Christian
2004-01-01
The cichlid species flock of Lake Tanganyika is comprised of seven seeding lineages that evolved in step with changes of the lake environment. One seeding lineage diversified into at least six lineages within a short period of time. Our study focuses on the diversification of one of these lineages, the Ectodini, comprising highly specialized, sand- and rock-dwelling species. They display two distinct breeding styles: maternal and biparental mouthbrooding. By analyzing three mtDNA gene segments in 30 species representing all 13 described genera, we show that the Ectodini rapidly diversified into four clades at the onset of their radiation. The monotypic genus Grammatotria is likely to represent the most ancestral split, followed by the almost contemporary origin of three additional clades, the first comprising the benthic genus Callochromis, the second comprising the benthic genera Asprotilapia, Xenotilapia, Enantiopus, and Microdontochromis, and the third comprising the semi-pelagic genera Ophthalmotilapia, Cardiopharynx, Cyathopharynx, Ectodus, Aulonocranus, Lestradea, and Cunningtonia. Our study confirms the benthic and sand-dwelling life-style as ancestral. Rocky habitats were colonized independently in the Xenotilapia- and Ophthalmotilapia-clade. The Xenotilapia-clade comprises both maternal and biparental mouthbrooders. Their mode of breeding appears to be highly plastic: biparental mouthbrooding either evolved once in the common ancestor of the clade, to be reverted at least three times, or evolved at least five times independently from a maternally mouthbrooding ancestor. Furthermore, the genera Xenotilapia, Microdontochromis, Lestradea, and Ophthalmotilapia appeared paraphyletic in our analyses, suggesting the need of taxonomic revision.
The microcephalin ancestral allele in a Neanderthal individual.
Lari, Martina; Rizzi, Ermanno; Milani, Lucio; Corti, Giorgio; Balsamo, Carlotta; Vai, Stefania; Catalano, Giulio; Pilli, Elena; Longo, Laura; Condemi, Silvana; Giunti, Paolo; Hänni, Catherine; De Bellis, Gianluca; Orlando, Ludovic; Barbujani, Guido; Caramelli, David
2010-05-14
The high frequency (around 0.70 worldwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Here we report the first PCR amplification and high-throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA.
Bampi, Giovana B; Bisso-Machado, Rafael; Hünemeier, Tábita; Gheno, Tailise C; Furtado, Gabriel V; Veliz-Otani, Diego; Cornejo-Olivas, Mario; Mazzeti, Pillar; Bortolini, Maria Cátira; Jardim, Laura B; Saraiva-Pereira, Maria Luiza
2017-12-01
Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disorder characterized by progressive cerebellar ataxia and epilepsy. The disease is caused by a pentanucleotide ATTCT expansion in intron 9 of the ATXN10 gene on chromosome 22q13.3. SCA10 has shown a geographical distribution throughout America with a likely degree of Amerindian ancestry from different countries so far. Currently available data suggest that SCA10 mutation might have spread out early during the peopling of the Americas. However, the ancestral origin of SCA10 mutation remains under speculation. Samples of SCA10 patients from two Latin American countries were analysed, being 16 families from Brazil (29 patients) and 21 families from Peru (27 patients) as well as 49 healthy individuals from Indigenous Quechua population and 51 healthy Brazilian individuals. Four polymorphic markers spanning a region of 5.2 cM harbouring the ATTCT expansion were used to define the haplotypes, which were genotyped by different approaches. Our data have shown that 19-CGGC-14 shared haplotype was found in 47% of Brazilian and in 63% of Peruvian families. Frequencies from both groups are not statistically different from Quechua controls (57%), but they are statistically different from Brazilian controls (12%) (p < 0.001). The most frequent expanded haplotype in Quechuas, 19-15-CGGC-14-10, is found in 50% of Brazilian and in 65% of Peruvian patients with SCA10. These findings bring valuable evidence that ATTCT expansion may have arisen in a Native American chromosome.
Provenance and geographic spread of St. Louis encephalitis virus.
Kopp, Anne; Gillespie, Thomas R; Hobelsberger, Daniel; Estrada, Alejandro; Harper, James M; Miller, Richard A; Eckerle, Isabella; Müller, Marcel A; Podsiadlowski, Lars; Leendertz, Fabian H; Drosten, Christian; Junglen, Sandra
2013-06-11
St. Louis encephalitis virus (SLEV) is the prototypic mosquito-borne flavivirus in the Americas. Birds are its primary vertebrate hosts, but amplification in certain mammals has also been suggested. The place and time of SLEV emergence remain unknown. In an ecological investigation in a tropical rainforest in Palenque National Park, Mexico, we discovered an ancestral variant of SLEV in Culex nigripalpus mosquitoes. Those SLEV-Palenque strains form a highly distinct phylogenetic clade within the SLEV species. Cell culture studies of SLEV-Palenque versus epidemic SLEV (MSI-7) revealed no growth differences in insect cells but a clear inability of SLEV-Palenque to replicate in cells from birds, cotton rats, and free-tailed bats permissive for MSI-7 replication. Only cells from nonhuman primates and neotropical fruit bats were moderately permissive. Phylogeographic reconstruction identified the common ancestor of all epidemic SLEV strains to have existed in an area between southern Mexico and Panama ca. 330 years ago. Expansion of the epidemic lineage occurred in two waves, the first representing emergence near the area of origin and the second involving almost parallel appearances of the virus in the lower Mississippi and Amazon delta regions. Early diversification events overlapped human habitat invasion during the post-Columbian era. Several documented SLEV outbreaks, such as the 1964 Houston epidemic or the 1990 Tampa epidemic, were predated by the arrival of novel strains between 1 and 4 years before the outbreaks. Collectively, our data provide insight into the putative origins of SLEV, suggesting that virus emergence was driven by human invasion of primary rainforests. IMPORTANCE St. Louis encephalitis virus (SLEV) is the prototypic mosquito-transmitted flavivirus of the Americas. Unlike the West Nile virus, which we know was recently introduced into North America from the Old World, the provenience of SLEV is obscure. In an ecological investigation in a primary rainforest area of Palenque National Park, Mexico, we have discovered an ancestral variant of SLEV. The ancestral virus was much less active than the epidemic virus in cell cultures, reflecting its incomplete adaptation to hosts encountered outside primary rainforests. Knowledge of this virus enabled a spatiotemporal reconstruction of the common ancestor of all SLEVs and how the virus spread from there. We can infer that the cosmopolitan SLEV lineage emerged from Central America in the 17th century, a period of post-Columbian colonial history marked by intense human invasion of primary rainforests. Further spread followed major bird migration pathways over North and South America.
Sengupta, Dhriti; Choudhury, Ananyo; Basu, Analabha; Ramsay, Michèle
2016-12-31
Genomic variation in Indian populations is of great interest due to the diversity of ancestral components, social stratification, endogamy and complex admixture patterns. With an expanding population of 1.2 billion, India is also a treasure trove to catalogue innocuous as well as clinically relevant rare mutations. Recent studies have revealed four dominant ancestries in populations from mainland India: Ancestral North-Indian (ANI), Ancestral South-Indian (ASI), Ancestral Tibeto-Burman (ATB) and Ancestral Austro-Asiatic (AAA). The 1000 Genomes Project (KGP) Phase-3 data include about 500 genomes from five linguistically defined Indian-Subcontinent (IS) populations (Punjabi, Gujrati, Bengali, Telugu and Tamil) some of whom are recent migrants to USA or UK. Comparative analyses show that despite the distinct geographic origins of the KGP-IS populations, the ANI component is predominantly represented in this dataset. Previous studies demonstrated population substructure in the HapMap Gujrati population, and we found evidence for additional substructure in the Punjabi and Telugu populations. These substructured populations have characteristic/significant differences in heterozygosity and inbreeding coefficients. Moreover, we demonstrate that the substructure is better explained by factors like differences in proportion of ancestral components, and endogamy driven social structure rather than invoking a novel ancestral component to explain it. Therefore, using language and/or geography as a proxy for an ethnic unit is inadequate for many of the IS populations. This highlights the necessity for more nuanced sampling strategies or corrective statistical approaches, particularly for biomedical and population genetics research in India. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The Common Ancestor of Archaea and Eukarya Was Not an Archaeon
Forterre, Patrick
2013-01-01
It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the “prokaryotic” phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other. PMID:24348094
The common ancestor of archaea and eukarya was not an archaeon.
Forterre, Patrick
2013-01-01
It is often assumed that eukarya originated from archaea. This view has been recently supported by phylogenetic analyses in which eukarya are nested within archaea. Here, I argue that these analyses are not reliable, and I critically discuss archaeal ancestor scenarios, as well as fusion scenarios for the origin of eukaryotes. Based on recognized evolutionary trends toward reduction in archaea and toward complexity in eukarya, I suggest that their last common ancestor was more complex than modern archaea but simpler than modern eukaryotes (the bug in-between scenario). I propose that the ancestors of archaea (and bacteria) escaped protoeukaryotic predators by invading high temperature biotopes, triggering their reductive evolution toward the "prokaryotic" phenotype (the thermoreduction hypothesis). Intriguingly, whereas archaea and eukarya share many basic features at the molecular level, the archaeal mobilome resembles more the bacterial than the eukaryotic one. I suggest that selection of different parts of the ancestral virosphere at the onset of the three domains played a critical role in shaping their respective biology. Eukarya probably evolved toward complexity with the help of retroviruses and large DNA viruses, whereas similar selection pressure (thermoreduction) could explain why the archaeal and bacterial mobilomes somehow resemble each other.
Ancestral European roots of Helicobacter pylori in India
Devi, S Manjulata; Ahmed, Irshad; Francalacci, Paolo; Hussain, M Abid; Akhter, Yusuf; Alvi, Ayesha; Sechi, Leonardo A; Mégraud, Francis; Ahmed, Niyaz
2007-01-01
Background The human gastric pathogen Helicobacter pylori is co-evolved with its host and therefore, origins and expansion of multiple populations and sub populations of H. pylori mirror ancient human migrations. Ancestral origins of H. pylori in the vast Indian subcontinent are debatable. It is not clear how different waves of human migrations in South Asia shaped the population structure of H. pylori. We tried to address these issues through mapping genetic origins of present day H. pylori in India and their genomic comparison with hundreds of isolates from different geographic regions. Results We attempted to dissect genetic identity of strains by multilocus sequence typing (MLST) of the 7 housekeeping genes (atpA, efp, ureI, ppa, mutY, trpC, yphC) and phylogeographic analysis of haplotypes using MEGA and NETWORK software while incorporating DNA sequences and genotyping data of whole cag pathogenicity-islands (cagPAI). The distribution of cagPAI genes within these strains was analyzed by using PCR and the geographic type of cagA phosphorylation motif EPIYA was determined by gene sequencing. All the isolates analyzed revealed European ancestry and belonged to H. pylori sub-population, hpEurope. The cagPAI harbored by Indian strains revealed European features upon PCR based analysis and whole PAI sequencing. Conclusion These observations suggest that H. pylori strains in India share ancestral origins with their European counterparts. Further, non-existence of other sub-populations such as hpAfrica and hpEastAsia, at least in our collection of isolates, suggest that the hpEurope strains enjoyed a special fitness advantage in Indian stomachs to out-compete any endogenous strains. These results also might support hypotheses related to gene flow in India through Indo-Aryans and arrival of Neolithic practices and languages from the Fertile Crescent. PMID:17584914
Opazo, Juan C.; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F.
2015-01-01
Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about ancestral functions of vertebrate globins. PMID:25743544
Derived Immune and Ancestral Pigmentation Alleles in a 7,000-Year-old Mesolithic European
Olalde, Iñigo; Allentoft, Morten E.; Sánchez-Quinto, Federico; Santpere, Gabriel; Chiang, Charleston W. K.; DeGiorgio, Michael; Prado-Martínez, Javier; Rodríguez, Juan Antonio; Rasmussen, Simon; Quilez, Javier; Ramírez, Oscar; Marigorta, Urko M.; Fernández-Callejo, Marcos; Prada, María Encina; Encinas, Julio Manuel Vidal; Nielsen, Rasmus; Netea, Mihai G.; Novembre, John; Sturm, Richard A.; Sabeti, Pardis; Marquès-Bonet, Tomàs; Navarro, Arcadi; Willerslev, Eske; Lalueza-Fox, Carles
2014-01-01
Ancient genomic sequences have started revealing the origin and the demographic impact of Neolithic farmers spreading into Europe1–3. The adoption of farming, stock breeding and sedentary societies during the Neolithic may have resulted in adaptive changes in genes associated with immunity and diet4. However, the limited data available from earlier hunter-gatherers precludes an understanding of the selective processes associated with this crucial transition to agriculture in recent human evolution. By sequencing a ~7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León (Spain), we retrieved the first complete pre-agricultural European human genome. Analysis of this genome in the context of other ancient samples suggests the existence of a common ancient genomic signature across Western and Central Eurasia from the Upper Paleolithic to the Mesolithic. The La Braña individual carries ancestral alleles in several skin pigmentation genes, suggesting that the light skin of modern Europeans was not yet ubiquitous in Mesolithic times. Moreover, we provide evidence that a significant number of derived, putatively adaptive variants associated with pathogen resistance in modern Europeans were already present in this hunter-gatherer. Hence, these genomic variants cannot represent novel mutations that occurred during the adaptation to the farming lifestyle. PMID:24463515
Takemoto, Hiroyuki; Kawamoto, Yoshi; Furuichi, Takeshi
2015-01-01
While investigating the genetic structure in wild bonobos,(1) we realized that the widely accepted scenario positing that the Pleistocene appearance of the Congo River separated the common ancestor of chimpanzees (Pan troglodytes) and bonobos (P. paniscus) into two species is not supported by recent geographical knowledge about the formation of the Congo River. We explored the origin of bonobos using a broader biogeographical perspective by examining local faunas in the central African region. The submarine Congo River sediments and paleotopography of central Africa show that the Congo River has functioned as a geographical barrier for the last 34 million years. This evidence allows us to hypothesize that when the river was first formed, the ancestor of bonobos did not inhabit the current range of the species on the left bank of the Congo River but that, during rare times when the Congo River discharge decreased during the Pleistocene, one or more founder populations of ancestral Pan paniscus crossed the river to its left bank. The proposed scenario for formation of the Congo River and the corridor hypothesis for an ancestral bonobo population is key to understanding the distribution of great apes and their evolution. © 2015 Wiley Periodicals, Inc.
Shinozuka, Hiroshi; Hettiarachchige, Inoka K; Shinozuka, Maiko; Cogan, Noel O I; Spangenberg, German C; Cocks, Benjamin G; Forster, John W; Sawbridge, Timothy I
2017-08-22
Molecular characterisation has convincingly demonstrated some types of horizontal gene transfer in eukaryotes, but nuclear gene transfer between distantly related eukaryotic groups appears to have been rare. For angiosperms (flowering plants), nuclear gene transfer events identified to date have been confined to genes originating from prokaryotes or other plant species. In this report, evidence for ancient horizontal transfer of a fungal nuclear gene, encoding a ß-1,6-glucanase enzyme for fungal cell wall degradation, into an angiosperm lineage is presented for the first time. The gene was identified from de novo sequencing and assembly of the genome and transcriptome of perennial ryegrass, a cool-season grass species. Molecular analysis confirmed the presence of the complete gene in the genome of perennial ryegrass. No corresponding sequence was found in other plant species, apart from members of the Poeae sub-tribes Loliinae and Dactylidinae. Evidence suggests that a common ancestor of the two sub-tribes acquired the gene from a species ancestral to contemporary grass-associated fungal endophytes around 9-13 million years ago. This first report of horizontal transfer of a nuclear gene from a taxonomically distant eukaryote to modern flowering plants provides evidence for a novel adaptation mechanism in angiosperms.
2010-01-01
Background Structural elucidation and analysis of fructifications of plants is fundamental for understanding their evolution. In case of Ginkgo biloba, attention was drawn by Fujii in 1896 to aberrant fructifications of Ginkgo biloba whose seeds are attached to leaves, called O-ha-tsuki in Japan. This well-known phenomenon was now interpreted by Fujii as being homologous to ancestral sporophylls. The common fructification of Ginkgo biloba consists of 1-2 (rarely more) ovules on a dichotomously divided stalk, the ovules on top of short stalklets, with collars supporting the ovules. There is essentially no disagreement that either the whole stalk with its stalklets, collars and ovules is homologous to a sporophyll, or, alternatively, just one stalklet, collar and ovule each correspond to a sporophyll. For the transition of an ancestral sporophyll resembling extant O-ha-tsuki aberrant leaves into the common fructification with stalklet/collar/ovule, evolutionary reduction of the leaf lamina of such ancestral sporophylls has to be assumed. Furthermore, such ancestral sporophylls would be expected in the fossil record of ginkgophytes. Results From the Upper Permian of the Bletterbach gorge (Dolomites, South Tyrol, Italy) ginkgophyte leaves of the genus Sphenobaiera were discovered. Among several specimens, one shows putatively attached seeds, while other specimens, depending on their state of preservation, show seeds in positions strongly suggesting such attachment. Morphology and results of a cuticular analysis are in agreement with an affiliation of the fossil to the ginkgophytes and the cuticle of the seed is comparable to that of Triassic and Jurassic ones and to those of extant Ginkgo biloba. The Sphenobaiera leaves with putatively attached seeds closely resemble seed-bearing O-ha-tsuki leaves of extant Ginkgo biloba. This leads to the hypothesis that, at least for some groups of ginkgophytes represented by extant Ginkgo biloba, such sporophylls represent the ancestral state of fructifications. Conclusions Some evidence is provided for the existence of ancestral laminar ginkgophyte sporophylls. Homology of the newly found fossil ginkgophyte fructifications with the aberrant O-ha-tsuki fructifications of Ginkgo biloba is proposed. This would support the interpretation of the apical part of the common Ginkgo biloba fructification (stalklet/collar/ovule) as a sporophyll with reduced leaf lamina. PMID:21044353
Bassham, Susan; Cañestro, Cristian; Postlethwait, John H
2008-08-22
Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor. Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings.
Héritier, Laurent; Badets, Mathieu; Du Preez, Louis H; Aisien, Martins S O; Lixian, Fan; Combes, Claude; Verneau, Olivier
2015-11-01
Polystomatid flatworms (Platyhelminthes) are monogenean parasites that infect exclusively aquatic or semi-aquatic sarcopterygians such as the Australian lungfish, amphibians, freshwater turtles and the African common hippopotamus. Previous studies on the phylogenetic relationships of these parasites, excluding Oculotrema hippopotami infecting common hippos, showed a global coevolution between hosts and their parasites at a macroevolutionary scale. These studies also demonstrated a strong correlation between the diversification of early neobatrachian polystomes and Gondwana breakup in the Mesozoic period. However the origin of chelonian polystomes is still in question as a switch from presumably primitive aquatic amniotes to turtles at the time of their first appearance, or soon after during their radiation, was assumed. In order to resolve this sticking point, we extended the phylogeny of polystomes with broader parasite sampling, i.e. 55 polystome species including Nanopolystoma tinsleyi a polystome infecting caecilians and O. hippopotami, and larger set of sequence data covering two nuclear and two mitochondrial genes coding for the ribosomal RNA 18S and 28S, the Cytochrome c Oxidase I and the ribosomal RNA 12S, respectively. The secondary structure of nuclear rRNAs genes (stems and loops) was taken into account for sequence alignments and Bayesian analyses were performed based on the appropriate models of evolution selected independently for the four designed partitions. Molecular calibrations were also conducted for dating the main speciation events in the polystome tree. The phylogenetic position of chelonian parasites that are phylogenetically closer to N. tinsleyi than all other amphibian polystomes and molecular time estimates suggest that these parasites originated following a switch from caecilians, at a geological period when primitive turtles may already have adapted to an aquatic life style, i.e. at about 178Million years ago, or a little later when the crown group of extant turtles have already diversified, i.e. at about 152Mya. Similarly, because O. hippopotami constitutes the sister group of chelonian parasites, proposing that an African caecilian could be the ancestral host for this polystome species seems at this stage the most likely hypothesis to explain its occurrence within the common hippo. Regardless of the scenario that may be predicted to explain the origin of polystomes within aquatic or semi-aquatic amniotes, their presence and evolution are indicative of early aquatic ecological habits within ancestral lineages. Copyright © 2015 Elsevier Inc. All rights reserved.
Ancient Origins of Vertebrate-Specific Innate Antiviral Immunity
Mukherjee, Krishanu; Korithoski, Bryan; Kolaczkowski, Bryan
2014-01-01
Animals deploy various molecular sensors to detect pathogen infections. RIG-like receptor (RLR) proteins identify viral RNAs and initiate innate immune responses. The three human RLRs recognize different types of RNA molecules and protect against different viral pathogens. The RLR protein family is widely thought to have originated shortly before the emergence of vertebrates and rapidly diversified through a complex process of domain grafting. Contrary to these findings, here we show that full-length RLRs and their downstream signaling molecules were present in the earliest animals, suggesting that the RLR-based immune system arose with the emergence of multicellularity. Functional differentiation of RLRs occurred early in animal evolution via simple gene duplication followed by modifications of the RNA-binding pocket, many of which may have been adaptively driven. Functional analysis of human and ancestral RLRs revealed that the ancestral RLR displayed RIG-1-like RNA-binding. MDA5-like binding arose through changes in the RNA-binding pocket following the duplication of the ancestral RLR, which may have occurred either early in Bilateria or later, after deuterostomes split from protostomes. The sensitivity and specificity with which RLRs bind different RNA structures has repeatedly adapted throughout mammalian evolution, suggesting a long-term evolutionary arms race with viral RNA or other molecules. PMID:24109602
Zhang, Ming-Li; Zeng, Xiao-Qing; Sanderson, Stewart C; Byalt, Vyacheslav V; Sukhorukov, Alexander P
2017-01-01
The Tianshan Mountains play a significant role in the Central Asian flora and vegetation. Lagochilus has a distribution concentration in Tianshan Mountains and Central Asia. To investigate generic spatiotemporal evolution, we sampled most Lagochilus species and sequenced six cpDNA locations (rps16, psbA-trnH, matK, trnL-trnF, psbB-psbH, psbK-psbI). We employed BEAST Bayesian inference for dating, and S-DIVA, DEC, and BBM for ancestral area/biome reconstruction. Our results clearly show that the Tianshan Mountains, especially the western Ili-Kirghizia Tianshan, as well as Sunggar and Kaschgar, was the ancestral area. Ancestral biome was mainly in the montane steppe zone of valley and slope at altitudes of 1700-2700 m, and the montane desert zone of foothill and front-hill at 1000-1700 m. Here two sections Inermes and Lagochilus of the genus displayed "uphill" and "downhill" speciation process during middle and later Miocene. The origin and diversification of the genus were explained as coupled with the rapid uplift of the Tianshan Mountains starting in late Oligocene and early Miocene ca. 23.66~19.33 Ma, as well as with uplift of the Qinghai-Tibetan Plateau (QTP) and Central Asian aridification.
A vocabulary of ancient peptides at the origin of folded proteins
Alva, Vikram; Söding, Johannes; Lupas, Andrei N
2015-01-01
The seemingly limitless diversity of proteins in nature arose from only a few thousand domain prototypes, but the origin of these themselves has remained unclear. We are pursuing the hypothesis that they arose by fusion and accretion from an ancestral set of peptides active as co-factors in RNA-dependent replication and catalysis. Should this be true, contemporary domains may still contain vestiges of such peptides, which could be reconstructed by a comparative approach in the same way in which ancient vocabularies have been reconstructed by the comparative study of modern languages. To test this, we compared domains representative of known folds and identified 40 fragments whose similarity is indicative of common descent, yet which occur in domains currently not thought to be homologous. These fragments are widespread in the most ancient folds and enriched for iron-sulfur- and nucleic acid-binding. We propose that they represent the observable remnants of a primordial RNA-peptide world. DOI: http://dx.doi.org/10.7554/eLife.09410.001 PMID:26653858
No evidence for a role of modified live virus vaccines in the emergence of canine parvovirus.
Truyen, U; Geissler, K; Parrish, C R; Hermanns, W; Siegl, G
1998-05-01
In this study the early evolution and potential origins of canine parvovirus (CPV) were examined. We cloned and sequenced the VP2 capsid protein genes of three German CPV strains isolated in 1979-1980, as well as two feline panleukopenia virus (FPV) vaccine viruses that were previously shown to have some restriction enzyme cleavage sites in common with CPV. Other partial VP2 gene sequences were obtained by amplifying CPV DNA from paraffin-embedded tissues of dogs which were early parvovirus disease cases in Germany in 1978-1979. Sequences were analysed with respect to their evolutionary relationships to other CPV and FPV isolates. Those analyses did not support the hypothesis that CPV emerged as a variant of an FPV vaccine virus. Neither did they reveal ancestral sequences among the very early CPV isolates examined. Other possible sources for the origin of CPV are examined, including the involvement of viruses from wild carnivores.
Fujito, Satoshi; Takahata, Satoshi; Suzuki, Reimi; Hoshino, Yoichiro; Ohmido, Nobuko; Onodera, Yasuyuki
2015-01-01
The dioecious genus Spinacia is thought to include two wild relatives (S. turkestanica Ilj. and S. tetrandra Stev.) of cultivated spinach (S. oleracea L.). In this study, nuclear and chloroplast sequences from 21 accessions of Spinacia germplasm and six spinach cultivars or lines were subjected to phylogenetic analysis to define the relationships among the three species. Maximum-likelihood sequence analysis suggested that the Spinacia plant samples could be classified into two monophyletic groups (Group 1 and Group 2): Group 1 consisted of all accessions, cultivars, and lines of S. oleracea L. and S. turkestanica Ilj. and two of five S. tetrandra Stev. accessions, whereas Group 2 was composed of the three remaining S. tetrandra Stev. accessions. By using flow cytometry, we detected a distinct difference in nuclear genome size between the groups. Group 2 also was characterized by a sexual dimorphism in inflorescence structure, which was not observed in Group 1. Interspecific crosses between the groups produced hybrids with drastically reduced pollen fertility and showed that the male is the heterogametic sex (XY) in Group 2, as is the case in S. oleracea L. (Group 1). Cytogenetic and DNA marker analyses suggested that Group 1 and Group 2 have homomorphic and heteromorphic sex chromosome pairs (XY), respectively, and that the sex chromosome pairs of the two groups evolved from a common ancestral pair. Our data suggest that the Spinacia genus may serve as a good model for investigation of evolutionary mechanisms underlying the emergence of heteromorphic sex chromosome pairs from ancestral homomorphic pairs. PMID:26048564
Silva Jr., Wilson A.; Bonatto, Sandro L.; Holanda, Adriano J.; Ribeiro-dos-Santos, Andrea K.; Paixão, Beatriz M.; Goldman, Gustavo H.; Abe-Sandes, Kiyoko; Rodriguez-Delfin, Luis; Barbosa, Marcela; Paçó-Larson, Maria Luiza; Petzl-Erler, Maria Luiza; Valente, Valeria; Santos, Sidney E. B.; Zago, Marco A.
2002-01-01
There is general agreement that the Native American founder populations migrated from Asia into America through Beringia sometime during the Pleistocene, but the hypotheses concerning the ages and the number of these migrations and the size of the ancestral populations are surrounded by controversy. DNA sequence variations of several regions of the genome of Native Americans, especially in the mitochondrial DNA (mtDNA) control region, have been studied as a tool to help answer these questions. However, the small number of nucleotides studied and the nonclocklike rate of mtDNA control-region evolution impose several limitations to these results. Here we provide the sequence analysis of a continuous region of 8.8 kb of the mtDNA outside the D-loop for 40 individuals, 30 of whom are Native Americans whose mtDNA belongs to the four founder haplogroups. Haplogroups A, B, and C form monophyletic clades, but the five haplogroup D sequences have unstable positions and usually do not group together. The high degree of similarity in the nucleotide diversity and time of differentiation (i.e., ∼21,000 years before present) of these four haplogroups support a common origin for these sequences and suggest that the populations who harbor them may also have a common history. Additional evidence supports the idea that this age of differentiation coincides with the process of colonization of the New World and supports the hypothesis of a single and early entry of the ancestral Asian population into the Americas. PMID:12022039
Huson, Heather J.; Kim, Eui-Soo; Godfrey, Robert W.; Olson, Timothy A.; McClure, Matthew C.; Chase, Chad C.; Rizzi, Rita; O'Brien, Ana M. P.; Van Tassell, Curt P.; Garcia, José F.; Sonstegard, Tad S.
2014-01-01
The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-tolerance and subsequent increased productivity. Previous studies localized the SLICK locus to a 4 cM region on chromosome (BTA) 20 and identified signatures of selection in this region derived from Senepol cattle. The current study compares three slick-haired Criollo-derived breeds including Senepol, Carora, and Romosinuano and three additional slick-haired cross-bred lineages to non-slick ancestral breeds. Genome-wide association (GWA), haplotype analysis, signatures of selection, runs of homozygosity (ROH), and identity by state (IBS) calculations were used to identify a 0.8 Mb (37.7–38.5 Mb) consensus region for the SLICK locus on BTA20 in which contains SKP2 and SPEF2 as possible candidate genes. Three specific haplotype patterns are identified in slick individuals, all with zero frequency in non-slick individuals. Admixture analysis identified common genetic patterns between the three slick breeds at the SLICK locus. Principal component analysis (PCA) and admixture results show Senepol and Romosinuano sharing a higher degree of genetic similarity to one another with a much lesser degree of similarity to Carora. Variation in GWA, haplotype analysis, and IBS calculations with accompanying population structure information supports potentially two mutations, one common to Senepol and Romosinuano and another in Carora, effecting genes contained within our refined location for the SLICK locus. PMID:24808908
Huson, Heather J; Kim, Eui-Soo; Godfrey, Robert W; Olson, Timothy A; McClure, Matthew C; Chase, Chad C; Rizzi, Rita; O'Brien, Ana M P; Van Tassell, Curt P; Garcia, José F; Sonstegard, Tad S
2014-01-01
The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-tolerance and subsequent increased productivity. Previous studies localized the SLICK locus to a 4 cM region on chromosome (BTA) 20 and identified signatures of selection in this region derived from Senepol cattle. The current study compares three slick-haired Criollo-derived breeds including Senepol, Carora, and Romosinuano and three additional slick-haired cross-bred lineages to non-slick ancestral breeds. Genome-wide association (GWA), haplotype analysis, signatures of selection, runs of homozygosity (ROH), and identity by state (IBS) calculations were used to identify a 0.8 Mb (37.7-38.5 Mb) consensus region for the SLICK locus on BTA20 in which contains SKP2 and SPEF2 as possible candidate genes. Three specific haplotype patterns are identified in slick individuals, all with zero frequency in non-slick individuals. Admixture analysis identified common genetic patterns between the three slick breeds at the SLICK locus. Principal component analysis (PCA) and admixture results show Senepol and Romosinuano sharing a higher degree of genetic similarity to one another with a much lesser degree of similarity to Carora. Variation in GWA, haplotype analysis, and IBS calculations with accompanying population structure information supports potentially two mutations, one common to Senepol and Romosinuano and another in Carora, effecting genes contained within our refined location for the SLICK locus.
Cardona, Tanai
2016-01-01
Due to the great abundance of genomes and protein structures that today span a broad diversity of organisms, now more than ever before, it is possible to reconstruct the molecular evolution of protein complexes at an incredible level of detail. Here, I recount the story of oxygenic photosynthesis or how an ancestral reaction center was transformed into a sophisticated photochemical machine capable of water oxidation. First, I review the evolution of all reaction center proteins in order to highlight that Photosystem II and Photosystem I, today only found in the phylum Cyanobacteria, branched out very early in the history of photosynthesis. Therefore, it is very unlikely that they were acquired via horizontal gene transfer from any of the described phyla of anoxygenic phototrophic bacteria. Second, I present a new evolutionary scenario for the origin of the CP43 and CP47 antenna of Photosystem II. I suggest that the antenna proteins originated from the remodeling of an entire Type I reaction center protein and not from the partial gene duplication of a Type I reaction center gene. Third, I highlight how Photosystem II and Photosystem I reaction center proteins interact with small peripheral subunits in remarkably similar patterns and hypothesize that some of this complexity may be traced back to the most ancestral reaction center. Fourth, I outline the sequence of events that led to the origin of the Mn4CaO5 cluster and show that the most ancestral Type II reaction center had some of the basic structural components that would become essential in the coordination of the water-oxidizing complex. Finally, I collect all these ideas, starting at the origin of the first reaction center proteins and ending with the emergence of the water-oxidizing cluster, to hypothesize that the complex and well-organized process of assembly and photoactivation of Photosystem II recapitulate evolutionary transitions in the path to oxygenic photosynthesis. PMID:26973693
The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins.
Dehal, Paramvir; Satou, Yutaka; Campbell, Robert K; Chapman, Jarrod; Degnan, Bernard; De Tomaso, Anthony; Davidson, Brad; Di Gregorio, Anna; Gelpke, Maarten; Goodstein, David M; Harafuji, Naoe; Hastings, Kenneth E M; Ho, Isaac; Hotta, Kohji; Huang, Wayne; Kawashima, Takeshi; Lemaire, Patrick; Martinez, Diego; Meinertzhagen, Ian A; Necula, Simona; Nonaka, Masaru; Putnam, Nik; Rash, Sam; Saiga, Hidetoshi; Satake, Masanobu; Terry, Astrid; Yamada, Lixy; Wang, Hong-Gang; Awazu, Satoko; Azumi, Kaoru; Boore, Jeffrey; Branno, Margherita; Chin-Bow, Stephen; DeSantis, Rosaria; Doyle, Sharon; Francino, Pilar; Keys, David N; Haga, Shinobu; Hayashi, Hiroko; Hino, Kyosuke; Imai, Kaoru S; Inaba, Kazuo; Kano, Shungo; Kobayashi, Kenji; Kobayashi, Mari; Lee, Byung-In; Makabe, Kazuhiro W; Manohar, Chitra; Matassi, Giorgio; Medina, Monica; Mochizuki, Yasuaki; Mount, Steve; Morishita, Tomomi; Miura, Sachiko; Nakayama, Akie; Nishizaka, Satoko; Nomoto, Hisayo; Ohta, Fumiko; Oishi, Kazuko; Rigoutsos, Isidore; Sano, Masako; Sasaki, Akane; Sasakura, Yasunori; Shoguchi, Eiichi; Shin-i, Tadasu; Spagnuolo, Antoinetta; Stainier, Didier; Suzuki, Miho M; Tassy, Olivier; Takatori, Naohito; Tokuoka, Miki; Yagi, Kasumi; Yoshizaki, Fumiko; Wada, Shuichi; Zhang, Cindy; Hyatt, P Douglas; Larimer, Frank; Detter, Chris; Doggett, Norman; Glavina, Tijana; Hawkins, Trevor; Richardson, Paul; Lucas, Susan; Kohara, Yuji; Levine, Michael; Satoh, Nori; Rokhsar, Daniel S
2002-12-13
The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.
Giovannelli, Donato; Sievert, Stefan M; Hügler, Michael; Markert, Stephanie; Becher, Dörte; Schweder, Thomas; Vetriani, Costantino
2017-04-24
Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the lineage of these modern organisms co-evolved with our planet. Hence, these organisms carry both ancestral and acquired genes and serve as models to reconstruct early metabolism. Based on comparative genomic and proteomic analyses, we identified two distinct groups of genes in Thermovibrio ammonificans : the first codes for enzymes that do not require oxygen and use substrates of geothermal origin; the second appears to be a more recent acquisition, and may reflect adaptations to cope with the rise of oxygen on Earth. We propose that the ancestor of the Aquificae was originally a hydrogen oxidizing, sulfur reducing bacterium that used a hybrid pathway for CO 2 fixation. With the gradual rise of oxygen in the atmosphere, more efficient terminal electron acceptors became available and this lineage acquired genes that increased its metabolic flexibility while retaining ancestral metabolic traits.
Krnáčová, Katarína; Vesteg, Matej; Hampl, Vladimír; Vlček, Čestmír; Horváth, Anton
2012-10-01
Euglena gracilis possessing chloroplasts of secondary green algal origin and parasitic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania major belong to the protist phylum Euglenozoa. Euglenozoa might be among the earliest eukaryotic branches bearing ancestral traits reminiscent of the last eukaryotic common ancestor (LECA) or missing features present in other eukaryotes. LECA most likely possessed mitochondria of endosymbiotic α-proteobacterial origin. In this study, we searched for the presence of homologs of mitochondria-targeted proteins from other organisms in the currently available EST dataset of E. gracilis. The common motifs in predicted N-terminal presequences and corresponding homologs from T. brucei, T. cruzi and L. major (if found) were analyzed. Other trypanosomatid mitochondrial protein precursor (e.g., those involved in RNA editing) were also included in the analysis. Mitochondrial presequences of E. gracilis and these trypanosomatids seem to be highly variable in sequence length (5-118 aa), but apparently share statistically significant similarities. In most cases, the common (M/L)RR motif is present at the N-terminus and it is probably responsible for recognition via import apparatus of mitochondrial outer membrane. Interestingly, this motif is present inside the predicted presequence region in some cases. In most presequences, this motif is followed by a hydrophobic region rich in alanine, leucine, and valine. In conclusion, either RR motif or arginine-rich region within hydrophobic aa-s present at the N-terminus of a preprotein can be sufficient signals for mitochondrial import irrespective of presequence length in Euglenozoa.
McCreary, J Keiko; Erickson, Zachary T; Metz, Gerlinde A S
2016-10-06
An adverse fetal environment in utero has been associated with long-term alterations in brain structure and function, and a higher risk of neurological disorders in later life. A common consequence of early adverse experience is impaired motor system function. A causal relationship for stress-associated impairments and a suitable therapy, however, have not been determined yet. To investigate the impact of ancestral stress on corticospinal tract (CST) morphology and fine motor performance in rats, and to determine if adverse programming by ancestral stress can be mitigated by environmental enrichment therapy in rats. The study examined F3 offspring generated by three lineages; one with prenatal stress only in the F1 generation, one with compounding effects of multigenerational prenatal stress, and a non-stress control lineage. F3 offspring from each lineage were injected with biotinylated dextran amine (BDA) into the motor cortex for anterograde tracing of the CST. Examination of the CST revealed reduced axonal density in the ancestrally stressed lineages. These anatomical changes were associated with significant impairments in skilled walking, as indicated by reduced foot placement accuracy and disturbed inter-limb coordination. Therapeutic intervention by environmental enrichment reduced the neuromorphological consequences of ancestral stress and restored skilled walking ability. The data suggest a causal relationship between stress-induced abnormal CST function and loss of fine motor performance. Thus, ancestral stress may be a determinant of motor system development and motor skill. Environmental enrichment may represent an effective intervention for the adverse programming by ancestral stress and trauma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa
Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E
2018-01-01
Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802
Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa.
Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E
2018-05-01
Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10 -6 ), and rs7700147, an intergenic variant (P=2.93 × 10 -5 ). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.
Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes
Voss, Stephen R.; Kump, D. Kevin; Putta, Srikrishna; Pauly, Nathan; Reynolds, Anna; Henry, Rema J.; Basa, Saritha; Walker, John A.; Smith, Jeramiah J.
2011-01-01
Amphibian genomes differ greatly in DNA content and chromosome size, morphology, and number. Investigations of this diversity are needed to identify mechanisms that have shaped the evolution of vertebrate genomes. We used comparative mapping to investigate the organization of genes in the Mexican axolotl (Ambystoma mexicanum), a species that presents relatively few chromosomes (n = 14) and a gigantic genome (>20 pg/N). We show extensive conservation of synteny between Ambystoma, chicken, and human, and a positive correlation between the length of conserved segments and genome size. Ambystoma segments are estimated to be four to 51 times longer than homologous human and chicken segments. Strikingly, genes demarking the structures of 28 chicken chromosomes are ordered among linkage groups defining the Ambystoma genome, and we show that these same chromosomal segments are also conserved in a distantly related anuran amphibian (Xenopus tropicalis). Using linkage relationships from the amphibian maps, we predict that three chicken chromosomes originated by fusion, nine to 14 originated by fission, and 12–17 evolved directly from ancestral tetrapod chromosomes. We further show that some ancestral segments were fused prior to the divergence of salamanders and anurans, while others fused independently and randomly as chromosome numbers were reduced in lineages leading to Ambystoma and Xenopus. The maintenance of gene order relationships between chromosomal segments that have greatly expanded and contracted in salamander and chicken genomes, respectively, suggests selection to maintain synteny relationships and/or extremely low rates of chromosomal rearrangement. Overall, the results demonstrate the value of data from diverse, amphibian genomes in studies of vertebrate genome evolution. PMID:21482624
Lew, Raelia; Burnett, Leslie; Proos, Anné
2011-12-01
The Australasian Community Genetics Program provided a preconception screening for Tay-Sachs disease (TSD) to 4,105 Jewish high school students in Sydney and Melbourne over the 12-year period 1995-2007. By correlating the frequencies of mutant HEXA, MIM *606869 (gene map locus 15q23-q24) alleles with subjects' nominated ethnicity (Ashkenazi/Sephardi/Mixed) and grandparental birthplaces, we established that Ashkenazi ethnicity is a better predictor of TSD carrier status than grandparental ancestral origins. Screening self-identified Ashkenazi subjects detected 95% of TSD carriers (carrier frequency 1:25). Having mixed Ashkenazi and non-Ashkenazi heritage reduced the carrier frequency (1:97). South African heritage conveyed a fourfold risk of c.1421 + 1G > C mutation compared with other AJ subjects (odds ratio (OR), 4.19; 95% confidence interval (CI), 1.83-9.62, p = 0.001), but this was the only specific case of ancestral origin improving diagnostic sensitivity over that based on determining Ashkenazi ethnicity. Carriers of c.1278insTATC mutations were more likely to have heritage from Western Europe (OR, 1.65 (95% CI, 1.04-2.60), p = 0.032) and South Eastern Europe (OR, 1.77 (95% CI, 1.14-2.73), p = 0.010). However, heritage from specific European countries investigated did not significantly alter the overall odds of TSD carrier status.
Metamerism in cephalochordates and the problem of the vertebrate head.
Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru
2017-01-01
The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.
The evolution of dwarf shrubs in alpine environments: a case study of Alchemilla in Africa.
Gehrke, Berit; Kandziora, Martha; Pirie, Michael D
2016-01-01
Alpine and arctic environments worldwide, including high mountains, are dominated by short-stature woody plants (dwarf shrubs). This conspicuous life form asserts considerable influence on local environmental conditions above the treeline, creating its own microhabitat. This study reconstructs the evolution of dwarf shrubs in Alchemilla in the African tropical alpine environment, where they represent one of the largest clades and are among the most common and abundant plants. Different phylogenetic inference methods were used with plastid and nuclear DNA sequence markers, molecular dating (BEAST and RelTime), analyses of diversification rate shifts (MEDUSA and BAMM) and ancestral character and area reconstructions (Mesquite). It is inferred that African Alchemilla species originated following long-distance dispersal to tropical East Africa, but that the evolution of dwarf shrubs occurred in Ethiopia and in tropical East Africa independently. Establishing a timeframe is challenging given inconsistencies in age estimates, but it seems likely that they originated in the Pleistocene, or at the earliest in the late Miocene. The adaptation to alpine-like environments in the form of dwarf shrubs has apparently not led to enhanced diversification rates. Ancestral reconstructions indicate reversals in Alchemilla from plants with a woody base to entirely herbaceous forms, a transition that is rarely reported in angiosperms. Alchemilla is a clear example of in situ tropical alpine speciation. The dwarf shrub life form typical of African Alchemilla has evolved twice independently, further indicating its selective advantage in these harsh environments. However, it has not influenced diversification, which, although recent, was not rapid. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming fungi.
Kosentka, Pawel; Sprague, Sarah L; Ryberg, Martin; Gartz, Jochen; May, Amanda L; Campagna, Shawn R; Matheny, P Brandon
2013-01-01
Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10-20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa.
The Microcephalin Ancestral Allele in a Neanderthal Individual
Lari, Martina; Rizzi, Ermanno; Milani, Lucio; Corti, Giorgio; Balsamo, Carlotta; Vai, Stefania; Catalano, Giulio; Pilli, Elena; Longo, Laura; Condemi, Silvana; Giunti, Paolo; Hänni, Catherine; De Bellis, Gianluca; Orlando, Ludovic; Barbujani, Guido; Caramelli, David
2010-01-01
Background The high frequency (around 0.70 worlwide) and the relatively young age (between 14,000 and 62,000 years) of a derived group of haplotypes, haplogroup D, at the microcephalin (MCPH1) locus led to the proposal that haplogroup D originated in a human lineage that separated from modern humans >1 million years ago, evolved under strong positive selection, and passed into the human gene pool by an episode of admixture circa 37,000 years ago. The geographic distribution of haplogroup D, with marked differences between Africa and Eurasia, suggested that the archaic human form admixing with anatomically modern humans might have been Neanderthal. Methodology/Principal Findings Here we report the first PCR amplification and high- throughput sequencing of nuclear DNA at the microcephalin (MCPH1) locus from Neanderthal individual from Mezzena Rockshelter (Monti Lessini, Italy). We show that a well-preserved Neanderthal fossil dated at approximately 50,000 years B.P., was homozygous for the ancestral, non-D, allele. The high yield of Neanderthal mtDNA sequences of the studied specimen, the pattern of nucleotide misincorporation among sequences consistent with post-mortem DNA damage and an accurate control of the MCPH1 alleles in all personnel that manipulated the sample, make it extremely unlikely that this result might reflect modern DNA contamination. Conclusions/Significance The MCPH1 genotype of the Monti Lessini (MLS) Neanderthal does not prove that there was no interbreeding between anatomically archaic and modern humans in Europe, but certainly shows that speculations on a possible Neanderthal origin of what is now the most common MCPH1 haplogroup are not supported by empirical evidence from ancient DNA. PMID:20498832
Plásilová, M; Stoilov, I; Sarfarazi, M; Kádasi, L; Feráková, E; Ferák, V
1999-04-01
Primary congenital glaucoma (PCG) is an autosomal recessive eye disease that occurs at an unusually high frequency in the ethnic isolate of Roms (Gypsies) in Slovakia. Recently, we linked the disease in this population to the GLC3A locus on 2p21. At this locus, mutations in the cytochrome P4501B1 (CYP1B1) gene have been identified as a molecular basis for this condition. Here, we report the results of CYP1B1 mutation screening of 43 PCG patients from 26 Slovak Rom families. A homozygous G-->A transition at nucleotide 1505 in the highly conserved region of exon 3 was detected in all families. This mutation results in the E387K substitution, which affects the conserved K helix region of the cytochrome P450 molecule. Determination of the CYP1B1 polymorphic background showed a common DNA haplotype in all patients, thus indicating that the E387K mutation in Roms has originated from a single ancestral mutational event. The Slovak Roms represent the first population in which PCG is found to result from a single mutation in the CYP1B1 gene, so that a founder effect is the most plausible explanation of its increased incidence. An ARMS-PCR assay has been developed for fast detection of this mutation, thus allowing direct DNA based prenatal diagnosis as well as gene carrier detection in this particular population. Screening of 158 healthy Roms identified 17 (10.8%) mutation carriers, indicating that the frequency of PCG in this population may be even higher than originally estimated.
Evolution of the Toxins Muscarine and Psilocybin in a Family of Mushroom-Forming Fungi
Kosentka, Pawel; Sprague, Sarah L.; Ryberg, Martin; Gartz, Jochen; May, Amanda L.; Campagna, Shawn R.; Matheny, P. Brandon
2013-01-01
Mushroom-forming fungi produce a wide array of toxic alkaloids. However, evolutionary analyses aimed at exploring the evolution of muscarine, a toxin that stimulates the parasympathetic nervous system, and psilocybin, a hallucinogen, have never been performed. The known taxonomic distribution of muscarine within the Inocybaceae is limited, based only on assays of species from temperate regions of the northern hemisphere. Here, we present a review of muscarine and psilocybin assays performed on species of Inocybaceae during the last fifty years. To supplement these results, we used liquid chromatography–tandem mass spectrometry (LC–MS/MS) to determine whether muscarine was present in 30 new samples of Inocybaceae, the majority of which have not been previously assayed or that originated from either the tropics or temperate regions of the southern hemisphere. Our main objective is to test the hypothesis that the presence of muscarine is a shared ancestral feature of the Inocybaceae. In addition, we also test whether species of Inocyabceae that produce psilocybin are monophyletic. Our findings suggest otherwise. Muscarine has evolved independently on several occasions, together with several losses. We also detect at least two independent transitions of muscarine-free lineages to psilocybin-producing states. Although not ancestral for the family as a whole, muscarine is a shared derived trait for an inclusive clade containing three of the seven major lineages of Inocybaceae (the Inocybe, Nothocybe, and Pseudosperma clades), the common ancestor of which may have evolved ca. 60 million years ago. Thus, muscarine represents a conserved trait followed by several recent losses. Transitions to psilocybin from muscarine-producing ancestors occurred more recently between 10–20 million years ago after muscarine loss in two separate lineages. Statistical analyses firmly reject a single origin of muscarine-producing taxa. PMID:23717644
Embryological evidence for a possible polyphyletic origin of the recent amphibians.
Nieuwkoop, P D; Sutasurya, L A
1976-02-01
The markedly different mode of mesoderm formation in anuran and urodelan amphibians (which is related to the early double-layered nature of the anuran blastula wall in contrast to its single-layered nature in the urodeles), but particularly the fundamentally different place and mode of origin of the primordial germ cells in the two groups of amphibians, strongly pleads in favour of a very ancient bifurcation in the phylogenetic history of the two groups, even suggesting a polyphyletic origin from different ancestral fishes.
Comparative Bacterial Proteomics: Analysis of the Core Genome Concept
Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.
2008-01-01
While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490
Sedimentation, volcanism, and ancestral lakes in the Valles Marineris: Clues from topography
NASA Technical Reports Server (NTRS)
Lucchitta, B. K.; Isbell, N. K.; Howington-Kraus, A.
1993-01-01
Compilation of a simplified geologic/geomorphic map onto a digital terrain model of Valles Marineris has permitted quantitative evaluations of topographic parameters. The study showed that, if their interior layered deposits are lacustrine, the ancestral Valles Marineris must have consisted of isolated basins. If, on the other hand, the troughs were interconnected as they are today, the deposits are most likely to volcanic origin, and the mesas in the peripheral troughs may be table mountains. The material eroded from the trough walls was probably not sufficient to form all of the interior layered deposits, but it may have contributed significantly to their formation.
Ancestral Structure of the Neuquén Basin, Supported by an Innovative Deep Seismic Reprocessing
NASA Astrophysics Data System (ADS)
Comínguez, A. H.; Franzese, J. R.
2007-05-01
Seismic-tracings comprising both the eastern and western sectors of Sierra de los Chihuidos, showed the deep structure of the Neuquén basin, Argentina. Deep reprocessing of historical industrial seismic-lines supplied interpretive information down to about 30-33 km. Consequently, seismic data reprocessed with "self-truncating extended correlation" confirmed an objective way for acquiring deep-seismic information where standard Vibroseis records are available. In addition, the FMED algorithm was an appreciated nonlinear mathematical tool to improve seismic resolution. Original results accomplished with the above emphasized techniques, revealed a list of concepts summarized along the subsequent comments. An acoustic contrast at about 24 km depth must be the top of the lower Crust. An oblique reflector between 16 and 18 km depth must be assumed as the local image of the master shear that controlled the extension system during the Late Triassic-Early Jurassic period. A sub-master fault dipping about 8° W, surely have been controlling the evolution of `Las Cárceles' area. An important inversion event initiated during the Bathonian-Callovian, sensibly affected the western sector of `Las Cárceles' (that is the site contiguous to the Neuquén river). Significant deposition of synrift sediments (Precuyo Group) originated in contiguous scarp degradation was detected on the western side of `Los Chihuidos' arch, at about 7 km depth. A Pliensbachian-Toarcian bipolar inversion developed during the transition to the Cuyo Group was evidenced in the western area. In the same sector, a middle Jurassic postrift episode is characterized by a deltaic depositional system prograding to the west with accentuate high energy. A deep discontinuity was related with the ancestral origin of the Basin, its seismic tracing permitted to match field results with a scale tank experiment simulating orogenic collapse. Bulk extension of the ancestral thickened crust could be only justified if a relative free boundary is adjacent to the ancestral orogenic domain. In such case, the idea of rollback of the western subducting slab would emerge as the most credible hypothesis.
Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris.
Kami, J; Velásquez, V B; Debouck, D G; Gepts, P
1995-01-01
Common bean (Phaseolus vulgaris) consists of two major geographic gene pools, one distributed in Mexico, Central America, and Colombia and the other in the southern Andes (southern Peru, Bolivia, and Argentina). Amplification and sequencing of members of the multigene family coding for phaseolin, the major seed storage protein of the common bean, provide evidence for accumulation of tandem direct repeats in both introns and exons during evolution of the multigene family in this species. The presumed ancestral phaseolin sequences, without tandem repeats, were found in recently discovered but nearly extinct wild common bean populations of Ecuador and northern Peru that are intermediate between the two major gene pools of the species based on geographical and molecular arguments. Our results illustrate the usefulness of tandem direct repeats in establishing the polarity of DNA sequence divergence and therefore in proposing phylogenies. Images Fig. 1 Fig. 3 PMID:7862642
Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L
2015-10-01
Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.
Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization.
Gout, Jean-Francois; Lynch, Michael
2015-08-01
Whole-genome duplications (WGDs) have contributed to gene-repertoire enrichment in many eukaryotic lineages. However, most duplicated genes are eventually lost and it is still unclear why some duplicated genes are evolutionary successful whereas others quickly turn to pseudogenes. Here, we show that dosage constraints are major factors opposing post-WGD gene loss in several Paramecium species that share a common ancestral WGD. We propose a model where a majority of WGD-derived duplicates preserve their ancestral function and are retained to produce enough of the proteins performing this same ancestral function. Under this model, the expression level of individual duplicated genes can evolve neutrally as long as they maintain a roughly constant summed expression, and this allows random genetic drift toward uneven contributions of the two copies to total expression. Our analysis suggests that once a high level of imbalance is reached, which can require substantial lengths of time, the copy with the lowest expression level contributes a small enough fraction of the total expression that selection no longer opposes its loss. Extension of our analysis to yeast species sharing a common ancestral WGD yields similar results, suggesting that duplicated-gene retention for dosage constraints followed by divergence in expression level and eventual deterministic gene loss might be a universal feature of post-WGD evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The principle of cooperation and life's origin and evolution
NASA Technical Reports Server (NTRS)
Oro, J.; Armangue, G.; Mar, A.
1986-01-01
In simple terms a living entity is a negentropic system that replicates, mutates and evoluves. A number of suggestions have been made, such as directed panspermia, atmospheric photosynthesis, genetic overtaking from inorganic processes, etc., as alternative models to the accepted Oparin-Haldane-Urey model of the origin of life on Earth. This has probably occurred because in spite of tremendous advances in the prebiotic synthesis of biochemical compounds, the fundamental problem of the appearance of the first life--a primordial replicating cell-ancestral to all other forms of extant life, has remained elusive. This is indeed a reflection on the different fundamental nature of the problem involved. Regardless of which were the fundamental processes which occurred on the primitive Earth, it has to end up with the fundamental characteristics of an ancestral protocell. The problem of the emergence of the first ancestral cell was one of synergistic macromolecular cooperation, as it has been discussed by authors recently (COSPAR XXV Plenary Meeting). An analogous situation must have occurred at the time of the appearance of the first eucaryotic organism. Procaryotic life appeared probably during the first 600 million years of Earth history when the Earth was sufficiently cool and continually bombarded (in the late accretion period) by comets and minor bodies of the solar system, when the sea had not yet acquired its present form.
Evidence for prehistoric origins of the G2019S mutation in the North African Berber population.
Ben El Haj, Rafiqua; Salmi, Ayyoub; Regragui, Wafa; Moussa, Ahmed; Bouslam, Naima; Tibar, Houyam; Benomar, Ali; Yahyaoui, Mohamed; Bouhouche, Ahmed
2017-01-01
The most common cause of the monogenic form of Parkinson's disease known so far is the G2019S mutation of the leucine-rich repeat kinase 2 (LRRK2) gene. Its frequency varies greatly among ethnic groups and geographic regions ranging from less than 0.1% in Asia to 40% in North Africa. This mutation has three distinct haplotypes; haplotype 1 being the oldest and most common. Recent studies have dated haplotype 1 of the G2019S mutation to about 4000 years ago, but it remains controversial whether the mutation has a Near-Eastern or Moroccan-Berber ancestral origin. To decipher this evolutionary history, we genotyped 10 microsatellite markers spanning a region of 11.27 Mb in a total of 57 unrelated Moroccan PD patients carrying the G2019S mutation for which the Berber or Arab origin was established over 3 generations based on spoken language. We estimated the age of the most recent common ancestor for the 36 Arab-speaking and the 15 Berber-speaking G2019S carriers using the likelihood-based method with a mutation rate of 10-4. Data analysis suggests that the shortest haplotype originated in a patient of Berber ethnicity. The common founder was estimated to have lived 159 generations ago (95% CI 116-224) for Arab patients, and 200 generations ago (95% CI 123-348) for Berber patients. Then, 29 native North African males carrying the mutation were assessed for specific uniparental markers by sequencing the Y-chromosome (E-M81, E-M78, and M-267) and mitochondrial DNA (mtDNA) hypervariable regions (HV1 and HV2) to examine paternal and maternal contributions, respectively. Results showed that the autochthonous genetic component reached 76% for mtDNA (Eurasian and north African haplogroups) and 59% for the Y-chromosome (E-M81 and E-M78), suggesting that the G2019S mutation may have arisen in an autochthonous DNA pool. Therefore, we conclude that LRRK2 G2019S mutation most likely originated in a Berber founder who lived at least 5000 years ago (95% CI 3075-8700).
NASA Astrophysics Data System (ADS)
Chela-Flores, Julian
1998-04-01
Our present understanding of the origin and evolution of chromosomes differs considerably from current understanding of the origin and evolution of the cell itself. Chromosome origins have been less prominent in research, as the emphasis has not shifted so far appreciably from the phenomenon of primeval nucleic acid encapsulation to that of the origin of gene organization, expression, and regulation. In this work we discuss some reasons why preliminary steps in this direction are being taken. We have been led to examine properties that have contributed to raise the ancestral prokaryotic programmes to a level where we can appreciate in eukaryotes a clear departure from earlier themes in the evolution of the cell from the last common ancestor. We shift our point of view from evolution of cell morphology to the point of view of the genes. In particular, we focus attention on possible physical bases for the way transmission of information has evolved in eukaryotes, namely, the inactivation of whole chromosomes. The special case of the inactivation of the X chromosome in mammals is discussed, paying particular attention to the physical process of the spread of X inactivation in monotremes (platypus and echidna). When experimental data is unavailable some theoretical analysis is possible based on the idea that in certain cases collective phenomena in genetics, rather than chemical detail, are better correlates of complex chemical processes.
Nonmetric cranial trait variation and population history of medieval East Slavic tribes.
Movsesian, Alla A
2013-12-01
The population history of the East Slavs is complicated. There are still many unanswered questions relating to the origins and formation of the East Slavic gene pool. The aims of the current study were as follows: (1) to assess the degree of biological affinity in medieval East Slavic tribes and to test the hypothesis that East Slavic peoples have a common origin; (2) to show their genetic connections to the autochthonous populations of the northern part of Eastern Europe (Baltic and Finno-Ugric tribes); and (3) to identify a genetic continuity between the bearers of Chernyakhov culture and medieval Eastern Slavs. In this study, nonmetric cranial trait data for medieval East Slavic tribes and comparative samples from unrelated groups were examined. Analyzes of phenotypic differentiation were based on Nei's standard genetic distance and hierarchical GST statistics. The results obtained suggest that the genetic affinity of the East Slavic tribes is due not only to inter-tribal gene flow, but is, more importantly, a result of their common population history. Evidence of gene flow from the Baltic and Finno-Ugric groups was showed in the gene pool of Eastern Slavs, as was genetic continuity between medieval East Slavic tribes and the populations of the preceding Chernyakhov culture. These findings support a "generalizing" hypothesis of East Slavic origin, in which a Slavic community was formed in some particular ancestral area, and subsequently spread throughout Eastern Europe. Copyright © 2013 Wiley Periodicals, Inc.
Morphology and diversity of the forcipules in Strigamia centipedes (Chilopoda, Geophilomorpha).
Maruzzo, Diego; Bonato, Lucio
2014-01-01
The morphology of the venomous limbs (forcipules) of 13 species of Strigamia and of six other geophilomorphs was studied with light microscopy, scanning electron microscopy, and, for a subsample, with confocal laser scanning microscopy. In all Strigamia species a well-distinct denticle is present invariantly on the inner side of the terminal article (tarsungulum), in sub-basal position, just proximal to a faint transverse sulcus and a cuticular introflexion that corresponds to the insertion point of a tendon. Strigamia species differ mainly in size and shape of the denticle and thickness of the distal part of the tarsungulum, suggesting some functional diversity in piercing and handling prey. Anatomical evidence supports the hypothesis that the tarsungulum corresponds to two ancestral articles and a denticle at the basis of the tarsungulum originated multiple times within geophilomorphs, however in different positions corresponding to either the ancestral sub-terminal article (in Strigamia, other Geophiloidea and some Schendylidae) or the ancestral terminal article (in the himantariid Thracophilus). Copyright © 2013 Elsevier Ltd. All rights reserved.
Predominance of Ancestral Lineages of Mycobacterium tuberculosis in India
Gutierrez, M. Cristina; Ahmed, Niyaz; Willery, Eve; Narayanan, Sujatha; Hasnain, Seyed E.; Chauhan, Devendra S.; Katoch, Vishwa M.; Vincent, Véronique; Locht, Camille
2006-01-01
Although India has the highest prevalence of tuberculosis (TB) worldwide, the genetic diversity of Mycobacterium tuberculosis in India is largely unknown. A collection of 91 isolates originating from 12 different regions spread across the country were analyzed by genotyping using 21 loci with variable-number tandem repeats (VNTRs), by spoligotyping, by principal genetic grouping (PGG), and by deletion analysis of M. tuberculosis–specific deletion region 1. The isolates showed highly diverse VNTR genotypes. Nevertheless, highly congruent groupings identified by using the 4 independent sets of markers permitted a clear definition of 3 prevalent PGG1 lineages, which corresponded to the "ancestral" East African–Indian, the Delhi, and the Beijing/W genogroups. A few isolates from PGG2 lineages and a single representative of the presumably most recent PGG3 were identified. These observations suggest a predominance of ancestral M. tuberculosis genotypes in the Indian subcontinent, which supports the hypothesis that India is an ancient endemic focus of TB. PMID:17073085
Sicard, Adrien; Kappel, Christian; Josephs, Emily B.; Lee, Young Wha; Marona, Cindy; Stinchcombe, John R.; Wright, Stephen I.; Lenhard, Michael
2015-01-01
In the Bateson–Dobzhansky–Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. PMID:26268845
Square, Tyler; Jandzik, David; Romášek, Marek; Cerny, Robert; Medeiros, Daniel Meulemans
2017-07-15
The apparent evolvability of the vertebrate head skeleton has allowed a diverse array of shapes, sizes, and compositions of the head in order to better adapt species to their environments. This encompasses feeding, breathing, sensing, and communicating: the head skeleton somehow participated in the evolution of all these critical processes for the last 500 million years. Through evolution, present head diversity was made possible via developmental modifications to the first head skeletal genetic program. Understanding the development of the vertebrate common ancestor's head skeleton is thus an important step in identifying how different lineages have respectively achieved their many innovations in the head. To this end, cyclostomes (jawless vertebrates) are extremely useful, having diverged from jawed vertebrates approximately 400 million years ago, at the deepest node within living vertebrates. From this ancestral vantage point (that is, the node connecting cyclostomes and gnathostomes) we can best identify the earliest major differences in development between vertebrate classes, and start to address how these might translate onto morphology. In this review we survey what is currently known about the cell biology and gene expression during head development in modern vertebrates, allowing us to better characterize the developmental genetics driving head skeleton formation in the most recent common ancestor of all living vertebrates. By pairing this vertebrate composite with information from fossil chordates, we can also deduce how gene regulatory modules might have been arranged in the ancestral vertebrate head. Together, we can immediately begin to understand which aspects of head skeletal development are the most conserved, and which are divergent, informing us as to when the first differences appear during development, and thus which pathways or cell types might be involved in generating lineage specific shape and structure. Copyright © 2017 Elsevier Inc. All rights reserved.
Kondraskov, Paulina; Schütz, Nicole; Schüßler, Christina; de Sequeira, Miguel Menezes; Guerra, Arnoldo Santos; Caujapé-Castells, Juli; Jaén-Molina, Ruth; Marrero-Rodríguez, Águedo; Koch, Marcus A.; Linder, Peter; Kovar-Eder, Johanna; Thiv, Mike
2015-01-01
The Macaronesian laurel forests (MLF) are dominated by trees with a laurophyll habit comparable to evergreen humid forests which were scattered across Europe and the Mediterranean in the Paleogene and Neogene. Therefore, MLF are traditionally regarded as an old, 'Tertiary relict' vegetation type. Here we address the question if key taxa of the MLF are relictual. We evaluated the relict hypothesis consulting fossil data and analyses based on molecular phylogenies of 18 representative species. For molecular dating we used the program BEAST, for ancestral trait reconstructions BayesTraits and Lagrange to infer ancestral areas. Our molecular dating showed that the origins of four species date back to the Upper Miocene while 14 originated in the Plio-Pleistocene. This coincides with the decline of fossil laurophyllous elements in Europe since the middle Miocene. Ancestral trait and area reconstructions indicate that MLF evolved partly from pre-adapted taxa from the Mediterranean, Macaronesia and the tropics. According to the fossil record laurophyllous taxa existed in Macaronesia since the Plio- and Pleistocene. MLF are composed of species with a heterogeneous origin. The taxa dated to the Pleistocene are likely not 'Tertiary relicts'. Some species may be interpreted as relictual. In this case, the establishment of most species in the Plio-Pleistocene suggests that there was a massive species turnover before this time. Alternatively, MLF were largely newly assembled through global recruitment rather than surviving as relicts of a once more widespread vegetation. This process may have possibly been triggered by the intensification of the trade winds at the end of the Pliocene as indicated by proxy data. PMID:26173113
Su, Chunlei; Khan, Asis; Zhou, Peng; Majumdar, Debashree; Ajzenberg, Daniel; Dardé, Marie-Laure; Zhu, Xing-Quan; Ajioka, James W.; Rosenthal, Benjamin M.; Dubey, Jitender P.; Sibley, L. David
2012-01-01
Marked phenotypic variation characterizes isolates of Toxoplasma gondii, a ubiquitous zoonotic parasite that serves as an important experimental model for studying apicomplexan parasites. Progress in identifying the heritable basis for clinically and epidemiologically significant differences requires a robust system for describing and interpreting evolutionary subdivisions in this prevalent pathogen. To develop such a system, we have examined more than 950 isolates collected from around the world and genotyped them using three independent sets of polymorphic DNA markers, sampling 30 loci distributed across all nuclear chromosomes as well as the plastid genome. Our studies reveal a biphasic pattern consisting of regions in the Northern Hemisphere where a few, highly clonal and abundant lineages predominate; elsewhere, and especially in portions of South America are characterized by a diverse assemblage of less common genotypes that show greater evidence of recombination. Clustering methods were used to organize the marked genetic diversity of 138 unique genotypes into 15 haplogroups that collectively define six major clades. Analysis of gene flow indicates that a small number of ancestral lineages gave rise to the existing diversity through a process of limited admixture. Identification of reference strains for these major groups should facilitate future studies on comparative genomics and identification of genes that control important biological phenotypes including pathogenesis and transmission. PMID:22431627
Brissac, Terry; Merçot, Hervé; Gros, Olivier
2011-01-01
The first studies of the 16S rRNA gene diversity of the bacterial symbionts found in lucinid clams did not clarify how symbiotic associations had evolved in this group. Indeed, although species-specific associations deriving from a putative ancestral symbiotic association have been described (coevolution scenario), associations between the same bacterial species and various host species (opportunistic scenario) have also been described. Here, we carried out a comparative molecular analysis of hosts, based on 18S and 28S rRNA gene sequences, and of symbionts, based on 16S rRNA gene sequences, to determine as to which evolutionary scenario led to modern lucinid/symbiont associations. For all sequences analyzed, we found only three bacterial symbiont species, two of which are harbored by lucinids colonizing mangrove swamps. The last symbiont is the most common and was found to be independent of biotope or depth. Another interesting feature is the similarity of ctenidial organization of lucinids from the Philippines to those described previously, with the exception that two bacterial morphotypes were observed in two different species (Gloverina rectangularis and Myrtea flabelliformis). Thus, there is apparently no specific association between Lucinidae and their symbionts, the association taking place according to which bacterial species is present in the environment. FEMS Microbiology Ecology © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original French government works.
Historian: accurate reconstruction of ancestral sequences and evolutionary rates.
Holmes, Ian H
2017-04-15
Reconstruction of ancestral sequence histories, and estimation of parameters like indel rates, are improved by using explicit evolutionary models and summing over uncertain alignments. The previous best tool for this purpose (according to simulation benchmarks) was ProtPal, but this tool was too slow for practical use. Historian combines an efficient reimplementation of the ProtPal algorithm with performance-improving heuristics from other alignment tools. Simulation results on fidelity of rate estimation via ancestral reconstruction, along with evaluations on the structurally informed alignment dataset BAliBase 3.0, recommend Historian over other alignment tools for evolutionary applications. Historian is available at https://github.com/evoldoers/historian under the Creative Commons Attribution 3.0 US license. ihholmes+historian@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Kradin, Richard L
2012-04-01
The ancestral claims on an individual can evoke mental conflict when they involve separating from an ethnic group whose beliefs and customs are devalued by the dominant culture. However, these claims are engraved on the psyche early in development by caretakers to the level of pre-object relatedness, where contents and affect tones are implicit and may be unavailable for later psychoanalytical interventions. In addition, as the anthropologist Clifford Geertz notes, one's culture of origin precedes the development of psyche and creates its own set of claims that must be renegotiated when one encounters a different domain of cultural symbols, a confrontation that can produce psychological dissonance and self-alienation. In this paper, three cases are examined in which mental conflicts were evoked by attempts at divesting ancestral claims in response to conscious efforts to assimilate into the dominant culture. These patients suffered from separation guilt and unstable self-esteem and reported dream imagery suggesting psychological imbalance. The requirement to carefully delineate the ancestral claims on psyche as well as those contents and affects that may not be accessible to therapeutic intervention is emphasized, and the importance of compromise and acceptance with respect to the psychological demands of the unconscious are considered. 2012, The Society of Analytical Psychology.
Goss, Erica M; Tabima, Javier F; Cooke, David E L; Restrepo, Silvia; Fry, William E; Forbes, Gregory A; Fieland, Valerie J; Cardenas, Martha; Grünwald, Niklaus J
2014-06-17
Phytophthora infestans is a destructive plant pathogen best known for causing the disease that triggered the Irish potato famine and remains the most costly potato pathogen to manage worldwide. Identification of P. infestan's elusive center of origin is critical to understanding the mechanisms of repeated global emergence of this pathogen. There are two competing theories, placing the origin in either South America or in central Mexico, both of which are centers of diversity of Solanum host plants. To test these competing hypotheses, we conducted detailed phylogeographic and approximate Bayesian computation analyses, which are suitable approaches to unraveling complex demographic histories. Our analyses used microsatellite markers and sequences of four nuclear genes sampled from populations in the Andes, Mexico, and elsewhere. To infer the ancestral state, we included the closest known relatives Phytophthora phaseoli, Phytophthora mirabilis, and Phytophthora ipomoeae, as well as the interspecific hybrid Phytophthora andina. We did not find support for an Andean origin of P. infestans; rather, the sequence data suggest a Mexican origin. Our findings support the hypothesis that populations found in the Andes are descendants of the Mexican populations and reconcile previous findings of ancestral variation in the Andes. Although centers of origin are well documented as centers of evolution and diversity for numerous crop plants, the number of plant pathogens with a known geographic origin are limited. This work has important implications for our understanding of the coevolution of hosts and pathogens, as well as the harnessing of plant disease resistance to manage late blight.
Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome
Dorrell, Richard G; Gile, Gillian; McCallum, Giselle; Méheust, Raphaël; Bapteste, Eric P; Klinger, Christen M; Brillet-Guéguen, Loraine; Freeman, Katalina D; Richter, Daniel J; Bowler, Chris
2017-01-01
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI: http://dx.doi.org/10.7554/eLife.23717.001 PMID:28498102
Giovannelli, Donato; Sievert, Stefan M; Hügler, Michael; Markert, Stephanie; Becher, Dörte; Schweder, Thomas; Vetriani, Costantino
2017-01-01
Anaerobic thermophiles inhabit relic environments that resemble the early Earth. However, the lineage of these modern organisms co-evolved with our planet. Hence, these organisms carry both ancestral and acquired genes and serve as models to reconstruct early metabolism. Based on comparative genomic and proteomic analyses, we identified two distinct groups of genes in Thermovibrio ammonificans: the first codes for enzymes that do not require oxygen and use substrates of geothermal origin; the second appears to be a more recent acquisition, and may reflect adaptations to cope with the rise of oxygen on Earth. We propose that the ancestor of the Aquificae was originally a hydrogen oxidizing, sulfur reducing bacterium that used a hybrid pathway for CO2 fixation. With the gradual rise of oxygen in the atmosphere, more efficient terminal electron acceptors became available and this lineage acquired genes that increased its metabolic flexibility while retaining ancestral metabolic traits. DOI: http://dx.doi.org/10.7554/eLife.18990.001 PMID:28436819
Developmental plasticity and the origin of species differences
West-Eberhard, Mary Jane
2005-01-01
Speciation is the origin of reproductive isolation and divergence between populations, according to the “biological species concept” of Mayr. Studies of reproductive isolation have dominated research on speciation, leaving the origin of species differences relatively poorly understood. Here, I argue that the origin of species differences, and of novel phenotypes in general, involves the reorganization of ancestral phenotypes (developmental recombination) followed by the genetic accommodation of change. Because selection acts on phenotypes, not directly on genotypes or genes, novel traits can originate by environmental induction as well as mutation, then undergo selection and genetic accommodation fueled by standing genetic variation or by subsequent mutation and genetic recombination. Insofar as phenotypic novelties arise from adaptive developmental plasticity, they are not “random” variants, because their initial form reflects adaptive responses with an evolutionary history, even though they are initiated by mutations or novel environmental factors that are random with respect to (future) adaptation. Change in trait frequency involves genetic accommodation of the threshold or liability for expression of a novel trait, a process that follows rather than directs phenotypic change. Contrary to common belief, environmentally initiated novelties may have greater evolutionary potential than mutationally induced ones. Thus, genes are probably more often followers than leaders in evolutionary change. Species differences can originate before reproductive isolation and contribute to the process of speciation itself. Therefore, the genetics of speciation can profit from studies of changes in gene expression as well as changes in gene frequency and genetic isolation. PMID:15851679
Evolution of Perianth and Stamen Characteristics with Respect to Floral Symmetry in Ranunculales
Damerval, Catherine; Nadot, Sophie
2007-01-01
Background and Aims Floral symmetry presents two main states in angiosperms, namely polysymmetry and monosymmetry. Monosymmetry is thought to have evolved several times independently from polysymmetry, possibly in co-adaptation with specialized pollinators. Monosymmetry commonly refers to the perianth, even though associated androecium modifications have been reported. The evolution of perianth symmetry is examined with respect to traits of flower architecture in the Ranunculales, the sister group to all other eudicots, which present a large diversity of floral forms. Methods Characters considered were perianth merism, calyx, corolla and androecium symmetry, number of stamens and spurs. Character evolution was optimized on a composite phylogenetic tree of Ranunculales using maximum parsimony. Key Results The ancestral state for merism could not be inferred because the basalmost Eupteleaceae lack a perianth and have a variable number of stamens. The Papaveraceae are dimerous, and the five other families share a common trimerous ancestor. Shifts from trimery to dimery (or reverse) are observed. Pentamery evolved in Ranunculaceae. Ranunculales except Eupteleaceae, present a polysymmetric ancestral state. Monosymmetry evolved once within Papaveraceae, Ranunculaceae and Menispermaceae (female flowers only). Oligandry is the ancestral state for all Ranunculales, and polyandry evolved several times independently, in Papaveraceae, Menispermaceae, Berberidaceae and Ranunculaceae, with two reversions to oligandry in the latter. The ancestral state for androecium symmetry is ambiguous for the Ranunculales, while polysymmetry evolved immediately after the divergence of Eupteleaceae. A disymmetric androecium evolved in Papaveraceae. The ancestral state for spurs is none. Multiple spurs evolved in Papaveraceae, Berberidaceae and Ranunculaceae, and single spurs occur in Papaveraceae and Ranunculaceae. Conclusions The evolution of symmetry appears disconnected from changes in merism and stamen number, although monosymmetry never evolved in the context of an open ground plan. In bisexual species, monosymmetry evolved coincidently with single spurs, allowing us to propose an evolutionary scenario for Papaveraceae. PMID:17428835
An evolutionary scenario for the origin of flowers.
Frohlich, Michael W
2003-07-01
The Mostly Male theory is the first to use evidence from gene phylogenies, genetics, modern plant morphology and fossils to explain the evolutionary origin of flowers. It proposes that flower organization derives more from the male structures of ancestral gymnosperms than from female structures. The theory arose from a hypothesis-based study. Such studies are the most likely to generate testable evolutionary scenarios, which should be the ultimate goal of evo-devo.
Bassham, Susan; Cañestro, Cristian; Postlethwait, John H
2008-01-01
Background Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates. Results To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor. Conclusion Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings. PMID:18721460
The mitochondrial ancestor of bonobos and the origin of their major haplogroups.
Takemoto, Hiroyuki; Kawamoto, Yoshi; Higuchi, Shoko; Makinose, Emiko; Hart, John A; Hart, Térese B; Sakamaki, Tetsuya; Tokuyama, Nahoko; Reinartz, Gay E; Guislain, Patrick; Dupain, Jef; Cobden, Amy K; Mulavwa, Mbangi N; Yangozene, Kumugo; Darroze, Serge; Devos, Céline; Furuichi, Takeshi
2017-01-01
We report here where the most recent common ancestor (MRCA) of bonobos (Pan paniscus) ranged and how they dispersed throughout their current habitat. Mitochondrial DNA (mtDNA) molecular dating to analyze the time to MRCA (TMRCA) and the major mtDNA haplogroups of wild bonobos were performed using new estimations of divergence time of bonobos from other Pan species to investigate the dispersal routes of bonobos over the forest area of the Congo River's left bank. The TMRCA of bonobos was estimated to be 0.64 or 0.95 million years ago (Ma). Six major haplogroups had very old origins of 0.38 Ma or older. The reconstruction of the ancestral area revealed the mitochondrial ancestor of the bonobo populations ranged in the eastern area of the current bonobos' habitat. The haplogroups may have been formed from either the riparian forests along the Congo River or the center of the southern Congo Basin. Fragmentation of the forest refugia during the cooler periods may have greatly affected the formation of the genetic structure of bonobo populations.
The mitochondrial ancestor of bonobos and the origin of their major haplogroups
Takemoto, Hiroyuki; Kawamoto, Yoshi; Higuchi, Shoko; Makinose, Emiko; Furuichi, Takeshi
2017-01-01
We report here where the most recent common ancestor (MRCA) of bonobos (Pan paniscus) ranged and how they dispersed throughout their current habitat. Mitochondrial DNA (mtDNA) molecular dating to analyze the time to MRCA (TMRCA) and the major mtDNA haplogroups of wild bonobos were performed using new estimations of divergence time of bonobos from other Pan species to investigate the dispersal routes of bonobos over the forest area of the Congo River’s left bank. The TMRCA of bonobos was estimated to be 0.64 or 0.95 million years ago (Ma). Six major haplogroups had very old origins of 0.38 Ma or older. The reconstruction of the ancestral area revealed the mitochondrial ancestor of the bonobo populations ranged in the eastern area of the current bonobos’ habitat. The haplogroups may have been formed from either the riparian forests along the Congo River or the center of the southern Congo Basin. Fragmentation of the forest refugia during the cooler periods may have greatly affected the formation of the genetic structure of bonobo populations. PMID:28467422
Parker, Hugo J; Bronner, Marianne E; Krumlauf, Robb
2016-06-01
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression. © 2016 WILEY Periodicals, Inc.
The structured ancestral selection graph and the many-demes limit.
Slade, Paul F; Wakeley, John
2005-02-01
We show that the unstructured ancestral selection graph applies to part of the history of a sample from a population structured by restricted migration among subpopulations, or demes. The result holds in the limit as the number of demes tends to infinity with proportionately weak selection, and we have also made the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the selection parameter for the population is independent of the migration rate and is identical to the selection parameter in an unstructured population. We show analytically that estimators of the migration rate, based on pairwise sequence differences, derived under the assumption of neutrality should perform equally well in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-demes ancestral selection graph and identify some situations in which migration has a strong effect on the time to the most recent common ancestor of the sample. We find that a similar effect also increases the sensitivity of the genealogy to selection.
Biogeography of Hysterangiales (Phallomycetidae, Basidiomycota)
Kentaro Hosaka; Michael A. Castellano; Joseph W. Spatafora
2008-01-01
To understand the biogeography of truffle-like fungi, DNA sequences were analysed from representative taxa of Hysterangiales. Multigene phylogenies and the results of ancestral area reconstructions are consistent with the hypothesis of an Australian, or eastern Gondwanan, origin of Hysterangiales with subsequent range expansions to the Northern Hemisphere. However,...
Pang, Jun-Feng; Kluetsch, Cornelya; Zou, Xiao-Ju; Zhang, Ai-bing; Luo, Li-Yang; Angleby, Helen; Ardalan, Arman; Ekström, Camilla; Sköllermo, Anna; Lundeberg, Joakim; Matsumura, Shuichi; Leitner, Thomas; Zhang, Ya-Ping; Savolainen, Peter
2009-12-01
There is no generally accepted picture of where, when, and how the domestic dog originated. Previous studies of mitochondrial DNA (mtDNA) have failed to establish the time and precise place of origin because of lack of phylogenetic resolution in the so far studied control region (CR), and inadequate sampling. We therefore analyzed entire mitochondrial genomes for 169 dogs to obtain maximal phylogenetic resolution and the CR for 1,543 dogs across the Old World for a comprehensive picture of geographical diversity. Hereby, a detailed picture of the origins of the dog can for the first time be suggested. We obtained evidence that the dog has a single origin in time and space and an estimation of the time of origin, number of founders, and approximate region, which also gives potential clues about the human culture involved. The analyses showed that dogs universally share a common homogenous gene pool containing 10 major haplogroups. However, the full range of genetic diversity, all 10 haplogroups, was found only in southeastern Asia south of Yangtze River, and diversity decreased following a gradient across Eurasia, through seven haplogroups in Central China and five in North China and Southwest (SW)Asia, down to only four haplogroups in Europe. The mean sequence distance to ancestral haplotypes indicates an origin 5,400-16,300 years ago (ya) from at least 51 female wolf founders. These results indicate that the domestic dog originated in southern China less than 16,300 ya, from several hundred wolves. The place and time coincide approximately with the origin of rice agriculture, suggesting that the dogs may have originated among sedentary hunter-gatherers or early farmers, and the numerous founders indicate that wolf taming was an important culture trait.
Irum, Bushra; Khan, Arif O.; Wang, Qiwei; Li, David; Khan, Asma A.; Husnain, Tayyab; Akram, Javed; Riazuddin, Sheikh
2016-01-01
Purpose This study was performed to investigate the genetic determinants of autosomal recessive congenital cataracts in large consanguineous families. Methods Affected individuals underwent a detailed ophthalmological examination and slit-lamp photographs of the cataractous lenses were obtained. An aliquot of blood was collected from all participating family members and genomic DNA was extracted from white blood cells. Initially, a genome-wide scan was performed with genomic DNAs of family PKCC025 followed by exclusion analysis of our familial cohort of congenital cataracts. Protein-coding exons of CRYBB1, CRYBB2, CRYBB3, and CRYBA4 were sequenced bidirectionally. A haplotype was constructed with SNPs flanking the causal mutation for affected individuals in all four families, while the probability that the four familial cases have a common founder was estimated using EM and CHM-based algorithms. The expression of Crybb3 in the developing murine lens was investigated using TaqMan assays. Results The clinical and ophthalmological examinations suggested that all affected individuals had nuclear cataracts. Genome-wide linkage analysis localized the causal phenotype in family PKCC025 to chromosome 22q with statistically significant two-point logarithm of odds (LOD) scores. Subsequently, we localized three additional families, PKCC063, PKCC131, and PKCC168 to chromosome 22q. Bidirectional Sanger sequencing identified a missense variation: c.493G>C (p.Gly165Arg) in CRYBB3 that segregated with the disease phenotype in all four familial cases. This variation was not found in ethnically matched control chromosomes, the NHLBI exome variant server, or the 1000 Genomes or dbSNP databases. Interestingly, all four families harbor a unique disease haplotype that strongly suggests a common founder of the causal mutation (p<1.64E-10). We observed expression of Crybb3 in the mouse lens as early as embryonic day 15 (E15), and expression remained relatively steady throughout development. Conclusion Here, we report a common ancestral mutation in CRYBB3 associated with autosomal recessive congenital cataracts identified in four familial cases of Pakistani origin. PMID:27326458
Ludwig, Fulco; Rosenthal, David M.; Johnston, Jill A.; Kane, Nolan; Gross, Briana L.; Lexer, Christian; Dudley, Susan A.; Rieseberg, Loren H.; Donovan, Lisa A.
2008-01-01
Leaf ecophysiological traits related to carbon gain and resource use are expected to be under strong selection in desert annuals. We used comparative and phenotypic selection approaches to investigate the importance of leaf ecophysiological traits for Helianthus anomalus, a diploid annual sunflower species of hybrid origin that is endemic to active desert dunes. Comparisons were made within and among five genotypic classes: H. anomalus, its ancestral parent species (H. annuus and H. petiolaris), and two backcrossed populations of the parental species (designated BC2ann and BC2pet) representing putative ancestors of H. anomalus. Seedlings were transplanted into H. anomalus habitat at Little Sahara Dunes, Utah, and followed through a summer growing season for leaf ecophysiological traits, phenology, and fitness estimated as vegetative biomass. Helianthus anomalus had a unique combination of traits when compared to its ancestral parent species, suggesting that lower leaf nitrogen and greater leaf succulence might be adaptive. However, selection on leaf traits in H. anomalus favored larger leaf area and greater nitrogen, which was not consistent with the extreme traits of H. anomalus relative to its ancestral parents. Also contrary to expectation, current selection on the leaf traits in the backcross populations was not consistently similar to, or resulting in evolution toward, the current H. anomalus phenotype. Only the selection for greater leaf succulence in BC2ann and greater water-use efficiency in BC2pet would result in evolution toward the current H. anomalus phenotype. It was surprising that the action of phenotypic selection depended greatly on the genotypic class for these closely related sunflower hybrids grown in a common environment. We speculate that this may be due to either phenotypic correlations between measured and unmeasured but functionally related traits or due to the three genotypic classes experiencing the environment differently as a result of their differing morphology. PMID:15696747
Constraining the timing of the Great Oxidation Event within the Rubisco phylogenetic tree.
Kacar, B; Hanson-Smith, V; Adam, Z R; Boekelheide, N
2017-09-01
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO, or Rubisco) catalyzes a key reaction by which inorganic carbon is converted into organic carbon in the metabolism of many aerobic and anaerobic organisms. Across the broader Rubisco protein family, homologs exhibit diverse biochemical characteristics and metabolic functions, but the evolutionary origins of this diversity are unclear. Evidence of the timing of Rubisco family emergence and diversification of its different forms has been obscured by a meager paleontological record of early Earth biota, their subcellular physiology and metabolic components. Here, we use computational models to reconstruct a Rubisco family phylogenetic tree, ancestral amino acid sequences at branching points on the tree, and protein structures for several key ancestors. Analysis of historic substitutions with respect to their structural locations shows that there were distinct periods of amino acid substitution enrichment above background levels near and within its oxygen-sensitive active site and subunit interfaces over the divergence between Form III (associated with anoxia) and Form I (associated with oxia) groups in its evolutionary history. One possible interpretation is that these periods of substitutional enrichment are coincident with oxidative stress exerted by the rise of oxygenic photosynthesis in the Precambrian era. Our interpretation implies that the periods of Rubisco substitutional enrichment inferred near the transition from anaerobic Form III to aerobic Form I ancestral sequences predate the acquisition of Rubisco by fully derived cyanobacterial (i.e., dual photosystem-bearing, oxygen-evolving) clades. The partitioning of extant lineages at high clade levels within our Rubisco phylogeny indicates that horizontal transfer of Rubisco is a relatively infrequent event. Therefore, it is possible that the mutational enrichment periods between the Form III and Form I common ancestral sequences correspond to the adaptation of key oxygen-sensitive components of Rubisco prior to, or coincident with, the Great Oxidation Event. © 2017 The Authors. Geobiology Published by John Wiley & Sons Ltd.
Incomplete Lineage Sorting and Hybridization Statistics for Large-Scale Retroposon Insertion Data
Kuritzin, Andrej; Kischka, Tabea
2016-01-01
Ancient retroposon insertions can be used as virtually homoplasy-free markers to reconstruct the phylogenetic history of species. Inherited, orthologous insertions in related species offer reliable signals of a common origin of the given species. One prerequisite for such a phylogenetically informative insertion is that the inserted element was fixed in the ancestral population before speciation; if not, polymorphically inserted elements may lead to random distributions of presence/absence states during speciation and possibly to apparently conflicting reconstructions of their ancestry. Fortunately, such misleading fixed cases are relatively rare but nevertheless, need to be considered. Here, we present novel, comprehensive statistical models applicable for (1) analyzing any pattern of rare genomic changes, (2) testing and differentiating conflicting phylogenetic reconstructions based on rare genomic changes caused by incomplete lineage sorting or/and ancestral hybridization, and (3) differentiating between search strategies involving genome information from one or several lineages. When the new statistics are applied, in non-conflicting cases a minimum of three elements present in both of two species and absent in a third group are considered significant support (p<0.05) for the branching of the third from the other two, if all three of the given species are screened equally for genome or experimental data. Five elements are necessary for significant support (p<0.05) if a diagnostic locus derived from only one of three species is screened, and no conflicting markers are detected. Most potentially conflicting patterns can be evaluated for their significance and ancestral hybridization can be distinguished from incomplete lineage sorting by considering symmetric or asymmetric distribution of rare genomic changes among possible tree configurations. Additionally, we provide an R-application to make the new KKSC insertion significance test available for the scientific community at http://retrogenomics.uni-muenster.de:3838/KKSC_significance_test/. PMID:26967525
Opazo, Juan C; Lee, Alison P; Hoffmann, Federico G; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F
2015-07-01
Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about ancestral functions of vertebrate globins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Simulation of 'hitch-hiking' genealogies.
Slade, P F
2001-01-01
An ancestral influence graph is derived, an analogue of the coalescent and a composite of Griffiths' (1991) two-locus ancestral graph and Krone and Neuhauser's (1997) ancestral selection graph. This generalizes their use of branching-coalescing random graphs so as to incorporate both selection and recombination into gene genealogies. Qualitative understanding of a 'hitch-hiking' effect on genealogies is pursued via diagrammatic representation of the genealogical process in a two-locus, two-allele haploid model. Extending the simulation technique of Griffiths and Tavare (1996), computational estimation of expected times to the most recent common ancestor of samples of n genes under recombination and selection in two-locus, two-allele haploid and diploid models are presented. Such times are conditional on sample configuration. Monte Carlo simulations show that 'hitch-hiking' is a subtle effect that alters the conditional expected depth of the genealogy at the linked neutral locus depending on a mutation-selection-recombination balance.
Simulation of selected genealogies.
Slade, P F
2000-02-01
Algorithms for generating genealogies with selection conditional on the sample configuration of n genes in one-locus, two-allele haploid and diploid models are presented. Enhanced integro-recursions using the ancestral selection graph, introduced by S. M. Krone and C. Neuhauser (1997, Theor. Popul. Biol. 51, 210-237), which is the non-neutral analogue of the coalescent, enables accessible simulation of the embedded genealogy. A Monte Carlo simulation scheme based on that of R. C. Griffiths and S. Tavaré (1996, Math. Comput. Modelling 23, 141-158), is adopted to consider the estimation of ancestral times under selection. Simulations show that selection alters the expected depth of the conditional ancestral trees, depending on a mutation-selection balance. As a consequence, branch lengths are shown to be an ineffective criterion for detecting the presence of selection. Several examples are given which quantify the effects of selection on the conditional expected time to the most recent common ancestor. Copyright 2000 Academic Press.
Rodin, Andrei S; Szathmáry, Eörs; Rodin, Sergei N
2009-01-01
Background The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem. Results Our main result is the emergence of a palindrome structure for the acceptor stem's common ancestor, reconstructed from the phylogenetic trees of Bacteria, Archaea and Eukarya. In parallel, for pairs of ancestral tRNAs with complementary anticodons, we present updated evidence of concerted complementarity of the second bases in the acceptor stems. These two results suggest that the first pairs of "complementary" amino acids that were engaged in primordial coding, such as Gly and Ala, could have avoided erroneous aminoacylation if and only if the acceptor stems of their adaptors were recognized from the same, major groove, side. The class II protein synthetases then inherited this "primary preference" from isofunctional ribozymes. Conclusion Taken together, our results support the hypothesis that the genetic code per se (the one associated with the anticodons) and the operational code of aminoacylation (associated with the acceptor) diverged from a common ancestor that probably began developing before translation. The primordial advantage of linking some amino acids (most likely glycine and alanine) to the ancestral acceptor stem may have been selective retention in a protocell surrounded by a leaky membrane for use in nucleotide and coenzyme synthesis. Such acceptor stems (as cofactors) thus transferred amino acids as groups for biosynthesis. Later, with the advent of an anticodon loop, some amino acids (such as aspartic acid, histidine, arginine) assumed a catalytic role while bound to such extended adaptors, in line with the original coding coenzyme handle (CCH) hypothesis. Reviewers This article was reviewed by Rob Knight, Juergen Brosius and Anthony Poole. PMID:19173731
Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter
2014-01-01
Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants. PMID:24854168
Jin, Ai-Hua; Israel, Mathilde R.; Inserra, Marco C.; Smith, Jennifer J.; Lewis, Richard J.; Alewood, Paul F.; Vetter, Irina; Dutertre, Sébastien
2015-01-01
Some venomous cone snails feed on small fishes using an immobilizing combination of synergistic venom peptides that target Kv and Nav channels. As part of this envenomation strategy, δ-conotoxins are potent ichtyotoxins that enhance Nav channel function. δ-Conotoxins belong to an ancient and widely distributed gene superfamily, but any evolutionary link from ancestral worm-eating cone snails to modern piscivorous species has not been elucidated. Here, we report the discovery of SuVIA, a potent vertebrate-active δ-conotoxin characterized from a vermivorous cone snail (Conus suturatus). SuVIA is equipotent at hNaV1.3, hNaV1.4 and hNaV1.6 with EC50s in the low nanomolar range. SuVIA also increased peak hNaV1.7 current by approximately 75% and shifted the voltage-dependence of activation to more hyperpolarized potentials from –15 mV to –25 mV, with little effect on the voltage-dependence of inactivation. Interestingly, the proximal venom gland expression and pain-inducing effect of SuVIA in mammals suggest that δ-conotoxins in vermivorous cone snails play a defensive role against higher order vertebrates. We propose that δ-conotoxins originally evolved in ancestral vermivorous cones to defend against larger predators including fishes have been repurposed to facilitate a shift to piscivorous behaviour, suggesting an unexpected underlying mechanism for this remarkable evolutionary transition. PMID:26156767
Origins of an Unmarked Georgia Cemetery Using Ancient DNA Analysis.
Ozga, Andrew T; Tito, Raúl Y; Kemp, Brian M; Matternes, Hugh; Obregon-Tito, Alexandra; Neal, Leslie; Lewis, Cecil M
2015-04-01
Determining the origins of those buried within undocumented cemeteries is of incredible importance to historical archaeologists and, in many cases, the nearby communities. In the case of Avondale Burial Place, a cemetery in Bibb County, Georgia, in use from 1820 to 1950, all written documentation of those interred within it has been lost. Osteological and archaeological evidence alone could not describe, with confidence, the ancestral origins of the 101 individuals buried there. In the present study, we used ancient DNA extraction methods in well-preserved skeletal fragments from 20 individuals buried in Avondale Burial Place to investigate the origins of the cemetery. Through examination of hypervariable region I (HVR1) in the mitochondrial genome (mtDNA), we determined haplotypes for all 20 of these individuals. Eighteen of these individuals belong to the L or U haplogroups, suggesting that Avondale Burial Place was most likely used primarily as a resting place for African Americans. After the surrounding Bibb County community expressed interest in investigating potential ancestral relationships to those within the cemetery, eight potential descendants provided saliva to obtain mtDNA HVR1 information. Three individuals from Avondale Burial Place matched three individuals with oral history ties to the cemetery. Using the online tool EMPOP, we calculated the likelihood of these exact matches occurring by chance alone (< 1%). The present findings exhibit the importance of genetic analysis of cemetery origins when archaeological and osteological data are inconclusive for estimating ancestry of anonymous historical individuals.
ERIC Educational Resources Information Center
Arizona State Dept. of Economic Security, Phoenix.
This report analyzes economic and demographic characteristics of Arizona's Hispanic population. In 1980 Arizona ranked fourth among the states in Hispanic concentration (16.2%) and eighth in total number of Hispanics. More than 45% of Arizona's Hispanics lived in Maricopa County. Almost 90% had their ancestral origins in Mexico, but 82% were born…
Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins
USDA-ARS?s Scientific Manuscript database
Decades of intensive tomato breeding using wild germplasm has resulted in genomes of domesticated accessions (Solanum lycopersicum) to be intertwined with introgressions from their wild relatives. Here we present the first whole genome sequences of two tomato inbreds Gh13 and BTI87, both carrying a ...
Stories for Language Revitalization in Nahuatl and Chichimeca.
ERIC Educational Resources Information Center
Francis, Norbert; Nieto Andrade, Rafael
Central Mexico is home to over 20 indigenous languages whose speakers still occupy their original ancestral communities. In this region, acute language conflict between Native languages and Spanish, the official state language, greatly affects elementary school students such as those in San Isidro Buensuceso Tlaxcala and Mision de Chichimecas in…
Chen, Hua; Chen, Kun
2013-01-01
The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n − An(t) follows a Poisson distribution, and as m → n, n(n−1)Tm/2N(0) follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference. PMID:23666939
Chen, Hua; Chen, Kun
2013-07-01
The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.
Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes.
Lohse, Konrad; Frantz, Laurent A F
2014-04-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4-7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination.
Neandertal Admixture in Eurasia Confirmed by Maximum-Likelihood Analysis of Three Genomes
Lohse, Konrad; Frantz, Laurent A. F.
2014-01-01
Although there has been much interest in estimating histories of divergence and admixture from genomic data, it has proved difficult to distinguish recent admixture from long-term structure in the ancestral population. Thus, recent genome-wide analyses based on summary statistics have sparked controversy about the possibility of interbreeding between Neandertals and modern humans in Eurasia. Here we derive the probability of full mutational configurations in nonrecombining sequence blocks under both admixture and ancestral structure scenarios. Dividing the genome into short blocks gives an efficient way to compute maximum-likelihood estimates of parameters. We apply this likelihood scheme to triplets of human and Neandertal genomes and compare the relative support for a model of admixture from Neandertals into Eurasian populations after their expansion out of Africa against a history of persistent structure in their common ancestral population in Africa. Our analysis allows us to conclusively reject a model of ancestral structure in Africa and instead reveals strong support for Neandertal admixture in Eurasia at a higher rate (3.4−7.3%) than suggested previously. Using analysis and simulations we show that our inference is more powerful than previous summary statistics and robust to realistic levels of recombination. PMID:24532731
Hypothesis testing in evolutionary developmental biology: a case study from insect wings.
Jockusch, E L; Ober, K A
2004-01-01
Developmental data have the potential to give novel insights into morphological evolution. Because developmental data are time-consuming to obtain, support for hypotheses often rests on data from only a few distantly related species. Similarities between these distantly related species are parsimoniously inferred to represent ancestral aspects of development. However, with limited taxon sampling, ancestral similarities in developmental patterning can be difficult to distinguish from similarities that result from convergent co-option of developmental networks, which appears to be common in developmental evolution. Using a case study from insect wings, we discuss how these competing explanations for similarity can be evaluated. Two kinds of developmental data have recently been used to support the hypothesis that insect wings evolved by modification of limb branches that were present in ancestral arthropods. This support rests on the assumption that aspects of wing development in Drosophila, including similarities to crustacean epipod patterning, are ancestral for winged insects. Testing this assumption requires comparisons of wing development in Drosophila and other winged insects. Here we review data that bear on this assumption, including new data on the functions of wingless and decapentaplegic during appendage allocation in the red flour beetle Tribolium castaneum.
Siddall, Mark E; Brugler, Mercer R; Kvist, Sebastian
2016-02-01
One of the recalcitrant questions regarding the evolutionary history of clitellate annelids involves the feeding preference of the common ancestor of extant rhynchobdellid (proboscis bearing) and arhynchobdellid (jaw bearing) leeches. Whereas early evidence, based on morphological data, pointed towards independent acquisitions of blood feeding in the 2 orders, molecular-based phylogenetic data suggest that the ancestor of modern leeches was a sanguivore. Here, we use a comparative transcriptomic approach in order to increase our understanding of the diversity of anticoagulation factors for 3 species of the genus Placobdella, for which comparative data have been lacking, and inspect these in light of archetypal anticoagulant data for both arhynchobdellid and other rhynchobdellid species. Notwithstanding the varying levels of host specificity displayed by the 3 different species of Placobdella, transcriptomic profiles with respect to anticoagulation factors were largely similar -this despite the fact that Placobdella kwetlumye only retains a single pair of salivary glands, as opposed to the 2 pairs more common in the genus. Results show that 9 different anticoagulant proteins and an additional 5 putative antihemostasis proteins are expressed in salivary secretions of the 3 species. In particular, an ortholog of the archetypal, single-copy, anticoagulant hirudin (not previously available as comparative data for rhynchobdellids) is present in at least 2 of 3 species examined, corroborating the notion of a single origin of blood feeding in the ancestral leech.
The evolution of fungus-growing termites and their mutualistic fungal symbionts
Aanen, Duur K.; Eggleton, Paul; Rouland-Lefèvre, Corinne; Guldberg-Frøslev, Tobias; Rosendahl, Søren; Boomsma, Jacobus J.
2002-01-01
We have estimated phylogenies of fungus-growing termites and their associated mutualistic fungi of the genus Termitomyces using Bayesian analyses of DNA sequences. Our study shows that the symbiosis has a single African origin and that secondary domestication of other fungi or reversal of mutualistic fungi to a free-living state has not occurred. Host switching has been frequent, especially at the lower taxonomic levels, and nests of single termite species can have different symbionts. Data are consistent with horizontal transmission of fungal symbionts in both the ancestral state of the mutualism and most of the extant taxa. Clonal vertical transmission of fungi, previously shown to be common in the genus Microtermes (via females) and in the species Macrotermes bellicosus (via males) [Johnson, R. A., Thomas, R. J., Wood, T. G. & Swift, M. J. (1981) J. Nat. Hist. 15, 751–756], is derived with two independent origins. Despite repeated host switching, statistical tests taking phylogenetic uncertainty into account show a significant congruence between the termite and fungal phylogenies, because mutualistic interactions at higher taxonomic levels show considerable specificity. We identify common characteristics of fungus-farming evolution in termites and ants, which apply despite the major differences between these two insect agricultural systems. We hypothesize that biparental colony founding may have constrained the evolution of vertical symbiont transmission in termites but not in ants where males die after mating. PMID:12386341
Introgression Makes Waves in Inferred Histories of Effective Population Size.
Hawks, John
2017-01-01
Human populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent "wave" of larger effective population sizes, found in both African and non-African populations, that appears to reflect events prior to the last 100,000 years. I carried out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have visible effects on the inference of effective population size.
Guo, Peng; Liu, Qin; Zhu, Fei; Zhong, Guang H; Chen, Xin; Myers, Edward A; Che, Jing; Zhang, Liang; Ziegler, Thomas; Nguyen, Truong Q; Burbrink, Frank T
2016-06-01
Viridovipera stejnegeri is one of the most common pit vipers in Asia, with a wide distribution in southern China and Vietnam. We investigated historical demography and explored how the environment and climatic factors have shaped genetic diversity and the evolutionary history of this venomous snake. A total of 171 samples from 47 localities were sequenced and analysed for two mitochondrial gene fragments and three nuclear genes. Gene trees reveal the existence of two well-supported clades (Southwest China and Southeast China) with seven distinct and strongly supported, geographically structured subclades within V. stejnegeri. Estimation of divergence time and ancestral area suggests that V. stejnegeri originated at ~6.0 Ma in the late Miocene on the Yunnan-Guizhou Plateau. The estimated date of origin and divergence of the island populations of Taiwan and Hainan closely matches the geological origin of the both islands. The mtDNA gene tree reveals the presence of west-east diversification in V. stejnegeri populations. Complex orogenesis and heterogeneous habitats, as well as climate-mediated habitat differentiation including glacial cycles, all have influenced population structure and the distribution of this taxon. The validity of V. stejnegeri chenbihuii is questionable, and this subspecies most probably represents an invalid taxon. © 2016 John Wiley & Sons Ltd.
Independent evolution of striated muscles in cnidarians and bilaterians.
Steinmetz, Patrick R H; Kraus, Johanna E M; Larroux, Claire; Hammel, Jörg U; Amon-Hassenzahl, Annette; Houliston, Evelyn; Wörheide, Gert; Nickel, Michael; Degnan, Bernard M; Technau, Ulrich
2012-07-12
Striated muscles are present in bilaterian animals (for example, vertebrates, insects and annelids) and some non-bilaterian eumetazoans (that is, cnidarians and ctenophores). The considerable ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin. Here we show that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein characteristic of striated muscles in vertebrates, was already present in unicellular organisms before the origin of multicellular animals. Furthermore, 'striated muscle' and 'non-muscle' myhc orthologues are expressed differentially in two sponges, compatible with a functional diversification before the origin of true muscles and the subsequent use of striated muscle MyHC in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess striated muscle myhc orthologues but lack crucial components of bilaterian striated muscles, such as genes that code for titin and the troponin complex, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian Z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of new proteins to a pre-existing, ancestral contractile apparatus may serve as a model for the evolution of complex animal cell types.
Independent evolution of striated muscles in cnidarians and bilaterians
Steinmetz, Patrick R.H.; Kraus, Johanna E.M.; Larroux, Claire; U. Hammel, Jörg; Amon-Hassenzahl, Annette; Houliston, Evelyn; Wörheide, Gert; Nickel, Michael; Degnan, Bernard M.; Technau, Ulrich
2012-01-01
Striated muscles are present in bilaterian animals (e.g. vertebrates, insects, annelids) and some non-bilaterian eumetazoans (i.e. cnidarians and ctenophores). The striking ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin1, 2. Here we show that a muscle protein core set, including a Myosin type II Heavy Chain motor protein characteristic of striated muscles in vertebrates (MyHC-st), was already present in unicellular organisms before the origin of multicellular animals. Furthermore, myhc-st and myhc-non-muscle (myhc-nm) orthologues are expressed differentially in two sponges, compatible with the functional diversification of myhc paralogues before the origin of true muscles and the subsequent deployment of MyHC-st in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess myhc-st orthologues but lack crucial components of bilaterian striated muscles, such as troponin complex and titin genes, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of novel proteins to a pre-existing, ancestral contractile apparatus may serve as a paradigm for the evolution of complex animal cell types. PMID:22763458
2011-01-01
Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae. PMID:21226921
Primal Eukaryogenesis: On the Communal Nature of Precellular States, Ancestral to Modern Life
Egel, Richard
2012-01-01
This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other. PMID:25382122
The genetic origin of minor histocompatibility antigens.
Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E
1993-01-01
The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.
Chandrasekaran, Srinivas Niranj; Yardimci, Galip Gürkan; Erdogan, Ozgün; Roach, Jeffrey; Carter, Charles W.
2013-01-01
We tested the idea that ancestral class I and II aminoacyl-tRNA synthetases arose on opposite strands of the same gene. We assembled excerpted 94-residue Urgenes for class I tryptophanyl-tRNA synthetase (TrpRS) and class II Histidyl-tRNA synthetase (HisRS) from a diverse group of species, by identifying and catenating three blocks coding for secondary structures that position the most highly conserved, active-site residues. The codon middle-base pairing frequency was 0.35 ± 0.0002 in all-by-all sense/antisense alignments for 211 TrpRS and 207 HisRS sequences, compared with frequencies between 0.22 ± 0.0009 and 0.27 ± 0.0005 for eight different representations of the null hypothesis. Clustering algorithms demonstrate further that profiles of middle-base pairing in the synthetase antisense alignments are correlated along the sequences from one species-pair to another, whereas this is not the case for similar operations on sets representing the null hypothesis. Most probable reconstructed sequences for ancestral nodes of maximum likelihood trees show that middle-base pairing frequency increases to approximately 0.42 ± 0.002 as bacterial trees approach their roots; ancestral nodes from trees including archaeal sequences show a less pronounced increase. Thus, contemporary and reconstructed sequences all validate important bioinformatic predictions based on descent from opposite strands of the same ancestral gene. They further provide novel evidence for the hypothesis that bacteria lie closer than archaea to the origin of translation. Moreover, the inverse polarity of genetic coding, together with a priori α-helix propensities suggest that in-frame coding on opposite strands leads to similar secondary structures with opposite polarity, as observed in TrpRS and HisRS crystal structures. PMID:23576570
A draft genome of Yersinia pestis from victims of the Black Death
Bos, Kirsten I.; Schuenemann, Verena J.; Golding, G. Brian; Burbano, Hernán A.; Waglechner, Nicholas; Coombes, Brian K.; McPhee, Joseph B.; DeWitte, Sharon N.; Meyer, Matthias; Schmedes, Sarah; Wood, James; Earn, David J. D.; Herring, D. Ann; Bauer, Peter; Poinar, Hendrik N.; Krause, Johannes
2013-01-01
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard1. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348–1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347–1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections. PMID:21993626
Miklós, István
2009-01-01
Homologous genes originate from a common ancestor through vertical inheritance, duplication, or horizontal gene transfer. Entire homolog families spawned by a single ancestral gene can be identified across multiple genomes based on protein sequence similarity. The sequences, however, do not always reveal conclusively the history of large families. To study the evolution of complete gene repertoires, we propose here a mathematical framework that does not rely on resolved gene family histories. We show that so-called phylogenetic profiles, formed by family sizes across multiple genomes, are sufficient to infer principal evolutionary trends. The main novelty in our approach is an efficient algorithm to compute the likelihood of a phylogenetic profile in a model of birth-and-death processes acting on a phylogeny. We examine known gene families in 28 archaeal genomes using a probabilistic model that involves lineage- and family-specific components of gene acquisition, duplication, and loss. The model enables us to consider all possible histories when inferring statistics about archaeal evolution. According to our reconstruction, most lineages are characterized by a net loss of gene families. Major increases in gene repertoire have occurred only a few times. Our reconstruction underlines the importance of persistent streamlining processes in shaping genome composition in Archaea. It also suggests that early archaeal genomes were as complex as typical modern ones, and even show signs, in the case of the methanogenic ancestor, of an extremely large gene repertoire. PMID:19570746
A draft genome of Yersinia pestis from victims of the Black Death.
Bos, Kirsten I; Schuenemann, Verena J; Golding, G Brian; Burbano, Hernán A; Waglechner, Nicholas; Coombes, Brian K; McPhee, Joseph B; DeWitte, Sharon N; Meyer, Matthias; Schmedes, Sarah; Wood, James; Earn, David J D; Herring, D Ann; Bauer, Peter; Poinar, Hendrik N; Krause, Johannes
2011-10-12
Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348-1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347-1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections.
Avian paternal care had dinosaur origin.
Varricchio, David J; Moore, Jason R; Erickson, Gregory M; Norell, Mark A; Jackson, Frankie D; Borkowski, John J
2008-12-19
The repeated discovery of adult dinosaurs in close association with egg clutches leads to speculation over the type and extent of care exhibited by these extinct animals for their eggs and young. To assess parental care in Cretaceous troodontid and oviraptorid dinosaurs, we examined clutch volume and the bone histology of brooding adults. In comparison to four archosaur care regressions, the relatively large clutch volumes of Troodon, Oviraptor, and Citipati scale most closely with a bird-paternal care model. Clutch-associated adults lack the maternal and reproductively associated histologic features common to extant archosaurs. Large clutch volumes and a suite of reproductive features shared only with birds favor paternal care, possibly within a polygamous mating system. Paternal care in both troodontids and oviraptorids indicates that this care system evolved before the emergence of birds and represents birds' ancestral condition. In extant birds and over most adult sizes, paternal and biparental care correspond to the largest and smallest relative clutch volumes, respectively.
Genetic pathways for differentiation of the peripheral nervous system in ascidians
Waki, Kana; Imai, Kaoru S.; Satou, Yutaka
2015-01-01
Ascidians belong to tunicates, the sister group of vertebrates. Peripheral nervous systems (PNSs) including epidermal sensory neurons (ESNs) in the trunk and dorsal tail regions of ascidian larvae are derived from cells adjacent to the neural plate, as in vertebrates. On the other hand, peripheral ESNs in the ventral tail region are derived from the ventral ectoderm under the control of BMP signalling, reminiscent of sensory neurons of amphioxus and protostomes. In this study, we show that two distinct mechanisms activate a common gene circuit consisting of Msx, Ascl.b, Tox, Delta.b and Pou4 in the dorsal and ventral regions to differentiate ESNs. Our results suggest that ventral ESNs of the ascidian larva are not directly homologous to vertebrate PNSs. The dorsal ESNs might have arisen via co-option of the original PNS gene circuit to the neural plate border in an ancestral chordate. PMID:26515371
The relative ages of eukaryotes and akaryotes.
Penny, David; Collins, Lesley J; Daly, Toni K; Cox, Simon J
2014-12-01
The Last Eukaryote Common Ancestor (LECA) appears to have the genetics required for meiosis, mitosis, nucleus and nuclear substructures, an exon/intron gene structure, spliceosomes, many centres of DNA replication, etc. (and including mitochondria). Most of these features are not generally explained by models for the origin of the Eukaryotic cell based on the fusion of an Archeon and a Bacterium. We find that the term 'prokaryote' is ambiguous and the non-phylogenetic term akaryote should be used in its place because we do not yet know the direction of evolution between eukaryotes and akaryotes. We use the term 'protoeukaryote' for the hypothetical stem group ancestral eukaryote that took up a bacterium as an endosymbiont that formed the mitochondrion. It is easier to make detailed models with a eukaryote to an akaryote transition, rather than vice versa. So we really are at a phylogenetic impasse in not being confident about the direction of change between eukaryotes and akaryotes.
Platypus TCRμ provides insight into the origins and evolution of a uniquely mammalian TCR locus1
Wang, Xinxin; Parra, Zuly E.; Miller, Robert D.
2011-01-01
TCRμ is an unconventional TCR that was first discovered in marsupials and appears to be absent from placental mammals and non-mammals. Here we show that TCRμ is also present in the duckbill platypus, an egg-laying monotreme, consistent with TCRμ being ancient and present in the last common ancestor of all extant mammals. As in marsupials, platypus TCRμ is expressed in a form containing double V domains. These V domains more closely resemble antibody V than that of conventional TCR. Platypus TCRμ differs from its marsupial homologue by requiring two rounds of somatic DNA recombination to assemble both V exons and has a genomic organization resembling the likely ancestral form of the receptor genes. These results demonstrate that the ancestors of placental mammals would have had TCRμ but it has been lost from this lineage. PMID:21976776
Platypus TCRμ provides insight into the origins and evolution of a uniquely mammalian TCR locus.
Wang, Xinxin; Parra, Zuly E; Miller, Robert D
2011-11-15
TCRμ is an unconventional TCR that was first discovered in marsupials and appears to be absent from placental mammals and nonmammals. In this study, we show that TCRμ is also present in the duckbill platypus, an egg-laying monotreme, consistent with TCRμ being ancient and present in the last common ancestor of all extant mammals. As in marsupials, platypus TCRμ is expressed in a form containing double V domains. These V domains more closely resemble Ab V than that of conventional TCR. Platypus TCRμ differs from its marsupial homolog by requiring two rounds of somatic DNA recombination to assemble both V exons and has a genomic organization resembling the likely ancestral form of the receptor genes. These results demonstrate that the ancestors of placental mammals would have had TCRμ but it has been lost from this lineage.
Neo-sex chromosomes and adaptive potential in tortricid pests
Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Čapková Frydrychová, Radmila; Neven, Lisa G.; Sahara, Ken; Marec, František
2013-01-01
Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z–autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation. PMID:23569222
[The Evolutionary Origin of Placodes and Neural Crest Cells
NASA Technical Reports Server (NTRS)
Bronner-Fraser, Marianne
2003-01-01
The long-term goal of this NASA-supported research is to understand the evolutionary origin of placodes and neural crest cells, with particular reference to evolution of the inner ear, and their evolutionary and developmental relationships. The cephalochordcate amphioxus, the closest living invertebrate relative of the vertebrates is used as a stand-in for the ancestral vertebrate. The research, which has supported one graduate student, Jr-Kai Yu, has resulted in ten publications by the Holland laboratory in peer-reviewed journals.
NASA Astrophysics Data System (ADS)
Takai, K.; Inagaki, F.; Nakamura, K.; Suzuki, K.; Kumagai, H.
2005-12-01
Deep-sea hydrothermal system has been recognized one of the most plausible places for origin of life in this planet. This hypothesis has been supported by evidences from multidisciplinary scientific fields. In geology, it has been demonstrated that the potentially most ancient microbial fossils are retrieved from the paleoenvironment, that might be related with deep-sea hydrothermal systems in the Archean. Chemical reactions suggesting prebiotic chemical evolution (synthesis of amino acids, nucleic acids and hydrocarbon, and polymerization of these molecules) are observed under the simulated physical and chemical conditions of the deep-sea hydrothermal vents in the laboratory. In addition, phylogenetic analyses of all the lives in this planet have clearly revealed that hyperthermophiles inhabiting deep-sea hydrothermal systems represent the deepest lineage of the life. Supposed that the Archean deep-sea hydrothermal system hosted the origin of life, what was the first life? We are pursuing the energy metabolism of our last universal common ancestor (LUCA) and the environmental settings hosting the LUCA. It is definitely expected that the genesis of LUCA occurred at high temperatures of locally organics-rich microenvironment around deep-sea hydrothermal field and the first energy metabolism depended on fermentation of simple amino acids, organic acids and sugars. However, these organics were immediately consumed by the hyperthermophilic LUCA activity. Inheritance of the LUCA needed to evolve the energy and carbon acquisitions to more stable and efficient mode. Chemolithoautotrophy might be the best because a plenty of reductive gas components were always provided by the hydrothermal activity. Hyperthermophilic chemolithoautotrophs could serve as the primary producers and could foster the heterotrophic fellows. This was the genesis of the last universal common ancestral (LUCA) community of life. We hypothesize that the LUCA community was metabolically approximated to hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) currently discovered beneath the Central Indian Ridge hydrothermal field. The environmental settings for the occurrence of HyperSLiME are now being characterized and an important linkage among the occurrence of HyperSLiME, extraordinary amount of hydrogen in the hydrothermal fluids and ultramfics-hosted hydrothermal systems is proposed. This ultramafics-hydrothermalism-hydrogen-HyperSLiME (UltraH3) linkage is very likely a key for the genesis of the LUCA community. We would like to discuss the possible UltraH3 linkage in the Archean earth. In addition, we would like to discuss which of modern deep-sea hydrothermal systems is the most plausible proxy for the Archean LUCA habitats.
An abbreviated SNP panel for ancestry assignment of honeybees (Apis mellifera)
USDA-ARS?s Scientific Manuscript database
This paper examines whether an abbreviated panel of 37 single nucleotide polymorphisms (SNPs) has the same power as a larger and more expensive panel of 95 SNPs to assign ancestry of honeybees (Apis mellifera) to three ancestral lineages. We selected 37 SNPs from the original 95 SNP panel using alle...
USDA-ARS?s Scientific Manuscript database
The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-t...
A phenol-enriched cuticle is ancestral to lignin evolution in land plants.
Renault, Hugues; Alber, Annette; Horst, Nelly A; Basilio Lopes, Alexandra; Fich, Eric A; Kriegshauser, Lucie; Wiedemann, Gertrud; Ullmann, Pascaline; Herrgott, Laurence; Erhardt, Mathieu; Pineau, Emmanuelle; Ehlting, Jürgen; Schmitt, Martine; Rose, Jocelyn K C; Reski, Ralf; Werck-Reichhart, Danièle
2017-03-08
Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions.
A phenol-enriched cuticle is ancestral to lignin evolution in land plants
Renault, Hugues; Alber, Annette; Horst, Nelly A.; Basilio Lopes, Alexandra; Fich, Eric A.; Kriegshauser, Lucie; Wiedemann, Gertrud; Ullmann, Pascaline; Herrgott, Laurence; Erhardt, Mathieu; Pineau, Emmanuelle; Ehlting, Jürgen; Schmitt, Martine; Rose, Jocelyn K. C.; Reski, Ralf; Werck-Reichhart, Danièle
2017-01-01
Lignin, one of the most abundant biopolymers on Earth, derives from the plant phenolic metabolism. It appeared upon terrestrialization and is thought critical for plant colonization of land. Early diverging land plants do not form lignin, but already have elements of its biosynthetic machinery. Here we delete in a moss the P450 oxygenase that defines the entry point in angiosperm lignin metabolism, and find that its pre-lignin pathway is essential for development. This pathway does not involve biochemical regulation via shikimate coupling, but instead is coupled with ascorbate catabolism, and controls the synthesis of the moss cuticle, which prevents desiccation and organ fusion. These cuticles share common features with lignin, cutin and suberin, and may represent the extant representative of a common ancestor. Our results demonstrate a critical role for the ancestral phenolic metabolism in moss erect growth and cuticle permeability, consistent with importance in plant adaptation to terrestrial conditions. PMID:28270693
β-Propeller Blades as Ancestral Peptides in Protein Evolution
Kopec, Klaus O.; Lupas, Andrei N.
2013-01-01
Proteins of the β-propeller fold are ubiquitous in nature and widely used as structural scaffolds for ligand binding and enzymatic activity. This fold comprises between four and twelve four-stranded β-meanders, the so called blades that are arranged circularly around a central funnel-shaped pore. Despite the large size range of β-propellers, their blades frequently show sequence similarity indicative of a common ancestry and it has been proposed that the majority of β-propellers arose divergently by amplification and diversification of an ancestral blade. Given the structural versatility of β-propellers and the hypothesis that the first folded proteins evolved from a simpler set of peptides, we investigated whether this blade may have given rise to other folds as well. Using sequence comparisons, we identified proteins of four other folds as potential homologs of β-propellers: the luminal domain of inositol-requiring enzyme 1 (IRE1-LD), type II β-prisms, β-pinwheels, and WW domains. Because, with increasing evolutionary distance and decreasing sequence length, the statistical significance of sequence comparisons becomes progressively harder to distinguish from the background of convergent similarities, we complemented our analyses with a new method that evaluates possible homology based on the correlation between sequence and structure similarity. Our results indicate a homologous relationship of IRE1-LD and type II β-prisms with β-propellers, and an analogous one for β-pinwheels and WW domains. Whereas IRE1-LD most likely originated by fold-changing mutations from a fully formed PQQ motif β-propeller, type II β-prisms originated by amplification and differentiation of a single blade, possibly also of the PQQ type. We conclude that both β-propellers and type II β-prisms arose by independent amplification of a blade-sized fragment, which represents a remnant of an ancient peptide world. PMID:24143202
Jin, Ai-Hua; Israel, Mathilde R; Inserra, Marco C; Smith, Jennifer J; Lewis, Richard J; Alewood, Paul F; Vetter, Irina; Dutertre, Sébastien
2015-07-22
Some venomous cone snails feed on small fishes using an immobilizing combination of synergistic venom peptides that target Kv and Nav channels. As part of this envenomation strategy, δ-conotoxins are potent ichtyotoxins that enhance Nav channel function. δ-Conotoxins belong to an ancient and widely distributed gene superfamily, but any evolutionary link from ancestral worm-eating cone snails to modern piscivorous species has not been elucidated. Here, we report the discovery of SuVIA, a potent vertebrate-active δ-conotoxin characterized from a vermivorous cone snail (Conus suturatus). SuVIA is equipotent at hNaV1.3, hNaV1.4 and hNaV1.6 with EC50s in the low nanomolar range. SuVIA also increased peak hNaV1.7 current by approximately 75% and shifted the voltage-dependence of activation to more hyperpolarized potentials from -15 mV to -25 mV, with little effect on the voltage-dependence of inactivation. Interestingly, the proximal venom gland expression and pain-inducing effect of SuVIA in mammals suggest that δ-conotoxins in vermivorous cone snails play a defensive role against higher order vertebrates. We propose that δ-conotoxins originally evolved in ancestral vermivorous cones to defend against larger predators including fishes have been repurposed to facilitate a shift to piscivorous behaviour, suggesting an unexpected underlying mechanism for this remarkable evolutionary transition. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Zippel, Kevin C; Glor, Richard E; Bertram, John E A
1999-02-01
We examined caudal anatomy in two species of prehensile-tailed lizards, Furcifer pardalis and Corucia zebrata. Although both species use their tails to grasp, each relies on a strikingly different anatomy to do so. The underlying anatomies appear to reflect phylogenetic constraints on the consequent functional mechanisms. Caudal autotomy is presumably the ancestral condition for lizards and is allowed by a complex system of interdigitating muscle segments. The immediate ancestor of chameleons was nonautotomous and did not possess this specialized anatomy; consequently, the derived arrangement in the chameleon tail is unique among lizards. The limb functions as an articulated linkage system with long tendinous bands originating from longitudinal muscles to directly manipulate vertebrae. Corucia is incapable of autotomy, but it is immediately derived from autotomous ancestors. As such, it has evolved a biomechanical system for prehension quite different from that of chameleons. The caudal anatomy in Corucia is very similar to that of lizards with autotomous tails, yet distinct differences in the ancestral pattern and its relationship to the subdermal tunic are derived. Instead of the functional unit being individual autotomy segments, the interdigitating prongs of muscle have become fused with an emphasis on longitudinal stacks of muscular cones. The muscles originate from the vertebral column and a subdermal collagenous tunic and insert within the adjacent cone. However, there is remarkably little direct connection with the bones. The muscles have origins more associated with the tunic and muscular septa. Like the axial musculature of some fish, the tail of Corucia utilizes a design in which these collagenous elements serve as an integral skeletal component. This arrangement provides Corucia with an elegantly designed system capable of a remarkable variety of bending movements not evident in chameleon tails. J. Morphol. 239:143-155, 1999. © 1999 Wiley-Liss, Inc. Copyright © 1999 Wiley-Liss, Inc.
Genomic evolution in domestic cattle: ancestral haplotypes and healthy beef.
Williamson, Joseph F; Steele, Edward J; Lester, Susan; Kalai, Oscar; Millman, John A; Wolrige, Lindsay; Bayard, Dominic; McLure, Craig; Dawkins, Roger L
2011-05-01
We have identified numerous Ancestral Haplotypes encoding a 14-Mb region of Bota C19. Three are frequent in Simmental, Angus and Wagyu and have been conserved since common progenitor populations. Others are more relevant to the differences between these 3 breeds including fat content and distribution in muscle. SREBF1 and Growth Hormone, which have been implicated in the production of healthy beef, are included within these haplotypes. However, we conclude that alleles at these 2 loci are less important than other sequences within the haplotypes. Identification of breeds and hybrids is improved by using haplotypes rather than individual alleles. Copyright © 2010 Elsevier Inc. All rights reserved.
Bonaccorso, Elisa; Guayasamin, Juan M.
2013-01-01
To understand the origin of Pantepui montane biotas, we studied the biogeography of toucanets in the genus Aulacorhynchus. These birds are ideal for analyzing historical relationships among Neotropical montane regions, given their geographic distribution from Mexico south to Bolivia, including northern Venezuela (Cordillera de la Costa), and the Pantepui. Analyses were based on molecular phylogenies using mitochondrial and nuclear DNA sequences. Topology tests were applied to compare alternative hypotheses that may explain the current distribution of Aulacorhynchus toucanets, in the context of previous hypotheses of the origin of Pantepui montane biotas. Biogeographic reconstructions in RASP and Lagrange were used to estimate the ancestral area of the genus, and an analysis in BEAST was used to estimate a time framework for its diversification. A sister relationship between the Pantepui and Andes+Cordillera de la Costa was significantly more likely than topologies indicating other hypothesis for the origin of Pantepui populations. The Andes was inferred as the ancestral area for Aulacorhynchus, and the group has diversified since the late Miocene. The biogeographic patterns found herein, in which the Andes are the source for biotas of other regions, are consistent with those found for flowerpiercers and tanagers, and do not support the hypothesis of the geologically old Pantepui as a source of Neotropical montain diversity. Based on the high potential for cryptic speciation and isolation of Pantepui populations, we consider that phylogenetic studies of additional taxa are important from a conservation perspective. PMID:23840663
Bonaccorso, Elisa; Guayasamin, Juan M
2013-01-01
To understand the origin of Pantepui montane biotas, we studied the biogeography of toucanets in the genus Aulacorhynchus. These birds are ideal for analyzing historical relationships among Neotropical montane regions, given their geographic distribution from Mexico south to Bolivia, including northern Venezuela (Cordillera de la Costa), and the Pantepui. Analyses were based on molecular phylogenies using mitochondrial and nuclear DNA sequences. Topology tests were applied to compare alternative hypotheses that may explain the current distribution of Aulacorhynchus toucanets, in the context of previous hypotheses of the origin of Pantepui montane biotas. Biogeographic reconstructions in RASP and Lagrange were used to estimate the ancestral area of the genus, and an analysis in BEAST was used to estimate a time framework for its diversification. A sister relationship between the Pantepui and Andes+Cordillera de la Costa was significantly more likely than topologies indicating other hypothesis for the origin of Pantepui populations. The Andes was inferred as the ancestral area for Aulacorhynchus, and the group has diversified since the late Miocene. The biogeographic patterns found herein, in which the Andes are the source for biotas of other regions, are consistent with those found for flowerpiercers and tanagers, and do not support the hypothesis of the geologically old Pantepui as a source of Neotropical montain diversity. Based on the high potential for cryptic speciation and isolation of Pantepui populations, we consider that phylogenetic studies of additional taxa are important from a conservation perspective.
Koonin, Eugene V.
2015-01-01
The origin of eukaryotes is a fundamental, forbidding evolutionary puzzle. Comparative genomic analysis clearly shows that the last eukaryotic common ancestor (LECA) possessed most of the signature complex features of modern eukaryotic cells, in particular the mitochondria, the endomembrane system including the nucleus, an advanced cytoskeleton and the ubiquitin network. Numerous duplications of ancestral genes, e.g. DNA polymerases, RNA polymerases and proteasome subunits, also can be traced back to the LECA. Thus, the LECA was not a primitive organism and its emergence must have resulted from extensive evolution towards cellular complexity. However, the scenario of eukaryogenesis, and in particular the relationship between endosymbiosis and the origin of eukaryotes, is far from being clear. Four recent developments provide new clues to the likely routes of eukaryogenesis. First, evolutionary reconstructions suggest complex ancestors for most of the major groups of archaea, with the subsequent evolution dominated by gene loss. Second, homologues of signature eukaryotic proteins, such as actin and tubulin that form the core of the cytoskeleton or the ubiquitin system, have been detected in diverse archaea. The discovery of this ‘dispersed eukaryome’ implies that the archaeal ancestor of eukaryotes was a complex cell that might have been capable of a primitive form of phagocytosis and thus conducive to endosymbiont capture. Third, phylogenomic analyses converge on the origin of most eukaryotic genes of archaeal descent from within the archaeal evolutionary tree, specifically, the TACK superphylum. Fourth, evidence has been presented that the origin of the major archaeal phyla involved massive acquisition of bacterial genes. Taken together, these findings make the symbiogenetic scenario for the origin of eukaryotes considerably more plausible and the origin of the organizational complexity of eukaryotic cells more readily explainable than they appeared until recently. PMID:26323764
Fast ancestral gene order reconstruction of genomes with unequal gene content.
Feijão, Pedro; Araujo, Eloi
2016-11-11
During evolution, genomes are modified by large scale structural events, such as rearrangements, deletions or insertions of large blocks of DNA. Of particular interest, in order to better understand how this type of genomic evolution happens, is the reconstruction of ancestral genomes, given a phylogenetic tree with extant genomes at its leaves. One way of solving this problem is to assume a rearrangement model, such as Double Cut and Join (DCJ), and find a set of ancestral genomes that minimizes the number of events on the input tree. Since this problem is NP-hard for most rearrangement models, exact solutions are practical only for small instances, and heuristics have to be used for larger datasets. This type of approach can be called event-based. Another common approach is based on finding conserved structures between the input genomes, such as adjacencies between genes, possibly also assigning weights that indicate a measure of confidence or probability that this particular structure is present on each ancestral genome, and then finding a set of non conflicting adjacencies that optimize some given function, usually trying to maximize total weight and minimizing character changes in the tree. We call this type of methods homology-based. In previous work, we proposed an ancestral reconstruction method that combines homology- and event-based ideas, using the concept of intermediate genomes, that arise in DCJ rearrangement scenarios. This method showed better rate of correctly reconstructed adjacencies than other methods, while also being faster, since the use of intermediate genomes greatly reduces the search space. Here, we generalize the intermediate genome concept to genomes with unequal gene content, extending our method to account for gene insertions and deletions of any length. In many of the simulated datasets, our proposed method had better results than MLGO and MGRA, two state-of-the-art algorithms for ancestral reconstruction with unequal gene content, while running much faster, making it more scalable to larger datasets. Studing ancestral reconstruction problems under a new light, using the concept of intermediate genomes, allows the design of very fast algorithms by greatly reducing the solution search space, while also giving very good results. The algorithms introduced in this paper were implemented in an open-source software called RINGO (ancestral Reconstruction with INtermediate GenOmes), available at https://github.com/pedrofeijao/RINGO .
Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A
2015-05-20
The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K-Pg) mass extinction, clarifying the pattern and timing of the extant snake radiation. Although the snake crown-group most likely arose on the supercontinent of Gondwana, our results suggest the possibility that the snake total-group originated on Laurasia. Our study provides new insights into when, where, and how snakes originated, and presents the most complete picture of the early evolution of snakes to date. More broadly, we demonstrate the striking influence of including fossils and phenotypic data in combined analyses aimed at both phylogenetic topology inference and ancestral state reconstruction.
Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes
NASA Astrophysics Data System (ADS)
Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio
1998-10-01
A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.
Wang, Yaqiong; Ma, Hong
2015-09-01
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Vertebrate codon bias indicates a highly GC-rich ancestral genome.
Nabiyouni, Maryam; Prakash, Ashwin; Fedorov, Alexei
2013-04-25
Two factors are thought to have contributed to the origin of codon usage bias in eukaryotes: 1) genome-wide mutational forces that shape overall GC-content and create context-dependent nucleotide bias, and 2) positive selection for codons that maximize efficient and accurate translation. Particularly in vertebrates, these two explanations contradict each other and cloud the origin of codon bias in the taxon. On the one hand, mutational forces fail to explain GC-richness (~60%) of third codon positions, given the GC-poor overall genomic composition among vertebrates (~40%). On the other hand, positive selection cannot easily explain strict regularities in codon preferences. Large-scale bioinformatic assessment, of nucleotide composition of coding and non-coding sequences in vertebrates and other taxa, suggests a simple possible resolution for this contradiction. Specifically, we propose that the last common vertebrate ancestor had a GC-rich genome (~65% GC). The data suggest that whole-genome mutational bias is the major driving force for generating codon bias. As the bias becomes prominent, it begins to affect translation and can result in positive selection for optimal codons. The positive selection can, in turn, significantly modulate codon preferences. Copyright © 2013 Elsevier B.V. All rights reserved.
Manzi, Giorgio
2011-01-01
The origin of H. sapiens has deep roots, which include two crucial nodes: (1) the emergence and diffusion of the last common ancestor of later Homo (in the Early Pleistocene) and (2) the tempo and mode of the appearance of distinct evolutionary lineages (in the Middle Pleistocene). The window between 1,000 and 500 thousand years before present appears of crucial importance, including the generation of a new and more encephalised kind of humanity, referred to by many authors as H. heidelbergensis. This species greatly diversified during the Middle Pleistocene up to the formation of new variants (i.e., incipient species) that, eventually, led to the allopatric speciation of H. neanderthalensis and H. sapiens. The special case furnished by the calvarium found near Ceprano (Italy), dated to 430–385 ka, offers the opportunity to investigate this matter from an original perspective. It is proposed to separate the hypodigm of a single, widespread, and polymorphic human taxon of the Middle Pleistocene into distinct subspecies (i.e., incipient species). The ancestral one should be H. heidelbergensis, including specimens such as Ceprano and the mandible from Mauer. PMID:21716742
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, G.A.; Blitzer, M.G.; Mules, E.H.
A study was undertaken to characterize the mutation(s) responsible for Tay-Sachs disease (TSD) in a Cajun population in southwest Louisiana and to identify the origins of these mutations. Eleven of 12 infantile TSD alleles examined in six families had the [beta]-hexosaminidase A (Hex A) [alpha]-subunit exon 11 insertion mutation that is present in approximately 70% of Ashkenazi Jewish TSD heterozygotes. The mutation in the remaining allele was a single-base transition in the donor splice site of the [alpha]-subunit intron 9. To determine the origins of these two mutations in the Cajun population, the TSD carrier status was enzymatically determined formore » 90 members of four of the six families, and extensive pedigrees were constructed for all carriers. A single ancestral couple from France was found to be common to most of the carriers of the exon 11 insertion. Pedigree data suggest that this mutation has been in the Cajun population since its founding over 2 centuries ago and that it may be widely distributed within the population. In contrast, the intron 9 mutation apparently was introduced within the last century and probably is limited to a few Louisiana families. 29 refs., 4 figs.« less
Mascotti, Maria Laura; Lapadula, Walter Jesús; Juri Ayub, Maximiliano
2015-01-01
The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other “Class B” monooxygenases (flavoprotein monooxygenases –FMOs – and N-hydroxylating monooxygenases – NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all “Class B” monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes. PMID:26161776
Yuan, Zihao; Huang, Wei; Liu, Shikai; Xu, Peng; Dunham, Rex; Liu, Zhanjiang
2018-04-01
The inference of historical demography of a species is helpful for understanding species' differentiation and its population dynamics. However, such inference has been previously difficult due to the lack of proper analytical methods and availability of genetic data. A recently developed method called Pairwise Sequentially Markovian Coalescent (PSMC) offers the capability for estimation of the trajectories of historical populations over considerable time periods using genomic sequences. In this study, we applied this approach to infer the historical demography of the common carp using samples collected from Europe, Asia and the Americas. Comparison between Asian and European common carp populations showed that the last glacial period starting 100 ka BP likely caused a significant decline in population size of the wild common carp in Europe, while it did not have much of an impact on its counterparts in Asia. This was probably caused by differences in glacial activities in East Asia and Europe, and suggesting a separation of the European and Asian clades before the last glacial maximum. The North American clade which is an invasive population shared a similar demographic history as those from Europe, consistent with the idea that the North American common carp probably had European ancestral origins. Our analysis represents the first reconstruction of the historical population demography of the common carp, which is important to elucidate the separation of European and Asian common carp clades during the Quaternary glaciation, as well as the dispersal of common carp across the world.
NASA Technical Reports Server (NTRS)
Margulis, L.
1972-01-01
Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.
Origin, development, and evolution of butterfly eyespots.
Monteiro, Antónia
2015-01-07
This article reviews the latest developments in our understanding of the origin, development, and evolution of nymphalid butterfly eyespots. Recent contributions to this field include insights into the evolutionary and developmental origin of eyespots and their ancestral deployment on the wing, the evolution of eyespot number and eyespot sexual dimorphism, and the identification of genes affecting eyespot development and black pigmentation. I also compare features of old and more recently proposed models of eyespot development and propose a schematic for the genetic regulatory architecture of eyespots. Using this schematic I propose two hypotheses for why we observe limits to morphological diversity across these serially homologous traits.
Giant Viruses of Amoebas: An Update
Aherfi, Sarah; Colson, Philippe; La Scola, Bernard; Raoult, Didier
2016-01-01
During the 12 past years, five new or putative virus families encompassing several members, namely Mimiviridae, Marseilleviridae, pandoraviruses, faustoviruses, and virophages were described. In addition, Pithovirus sibericum and Mollivirus sibericum represent type strains of putative new giant virus families. All these viruses were isolated using amoebal coculture methods. These giant viruses were linked by phylogenomic analyses to other large DNA viruses. They were then proposed to be classified in a new viral order, the Megavirales, on the basis of their common origin, as shown by a set of ancestral genes encoding key viral functions, a common virion architecture, and shared major biological features including replication inside cytoplasmic factories. Megavirales is increasingly demonstrated to stand in the tree of life aside Bacteria, Archaea, and Eukarya, and the megavirus ancestor is suspected to be as ancient as cellular ancestors. In addition, giant amoebal viruses are visible under a light microscope and display many phenotypic and genomic features not found in other viruses, while they share other characteristics with parasitic microbes. Moreover, these organisms appear to be common inhabitants of our biosphere, and mimiviruses and marseilleviruses were isolated from human samples and associated to diseases. In the present review, we describe the main features and recent findings on these giant amoebal viruses and virophages. PMID:27047465
Partially incorrect fossil data augment analyses of discrete trait evolution in living species.
Puttick, Mark N
2016-08-01
Ancestral state reconstruction of discrete character traits is often vital when attempting to understand the origins and homology of traits in living species. The addition of fossils has been shown to alter our understanding of trait evolution in extant taxa, but researchers may avoid using fossils alongside extant species if only few are known, or if the designation of the trait of interest is uncertain. Here, I investigate the impacts of fossils and incorrectly coded fossils in the ancestral state reconstruction of discrete morphological characters under a likelihood model. Under simulated phylogenies and data, likelihood-based models are generally accurate when estimating ancestral node values. Analyses with combined fossil and extant data always outperform analyses with extant species alone, even when around one quarter of the fossil information is incorrect. These results are especially pronounced when model assumptions are violated, such as when there is a trend away from the root value. Fossil data are of particular importance when attempting to estimate the root node character state. Attempts should be made to include fossils in analysis of discrete traits under likelihood, even if there is uncertainty in the fossil trait data. © 2016 The Authors.
Zhong, Jinshun; Kellogg, Elizabeth A
2015-08-01
• CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral symmetry in Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CYC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae.• We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales.• CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, in contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CYC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales.• These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely derived and correlates with the origins of corolla bilateral symmetry. © 2015 Botanical Society of America, Inc.
Age and origin of two common MLH1 mutations predisposing to hereditary colon cancer.
Moisio, A L; Sistonen, P; Weissenbach, J; de la Chapelle, A; Peltomäki, P
1996-12-01
Two mutations in the DNA mismatch repair gene MLH1, referred to as mutations 1 and 2, are frequent among Finnish kindreds with hereditary nonpolyposis colorectal cancer (HNPCC). In order to assess the ages and origins of these mutations, we constructed a map of 15 microsatellite markers around MLH1 and used this information in haplotype analyses of 19 kindreds with mutation 1 and 6 kindreds with mutation 2. All kindreds with mutation 1 showed a single allele for the intragenic marker D3S1611 that was not observed on any unaffected chromosome. They also shared portions of a haplotype of 4-15 markers encompassing 2.0-19.0 cM around MLH1. All kindreds with mutation 2 shared another allele for D3S1611 and a conserved haplotype of 5-14 markers spanning 2.0-15.0 cM around MLH1. The degree of haplotype conservation was used to estimate the ages of these two mutations. While some recessive disease genes have been estimated to have existed and spread for as long as thousands of generations worldwide and hundreds of generations in the Finnish population, our analyses suggest that the spread of mutation 1 started 16-43 generations (400-1,075 years) ago and that of mutation 2 some 5-21 generations (125-525 years) ago. These datings are compatible with our genealogical results identifying a common ancestor born in the 16th and 18th century, respectively. Overall, our results indicate that all Finnish kindreds studied to date showing either mutation 1 or mutation 2 are due to single ancestral founding mutations relatively recent in origin in the population. Alternatively, the mutations arose elsewhere earlier and were introduced in Finland more recently.
Zhang, Z; Cavalier-Smith, T; Green, B R
2001-08-01
Chloroplast genes of several dinoflagellate species are located on unigenic DNA minicircular chromosomes. We have now completely sequenced five aberrant minicircular chromosomes from the dinoflagellate Heterocapsa triquetra. These probably nonfunctional DNA circles lack complete genes, with each being composed of several short fragments of two or three different chloroplast genes and a common conserved region with a tripartite 9G-9A-9G core like the putative replicon origin of functional single-gene circular chloroplast chromosomes. Their sequences imply that all five circles evolved by differential deletions and duplications from common ancestral circles bearing fragments of four genes: psbA, psbC, 16S rRNA, and 23S rRNA. It appears that recombination between separate unigenic chromosomes initially gave intermediate heterodimers, which were subsequently stabilized by deletions that included part or all of one putative replicon origin. We suggest that homologous recombination at the 9G-9A-9G core regions produced a psbA/psbC heterodimer which generated two distinct chimeric circles by differential deletions and duplications. A 23S/16S rRNA heterodimer more likely formed by illegitimate recombination between 16S and 23S rRNA genes. Homologous recombination between the 9G-9A-9G core regions of both heterodimers and additional differential deletions and duplications could then have yielded the other three circles. Near identity of the gene fragments and 9G-9A-9G cores, despite diverging adjacent regions, may be maintained by gene conversion. The conserved organization of the 9G-9A-9G cores alone favors the idea that they are replicon origins and suggests that they may enable the aberrant minicircles to parasitize the chloroplast's replication machinery as selfish circles.
Kodádková, Alena; Bartošová-Sojková, Pavla; Holzer, Astrid S; Fiala, Ivan
2015-03-01
Myxosporea (Myxozoa), a group of parasitic Cnidaria, use mostly bony fishes (Teleostei) as intermediate hosts; however, they can also parasitize other vertebrates such as cartilaginous fish (Chondrichthyes). Molecular data of myxosporeans from sharks and rays (Elasmobranchii) revealed these parasites to be one of the most basal representatives in the myxosporean phylogenetic tree, suggesting their ancient evolutionary history. A new myxosporean species, Bipteria vetusta n. sp., was found in the gall bladder of rabbit fish, Chimaera monstrosa (Holocephali; Chondrichthyes), and ssrDNA-based phylogeny revealed its basal position within the marine myxosporean lineage. Molecular dating based on ssrDNA analysis suggested the origin of a stem lineage leading to the marine myxosporean lineage at the time of the origin of Chondrichthyes in the Silurian era. The two common lineages of Myxozoa, Myxosporea and Malacosporea, were estimated to have split from their common ancestor in the Cambrian era. Tracing the history of evolution of the "vertebrate host type" character in the context of molecular dating showed that cartilaginous fish represented an ancestral state for all myxosporeans. Teleosts were very likely subsequently parasitized by myxozoans four times, independently. Myxosporean radiation and diversification appear to correlate with intermediate host evolution. The first intermediate hosts of myxosporeans were cartilaginous fish. When bony fish evolved and radiated, myxosporeans switched and adapted to bony fish, and subsequently greatly diversified in this new host niche. We believe that the present study is the first attempt at molecular dating of myxozoan evolution based on an old myxosporean species – a living myxosporean fossil. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter
2014-11-01
MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor
Garg, Sriram G.; Martin, William F.
2016-01-01
Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host’s genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which—by virtue of mitochondria—metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host’s vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny—sex—in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically evolving lineages viable by rescuing the incipient eukaryotic lineage from Muller’s ratchet. The origin of mitochondria was, in this view, the decisive incident that precipitated symbiosis-specific cell biological problems, the solutions to which were the salient features that distinguish eukaryotes from prokaryotes: A nuclear membrane, energetically affordable ATP-dependent protein–protein interactions in the cytosol, and a cell cycle involving reduction division and reciprocal recombination (sex). PMID:27345956
Walker, Michael B; King, Benjamin L; Paigen, Kenneth
2012-01-01
Arrangements of genes along chromosomes are a product of evolutionary processes, and we can expect that preferable arrangements will prevail over the span of evolutionary time, often being reflected in the non-random clustering of structurally and/or functionally related genes. Such non-random arrangements can arise by two distinct evolutionary processes: duplications of DNA sequences that give rise to clusters of genes sharing both sequence similarity and common sequence features and the migration together of genes related by function, but not by common descent. To provide a background for distinguishing between the two, which is important for future efforts to unravel the evolutionary processes involved, we here provide a description of the extent to which ancestrally related genes are found in proximity.Towards this purpose, we combined information from five genomic datasets, InterPro, SCOP, PANTHER, Ensembl protein families, and Ensembl gene paralogs. The results are provided in publicly available datasets (http://cgd.jax.org/datasets/clustering/paraclustering.shtml) describing the extent to which ancestrally related genes are in proximity beyond what is expected by chance (i.e. form paraclusters) in the human and nine other vertebrate genomes, as well as the D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae genomes. With the exception of Saccharomyces, paraclusters are a common feature of the genomes we examined. In the human genome they are estimated to include at least 22% of all protein coding genes. Paraclusters are far more prevalent among some gene families than others, are highly species or clade specific and can evolve rapidly, sometimes in response to environmental cues. Altogether, they account for a large portion of the functional clustering previously reported in several genomes.
Evolutionary origin of the latitudinal diversity gradient in liverworts.
Laenen, Benjamin; Patiño, Jairo; Hagborg, Anders; Désamoré, Aurélie; Wang, Jian; Jonathan Shaw, A; Goffinet, Bernard; Vanderpoorten, Alain
2018-06-08
A latitudinal diversity gradient towards the tropics appears as one most recurrent patterns in ecology, but the mechanisms underlying this pattern remain an area of controversy. In angiosperms, the tropical conservatism hypothesis proposes that most groups originated in the tropics and are adapted to a tropical climatic regime, and that relatively few species have evolved physiological adaptations to cold, dry or unpredictable climates. This mechanism is, however, unlikely to apply across land plants, and in particular, to liverworts, a group of about 7500 species, whose ability to withstand cold much better than their tracheophyte counterparts is at odds with the tropical conservatism hypothesis. Molecular dating, diversification rate analyses and ancestral area reconstructions were employed to explore the evolutionary mechanisms that account for the latitudinal diversity gradient in liverworts. As opposed to angiosperms, tropical liverwort genera are not older than their extra-tropical counterparts (median stem age of tropical and extra-tropical liverwort genera of 24.35±39.65 Ma and 39.57±49.07 Ma, respectively), weakening the 'time for speciation hypothesis'. Models of ancestral area reconstructions with equal migration rates between tropical and extra-tropical regions outperformed models with asymmetrical migration rates in either direction. The symmetry and intensity of migrations between tropical and extra-tropical regions suggested by the lack of resolution in ancestral area reconstructions towards the deepest nodes are at odds with the tropical niche conservatism hypothesis. In turn, tropical genera exhibited significantly higher net diversification rates than extra-tropical ones, suggesting that the observed latitudinal diversity gradient results from either higher extinction rates in extra-tropical lineages or higher speciation rates in the tropics. We discuss a series of experiments to help deciphering the underlying evolutionary mechanisms. Copyright © 2018. Published by Elsevier Inc.
The Mediterranean: the cradle of Anthoxanthum (Poaceae) diploid diversity.
Chumová, Zuzana; Záveská, Eliška; Mandáková, Terezie; Krak, Karol; Trávnícek, Pavel
2017-08-01
Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Kobayashi, Yutaka; Wakano, Joe Yuichiro; Ohtsuki, Hisashi
2018-05-09
A finite-population, discrete-generation model of cultural evolution is described, in which multiple discrete traits are transmitted independently. In this model, each newborn may inherit a trait from multiple cultural parents. Transmission fails with a positive probability unlike in population genetics. An ancestral process simulating the cultural genealogy of a sample of individuals is derived for this model. This ancestral process, denoted by M - , is shown to be dual to a process M + describing the change in the frequency of a trait. The age-frequency spectrum is defined as a two-dimensional array whose (i,k) element is the expected number of distinct cultural traits introduced k generations ago and now carried by i individuals in a sample of a particular size n. Numerical calculations reveal that the age-frequency spectrum and related metrics undergo a critical transition from a phase with a moderate number of young, rare traits to a phase with numerous very old, common traits when the expected number of cultural parents per individual exceeds one. It is shown that M + and M - converge to branching or deterministic processes, depending on the way population size tends to infinity, and these limiting processes bear some duality relationships. The critical behavior of the original processes M + and M - is explained in terms of a phase transition of the branching processes. Using the results of the limiting processes in combination, we derive analytical formulae that well approximate the age-frequency spectrum and also other metrics. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Karr, Steven M.
2005-01-01
Sacred sites and Rock Formations throughout Southern California's India Country are described by Indians as ancestral markers, origin and place-name locales, areas of deity habitation, and power sources. Early ethnographers were keen to record the traditional stories and meanings related to them by their Native collaborators. Rock formations…
Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton
Keating, Joseph N.; Donoghue, Philip C. J.
2016-01-01
The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. PMID:26962140
Chang, Chia Lin; Cai, James J.; Cheng, Po Jen; Chueh, Ho Yen; Hsu, Sheau Yu Teddy
2011-01-01
OBJECTIVE Although recent studies have shown that human genomes contain hundreds of loci that exhibit signatures of positive selection, variants that are associated with adaptation in energy-balance regulation remain elusive. We reasoned that the difficulty in identifying such variants could be due to heterogeneity in selection pressure and that an integrative approach that incorporated experiment-based evidence and population genetics-based statistical judgments would be needed to reveal important metabolic modifiers in humans. RESEARCH DESIGN AND METHODS To identify common metabolic modifiers that underlie phenotypic variation in diabetes-associated or obesity-associated traits in humans, or both, we screened 207 candidate loci for regulatory single nucleotide polymorphisms (SNPs) that exhibited evidence of gene–environmental interactions. RESULTS Three SNPs (rs3895874, rs3848460, and rs937301) at the 5′ gene region of human GIP were identified as prime metabolic-modifier candidates at the enteroinsular axis. Functional studies have shown that GIP promoter reporters carrying derived alleles of these three SNPs (haplotype GIP−1920A) have significantly lower transcriptional activities than those with ancestral alleles at corresponding positions (haplotype GIP−1920G). Consistently, studies of pregnant women who have undergone a screening test for gestational diabetes have shown that patients with a homozygous GIP−1920A/A genotype have significantly lower serum concentrations of glucose-dependent insulinotropic polypeptide (GIP) than those carrying an ancestral GIP−1920G haplotype. After controlling for a GIPR variation, we showed that serum glucose concentrations of patients carrying GIP−1920A/A homozygotes are significantly higher than that of those carrying an ancestral GIP−1920G haplotype (odds ratio 3.53). CONCLUSIONS Our proof-of-concept study indicates that common regulatory GIP variants impart a difference in GIP and glucose metabolism. The study also provides a rare example that identified the common variant-common phenotypic variation pattern based on evidence of moderate gene–environmental interactions. PMID:21300845
de Alencar, Dayse Oliveira; Netto, Cristina; Ashton-Prolla, Patricia; Giugliani, Roberto; Ribeiro-Dos-Santos, Ândrea; Pereira, Fernanda; Matte, Ursula; Santos, Ney; Santos, Sidney
2014-01-01
The Fabry disease is caused by mutations in the gene ( GLA ) that encodes the enzyme α-galactosidase A (α-Gal A). More than 500 pathologic variants of GLA have already been described, most of them are family-specific. In southern Brazil, a frequent single-base deletion ( GLA 30delG) was identified among four families that do not recognize any common ancestral. In order to investigate the history of this mutation (investigate the founder effect, estimate the mutation age and the most likely source), six gene-flanking microsatellite markers of the X chromosome on the mutation carriers and their parents, 150 individuals from the same population and 300 individuals that compose the Brazilian parental populations (Europeans, Africans and Native Americans) were genotyped. A common haplotype to the four families was identified and characterized as founder. The age was estimated with two statistics software (DMLE 2.2 and ESTIAGE) that agreed with 11 to 12 generations old. This result indicates that the mutation GLA 30delG was originated from a single event on the X chromosome of a European immigrant, during the southern Brazil colonization between 1710 and 1740.
Gómez-Robles, Aida; Bermúdez de Castro, José María; Arsuaga, Juan-Luis; Carbonell, Eudald; Polly, P. David
2013-01-01
A central problem in paleoanthropology is the identity of the last common ancestor of Neanderthals and modern humans ([N-MH]LCA). Recently developed analytical techniques now allow this problem to be addressed using a probabilistic morphological framework. This study provides a quantitative reconstruction of the expected dental morphology of the [N-MH]LCA and an assessment of whether known fossil species are compatible with this ancestral position. We show that no known fossil species is a suitable candidate for being the [N-MH]LCA and that all late Early and Middle Pleistocene taxa from Europe have Neanderthal dental affinities, pointing to the existence of a European clade originated around 1 Ma. These results are incongruent with younger molecular divergence estimates and suggest at least one of the following must be true: (i) European fossils and the [N-MH]LCA selectively retained primitive dental traits; (ii) molecular estimates of the divergence between Neanderthals and modern humans are underestimated; or (iii) phenotypic divergence and speciation between both species were decoupled such that phenotypic differentiation, at least in dental morphology, predated speciation. PMID:24145426
Baeza, J Antonio
2013-10-01
The 'Tomlinson-Ghiselin' hypothesis (TGh) predicts that outcrossing simultaneous hermaphroditism (SH) is advantageous when population density is low because the probability of finding sexual partners is negligible. In shrimps from the family Lysmatidae, Bauer's historical contingency hypothesis (HCh) suggests that SH evolved in an ancestral tropical species that adopted a symbiotic lifestyle with, e.g., sea anemones and became a specialized fish-cleaner. Restricted mobility of shrimps due to their association with a host, and hence, reduced probability of encountering mating partners, would have favored SH. The HCh is a special case of the TGh. Herein, I examined within a phylogenetic framework whether the TGh/HCh explains the origin of SH in shrimps. A phylogeny of caridean broken-back shrimps in the families Lysmatidae, Barbouriidae, Merguiidae was first developed using nuclear and mitochondrial makers. Complete evidence phylogenetic analyses using maximum likelihood (ML) and Bayesian inference (BI) demonstrated that Lysmatidae+Barbouriidae are monophyletic. In turn, Merguiidae is sister to the Lysmatidae+Barbouriidae. ML and BI ancestral character-state reconstruction in the resulting phylogenetic trees indicated that the ancestral Lysmatidae was either gregarious or lived in small groups and was not symbiotic. Four different evolutionary transitions from a free-living to a symbiotic lifestyle occurred in shrimps. Therefore, the evolution of SH in shrimps cannot be explained by the TGh/HCh; reduced probability of encountering mating partners in an ancestral species due to its association with a sessile host did not favor SH in the Lysmatidae. It is proposed that two conditions acting together in the past; low male mating opportunities and brooding constraints, might have favored SH in the ancestral Lysmatidae+Barbouridae. Additional studies on the life history and phylogenetics of broken-back shrimps are needed to understand the evolution of SH in the ecologically diverse Caridea. Copyright © 2013 Elsevier Inc. All rights reserved.
2012-01-01
Background Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. Results Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. Conclusion Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae. PMID:22475018
Cusimano, Natalie; Sousa, Aretuza; Renner, Susanne S.
2012-01-01
Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family. Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae. Key Results The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree. Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades. PMID:22210850
Mexican Americans: Labeling and Mislabeling.
ERIC Educational Resources Information Center
Lampe, Philip E.
1984-01-01
To facilitate comparisons between studies of those who have ancestral ties to Mexico and to aid in accumulation of knowledge, some agreement must be reached among social scientists and a common terminology be adopted. A proposed terminology differentiates between Mexicans, Mexican Americans, Mexicanos, Chicanos, Latinos, Latin Americans, and…
Cambrian cinctan echinoderms shed light on feeding in the ancestral deuterostome
Rahman, Imran A.; Zamora, Samuel; Falkingham, Peter L.; Phillips, Jeremy C.
2015-01-01
Reconstructing the feeding mode of the latest common ancestor of deuterostomes is key to elucidating the early evolution of feeding in chordates and allied phyla; however, it is debated whether the ancestral deuterostome was a tentaculate feeder or a pharyngeal filter feeder. To address this, we evaluated the hydrodynamics of feeding in a group of fossil stem-group echinoderms (cinctans) using computational fluid dynamics. We simulated water flow past three-dimensional digital models of a Cambrian fossil cinctan in a range of possible life positions, adopting both passive tentacular feeding and active pharyngeal filter feeding. The results demonstrate that an orientation with the mouth facing downstream of the current was optimal for drag and lift reduction. Moreover, they show that there was almost no flow to the mouth and associated marginal groove under simulations of passive feeding, whereas considerable flow towards the animal was observed for active feeding, which would have enhanced the transport of suspended particles to the mouth. This strongly suggests that cinctans were active pharyngeal filter feeders, like modern enteropneust hemichordates and urochordates, indicating that the ancestral deuterostome employed a similar feeding strategy. PMID:26511049
Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia
2017-01-01
Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, Sc Alt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1 , alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display Lk Alt1 and Kl Alt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that Kl Alt1 and Lk Alt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that Sc Alt2 conserves 64% identity with Lk Alt1 and 66% with Kl Alt1, suggests that Sc Alt2 diversified after the ancestral hybrid was formed. ScALT2 functional diversification resulted in loss of both alanine transaminase activity and the additional alanine-independent Lk Alt1 function, since ScALT2 did not complement the Lkalt1Δ phenotype. It can be concluded that LkALT1 and KlLALT1 functional role as alanine transaminases was delegated to ScALT1 , while ScALT2 lost this role during diversification.
Escalera-Fanjul, Ximena; Campero-Basaldua, Carlos; Colón, Maritrini; González, James; Márquez, Dariel; González, Alicia
2017-01-01
Gene duplication is one of the major evolutionary mechanisms providing raw material for the generation of genes with new or modified functions. The yeast Saccharomyces cerevisiae originated after an allopolyploidization event, which involved mating between two different ancestral yeast species. ScALT1 and ScALT2 codify proteins with 65% identity, which were proposed to be paralogous alanine transaminases. Further analysis of their physiological role showed that while ScALT1 encodes an alanine transaminase which constitutes the main pathway for alanine biosynthesis and the sole pathway for alanine catabolism, ScAlt2 does not display alanine transaminase activity and is not involved in alanine metabolism. Moreover, phylogenetic studies have suggested that ScALT1 and ScALT2 come from each one of the two parental strains which gave rise to the ancestral hybrid. The present work has been aimed to the understanding of the properties of the ancestral type Lacchancea kluyveri LkALT1 and Kluyveromyces lactis KlALT1, alanine transaminases in order to better understand the ScALT1 and ScALT2 evolutionary history. These ancestral -type species were chosen since they harbor ALT1 genes, which are related to ScALT2. Presented results show that, although LkALT1 and KlALT1 constitute ScALT1 orthologous genes, encoding alanine transaminases, both yeasts display LkAlt1 and KlAlt1 independent alanine transaminase activity and additional unidentified alanine biosynthetic and catabolic pathway(s). Furthermore, phenotypic analysis of null mutants uncovered the fact that KlAlt1 and LkAlt1 have an additional role, not related to alanine metabolism but is necessary to achieve wild type growth rate. Our study shows that the ancestral alanine transaminase function has been retained by the ScALT1 encoded enzyme, which has specialized its catabolic character, while losing the alanine independent role observed in the ancestral type enzymes. The fact that ScAlt2 conserves 64% identity with LkAlt1 and 66% with KlAlt1, suggests that ScAlt2 diversified after the ancestral hybrid was formed. ScALT2 functional diversification resulted in loss of both alanine transaminase activity and the additional alanine-independent LkAlt1 function, since ScALT2 did not complement the Lkalt1Δ phenotype. It can be concluded that LkALT1 and KlLALT1 functional role as alanine transaminases was delegated to ScALT1, while ScALT2 lost this role during diversification. PMID:28694796
Geldenhuys, Gerhard; Glanzmann, Brigitte; Lombard, Debbie; Boolay, Sihaam; Carr, Jonathan; Bardien, Soraya
2014-05-12
Afrikaners are a unique ethnic group in South Africa (SA) with well-documented ancestral records spanning a period of over 350 years. They are mainly descended from Dutch, German and French settlers to SA in the 17th and 18th centuries. Today several disorders in this population occur at relatively high frequencies as a result of founder effects.Objective. To determine whether a founder effect for Parkinson's disease (PD) is present in the Afrikaner population. Study participants were recruited from the Movement Disorders Clinic at Tygerberg Hospital in Cape Town, SA, and from support groups of the Parkinson's Association of South Africa. Standard methods for genealogical research in SA on hereditary diseases were used including interviews and searches in sources such as state archives, the Huguenot Museum in Franschhoek, marriage and baptismal records, and tombstone inscriptions. For 40 of the PD families, there was only a single most recent ancestral couple common to all of the families. On average there are between three and four ancestral lines to the founder couple per proband (range 1 -14). If genetic studies confirm the presence of a founder effect for PD in Afrikaners, this would imply that there is a large number of individuals from this ethnic group who may potentially be at risk of developing this debilitating condition. This study illustrates and reinforces the concept that genealogical analysis is a powerful tool for identification of founder effects for various disorders in the Afrikaner population.
The potential European genetic predisposition for non-contact anterior cruciate ligament injury.
Astur, Diego Costa; Andrade, Edilson; Arliani, Gustavo Gonçalves; Debieux, Pedro; Loyola, Leonor Casilla; Dos Santos, Sidney Emanuel Batista; Burbano, Rommel Mario Rodriguez; Leal, Mariana Ferreira; Cohen, Moises
2018-05-04
Previous research has provided evidence of a hereditary predisposition for anterior cruciate ligament (ACL) injury. The purpose of this study was to evaluate the association between ancestral population genetics and risk of non-contact ACL injuries. Blood samples were collected from 177 individuals with a history of non-contact ACL injury and 556 non-injured control individuals for analysis of the genetic material through the use of a panel of 48 INDELs ancestry genetic markers from three ancestral origins. Among patients with non-contact ACL injury, 82% were male and 18% were female. In the control group, 78% were male, and 22% were female. The mean age of the non-contact ACL injury group was 31.7 years (± 10.2), and the control group was 33.8 years (± 13.2). The individual genetic contribution from INDELs of each ancestral origin varied considerably: ranging between 1.5-94.8% contribution for INDELs of African origin (mean of 21.4% of INDELs); between 2 and 96.1% contribution for INDELs of European origin (mean of 66.7% of INDELs); and between 1.3-96.4% contribution for INDELs of Amerindian origin (mean of 11.7% of INDELs). When comparing paired subjects from the non-contact ACL and control groups, the genetic analysis showed that the European ancestry score was higher in the non-contact ACL group than control group (0.70 ± 0.21 vs 0.63 ± 0.22 respectively, p < 0.001), whereas African ancestry scores (ACL group 0.18 ± 0.18 vs control group 0.24 ± 0.21, p < 0.001) and Amerindian ancestry scores (ACL group 0.11 ± 0.09 vs control group 0.12 ± 0.10, n.s.) were lower among the non-contact ACL group than in controls. European INDELs markers were found to represent a potential genetic predisposition for non-contact ACL injuries when compared to African and Amerindian INDELs. This study has the potential to correlate a measurable and distinct genetic marker with risk of a non-contact ACL injury. Thus, it increases knowledge base and volume of molecular and genetical factors associated with this pathology. Furthermore, this study provides guidance and evidence for the development of genetic risk-screening panels for non-contact ACL injury. Level III Diagnostic Study.
Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins
Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.
2015-01-01
Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity
O'Meara, Brian C.; Smith, Stacey D.; Armbruster, W. Scott; Harder, Lawrence D.; Hardy, Christopher R.; Hileman, Lena C.; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A.; Stevens, Peter F.; Fenster, Charles B.; Diggle, Pamela K.
2016-01-01
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. PMID:27147092
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.
O'Meara, Brian C; Smith, Stacey D; Armbruster, W Scott; Harder, Lawrence D; Hardy, Christopher R; Hileman, Lena C; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A; Stevens, Peter F; Fenster, Charles B; Diggle, Pamela K
2016-05-11
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. © 2016 The Author(s).
Solovyeva, Evgeniya N; Lebedev, Vladimir S; Dunayev, Evgeniy A; Nazarov, Roman A; Bannikova, Anna A; Che, Jing; Murphy, Robert W; Poyarkov, Nikolay A
2018-01-01
We hypothesize the phylogenetic relationships of the agamid genus Phrynocephalus to assess how past environmental changes shaped the evolutionary and biogeographic history of these lizards and especially the impact of paleogeography and climatic factors. Phrynocephalus is one of the most diverse and taxonomically confusing lizard genera. As a key element of Palearctic deserts, it serves as a promising model for studies of historical biogeography and formation of arid habitats in Eurasia. We used 51 samples representing 33 of 40 recognized species of Phrynocephalus covering all major areas of the genus. Molecular data included four mtDNA ( COI , ND2 , ND4 , Cytb ; 2,703 bp) and four nuDNA protein-coding genes ( RAG1 , BDNF , AKAP9 , NKTR ; 4,188 bp). AU-tests were implemented to test for significant differences between mtDNA- and nuDNA-based topologies. A time-calibrated phylogeny was estimated using a Bayesian relaxed molecular clock with nine fossil calibrations. We reconstructed the ancestral area of origin, biogeographic scenarios, body size, and the evolution of habitat preference. Phylogenetic analyses of nuDNA genes recovered a well-resolved and supported topology. Analyses detected significant discordance with the less-supported mtDNA genealogy. The position of Phrynocephalus mystaceus conflicted greatly between the two datasets. MtDNA introgression due to ancient hybridization best explained this result. Monophyletic Phrynocephalus contained three main clades: (I) oviparous species from south-western and Middle Asia; (II) viviparous species of Qinghai-Tibetan Plateau (QTP); and (III) oviparous species of the Caspian Basin, Middle and Central Asia. Phrynocephalus originated in late Oligocene (26.9 Ma) and modern species diversified during the middle Miocene (14.8-13.5 Ma). The reconstruction of ancestral areas indicated that Phrynocephalus originated in Middle East-southern Middle Asia. Body size miniaturization likely occurred early in the history of Phrynocephalus . The common ancestor of Phrynocephalus probably preferred sandy substrates with the inclusion of clay or gravel. The time of Agaminae radiation and origin of Phrynocephalus in the late Oligocene significantly precedes the landbridge between Afro-Arabia and Eurasia in the Early Miocene. Diversification of Phrynocephalus coincides well with the mid-Miocene climatic transition when a rapid cooling of climate drove progressing aridification and the Paratethys salinity crisis. These factors likely triggered the spreading of desert habitats in Central Eurasia, which Phrynocephalus occupied. The origin of the viviparous Tibetan clade has been associated traditionally with uplifting of the QTP; however, further studies are needed to confirm this. Progressing late Miocene aridification, the decrease of the Paratethys Basin, orogenesis, and Plio-Pleistocene climate oscillations likely promoted further diversification within Phrynocephalus . We discuss Phrynocephalus taxonomy in scope of the new analyses.
Lebedev, Vladimir S.; Dunayev, Evgeniy A.; Nazarov, Roman A.; Bannikova, Anna A.; Che, Jing; Murphy, Robert W.
2018-01-01
We hypothesize the phylogenetic relationships of the agamid genus Phrynocephalus to assess how past environmental changes shaped the evolutionary and biogeographic history of these lizards and especially the impact of paleogeography and climatic factors. Phrynocephalus is one of the most diverse and taxonomically confusing lizard genera. As a key element of Palearctic deserts, it serves as a promising model for studies of historical biogeography and formation of arid habitats in Eurasia. We used 51 samples representing 33 of 40 recognized species of Phrynocephalus covering all major areas of the genus. Molecular data included four mtDNA (COI, ND2, ND4, Cytb; 2,703 bp) and four nuDNA protein-coding genes (RAG1, BDNF, AKAP9, NKTR; 4,188 bp). AU-tests were implemented to test for significant differences between mtDNA- and nuDNA-based topologies. A time-calibrated phylogeny was estimated using a Bayesian relaxed molecular clock with nine fossil calibrations. We reconstructed the ancestral area of origin, biogeographic scenarios, body size, and the evolution of habitat preference. Phylogenetic analyses of nuDNA genes recovered a well-resolved and supported topology. Analyses detected significant discordance with the less-supported mtDNA genealogy. The position of Phrynocephalus mystaceus conflicted greatly between the two datasets. MtDNA introgression due to ancient hybridization best explained this result. Monophyletic Phrynocephalus contained three main clades: (I) oviparous species from south-western and Middle Asia; (II) viviparous species of Qinghai–Tibetan Plateau (QTP); and (III) oviparous species of the Caspian Basin, Middle and Central Asia. Phrynocephalus originated in late Oligocene (26.9 Ma) and modern species diversified during the middle Miocene (14.8–13.5 Ma). The reconstruction of ancestral areas indicated that Phrynocephalus originated in Middle East–southern Middle Asia. Body size miniaturization likely occurred early in the history of Phrynocephalus. The common ancestor of Phrynocephalus probably preferred sandy substrates with the inclusion of clay or gravel. The time of Agaminae radiation and origin of Phrynocephalus in the late Oligocene significantly precedes the landbridge between Afro-Arabia and Eurasia in the Early Miocene. Diversification of Phrynocephalus coincides well with the mid-Miocene climatic transition when a rapid cooling of climate drove progressing aridification and the Paratethys salinity crisis. These factors likely triggered the spreading of desert habitats in Central Eurasia, which Phrynocephalus occupied. The origin of the viviparous Tibetan clade has been associated traditionally with uplifting of the QTP; however, further studies are needed to confirm this. Progressing late Miocene aridification, the decrease of the Paratethys Basin, orogenesis, and Plio–Pleistocene climate oscillations likely promoted further diversification within Phrynocephalus. We discuss Phrynocephalus taxonomy in scope of the new analyses. PMID:29576991
Brezinski, D.K.
2005-01-01
Two new species of trilobites, Weberides chamberlaini new species and Weberides samwaysi new species, are described from the Heath Formation (Serpukhovian, Mississippian) of Montana. Based upon phylogenetic analysis, the assignment of these species to the genus Weberides represents the first recognition of this genus in North America. Brooks Parsimony Analysis of the single phylogenetic tree suggests that the northern Cordillera acted as an ancestral area for the typically European genus Weberides. Thus, the North American vicariants of Weberides share a common ancestral area with the genus Paladin. Vicariance patterns suggest that interchange with the type Weberides areas of Europe was through the northern Cordilleran region rather than through the Rheic Ocean, as others have suggested.
Symbiosis and the origin of eukaryotic motility
NASA Technical Reports Server (NTRS)
Margulis, L.; Hinkle, G.
1991-01-01
Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.
Callén, Elsa; Casado, José A; Tischkowitz, Marc D; Bueren, Juan A; Creus, Amadeu; Marcos, Ricard; Dasí, Angeles; Estella, Jesús M; Muñoz, Arturo; Ortega, Juan J; de Winter, Johan; Joenje, Hans; Schindler, Detlev; Hanenberg, Helmut; Hodgson, Shirley V; Mathew, Christopher G; Surrallés, Jordi
2005-03-01
Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and cancer predisposition. Here we have identified Spanish Gypsies as the ethnic group with the world's highest prevalence of FA (carrier frequency of 1/64-1/70). DNA sequencing of the FANCA gene in 8 unrelated Spanish Gypsy FA families after retroviral subtyping revealed a homozygous FANCA mutation (295C>T) leading to FANCA truncation and FA pathway disruption. This mutation appeared specific for Spanish Gypsies as it is not found in other Gypsy patients with FA from Hungary, Germany, Slovakia, and Ireland. Haplotype analysis showed that Spanish Gypsy patients all share the same haplotype. Our data thus suggest that the high incidence of FA among Spanish Gypsies is due to an ancestral founder mutation in FANCA that originated in Spain less than 600 years ago. The high carrier frequency makes the Spanish Gypsies a population model to study FA heterozygote mutations in cancer.
Evolutionary Diversification of Insect Innexins
Hughes, Austin L.
2014-01-01
Abstract Phylogenetic analysis of insect innexins supported the hypothesis that six major clades of insect innexins arose by gene duplication prior to the origin of the endopterygote insects. Within one of the six clades (the Zpg Clade), two independent gene duplication events were inferred to have occurred in the lineage of Drosophila , after the most recent common ancestor of the dipteran families Culicidae and Drosophilidae. The relationships among this clades were poorly resolved, except for a sister relationship between ShakB and Ogre. Gene expression data from FlyAtlas supported the hypothesis that the latter gene duplication events gave rise to functional differentiation, with Zpg showing a high level of expression in ovary, and Inx5 and Inx6 showing a high level of expression in testis. Because unduplicated members of this clade in Bombyx mori and Anopheles gambiae showed high levels of expression in both ovary and tests, the expression patterns of the Drosophila members of this clade provide evidence of subdivision of an ancestral gene function after gene duplication. PMID:25502029
Molecular insights into the origin of the Hox-TALE patterning system
Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir
2014-01-01
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior–posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox–TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001 PMID:24642410
Molecular insights into the origin of the Hox-TALE patterning system.
Hudry, Bruno; Thomas-Chollier, Morgane; Volovik, Yael; Duffraisse, Marilyne; Dard, Amélie; Frank, Dale; Technau, Ulrich; Merabet, Samir
2014-03-18
Despite tremendous body form diversity in nature, bilaterian animals share common sets of developmental genes that display conserved expression patterns in the embryo. Among them are the Hox genes, which define different identities along the anterior-posterior axis. Hox proteins exert their function by interaction with TALE transcription factors. Hox and TALE members are also present in some but not all non-bilaterian phyla, raising the question of how Hox-TALE interactions evolved to provide positional information. By using proteins from unicellular and multicellular lineages, we showed that these networks emerged from an ancestral generic motif present in Hox and other related protein families. Interestingly, Hox-TALE networks experienced additional and extensive molecular innovations that were likely crucial for differentiating Hox functions along body plans. Together our results highlight how homeobox gene families evolved during eukaryote evolution to eventually constitute a major patterning system in Eumetazoans. DOI: http://dx.doi.org/10.7554/eLife.01939.001.
Ulijaszek, Stanley J
2013-01-01
The "negrito" hypothesis posits that various indigenous groups throughout Island and Mainland Southeast Asia have a shared phenotype due to common descent from a putative ancestral population, representing a pre-agricultural substrate of humanity in the region. This has been examined and tested many times in the past, with no clear resolution. With many new resources to hand, the articles in this volume reexamine this hypothesis in a range of different ways. The evidence presented in this double issue of Human Biology speaks more against the category of "negrito" than for it. While populations with the negrito phenotype form a small proportion of all contemporary populations in this region, they have remained a persistent presence. And without a fascination about their origins, there would not be such a depth of knowledge about the human biology of this region more broadly as there is now. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.
Allelic association at the D14S43 locus in early onset Alzheimer`s disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brice, A.; Tardieu, S.; Campion, D.
1995-04-24
The D14S43 marker is closely linked to the major gene for early onset autosomal dominant Alzheimer`s disease on chromosome 14. Allelic frequencies at the D14S43 locus were compared in 113 familial and isolated cases of early onset Alzheimer`s disease (<60 years of age at onset) (EOAD) and 109 unaffected individuals of the same geographic origin. Allele 7 was significantly (P = 0.033) more frequent in type 1 EOAD patients (13.2%), defined by the presence of at least another first degree relative with EOAD, than in controls (4.1%). Since an autosomal dominant gene is probably responsible for type 1 patients, allelicmore » association may reflect linkage disequilibrium at the D14S43 locus. This would mean that some patients share a common ancestral mutation. However, since multiple tests were carried out, this result must be interpreted with caution, and needs confirmation in an independent sample. 16 refs., 2 tabs.« less
Environment dominates over host genetics in shaping human gut microbiota.
Rothschild, Daphna; Weissbrod, Omer; Barkan, Elad; Kurilshikov, Alexander; Korem, Tal; Zeevi, David; Costea, Paul I; Godneva, Anastasia; Kalka, Iris N; Bar, Noam; Shilo, Smadar; Lador, Dar; Vila, Arnau Vich; Zmora, Niv; Pevsner-Fischer, Meirav; Israeli, David; Kosower, Noa; Malka, Gal; Wolf, Bat Chen; Avnit-Sagi, Tali; Lotan-Pompan, Maya; Weinberger, Adina; Halpern, Zamir; Carmi, Shai; Fu, Jingyuan; Wijmenga, Cisca; Zhernakova, Alexandra; Elinav, Eran; Segal, Eran
2018-03-08
Human gut microbiome composition is shaped by multiple factors but the relative contribution of host genetics remains elusive. Here we examine genotype and microbiome data from 1,046 healthy individuals with several distinct ancestral origins who share a relatively common environment, and demonstrate that the gut microbiome is not significantly associated with genetic ancestry, and that host genetics have a minor role in determining microbiome composition. We show that, by contrast, there are significant similarities in the compositions of the microbiomes of genetically unrelated individuals who share a household, and that over 20% of the inter-person microbiome variability is associated with factors related to diet, drugs and anthropometric measurements. We further demonstrate that microbiome data significantly improve the prediction accuracy for many human traits, such as glucose and obesity measures, compared to models that use only host genetic and environmental data. These results suggest that microbiome alterations aimed at improving clinical outcomes may be carried out across diverse genetic backgrounds.
ERIC Educational Resources Information Center
Meguerditchian, Adrien; Vauclair, Jacques
2009-01-01
Gestural communication is a modality considered in the literature as a candidate for determining the ancestral prerequisites of the emergence of human language. As reported in captive chimpanzees and human children, a study in captive baboons revealed that a communicative gesture elicits stronger degree of right-hand bias than non-communicative…
Micklesfield, Lisa K; Norris, Shane A; Nelson, Dorothy A; Lambert, Estelle V; van der Merwe, Lize; Pettifor, John M
2007-12-01
We compared whole body BMC of 811 black, white, and mixed ancestral origin children from Detroit, MI; Johannesburg, South Africa; and Cape Town, South Africa. Our findings support the role of genetic and environmental influences in the determination of bone mass in prepubertal children. Higher bone mass and lower fracture rates have been shown in black compared with white children and adults in North America. We compared whole body BMC (WBBMC), whole body fat mass (WBFM), and whole body fat free soft tissue (WBFFST) data between three ethnic groups of children from Detroit, MI (n = 181 white, USW; n = 230 black, USB), Johannesburg, South Africa (n = 73 white, SAW; n = 263 black, SAB), and Cape Town, South Africa (n = 64 mixed ancestral origin, SAM). SAB and SAW groups were slightly older than USW and USB groups (9.5 +/- 0.3 versus 9.3 +/- 0.1 yr); however, USB and USW boys were significantly taller, were heavier, and had a higher BMI than SAM and SAB boys. USB girls were significantly taller than SAB girls and heavier than SAB and SAM girls. In South Africa and the United States, black children had a significantly higher WBBMC than white children, after adjusting for selected best predictors. After adjusting for age, weight, and height, WBBMC was significantly higher in the SAB and SAW boys than in USW and USB and in the SAM group compared with the USW and USB groups. WBFFST and WBFM made significant contributions to a best linear model for log(WBBMC), together with age, height, and ethnicity. The best model accounted for 79% of the WBBMC variance. When included separately in the model, the model containing WBFFST accounted for 76%, and the model containing WBFM accounted for 70%, of the variance in WBBMC. WBBMC is lower in children of European ancestry compared with African ancestry, irrespective of geographical location; however, South African children have significantly higher WBBMC compared with USB and USW groups, thereby acknowledging the possible contribution of environmental factors. Reasons for the significantly higher WBBMC in the children of mixed ancestral origin compared with the other groups need to be studied further.
2011-01-01
Background Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Results Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. Conclusions The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100 million year time span without fossil evidence. This formidable ghost range partially reflects a genuine difference between the estimated ages of stem group origin (molecular divergence time) and crown group morphological diversification (fossil divergence time); the ghost range, however, would be filled with discoveries of older fossils that can be used as more reasonable time constraints as well as with developments of more realistic models that capture the rates of molecular sequences accurately. PMID:21693066
Nakatani, Masanori; Miya, Masaki; Mabuchi, Kohji; Saitoh, Kenji; Nishida, Mutsumi
2011-06-22
Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100 million year time span without fossil evidence. This formidable ghost range partially reflects a genuine difference between the estimated ages of stem group origin (molecular divergence time) and crown group morphological diversification (fossil divergence time); the ghost range, however, would be filled with discoveries of older fossils that can be used as more reasonable time constraints as well as with developments of more realistic models that capture the rates of molecular sequences accurately.
The origin and evolution of chordate nervous systems
Holland, Linda Z.
2015-01-01
In the past 40 years, comparisons of developmental gene expression and mechanisms of development (evodevo) joined comparative morphology as tools for reconstructing long-extinct ancestral forms. Unfortunately, both approaches typically give congruent answers only with closely related organisms. Chordate nervous systems are good examples. Classical studies alone left open whether the vertebrate brain was a new structure or evolved from the anterior end of an ancestral nerve cord like that of modern amphioxus. Evodevo plus electron microscopy showed that the amphioxus brain has a diencephalic forebrain, small midbrain, hindbrain and spinal cord with parts of the genetic mechanisms for the midbrain/hindbrain boundary, zona limitans intrathalamica and neural crest. Evodevo also showed how extra genes resulting from whole-genome duplications in vertebrates facilitated evolution of new structures like neural crest. Understanding how the chordate central nervous system (CNS) evolved from that of the ancestral deuterostome has been truly challenging. The majority view is that this ancestor had a CNS with a brain that gave rise to the chordate CNS and, with loss of a discrete brain, to one of the two hemichordate nerve cords. The minority view is that this ancestor had no nerve cord; those in chordates and hemichordates evolved independently. New techniques such as phylostratigraphy may help resolve this conundrum. PMID:26554041
Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae)
2011-01-01
Background We employed a phylogenetic framework to identify patterns of life habit evolution in the marine bivalve family Pectinidae. Specifically, we examined the number of independent origins of each life habit and distinguished between convergent and parallel trajectories of life habit evolution using ancestral state estimation. We also investigated whether ancestral character states influence the frequency or type of evolutionary trajectories. Results We determined that temporary attachment to substrata by byssal threads is the most likely ancestral condition for the Pectinidae, with subsequent transitions to the five remaining habit types. Nearly all transitions between life habit classes were repeated in our phylogeny and the majority of these transitions were the result of parallel evolution from byssate ancestors. Convergent evolution also occurred within the Pectinidae and produced two additional gliding clades and two recessing lineages. Furthermore, our analysis indicates that byssal attaching gave rise to significantly more of the transitions than any other life habit and that the cementing and nestling classes are only represented as evolutionary outcomes in our phylogeny, never as progenitor states. Conclusions Collectively, our results illustrate that both convergence and parallelism generated repeated life habit states in the scallops. Bias in the types of habit transitions observed may indicate constraints due to physical or ontogenetic limitations of particular phenotypes. PMID:21672233
Kawasaki, Junna; Kawamura, Maki; Ohsato, Yoshiharu; Ito, Jumpei; Nishigaki, Kazuo
2017-10-15
Recombination events induce significant genetic changes, and this process can result in virus genetic diversity or in the generation of novel pathogenicity. We discovered a new recombinant feline leukemia virus (FeLV) gag gene harboring an unrelated insertion, termed the X region, which was derived from Felis catus endogenous gammaretrovirus 4 (FcERV-gamma4). The identified FcERV-gamma4 proviruses have lost their coding capabilities, but some can express their viral RNA in feline tissues. Although the X-region-carrying recombinant FeLVs appeared to be replication-defective viruses, they were detected in 6.4% of tested FeLV-infected cats. All isolated recombinant FeLV clones commonly incorporated a middle part of the FcERV-gamma4 5'-leader region as an X region. Surprisingly, a sequence corresponding to the portion contained in all X regions is also present in at least 13 endogenous retroviruses (ERVs) observed in the cat, human, primate, and pig genomes. We termed this shared genetic feature the commonly shared (CS) sequence. Despite our phylogenetic analysis indicating that all CS-sequence-carrying ERVs are classified as gammaretroviruses, no obvious closeness was revealed among these ERVs. However, the Shannon entropy in the CS sequence was lower than that in other parts of the provirus genome. Notably, the CS sequence of human endogenous retrovirus T had 73.8% similarity with that of FcERV-gamma4, and specific signals were detected in the human genome by Southern blot analysis using a probe for the FcERV-gamma4 CS sequence. Our results provide an interesting evolutionary history for CS-sequence circulation among several distinct ancestral viruses and a novel recombined virus over a prolonged period. IMPORTANCE Recombination among ERVs or modern viral genomes causes a rapid evolution of retroviruses, and this phenomenon can result in the serious situation of viral disease reemergence. We identified a novel recombinant FeLV gag gene that contains an unrelated sequence, termed the X region. This region originated from the 5' leader of FcERV-gamma4, a replication-incompetent feline ERV. Surprisingly, a sequence corresponding to the X region is also present in the 5' portion of other ERVs, including human endogenous retroviruses. Scattered copies of the ERVs carrying the unique genetic feature, here named the commonly shared (CS) sequence, were found in each host genome, suggesting that ancestral viruses may have captured and maintained the CS sequence. More recently, a novel recombinant FeLV hijacked the CS sequence from inactivated FcERV-gamma4 as the X region. Therefore, tracing the CS sequences can provide unique models for not only the modern reservoir of new recombinant viruses but also the genetic features shared among ancient retroviruses. Copyright © 2017 American Society for Microbiology.
Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F.; Hovmøller, Mogens S.; Enjalbert, Jérôme; de Vallavieille-Pope, Claude
2014-01-01
Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of South African populations. Although most geographic populations are not markedly affected by recent dispersal events, this study emphasizes the influence of human activities on recent long-distance spread of the pathogen. PMID:24465211
[Morphological and molecular data on the origin of angiosperms: on a way to a synthesis].
Sokolov, D D; Timonin, A K
2007-01-01
Molecular phylogenetic data have drastically changed the views on the phylogeny of higher plants. All the extant gymnosperms were asserted as a monophyletic group opposed to the highly isolated angiosperms. The 'Anthophyte Theory' was thus rejected. The identification and analysis of gymnosperm orthologues of genes regulating flower development in angiosperms resulted in the formulation of the 'Mostly Male Theory' of the evolutionary origin of flower; this theory does not contradict the concept of monophyly of all the extant gymnosperms. The Mostly Male Theory assumes that the origin of angiosperms was caused by a loss of the Needle family gene that effected ovuliferous (female) organs and the translocation of the ovules onto the adaxial side of some of the (male) leafy microsporangiophores. Having acquired ovules, the former microsporangiophores started evolving into the carpels. The prerequisite bisexual design of the ancestral fructification thus becomes unnecessary. Indeed, this assumption suggests the deriving of Angiosperms from any gymnosperm plant with leafy microsporangiophores. The problem of carpel origin has subsequently changed to some degree into the problem of the origin of the bitegmic anatropous ovule presumably inherent in ancestral Angiosperms. The Mostly Male Theory consideredeither Corystospermataceae (= Umkomasiaceae) or Caytoniaceae to be the forerunners of such an ovule. Yet the capsules of Corystospermataceae distinctly differ from angiosperm ovules in the locations of their adaxial/abaxial sides, while Caytoniaceae had no leafy microsporangiophores. This inconsistency suggests that functions of the Needle family regulatory genes in Gymnosperms should be much better understood to appraise properly both the possibilities and the consequences of their hypothetical loss by the emerging angiosperms. Moreover, the extant gymnosperm groups are actually held as monophyletic and contrasted to Angiosperms on the basis of analysing the unrepresentative scant remnants of these, mostly extinct, taxa. Therefore, traditional botanical and paleobotanical data should not be rejected. In any case, Meyen's idea angiosperms origin from Bennettitales is worth being retained as a hypothesis to be tested with new results of both paleobotany and molecular biology.
FveGD: an online resource for diploid strawberry (fragaria vesca) genomics data
USDA-ARS?s Scientific Manuscript database
Fragaria vesca, a diploid strawberry species commonly known as the alpine or woodland strawberry, is a versatile experimental plant system that is an emerging model for the Rosaceae family. An ancestral F. vesca genome contributed to the genome of the octoploid dessert strawberry (F. xananassa) and...
A holistic picture of Austronesian migrations revealed by phylogeography of Pacific paper mulberry
Chang, Chi-Shan; Liu, Hsiao-Lei; Moncada, Ximena; Seelenfreund, Andrea; Seelenfreund, Daniela; Chung, Kuo-Fang
2015-01-01
The peopling of Remote Oceanic islands by Austronesian speakers is a fascinating and yet contentious part of human prehistory. Linguistic, archaeological, and genetic studies have shown the complex nature of the process in which different components that helped to shape Lapita culture in Near Oceania each have their own unique history. Important evidence points to Taiwan as an Austronesian ancestral homeland with a more distant origin in South China, whereas alternative models favor South China to North Vietnam or a Southeast Asian origin. We test these propositions by studying phylogeography of paper mulberry, a common East Asian tree species introduced and clonally propagated since prehistoric times across the Pacific for making barkcloth, a practical and symbolic component of Austronesian cultures. Using the hypervariable chloroplast ndhF-rpl32 sequences of 604 samples collected from East Asia, Southeast Asia, and Oceanic islands (including 19 historical herbarium specimens from Near and Remote Oceania), 48 haplotypes are detected and haplotype cp-17 is predominant in both Near and Remote Oceania. Because cp-17 has an unambiguous Taiwanese origin and cp-17–carrying Oceanic paper mulberries are clonally propagated, our data concur with expectations of Taiwan as the Austronesian homeland, providing circumstantial support for the “out of Taiwan” hypothesis. Our data also provide insights into the dispersal of paper mulberry from South China “into North Taiwan,” the “out of South China–Indochina” expansion to New Guinea, and the geographic origins of post-European introductions of paper mulberry into Oceania. PMID:26438853
Reconstructing the Indian Origin and Dispersal of the European Roma: A Maternal Genetic Perspective
Mendizabal, Isabel; Valente, Cristina; Gusmão, Alfredo; Alves, Cíntia; Gomes, Verónica; Goios, Ana; Parson, Walther; Calafell, Francesc; Alvarez, Luis; Amorim, António; Gusmão, Leonor
2011-01-01
Previous genetic, anthropological and linguistic studies have shown that Roma (Gypsies) constitute a founder population dispersed throughout Europe whose origins might be traced to the Indian subcontinent. Linguistic and anthropological evidence point to Indo-Aryan ethnic groups from North-western India as the ancestral parental population of Roma. Recently, a strong genetic hint supporting this theory came from a study of a private mutation causing primary congenital glaucoma. In the present study, complete mitochondrial control sequences of Iberian Roma and previously published maternal lineages of other European Roma were analyzed in order to establish the genetic affinities among Roma groups, determine the degree of admixture with neighbouring populations, infer the migration routes followed since the first arrival to Europe, and survey the origin of Roma within the Indian subcontinent. Our results show that the maternal lineage composition in the Roma groups follows a pattern of different migration routes, with several founder effects, and low effective population sizes along their dispersal. Our data allowed the confirmation of a North/West migration route shared by Polish, Lithuanian and Iberian Roma. Additionally, eleven Roma founder lineages were identified and degrees of admixture with host populations were estimated. Finally, the comparison with an extensive database of Indian sequences allowed us to identify the Punjab state, in North-western India, as the putative ancestral homeland of the European Roma, in agreement with previous linguistic and anthropological studies. PMID:21264345
Euarchontan Opsin Variation Brings New Focus to Primate Origins
Melin, Amanda D.; Wells, Konstans; Moritz, Gillian L.; Kistler, Logan; Orkin, Joseph D.; Timm, Robert M.; Bernard, Henry; Lakim, Maklarin B.; Perry, George H.; Kawamura, Shoji; Dominy, Nathaniel J.
2016-01-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880
Schmid, M; Feichtinger, W; Steinlein, C; Haaf, T; Schartl, M; Visbal García, R; Manzanilla Pupo, J; Fernández Badillo, A
2002-01-01
A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species. Copyright 2003 S. Karger AG, Basel
The Evolutionary Origin of Female Orgasm.
Pavličev, Mihaela; Wagner, Günter
2016-09-01
The evolutionary explanation of female orgasm has been difficult to come by. The orgasm in women does not obviously contribute to the reproductive success, and surprisingly unreliably accompanies heterosexual intercourse. Two types of explanations have been proposed: one insisting on extant adaptive roles in reproduction, another explaining female orgasm as a byproduct of selection on male orgasm, which is crucial for sperm transfer. We emphasize that these explanations tend to focus on evidence from human biology and thus address the modification of a trait rather than its evolutionary origin. To trace the trait through evolution requires identifying its homologue in other species, which may have limited similarity with the human trait. Human female orgasm is associated with an endocrine surge similar to the copulatory surges in species with induced ovulation. We suggest that the homolog of human orgasm is the reflex that, ancestrally, induced ovulation. This reflex became superfluous with the evolution of spontaneous ovulation, potentially freeing female orgasm for other roles. This is supported by phylogenetic evidence showing that induced ovulation is ancestral, while spontaneous ovulation is derived within eutherians. In addition, the comparative anatomy of female reproductive tract shows that evolution of spontaneous ovulation is correlated with increasing distance of clitoris from the copulatory canal. In summary, we suggest that the female orgasm-like trait may have been adaptive, however for a different role, namely for inducing ovulation. With the evolution of spontaneous ovulation, orgasm was freed to gain secondary roles, which may explain its maintenance, but not its origin. © 2016 Wiley Periodicals, Inc.
Drake, Brandon Lee; Wills, Wirt H.; Hamilton, Marian I.; Dorshow, Wetherbee
2014-01-01
Strontium isotope sourcing has become a common and useful method for assigning sources to archaeological artifacts. In Chaco Canyon, an Ancestral Pueblo regional center in New Mexico, previous studies using these methods have suggested that significant portion of maize and wood originate in the Chuska Mountains region, 75 km to the East. In the present manuscript, these results were tested using both frequentist methods (to determine if geochemical sources can truly be differentiated) and Bayesian methods (to address uncertainty in geochemical source attribution). It was found that Chaco Canyon and the Chuska Mountain region are not easily distinguishable based on radiogenic strontium isotope values. The strontium profiles of many geochemical sources in the region overlap, making it difficult to definitively identify any one particular geochemical source for the canyon's pre-historic maize. Bayesian mixing models support the argument that some spruce and fir wood originated in the San Mateo Mountains, but that this cannot explain all 87Sr/86Sr values in Chaco timber. Overall radiogenic strontium isotope data do not clearly identify a single major geochemical source for maize, ponderosa, and most spruce/fir timber. As such, the degree to which Chaco Canyon relied upon outside support for both food and construction material is still ambiguous. PMID:24854352
Ferran, José Luis; Puelles, Luis
2018-04-16
Amphioxus is the living chordate closest to the ancestral form of vertebrates, and in a key position to reveal essential aspects of the evolution of the brain Bauplan of vertebrates. The dorsal neural cord of this species at the larval stage is characterized by a small cerebral vesicle at its anterior end and a large posterior region. The latter is comparable in some aspects to the hindbrain and spinal cord regions of vertebrates. The rostral end of the cerebral vesicle contains a median pigment spot and associated rows of photoreceptor and other nerve cells; this complex is known as "the frontal eye." However, this is not a complete eye in the sense that it has neither eye muscles nor lens (only a primitive retina-like tissue). Cranial nerves III, IV, and VI take part in the motor control of eye muscles in all vertebrates. Using a recent model that postulates distinct molecularly characterized hypothalamo-prethalamic and mesodiencephalic domains in the early cerebral vesicle of amphioxus, we analyze here possible scenarios for the origin from the common ancestor of cephalochordates and vertebrates of the cranial nerves related with extrinsic eye muscle innervations. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
The lateral mesodermal divide: an epigenetic model of the origin of paired fins.
Nuño de la Rosa, Laura; Müller, Gerd B; Metscher, Brian D
2014-01-01
By examining development at the level of tissues and processes, rather than focusing on gene expression, we have formulated a general hypothesis to explain the dorso-ventral and anterior-posterior placement of paired appendage initiation sites in vertebrates. According to our model, the number and position of paired appendages are due to a commonality of embryonic tissue environments determined by the global interactions involving the two separated layers (somatic and visceral) of lateral plate mesoderm along the dorso-ventral and anterior-posterior axes of the embryo. We identify this distribution of developmental conditions, as modulated by the separation/contact of the two LPM layers and their interactions with somitic mesoderm, ectoderm, and endoderm as a dynamic developmental entity which we have termed the lateral mesodermal divide (LMD). Where the divide results in a certain tissue environment, fin bud initiation can occur. According to our hypothesis, the influence of the developing gut suppresses limb initiation along the midgut region and the ventral body wall owing to an "endodermal predominance." From an evolutionary perspective, the lack of gut regionalization in agnathans reflects the ancestral absence of these conditions, and the elaboration of the gut together with the concomitant changes to the LMD in the gnathostomes could have led to the origin of paired fins. © 2013 Wiley Periodicals, Inc.
The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms
Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James
2014-01-01
SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433
Many private mutations originate from the first few divisions of a human colorectal adenoma.
Kang, Haeyoun; Salomon, Matthew P; Sottoriva, Andrea; Zhao, Junsong; Toy, Morgan; Press, Michael F; Curtis, Christina; Marjoram, Paul; Siegmund, Kimberly; Shibata, Darryl
2015-11-01
Intratumoural mutational heterogeneity (ITH) or the presence of different private mutations in different parts of the same tumour is commonly observed in human tumours. The mechanisms generating such ITH are uncertain. Here we find that ITH can be remarkably well structured by measuring point mutations, chromosome copy numbers, and DNA passenger methylation from opposite sides and individual glands of a 6 cm human colorectal adenoma. ITH was present between tumour sides and individual glands, but the private mutations were side-specific and subdivided the adenoma into two major subclones. Furthermore, ITH disappeared within individual glands because the glands were clonal populations composed of cells with identical mutant genotypes. Despite mutation clonality, the glands were relatively old, diverse populations when their individual cells were compared for passenger methylation and by FISH. These observations can be organized into an expanding star-like ancestral tree with co-clonal expansion, where many private mutations and multiple related clones arise during the first few divisions. As a consequence, most detectable mutational ITH in the final tumour originates from the first few divisions. Much of the early history of a tumour, especially the first few divisions, may be embedded within the detectable ITH of tumour genomes. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Pollination and reproduction of an invasive plant inside and outside its ancestral range
NASA Astrophysics Data System (ADS)
Petanidou, Theodora; Price, Mary V.; Bronstein, Judith L.; Kantsa, Aphrodite; Tscheulin, Thomas; Kariyat, Rupesh; Krigas, Nikos; Mescher, Mark C.; De Moraes, Consuelo M.; Waser, Nickolas M.
2018-05-01
Comparing traits of invasive species within and beyond their ancestral range may improve our understanding of processes that promote aggressive spread. Solanum elaeagnifolium (silverleaf nightshade) is a noxious weed in its ancestral range in North America and is invasive on other continents. We compared investment in flowers and ovules, pollination success, and fruit and seed set in populations from Arizona, USA ("AZ") and Greece ("GR"). In both countries, the populations we sampled varied in size and types of present-day disturbance. Stature of plants increased with population size in AZ samples whereas GR plants were uniformly tall. Taller plants produced more flowers, and GR plants produced more flowers for a given stature and allocated more ovules per flower. Similar functional groups of native bees pollinated in AZ and GR populations, but visits to flowers decreased with population size and we observed no visits in the largest GR populations. As a result, plants in large GR populations were pollen-limited, and estimates of fecundity were lower on average in GR populations despite the larger allocation to flowers and ovules. These differences between plants in our AZ and GR populations suggest promising directions for further study. It would be useful to sample S. elaeagnifolium in Mediterranean climates within the ancestral range (e.g., in California, USA), to study asexual spread via rhizomes, and to use common gardens and genetic studies to explore the basis of variation in allocation patterns and of relationships between visitation and fruit set.
Visual system evolution and the nature of the ancestral snake.
Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J
2015-07-01
The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Garamszegi, László Zsolt
2011-02-01
Plasmodium parasites, the causative agents of malaria, are generally considered as harmful parasites, but many of them cause mild symptoms. Little is known about the evolutionary history and phylogenetic constraints that generate this interspecific variation in virulence due to uncertainties about the phylogenetic associations of parasites. Here, to account for such phylogenetic uncertainty, phylogenetic methods based on Bayesian statistics were followed in combination with sequence data from five genes to estimate the ancestral state of virulence in primate Plasmodium parasites. When recent parasites were categorised according to the damage caused to the host, Bayesian estimates of ancestral states indicated that the acquisition of a harmful host exploitation strategy is more likely to be a recent evolutionary event than a result of an ancient change in a character state altering virulence. On the contrary, there was more evidence for moderate host exploitation having a deep origin along the phylogenetic tree. Moreover, the evolution of host severity is determined by the phylogenetic relationships of parasites, as severity gains did not appear randomly on the evolutionary tree. Such phylogenetic constraints can be mediated by the acquisition of virulence genes. As the impact of a parasite on a host is the result of both the parasite's investment in reproduction and host sensitivity, virulence was also estimated by calculating peak parasitemia after eliminating host effects. A directional random-walk evolutionary model showed that the ancestral primate malarias reproduced at very low parasitemia in their hosts. Consequently, the extreme variation in the outcome of malaria infection in different host species can be better understood in light of the phylogeny of parasites. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Regnault, Sophie; Jones, Marc E H; Pitsillides, Andrew A; Hutchinson, John R
2016-05-01
The patella (kneecap) is the largest and best-known of the sesamoid bones, postulated to confer biomechanical advantages including increasing joint leverage and reinforcing the tendon against compression. It has evolved several times independently in amniotes, but despite apparently widespread occurrence in lizards, the patella remains poorly characterised in this group and is, as yet, completely undescribed in their nearest extant relative Sphenodon (Rhynchocephalia). Through radiography, osteological and fossil studies we examined patellar presence in diverse lizard and lepidosauromorph taxa, and using computed tomography, dissection and histology we investigated in greater depth the anatomy and morphology of the patella in 16 lizard species and 19 Sphenodon specimens. We have found the first unambiguous evidence of a mineralised patella in Sphenodon, which appears similar to the patella of lizards and shares several gross and microscopic anatomical features. Although there may be a common mature morphology, the squamate patella exhibits a great deal of variability in development (whether from a cartilage anlage or not, and in the number of mineralised centres) and composition (bone, mineralised cartilage or fibrotendinous tissue). Unlike in mammals and birds, the patella in certain lizards and Sphenodon appears to be a polymorphic trait. We have also explored the evolution of the patella through ancestral state reconstruction, finding that the patella is ancestral for lizards and possibly Lepidosauria as a whole. Clear evidence of the patella in rhynchocephalian or stem lepidosaurian fossil taxa would clarify the evolutionary origin(s) of the patella, but due to the small size of this bone and the opportunity for degradation or loss we could not definitively conclude presence or absence in the fossils examined. The pattern of evolution in lepidosaurs is unclear but our data suggest that the emergence of this sesamoid may be related to the evolution of secondary ossification centres and/or changes in knee joint conformation, where enhancement of extensor muscle leverage would be more beneficial. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Ancestry-Shift Refinement Mapping of the C6orf97-ESR1 Breast Cancer Susceptibility Locus
Stacey, Simon N.; Sulem, Patrick; Zanon, Carlo; Gudjonsson, Sigurjon A.; Thorleifsson, Gudmar; Helgason, Agnar; Jonasdottir, Aslaug; Besenbacher, Soren; Kostic, Jelena P.; Fackenthal, James D.; Huo, Dezheng; Adebamowo, Clement; Ogundiran, Temidayo; Olson, Janet E.; Fredericksen, Zachary S.; Wang, Xianshu; Look, Maxime P.; Sieuwerts, Anieta M.; Martens, John W. M.; Pajares, Isabel; Garcia-Prats, Maria D.; Ramon-Cajal, Jose M.; de Juan, Ana; Panadero, Angeles; Ortega, Eugenia; Aben, Katja K. H.; Vermeulen, Sita H.; Asadzadeh, Fatemeh; van Engelenburg, K. C. Anton; Margolin, Sara; Shen, Chen-Yang; Wu, Pei-Ei; Försti, Asta; Lenner, Per; Henriksson, Roger; Johansson, Robert; Enquist, Kerstin; Hallmans, Göran; Jonsson, Thorvaldur; Sigurdsson, Helgi; Alexiusdottir, Kristin; Gudmundsson, Julius; Sigurdsson, Asgeir; Frigge, Michael L.; Gudmundsson, Larus; Kristjansson, Kristleifur; Halldorsson, Bjarni V.; Styrkarsdottir, Unnur; Gulcher, Jeffrey R.; Hemminki, Kari; Lindblom, Annika; Kiemeney, Lambertus A.; Mayordomo, Jose I.; Foekens, John A.; Couch, Fergus J.; Olopade, Olufunmilayo I.; Gudbjartsson, Daniel F.; Thorsteinsdottir, Unnur; Rafnar, Thorunn; Johannsson, Oskar T.; Stefansson, Kari
2010-01-01
We used an approach that we term ancestry-shift refinement mapping to investigate an association, originally discovered in a GWAS of a Chinese population, between rs2046210[T] and breast cancer susceptibility. The locus is on 6q25.1 in proximity to the C6orf97 and estrogen receptor α (ESR1) genes. We identified a panel of SNPs that are correlated with rs2046210 in Chinese, but not necessarily so in other ancestral populations, and genotyped them in breast cancer case∶control samples of Asian, European, and African origin, a total of 10,176 cases and 13,286 controls. We found that rs2046210[T] does not confer substantial risk of breast cancer in Europeans and Africans (OR = 1.04, P = 0.099, and OR = 0.98, P = 0.77, respectively). Rather, in those ancestries, an association signal arises from a group of less common SNPs typified by rs9397435. The rs9397435[G] allele was found to confer risk of breast cancer in European (OR = 1.15, P = 1.2×10−3), African (OR = 1.35, P = 0.014), and Asian (OR = 1.23, P = 2.9×10−4) population samples. Combined over all ancestries, the OR was 1.19 (P = 3.9×10−7), was without significant heterogeneity between ancestries (Phet = 0.36) and the SNP fully accounted for the association signal in each ancestry. Haplotypes bearing rs9397435[G] are well tagged by rs2046210[T] only in Asians. The rs9397435[G] allele showed associations with both estrogen receptor positive and estrogen receptor negative breast cancer. Using early-draft data from the 1,000 Genomes project, we found that the risk allele of a novel SNP (rs77275268), which is closely correlated with rs9397435, disrupts a partially methylated CpG sequence within a known CTCF binding site. These studies demonstrate that shifting the analysis among ancestral populations can provide valuable resolution in association mapping. PMID:20661439
The Evolution and Functional Impact of Human Deletion Variants Shared with Archaic Hominin Genomes
Lin, Yen-Lung; Pavlidis, Pavlos; Karakoc, Emre; Ajay, Jerry; Gokcumen, Omer
2015-01-01
Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hominin genomes, approximately 87% of which originated before the Human–Neandertal divergence (ancient) and only approximately 9% of which have been introgressed from Neandertals (introgressed). Recurrence, incomplete lineage sorting between human and chimp lineages, and hominid-specific insertions constitute the remaining approximately 4% of allele sharing between humans and archaic hominins. We observed that ancient deletions correspond to more than 13% of all common (>5% allele frequency) deletion variation among modern humans. Our analyses indicate that the genomic landscapes of both ancient and introgressed deletion variants were primarily shaped by purifying selection, eliminating large and exonic variants. We found 17 exonic deletions that are shared with archaic hominin genomes, including those leading to three fusion transcripts. The affected genes are involved in metabolism of external and internal compounds, growth and sperm formation, as well as susceptibility to psoriasis and Crohn’s disease. Our analyses suggest that these “exonic” deletion variants have evolved through different adaptive forces, including balancing and population-specific positive selection. Our findings reveal that genomic structural variants that are shared between humans and archaic hominin genomes are common among modern humans and can influence biomedically and evolutionarily important phenotypes. PMID:25556237
Evolution: Tracing the origins of centrioles, cilia, and flagella.
Carvalho-Santos, Zita; Azimzadeh, Juliette; Pereira-Leal, José B; Bettencourt-Dias, Mónica
2011-07-25
Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
Modliszewski, Jennifer L; Thomas, David T; Fan, Chuanzhu; Crawford, Daniel J; Depamphilis, Claude W; Xiang, Qiu-Yun Jenny
2006-03-01
Knowledge regarding the origin and maintenance of hybrid zones is critical for understanding the evolutionary outcomes of natural hybridization. To evaluate the contribution of historical contact vs. long-distance gene flow in the formation of a broad hybrid zone in central and northern Georgia that involves Aesculus pavia, A. sylvatica, and A. flava, three cpDNA regions (matK, trnD-trnT, and trnH-trnK) were analyzed. The maternal inheritance of cpDNA in Aesculus was confirmed via sequencing of matK from progeny of controlled crosses. Restriction site analyses identified 21 unique haplotypes among 248 individuals representing 29 populations from parental species and hybrids. Haplotypes were sequenced for all cpDNA regions. Restriction site and sequence data were subjected to phylogeographic and population genetic analyses. Considerable cpDNA variation was detected in the hybrid zone, as well as ancestral cpDNA polymorphism; furthermore, the distribution of haplotypes indicates limited interpopulation gene flow via seeds. The genealogy and structure of genetic variation further support the historical presence of A. pavia in the Piedmont, although they are at present locally extinct. In conjunction with previous allozyme studies, the cpDNA data suggest that the hybrid zone originated through historical local gene flow, yet is maintained by periodic long-distance pollen dispersal.
Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution.
Hahn, Mark E; Karchner, Sibel I; Merson, Rebeka R
2017-02-01
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax , a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa , whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution
Hahn, Mark E.; Karchner, Sibel I.; Merson, Rebeka R.
2017-01-01
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology. PMID:28286876
The natural history of biocatalytic mechanisms.
Nath, Neetika; Mitchell, John B O; Caetano-Anollés, Gustavo
2014-05-01
Phylogenomic analysis of the occurrence and abundance of protein domains in proteomes has recently showed that the α/β architecture is probably the oldest fold design. This holds important implications for the origins of biochemistry. Here we explore structure-function relationships addressing the use of chemical mechanisms by ancestral enzymes. We test the hypothesis that the oldest folds used the most mechanisms. We start by tracing biocatalytic mechanisms operating in metabolic enzymes along a phylogenetic timeline of the first appearance of homologous superfamilies of protein domain structures from CATH. A total of 335 enzyme reactions were retrieved from MACiE and were mapped over fold age. We define a mechanistic step type as one of the 51 mechanistic annotations given in MACiE, and each step of each of the 335 mechanisms was described using one or more of these annotations. We find that the first two folds, the P-loop containing nucleotide triphosphate hydrolase and the NAD(P)-binding Rossmann-like homologous superfamilies, were α/β architectures responsible for introducing 35% (18/51) of the known mechanistic step types. We find that these two oldest structures in the phylogenomic analysis of protein domains introduced many mechanistic step types that were later combinatorially spread in catalytic history. The most common mechanistic step types included fundamental building blocks of enzyme chemistry: "Proton transfer," "Bimolecular nucleophilic addition," "Bimolecular nucleophilic substitution," and "Unimolecular elimination by the conjugate base." They were associated with the most ancestral fold structure typical of P-loop containing nucleotide triphosphate hydrolases. Over half of the mechanistic step types were introduced in the evolutionary timeline before the appearance of structures specific to diversified organisms, during a period of architectural diversification. The other half unfolded gradually after organismal diversification and during a period that spanned ∼2 billion years of evolutionary history.
Yuvaraj, Jothi Kumar; Corcoran, Jacob A.; Andersson, Martin N.; Newcomb, Richard D.; Anderbrant, Olle; Löfstedt, Christer
2017-01-01
Abstract Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to β-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles. PMID:29126322
Peoples, R; Franke, Y; Wang, Y K; Pérez-Jurado, L; Paperna, T; Cisco, M; Francke, U
2000-01-01
Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although >/=16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of >/=320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region.
Kathiravan, P; Kataria, R S; Mishra, B P; Dubey, P K; Sadana, D K; Joshi, B K
2011-08-01
We report the genetic structure and evolutionary relationship of the endangered Toda buffalo of Nilgiris in South India with Kanarese and two other riverine buffalo breeds. The upgma phylogeny drawn using Nei's distance grouped South Kanara and Toda buffaloes at a single node while Marathwada and Murrah together formed a separate node. Principal component analysis was performed with pairwise interindividual chord distances which revealed clustering of Murrah and Marathwada buffaloes distinctly, while individuals of Toda and South Kanara breeds completely intermingled with each other. Furthermore, there were highly significant group variances (p < 0.01) when the breeds were grouped based on phylogeny, thus revealing the existence of cryptic genetic structure within these buffalo breeds. To know the evolutionary relationship among these breeds, 537-bp D-loop region of mitochondrial DNA was analysed. The phylogenetic analysis of mtDNA haplotypes following NJ algorithm with Chinese swamp buffalo as outgroup revealed a major cluster that included haplotypes from all the four investigated breeds and two minor clusters formed by South Kanara and Toda haplotypes. Reduced median network analysis revealed haplotypes of South Kanara and Toda to be quite distinct from the commonly found haplotypes indicating that these might have been ancestral to all the present-day haplotypes. Few mutations in two of the haplotypes of South Kanara buffalo were found to have contributed to ancestral haplotypes of Toda buffalo suggesting the possible migration of buffaloes from Kanarese region towards Nilgiris along the Western Ghats. Considering the close social, economic and cultural association of Todas with their buffaloes, the present study supports the theory of migration of Toda tribe from Kanarese/Mysore region along with their buffaloes. © 2011 Blackwell Verlag GmbH.
Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants.
Li, Xinguo; Wu, Harry X; Southerton, Simon G
2010-06-21
Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution.
Comparative genomics reveals conservative evolution of the xylem transcriptome in vascular plants
2010-01-01
Background Wood is a valuable natural resource and a major carbon sink. Wood formation is an important developmental process in vascular plants which played a crucial role in plant evolution. Although genes involved in xylem formation have been investigated, the molecular mechanisms of xylem evolution are not well understood. We use comparative genomics to examine evolution of the xylem transcriptome to gain insights into xylem evolution. Results The xylem transcriptome is highly conserved in conifers, but considerably divergent in angiosperms. The functional domains of genes in the xylem transcriptome are moderately to highly conserved in vascular plants, suggesting the existence of a common ancestral xylem transcriptome. Compared to the total transcriptome derived from a range of tissues, the xylem transcriptome is relatively conserved in vascular plants. Of the xylem transcriptome, cell wall genes, ancestral xylem genes, known proteins and transcription factors are relatively more conserved in vascular plants. A total of 527 putative xylem orthologs were identified, which are unevenly distributed across the Arabidopsis chromosomes with eight hot spots observed. Phylogenetic analysis revealed that evolution of the xylem transcriptome has paralleled plant evolution. We also identified 274 conifer-specific xylem unigenes, all of which are of unknown function. These xylem orthologs and conifer-specific unigenes are likely to have played a crucial role in xylem evolution. Conclusions Conifers have highly conserved xylem transcriptomes, while angiosperm xylem transcriptomes are relatively diversified. Vascular plants share a common ancestral xylem transcriptome. The xylem transcriptomes of vascular plants are more conserved than the total transcriptomes. Evolution of the xylem transcriptome has largely followed the trend of plant evolution. PMID:20565927
Mundy, N I; Kelly, J
2001-05-01
The evolutionary relationships of the lion tamarins (Leontopithecus) were investigated using nuclear interphotoreceptor retinol binding protein (IRBP) intron sequences. Phylogenetic reconstructions strongly support the monophyly of the genus, and a sister relationship between the golden lion tamarin, Leontopithecus rosalia, and the black lion tamarin, L. chrysopygus, to the exclusion of the golden-headed lion tamarin, L. chrysomelas. The most parsimonious evolutionary reconstruction suggests that the ancestral lion tamarin and the common ancestor of L. rosalia and L. chrysopygus had predominantly black coats. This reconstruction is not consistent with a theory of orthogenetic evolution of coat color that was based on coat color evolution in marmosets and tamarins. An alternative reconstruction that is consistent with metachromism requires that ancestral lion tamarins had agouti hairs. Copyright 2001 Wiley-Liss, Inc.
Teaching the Evolution of the Angiosperm Carpel.
ERIC Educational Resources Information Center
Laferriere, Joseph E.
1992-01-01
The carpel is a highly modified leaf enclosing the ovules. This article describes methods for teaching about the evolution of the carpel and the nature of carpel fusion. Presents an illustration of the evolution of the most common types of compound pistil arrangement from the ancestral single-carpel marginal type of placentation. (PR)
Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus
Leinonen, T; Cano, J M; Merilä, J
2011-01-01
Sexual dimorphism (SD) in morphological, behavioural and physiological features is common, but the genetics of SD in the wild has seldom been studied in detail. We investigated the genetic basis of SD in morphological traits of threespine stickleback (Gasterosteus aculeatus) by conducting a large breeding experiment with fish from an ancestral marine population that acts as a source of morphological variation. We also examined the patterns of SD in a set of 38 wild populations from different habitats to investigate the relationship between the genetic architecture of SD of the marine ancestral population in relation to variation within and among natural populations. The results show that genetic architecture in terms of heritabilities, additive genetic variances and covariances (as well as correlations) is very similar in the two sexes in spite of the fact that many of the traits express significant SD. Furthermore, population differences in threespine stickleback body shape and armour SD appear to have evolved despite constraints imposed by genetic architecture. This implies that constraints for the evolution of SD imposed by strong genetic correlations are not as severe and absolute as commonly thought. PMID:20700139
Gehring, Walter J
2014-01-01
In this review, the evolution of vision is retraced from its putative origins in cyanobacteria to humans. Circadian oscillatory clocks, phototropism, and phototaxis require the capability to detect light. Photosensory proteins allow us to reconstruct molecular phylogenetic trees. The evolution of animal eyes leading from an ancestral prototype to highly complex image forming eyes can be deciphered on the basis of evolutionary developmental genetic experiments and comparative genomics. As all bilaterian animals share the same master control gene, Pax6, and the same retinal and pigment cell determination genes, we conclude that the different eye-types originated monophyletically and subsequently diversified by divergent, parallel, or convergent evolution. © 2012 Wiley Periodicals, Inc.
[Origination and evolution of plastids].
Mukhina, V S
2014-01-01
Plastids are photosynthetic DNA-containing organelles of plants and algae. In the review, the history of their origination and evolution within different taxa is considered. All of the plastids appear to be descendants of cyanobacteria that colonized eukaryotic cells. The first plastids arose through symbiosis of cyanobacteria with algal ancestors from Archaeplastida kingdom. Later, there occurred repeated secondary symbioses of other eukariotes with photosynthetic protists: in this way plastids emerged in organisms of other taxa. Co-evolution of cyanobacteria and ancestral algae led to extensive transformation of both: reduction of endosymbiont, mass transfer of cyanobacteria genes into karyogenome, formation of complex system of proteins transportation to plastids and their functioning regulation.
Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor
Carroll, Sean Michael; Ortlund, Eric A.; Thornton, Joseph W.
2011-01-01
Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functions of GRs—reduced sensitivity to all hormones and increased selectivity for glucocorticoids—are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR–MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and function and reinforce the importance of permissive mutations in protein evolution. PMID:21698144
Mechanisms for the Evolution of a Derived Function in the Ancestral Glucocorticoid Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Sean Michael; Ortlund, Eric A; Thornton, Joseph W.
2012-03-16
Understanding the genetic, structural, and biophysical mechanisms that caused protein functions to evolve is a central goal of molecular evolutionary studies. Ancestral sequence reconstruction (ASR) offers an experimental approach to these questions. Here we use ASR to shed light on the earliest functions and evolution of the glucocorticoid receptor (GR), a steroid-activated transcription factor that plays a key role in the regulation of vertebrate physiology. Prior work showed that GR and its paralog, the mineralocorticoid receptor (MR), duplicated from a common ancestor roughly 450 million years ago; the ancestral functions were largely conserved in the MR lineage, but the functionsmore » of GRs - reduced sensitivity to all hormones and increased selectivity for glucocorticoids - are derived. Although the mechanisms for the evolution of glucocorticoid specificity have been identified, how reduced sensitivity evolved has not yet been studied. Here we report on the reconstruction of the deepest ancestor in the GR lineage (AncGR1) and demonstrate that GR's reduced sensitivity evolved before the acquisition of restricted hormone specificity, shortly after the GR-MR split. Using site-directed mutagenesis, X-ray crystallography, and computational analyses of protein stability to recapitulate and determine the effects of historical mutations, we show that AncGR1's reduced ligand sensitivity evolved primarily due to three key substitutions. Two large-effect mutations weakened hydrogen bonds and van der Waals interactions within the ancestral protein, reducing its stability. The degenerative effect of these two mutations is extremely strong, but a third permissive substitution, which has no apparent effect on function in the ancestral background and is likely to have occurred first, buffered the effects of the destabilizing mutations. Taken together, our results highlight the potentially creative role of substitutions that partially degrade protein structure and function and reinforce the importance of permissive mutations in protein evolution.« less
Johnson, J A; Parra, G I; Levenson, E A; Green, K Y
2017-06-01
Historical outbreaks can be an important source of information in the understanding of norovirus evolution and epidemiology. Here, we revisit an outbreak of undiagnosed gastroenteritis that occurred in Shippensburg, Pennsylvania in 1972. Nearly 5000 people fell ill over the course of 10 days. Symptoms included diarrhea, vomiting, stomach cramps, and fever, lasting for a median of 24 h. Using current techniques, including next-generation sequencing of full-length viral genomic amplicons, we identified an unusual norovirus recombinant (GII.Pg/GII.3) in nine of 15 available stool samples from the outbreak. This particular recombinant virus has not been reported in recent decades, although GII.3 and GII.Pg genotypes have been detected individually in current epidemic strains. The consensus nucleotide sequences were nearly identical among the four viral genomes analysed, although each strain had three to seven positions in the genome with heterogenous non-synonymous nucleotide subpopulations. Two of these resulting amino acid polymorphisms were conserved in frequency among all four cases, consistent with common source exposure and successful transmission of a mixed viral population. Continued investigation of variant nucleotide populations and recombination events among ancestral norovirus strains such as the Shippensburg virus may provide unique insight into the origin of contemporary strains.
Derouiche, Abderahmane; Shi, Lei; Kalantari, Aida; Mijakovic, Ivan
2016-02-01
In this study, we focus on functional interactions among multi-domain proteins which share a common evolutionary origin. The examples we develop are four Bacillus subtilis proteins, which all possess an ATP-binding Walker motif: the bacterial tyrosine kinase (BY-kinase) PtkA, the chromosome segregation protein Soj (ParA), the cell division protein MinD and a transcription regulator SalA. These proteins have arisen via duplication of the ancestral ATP-binding domain, which has undergone fusions with other functional domains in the process of divergent evolution. We point out that these four proteins, despite having very different physiological roles, engage in an unusually high number of binary functional interactions. Namely, MinD attracts Soj and PtkA to the cell pole, and in addition, activates the kinase function of PtkA. SalA also activates the kinase function of PtkA, and it gets phosphorylated by PtkA as well. The consequence of this phosphorylation is the activation of SalA as a transcriptional repressor. We hypothesize that these functional interactions remain preserved during divergent evolution and represent a constraint on the process of evolutionary "tinkering", brought about by fusions of different functional domains.
Neofunctionalization of a duplicate hatching enzyme gene during the evolution of teleost fishes.
Sano, Kaori; Kawaguchi, Mari; Watanabe, Satoshi; Yasumasu, Shigeki
2014-10-19
Duplication and subsequent neofunctionalization of the teleostean hatching enzyme gene occurred in the common ancestor of Euteleostei and Otocephala, producing two genes belonging to different phylogenetic clades (clade I and II). In euteleosts, the clade I enzyme inherited the activity of the ancestral enzyme of swelling the egg envelope by cleavage of the N-terminal region of egg envelope proteins. The clade II enzyme gained two specific cleavage sites, N-ZPd and mid-ZPd but lost the ancestral activity. Thus, euteleostean clade II enzymes assumed a new function; solubilization of the egg envelope by the cooperative action with clade I enzyme. However, in Otocephala, the clade II gene was lost during evolution. Consequently, in a late group of Otocephala, only the clade I enzyme is present to swell the egg envelope. We evaluated the egg envelope digestion properties of clade I and II enzymes in Gonorynchiformes, an early diverging group of Otocephala, using milkfish, and compared their digestion with those of other fishes. Finally, we propose a hypothesis of the neofunctionalization process. The milkfish clade II enzyme cleaved N-ZPd but not mid-ZPd, and did not cause solubilization of the egg envelope. We conclude that neofunctionalization is incomplete in the otocephalan clade II enzymes. Comparison of clade I and clade II enzyme characteristics implies that the specificity of the clade II enzymes gradually changed during evolution after the duplication event, and that a change in substrate was required for the addition of the mid-ZPd site and loss of activity at the N-terminal region. We infer the process of neofunctionalization of the clade II enzyme after duplication of the gene. The ancestral clade II gene gained N-ZPd cleavage activity in the common ancestral lineage of the Euteleostei and Otocephala. Subsequently, acquisition of cleavage activity at the mid-ZPd site and loss of cleavage activity in the N-terminal region occurred during the evolution of Euteleostei, but not of Otocephala. The clade II enzyme provides an example of the development of a neofunctional gene for which the substrate, the egg envelope protein, has adapted to a gradual change in the specificity of the corresponding enzyme.
Cotton, James A; McInerney, James O
2010-10-05
The traditional tree of life shows eukaryotes as a distinct lineage of living things, but many studies have suggested that the first eukaryotic cells were chimeric, descended from both Eubacteria (through the mitochondrion) and Archaebacteria. Eukaryote nuclei thus contain genes of both eubacterial and archaebacterial origins, and these genes have different functions within eukaryotic cells. Here we report that archaebacterium-derived genes are significantly more likely to be essential to yeast viability, are more highly expressed, and are significantly more highly connected and more central in the yeast protein interaction network. These findings hold irrespective of whether the genes have an informational or operational function, so that many features of eukaryotic genes with prokaryotic homologs can be explained by their origin, rather than their function. Taken together, our results show that genes of archaebacterial origin are in some senses more important to yeast metabolism than genes of eubacterial origin. This importance reflects these genes' origin as the ancestral nuclear component of the eukaryotic genome.
Alibardi, Lorenzo; Dalla Valle, Luisa; Nardi, Alessia; Toni, Mattia
2009-04-01
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal-epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal-epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%-95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives.
Dugrand-Judek, Audray; Olry, Alexandre; Hehn, Alain; Costantino, Gilles; Ollitrault, Patrick; Froelicher, Yann; Bourgaud, Frédéric
2015-01-01
Citrus plants are able to produce defense compounds such as coumarins and furanocoumarins to cope with herbivorous insects and pathogens. In humans, these chemical compounds are strong photosensitizers and can interact with medications, leading to the “grapefruit juice effect”. Removing coumarins and furanocoumarins from food and cosmetics imply additional costs and might alter product quality. Thus, the selection of Citrus cultivars displaying low coumarin and furanocoumarin contents constitutes a valuable alternative. In this study, we performed ultra-performance liquid chromatography coupled with mass spectrometry analyses to determine the contents of these compounds within the peel and the pulp of 61 Citrus species representative of the genetic diversity all Citrus. Generally, Citrus peel contains larger diversity and higher concentrations of coumarin/furanocoumarin than the pulp of the same fruits. According to the chemotypes found in the peel, Citrus species can be separated into 4 groups that correspond to the 4 ancestral taxa (pummelos, mandarins, citrons and papedas) and extended with their respective secondary species descendants. Three of the 4 ancestral taxa (pummelos, citrons and papedas) synthesize high amounts of these compounds, whereas mandarins appear practically devoid of them. Additionally, all ancestral taxa and their hybrids are logically organized according to the coumarin and furanocoumarin pathways described in the literature. This organization allows hypotheses to be drawn regarding the biosynthetic origin of compounds for which the biogenesis remains unresolved. Determining coumarin and furanocoumarin contents is also helpful for hypothesizing the origin of Citrus species for which the phylogeny is presently not firmly established. Finally, this work also notes favorable hybridization schemes that will lead to low coumarin and furanocoumarin contents, and we propose to select mandarins and Ichang papeda as Citrus varieties for use in creating species devoid of these toxic compounds in future breeding programs. PMID:26558757
Ali, Syed Shujait; Yu, Yan; Pfosser, Martin; Wetschnig, Wolfgang
2012-01-01
Background and Aims Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern. Methods Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Key Results S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae. Conclusions Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India. PMID:22039008
Hwang, Wei Song; Weirauch, Christiane
2012-01-01
Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears the way for in-depth evolutionary hypothesis testing in one of the most speciose clades of predators. PMID:23029072
Jandzik, David; Hawkins, M Brent; Cattell, Maria V; Cerny, Robert; Square, Tyler A; Medeiros, Daniel M
2014-02-01
A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.
Independent evolution of genomic characters during major metazoan transitions.
Simakov, Oleg; Kawashima, Takeshi
2017-07-15
Metazoan evolution encompasses a vast evolutionary time scale spanning over 600 million years. Our ability to infer ancestral metazoan characters, both morphological and functional, is limited by our understanding of the nature and evolutionary dynamics of the underlying regulatory networks. Increasing coverage of metazoan genomes enables us to identify the evolutionary changes of the relevant genomic characters such as the loss or gain of coding sequences, gene duplications, micro- and macro-synteny, and non-coding element evolution in different lineages. In this review we describe recent advances in our understanding of ancestral metazoan coding and non-coding features, as deduced from genomic comparisons. Some genomic changes such as innovations in gene and linkage content occur at different rates across metazoan clades, suggesting some level of independence among genomic characters. While their contribution to biological innovation remains largely unclear, we review recent literature about certain genomic changes that do correlate with changes to specific developmental pathways and metazoan innovations. In particular, we discuss the origins of the recently described pharyngeal cluster which is conserved across deuterostome genomes, and highlight different genomic features that have contributed to the evolution of this group. We also assess our current capacity to infer ancestral metazoan states from gene models and comparative genomics tools and elaborate on the future directions of metazoan comparative genomics relevant to evo-devo studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Origin and evolution of African Polystoma (Monogenea: Polystomatidae) assessed by molecular methods.
Bentz, S; Leroy, S; du Preez, L; Mariaux, J; Vaucher, C; Verneau, O
2001-05-15
Among Polystomatidae (Monogenea), the genus Polystoma, which mainly infests neobatrachian hosts, is the most diverse and occurs principally in Africa, from where half the species have been reported. Previous molecular phylogenetic studies have shown that this genus originated in South America, and later colonised Eurasia and Africa. No mention was made on dispersal corridors between Europe and Africa or of the origin of the African Polystoma radiation. Therefore, a molecular phylogeny was inferred from ITS1 sequences of 21 taxa comprising two species from America, seven representatives from Europe and 12 from Africa. The topology of the phylogenetic tree reveals that a single event of colonisation took place from Europe to Africa and that the putative host carrying along the ancestral polystome is to be found among ancestral pelobatids. Percentage divergences estimates suggest that some presumably distinct vesicular species in unrelated South African anurans and some neotenic forms found in several distinct hosts in Ivory Coast, could, in fact, belong to two single polystome species parasitising divergent hosts. Two main factors are identified that may explain the diversity of African polystomes: (i), we propose that following some degree of generalism, at least during the juvenile stages of both hosts and parasites, distinctive larval behaviour of polystomes engenders isolation between parasite populations that precludes sympatric speciations; (ii), cospeciation events between Ptychadena hosts and their parasites are another factor of diversification of Polystoma on the African continent. Finally, we discuss the systematic status of the Madagascan parasite Metapolystoma, as well as the colonisation of Madagascar by the host Ptychadena mascareniensis.
Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage
Marin, Ray; Cortez, Diego; Lamanna, Francesco; Pradeepa, Madapura M.; Leushkin, Evgeny; Julien, Philippe; Liechti, Angélica; Halbert, Jean; Brüning, Thoomke; Mössinger, Katharina; Trefzer, Timo; Conrad, Christian; Kerver, Halie N.; Wade, Juli; Tschopp, Patrick; Kaessmann, Henrik
2017-01-01
Sex chromosomes differentiated from different ancestral autosomes in various vertebrate lineages. Here, we trace the functional evolution of the XY Chromosomes of the green anole lizard (Anolis carolinensis), on the basis of extensive high-throughput genome, transcriptome and histone modification sequencing data and revisit dosage compensation evolution in representative mammals and birds with substantial new expression data. Our analyses show that Anolis sex chromosomes represent an ancient XY system that originated at least ≈160 million years ago in the ancestor of Iguania lizards, shortly after the separation from the snake lineage. The age of this system approximately coincides with the ages of the avian and two mammalian sex chromosomes systems. To compensate for the almost complete Y Chromosome degeneration, X-linked genes have become twofold up-regulated, restoring ancestral expression levels. The highly efficient dosage compensation mechanism of Anolis represents the only vertebrate case identified so far to fully support Ohno's original dosage compensation hypothesis. Further analyses reveal that X up-regulation occurs only in males and is mediated by a male-specific chromatin machinery that leads to global hyperacetylation of histone H4 at lysine 16 specifically on the X Chromosome. The green anole dosage compensation mechanism is highly reminiscent of that of the fruit fly, Drosophila melanogaster. Altogether, our work unveils the convergent emergence of a Drosophila-like dosage compensation mechanism in an ancient reptilian sex chromosome system and highlights that the evolutionary pressures imposed by sex chromosome dosage reductions in different amniotes were resolved in fundamentally different ways. PMID:29133310
Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage.
Marin, Ray; Cortez, Diego; Lamanna, Francesco; Pradeepa, Madapura M; Leushkin, Evgeny; Julien, Philippe; Liechti, Angélica; Halbert, Jean; Brüning, Thoomke; Mössinger, Katharina; Trefzer, Timo; Conrad, Christian; Kerver, Halie N; Wade, Juli; Tschopp, Patrick; Kaessmann, Henrik
2017-12-01
Sex chromosomes differentiated from different ancestral autosomes in various vertebrate lineages. Here, we trace the functional evolution of the XY Chromosomes of the green anole lizard ( Anolis carolinensis ), on the basis of extensive high-throughput genome, transcriptome and histone modification sequencing data and revisit dosage compensation evolution in representative mammals and birds with substantial new expression data. Our analyses show that Anolis sex chromosomes represent an ancient XY system that originated at least ≈160 million years ago in the ancestor of Iguania lizards, shortly after the separation from the snake lineage. The age of this system approximately coincides with the ages of the avian and two mammalian sex chromosomes systems. To compensate for the almost complete Y Chromosome degeneration, X-linked genes have become twofold up-regulated, restoring ancestral expression levels. The highly efficient dosage compensation mechanism of Anolis represents the only vertebrate case identified so far to fully support Ohno's original dosage compensation hypothesis. Further analyses reveal that X up-regulation occurs only in males and is mediated by a male-specific chromatin machinery that leads to global hyperacetylation of histone H4 at lysine 16 specifically on the X Chromosome. The green anole dosage compensation mechanism is highly reminiscent of that of the fruit fly, Drosophila melanogaster Altogether, our work unveils the convergent emergence of a Drosophila -like dosage compensation mechanism in an ancient reptilian sex chromosome system and highlights that the evolutionary pressures imposed by sex chromosome dosage reductions in different amniotes were resolved in fundamentally different ways. © 2017 Marin et al.; Published by Cold Spring Harbor Laboratory Press.
Morphological inversion of complex diffusion
NASA Astrophysics Data System (ADS)
Nguyen, V. A. T.; Vural, D. C.
2017-09-01
Epidemics, neural cascades, power failures, and many other phenomena can be described by a diffusion process on a network. To identify the causal origins of a spread, it is often necessary to identify the triggering initial node. Here, we define a new morphological operator and use it to detect the origin of a diffusive front, given the final state of a complex network. Our method performs better than algorithms based on distance (closeness) and Jordan centrality. More importantly, our method is applicable regardless of the specifics of the forward model, and therefore can be applied to a wide range of systems such as identifying the patient zero in an epidemic, pinpointing the neuron that triggers a cascade, identifying the original malfunction that causes a catastrophic infrastructure failure, and inferring the ancestral species from which a heterogeneous population evolves.
Origins and evolution of viruses of eukaryotes: The ultimate modularity
Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart
2018-01-01
Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along with additional acquisitions of diverse genes. PMID:25771806
Recent Asian origin of chytrid fungi causing global amphibian declines.
O'Hanlon, Simon J; Rieux, Adrien; Farrer, Rhys A; Rosa, Gonçalo M; Waldman, Bruce; Bataille, Arnaud; Kosch, Tiffany A; Murray, Kris A; Brankovics, Balázs; Fumagalli, Matteo; Martin, Michael D; Wales, Nathan; Alvarado-Rybak, Mario; Bates, Kieran A; Berger, Lee; Böll, Susanne; Brookes, Lola; Clare, Frances; Courtois, Elodie A; Cunningham, Andrew A; Doherty-Bone, Thomas M; Ghosh, Pria; Gower, David J; Hintz, William E; Höglund, Jacob; Jenkinson, Thomas S; Lin, Chun-Fu; Laurila, Anssi; Loyau, Adeline; Martel, An; Meurling, Sara; Miaud, Claude; Minting, Pete; Pasmans, Frank; Schmeller, Dirk S; Schmidt, Benedikt R; Shelton, Jennifer M G; Skerratt, Lee F; Smith, Freya; Soto-Azat, Claudio; Spagnoletti, Matteo; Tessa, Giulia; Toledo, Luís Felipe; Valenzuela-Sánchez, Andrés; Verster, Ruhan; Vörös, Judit; Webb, Rebecca J; Wierzbicki, Claudia; Wombwell, Emma; Zamudio, Kelly R; Aanensen, David M; James, Timothy Y; Gilbert, M Thomas P; Weldon, Ché; Bosch, Jaime; Balloux, François; Garner, Trenton W J; Fisher, Matthew C
2018-05-11
Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis , a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, Bd ASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Genetic Evidence for Recent Population Mixture in India
Moorjani, Priya; Thangaraj, Kumarasamy; Patterson, Nick; Lipson, Mark; Loh, Po-Ru; Govindaraj, Periyasamy; Berger, Bonnie; Reich, David; Singh, Lalji
2013-01-01
Most Indian groups descend from a mixture of two genetically divergent populations: Ancestral North Indians (ANI) related to Central Asians, Middle Easterners, Caucasians, and Europeans; and Ancestral South Indians (ASI) not closely related to groups outside the subcontinent. The date of mixture is unknown but has implications for understanding Indian history. We report genome-wide data from 73 groups from the Indian subcontinent and analyze linkage disequilibrium to estimate ANI-ASI mixture dates ranging from about 1,900 to 4,200 years ago. In a subset of groups, 100% of the mixture is consistent with having occurred during this period. These results show that India experienced a demographic transformation several thousand years ago, from a region in which major population mixture was common to one in which mixture even between closely related groups became rare because of a shift to endogamy. PMID:23932107
2013-01-01
Background The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt-b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. Results Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. Conclusions Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and Amazonian centers of endemism appear enriched by lineages that originated in the other region. Our survey of other South American lineages suggests a pattern of reciprocal exchange between these regions—among mammals, birds, amphibians, and insects we found no fewer than 87 transitions between the Andes and Amazon from Miocene-Pleistocene. Because no clear trend emerges between the timing and polarity of transitions, or in their relative frequency, we suggest that reciprocal exchange between tropical highland and lowland faunas in South America has been a continual process since ca. 12 Ma. PMID:24015814
Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?
Nielsen, Claus
2013-08-16
Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles. Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle. All the available information is strongly in favor of multiple evolution of non-planktotrophic development, and only the terminal addition theory is in accordance with the Darwinian theory by explaining the evolution through continuous series of adaptational changes. This implies that the ancestor of the eumetazoans was a holopelagic, planktotrophic gastraea, and that the adult stages of cnidarians (sessile) and bilaterians (creeping) were later additions to the life cycle. It further implies that the various larval types are of considerable phylogenetic value.
2014-01-01
Background Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in understanding the origin of the genetic code. Two unrelated classes (I and II) of contemporary aminoacyl-tRNA synthetases (aaRS) now translate the code. Observing that codons for the most highly conserved, Class I catalytic peptides, when read in the reverse direction, are very nearly anticodons for Class II defining catalytic peptides, Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene. This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable. Results The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation. A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed, 46-residue gene constrained by Rosetta to encode Class I and II ATP binding sites with fully complementary sequences both accelerate amino acid activation by ATP ~400 fold. Conclusions Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the RNA-World hypothesis. Reviewers This article was reviewed by Dr. Paul Schimmel (nominated by Laura Landweber), Dr. Eugene Koonin and Professor David Ardell. PMID:24927791
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.
Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi
2010-01-01
The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879
Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.
2016-01-01
Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.
Svistoonoff, Sergio; Benabdoun, Faiza Meriem; Nambiar-Veetil, Mathish; Imanishi, Leandro; Vaissayre, Virginie; Cesari, Stella; Diagne, Nathalie; Hocher, Valérie; de Billy, Françoise; Bonneau, Jocelyne; Wall, Luis; Ykhlef, Nadia; Rosenberg, Charles; Bogusz, Didier; Franche, Claudine; Gherbi, Hassen
2013-01-01
Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis. PMID:23741336
Lee, Inkyoung; Davies, Robert L.
2012-01-01
SUMMARY The tbpBA operon was sequenced in 42 representative isolates of Mannheimia haemolytica (32), Mannheimia glucosida (6) and Bibersteinia trehalosi (4). A total of 27 tbpB and 20 tbpA alleles were identified whilst the tbpBA operon was represented by 28 unique alleles that could be assigned to seven classes. There were 1566 (34.8% variation) polymorphic nucleotide sites and 482 (32.1% variation) variable inferred amino acid positions among the 42 tbpBA sequences. The tbpBA operons of serotype A2 M. haemolytica isolates are, with one exception, substantially more diverse than those of the other M. haemolytica serotypes and most likely have a different ancestral origin. The tbpBA phylogeny has been severely disrupted by numerous small- and large-scale intragenic recombination events. In addition, assortative (entire gene) recombination events, involving either the entire tbpBA operon or the individual tbpB and tbpA genes, have played a major role in shaping tbpBA structure and it’s distribution in the three species. Our findings indicate that a common gene pool exists for tbpBA in M. haemolytica, M. glucosida and B. trehalosi. In particular, B. trehalosi, M. glucosida and ovine M. haemolytica isolates share a large portion of the tbpA gene and this probably reflects selection for a conserved TbpA protein that provides effective iron-uptake in sheep. Bovine and ovine serotype A2 lineages have very different tbpBA alleles. Bovine-like tbpBA alleles have been partially, or completely, replaced by ovine-like tbpBA alleles in ovine serotype A2 isolates suggesting that different transferrin receptors are required by serotype A2 isolates for optimum iron uptake in cattle and sheep. Conversely, the tbpBA alleles of bovine-pathogenic serotype A1 and A6 isolates are very similar to those of closely related ovine isolates suggesting a recent and common evolutionary origin. PMID:20884693
Serrano, Érica Alves; Utsunomia, Ricardo; Scudeller, Patrícia Sobrinho; Oliveira, Claudio; Foresti, Fausto
2017-01-01
B chromosomes are apparently dispensable components found in the genomes of many species that are mainly composed of repetitive DNA sequences. Among the numerous questions concerning B chromosomes, the origin of these elements has been widely studied. To date, supernumerary chromosomes have been identified in approximately 60 species of fish, including species of the genus Characidium Reinhardt, 1867 in which these elements appear to have independently originated. In this study, we used molecular cytogenetic techniques to investigate the origin of B chromosomes in a population of Characidium alipioi Travassos, 1955 and determine their relationship with the extra chromosomes of other species of the genus. The results showed that the B chromosomes of Characidium alipioi had an intraspecific origin, apparently originated independently in relation to the B chromosomes of Characidium gomesi Travassos, 1956 Characidium pterostictum Gomes, 1947 and Characidium oiticicai Travassos, 1967, since they do not share specific DNA sequences, as well as their possible ancestral chromosomes and belong to different phylogenetic clades. The shared sequences between the supernumerary chromosomes and the autosommal sm pair indicate the origin of these chromosomes.
Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan
2016-07-01
This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.
Stogios, Peter J; Kuhn, Misty L; Evdokimova, Elena; Law, Melissa; Courvalin, Patrice; Savchenko, Alexei
2017-02-10
Modification of aminoglycosides by N-acetyltransferases (AACs) is one of the major mechanisms of resistance to these antibiotics in human bacterial pathogens. More than 50 enzymes belonging to the AAC(6') subfamily have been identified in Gram-negative and Gram-positive clinical isolates. Our understanding of the molecular function and evolutionary origin of these resistance enzymes remains incomplete. Here we report the structural and enzymatic characterization of AAC(6')-Ig and AAC(6')-Ih from Acinetobacter spp. The crystal structure of AAC(6')-Ig in complex with tobramycin revealed a large substrate-binding cleft remaining partially unoccupied by the substrate, which is in stark contrast with the previously characterized AAC(6')-Ib enzyme. Enzymatic analysis indicated that AAC(6')-Ig and -Ih possess a broad specificity against aminoglycosides but with significantly lower turnover rates as compared to other AAC(6') enzymes. Structure- and function-informed phylogenetic analysis of AAC(6') enzymes led to identification of at least three distinct subfamilies varying in oligomeric state, active site composition, and drug recognition mode. Our data support the concept of AAC(6') functionality originating through convergent evolution from diverse Gcn5-related-N-acetyltransferase (GNAT) ancestral enzymes, with AAC(6')-Ig and -Ih representing enzymes that may still retain ancestral nonresistance functions in the cell as provided by their particular active site properties.
Wei, Xueping; Qi, Yaodong; Zhang, Xianchun; Luo, Li; Shang, Hui; Wei, Ran; Liu, Haitao; Zhang, Bengang
2017-10-06
Pyrrosia s.l. comprises ca. 60 species with a disjunct Africa/Asia and Australia distribution. The infrageneric classification of Pyrrosia s.l. is controversial based on the phylogenetic analyses of chloroplast markers and morphology. Based on the expanded taxon sampling of Pyrrosia s.l. (51 species), we investigated its phylogeny, biogeography, character evolution and environmental adaptation by employing five chloroplastid markers (rbcL, matK, psbA-trnH, and rps4 + rps4-trnS) and one single (low)-copy nuclear gene, LEAFY. Pyrrosia s.l. was divided into six major clades and eight subclades. Reticulate evolution was revealed both among clades and among species in Pyrrosia s.l. Ancestral character state optimization revealed high levels of homoplastic evolution of the diagnostic characters in Pyrrosia s.l., while the crassulacean acid metabolism pathway seems to have an independent origin. Molecular dating and biogeographic diversification analyses suggested that Pyrrosia s.l. originated no later than the Oligocene and the main clades diversified during the Oligocene and Miocene, with southern Asia, the Indo-China Peninsula and southwestern and southern China as the most likely ancestral areas. Transoceanic long-distance dispersal, rather than vicariance, contributed to the intercontinental disjunction. Diversification scenarios of Pyrrosia s.l. under geological movements and climate fluctuation are also discussed.
The evolutionary history of the development of the pelvic fin/hindlimb
Don, Emily K; Currie, Peter D; Cole, Nicholas J
2013-01-01
The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved. PMID:22913749
de Magalhães, João Pedro; Matsuda, Alex
2012-03-01
Modern humans originated in Africa before migrating across the world with founder effects and adaptations to new environments contributing to their present phenotypic diversity. Determining the genetic basis of differences between populations may provide clues about our evolutionary history and may have clinical implications. Herein, we develop a method to detect genes and biological processes in which populations most differ by calculating the genetic distance between modern populations and a hypothetical ancestral population. We apply our method to large-scale single nucleotide polymorphism (SNP) data from human populations of African, European and Asian origin. As expected, ancestral alleles were more conserved in the African populations and we found evidence of high divergence in genes previously suggested as targets of selection related to skin pigmentation, immune response, senses and dietary adaptations. Our genome-wide scan also reveals novel candidates for contributing to population-specific traits. These include genes related to neuronal development and behavior that may have been influenced by cultural processes. Moreover, in the African populations, we found a high divergence in genes related to UV protection and to the male reproductive system. Taken together, these results confirm and expand previous findings, providing new clues about the evolution and genetics of human phenotypic diversity. © 2011 The Authors Annals of Human Genetics © 2011 Blackwell Publishing Ltd/University College London.
The pre-vertebrate origins of neurogenic placodes.
Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael
2015-08-27
The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.
Enrich, Emma; Vidal, Francisco; Sánchez-Gordo, Francisco; Gómez-Zumaquero, Juan M; Balas, Antonio; Rudilla, Francesc; Barea, Luisa; Castro, Ana; Larrea, Luis; Perez-Vaquero, Miguel A; Prat, Isidro; Querol, Sergio; Garrido, Gregorio; Matesanz, Rafael; Carreras, Enric; Duarte, Rafael F
2018-02-06
The possibility to use CCR5-∆32 umbilical cord blood to cure HIV infection in patients in need of a hematopoietic transplant has been suggested. The less stringent HLA compatibility needed in this type of transplant facilitates the search of a suitable donor having the CCR5-∆32 mutation. To achieve an inventory of CCR5-∆32 cord blood units, the 20,236 best cell quality units of the Spanish Registry were genotyped. Furthermore, their CD34 + and total nucleated cells counts, blood type, gender, HLA and donor's geographical and ancestral origin were analyzed. The results showed 130 (0.64%) units homozygous for the deletion, 2,646 (13.08%) heterozygous and 17,460 (86.28%) did not present the mutation. Interestingly, a significant lower amount of CD34 + cells was found in the CCR5-∆32 homozygous units. In addition, a significant association was found among donor's ancestral origin and the mutation, with a higher percentage of CCR5-∆32 units with a European ancestry. In summary, identification of a relatively high number of CCR5-∆32 units is feasible and will facilitate the development of clinical trials for HIV cure in patients requiring hematopoietic transplantation. Further studies are required to understand the significance of lower cell counts within the CCR5-∆32 homozygous group and its clinical impact.
Arai, Satoru; Taniguchi, Satoshi; Aoki, Keita; Yoshikawa, Yasuhiro; Kyuwa, Shigeru; Tanaka-Taya, Keiko; Masangkay, Joseph S; Omatsu, Tsutomu; Puentespina, Roberto; Watanabe, Shumpei; Alviola, Phillip; Alvarez, James; Eres, Eduardo; Cosico, Edison; Quibod, Ma Niña Regina M; Morikawa, Shigeru; Yanagihara, Richard; Oishi, Kazunori
2016-11-01
The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles (order Eulipotyphla, families Soricidae and Talpidae) prompted a further exploration of their host diversification and geographic distribution by analyzing lung tissues from 376 fruit bats representing six genera (order Chiroptera, suborder Yinpterochiroptera, family Pteropodidae), collected in the Republic of the Philippines during 2008 to 2013. Hantavirus RNA was detected by RT-PCR in one of 15 Geoffroy's rousettes (Rousettus amplexicaudatus), captured in Quezon Memorial National Park on Luzon Island in 2009. Phylogenetic analyses of the S, M and L segments, using maximum-likelihood and Bayesian methods, showed that the newfound hantavirus, designated Quezon virus (QZNV), shared a common ancestry with hantaviruses hosted by insectivorous bats, in keeping with their evolutionary relationships and suggests that ancestral bats may have served as the early or original mammalian hosts of primordial hantaviruses. As the first hantavirus detected in a megabat or flying fox species, QZNV extends our knowledge about the reservoir host range. Copyright © 2016 Elsevier B.V. All rights reserved.
Brain evolution relating to family, play, and the separation call.
MacLean, P D
1985-04-01
Mammals stem from the mammal-like reptiles (therapsids) that were widely prevalent in Pangaea 250 million years ago. In the evolutionary transition from reptiles to mammals, three key developments were (1) nursing, in conjunction with maternal care; (2) audiovocal communication for maintaining maternal-offspring contact; and (3) play. The separation call perhaps ranks as the earliest and most basic mammalian vocalization, while play may have functioned originally to promote harmony in the nest. How did such family related behavior develop? In its evolution, the forebrain of advanced mammals has expanded as a triune structure that anatomically and chemically reflects ancestral commonalities with reptiles, early mammals, and late mammals. Recent findings suggest that the development of the behavioral triad in question may have depended on the evolution of the thalamocingulate division of the limbic system, a derivative from early mammals. The thalamocingulate division (which has no distinctive counterpart in the reptilian brain) is, in turn, geared in with the prefrontal neocortex that, in human beings, may be inferred to play a key role in familial acculturation.
Origins of tmRNA: the missing link in the birth of protein synthesis?
Macé, Kevin; Gillet, Reynald
2016-09-30
The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.
Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi
2011-04-05
Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.
2013-01-01
Background Obligate parthenogenesis is relatively rare in animals. Still, in some groups it is quite common and has evolved and persisted multiple times. These groups may provide important clues to help solve the ‘paradox of sex’. Several species in the Psychidae (Lepidoptera) have obligate parthenogenesis. Dahlica triquetrella is one of those species where multiple transitions to parthenogenesis are postulated based on intensive cytological and behavioural studies. This has led to the hypothesis that multiple transitions from sexuals to diploid parthenogens occurred during and after the last glacial period, followed by transitions from parthenogenetic diploids to parthenogenetic tetraploids. Our study is the first to test these hypotheses using a molecular phylogeny based on mtDNA from multiple sexual and parthenogenetic populations from a wide geographic range. Results Parthenogenetic (and sexual) D. triquetrella are not monophyletic, and considerable sequence variation is present suggesting multiple transitions to parthenogenesis. However, we could not establish ancestral sexual haplotypes from our dataset. Our data suggest that some parthenogenetic clades have evolved, indicating origins of parthenogenesis before the last glacial period. Conclusions Multiple transitions to parthenogenesis have taken place in Dahlica triquetrella, confirming previous hypotheses. The number of different parthenogenetic clades, haplotypes and their apparent evolutionary age, clearly show that parthenogenesis has been a very successful reproductive strategy in this species over a long period. PMID:23622052
Elzinga, Jelmer A; Jokela, Jukka; Shama, Lisa N S
2013-04-26
Obligate parthenogenesis is relatively rare in animals. Still, in some groups it is quite common and has evolved and persisted multiple times. These groups may provide important clues to help solve the 'paradox of sex'. Several species in the Psychidae (Lepidoptera) have obligate parthenogenesis. Dahlica triquetrella is one of those species where multiple transitions to parthenogenesis are postulated based on intensive cytological and behavioural studies. This has led to the hypothesis that multiple transitions from sexuals to diploid parthenogens occurred during and after the last glacial period, followed by transitions from parthenogenetic diploids to parthenogenetic tetraploids. Our study is the first to test these hypotheses using a molecular phylogeny based on mtDNA from multiple sexual and parthenogenetic populations from a wide geographic range. Parthenogenetic (and sexual) D. triquetrella are not monophyletic, and considerable sequence variation is present suggesting multiple transitions to parthenogenesis. However, we could not establish ancestral sexual haplotypes from our dataset. Our data suggest that some parthenogenetic clades have evolved, indicating origins of parthenogenesis before the last glacial period. Multiple transitions to parthenogenesis have taken place in Dahlica triquetrella, confirming previous hypotheses. The number of different parthenogenetic clades, haplotypes and their apparent evolutionary age, clearly show that parthenogenesis has been a very successful reproductive strategy in this species over a long period.
Introduction: integrating genetic and cultural evolutionary approaches to language.
Mesoudi, Alex; McElligott, Alan G; Adger, David
2011-04-01
The papers in this special issue of Human Biology address recent research in the field of language evolution, both the genetic evolution of the language faculty and the cultural evolution of specific languages. While both of these areas have received increasing interest in recent years, there is also a need to integrate these somewhat separate efforts and explore the relevant gene-culture coevolutionary interactions. Here we summarize the individual contributions, set them in the context of the wider literature, and identify outstanding future research questions. The first set of papers concerns the comparative study of nonhuman communication in primates and birds from both a behavioral and neurobiological perspective, revealing evidence for several common language-related traits in various nonhuman species and providing clues as to the evolutionary origin and function of the human language faculty. The second set of papers discusses the consequences of viewing language as a culturally evolving system in its own right, including claims that this removes the need for strong genetic biases for language acquisition, and that phylogenetic evolutionary methods can be used to reconstruct language histories. We conclude by highlighting outstanding areas for future research, including identifying the precise selection pressures that gave rise to the language faculty in ancestral hominin species, and determining the strength, domain specificity, and origin of the cultural transmission biases that shape languages as they pass along successive generations of language learners.
Ancient gene transfer from algae to animals: Mechanisms and evolutionary significance
2012-01-01
Background Horizontal gene transfer (HGT) is traditionally considered to be rare in multicellular eukaryotes such as animals. Recently, many genes of miscellaneous algal origins were discovered in choanoflagellates. Considering that choanoflagellates are the existing closest relatives of animals, we speculated that ancient HGT might have occurred in the unicellular ancestor of animals and affected the long-term evolution of animals. Results Through genome screening, phylogenetic and domain analyses, we identified 14 gene families, including 92 genes, in the tunicate Ciona intestinalis that are likely derived from miscellaneous photosynthetic eukaryotes. Almost all of these gene families are distributed in diverse animals, suggesting that they were mostly acquired by the common ancestor of animals. Their miscellaneous origins also suggest that these genes are not derived from a particular algal endosymbiont. In addition, most genes identified in our analyses are functionally related to molecule transport, cellular regulation and methylation signaling, suggesting that the acquisition of these genes might have facilitated the intercellular communication in the ancestral animal. Conclusions Our findings provide additional evidence that algal genes in aplastidic eukaryotes are not exclusively derived from historical plastids and thus important for interpreting the evolution of eukaryotic photosynthesis. Most importantly, our data represent the first evidence that more anciently acquired genes might exist in animals and that ancient HGT events have played an important role in animal evolution. PMID:22690978
Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage {Phi}AQ113.
Zago, Miriam; Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio
2013-08-01
The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism.
Characterization of the Genome of the Dairy Lactobacillus helveticus Bacteriophage ΦAQ113
Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio
2013-01-01
The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism. PMID:23728811
Coevolution of languages and genes on the island of Sumba, eastern Indonesia.
Lansing, J Stephen; Cox, Murray P; Downey, Sean S; Gabler, Brandon M; Hallmark, Brian; Karafet, Tatiana M; Norquest, Peter; Schoenfelder, John W; Sudoyo, Herawati; Watkins, Joseph C; Hammer, Michael F
2007-10-09
Numerous studies indicate strong associations between languages and genes among human populations at the global scale, but all broader scale genetic and linguistic patterns must arise from processes originating at the community level. We examine linguistic and genetic variation in a contact zone on the eastern Indonesian island of Sumba, where Neolithic Austronesian farming communities settled and began interacting with aboriginal foraging societies approximately 3,500 years ago. Phylogenetic reconstruction based on a 200-word Swadesh list sampled from 29 localities supports the hypothesis that Sumbanese languages derive from a single ancestral Austronesian language. However, the proportion of cognates (words with a common origin) traceable to Proto-Austronesian (PAn) varies among language subgroups distributed across the island. Interestingly, a positive correlation was found between the percentage of Y chromosome lineages that derive from Austronesian (as opposed to aboriginal) ancestors and the retention of PAn cognates. We also find a striking correlation between the percentage of PAn cognates and geographic distance from the site where many Sumbanese believe their ancestors arrived on the island. These language-gene-geography correlations, unprecedented at such a fine scale, imply that historical patterns of social interaction between expanding farmers and resident hunter-gatherers largely explain community-level language evolution on Sumba. We propose a model to explain linguistic and demographic coevolution at fine spatial and temporal scales.
Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups
Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi
2011-01-01
Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia. PMID:21483678
A novel gene THSD7A is associated with obesity.
Nizamuddin, S; Govindaraj, P; Saxena, S; Kashyap, M; Mishra, A; Singh, S; Rotti, H; Raval, R; Nayak, J; Bhat, B K; Prasanna, B V; Dhumal, V R; Bhale, S; Joshi, K S; Dedge, A P; Bharadwaj, R; Gangadharan, G G; Nair, S; Gopinath, P M; Patwardhan, B; Kondaiah, P; Satyamoorthy, K; Valiathan, M S; Thangaraj, K
2015-11-01
Body mass index (BMI) is a non-invasive measurement of obesity. It is commonly used for assessing adiposity and obesity-related risk prediction. Genetic differences between ethnic groups are important factors, which contribute to the variation in phenotypic effects. India inhabited by the first out-of-Africa human population and the contemporary Indian populations are admixture of two ancestral populations; ancestral north Indians (ANI) and ancestral south Indians (ASI). Although ANI are related to Europeans, ASI are not related to any group outside Indian-subcontinent. Hence, we expect novel genetic loci associated with BMI. In association analysis, we found eight genic SNPs in extreme of distribution (P⩽3.75 × 10(-5)), of which WWOX has already been reported to be associated with obesity-related traits hence excluded from further study. Interestingly, we observed rs1526538, an intronic SNP of THSD7A; a novel gene significantly associated with obesity (P=2.88 × 10(-5), 8.922 × 10(-6) and 2.504 × 10(-9) in discovery, replication and combined stages, respectively). THSD7A is neural N-glycoprotein, which promotes angiogenesis and it is well known that angiogenesis modulates obesity, adipose metabolism and insulin sensitivity, hence our result find a correlation. This information can be used for drug target, early diagnosis of obesity and treatment.
Nigro, Ersilia; Colavita, Irene; Sarnataro, Daniela; Scudiero, Olga; Zambrano, Gerardo; Granata, Vincenzo; Daniele, Aurora; Carotenuto, Alfonso; Galdiero, Stefania; Folliero, Veronica; Galdiero, Massimiliano; Urbanowicz, Richard A.; Ball, Jonathan K.; Salvatore, Francesco; Pessi, Antonello
2015-01-01
Host defence peptides (HDPs) are critical components of innate immunity. Despite their diversity, they share common features including a structural signature, designated “γ-core motif”. We reasoned that for each HDPs evolved from an ancestral γ-core, the latter should be the evolutionary starting point of the molecule, i.e. it should represent a structural scaffold for the modular construction of the full-length molecule, and possess biological properties. We explored the γ-core of human β-defensin 3 (HBD3) and found that it: (a) is the folding nucleus of HBD3; (b) folds rapidly and is stable in human serum; (c) displays antibacterial activity; (d) binds to CD98, which mediates HBD3 internalization in eukaryotic cells; (e) exerts antiviral activity against human immunodeficiency virus and herpes simplex virus; and (f) is not toxic to human cells. These results demonstrate that the γ-core within HBD3 is the ancestral core of the full-length molecule and is a viable HDP per se, since it is endowed with the most important biological features of HBD3. Notably, the small, stable scaffold of the HBD3 γ-core can be exploited to design disease-specific antimicrobial agents. PMID:26688341
The Radiata and the evolutionary origins of the bilaterian body plan
NASA Technical Reports Server (NTRS)
Martindale, Mark Q.; Finnerty, John R.; Henry, Jonathan Q.
2002-01-01
The apparent conservation of cellular and molecular developmental mechanisms observed in a handful of bilaterian metazoans has spawned a "race" to reconstruct the bilaterian ancestor. Knowledge of this ancestor would permit us to reconstruct the evolutionary changes that have occurred along specific bilaterian lineages. However, comparisons among extant bilaterians provide an unnecessarily limited view of the ancestral bilaterian. Since the original bilaterians are believed by many to be derived from a radially symmetrical ancestor, additional evidence might be obtained by examining present-day radially symmetrical animals. We briefly review pertinent features of the body plans of the extant radial eumetazoan phyla, the Cnidaria, and Ctenophora, in the context of revealing potential evolutionary links to the bilaterians.
Higher-level classification of the Archaea: evolution of methanogenesis and methanogens
Bapteste, Éric; Brochier, Céline; Boucher, Yan
2005-01-01
We used a phylogenetic approach to analyze the evolution of methanogenesis and methanogens. We show that 23 vertically transmitted ribosomal proteins do not support the monophyly of methanogens, and propose instead that there are two distantly related groups of extant archaea that produce methane, which we have named Class I and Class II. Based on this finding, we subsequently investigated the uniqueness of the origin of methanogenesis by studying both the enzymes of methanogenesis and the proteins that synthesize its specific coenzymes. We conclude that hydrogenotrophic methanogenesis appeared only once during evolution. Genes involved in the seven central steps of the methanogenic reduction of carbon dioxide (CO2) are ubiquitous in methanogens and share a common history. This suggests that, although extant methanogens produce methane from various substrates (CO2, formate, acetate, methylated C-1 compounds), these archaea have a core of conserved enzymes that have undergone little evolutionary change. Furthermore, this core of methanogenesis enzymes seems to originate (as a whole) from the last ancestor of all methanogens and does not appear to have been horizontally transmitted to other organisms or between members of Class I and Class II. The observation of a unique and ancestral form of methanogenesis suggests that it was preserved in two independent lineages, with some instances of specialization or added metabolic flexibility. It was likely lost in the Halobacteriales, Thermoplasmatales and Archaeoglobales. Given that fossil evidence for methanogenesis dates back 2.8 billion years, a unique origin of this process makes the methanogenic archaea a very ancient taxon. PMID:15876569
The role of the Vlax Roma in shaping the European Romani maternal genetic history.
Salihović, Marijana Peričić; Barešić, Ana; Klarić, Irena Martinović; Cukrov, Slavena; Lauc, Lovorka Barać; Janićijević, Branka
2011-10-01
The Roma are comprised of many founder groups of common Indian origins but different socio-cultural characteristics. The Vlax Roma are one of the founder Roma populations characterized by a period of bondage in the historic Romanian principalities, and by the archaic Romanian language. Demographic history suggests different migration routes of Roma populations, especially after their arrival in Mesopotamia and the eastern boundary of the Byzantine Empire. Although various genetic studies of uniparental genetic markers showed a connection between Roma genetic legacy and their migration routes, precise sampling of Roma populations elucidates this relationship in more detail. In this study, we analyzed mitochondrial DNA of 384 Croatian Vlax Roma from two geographic locations in the context of 734 European Roma samples. Our results show that Roma migration routes are marked with two Near-Eastern haplogroups, X2 and U3, whose inverse proportional incidence clearly separates the Balkan and the Vlax Roma from other Roma populations that reached Europe as part of the first migration wave. Spatial and temporal characteristics of these haplogroups indicate a possibility of their admixture with Roma populations before arrival in Europe. Distribution of haplogroup M35 indicates that all Vlax Roma populations descend from one single founder population that might even reach back to the original ancestral Indian population. Founder effects followed by strict endogamy rules can be traced from India to contemporary small, local communities, as in the case of two Croatian Vlax Roma populations that show clear population differentiation despite similar origins and shared demographic history. Copyright © 2011 Wiley-Liss, Inc.
2012-01-01
Background Recent studies highlighted the role of Pleistocene climatic cycles in polyploid speciation and of southern Alpine refugia as reservoirs of diversity during glacial maxima. The polyploid Primula marginata, endemic to the southwestern Alps, includes both hexaploid and dodecaploid cytotypes that show no ecological or morphological differences. We used flow cytometry to determine variation and geographic distribution of cytotypes within and between populations and analyses of chloroplast (cp) and nuclear ribosomal (nr) DNA sequences from the Internal Transcribed Spacer (ITS) region to infer the evolutionary history of the two cytotypes and the auto- vs. allopolyploid origin of dodecaploid populations. Results We did not detect any intermediate cytotypes or variation of ploidy levels within populations. Hexaploids occur in the western and dodecaploids in the eastern part of the distributional range, respectively. The cpDNA and nrDNA topologies are in conflict, for the former supports shared ancestry between P. marginata and P. latifolia, while the latter implies common origins between at least some ITS clones of P. marginata and P. allionii. Conclusions Our results suggest an initial episode of chloroplast capture involving ancestral lineages of P. latifolia and P. marginata, followed by polyploidization between P. marginata-like and P. allionii-like lineages in a southern refugium of the Maritime Alps. The higher proportion of ITS polymorphisms in dodecaploid than in hexaploid accessions of P. marginata and higher total nucleotide diversity of ITS clones in dodecaploid vs. hexaploid individuals sequences are congruent with the allopolyploid hypothesis of dodecaploid origin. PMID:22530870
Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes
Cannon, Steven B.; McKain, Michael R.; Harkess, Alex; Nelson, Matthew N.; Dash, Sudhansu; Deyholos, Michael K.; Peng, Yanhui; Joyce, Blake; Stewart, Charles N.; Rolf, Megan; Kutchan, Toni; Tan, Xuemei; Chen, Cui; Zhang, Yong; Carpenter, Eric; Wong, Gane Ka-Shu; Doyle, Jeff J.; Leebens-Mack, Jim
2015-01-01
Unresolved questions about evolution of the large and diverse legume family include the timing of polyploidy (whole-genome duplication; WGDs) relative to the origin of the major lineages within the Fabaceae and to the origin of symbiotic nitrogen fixation. Previous work has established that a WGD affects most lineages in the Papilionoideae and occurred sometime after the divergence of the papilionoid and mimosoid clades, but the exact timing has been unknown. The history of WGD has also not been established for legume lineages outside the Papilionoideae. We investigated the presence and timing of WGDs in the legumes by querying thousands of phylogenetic trees constructed from transcriptome and genome data from 20 diverse legumes and 17 outgroup species. The timing of duplications in the gene trees indicates that the papilionoid WGD occurred in the common ancestor of all papilionoids. The earliest diverging lineages of the Papilionoideae include both nodulating taxa, such as the genistoids (e.g., lupin), dalbergioids (e.g., peanut), phaseoloids (e.g., beans), and galegoids (=Hologalegina, e.g., clovers), and clades with nonnodulating taxa including Xanthocercis and Cladrastis (evaluated in this study). We also found evidence for several independent WGDs near the base of other major legume lineages, including the Mimosoideae–Cassiinae–Caesalpinieae (MCC), Detarieae, and Cercideae clades. Nodulation is found in the MCC and papilionoid clades, both of which experienced ancestral WGDs. However, there are numerous nonnodulating lineages in both clades, making it unclear whether the phylogenetic distribution of nodulation is due to independent gains or a single origin followed by multiple losses. PMID:25349287
NASA Astrophysics Data System (ADS)
Lucchitta, Baerbel K.
2010-10-01
The paper reviews the evolution of hypotheses of lakes in Valles Marineris through observations made from the time of Mariner and continuing through the Viking, MGS, MO, MEx, and MRO missions. Several pertinent findings from these missions are addressed, including: The morphology and composition of the interior layered deposits (ILD); the question whether ILD are deposited inside the troughs or exhumed from the walls; the possible existence of ancestral basins; the derivation of water; arguments for an origin as aqueous, eolian, or pyroclastic sediments, or sub/ice volcanoes; origin of inclined layers, mounds and moats; and age relations of features within and peripheral to the troughs. A possible scenario begins with the collapse of ice-charged ground into ancestral basins along structural planes of weakness due to Tharsis stresses, about 3.5 Ga ago. The basins rapidly filled with water from ground ice, subterranean aquifers, or nearby valley networks. The water spilled out of the peripheral troughs and flowed across high plateaus into early outflow channels. The ancestral basins then filled with sediments derived from valley networks or from trapped eolian or pyroclastic deposits. Alternatively, volcanoes rose under the water or ice to form tuyas. The water was highly acidic, and sediments may have been deposited directly as evaporites or were later altered to evaporites by the brines or by hydrothermal activity. Percolating fluids produced iron oxide concretions. Similar alteration would have affected the putative volcanoes. Most of the ILD were emplaced early in the troughs' history. Shortly thereafter, more water erupted from the peripheral troughs and formed additional chaos and outflow channels. The ancestral basins were breached by erosion and tectonism, and the through-going Coprates/Ius graben system developed. Major lakes within the Valles Marineris dried up and vigorous wind erosion reduced the friable, evaporite-rich sediments to isolated mounds. Simultaneously, the iron oxide concretions weat hered out to form lag deposits mostly at the base of scarps. During that time, some of the ILD may have become tilted by structural deformation. Alternatively, inclined beds on the mounds may have come from draping by volcanic ash or eolian deposits, or by gravity sliding on the steep, evaporite-charged flanks of the mounds. Inclined layers could be readily explained if the ILD were tuyas. Landslides fell into the newly created voids and occasional sliding persisted throughout most of the troughs' history. Minor volcanic activity continued and may have spewed mafic ash onto the eroded ILD-mound surfaces and onto the trough floors. Eventually, only wind persisted, producing yardangs on the ILD and reworking ash, trapped eolian sediments, and debris eroded from the ILD.
Ancestral Components of Admixed Genomes in a Mexican Cohort
Johnson, Nicholas A.; Coram, Marc A.; Shriver, Mark D.; Romieu, Isabelle; Barsh, Gregory S.; London, Stephanie J.; Tang, Hua
2011-01-01
For most of the world, human genome structure at a population level is shaped by interplay between ancient geographic isolation and more recent demographic shifts, factors that are captured by the concepts of biogeographic ancestry and admixture, respectively. The ancestry of non-admixed individuals can often be traced to a specific population in a precise region, but current approaches for studying admixed individuals generally yield coarse information in which genome ancestry proportions are identified according to continent of origin. Here we introduce a new analytic strategy for this problem that allows fine-grained characterization of admixed individuals with respect to both geographic and genomic coordinates. Ancestry segments from different continents, identified with a probabilistic model, are used to construct and study “virtual genomes” of admixed individuals. We apply this approach to a cohort of 492 parent–offspring trios from Mexico City. The relative contributions from the three continental-level ancestral populations—Africa, Europe, and America—vary substantially between individuals, and the distribution of haplotype block length suggests an admixing time of 10–15 generations. The European and Indigenous American virtual genomes of each Mexican individual can be traced to precise regions within each continent, and they reveal a gradient of Amerindian ancestry between indigenous people of southwestern Mexico and Mayans of the Yucatan Peninsula. This contrasts sharply with the African roots of African Americans, which have been characterized by a uniform mixing of multiple West African populations. We also use the virtual European and Indigenous American genomes to search for the signatures of selection in the ancestral populations, and we identify previously known targets of selection in other populations, as well as new candidate loci. The ability to infer precise ancestral components of admixed genomes will facilitate studies of disease-related phenotypes and will allow new insight into the adaptive and demographic history of indigenous people. PMID:22194699
Evolution of Prdm Genes in Animals: Insights from Comparative Genomics
Vervoort, Michel; Meulemeester, David; Béhague, Julien; Kerner, Pierre
2016-01-01
Prdm genes encode transcription factors with a subtype of SET domain known as the PRDF1-RIZ (PR) homology domain and a variable number of zinc finger motifs. These genes are involved in a wide variety of functions during animal development. As most Prdm genes have been studied in vertebrates, especially in mice, little is known about the evolution of this gene family. We searched for Prdm genes in the fully sequenced genomes of 93 different species representative of all the main metazoan lineages. A total of 976 Prdm genes were identified in these species. The number of Prdm genes per species ranges from 2 to 19. To better understand how the Prdm gene family has evolved in metazoans, we performed phylogenetic analyses using this large set of identified Prdm genes. These analyses allowed us to define 14 different subfamilies of Prdm genes and to establish, through ancestral state reconstruction, that 11 of them are ancestral to bilaterian animals. Three additional subfamilies were acquired during early vertebrate evolution (Prdm5, Prdm11, and Prdm17). Several gene duplication and gene loss events were identified and mapped onto the metazoan phylogenetic tree. By studying a large number of nonmetazoan genomes, we confirmed that Prdm genes likely constitute a metazoan-specific gene family. Our data also suggest that Prdm genes originated before the diversification of animals through the association of a single ancestral SET domain encoding gene with one or several zinc finger encoding genes. PMID:26560352
García, Miguel A; Costea, Mihai; Kuzmina, Maria; Stefanović, Saša
2014-04-01
The parasitic genus Cuscuta, containing some 200 species circumscribed traditionally in three subgenera, is nearly cosmopolitan, occurring in a wide range of habitats and hosts. Previous molecular studies, on subgenera Grammica and Cuscuta, delimited major clades within these groups. However, the sequences used were unalignable among subgenera, preventing the phylogenetic comparison across the genus. We conducted a broad phylogenetic study using rbcL and nrLSU sequences covering the morphological, physiological, and geographical diversity of Cuscuta. We used parsimony methods to reconstruct ancestral states for taxonomically important characters. Biogeographical inferences were obtained using statistical and Bayesian approaches. Four well-supported major clades are resolved. Two of them correspond to subgenera Monogynella and Grammica. Subgenus Cuscuta is paraphyletic, with section Pachystigma sister to subgenus Grammica. Previously described cases of strongly supported discordance between plastid and nuclear phylogenies, interpreted as reticulation events, are confirmed here and three new cases are detected. Dehiscent fruits and globose stigmas are inferred as ancestral character states, whereas the ancestral style number is ambiguous. Biogeographical reconstructions suggest an Old World origin for the genus and subsequent spread to the Americas as a consequence of one long-distance dispersal. Hybridization may play an important yet underestimated role in the evolution of Cuscuta. Our results disagree with scenarios of evolution (polarity) previously proposed for several taxonomically important morphological characters, and with their usage and significance. While several cases of long-distance dispersal are inferred, vicariance or dispersal to adjacent areas emerges as the dominant biogeographical pattern.
Facial expressions and the evolution of the speech rhythm.
Ghazanfar, Asif A; Takahashi, Daniel Y
2014-06-01
In primates, different vocalizations are produced, at least in part, by making different facial expressions. Not surprisingly, humans, apes, and monkeys all recognize the correspondence between vocalizations and the facial postures associated with them. However, one major dissimilarity between monkey vocalizations and human speech is that, in the latter, the acoustic output and associated movements of the mouth are both rhythmic (in the 3- to 8-Hz range) and tightly correlated, whereas monkey vocalizations have a similar acoustic rhythmicity but lack the concommitant rhythmic facial motion. This raises the question of how we evolved from a presumptive ancestral acoustic-only vocal rhythm to the one that is audiovisual with improved perceptual sensitivity. According to one hypothesis, this bisensory speech rhythm evolved through the rhythmic facial expressions of ancestral primates. If this hypothesis has any validity, we expect that the extant nonhuman primates produce at least some facial expressions with a speech-like rhythm in the 3- to 8-Hz frequency range. Lip smacking, an affiliative signal observed in many genera of primates, satisfies this criterion. We review a series of studies using developmental, x-ray cineradiographic, EMG, and perceptual approaches with macaque monkeys producing lip smacks to further investigate this hypothesis. We then explore its putative neural basis and remark on important differences between lip smacking and speech production. Overall, the data support the hypothesis that lip smacking may have been an ancestral expression that was linked to vocal output to produce the original rhythmic audiovisual speech-like utterances in the human lineage.
Female song is widespread and ancestral in songbirds.
Odom, Karan J; Hall, Michelle L; Riebel, Katharina; Omland, Kevin E; Langmore, Naomi E
2014-03-04
Bird song has historically been considered an almost exclusively male trait, an observation fundamental to the formulation of Darwin's theory of sexual selection. Like other male ornaments, song is used by male songbirds to attract females and compete with rivals. Thus, bird song has become a textbook example of the power of sexual selection to lead to extreme neurological and behavioural sex differences. Here we present an extensive survey and ancestral state reconstruction of female song across songbirds showing that female song is present in 71% of surveyed species including 32 families, and that females sang in the common ancestor of modern songbirds. Our results reverse classical assumptions about the evolution of song and sex differences in birds. The challenge now is to identify whether sexual selection alone or broader processes, such as social or natural selection, best explain the evolution of elaborate traits in both sexes.
"I Ulu No Ka Lala I Ke Kumu", The Branches Grow Because of the Trunk: Ancestral Knowledge as Refusal
ERIC Educational Resources Information Center
Chandler, Kapua L.
2018-01-01
This paper will discuss the ways that Native Hawaiian scholars are engaging in innovative strategies that incorporate ancestral knowledges into the academy. Ancestral knowledges are highly valued as Indigenous communities strive to pass on such wisdom and lessons from generation to generation. Ancestral knowledges are all around us no matter where…
Akanuma, Satoshi
2017-08-06
Understanding the evolution of ancestral life, and especially the ability of some organisms to flourish in the variable environments experienced in Earth's early biosphere, requires knowledge of the characteristics and the environment of these ancestral organisms. Information about early life and environmental conditions has been obtained from fossil records and geological surveys. Recent advances in phylogenetic analysis, and an increasing number of protein sequences available in public databases, have made it possible to infer ancestral protein sequences possessed by ancient organisms. However, the in silico studies that assess the ancestral base content of ribosomal RNAs, the frequency of each amino acid in ancestral proteins, and estimate the environmental temperatures of ancient organisms, show conflicting results. The characterization of ancestral proteins reconstructed in vitro suggests that ancient organisms had very thermally stable proteins, and therefore were thermophilic or hyperthermophilic. Experimental data supports the idea that only thermophilic ancestors survived the catastrophic increase in temperature of the biosphere that was likely associated with meteorite impacts during the early history of Earth. In addition, by expanding the timescale and including more ancestral proteins for reconstruction, it appears as though the Earth's surface temperature gradually decreased over time, from Archean to present.
Jia, Jing; Wei, Yi-Liang; Qin, Cui-Jiao; Hu, Lan; Wan, Li-Hua; Li, Cai-Xia
2014-01-01
Inferring the ancestral origin of DNA samples can be helpful in correcting population stratification in disease association studies or guiding crime investigations. Populations throughout the world vary in appearance features and biological characteristics. Based on this idea, we performed a genome-wide scan for SNPs within genes that are related to physical and biological traits. Using the HapMap database, we screened 52 genes and their flanking regions. Thirty-five SNPs that displayed highly contrasting allele frequencies (F(st)>0.3, linkage disequilibrium r(2)<0.2, and Hardy-Weinberg equilibrium P>0.001) among Africans, Europeans, and East Asians were selected and validated. A multiplexed assay was developed to genotype these 35 SNPs in 357 individuals from 10 populations worldwide. This panel provided accurate estimates of individual ancestry proportions with balanced discriminatory power among the three continental ancestries: Africans, Europeans, and East Asians. It also proved very effective in evaluating admixed populations living in joint regions of continents (e.g., Uyghurs and Indians) and discriminating some subpopulations within each of the three continents. Structure analysis was performed to establish and evaluate the panel of ancestry-informative markers, and the components of each population were also described to indicate the structural composition. The 21 population structures in our study are consistent with geographic patterns, and individuals were properly assigned to their original ancestral populations with proportion analyses and random match probability calculations. Thus, the panel and its population information will be useful resources to minimize the effects of population stratification in association analyses and to assign the most likely origin of an unknown DNA contributor in forensic investigations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Euarchontan Opsin Variation Brings New Focus to Primate Origins.
Melin, Amanda D; Wells, Konstans; Moritz, Gillian L; Kistler, Logan; Orkin, Joseph D; Timm, Robert M; Bernard, Henry; Lakim, Maklarin B; Perry, George H; Kawamura, Shoji; Dominy, Nathaniel J
2016-04-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Chiori, Roxane; Jager, Muriel; Denker, Elsa; Wincker, Patrick; Da Silva, Corinne; Le Guyader, Hervé; Manuel, Michaël; Quéinnec, Eric
2009-01-01
The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.
Chiori, Roxane; Jager, Muriel; Denker, Elsa; Wincker, Patrick; Da Silva, Corinne; Le Guyader, Hervé; Manuel, Michaël; Quéinnec, Eric
2009-01-01
Background The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a “Hox code” predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. Methodology/Principal Findings Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. Conclusions/Significance Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations. PMID:19156208
Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae)
Carrizo García, Carolina; Barfuss, Michael H. J.; Sehr, Eva M.; Barboza, Gloria E.; Samuel, Rosabelle; Moscone, Eduardo A.; Ehrendorfer, Friedrich
2016-01-01
Background and Aims Capsicum (Solanaceae), native to the tropical and temperate Americas, comprises the well-known sweet and hot chili peppers and several wild species. So far, only partial taxonomic and phylogenetic analyses have been done for the genus. Here, the phylogenetic relationships between nearly all taxa of Capsicum were explored to test the monophyly of the genus and to obtain a better knowledge of species relationships, diversification and expansion. Methods Thirty-four of approximately 35 Capsicum species were sampled. Maximum parsimony and Bayesian inference analyses were performed using two plastid markers (matK and psbA-trnH) and one single-copy nuclear gene (waxy). The evolutionary changes of nine key features were reconstructed following the parsimony ancestral states method. Ancestral areas were reconstructed through a Bayesian Markov chain Monte Carlo analysis. Key Results Capsicum forms a monophyletic clade, with Lycianthes as a sister group, following both phylogenetic approaches. Eleven well-supported clades (four of them monotypic) can be recognized within Capsicum, although some interspecific relationships need further analysis. A few features are useful to characterize different clades (e.g. fruit anatomy, chromosome base number), whereas some others are highly homoplastic (e.g. seed colour). The origin of Capsicum is postulated in an area along the Andes of western to north-western South America. The expansion of the genus has followed a clockwise direction around the Amazon basin, towards central and south-eastern Brazil, then back to western South America, and finally northwards to Central America. Conclusions New insights are provided regarding interspecific relationships, character evolution, and geographical origin and expansion of Capsicum. A clearly distinct early-diverging clade can be distinguished, centred in western–north-western South America. Subsequent rapid speciation has led to the origin of the remaining clades. The diversification of Capsicum has culminated in the origin of the main cultivated species in several regions of South to Central America. PMID:27245634
Eocene Patagonia fossils of the daisy family.
Barreda, V D; Palazzesi, L; Tellería, M C; Katinas, L; Crisci, J V; Bremer, K; Passalia, M G; Corsolini, R; Rodríguez Brizuela, R; Bechis, F
2010-09-24
Fossil capitula and pollen grains of Asteraceae from the Eocene of Patagonia, southern Argentina, exhibit morphological features recognized today in taxa, such as Mutisioideae and Carduoideae, that are phylogenetically close to the root of the asteracean tree. This fossil supports the hypothesis of a South American origin of Asteraceae and an Eocene age of divergence and suggests that an ancestral stock of Asteraceae may have formed part of a geoflora developed in southern Gondwana before the establishment of effective dispersal barriers within this landmass.
Evolutionary insights from studies on viruses of hyperthermophilic archaea.
Prangishvili, David
2003-05-01
The morphological diversity of viruses which parasitize hyperthermophilic archaea thriving at temperatures > or = 80 degrees C appears to exceed that of viruses of prokaryotes living at lower temperatures. Based on assumptions of the existence of viruses in the prebiotic phase of evolution and hot origins of cellular life, we suggest that this remarkable diversity could have its source in ancestral diversity of viral morphotypes in hot environments. Attempts are made to trace evolutionary relationships of viruses of hyperthermophilic archaea with other viruses.
Origin, evolution, and divergence of plant class C GH9 endoglucanases.
Kundu, Siddhartha; Sharma, Rita
2018-05-30
Glycoside hydrolases of the GH9 family encode cellulases that predominantly function as endoglucanases and have wide applications in the food, paper, pharmaceutical, and biofuel industries. The partitioning of plant GH9 endoglucanases, into classes A, B, and C, is based on the differential presence of transmembrane, signal peptide, and the carbohydrate binding module (CBM49). There is considerable debate on the distribution and the functions of these enzymes which may vary in different organisms. In light of these findings we examined the origin, emergence, and subsequent divergence of plant GH9 endoglucanases, with an emphasis on elucidating the role of CBM49 in the digestion of crystalline cellulose by class C members. Since, the digestion of crystalline cellulose mandates the presence of a well-defined set of aromatic and polar amino acids and/or an attributable domain that can mediate this conversion, we hypothesize a vertical mode of transfer of genes that could favour the emergence of class C like GH9 endoglucanase activity in land plants from potentially ancestral non plant taxa. We demonstrated the concomitant occurrence of a GH9 domain with CBM49 and other homologous carbohydrate binding modules, in putative endoglucanase sequences from several non-plant taxa. In the absence of comparable full length CBMs, we have characterized several low strength patterns that could approximate the CBM49, thereby, extending support for digestion of crystalline cellulose to other segments of the protein. We also provide data suggestive of the ancestral role of putative class C GH9 endoglucanases in land plants, which includes detailed phylogenetics and the presence and subsequent loss of CBM49, transmembrane, and signal peptide regions in certain populations of early land plants. These findings suggest that classes A and B of modern vascular land plants may have emerged by diverging directly from CBM49 encompassing putative class C enzymes. Our detailed phylogenetic and bioinformatics analysis of putative GH9 endoglucanase sequences across major taxa suggests that plant class C enzymes, despite their recent discovery, could function as the last common ancestor of classes A and B. Additionally, research into their ability to digest or inter-convert crystalline and amorphous forms of cellulose could make them lucrative candidates for engineering biofuel feedstock.
On the Number of Non-equivalent Ancestral Configurations for Matching Gene Trees and Species Trees.
Disanto, Filippo; Rosenberg, Noah A
2017-09-14
An ancestral configuration is one of the combinatorially distinct sets of gene lineages that, for a given gene tree, can reach a given node of a specified species tree. Ancestral configurations have appeared in recursive algebraic computations of the conditional probability that a gene tree topology is produced under the multispecies coalescent model for a given species tree. For matching gene trees and species trees, we study the number of ancestral configurations, considered up to an equivalence relation introduced by Wu (Evolution 66:763-775, 2012) to reduce the complexity of the recursive probability computation. We examine the largest number of non-equivalent ancestral configurations possible for a given tree size n. Whereas the smallest number of non-equivalent ancestral configurations increases polynomially with n, we show that the largest number increases with [Formula: see text], where k is a constant that satisfies [Formula: see text]. Under a uniform distribution on the set of binary labeled trees with a given size n, the mean number of non-equivalent ancestral configurations grows exponentially with n. The results refine an earlier analysis of the number of ancestral configurations considered without applying the equivalence relation, showing that use of the equivalence relation does not alter the exponential nature of the increase with tree size.
Wang, Xiaoquan; Ilyushina, Natalia A.; Lugovtsev, Vladimir Y.; Bovin, Nicolai V.; Couzens, Laura K.; Gao, Jin
2016-01-01
ABSTRACT Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U.S. swine population in the mid-1990s, but they are different from both these ancestral viruses and current circulating human seasonal H3N2 strains in terms of their antigenic characteristics as measured by hemagglutination inhibition (HI) assay. In this study, we identified amino acids in antigenic site B of the surface glycoprotein hemagglutinin (HA) that explain the antigenic difference between A(H3N2)v and the ancestral H3N2 strains. These amino acid mutations also alter binding to minor human-type glycans, suggesting that host adaptation may contribute to the selection of antigenically distinct H3N2 variants which pose a threat to public health. PMID:27807224
Dierschke, Tom; Mandáková, Terezie; Lysak, Martin A; Mummenhoff, Klaus
2009-09-01
Incongruence between chloroplast and nuclear DNA phylogenies, and single additive nucleotide positions in internal transcribed spacer (ITS) sequences of polyploid Australian/New Zealand (NZ) Lepidium species have been used to suggest a bicontinental hybrid origin. This pattern was explained by two trans-oceanic dispersals of Lepidium species from California and Africa and subsequent hybridization followed by homogenization of the ribosomal DNA sequence either to the Californian (C-clade) or to the African ITS-type (A-clade) in two different ITS-lineages of Australian/NZ Lepidium polyploids. Genomic in situ hybridization (GISH) was used to unravel the genomic origin of polyploid Australian/NZ Lepidium species. Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) probes was applied to test the purported ITS evolution, and to facilitate chromosome counting in high-numbered polyploids. In Australian/NZ A-clade Lepidium polyploids, GISH identified African and Australian/NZ C-clade species as putative ancestral genomes. Neither the African nor the Californian genome were detected in Australian/NZ C-clade species and the Californian genome was not detected in Australian/NZ A-clade species. Five of the eight polyploid species (from 7x to 11x) displayed a diploid-like set of rDNA loci. Even the undecaploid species Lepidium muelleriferdinandi (2n = 11x = 88) showed only one pair of each rDNA repeat. In A-clade allopolyploids, in situ rDNA localization combined with GISH corroborated the presence of the African ITS-type. The nuclear genomes of African and Australian/NZ C-clade species were detected by GISH in allopolyploid Australian/NZ Lepidium species of the A-clade, supporting their hybrid origin. The presumed hybrid origin of Australian/NZ C-clade taxa could not be confirmed. Hence, it is assumed that Californian ancestral taxa experienced rapid radiation in Australia/NZ into extant C-clade polyploid taxa followed by hybridization with African species. As a result, A-clade allopolyploid Lepidium species share the Californian chloroplast type and the African ITS-type with the C-clade Australian/NZ polyploid and African diploid species, respectively.
Porcelli, Damiano; Barsanti, Paolo; Pesole, Graziano; Caggese, Corrado
2007-01-01
Background When orthologous sequences from species distributed throughout an optimal range of divergence times are available, comparative genomics is a powerful tool to address problems such as the identification of the forces that shape gene structure during evolution, although the functional constraints involved may vary in different genes and lineages. Results We identified and annotated in the MitoComp2 dataset the orthologs of 68 nuclear genes controlling oxidative phosphorylation in 11 Drosophilidae species and in five non-Drosophilidae insects, and compared them with each other and with their counterparts in three vertebrates (Fugu rubripes, Danio rerio and Homo sapiens) and in the cnidarian Nematostella vectensis, taking into account conservation of gene structure and regulatory motifs, and preservation of gene paralogs in the genome. Comparative analysis indicates that the ancestral insect OXPHOS genes were intron rich and that extensive intron loss and lineage-specific intron gain occurred during evolution. Comparison with vertebrates and cnidarians also shows that many OXPHOS gene introns predate the cnidarian/Bilateria evolutionary split. The nuclear respiratory gene element (NRG) has played a key role in the evolution of the insect OXPHOS genes; it is constantly conserved in the OXPHOS orthologs of all the insect species examined, while their duplicates either completely lack the element or possess only relics of the motif. Conclusion Our observations reinforce the notion that the common ancestor of most animal phyla had intron-rich gene, and suggest that changes in the pattern of expression of the gene facilitate the fixation of duplications in the genome and the development of novel genetic functions. PMID:18315839
Is there an own-race preference in attractiveness?
Burke, Darren; Nolan, Caroline; Hayward, William Gordon; Russell, Robert; Sulikowski, Danielle
2013-08-15
Even in multicultural nations interracial relationships and marriages are quite rare, one reflection of assortative mating. A relatively unexplored factor that could explain part of this effect is that people may find members of their own racial group more attractive than members of other groups. We tested whether there is an own-race preference in attractiveness judgments, and also examined the effect of familiarity by comparing the attractiveness ratings given by participants of different ancestral and geographic origins to faces of European, East Asian and African origin. We did not find a strong own-race bias in attractiveness judgments, but neither were the data consistent with familiarity, suggesting an important role for other factors determining the patterns of assortative mating observed.
A basal dromaeosaurid and size evolution preceding avian flight.
Turner, Alan H; Pol, Diego; Clarke, Julia A; Erickson, Gregory M; Norell, Mark A
2007-09-07
Fossil evidence for changes in dinosaurs near the lineage leading to birds and the origin of flight has been sparse. A dinosaur from Mongolia represents the basal divergence within Dromaeosauridae. The taxon's small body size and phylogenetic position imply that extreme miniaturization was ancestral for Paraves (the clade including Avialae, Troodontidae, and Dromaeosauridae), phylogenetically earlier than where flight evolution is strongly inferred. In contrast to the sustained small body sizes among avialans throughout the Cretaceous Period, the two dinosaurian lineages most closely related to birds, dromaeosaurids and troodontids, underwent four independent events of gigantism, and in some lineages size increased by nearly three orders of magnitude. Thus, change in theropod body size leading to flight's origin was not unidirectional.
Untangling the origin of viruses and their impact on cellular evolution.
Nasir, Arshan; Sun, Feng-Jie; Kim, Kyung Mo; Caetano-Anollés, Gustavo
2015-04-01
The origin and evolution of viruses remain mysterious. Here, we focus on the distribution of viral replicons in host organisms, their morphological features, and the evolution of highly conserved protein and nucleic acid structures. The apparent inability of RNA viral replicons to infect contemporary akaryotic species suggests an early origin of RNA viruses and their subsequent loss in akaryotes. A census of virion morphotypes reveals that advanced forms were unique to viruses infecting a specific supergroup, while simpler forms were observed in viruses infecting organisms in all forms of cellular life. Results hint toward an ancient origin of viruses from an ancestral virus harboring either filamentous or spherical virions. Finally, phylogenetic trees built from protein domain and tRNA structures in thousands of genomes suggest that viruses evolved via reductive evolution from ancient cells. The analysis presents a complete account of the evolutionary history of cells and viruses and identifies viruses as crucial agents influencing cellular evolution. © 2015 New York Academy of Sciences.
Alibardi, Lorenzo; Valle, Luisa Dalla; Nardi, Alessia; Toni, Mattia
2009-01-01
Hard skin appendages in amniotes comprise scales, feathers and hairs. The cell organization of these appendages probably derived from the localization of specialized areas of dermal–epidermal interaction in the integument. The horny scales and the other derivatives were formed from large areas of dermal–epidermal interaction. The evolution of these skin appendages was characterized by the production of specific coiled-coil keratins and associated proteins in the inter-filament matrix. Unlike mammalian keratin-associated proteins, those of sauropsids contain a double beta-folded sequence of about 20 amino acids, known as the core-box. The core-box shows 60%–95% sequence identity with known reptilian and avian proteins. The core-box determines the polymerization of these proteins into filaments indicated as beta-keratin filaments. The nucleotide and derived amino acid sequences for these sauropsid keratin-associated proteins are presented in conjunction with a hypothesis about their evolution in reptiles-birds compared to mammalian keratin-associated proteins. It is suggested that genes coding for ancestral glycine-serine-rich sequences of alpha-keratins produced a new class of small matrix proteins. In sauropsids, matrix proteins may have originated after mutation and enrichment in proline, probably in a central region of the ancestral protein. This mutation gave rise to the core-box, and other regions of the original protein evolved differently in the various reptilians orders. In lepidosaurians, two main groups, the high glycine proline and the high cysteine proline proteins, were formed. In archosaurians and chelonians two main groups later diversified into the high glycine proline tyrosine, non-feather proteins, and into the glycine-tyrosine-poor group of feather proteins, which evolved in birds. The latter proteins were particularly suited for making the elongated barb/barbule cells of feathers. In therapsids-mammals, mutations of the ancestral proteins formed the high glycine-tyrosine or the high cysteine proteins but no core-box was produced in the matrix proteins of the hard corneous material of mammalian derivatives. PMID:19422429
Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L
2017-05-01
The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which provide evidence for the accuracy of our estimation of divergence time. Overall, the mitogenomes of this group were used to explore the origin and dispersal route of Trionychidae and have provided new insights on the evolution of this group. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Clayton, William; Eaton, Carla Jane; Dupont, Pierre-Yves; Gillanders, Tim; Cameron, Nick; Saikia, Sanjay; Scott, Barry
2017-01-01
Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.
DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates.
Albalat, Ricard; Martí-Solans, Josep; Cañestro, Cristian
2012-03-01
In vertebrates, DNA methylation is an epigenetic mechanism that modulates gene transcription, and plays crucial roles during development, cell fate maintenance, germ cell pluripotency and inheritable genome imprinting. DNA methylation might also play a role as a genome defense mechanism against the mutational activity derived from transposon mobility. In contrast to the heavily methylated genomes in vertebrates, most genomes in invertebrates are poorly or just moderately methylated, and the function of DNA methylation remains unclear. Here, we review the DNA methylation system in the cephalochordate amphioxus, which belongs to the most basally divergent group of our own phylum, the chordates. First, surveys of the amphioxus genome database reveal the presence of the DNA methylation machinery, DNA methyltransferases and methyl-CpG-binding domain proteins. Second, comparative genomics and analyses of conserved synteny between amphioxus and vertebrates provide robust evidence that the DNA methylation machinery of amphioxus represents the ancestral toolkit of chordates, and that its expansion in vertebrates was originated by the two rounds of whole-genome duplication that occurred in stem vertebrates. Third, in silico analysis of CpGo/e ratios throughout the amphioxus genome suggests a bimodal distribution of DNA methylation, consistent with a mosaic pattern comprising domains of methylated DNA interspersed with domains of unmethylated DNA, similar to the situation described in ascidians, but radically different to the globally methylated vertebrate genomes. Finally, we discuss potential roles of the DNA methylation system in amphioxus in the context of chordate genome evolution and the origin of vertebrates.
Marin, Benoît; Logroscino, Giancarlo; Boumédiene, Farid; Labrunie, Anaïs; Couratier, Philippe; Babron, Marie-Claude; Leutenegger, Anne Louise; Preux, Pierre Marie; Beghi, Ettore
2016-03-01
To review how the phenotype and outcome of amyotrophic lateral sclerosis (ALS) change with variations in population ancestral origin (PAO). Knowledge of how PAO modifies ALS phenotype may provide important insight into the risk factors and pathogenic mechanisms of the disease. We performed a systematic review and meta-analysis of the literature concerning differences in phenotype and outcome of ALS that relate to PAO. A review of 3111 records identified 78 population-based studies. The 40 that were included covered 40 geographical areas in 10 subcontinents. Around 12,700 ALS cases were considered. The results highlight the phenotypic heterogeneity of ALS at time of onset [age, sex ratio (SR), bulbar onset], age at diagnosis, occurrence of comorbidities in the first year after diagnosis, and outcome (survival). Subcontinent is a major explanatory factor for the variability of the ALS phenotype in population-based studies. Some markers of ALS phenotype were homogeneously distributed in western countries (SR, mean age at onset/diagnosis) but their distributions in other subcontinents were remarkably different. Other markers presented variations in European subcontinents (familial ALS, bulbar onset) and in other continents. As a consequence, ALS outcome strongly varied, with a median survival time from onset ranging from 24 months (Northern Europe) to 48 months (Central Asia). This review sets the scene for a collaborative study involving a wide international consortium to investigate, using a standard methodology, the link between ancestry, environment, and ALS phenotype.
2009-01-01
Background Helicobacter pylori is a major gastric bacterial pathogen. This pathogen has been shown to follow the routes of human migration by their geographical origin and currently the global H. pylori population has been divided into six ancestral populations, three from Africa, two from Asia and one from Europe. Malaysia is made up of three major ethnic populations, Malay, Chinese and Indian, providing a good population for studying recent H. pylori migration and admixture. Results Seventy eight H. pylori isolates, including 27 Chinese, 35 Indian and 16 Malay isolates from Malaysia were analysed by multilocus sequence typing (MLST) of seven housekeeping genes and compared with the global MLST data. STRUCTURE analysis assigned the isolates to previously identified H. pylori ancestral populations, hpEastAsia, hpAsia2 and hpEurope, and revealed a new subpopulation, hspIndia, within hpAsia2. Statistical analysis allowed us to identify population segregation sites that divide the H. pylori populations and the subpopulations. The majority of Malay isolates were found to be grouped together with Indian isolates. Conclusion The majority of the Malay and Indian H. pylori isolates share the same origin while the Malaysian Chinese H. pylori is distinctive. The Malay population, known to have a low infection rate of H. pylori, was likely to be initially H. pylori free and gained the pathogen only recently from cross infection from other populations. PMID:19538757
Degrave, Alexandre; Siamer, Sabrina; Boureau, Tristan; Barny, Marie-Anne
2015-10-01
The AvrE superfamily of type III effectors (T3Es) is widespread among type III-dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE-T3Es contribute significantly to virulence by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity. They inhibit salicylic acid-mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE-T3Es elicit cell death in both host and non-host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Stem-Loop RNA Hairpins in Giant Viruses: Invading rRNA-Like Repeats and a Template Free RNA
Seligmann, Hervé; Raoult, Didier
2018-01-01
We examine the hypothesis that de novo template-free RNAs still form spontaneously, as they did at the origins of life, invade modern genomes, contribute new genetic material. Previously, analyses of RNA secondary structures suggested that some RNAs resembling ancestral (t)RNAs formed recently de novo, other parasitic sequences cluster with rRNAs. Here positive control analyses of additional RNA secondary structures confirm ancestral and de novo statuses of RNA grouped according to secondary structure. Viroids with branched stems resemble de novo RNAs, rod-shaped viroids resemble rRNA secondary structures, independently of GC contents. 5′ UTR leading regions of West Nile and Dengue flavivirid viruses resemble de novo and rRNA structures, respectively. An RNA homologous with Megavirus, Dengue and West Nile genomes, copperhead snake microsatellites and levant cotton repeats, not templated by Mimivirus' genome, persists throughout Mimivirus' infection. Its secondary structure clusters with candidate de novo RNAs. The saltatory phyletic distribution and secondary structure of Mimivirus' peculiar RNA suggest occasional template-free polymerization of this sequence, rather than noncanonical transcriptions (swinger polymerization, posttranscriptional editing). PMID:29449833
The Evolution of Human Handedness
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-01-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. PMID:23647442
Are common symbiosis genes required for endophytic rice-rhizobial interactions?
Chen, Caiyan; Zhu, Hongyan
2013-09-01
Legume plants are able to establish root nodule symbioses with nitrogen-fixing bacteria, called rhizobia. Recent studies revealed that the root nodule symbiosis has co-opted the signaling pathway that mediates the ancestral mycorrhizal symbiosis that occurs in most land plants. Despite being unable to induce nodulation, rhizobia have been shown to be able to infect and colonize the roots of non-legumes such as rice. One fascinating question is whether establishment of such associations requires the common symbiosis (Sym) genes that are essential for infection of plant cells by mycorrhizal fungi and rhizobia in legumes. Here, we demonstrated that the common Sym genes are not required for endophytic colonization of rice roots by nitrogen-fixing rhizobia.
Ran, Jin-Hua; Shen, Ting-Ting; Liu, Wen-Juan; Wang, Xiao-Quan
2013-01-01
Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH) subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1) All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2) the gymnosperm ‘SPCH’ genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm “SPCH” genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants. PMID:24244399
Pulotu: Database of Austronesian Supernatural Beliefs and Practices
Watts, Joseph; Sheehan, Oliver; Greenhill, Simon J.; Gomes-Ng, Stephanie; Atkinson, Quentin D.; Bulbulia, Joseph; Gray, Russell D.
2015-01-01
Scholars have debated naturalistic theories of religion for thousands of years, but only recently have scientists begun to test predictions empirically. Existing databases contain few variables on religion, and are subject to Galton’s Problem because they do not sufficiently account for the non-independence of cultures or systematically differentiate the traditional states of cultures from their contemporary states. Here we present Pulotu: the first quantitative cross-cultural database purpose-built to test evolutionary hypotheses of supernatural beliefs and practices. The Pulotu database documents the remarkable diversity of the Austronesian family of cultures, which originated in Taiwan, spread west to Madagascar and east to Easter Island–a region covering over half the world’s longitude. The focus of Austronesian beliefs range from localised ancestral spirits to powerful creator gods. A wide range of practices also exist, such as headhunting, elaborate tattooing, and the construction of impressive monuments. Pulotu is freely available, currently contains 116 cultures, and has 80 variables describing supernatural beliefs and practices, as well as social and physical environments. One major advantage of Pulotu is that it has separate sections on the traditional states of cultures, the post-contact history of cultures, and the contemporary states of cultures. A second major advantage is that cultures are linked to a language-based family tree, enabling the use phylogenetic methods, which can be used to address Galton’s Problem by accounting for common ancestry, to infer deep prehistory, and to model patterns of trait evolution over time. We illustrate the power of phylogenetic methods by performing an ancestral state reconstruction on the Pulotu variable “headhunting", finding evidence that headhunting was practiced in proto-Austronesian culture. Quantitative cross-cultural databases explicitly linking cultures to a phylogeny have the potential to revolutionise the field of comparative religious studies in the same way that genetic databases have revolutionised the field of evolutionary biology. PMID:26398231
The Natural History of Biocatalytic Mechanisms
Nath, Neetika; Mitchell, John B. O.; Caetano-Anollés, Gustavo
2014-01-01
Phylogenomic analysis of the occurrence and abundance of protein domains in proteomes has recently showed that the α/β architecture is probably the oldest fold design. This holds important implications for the origins of biochemistry. Here we explore structure-function relationships addressing the use of chemical mechanisms by ancestral enzymes. We test the hypothesis that the oldest folds used the most mechanisms. We start by tracing biocatalytic mechanisms operating in metabolic enzymes along a phylogenetic timeline of the first appearance of homologous superfamilies of protein domain structures from CATH. A total of 335 enzyme reactions were retrieved from MACiE and were mapped over fold age. We define a mechanistic step type as one of the 51 mechanistic annotations given in MACiE, and each step of each of the 335 mechanisms was described using one or more of these annotations. We find that the first two folds, the P-loop containing nucleotide triphosphate hydrolase and the NAD(P)-binding Rossmann-like homologous superfamilies, were α/β architectures responsible for introducing 35% (18/51) of the known mechanistic step types. We find that these two oldest structures in the phylogenomic analysis of protein domains introduced many mechanistic step types that were later combinatorially spread in catalytic history. The most common mechanistic step types included fundamental building blocks of enzyme chemistry: “Proton transfer,” “Bimolecular nucleophilic addition,” “Bimolecular nucleophilic substitution,” and “Unimolecular elimination by the conjugate base.” They were associated with the most ancestral fold structure typical of P-loop containing nucleotide triphosphate hydrolases. Over half of the mechanistic step types were introduced in the evolutionary timeline before the appearance of structures specific to diversified organisms, during a period of architectural diversification. The other half unfolded gradually after organismal diversification and during a period that spanned ∼2 billion years of evolutionary history. PMID:24874434
Pulotu: Database of Austronesian Supernatural Beliefs and Practices.
Watts, Joseph; Sheehan, Oliver; Greenhill, Simon J; Gomes-Ng, Stephanie; Atkinson, Quentin D; Bulbulia, Joseph; Gray, Russell D
2015-01-01
Scholars have debated naturalistic theories of religion for thousands of years, but only recently have scientists begun to test predictions empirically. Existing databases contain few variables on religion, and are subject to Galton's Problem because they do not sufficiently account for the non-independence of cultures or systematically differentiate the traditional states of cultures from their contemporary states. Here we present Pulotu: the first quantitative cross-cultural database purpose-built to test evolutionary hypotheses of supernatural beliefs and practices. The Pulotu database documents the remarkable diversity of the Austronesian family of cultures, which originated in Taiwan, spread west to Madagascar and east to Easter Island-a region covering over half the world's longitude. The focus of Austronesian beliefs range from localised ancestral spirits to powerful creator gods. A wide range of practices also exist, such as headhunting, elaborate tattooing, and the construction of impressive monuments. Pulotu is freely available, currently contains 116 cultures, and has 80 variables describing supernatural beliefs and practices, as well as social and physical environments. One major advantage of Pulotu is that it has separate sections on the traditional states of cultures, the post-contact history of cultures, and the contemporary states of cultures. A second major advantage is that cultures are linked to a language-based family tree, enabling the use phylogenetic methods, which can be used to address Galton's Problem by accounting for common ancestry, to infer deep prehistory, and to model patterns of trait evolution over time. We illustrate the power of phylogenetic methods by performing an ancestral state reconstruction on the Pulotu variable "headhunting", finding evidence that headhunting was practiced in proto-Austronesian culture. Quantitative cross-cultural databases explicitly linking cultures to a phylogeny have the potential to revolutionise the field of comparative religious studies in the same way that genetic databases have revolutionised the field of evolutionary biology.
Peoples, Risa; Franke, Yvonne; Wang, Yu-Ker; Pérez-Jurado, Luis; Paperna, Tamar; Cisco, Michael; Francke, Uta
2000-01-01
Summary Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although ⩾16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of ⩾320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region. PMID:10631136
Ancestral gene reconstruction and synthesis of ancient rhodopsins in the laboratory.
Chang, Belinda S W
2003-08-01
Laboratory synthesis of ancestral proteins offers an intriguing opportunity to study the past directly. The development of Bayesian methods to infer ancestral sequences, combined with advances in models of molecular evolution, and synthetic gene technology make this an increasingly promising approach in evolutionary studies of molecular function. Visual pigments form the first step in the biochemical cascade of events in the retina in all animals known to possess visual capabilities. In vertebrates, the necessity of spanning a dynamic range of light intensities of many orders of magnitude has given rise to two different types of photoreceptors, rods specialized for dim-light conditions, and cones for daylight and color vision. These photoreceptors contain different types of visual pigment genes. Reviewed here are methods of inferring ancestral sequences, chemical synthesis of artificial ancestral genes in the laboratory, and applications to the evolution of vertebrate visual systems and the experimental recreation of an archosaur rod visual pigment. The ancestral archosaurs gave rise to several notable lineages of diapsid reptiles, including the birds and the dinosaurs, and would have existed over 200 MYA. What little is known of their physiology comes from fossil remains, and inference based on the biology of their living descendants. Despite its age, an ancestral archosaur pigment was successfully recreated in the lab, and showed interesting properties of its wavelength sensitivity that may have implications for the visual capabilities of the ancestral archosaurs in dim light.
Zehender, Gianguglielmo; Frati, Elena Rosanna; Martinelli, Marianna; Bianchi, Silvia; Amendola, Antonella; Ebranati, Erika; Ciccozzi, Massimo; Galli, Massimo; Lai, Alessia; Tanzi, Elisabetta
2016-04-01
A major limitation when reconstructing the origin and evolution of HPV-16 is the lack of reliable substitution rate estimates for the viral genes. On the basis of the hypothesis of human HPV-16 co-divergence, we estimated a mean evolutionary rate of 1.47×10(-7) (95% HPD=0.64-2.47×10(-7)) subs/site/year for the viral LCR region. The results of a Bayesian phylogeographical analysis suggest that the currently circulating HPV-16 most probably originated in Africa about 110 thousand years ago (Kya), before giving rise to four known geographical lineages: the Asian/European lineage, which most probably originated in Asia a mean 38 Kya, and the Asian/American and two African lineages, which probably respectively originated about 33 and 27 Kya. These data closely reflect current hypotheses concerning modern human expansion based on studies of mitochondrial DNA phylogeny. The correlation between ancient human migration and the present HPV phylogeny may be explained by the co-existence of modes of transmission other than sexual transmission. Copyright © 2016. Published by Elsevier B.V.
Wullimann, Mario F.; Mueller, Thomas; Distel, Martin; Babaryka, Andreas; Grothe, Benedikt; Köster, Reinhard W.
2011-01-01
This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes PMID:21559349
Evolutionary origin of the turtle skull.
Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S
2015-09-10
Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.
Sequencing a piece of history: complete genome sequence of the original Escherichia coli strain
Dunne, Karl A; Chaudhuri, Roy R; Rossiter, Amanda E; Beriotto, Irene; Browning, Douglas F; Squire, Derrick; Cunningham, Adam F; Cole, Jeffrey A; Loman, Nicholas
2017-01-01
In 1885, Theodor Escherich first described the Bacillus coli commune, which was subsequently renamed Escherichia coli. We report the complete genome sequence of this original strain (NCTC 86). The 5 144 392 bp circular chromosome encodes the genes for 4805 proteins, which include antigens, virulence factors, antimicrobial-resistance factors and secretion systems, of a commensal organism from the pre-antibiotic era. It is located in the E. coli A subgroup and is closely related to E. coli K-12 MG1655. E. coli strain NCTC 86 and the non-pathogenic K-12, C, B and HS strains share a common backbone that is largely co-linear. The exception is a large 2 803 932 bp inversion that spans the replication terminus from gmhB to clpB. Comparison with E. coli K-12 reveals 41 regions of difference (577 351 bp) distributed across the chromosome. For example, and contrary to current dogma, E. coli NCTC 86 includes a nine gene sil locus that encodes a silver-resistance efflux pump acquired before the current widespread use of silver nanoparticles as an antibacterial agent, possibly resulting from the widespread use of silver utensils and currency in Germany in the 1800s. In summary, phylogenetic comparisons with other E. coli strains confirmed that the original strain isolated by Escherich is most closely related to the non-pathogenic commensal strains. It is more distant from the root than the pathogenic organisms E. coli 042 and O157 : H7; therefore, it is not an ancestral state for the species. PMID:28663823
Couch, Brett C.; Fudal, Isabelle; Lebrun, Marc-Henri; Tharreau, Didier; Valent, Barbara; van Kim, Pham; Nottéghem, Jean-Loup; Kohn, Linda M.
2005-01-01
Rice, as a widely and intensively cultivated crop, should be a target for parasite host shifts and a source for shifts to co-occurring weeds. Magnaporthe oryzae, of the M. grisea species complex, is the most important fungal pathogen of rice, with a high degree of host specificity. On the basis of 10 loci from six of its seven linkage groups, 37 multilocus haplotypes among 497 isolates of M. oryzae from rice and other grasses were identified. Phylogenetic relationships among isolates from rice (Oryza sativa), millet (Setaria spp.), cutgrass (Leersia hexandra), and torpedo grass (Panicum repens) were predominantly tree like, consistent with a lack of recombination, but from other hosts were reticulate, consistent with recombination. The single origin of rice-infecting M. oryzae followed a host shift from a Setaria millet and was closely followed by additional shifts to weeds of rice, cutgrass, and torpedo grass. Two independent estimators of divergence time indicate that these host shifts predate the Green Revolution and could be associated with rice domestication. The rice-infecting lineage is characterized by high copy number of the transposable element MGR586 (Pot3) and, except in two haplotypes, by a loss of AVR-Co39. Both mating types have been retained in ancestral, well-distributed rice-infecting haplotypes 10 (mainly temperate) and 14 (mainly tropical), but only one mating type was recovered from several derived, geographically restricted haplotypes. There is evidence of a common origin of both ACE1 virulence genotypes in haplotype 14. Host-haplotype association is evidenced by low pathogenicity on hosts associated with other haplotypes. PMID:15802503
Multispeed genome diploidization and diversification after an ancient allopolyploidization.
Mandáková, Terezie; Pouch, Milan; Harmanová, Klára; Zhan, Shing Hei; Mayrose, Itay; Lysak, Martin A
2017-11-01
Hybridization and genome doubling (allopolyploidy) have led to evolutionary novelties as well as to the origin of new clades and species. Despite the importance of allopolyploidization, the dynamics of postpolyploid diploidization (PPD) at the genome level has been only sparsely studied. The Microlepidieae (MICR) is a crucifer tribe of 17 genera and c. 56 species endemic to Australia and New Zealand. Our phylogenetic and cytogenomic analyses revealed that MICR originated via an intertribal hybridization between ancestors of Crucihimalayeae (n = 8; maternal genome) and Smelowskieae (n = 7; paternal genome), both native to the Northern Hemisphere. The reconstructed ancestral allopolyploid genome (n = 15) originated probably in northeastern Asia or western North America during the Late Miocene (c. 10.6-7 million years ago) and reached the Australian mainland via long-distance dispersal. In Australia, the allotetraploid genome diverged into at least three main subclades exhibiting different levels of PPD and diversity: 1.25-fold descending dysploidy (DD) of n = 15 → n = 12 (autopolyploidy → 24) in perennial Arabidella (3 species), 1.5-fold DD of n = 15 → n = 10 in the perennial Pachycladon (11 spp.) and 2.1-3.75-fold DD of n = 15 → n = 7-4 in the largely annual crown-group genera (42 spp. in 15 genera). These results are among the first to demonstrate multispeed genome evolution in taxa descending from a common allopolyploid ancestor. It is suggested that clade-specific PPD can operate at different rates and efficacies and can be tentatively linked to life histories and the extent of taxonomic diversity. © 2017 John Wiley & Sons Ltd.
Functionally conserved enhancers with divergent sequences in distant vertebrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Song; Oksenberg, Nir; Takayama, Sachiko
To examine the contributions of sequence and function conservation in the evolution of enhancers, we systematically identified enhancers whose sequences are not conserved among distant groups of vertebrate species, but have homologous function and are likely to be derived from a common ancestral sequence. In conclusion, our approach combined comparative genomics and epigenomics to identify potential enhancer sequences in the genomes of three groups of distantly related vertebrate species.
Functionally conserved enhancers with divergent sequences in distant vertebrates
Yang, Song; Oksenberg, Nir; Takayama, Sachiko; ...
2015-10-30
To examine the contributions of sequence and function conservation in the evolution of enhancers, we systematically identified enhancers whose sequences are not conserved among distant groups of vertebrate species, but have homologous function and are likely to be derived from a common ancestral sequence. In conclusion, our approach combined comparative genomics and epigenomics to identify potential enhancer sequences in the genomes of three groups of distantly related vertebrate species.
du Bray, Edward A.; John, David A.; Cousens, Brian L.
2013-01-01
Although rocks in the two arc segments have similar metal abundances, they are metallogenically distinct. Small porphyry copper deposits are characteristic of the northern segment whereas significant epithermal precious metal deposits are most commonly associated with the southern segment. These metallogenic differences are also fundamentally linked to the tectonic settings and crustal regimes within which these two arc segments evolved.
Estimating Time to the Common Ancestor for a Beneficial Allele
Smith, Joel; Coop, Graham; Stephens, Matthew; Novembre, John
2018-01-01
Abstract The haplotypes of a beneficial allele carry information about its history that can shed light on its age and the putative cause for its increase in frequency. Specifically, the signature of an allele’s age is contained in the pattern of variation that mutation and recombination impose on its haplotypic background. We provide a method to exploit this pattern and infer the time to the common ancestor of a positively selected allele following a rapid increase in frequency. We do so using a hidden Markov model which leverages the length distribution of the shared ancestral haplotype, the accumulation of derived mutations on the ancestral background, and the surrounding background haplotype diversity. Using simulations, we demonstrate how the inclusion of information from both mutation and recombination events increases accuracy relative to approaches that only consider a single type of event. We also show the behavior of the estimator in cases where data do not conform to model assumptions, and provide some diagnostics for assessing and improving inference. Using the method, we analyze population-specific patterns in the 1000 Genomes Project data to estimate the timing of adaptation for several variants which show evidence of recent selection and functional relevance to diet, skin pigmentation, and morphology in humans. PMID:29361025
The Biogeography of Deep Time Phylogenetic Reticulation.
Burbrink, Frank T; Gehara, Marcelo
2018-03-09
Most phylogenies are typically represented as purely bifurcating. However, as genomic data has become more common in phylogenetic studies, it is not unusual to find reticulation among terminal lineages or among internal nodes (deep time reticulation; DTR). In these situations, gene flow must have happened in the same or adjacent geographic areas for these DTRs to have occurred and therefore biogeographic reconstruction should provide similar area estimates for parental nodes, provided extinction or dispersal has not eroded these patterns. We examine the phylogeny of the widely distributed New World kingsnakes (Lampropeltis), determine if DTR is present in this group, and estimate the ancestral area for reticulation. Importantly, we develop a new method that uses coalescent simulations in a machine learning framework to show conclusively that this phylogeny is best represented as reticulating at deeper time. Using joint probabilities of ancestral area reconstructions on the bifurcating parental lineages from the reticulating node, we show that this reticulation likely occurred in northwestern Mexico/southwestern US and subsequently led to the diversification of the Mexican kingsnakes. This region has been previously identified as an area important for understanding speciation and secondary contact with gene flow in snakes and other squamates. This research shows that phylogenetic reticulation is common, even in well-studied groups, and that the geographic scope of ancient hybridization is recoverable.
A reconstruction of sexual modes throughout animal evolution.
Sasson, Daniel A; Ryan, Joseph F
2017-12-06
Although most extant animals have separate sexes, simultaneous hermaphrodites can be found in lineages throughout the animal kingdom. However, the sexual modes of key ancestral nodes including the last common ancestor (LCA) of all animals remain unclear. Without these data, it is difficult to infer the reproductive-state transitions that occurred early in animal evolution, and thus a broad understanding of the evolution of animal reproduction remains elusive. In this study, we use a composite phylogeny from four previously published studies, two alternative topologies (ctenophores or sponges as sister to the rest of animals), and multiple phylogenetic approaches to conduct the most extensive analysis to date of the evolution of animal sexual modes. Our analyses clarify the sexual mode of many ancestral animal nodes and allow for sound inferences of modal transitions that have occurred in animal history. Our results also indicate that the transition from separate sexes to hermaphroditism has been more common in animal history than the reverse. These results provide the most complete view of the evolution of animal sexual modes to date and provide a framework for future inquiries into the correlation of these transitions with genes, behaviors, and physiology. These results also suggest that mutations promoting hermaphroditism have historically been more likely to invade gonochoristic populations than vice versa.
Xue, Xiao-Feng; Guo, Jing-Feng; Dong, Yan; Hong, Xiao-Yue; Shao, Renfu
2016-01-01
The subclass Acari (mites and ticks) comprises two super-orders: Acariformes and Parasitiformes. Most species of the Parasitiformes known retained the ancestral pattern of mitochondrial (mt) gene arrangement of arthropods, and their mt tRNAs have the typical cloverleaf structure. All of the species of the Acariformes known, however, have rearranged mt genomes and truncated mt tRNAs. We sequenced the mt genomes of two species of Eriophyoidea: Phyllocoptes taishanensis and Epitrimerus sabinae. The mt genomes of P. taishanensis and E. sabinae are 13,475 bp and 13,531 bp, respectively, are circular and contain the 37 genes typical of animals; most mt tRNAs are highly truncated in both mites. On the other hand, these two eriophyoid mites have the least rearranged mt genomes seen in the Acariformes. Comparison between eriophyoid mites and other Aacariformes mites showed that: 1) the most recent common ancestor of Acariformes mites retained the ancestral pattern of mt gene arrangement of arthropods with slight modifications; 2) truncation of tRNAs for cysteine, phenylalanine and histidine occurred once in the most recent common ancestor of Acariformes mites whereas truncation of other tRNAs occurred multiple times; and 3) the placement of eriophyoid mites in the order Trombidiformes needs to be reviewed. PMID:26732998
Benítez-Benítez, Carmen; Fernández-Mazuecos, Mario; Martín-Bravo, Santiago
2017-01-01
Plants growing in high-mountain environments may share common morphological features through convergent evolution resulting from an adaptative response to similar ecological conditions. The Carex flava species complex (sect. Ceratocystis, Cyperaceae) includes four dwarf morphotypes from Circum-Mediterranean mountains whose taxonomic status has remained obscure due to their apparent morphological resemblance. In this study we investigate whether these dwarf mountain morphotypes result from convergent evolution or common ancestry, and whether there are ecological differences promoting differentiation between the dwarf morphotypes and their taxonomically related large, well-developed counterparts. We used phylogenetic analyses of nrDNA (ITS) and ptDNA (rps16 and 5’trnK) sequences, ancestral state reconstruction, multivariate analyses of macro- and micromorphological data, and species distribution modeling. Dwarf morphotype populations were found to belong to three different genetic lineages, and several morphotype shifts from well-developed to dwarf were suggested by ancestral state reconstructions. Distribution modeling supported differences in climatic niche at regional scale between the large forms, mainly from lowland, and the dwarf mountain morphotypes. Our results suggest that dwarf mountain morphotypes within this sedge group are small forms of different lineages that have recurrently adapted to mountain habitats through convergent evolution. PMID:29281689
Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier.
Wolfe, Joanna M
2017-09-01
Macroevolutionary developmental biology employs fossilized ontogenetic data and phylogenetic comparative methods to probe the evolution of development at ancient nodes. Despite the prevalence of ecologically differentiated larval forms in marine invertebrates, it has been frequently presumed that the ancestors of arthropods were direct developers, and that metamorphosis may not have evolved until the Ordovician or later. Using fossils and new dated phylogenies, I infer that metamorphosis was likely ancestral for crown arthropods, contradicting this assumption. Based on a published morphological dataset encompassing 217 exceptionally preserved fossil and 96 extant taxa, fossils were directly incorporated into both the topology and age estimates, as in "tip dating" analyses. Using data from post-embryonic fossils representing 25 species throughout stem and crown arthropod lineages (as well as most of the 96 extant taxa), characters for metamorphosis were assigned based on inferred ecological changes in development (e.g., changes in habitat and adaptive landscape). Under all phylogenetic hypotheses, metamorphosis was supported as most likely ancestral to both ecdysozoans and euarthropods. Care must be taken to account for potential drastic post-embryonic morphological changes in evolutionary analyses. Many stem group euarthrpods may have had ecologically differentiated larval stages that did not preserve in the fossil record. Moreover, a complex life cycle and planktonic ecology may have evolved in the Ediacaran or earlier, and may have typified the pre-Cambrian explosion "wormworld" prior to the origin of crown group euarthropods. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Adaptive Memory: Is There a Reproduction-Processing Effect?
Seitz, Benjamin M; Polack, Cody W; Miller, Ralph R
2017-12-14
Like all biological systems, human memory is likely to have been influenced by evolutionary processes, and its abilities have been subjected to selective mechanisms. Consequently, human memory should be primed to better remember information relevant to one's evolutionary fitness. Supporting this view, participants asked to rate words based on their relevance to an imaginary survival situation better recall those words (even the words rated low in relevancy) than the same words rated with respect to non-survival situations. This mnemonic advantage is called the "survival-processing effect," and presumably it was selected for because it contributed to evolutionary fitness. The same reasoning suggests that there should be an advantage for recall of information that has been rated for relevancy to reproduction and/or mate seeking, although little evidence has existed to assess this proposition. We used an experimental design similar to that in the original survival-processing effect study (Nairne, Thompson, & Pandeirada, 2007) and across 3 experiments tested several newly designed scenarios to determine whether a reproduction-processing effect could be found in an ancestral environment, a modern mating environment, and an ancestral environment in which the emphasis was on raising offspring as opposed to finding a mate. Our results replicated the survival-processing effect but provided no evidence of a reproduction-processing effect when the scenario emphasized finding a mate. However, when rating items on their relevancy to raising one's offspring in an ancestral environment, a mnemonic advantage comparable to that of the survival-processing effect was found. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Njunjić, Iva; Perrard, Adrien; Hendriks, Kasper; Schilthuizen, Menno; Perreau, Michel; Merckx, Vincent; Baylac, Michel; Deharveng, Louis
2018-01-01
The genus Anthroherpon Reitter, 1889 exhibits the most pronounced troglomorphic characters among Coleoptera, and represents one of the most spectacular radiations of subterranean beetles. However, radiation, diversification, and biogeography of this genus have never been studied in a phylogenetic context. This study provides a comprehensive evolutionary analysis of the Anthroherpon radiation, using a dated molecular phylogeny as a framework for understanding Anthroherpon diversification, reconstructing the ancestral range, and exploring troglomorphic diversity. Based on 16 species and 22 subspecies, i.e. the majority of Anthroherpon diversity, we reconstructed the phylogeny using Bayesian analysis of six loci, both mitochondrial and nuclear, comprising a total of 4143 nucleotides. In parallel, a morphometric analysis was carried out with 79 landmarks on the body that were subjected to geometric morphometrics. We optimized morphometric features to phylogeny, in order to recognize the way troglomorphy was expressed in different clades of the tree, and did character evolution analyses. Finally, we reconstructed the ancestral range of the genus using BioGeoBEARS. Besides further elucidating the suprageneric classification of the East-Mediterranean Leptodirini, our main findings also show that Anthroherpon dates back to the Early Miocene (ca. 22 MYA) and that the genus diversified entirely underground. Biogeographic reconstruction of the ancestral range shows the origin of the genus in the area comprising three high mountains in western Montenegro, which is in the accordance with the available data on the paleogeography of the Balkan Peninsula. Character evolution analysis indicates that troglomorphic morphometric traits in Anthroherpon mostly evolve neutrally but may diverge adaptively under syntopic competition.
Olver, Mark E; Neumann, Craig S; Sewall, Lindsay A; Lewis, Kathy; Hare, Robert D; Wong, Stephen C P
2018-06-01
The present study examined the psychometric properties of Hare Psychopathy Checklist-Revised (PCL-R; Hare, 2003) scores in a multisite sample of 1,163 federally incarcerated Canadian indigenous and non-indigenous offenders from the Prairie Region of the Correctional Service of Canada. The research occurred against the backdrop of the Ewert v. Canada (2015) matter, in which the PCL-R was originally impugned in Federal Court for use with indigenous persons (later overturned in Canada v. Ewert, 2016). Indigenous men scored higher than non-indigenous men on most components of the PCL-R and had higher rates of recidivism, irrespective of follow-up. Discrimination analyses, however, supported the predictive efficacy of PCL-R total, factor, and facet scores for violent and general recidivism across both ancestral groups, with most group differences in area under the curve (AUC) magnitudes being small and nonsignificant. Calibration analyses demonstrated that higher PCL-R scores were associated with higher rates of general and violent recidivism for both ancestral groups, although higher recidivism rates were observed and estimated for indigenous men at specific PCL-R score thresholds. Confirmatory factor analyses supported the 4-factor model of psychopathy and hence, structural invariance, of PCL-R scores across ancestral groups. Structural equation modeling affirmed the predictive efficacy of the 4-factor model for recidivism. We discuss these findings in terms of clinical applications of the PCL-R and the psychopathy construct in general, with male offenders of indigenous ancestry. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Uhrig, R Glen; Kerk, David; Moorhead, Greg B
2013-12-01
Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.
Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors.
Carroll, Sean Michael; Bridgham, Jamie T; Thornton, Joseph W
2008-12-01
Specific interactions among proteins, nucleic acids, and metabolites drive virtually all cellular functions and underlie phenotypic complexity and diversity. Despite the fundamental importance of interactions, the mechanisms and dynamics by which they evolve are poorly understood. Here we describe novel interactions between a lineage-specific hormone and its receptors in elasmobranchs, a subclass of cartilaginous fishes, and infer how these associations evolved using phylogenetic and protein structural analyses. The hormone 1alpha-hydroxycorticosterone (1alpha-B) is a physiologically important steroid synthesized only in elasmobranchs. We show that 1alpha-B modulates gene expression in vitro by activating two paralogous intracellular transcription factors, the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), in the little skate Leucoraja erinacea; MR serves as a high-sensitivity and GR as a low-sensitivity receptor. Using functional analysis of extant and resurrected ancestral proteins, we show that receptor sensitivity to 1alpha-B evolved millions of years before the hormone itself evolved. The 1alpha-B differs from more ancient corticosteroids only by the addition of a hydroxyl group; the three-dimensional structure of the ancestral receptor shows that the ligand pocket contained ample unoccupied space to accommodate this moiety. Our findings indicate that the interactions between 1alpha-B and elasmobranch GR and MR proteins evolved by molecular exploitation: a novel hormone recruited into new functional partnerships two ancient receptors that had previously interacted with other ligands. The ancestral receptor's promiscuous capacity to fortuitously bind compounds that are slight structural variants of its original ligands set the stage for the evolution of this new interaction.
Finding Nemo: molecular phylogeny and evolution of the unusual life style of anemonefish.
Santini, Simona; Polacco, Giovanni
2006-12-30
Anemonefish are a group of 28 species of coral reef fish belonging to the family Pomacentridae, subfamily Amphiprioninae, all characterized by living in symbiosis with sea anemones of several genera. Some anemonefish are specialized to cooperate with a single or few species of sea anemone, being immune to their poisonous tentacles but sensible to those of other species of sea anemones, while other anemonefish are more generalist and able to live together with a number of different species of sea anemone hosts. Despite the common life style, anemonefish species occur in a variety of colors, body shapes and degree of dependence from the host. To understand the evolutionary mechanisms responsible for the anemonefish diversification, we studied 23 out of 28 species of anemonefish by analyzing three mitochondrial regions: the cytochrome b gene, the 16S ribosomal RNA gene and the first half of the D-loop, a non-coding, regulatory region to reconstruct their molecular phylogeny through Bayesian and maximum parsimony approaches. The evolution of specialization was studied by means of character reconstruction methods. This work includes the highest number of anemonefish so far analyzed and particularly some species that had never been studied before. The results support a monophyletic origin for the subfamily Amphiprioninae, in contrast to the current taxonomy, based on morphological characters, that divides anemonefish into two separate genera. Moreover, we formulate some hypotheses concerning the life style and origin of the ancestral anemonefish.
Population Genetic Structure of the People of Qatar
Hunter-Zinck, Haley; Musharoff, Shaila; Salit, Jacqueline; Al-Ali, Khalid A.; Chouchane, Lotfi; Gohar, Abeer; Matthews, Rebecca; Butler, Marcus W.; Fuller, Jennifer; Hackett, Neil R.; Crystal, Ronald G.; Clark, Andrew G.
2010-01-01
People of the Qatar peninsula represent a relatively recent founding by a small number of families from three tribes of the Arabian Peninsula, Persia, and Oman, with indications of African admixture. To assess the roles of both this founding effect and the customary first-cousin marriages among the ancestral Islamic populations in Qatar's population genetic structure, we obtained and genotyped with Affymetrix 500k SNP arrays DNA samples from 168 self-reported Qatari nationals sampled from Doha, Qatar. Principal components analysis was performed along with samples from the Human Genetic Diversity Project data set, revealing three clear clusters of genotypes whose proximity to other human population samples is consistent with Arabian origin, a more eastern or Persian origin, and individuals with African admixture. The extent of linkage disequilibrium (LD) is greater than that of African populations, and runs of homozygosity in some individuals reflect substantial consanguinity. However, the variance in runs of homozygosity is exceptionally high, and the degree of identity-by-descent sharing generally appears to be lower than expected for a population in which nearly half of marriages are between first cousins. Despite the fact that the SNPs of the Affymetrix 500k chip were ascertained with a bias toward SNPs common in Europeans, the data strongly support the notion that the Qatari population could provide a valuable resource for the mapping of genes associated with complex disorders and that tests of pairwise interactions are particularly empowered by populations with elevated LD like the Qatari. PMID:20579625
Smith, Bradley N; Ancliff, Phil J; Pizzey, Arnold; Khwaja, Asim; Linch, David C; Gale, Rosemary E
2009-03-01
Patients with autosomal dominant (AD), sporadic and X-linked severe congenital neutropenia (SCN) may have mutations in the elastase 2 (ELA2) or Wiskott-Aldrich syndrome (WAS) genes. Homozygous mutations in the HAX1 gene have recently been reported in autosomal recessive (AR) cases of primarily Middle-Eastern descent and the original Kostmann family. We screened 109 predominantly Caucasian SCN kindreds for mutations in these genes; 33 (30%) had 24 different ELA2 mutations, five of them novel, two kindreds (2%) had WAS mutations and four kindreds (4%) had three different HAX1 mutations, two of them novel. One HAX1 mutation (p.Ser43LeufsX11) was found in an AR Ashkenazi Jewish kindred, the other (p.Glu31LysfsX54) in two unrelated British patients with sporadic disease. Microsatellite analysis of the HAX1 locus revealed a common haplotype (maximum distance 4.1 Megabases) for the p.Glu31LysfsX54 patients, suggesting a possible ancestral founder. In functional assays, the level of spontaneous and staurosporine-induced apoptosis was increased in neutrophils from both p.Ser43LeufsX11 patients but not a p.Glu31LysfsX54 patient, suggesting the possible presence of modifying factors. The low incidence of HAX1 mutations in our study suggests that the frequency may vary between racial groups but suggests that irrespective of inheritance or racial origin, SCN patients should be screened for HAX1 mutations.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
du Bray, Edward A.; John, David A.
2011-01-01
Present-day High Cascades arc magmatism was preceded by ~40 m.y. of nearly cospatial magmatism represented by the ancestral Cascades arc in Washington, Oregon, and northernmost California (United States). Time-space-composition relations for the ancestral Cascades arc have been synthesized from a recent compilation of more than 4000 geochemical analyses and associated age data. Neither the composition nor distribution of ancestral Cascades magmatism was uniform along the length of the ancestral arc through time. Initial (>40 to 36 Ma) ancestral Cascades magmatism (mostly basalt and basaltic andesite) was focused at the north end of the arc between the present-day locations of Mount Rainier and the Columbia River. From 35 to 18 Ma, initial basaltic andesite and andesite magmatism evolved to include dacite and rhyolite; magmatic activity became more voluminous and extended along most of the arc. Between 17 and 8 Ma, magmatism was focused along the part of the arc coincident with the northern two-thirds of Oregon and returned to more mafic compositions. Subsequent ancestral Cascades magmatism was dominated by basaltic andesite to basalt prior to the post–4 Ma onset of High Cascades magmatism. Transitional tholeiitic to calc-alkaline compositions dominated early (before 40 to ca. 25 Ma) ancestral Cascades eruptive products, whereas the majority of the younger arc rocks have a calc-alkaline affinity. Tholeiitic compositions characteristic of the oldest ancestral arc magmas suggest development associated with thin, immature crust and slab window processes, whereas the younger, calc-alkaline magmas suggest interaction with thicker, more evolved crust and more conventional subduction-related magmatic processes. Presumed changes in subducted slab dip through time also correlate with fundamental magma composition variation. The predominance of mafic compositions during latest ancestral arc magmatism and throughout the history of modern High Cascades magmatism probably reflects extensional tectonics that dominated during these periods of arc magmatism. Mineral deposits associated with ancestral Cascades arc rocks are uncommon; most are small and low grade relative to those found in other continental magmatic arcs. The small size, low grade, and dearth of deposits, especially in the southern two-thirds of the ancestral arc, probably reflect many factors, the most important of which may be the prevalence of extensional tectonics within this arc domain during this magmatic episode. Progressive clockwise rotation of the forearc block west of the evolving Oregon part of the ancestral Cascades magmatism produced an extensional regime that did not foster significant mineral deposit formation. In contrast, the Washington arc domain developed in a transpressional to mildly compressive regime that was more conducive to magmatic processes and hydrothermal fluid channeling critical to deposit formation. Small, low-grade porphyry copper deposits in the northern third of the ancestral Cascades arc segment also may be a consequence of more mature continental crust, including a Mesozoic component, beneath Washington north of Mount St. Helens.
An experimental phylogeny to benchmark ancestral sequence reconstruction
Randall, Ryan N.; Radford, Caelan E.; Roof, Kelsey A.; Natarajan, Divya K.; Gaucher, Eric A.
2016-01-01
Ancestral sequence reconstruction (ASR) is a still-burgeoning method that has revealed many key mechanisms of molecular evolution. One criticism of the approach is an inability to validate its algorithms within a biological context as opposed to a computer simulation. Here we build an experimental phylogeny using the gene of a single red fluorescent protein to address this criticism. The evolved phylogeny consists of 19 operational taxonomic units (leaves) and 17 ancestral bifurcations (nodes) that display a wide variety of fluorescent phenotypes. The 19 leaves then serve as ‘modern' sequences that we subject to ASR analyses using various algorithms and to benchmark against the known ancestral genotypes and ancestral phenotypes. We confirm computer simulations that show all algorithms infer ancient sequences with high accuracy, yet we also reveal wide variation in the phenotypes encoded by incorrectly inferred sequences. Specifically, Bayesian methods incorporating rate variation significantly outperform the maximum parsimony criterion in phenotypic accuracy. Subsampling of extant sequences had minor effect on the inference of ancestral sequences. PMID:27628687
O'Neill, R J; Eldridge, M D; Toder, R; Ferguson-Smith, M A; O'Brien, P C; Graves, J A
1999-06-01
Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.
Mlinarec, J; Šatović, Z; Malenica, N; Ivančić-Baće, I; Besendorfer, V
2012-08-01
In the genus Anemone two small groups of taxa occur with the highest ploidy levels 2n = 6x = 48, belonging to the closely related clades: the montane/alpine Baldensis clade and the more temperate Multifida clade. To understand the formation of polyploids within these groups, the evolution of allohexaploid A. baldensis (AABBDD, 2n = 6x = 48) from Europe and allotetraploid Anemone multifida (BBDD, 2n = 4x = 32) from America was analysed. Internal transcribed spacer and non-transcribed spacer sequences were used as molecular markers for phylogenetic analyses. Cytogenetic studies, including genomic in situ hybridization with genomic DNA of potential parental species as probe, fluorescence in situ hybridization with 5S and 18S rDNA as probes and 18S rDNA restriction analyses, were used to identify the parental origin of chromosomes and to study genomic changes following polyploidization. This study shows that A. multifida (BBDD, 2n= 4x = 32) and A. baldensis (AABBDD, 2n = 6x = 48) are allopolyploids originating from the crosses of diploid members of the Multifida (donor of the A and B subgenomes) and Baldensis groups (donor of the D subgenome). The A and B subgenomes are closely related to the genomes of A. sylvestris, A. virginiana and A. cylindrica, indicating that these species or their progeny might be the ancestral donors of the B subgenome of A. multifida and A and B subgenomes of A. baldensis. Both polyploids have undergone genomic changes such as interchromosomal translocation affecting B and D subgenomes and changes at rDNA sites. Anemone multifida has lost the 35S rDNA loci characteristic of the maternal donor (B subgenome) and maintained only the rDNA loci of the paternal donor (D subgenome). It is proposed that A. multifida and A. baldensis probably had a common ancestor and their evolution was facilitated by vegetation changes during the Quaternary, resulting in their present disjunctive distribution.
Mlinarec, J.; Šatović, Z.; Malenica, N.; Ivančić-Baće, I.; Besendorfer, V.
2012-01-01
Background and Aims In the genus Anemone two small groups of taxa occur with the highest ploidy levels 2n = 6x = 48, belonging to the closely related clades: the montane/alpine Baldensis clade and the more temperate Multifida clade. To understand the formation of polyploids within these groups, the evolution of allohexaploid A. baldensis (AABBDD, 2n = 6x = 48) from Europe and allotetraploid Anemone multifida (BBDD, 2n = 4x = 32) from America was analysed. Methods Internal transcribed spacer and non-transcribed spacer sequences were used as molecular markers for phylogenetic analyses. Cytogenetic studies, including genomic in situ hybridization with genomic DNA of potential parental species as probe, fluorescence in situ hybridization with 5S and 18S rDNA as probes and 18S rDNA restriction analyses, were used to identify the parental origin of chromosomes and to study genomic changes following polyploidization. Key Results This study shows that A. multifida (BBDD, 2n= 4x = 32) and A. baldensis (AABBDD, 2n = 6x = 48) are allopolyploids originating from the crosses of diploid members of the Multifida (donor of the A and B subgenomes) and Baldensis groups (donor of the D subgenome). The A and B subgenomes are closely related to the genomes of A. sylvestris, A. virginiana and A. cylindrica, indicating that these species or their progeny might be the ancestral donors of the B subgenome of A. multifida and A and B subgenomes of A. baldensis. Both polyploids have undergone genomic changes such as interchromosomal translocation affecting B and D subgenomes and changes at rDNA sites. Anemone multifida has lost the 35S rDNA loci characteristic of the maternal donor (B subgenome) and maintained only the rDNA loci of the paternal donor (D subgenome). Conclusions It is proposed that A. multifida and A. baldensis probably had a common ancestor and their evolution was facilitated by vegetation changes during the Quaternary, resulting in their present disjunctive distribution. PMID:22711694
U'ren, Jana M; Dalling, James W; Gallery, Rachel E; Maddison, David R; Davis, E Christine; Gibson, Cara M; Arnold, A Elizabeth
2009-04-01
Fungi associated with seeds of tropical trees pervasively affect seed survival and germination, and thus are an important, but understudied, component of forest ecology. Here, we examine the diversity and evolutionary origins of fungi isolated from seeds of an important pioneer tree (Cecropia insignis, Cecropiaceae) following burial in soil for five months in a tropical moist forest in Panama. Our approach, which relied on molecular sequence data because most isolates did not sporulate in culture, provides an opportunity to evaluate several methods currently used to analyse environmental samples of fungi. First, intra- and interspecific divergence were estimated for the nu-rITS and 5.8S gene for four genera of Ascomycota that are commonly recovered from seeds. Using these values we estimated species boundaries for 527 isolates, showing that seed-associated fungi are highly diverse, horizontally transmitted, and genotypically congruent with some foliar endophytes from the same site. We then examined methods for inferring the taxonomic placement and phylogenetic relationships of these fungi, evaluating the effects of manual versus automated alignment, model selection, and inference methods, as well as the quality of BLAST-based identification using GenBank. We found that common methods such as neighbor-joining and Bayesian inference differ in their sensitivity to alignment methods; analyses of particular fungal genera differ in their sensitivity to alignments; and numerous and sometimes intricate disparities exist between BLAST-based versus phylogeny-based identification methods. Lastly, we used our most robust methods to infer phylogenetic relationships of seed-associated fungi in four focal genera, and reconstructed ancestral states to generate preliminary hypotheses regarding the evolutionary origins of this guild. Our results illustrate the dynamic evolutionary relationships among endophytic fungi, pathogens, and seed-associated fungi, and the apparent evolutionary distinctiveness of saprotrophs. Our study also elucidates the diversity, taxonomy, and ecology of an important group of plant-associated fungi and highlights some of the advantages and challenges inherent in the use of ITS data for environmental sampling of fungi.
Gupta, Radhey S
2012-11-01
The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been laterally transferred between these groups. Other results and observations reported here indicate that the genes for the BchL-N-B proteins in Proteobacteria are derived from the Clade C Cyanobacteria, whereas those in Chlorobi were acquired from Chloroflexus or related bacteria by means of LGTs. Some implications of these observations regarding the origin and spread of photosynthesis are discussed.
Balakireva, Anastasia V; Zamyatnin, Andrey A
2016-10-18
Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.
Why is Southern African canine babesiosis so virulent? An evolutionary perspective.
Penzhorn, Barend L
2011-04-13
Canine babesiosis is a common, highly virulent disease in Southern Africa with even pups and juveniles being severely affected. This contrasts with bovine babesiosis, for example, where host, parasite and vector co-evolved and young animals develop immunity after infection without showing clinical signs. Babesia rossi, the main causative organism of canine babesiosis in sub-Saharan Africa, was first described from a side-striped jackal (Canis adustus) in Kenya. Although data are meagre, there is evidence that indigenous African canids, such as jackals and wild dogs (Lycaon pictus), can harbour the parasite without showing untoward effects. Dogs are not indigenous to Africa. The vast majority of dogs presented at veterinary facilities in South Africa represent recently introduced European, Asian or American breeds. The contention is that B. rossi is a new challenge to which these dogs have not adapted. With intensive treatment of clinical cases, natural selection is effectively negated and the status quo will probably be maintained indefinitely. It is postulated that Babesia vogeli, which frequently results in unapparent infections or mild manifestations in dogs, represents or is closely related to the ancestral form of the canine parasite, possibly originating from wolves (Canis lupus).
Why is Southern African canine babesiosis so virulent? An evolutionary perspective
2011-01-01
Canine babesiosis is a common, highly virulent disease in Southern Africa with even pups and juveniles being severely affected. This contrasts with bovine babesiosis, for example, where host, parasite and vector co-evolved and young animals develop immunity after infection without showing clinical signs. Babesia rossi, the main causative organism of canine babesiosis in sub-Saharan Africa, was first described from a side-striped jackal (Canis adustus) in Kenya. Although data are meagre, there is evidence that indigenous African canids, such as jackals and wild dogs (Lycaon pictus), can harbour the parasite without showing untoward effects. Dogs are not indigenous to Africa. The vast majority of dogs presented at veterinary facilities in South Africa represent recently introduced European, Asian or American breeds. The contention is that B. rossi is a new challenge to which these dogs have not adapted. With intensive treatment of clinical cases, natural selection is effectively negated and the status quo will probably be maintained indefinitely. It is postulated that Babesia vogeli, which frequently results in unapparent infections or mild manifestations in dogs, represents or is closely related to the ancestral form of the canine parasite, possibly originating from wolves (Canis lupus). PMID:21489239
Balakireva, Anastasia V.; Zamyatnin, Andrey A.
2016-01-01
Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. PMID:27763541
Abundant mtDNA diversity and ancestral admixture in Colombian criollo cattle (Bos taurus).
Carvajal-Carmona, Luis G; Bermudez, Nelson; Olivera-Angel, Martha; Estrada, Luzardo; Ossa, Jorge; Bedoya, Gabriel; Ruiz-Linares, Andrés
2003-11-01
Various cattle populations in the Americas (known as criollo breeds) have an origin in some of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). These cattle constitute a potentially important genetic reserve as they are well adapted to local environments and show considerable variation in phenotype. To examine the genetic ancestry and diversity of Colombian criollo we obtained mitochondrial DNA control region sequence information for 110 individuals from seven breeds. Old World haplogroup T3 is the most commonly observed CR lineage in criollo (0.65), in agreement with a mostly European ancestry for these cattle. However, criollo also shows considerable frequencies of haplogroups T2 (0.9) and T1 (0.26), with T1 lineages in criollo being more diverse than those reported for West Africa. The distribution and diversity of Old World lineages suggest some North African ancestry for criollo, probably as a result of the Arab occupation of Iberia prior to the European migration to the New World. The mtDNA diversity of criollo is higher than that reported for European and African cattle and is consistent with a differentiated ancestry for some criollo breeds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerer, E.J.; Threlkeld, L.
1995-08-01
ZFY-like genes have been observed in a variety of vertebrate species. Although originally implicated as the primary testis-determining gene in humans and other placental mammals, more recent evidence indicates a role(s) outside that of testis determination. In this study, DNA from five species of fish, Carasius auratus, Rivulus marmoratus, Xiphophorus maculatus, X. milleri, and X. nigrensis was subjected to Southern blot analysis using a PCR-amplified fragment of mouse ZFY-like sequence as a probe. Restriction fragment patterns were not polymorphic between sexes in any one species but showed a different pattern for each species. With one exception, Rivulus, a 3.1-kb bandmore » from the EcoRI digestion was common to all. Sequence and open reading frame analysis of this fragment showed a strong homology to other known vertebrate ZFY-like genes. Of particular interest in this gene is a novel third finger domain similar to one human and one alligator ZFY-like gene. Our studies and others provide evidence for a family of vertebrate ZFY genes, with those having this novel third finger being representative of the ancestral condition. 30 refs., 3 figs., 3 tabs.« less
Miyazaki, Kentaro
2005-05-27
Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.
Smith, Jennifer J; Hill, Justine M; Little, Michelle J; Nicholson, Graham M; King, Glenn F; Alewood, Paul F
2011-06-28
The three-disulfide inhibitor cystine knot (ICK) motif is a fold common to venom peptides from spiders, scorpions, and aquatic cone snails. Over a decade ago it was proposed that the ICK motif is an elaboration of an ancestral two-disulfide fold coined the disulfide-directed β-hairpin (DDH). Here we report the isolation, characterization, and structure of a novel toxin [U(1)-liotoxin-Lw1a (U(1)-LITX-Lw1a)] from the venom of the scorpion Liocheles waigiensis that is the first example of a native peptide that adopts the DDH fold. U(1)-LITX-Lw1a not only represents the discovery of a missing link in venom protein evolution, it is the first member of a fourth structural fold to be adopted by scorpion-venom peptides. Additionally, we show that U(1)-LITX-Lw1a has potent insecticidal activity across a broad range of insect pest species, thereby providing a unique structural scaffold for bioinsecticide development.
Colombian Creole horse breeds: Same origin but different diversity
Jimenez, Ligia Mercedes; Mendez, Susy; Dunner, Susana; Cañón, Javier; Cortés, Óscar
2012-01-01
In order to understand the genetic ancestry and mitochondrial DNA (mtDNA) diversity of current Colombian horse breeds we sequenced a 364-bp fragment of the mitocondrial DNA D-loop in 116 animals belonging to five Spanish horse breeds and the Colombian Paso Fino and Colombian Creole cattle horse breeds. Among Colombian horse breeds, haplogroup D had the highest frequency (53%), followed by haplogroups A (19%), C (8%) and F (6%). The higher frequency of haplogroup D in Colombian horse breeds supports the theory of an ancestral Iberian origin for these breeds. These results also indicate that different selective pressures among the Colombian breeds could explain the relatively higher genetic diversity found in the Colombian Creole cattle horse when compared with the Colombian Paso Fino. PMID:23271940
Zhao, Zhe; Li, Shuqiang
2017-11-01
Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Resurrecting ancestral genes in bacteria to interpret ancient biosignatures
NASA Astrophysics Data System (ADS)
Kacar, Betul; Guy, Lionel; Smith, Eric; Baross, John
2017-11-01
Two datasets, the geologic record and the genetic content of extant organisms, provide complementary insights into the history of how key molecular components have shaped or driven global environmental and macroevolutionary trends. Changes in global physico-chemical modes over time are thought to be a consistent feature of this relationship between Earth and life, as life is thought to have been optimizing protein functions for the entirety of its approximately 3.8 billion years of history on the Earth. Organismal survival depends on how well critical genetic and metabolic components can adapt to their environments, reflecting an ability to optimize efficiently to changing conditions. The geologic record provides an array of biologically independent indicators of macroscale atmospheric and oceanic composition, but provides little in the way of the exact behaviour of the molecular components that influenced the compositions of these reservoirs. By reconstructing sequences of proteins that might have been present in ancient organisms, we can downselect to a subset of possible sequences that may have been optimized to these ancient environmental conditions. How can one use modern life to reconstruct ancestral behaviours? Configurations of ancient sequences can be inferred from the diversity of extant sequences, and then resurrected in the laboratory to ascertain their biochemical attributes. One way to augment sequence-based, single-gene methods to obtain a richer and more reliable picture of the deep past, is to resurrect inferred ancestral protein sequences in living organisms, where their phenotypes can be exposed in a complex molecular-systems context, and then to link consequences of those phenotypes to biosignatures that were preserved in the independent historical repository of the geological record. As a first step beyond single-molecule reconstruction to the study of functional molecular systems, we present here the ancestral sequence reconstruction of the beta-carbonic anhydrase protein. We assess how carbonic anhydrase proteins meet our selection criteria for reconstructing ancient biosignatures in the laboratory, which we term palaeophenotype reconstruction. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D
2004-10-01
Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.
NASA Astrophysics Data System (ADS)
Henry, C. D.; Cousens, B.; John, D. A.; Colgan, J. P.
2009-12-01
The character and even existence of an ancestral Tertiary Cascades arc in western Nevada and eastern California south of the modern arc are controversial. Based on extensive published and new data on the regional distribution, timing, style, and composition of magmatism, we conclude that an ancestral arc was established by WSW migration of magmatism into western NV and the northeastern Sierra Nevada in the Oligocene and Miocene as a result of progressive rollback of the shallow subducted slab. Magma migration started with the well-known southward sweep through NE NV and NW UT between ~46 and 36 Ma. By ~30 Ma, migration of the leading edge and central belt of activity was much more WSW, especially after removing younger ~E-W extension. Locally sourced, initially dispersed and small volume, intermediate to mafic lavas erupted in western NV and northeastern CA by ~30 Ma and the eastern Sierra Nevada by ~28 Ma, contemporaneous with the much more voluminous ignimbrite flare-up in central NV. As migration continued, the ignimbrite flare-up tapered off. A voluminous, NNW-trending, dominantly effusive volcanic belt developed by ~22-18 Ma in western NV and was continuous from the Bodie Hills (CA/NV) to the Warner Range (northeast CA) by ~16-15 Ma. The volcanic belt was dominated by intermediate to mafic magmas compositionally similar to those of the modern south Cascades arc but reflecting melting of an old, subduction-modified lithosphere (Cousens et al. 2008; Geosphere). Extensive middle Miocene bimodal rocks related to the Yellowstone hotspot cover these rocks in NW NV, NE CA, and SE OR, but 30-23 Ma, intermediate to mafic and lesser silicic rocks are voluminous wherever older rocks are exposed below the middle Miocene rocks. Between ~25 Ma and the present, magmatism migrated WSW at an average rate of ~8 km/Ma but was at least partly stepwise, as exemplified by an ~50 km westward step at 2 Ma in the Lassen area (Guffanti et al. 1990, JGR). The magmatic belt was as much as 250 km wide (present-day NE-SW, perpendicular to WSW migration) during much of its activity and only narrowed as it focused in western NV. In contrast, the ancestral Western Cascades arc in OR developed by ~35-40 Ma and persisted to the present as a narrow (≤50 km) belt nearly coincident with the modern Cascade arc. The Western Cascades and ancestral arc activity in NV and CA were misaligned by 100s of km and only became aligned during the ~2 Ma westward step. Misalignment suggests a major tear in the subducted slab near the OR-NV/CA border. Steep subduction was reestablished in OR by 35 Ma but only developed in NV/CA by progressive foundering of the shallow slab. Examining the magmatic record from past to present (WSW migration) complicates the question of what constituted an ancestral Cascades arc, e.g., what is the setting of the ignimbrite flare-up? In contrast, by examining the record from present to past and W to E, it is difficult to determine when and where the modern arc stopped being a continental volcanic arc. More important to address the existence of a southern ancestral Cascades arc is to comprehensively determine the distribution, timing, and origin of magmatism.
NASA Astrophysics Data System (ADS)
Dickerson, Patricia Wood
2003-04-01
The intraplate Ancestral Rocky Mountains of western North America extend from British Columbia, Canada, to Chihuahua, Mexico, and formed during Early Carboniferous through Early Permian time in response to continent-continent collision of Laurentia with Gondwana—the conjoined masses of Africa and South America, including Yucatán and Florida. Uplifts and flanking basins also formed within the Laurentian Midcontinent. On the Gondwanan continent, well inboard from the marginal fold belts, a counterpart structural array developed during the same period. Intraplate deformation began when full collisional plate coupling had been achieved along the continental margin; the intervening ocean had been closed and subduction had ceased—that is, the distinction between upper versus lower plates became moot. Ancestral Rockies deformation was not accompanied by volcanism. Basement shear zones that formed during Mesoproterozoic rifting of Laurentia were reactivated and exerted significant control on the locations, orientations, and modes of displacement on late Paleozoic faults. Ancestral Rocky Mountain uplifts extend as far south as Chihuahua and west Texas (28° to 33°N, 102° to 109°W) and include the Florida-Moyotes, Placer de Guadalupe-Carrizalillo, Ojinaga-Tascotal and Hueco Mountain blocks, as well as the Diablo and Central Basin Platforms. All are cored with Laurentian Proterozoic crystalline basement rocks and host correlative Paleozoic stratigraphic successions. Pre-late Paleozoic deformational, thermal, and metamorphic histories are similar as well. Southern Ancestral Rocky Mountain structures terminate along a line that trends approximately N 40°E (present coordinates), a common orientation for Mesoproterozoic extensional structures throughout southern to central North America. Continuing Tien Shan intraplate deformation (Central Asia) has created an analogous array of uplifts and basins in response to the collision of India with Eurasia, beginning in late Miocene time when full coupling of the colliding plates had occurred. As in the Laurentia-Gondwana case, structures of similar magnitude and spacing to those in Eurasia have developed in the Indian plate. Within the present orogen two ancient suture zones have been reactivated—the early Paleozoic Terskey zone and the late Paleozoic Turkestan suture between the Siberian and East Gondwanan cratons. Inverted Proterozoic to early Paleozoic rift structures and passive-margin deposits are exposed north of the Terskey zone. In the Alay and Tarim complexes, Vendian to mid-Carboniferous passive-margin strata and the subjacent Proterozoic crystalline basement have been uplifted. Data on Tien Shan uplifts, basins, structural arrays, and deformation rates guide paleotectonic interpretations of ancient intraplate mountain belts. Similarly, exhumed deep crustal shear zones in the Ancestral Rockies offer insight into partitioning and reorientation of strain during contemporary intraplate deformation.
Polge, Cécile; Jossier, Mathieu; Crozet, Pierre; Gissot, Lionel; Thomas, Martine
2008-01-01
The SNF1/AMPK/SnRK1 kinases are evolutionary conserved kinases involved in yeast, mammals, and plants in the control of energy balance. These heterotrimeric enzymes are composed of one α-type catalytic subunit and two γ- and β-type regulatory subunits. In yeast it has been proposed that the β-type subunits regulate both the localization of the kinase complexes within the cell and the interaction of the kinases with their targets. In this work, we demonstrate that the three β-type subunits of Arabidopsis (Arabidopsis thaliana; AKINβ1, AKINβ2, and AKINβ3) restore the growth phenotype of the yeast sip1Δsip2Δgal83Δ triple mutant, thus suggesting the conservation of an ancestral function. Expression analyses, using AKINβ promoter∷β-glucuronidase transgenic lines, reveal different and specific patterns of expression for each subunit according to organs, developmental stages, and environmental conditions. Finally, our results show that the β-type subunits are involved in the specificity of interaction of the kinase with the cytosolic nitrate reductase. Together with previous cell-free phosphorylation data, they strongly support the proposal that nitrate reductase is a real target of SnRK1 in the physiological context. Altogether our data suggest the conservation of ancestral basic function(s) together with specialized functions for each β-type subunit in plants. PMID:18768910
Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species.
Graphodatsky, A S; Yang, F; O'Brien, P C; Perelman, P; Milne, B S; Serdukova, N; Kawada, S I; Ferguson-Smith, M A
2001-01-01
Chromosome homologies between the Japanese raccoon dog (Nectereutes procyonoides viverrinus, 2n = 39 + 2-4 B chromosomes) and domestic dog (Canis familiaris, 2n = 78) have been established by hybridizing a complete set of canine paint probes onto high-resolution G-banded chromosomes of the raccoon dog. Dog chromosomes 1, 13, and 19 each correspond to two raccoon dog chromosome segments, while the remaining 35 dog autosomes each correspond to a single segment. In total, 38 dog autosome paints revealed 41 conserved segments in the raccoon dog. The use of dog painting probes has enabled integration of the raccoon dog chromosomes into the previously established comparative map for the domestic dog, Arctic fox (Alopex lagopus), and red fox (Vulpes vulpes). Extensive chromosome arm homologies were found among chromosomes of the red fox, Arctic fox, and raccoon dog. Contradicting previous findings, our results show that the raccoon dog does not share a single biarmed autosome in common with the Arctic fox, red fox, or domestic cat. Comparative analysis of the distribution patterns of conserved chromosome segments revealed by dog paints in the genomes of the canids, cats, and human reveals 38 ancestral autosome segments. These segments could represent the ancestral chromosome arms in the karyotype of the most recent ancestor of the Canidae family, which we suggest could have had a low diploid number, based on comparisons with outgroup species. Copyright 2001 S. Karger AG, Basel.
Evolutionary history and metabolic insights of ancient mammalian uricases
Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.
2014-01-01
Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457
Romero-Romero, M. Luisa; Risso, Valeria A.; Martinez-Rodriguez, Sergio; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.
2016-01-01
The relationship between the denaturation temperatures of proteins (Tm values) and the living temperatures of their host organisms (environmental temperatures: TENV values) is poorly understood. Since different proteins in the same organism may show widely different Tm’s, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm’s are oftentimes found to correlate with TENV’s but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm’s for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate) can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C) that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms. PMID:27253436
Ma, Xiuhui; Kang, Jingliang; Chen, Weitao; Zhou, Chuanjiang; He, Shunping
2015-10-28
The distribution of the Chinese Glyptosternoid catfish is limited to the rivers of the Tibetan Plateau and peripheral regions, especially the drainage areas of southeastern Tibet. Therefore, Glyptosternoid fishes are ideal for reconstructing the geological history of the southeastern Tibet drainage patterns and mitochondrial genetic adaptions to high elevations. Our phylogenetic results support the monophyly of the Sisoridae and the Glyptosternoid fishes. The reconstructed ancestral geographical distribution suggests that the ancestral Glyptosternoids was widely distributed throughout the Brahmaputra drainage in the eastern Himalayas and Tibetan area during the Late Miocene (c. 5.5 Ma). We found that the Glyptosternoid fishes lineage had a higher ratio of nonsynonymous to synonymous substitutions than those found in non-Glyptosternoids. In addition, ωpss was estimated to be 10.73, which is significantly higher than 1 (p-value 0.0002), in COX1, which indicates positive selection in the common ancestral branch of Glyptosternoid fishes in China. We also found other signatures of positive selection in the branch of specialized species. These results imply mitochondrial genetic adaptation to high elevations in the Glyptosternoids. We reconstructed a possible scenario for the southeastern Tibetan drainage patterns based on the adaptive geographical distribution of the Chinese Glyptosternoids in this drainage. The Glyptosternoids may have experienced accelerated evolutionary rates in mitochondrial genes that were driven by positive selection to better adapt to the high-elevation environment of the Tibetan Plateau.
Chordate evolution and the origin of craniates: an old brain in a new head.
Butler, A B
2000-06-15
The earliest craniates achieved a unique condition among bilaterally symmetrical animals: they possessed enlarged, elaborated brains with paired sense organs and unique derivatives of neural crest and placodal tissues, including peripheral sensory ganglia, visceral arches, and head skeleton. The craniate sister taxon, cephalochordates, has rostral portions of the neuraxis that are homologous to some of the major divisions of craniate brains. Moreover, recent data indicate that many genes involved in patterning the nervous system are common to all bilaterally symmetrical animals and have been inherited from a common ancestor. Craniates, thus, have an "old" brain in a new head, due to re-expression of these anciently acquired genes. The transition to the craniate brain from a cephalochordate-like ancestral form may have involved a mediolateral shift in expression of the genes that specify nervous system development from various parts of the ectoderm. It is suggested here that the transition was sequential. The first step involved the presence of paired, lateral eyes, elaboration of the alar plate, and enhancement of the descending visual pathway to brainstem motor centers. Subsequently, this central visual pathway served as a template for the additional sensory systems that were elaborated and/or augmented with the "bloom" of migratory neural crest and placodes. This model accounts for the marked uniformity of pattern across central sensory pathways and for the lack of any neural crest-placode cranial nerve for either the diencephalon or mesencephalon. Anat Rec (New Anat) 261:111-125, 2000. Copyright 2000 Wiley-Liss, Inc.
Dulik, Matthew C.; Zhadanov, Sergey I.; Osipova, Ludmila P.; Askapuli, Ayken; Gau, Lydia; Gokcumen, Omer; Rubinstein, Samara; Schurr, Theodore G.
2012-01-01
The Altai region of southern Siberia has played a critical role in the peopling of northern Asia as an entry point into Siberia and a possible homeland for ancestral Native Americans. It has an old and rich history because humans have inhabited this area since the Paleolithic. Today, the Altai region is home to numerous Turkic-speaking ethnic groups, which have been divided into northern and southern clusters based on linguistic, cultural, and anthropological traits. To untangle Altaian genetic histories, we analyzed mtDNA and Y chromosome variation in northern and southern Altaian populations. All mtDNAs were assayed by PCR-RFLP analysis and control region sequencing, and the nonrecombining portion of the Y chromosome was scored for more than 100 biallelic markers and 17 Y-STRs. Based on these data, we noted differences in the origin and population history of Altaian ethnic groups, with northern Altaians appearing more like Yeniseian, Ugric, and Samoyedic speakers to the north, and southern Altaians having greater affinities to other Turkic speaking populations of southern Siberia and Central Asia. Moreover, high-resolution analysis of Y chromosome haplogroup Q has allowed us to reshape the phylogeny of this branch, making connections between populations of the New World and Old World more apparent and demonstrating that southern Altaians and Native Americans share a recent common ancestor. These results greatly enhance our understanding of the peopling of Siberia and the Americas. PMID:22281367
Kang, Hae Ji; Bennett, Shannon N.; Sumibcay, Laarni; Arai, Satoru; Hope, Andrew G.; Mocz, Gabor; Song, Jin-Won; Cook, Joseph A.; Yanagihara, Richard
2009-01-01
Background The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. Methodology/Principal Findings Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. Conclusions Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts. PMID:19582155
Schwartz, N B; Pirok, E W; Mensch, J R; Domowicz, M S
1999-01-01
Proteoglycans are complex macromolecules, consisting of a polypeptide backbone to which are covalently attached one or more glycosaminoglycan chains. Molecular cloning has allowed identification of the genes encoding the core proteins of various proteoglycans, leading to a better understanding of the diversity of proteoglycan structure and function, as well as to the evolution of a classification of proteoglycans on the basis of emerging gene families that encode the different core proteins. One such family includes several proteoglycans that have been grouped with aggrecan, the large aggregating chondroitin sulfate proteoglycan of cartilage, based on a high number of sequence similarities within the N- and C-terminal domains. Thus far these proteoglycans include versican, neurocan, and brevican. It is now apparent that these proteins, as a group, are truly a gene family with shared structural motifs on the protein and nucleotide (mRNA) levels, and with nearly identical genomic organizations. Clearly a common ancestral origin is indicated for the members of the aggrecan family of proteoglycans. However, differing patterns of amplification and divergence have also occurred within certain exons across species and family members, leading to the class-characteristic protein motifs in the central carbohydrate-rich region exclusively. Thus the overall domain organization strongly suggests that sequence conservation in the terminal globular domains underlies common functions, whereas differences in the central portions of the genes account for functional specialization among the members of this gene family.
Phylogeny and photosynthesis of the grass tribe Paniceae.
Washburn, Jacob D; Schnable, James C; Davidse, Gerrit; Pires, J Chris
2015-09-01
The grass tribe Paniceae includes important food, forage, and bioenergy crops such as switchgrass, napiergrass, various millet species, and economically important weeds. Paniceae are also valuable for answering scientific and evolutionary questions about C4 photosynthetic evolution, drought tolerance, and spikelet variation. However, the phylogeny of the tribe remains incompletely resolved. Forty-five taxa were selected from across the tribe Paniceae and outgroups for genome survey sequencing (GSS). These data were used to build a phylogenetic tree of the Paniceae based on 102 markers (78 chloroplast, 22 mitochondrial, 2 nrDNA). Ancestral state reconstruction analyses were also performed within the Paniceae using both the traditional and two subtype classification systems to test hypotheses of C4 subtype evolution. The phylogenetic tree resolves many areas of the Paniceae with high support and provides insight into the origin and number of C4 evolution events within the tribe. The recovered phylogeny and ancestral state reconstructions support between four and seven independent origins of C4 photosynthesis within the tribe and indicate which species are potentially the closest C3 sister taxa of each of these events. Although the sequence of evolutionary events that produced multiple C4 subtypes within the Paniceae remains undetermined, the results presented here are consistent with only a subset of currently proposed models. The species used in this study constitute a panel of C3 and C4 grasses that are suitable for further studies on C4 photosynthesis, bioenergy, food and forage crops, and various developmental features of the Paniceae. © 2015 Botanical Society of America.
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling; Wang, Xianhui; Kang, Le
2017-06-01
The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain-containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. © The Authors 2017. Published by Oxford University Press.
Roxo, Fábio F; Albert, James S; Silva, Gabriel S C; Zawadzki, Cláudio H; Foresti, Fausto; Oliveira, Claudio
2014-01-01
The main objectives of this study are estimate a species-dense, time-calibrated molecular phylogeny of Hypoptopomatinae, Neoplecostominae, and Otothyrinae, which together comprise a group of armoured catfishes that is widely distributed across South America, to place the origin of major clades in time and space, and to demonstrate the role of river capture on patterns of diversification in these taxa. We used maximum likelihood and Bayesian methods to estimate a time-calibrated phylogeny of 115 loricariid species, using three mitochondrial and one nuclear genes to generate a matrix of 4,500 base pairs, and used parametric biogeographic analyses to estimate ancestral geographic ranges and to infer the effects of river capture events on the geographic distributions of these taxa. Our analysis recovered Hypoptopomatinae, Neoplecostominae, and Otothyrinae as monophyletic with strong statistical support, and Neoplecostominae as more closely related to Otothyrinae than to Hypoptopomatinae. Our time-calibrated phylogeny and ancestral-area estimations indicate an origin of Hypoptopomatinae, Neoplecostominae, and Otothyrinae during the Lower Eocene in the Atlantic Coastal Drainages, from which it is possible to infer several dispersal events to adjacent river basins during the Neogene. In conclusion we infer a strong influence of river capture in: (1) the accumulation of modern clade species-richness values; (2) the formation of the modern basin-wide species assemblages, and (3) the presence of many low-diversity, early-branching lineages restricted to the Atlantic Coastal Drainages. We further infer the importance of headwater stream capture and marine transgressions in shaping patterns in the distributions of Hypoptopomatinae, Neoplecostominae and Otothyrinae throughout South America.
Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling
2017-01-01
Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351
Roxo, Fábio F.; Albert, James S.; Silva, Gabriel S. C.; Zawadzki, Cláudio H.; Foresti, Fausto; Oliveira, Claudio
2014-01-01
The main objectives of this study are estimate a species-dense, time-calibrated molecular phylogeny of Hypoptopomatinae, Neoplecostominae, and Otothyrinae, which together comprise a group of armoured catfishes that is widely distributed across South America, to place the origin of major clades in time and space, and to demonstrate the role of river capture on patterns of diversification in these taxa. We used maximum likelihood and Bayesian methods to estimate a time-calibrated phylogeny of 115 loricariid species, using three mitochondrial and one nuclear genes to generate a matrix of 4,500 base pairs, and used parametric biogeographic analyses to estimate ancestral geographic ranges and to infer the effects of river capture events on the geographic distributions of these taxa. Our analysis recovered Hypoptopomatinae, Neoplecostominae, and Otothyrinae as monophyletic with strong statistical support, and Neoplecostominae as more closely related to Otothyrinae than to Hypoptopomatinae. Our time-calibrated phylogeny and ancestral-area estimations indicate an origin of Hypoptopomatinae, Neoplecostominae, and Otothyrinae during the Lower Eocene in the Atlantic Coastal Drainages, from which it is possible to infer several dispersal events to adjacent river basins during the Neogene. In conclusion we infer a strong influence of river capture in: (1) the accumulation of modern clade species-richness values; (2) the formation of the modern basin-wide species assemblages, and (3) the presence of many low-diversity, early-branching lineages restricted to the Atlantic Coastal Drainages. We further infer the importance of headwater stream capture and marine transgressions in shaping patterns in the distributions of Hypoptopomatinae, Neoplecostominae and Otothyrinae throughout South America. PMID:25148406
Corcos, D
2015-11-01
Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity. © 2015 The Foundation for the Scandinavian Journal of Immunology.
Divergence and Conservative Evolution of XTNX Genes in Land Plants.
Zhang, Yan-Mei; Xue, Jia-Yu; Liu, Li-Wei; Sun, Xiao-Qin; Zhou, Guang-Can; Chen, Min; Shao, Zhu-Qing; Hang, Yue-Yu
2017-01-01
The Toll-interleukin-1 receptor (TIR) and Nucleotide-binding site (NBS) domains are two major components of the TIR-NBS-leucine-rich repeat family plant disease resistance genes. Extensive functional and evolutionary studies have been performed on these genes; however, the characterization of a small group of genes that are composed of atypical TIR and NBS domains, namely XTNX genes, is limited. The present study investigated this specific gene family by conducting genome-wide analyses of 59 green plant genomes. A total of 143 XTNX genes were identified in 51 of the 52 land plant genomes, whereas no XTNX gene was detected in any green algae genomes, which indicated that XTNX genes originated upon emergence of land plants. Phylogenetic analysis revealed that the ancestral XTNX gene underwent two rounds of ancient duplications in land plants, which resulted in the formation of clades I/II and clades IIa/IIb successively. Although clades I and IIb have evolved conservatively in angiosperms, the motif composition difference and sequence divergence at the amino acid level suggest that functional divergence may have occurred since the separation of the two clades. In contrast, several features of the clade IIa genes, including the absence in the majority of dicots, the long branches in the tree, the frequent loss of ancestral motifs, and the loss of expression in all detected tissues of Zea mays , all suggest that the genes in this lineage might have undergone pseudogenization. This study highlights that XTNX genes are a gene family originated anciently in land plants and underwent specific conservative pattern in evolution.
Phylogeny and biogeography of the amphi-Pacific genus Aphananthe
Yang, Mei-Qing; Li, De-Zhu; Wen, Jun; Yi, Ting-Shuang
2017-01-01
Aphananthe is a small genus of five species showing an intriguing amphi-Pacific distribution in eastern, southern and southeastern Asia, Australia, and Mexico, also with one species in Madagascar. The phylogenetic relationships of Aphananthe were reconstructed with two nuclear (ITS & ETS) and two plastid (psbA-trnH & trnL-trnF) regions. Clade divergence times were estimated with a Bayesian approach, and the ancestral areas were inferred using the dispersal-extinction-cladogenesis and Bayesian Binary MCMC analyses. Aphananthe was supported to be monophyletic, with the eastern Asian A. aspera resolved as sister to a clade of the remaining four species. Aphananthe was inferred to have originated in the Late Cretaceous (71.5 mya, with 95% HPD: 66.6–81.3 mya), and the crown age of the genus was dated to be in the early Miocene (19.1 mya, with 95% HPD: 12.4–28.9 mya). The fossil record indicates that Aphananthe was present in the high latitude thermophilic forests in the early Tertiary, and experienced extinctions from the middle Tertiary onwards. Aphananthe originated in Europe based on the inference that included fossil and extant species, but eastern Asia was estimated to be the ancestral area of the clade of the extant species of Aphananthe. Both the West Gondwanan vicariance hypothesis and the boreotropics hypothesis could be excluded as explanation for its amphi-Pacific distribution. Long-distance dispersals out of eastern Asia into North America, southern and southeastern Asia and Australia, and Madagascar during the Miocene account for its wide intercontinental disjunct distribution. PMID:28170425
Silvestro, Daniele; Tejedor, Marcelo F; Serrano-Serrano, Martha L; Loiseau, Oriane; Rossier, Victor; Rolland, Jonathan; Zizka, Alexander; Höhna, Sebastian; Antonelli, Alexandre; Salamin, Nicolas
2018-06-20
New World monkeys (platyrrhines) are one of the most diverse groups of primates, occupying today a wide range of ecosystems in the American tropics and exhibiting large variations in ecology, morphology, and behavior. Although the relationships among the almost 200 living species are relatively well understood, we lack robust estimates of the timing of origin, ancestral morphology, and geographic range evolution of the clade. Here we integrate paleontological and molecular evidence to assess the evolutionary dynamics of extinct and extant platyrrhines. We develop novel analytical frameworks to infer the evolution of body mass, changes in latitudinal ranges through time, and species diversification rates using a phylogenetic tree of living and fossil taxa. Our results show that platyrrhines originated 5-10 million years earlier than previously assumed, dating back to the Middle Eocene. The estimated ancestral platyrrhine was small - weighing 0.4 kg - and matched the size of their presumed African ancestors. As the three platyrrhine families diverged, we recover a rapid change in body mass range. During the Miocene Climatic Optimum, fossil diversity peaked and platyrrhines reached their widest latitudinal range, expanding as far South as Patagonia, favored by warm and humid climate and the lower elevation of the Andes. Finally, global cooling and aridification after the middle Miocene triggered a geographic contraction of New World monkeys and increased their extinction rates. These results unveil the full evolutionary trajectory of an iconic and ecologically important radiation of monkeys and showcase the necessity of integrating fossil and molecular data for reliably estimating evolutionary rates and trends.
Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae).
Carrizo García, Carolina; Barfuss, Michael H J; Sehr, Eva M; Barboza, Gloria E; Samuel, Rosabelle; Moscone, Eduardo A; Ehrendorfer, Friedrich
2016-07-01
Capsicum (Solanaceae), native to the tropical and temperate Americas, comprises the well-known sweet and hot chili peppers and several wild species. So far, only partial taxonomic and phylogenetic analyses have been done for the genus. Here, the phylogenetic relationships between nearly all taxa of Capsicum were explored to test the monophyly of the genus and to obtain a better knowledge of species relationships, diversification and expansion. Thirty-four of approximately 35 Capsicum species were sampled. Maximum parsimony and Bayesian inference analyses were performed using two plastid markers (matK and psbA-trnH) and one single-copy nuclear gene (waxy). The evolutionary changes of nine key features were reconstructed following the parsimony ancestral states method. Ancestral areas were reconstructed through a Bayesian Markov chain Monte Carlo analysis. Capsicum forms a monophyletic clade, with Lycianthes as a sister group, following both phylogenetic approaches. Eleven well-supported clades (four of them monotypic) can be recognized within Capsicum, although some interspecific relationships need further analysis. A few features are useful to characterize different clades (e.g. fruit anatomy, chromosome base number), whereas some others are highly homoplastic (e.g. seed colour). The origin of Capsicum is postulated in an area along the Andes of western to north-western South America. The expansion of the genus has followed a clockwise direction around the Amazon basin, towards central and south-eastern Brazil, then back to western South America, and finally northwards to Central America. New insights are provided regarding interspecific relationships, character evolution, and geographical origin and expansion of Capsicum A clearly distinct early-diverging clade can be distinguished, centred in western-north-western South America. Subsequent rapid speciation has led to the origin of the remaining clades. The diversification of Capsicum has culminated in the origin of the main cultivated species in several regions of South to Central America. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sato, Jun J; Ohdachi, Satoshi D; Echenique-Diaz, Lazaro M; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki
2016-08-08
The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised.
Sato, Jun J.; Ohdachi, Satoshi D.; Echenique-Diaz, Lazaro M.; Borroto-Páez, Rafael; Begué-Quiala, Gerardo; Delgado-Labañino, Jorge L.; Gámez-Díez, Jorgelino; Alvarez-Lemus, José; Nguyen, Son Truong; Yamaguchi, Nobuyuki; Kita, Masaki
2016-01-01
The Cuban solenodon (Solenodon cubanus) is one of the most enigmatic mammals and is an extremely rare species with a distribution limited to a small part of the island of Cuba. Despite its rarity, in 2012 seven individuals of S. cubanus were captured and sampled successfully for DNA analysis, providing new insights into the evolutionary origin of this species and into the origins of the Caribbean fauna, which remain controversial. We conducted molecular phylogenetic analyses of five nuclear genes (Apob, Atp7a, Bdnf, Brca1 and Rag1; total, 4,602 bp) from 35 species of the mammalian order Eulipotyphla. Based on Bayesian relaxed molecular clock analyses, the family Solenodontidae diverged from other eulipotyphlan in the Paleocene, after the bolide impact on the Yucatan Peninsula, and S. cubanus diverged from the Hispaniolan solenodon (S. paradoxus) in the Early Pliocene. The strikingly recent divergence time estimates suggest that S. cubanus and its ancestral lineage originated via over-water dispersal rather than vicariance events, as had previously been hypothesised. PMID:27498968
Skin color variation in Orang Asli tribes of Peninsular Malaysia.
Ang, Khai C; Ngu, Mee S; Reid, Katherine P; Teh, Mei S; Aida, Zamzuraida S; Koh, Danny Xr; Berg, Arthur; Oppenheimer, Stephen; Salleh, Hood; Clyde, Mahani M; Md-Zain, Badrul M; Canfield, Victor A; Cheng, Keith C
2012-01-01
Pigmentation is a readily scorable and quantitative human phenotype, making it an excellent model for studying multifactorial traits and diseases. Convergent human evolution from the ancestral state, darker skin, towards lighter skin colors involved divergent genetic mechanisms in people of European vs. East Asian ancestry. It is striking that the European mechanisms result in a 10-20-fold increase in skin cancer susceptibility while the East Asian mechanisms do not. Towards the mapping of genes that contribute to East Asian pigmentation there is need for one or more populations that are admixed for ancestral and East Asian ancestry, but with minimal European contribution. This requirement is fulfilled by the Senoi, one of three indigenous tribes of Peninsular Malaysia collectively known as the Orang Asli. The Senoi are thought to be an admixture of the Negrito, an ancestral dark-skinned population representing the second of three Orang Asli tribes, and regional Mongoloid populations of Indo-China such as the Proto-Malay, the third Orang Asli tribe. We have calculated skin reflectance-based melanin indices in 492 Orang Asli, which ranged from 28 (lightest) to 75 (darkest); both extremes were represented in the Senoi. Population averages were 56 for Negrito, 42 for Proto-Malay, and 46 for Senoi. The derived allele frequencies for SLC24A5 and SLC45A2 in the Senoi were 0.04 and 0.02, respectively, consistent with greater South Asian than European admixture. Females and individuals with the A111T mutation had significantly lighter skin (p = 0.001 and 0.0039, respectively). Individuals with these derived alleles were found across the spectrum of skin color, indicating an overriding effect of strong skin lightening alleles of East Asian origin. These results suggest that the Senoi are suitable for mapping East Asian skin color genes.
Williams, Warren M; Ellison, Nicholas W; Ansari, Helal A; Verry, Isabelle M; Hussain, S Wajid
2012-04-24
White clover (Trifolium repens) is a ubiquitous weed of the temperate world that through use of improved cultivars has also become the most important legume of grazed pastures world-wide. It has long been suspected to be allotetraploid, but the diploid ancestral species have remained elusive. Putative diploid ancestors were indicated by DNA sequence phylogeny to be T. pallescens and T. occidentale. Here, we use further DNA evidence as well as a combination of molecular cytogenetics (FISH and GISH) and experimental hybridization to test the hypothesis that white clover originated as a hybrid between T. pallescens and T. occidentale. T. pallescens plants were identified with chloroplast trnL intron DNA sequences identical to those of white clover. Similarly, T. occidentale plants with nuclear ITS sequences identical to white clover were also identified. Reciprocal GISH experiments, alternately using labeled genomic DNA probes from each of the putative ancestral species on the same white clover cells, showed that half of the chromosomes hybridized with each probe. F1 hybrids were generated by embryo rescue and these showed strong interspecific chromosome pairing and produced a significant frequency of unreduced gametes, indicating the likely mode of polyploidization. The F1 hybrids are inter-fertile with white clover and function as synthetic white clovers, a valuable new resource for the re-incorporation of ancestral genomes into modern white clover for future plant breeding. Evidence from DNA sequence analyses, molecular cytogenetics, interspecific hybridization and breeding experiments supports the hypothesis that a diploid alpine species (T. pallescens) hybridized with a diploid coastal species (T. occidentale) to generate tetraploid T. repens. The coming together of these two narrowly adapted species (one alpine and the other maritime), along with allotetraploidy, has led to a transgressive hybrid with a broad adaptive range.
Mans, Ben J; de Klerk, Daniel; Pienaar, Ronel; Latif, Abdalla A
2011-01-01
Ticks are monophyletic and composed of the hard (Ixodidae) and soft (Argasidae) tick families, as well as the Nuttalliellidae, a family with a single species, Nuttalliella namaqua. Significant biological differences in lifestyle strategies for hard and soft ticks suggest that various blood-feeding adaptations occurred after their divergence. The phylogenetic relationships between the tick families have not yet been resolved due to the lack of molecular data for N. namaqua. This tick possesses a pseudo-scutum and apical gnathostoma as observed for ixodids, has a leathery cuticle similar to argasids and has been considered the evolutionary missing link between the two families. Little knowledge exists with regard to its feeding biology or host preferences. Data on its biology and systematic relationship to the other tick families could therefore be crucial in understanding the evolution of blood-feeding behaviour in ticks. Live specimens were collected and blood meal analysis showed the presence of DNA for girdled lizards from the Cordylid family. Feeding of ticks on lizards showed that engorgement occurred rapidly, similar to argasids, but that blood meal concentration occurs via malpighian excretion of water. Phylogenetic analysis of the 18S nuclear and 16S mitochondrial genes indicate that N. namaqua grouped basal to the main tick families. The data supports the monophyly of all tick families and suggests the evolution of argasid-like blood-feeding behaviour in the ancestral tick lineage. Based on the data and considerations from literature we propose an origin for ticks in the Karoo basin of Gondwanaland during the late Permian. The nuttalliellid family almost became extinct during the End Permian event, leaving N. namaqua as the closest living relative to the ancestral tick lineage and the evolutionary missing link between the tick families.
Filliol, Ingrid; Motiwala, Alifiya S.; Cavatore, Magali; Qi, Weihong; Hazbón, Manzour Hernando; Bobadilla del Valle, Miriam; Fyfe, Janet; García-García, Lourdes; Rastogi, Nalin; Sola, Christophe; Zozio, Thierry; Guerrero, Marta Inírida; León, Clara Inés; Crabtree, Jonathan; Angiuoli, Sam; Eisenach, Kathleen D.; Durmaz, Riza; Joloba, Moses L.; Rendón, Adrian; Sifuentes-Osornio, José; Ponce de León, Alfredo; Cave, M. Donald; Fleischmann, Robert; Whittam, Thomas S.; Alland, David
2006-01-01
We analyzed a global collection of Mycobacterium tuberculosis strains using 212 single nucleotide polymorphism (SNP) markers. SNP nucleotide diversity was high (average across all SNPs, 0.19), and 96% of the SNP locus pairs were in complete linkage disequilibrium. Cluster analyses identified six deeply branching, phylogenetically distinct SNP cluster groups (SCGs) and five subgroups. The SCGs were strongly associated with the geographical origin of the M. tuberculosis samples and the birthplace of the human hosts. The most ancestral cluster (SCG-1) predominated in patients from the Indian subcontinent, while SCG-1 and another ancestral cluster (SCG-2) predominated in patients from East Asia, suggesting that M. tuberculosis first arose in the Indian subcontinent and spread worldwide through East Asia. Restricted SCG diversity and the prevalence of less ancestral SCGs in indigenous populations in Uganda and Mexico suggested a more recent introduction of M. tuberculosis into these regions. The East African Indian and Beijing spoligotypes were concordant with SCG-1 and SCG-2, respectively; X and Central Asian spoligotypes were also associated with one SCG or subgroup combination. Other clades had less consistent associations with SCGs. Mycobacterial interspersed repetitive unit (MIRU) analysis provided less robust phylogenetic information, and only 6 of the 12 MIRU microsatellite loci were highly differentiated between SCGs as measured by GST. Finally, an algorithm was devised to identify two minimal sets of either 45 or 6 SNPs that could be used in future investigations to enable global collaborations for studies on evolution, strain differentiation, and biological differences of M. tuberculosis. PMID:16385065
Miller, David J.; Hayward, David C.; Reece-Hoyes, John S.; Scholten, Ingo; Catmull, Julian; Gehring, Walter J.; Callaerts, Patrick; Larsen, Jill E.; Ball, Eldon E.
2000-01-01
Pax genes encode a family of transcription factors, many of which play key roles in animal embryonic development but whose evolutionary relationships and ancestral functions are unclear. To address these issues, we are characterizing the Pax gene complement of the coral Acropora millepora, an anthozoan cnidarian. As the simplest animals at the tissue level of organization, cnidarians occupy a key position in animal evolution, and the Anthozoa are the basal class within this diverse phylum. We have identified four Pax genes in Acropora: two (Pax-Aam and Pax-Bam) are orthologs of genes identified in other cnidarians; the others (Pax-Cam and Pax-Dam) are unique to Acropora. Pax-Aam may be orthologous with Drosophila Pox neuro, and Pax-Bam clearly belongs to the Pax-2/5/8 class. The Pax-Bam Paired domain binds specifically and preferentially to Pax-2/5/8 binding sites. The recently identified Acropora gene Pax-Dam belongs to the Pax-3/7 class. Clearly, substantial diversification of the Pax family occurred before the Cnidaria/higher Metazoa split. The fourth Acropora Pax gene, Pax-Cam, may correspond to the ancestral vertebrate Pax gene and most closely resembles Pax-6. The expression pattern of Pax-Cam, in putative neurons, is consistent with an ancestral role of the Pax family in neural differentiation and patterning. We have determined the genomic structure of each Acropora Pax gene and show that some splice sites are shared both between the coral genes and between these and Pax genes in triploblastic metazoans. Together, these data support the monophyly of the Pax family and indicate ancient origins of several introns. PMID:10781047
Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*
Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.
2012-01-01
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007
Gene duplication and the evolution of hemoglobin isoform differentiation in birds.
Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F
2012-11-02
The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.
NASA Technical Reports Server (NTRS)
Holland, L. Z.; Schubert, M.; Holland, N. D.; Neuman, T.
2000-01-01
Amphioxus, as the closest living invertebrate relative of the vertebrates, can give insights into the evolutionary origin of the vertebrate body plan. Therefore, to investigate the evolution of genetic mechanisms for establishing and patterning the neuroectoderm, we cloned and determined the embryonic expression of two amphioxus transcription factors, AmphiSox1/2/3 and AmphiNeurogenin. These genes are the earliest known markers for presumptive neuroectoderm in amphioxus. By the early neurula stage, AmphiNeurogenin expression becomes restricted to two bilateral columns of segmentally arranged neural plate cells, which probably include precursors of motor neurons. This is the earliest indication of segmentation in the amphioxus nerve cord. Later, expression extends to dorsal cells in the nerve cord, which may include precursors of sensory neurons. By the midneurula, AmphiSox1/2/3 expression becomes limited to the dorsal part of the forming neural tube. These patterns resemble those of their vertebrate and Drosophila homologs. Taken together with the evolutionarily conserved expression of the dorsoventral patterning genes, BMP2/4 and chordin, in nonneural and neural ectoderm, respectively, of chordates and Drosophila, our results are consistent with the evolution of the chordate dorsal nerve cord and the insect ventral nerve cord from a longitudinal nerve cord in a common bilaterian ancestor. However, AmphiSox1/2/3 differs from its vertebrate homologs in not being expressed outside the CNS, suggesting that additional roles for this gene have evolved in connection with gene duplication in the vertebrate lineage. In contrast, expression in the midgut of AmphiNeurogenin together with the gene encoding the insulin-like peptide suggests that amphioxus may have homologs of vertebrate pancreatic islet cells, which express neurogenin3. In addition, AmphiNeurogenin, like its vertebrate and Drosophila homologs, is expressed in apparent precursors of epidermal chemosensory and possibly mechanosensory cells, suggesting a common origin for protostome and deuterostome epidermal sensory cells in the ancestral bilaterian. Copyright 2000 Academic Press.
Yehia, Nahed; Naguib, Mahmoud M; Li, Ruiyun; Hagag, Naglaa; El-Husseiny, Mohamed; Mosaad, Zainab; Nour, Ahmed; Rabea, Neveen; Hasan, Wafaa M; Hassan, Mohamed K; Harder, Timm; Arafa, Abdel-Satar A
2018-03-01
Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt. Copyright © 2017 Elsevier B.V. All rights reserved.
Donkey Orchid Symptomless Virus: A Viral ‘Platypus’ from Australian Terrestrial Orchids
Wylie, Stephen J.; Li, Hua; Jones, Michael G. K.
2013-01-01
Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with ‘potexvirus-like’ replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative proteins are distant from plant viruses. DOSV is not readily classified in current lower order virus taxa. PMID:24223974
Fargette, Mireille; Berthier, Karine; Richaud, Myriam; Lollier, Virginie; Franck, Pierre; Hernandez, Adan; Frutos, Roger
2010-08-01
The tropical and subtropical parthenogenetic plant-parasitic nematodes Meloidogyne are polyphagous major agricultural pests. Implementing proper pest management approaches requires a good understanding of mechanisms, population structure, evolutionary patterns and species identification. A comparative analysis of the mitochondrial vs nuclear diversity was conducted on a selected set of Meloidogyne lines from various geographic origins. Mitochondrial co2-16S sequences and AFLP markers of total DNA were applied because of their ability to evidence discrete genetic variation between closely related isolates. Several distinct maternal lineages were present, now associated with different genetic backgrounds. Relative discordances were found when comparing mitochondrial and nuclear diversity patterns. These patterns are most likely related to crosses within one ancestral genetic pool, followed by the establishment of parthenogenesis. In this case, they mirror the genetic backgrounds of the original individuals. Another aspect could be that species emergence was recent or on process from this original genetic pool and that the relatively short time elapsed since then and before parthenogenesis settlement did not allow for lineage sorting. This could also be compatible with the hypothesis of hybrids between closely related species. This genetic pool would correspond to a species as defined by the species interbreeding concept, but also including the grey area of species boundaries. This complex process has implications on the way genotypic and phenotypic diversity should be addressed. The phenotype of parthenogenetic lines is at least for part determined by the ancestral amphimictic genetic background. A direct consequence is, therefore, in terms of risk management, the limited confidence one can have on the direct association of an agronomic threat to a simple typing or species delineation. Risk management strategies and tools must thus consider this complexity when designing quarantine implementation, resistance breeding programmes or molecular diagnostic. Copyright 2009 Elsevier B.V. All rights reserved.
Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick
2015-01-01
Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP marker set will be useful for systematic estimation of admixture structure of citrus germplasm and for diverse genetic studies. PMID:25973611
Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick
2015-01-01
Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP marker set will be useful for systematic estimation of admixture structure of citrus germplasm and for diverse genetic studies.
Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds
Nesbitt, Sterling J.
2016-01-01
Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period. PMID:27930315
Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds
NASA Astrophysics Data System (ADS)
Griffin, Christopher T.; Nesbitt, Sterling J.
2016-12-01
Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.
Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds.
Griffin, Christopher T; Nesbitt, Sterling J
2016-12-20
Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.
Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla
Cameron, Chris B.; Garey, James R.; Swalla, Billie J.
2000-01-01
The deuterostome phyla include Echinodermata, Hemichordata, and Chordata. Chordata is composed of three subphyla, Vertebrata, Cephalochordata (Branchiostoma), and Urochordata (Tunicata). Careful analysis of a new 18S rDNA data set indicates that deuterostomes are composed of two major clades: chordates and echinoderms + hemichordates. This analysis strongly supports the monophyly of each of the four major deuterostome taxa: Vertebrata + Cephalochordata, Urochordata, Hemichordata, and Echinodermata. Hemichordates include two distinct classes, the enteropneust worms and the colonial pterobranchs. Most previous hypotheses of deuterostome origins have assumed that the morphology of extant colonial pterobranchs resembles the ancestral deuterostome. We present a molecular phylogenetic analysis of hemichordates that challenges this long-held view. We used 18S rRNA to infer evolutionary relationships of the hemichordate classes Pterobranchia and Enteropneusta. Our data show that pterobranchs may be derived within enteropneust worms rather than being a sister clade to the enteropneusts. The nesting of the pterobranchs within the enteropneusts dramatically alters our view of the evolution of the chordate body plan and suggests that the ancestral deuterostome more closely resembled a mobile worm-like enteropneust than a sessile colonial pterobranch. PMID:10781046
Use of Isotope Ratio Determination (13C/12C) to Assess the Production Method of Sparkling Wine.
Rossier, Joël S; Maury, Valérie; Gaillard, Laetitia; Pfammatter, Elmar
2016-01-01
The production of a sparkling wine can be performed with different methods taking from a few weeks to several years, which often justifies a difference in added value for the consumer. This paper presents the use of isotope ratio δ(13)C measurements combined with physico-chemical analyses for the determination of mislabelling of sparkling wines produced by 'ancestral', 'traditional', 'closed tank' or 'gasification' methods. This work shows that the isotope composition of CO(2) compared with that of the corresponding dried residue of wine (DRW) can assess whether carbonate CO(2) in a sparkling wine originates from alcohol fermentation or from artificial gas addition. Isotopic ratios expressed as δ(13)C(CO2) and δ(13)C(DRW) measurements have been obtained for each wine by gasbench isotopic ratio mass spectroscopy and cavity ring down infrared spectroscopy, respectively. When the difference between δ(13)C(CO2) and δ(13)C(DRW) is negative, the presence of artificial CO(2) can be undoubtedly inferred, which would exclude the production methods 'ancestral' or 'traditional' for instance. Other parameters such as alcohol content, sugar and acid distributions are also important to complete the analytical panel to aid fraud tracking.
Webster, Nicole B; Van Dooren, Tom J M; Schilthuizen, Menno
2012-06-01
The fascinating and often unlikely shell shapes in the terrestrial micromollusc family Diplommatinidae (Gastropoda: Caenogastropoda) provide a particularly attractive set of multiple morphological traits to investigate evolutionary patterns of shape variation. Here, a molecular phylogenetic reconstruction, based on five genes and 2700 bp, was undertaken for this family, integrated with ancestral state reconstruction and phylogenetic PCA of discrete and quantitative traits, respectively. We found strong support for the Diplommatininae as a monophyletic group, separating the Cochlostomatidae into a separate family. Five main clades appear within the Diplommatininae, corresponding with both coiling direction and biogeographic patterns. A Belau clade (A) with highly diverse (but always sinistral) morphology comprised Hungerfordia, Palaina, and some Diplommatina. Arinia (dextral) and Opisthostoma (sinistroid) are sister groups in clade B. Clade C and D solely contain sinistral Diplommatina that are robust and little ornamented (clade C) or slender and sculptured (clade D). Clade E is dextral but biogeographically diverse with species from all sampled regions save the Caroline Islands. Adelopoma, Diplommatina, Palaina, and Hungerfordia require revision to allow taxonomy to reflect phylogeny, whereas Opisthostoma is clearly monophyletic. Ancestral state reconstruction suggests a sinistral origin for the Diplommatinidae, with three reversals to dextrality. Copyright © 2012 Elsevier Inc. All rights reserved.
Identification of a missing link in the evolution of an enzyme into a transcriptional regulator.
Durante-Rodríguez, Gonzalo; Mancheño, José Miguel; Rivas, Germán; Alfonso, Carlos; García, José Luis; Díaz, Eduardo; Carmona, Manuel
2013-01-01
The evolution of transcriptional regulators through the recruitment of DNA-binding domains by enzymes is a widely held notion. However, few experimental approaches have directly addressed this hypothesis. Here we report the reconstruction of a plausible pathway for the evolution of an enzyme into a transcriptional regulator. The BzdR protein is the prototype of a subfamily of prokaryotic transcriptional regulators that controls the expression of genes involved in the anaerobic degradation of benzoate. We have shown that BzdR consists of an N-terminal DNA-binding domain connected through a linker to a C-terminal effector-binding domain that shows significant identity to the shikimate kinase (SK). The construction of active synthetic BzdR-like regulators by fusing the DNA-binding domain of BzdR to the Escherichia coli SKI protein strongly supports the notion that an ancestral SK domain could have been involved in the evolutionary origin of BzdR. The loss of the enzymatic activity of the ancestral SK domain was essential for it to evolve as a regulatory domain in the current BzdR protein. This work also supports the view that enzymes precede the emergence of the regulatory systems that may control their expression.
Hybridization and the phylogenetic relationship between polecats and domestic ferrets in Britain
Davison, A.; Birks, J. D. S.; Griffiths, H. I.; Kitchener, A. C.; Biggins, D.; Butlin, R. K.
1999-01-01
Ferrets (Mustela furo) were domesticated from polecats (M. putorius, M. eversmannii) over 2000 years ago. Following their introduction to Britain, they escaped and hybridized with native European polecats (M. putorius). Native polecats declined to the point of near extinction prior to World War I, but have recently begun to expand from a Welsh refugium. Concern has arisen as to the extent of polecat/ferret introgression, and in particular, whether the expanding population is of mainly hybrid origin. Therefore, mitochondrial DNA sequencing was used to investigate polecat genetic diversity in Britain. Two geographically distinct lineages were found, where one may be ancestral to the British polecat, and the other to the domestic ferret. The ancestral distribution of each lineage, or assortative mating is sufficient to explain the observed pattern. A further comparison between the distribution of the polecat phenotype and mitochondrial haplotype implies that the current population expansion may be mediated by dispersing male polecats hybridizing with female feral ferrets. However, the wild source of the ferret remains obscure. Relatively recent speciation from European mink (M. lutreola) and black-footed ferrets (M. nigripes), and/or the effects of hybridization result in an unresolved molecular phylogeny.
Parallel evolution of mound-building and grass-feeding in Australian nasute termites.
Arab, Daej A; Namyatova, Anna; Evans, Theodore A; Cameron, Stephen L; Yeates, David K; Ho, Simon Y W; Lo, Nathan
2017-02-01
Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6-8 m in height and housing millions of individuals. Although functional aspects of these structures are well studied, their evolutionary origins remain poorly understood. Australian representatives of the termitid subfamily Nasutitermitinae display a wide variety of nesting habits, making them an ideal group for investigating the evolution of mound building. Because they feed on a variety of substrates, they also provide an opportunity to illuminate the evolution of termite diets. Here, we investigate the evolution of termitid mound building and diet, through a comprehensive molecular phylogenetic analysis of Australian Nasutitermitinae. Molecular dating analysis indicates that the subfamily has colonized Australia on three occasions over the past approximately 20 Myr. Ancestral-state reconstruction showed that mound building arose on multiple occasions and from diverse ancestral nesting habits, including arboreal and wood or soil nesting. Grass feeding appears to have evolved from wood feeding via ancestors that fed on both wood and leaf litter. Our results underscore the adaptability of termites to ancient environmental change, and provide novel examples of parallel evolution of extended phenotypes. © 2017 The Author(s).
Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes.
Huang, Ruiqi; O'Donnell, Andrew J; Barboline, Jessica J; Barkman, Todd J
2016-09-20
Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study.
MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers
Franzenburg, Sören; Fraune, Sebastian; Künzel, Sven; Baines, John F.; Domazet-Lošo, Tomislav; Bosch, Thomas C. G.
2012-01-01
Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens. PMID:23112184
MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers.
Franzenburg, Sören; Fraune, Sebastian; Künzel, Sven; Baines, John F; Domazet-Loso, Tomislav; Bosch, Thomas C G
2012-11-20
Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens.
Cano, Margarita; Drouilhet, Laurence; Plisson-Petit, Florence; Bardou, Philippe; Fabre, Stéphane; Servin, Bertrand; Sarry, Julien; Woloszyn, Florent; Mulsant, Philippe; Foulquier, Didier; Carrière, Fabien; Aletru, Mathias; Rodde, Nathalie; Cauet, Stéphane; Bouchez, Olivier; Pirson, Maarten; Tosser-Klopp, Gwenola; Allain, Daniel
2017-01-01
Abstract The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the “woolly” allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3′ UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation. PMID:28379502
Endangered Species Hold Clues to Human Evolution
Bejerano, Gill; Salama, Sofie R.; Haussler, David
2010-01-01
We report that 18 conserved, and by extension functional, elements in the human genome are the result of retroposon insertions that are evolving under purifying selection in mammals. We show evidence that 1 of the 18 elements regulates the expression of ASXL3 during development by encoding an alternatively spliced exon that causes nonsense-mediated decay of the transcript. The retroposon that gave rise to these functional elements was quickly inactivated in the mammalian ancestor, and all traces of it have been lost due to neutral decay. However, the tuatara has maintained a near-ancestral version of this retroposon in its extant genome, which allows us to connect the 18 human elements to the evolutionary events that created them. We propose that conservation efforts over more than 100 years may not have only prevented the tuatara from going extinct but could have preserved our ability to understand the evolutionary history of functional elements in the human genome. Through simulations, we argue that species with historically low population sizes are more likely to harbor ancient mobile elements for long periods of time and in near-ancestral states, making these species indispensable in understanding the evolutionary origin of functional elements in the human genome. PMID:20332163
Prasad, Bharati; Saxena, Richa; Goel, Namni; Patel, Sanjay R
2018-06-01
Recent evidence has highlighted the health inequalities in sleep behaviors and sleep disorders that adversely affect outcomes in select populations, including African-American and Hispanic-American subjects. Race-related sleep health inequalities are ascribed to differences in multilevel and interlinked health determinants, such as sociodemographic factors, health behaviors, and biology. African-American and Hispanic-American subjects are admixed populations whose genetic inheritance combines two or more ancestral populations originating from different continents. Racial inequalities in admixed populations can be parsed into relevant groups of mediating factors (environmental vs genetic) with the use of measures of genetic ancestry, including the proportion of an individual's genetic makeup that comes from each of the major ancestral continental populations. This review describes sleep health inequalities in African-American and Hispanic-American subjects and considers the potential utility of ancestry studies to exploit these differences to gain insight into the genetic underpinnings of these phenotypes. The inclusion of genetic approaches in future studies of admixed populations will allow greater understanding of the potential biological basis of race-related sleep health inequalities. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Laterality and the evolution of the prefronto-cerebellar system in anthropoids.
Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin
2013-06-01
There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. © 2013 New York Academy of Sciences.
Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes
Huang, Ruiqi; O’Donnell, Andrew J.; Barboline, Jessica J.; Barkman, Todd J.
2016-01-01
Convergent evolution is a process that has occurred throughout the tree of life, but the historical genetic and biochemical context promoting the repeated independent origins of a trait is rarely understood. The well-known stimulant caffeine, and its xanthine alkaloid precursors, has evolved multiple times in flowering plant history for various roles in plant defense and pollination. We have shown that convergent caffeine production, surprisingly, has evolved by two previously unknown biochemical pathways in chocolate, citrus, and guaraná plants using either caffeine synthase- or xanthine methyltransferase-like enzymes. However, the pathway and enzyme lineage used by any given plant species is not predictable from phylogenetic relatedness alone. Ancestral sequence resurrection reveals that this convergence was facilitated by co-option of genes maintained over 100 million y for alternative biochemical roles. The ancient enzymes of the Citrus lineage were exapted for reactions currently used for various steps of caffeine biosynthesis and required very few mutations to acquire modern-day enzymatic characteristics, allowing for the evolution of a complete pathway. Future studies aimed at manipulating caffeine content of plants will require the use of different approaches given the metabolic and genetic diversity revealed by this study. PMID:27638206
Bass, Andrew H.; Chagnaud, Boris P.
2012-01-01
Acoustic signaling behaviors are widespread among bony vertebrates, which include the majority of living fishes and tetrapods. Developmental studies in sound-producing fishes and tetrapods indicate that central pattern generating networks dedicated to vocalization originate from the same caudal hindbrain rhombomere (rh) 8-spinal compartment. Together, the evidence suggests that vocalization and its morphophysiological basis, including mechanisms of vocal–respiratory coupling that are widespread among tetrapods, are ancestral characters for bony vertebrates. Premotor-motor circuitry for pectoral appendages that function in locomotion and acoustic signaling develops in the same rh8-spinal compartment. Hence, vocal and pectoral phenotypes in fishes share both developmental origins and roles in acoustic communication. These findings lead to the proposal that the coupling of more highly derived vocal and pectoral mechanisms among tetrapods, including those adapted for nonvocal acoustic and gestural signaling, originated in fishes. Comparative studies further show that rh8 premotor populations have distinct neurophysiological properties coding for equally distinct behavioral attributes such as call duration. We conclude that neural network innovations in the spatiotemporal patterning of vocal and pectoral mechanisms of social communication, including forelimb gestural signaling, have their evolutionary origins in the caudal hindbrain of fishes. PMID:22723366
The origin and early evolution of vascular plant shoots and leaves.
Harrison, C Jill; Morris, Jennifer L
2018-02-05
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo-devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in 'telome theory' hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.
Parfrey, Laura Wegener; Lahr, Daniel J G
2013-04-01
The cellular slime mold Dictyostelium has cell-cell connections similar in structure, function, and underlying molecular mechanisms to animal epithelial cells. These similarities form the basis for the proposal that multicellularity is ancestral to the clade containing animals, fungi, and Amoebozoa (including Dictyostelium): Amorphea (formerly "unikonts"). This hypothesis is intriguing and if true could precipitate a paradigm shift. However, phylogenetic analyses of two key genes reveal patterns inconsistent with a single origin of multicellularity. A single origin in Amorphea would also require loss of multicellularity in each of the many unicellular lineages within this clade. Further, there are numerous other origins of multicellularity within eukaryotes, including three within Amorphea, that are not characterized by these structural and mechanistic similarities. Instead, convergent evolution resulting from similar selective pressures for forming multicellular structures with motile and differentiated cells is the most likely explanation for the observed similarities between animal and dictyostelid cell-cell connections. Copyright © 2013 WILEY Periodicals, Inc.
Origin of a folded repeat protein from an intrinsically disordered ancestor
Zhu, Hongbo; Sepulveda, Edgardo; Hartmann, Marcus D; Kogenaru, Manjunatha; Ursinus, Astrid; Sulz, Eva; Albrecht, Reinhard; Coles, Murray; Martin, Jörg; Lupas, Andrei N
2016-01-01
Repetitive proteins are thought to have arisen through the amplification of subdomain-sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2–5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin. DOI: http://dx.doi.org/10.7554/eLife.16761.001 PMID:27623012
The origin and early evolution of vascular plant shoots and leaves
2018-01-01
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo–devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in ‘telome theory’ hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’. PMID:29254961
USDA-ARS?s Scientific Manuscript database
Hexaploid oat (Avena sativa, 2n = 6x = 42) is a member of the Poaceae family with a very large genome (~13 Gb) containing 21 chromosome pairs: seven from each of two similar ancestral diploids (A and D) and seven from a more diverged ancestral diploid (C). Physical rearrangements among ancestral oat...
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
Huang, Ruiqi; Hippauf, Frank; Rohrbeck, Diana; Haustein, Maria; Wenke, Katrin; Feike, Janie; Sorrelle, Noah; Piechulla, Birgit; Barkman, Todd J.
2012-01-01
In this study, we investigated the role for ancestral functional variation that may be selected upon to generate protein functional shifts using ancestral protein resurrection, statistical tests for positive selection, forward and reverse evolutionary genetics, and enzyme functional assays. Data are presented for three instances of protein functional change in the salicylic acid/benzoic acid/theobromine (SABATH) lineage of plant secondary metabolite-producing enzymes. In each case, we demonstrate that ancestral nonpreferred activities were improved upon in a daughter enzyme after gene duplication, and that these functional shifts were likely coincident with positive selection. Both forward and reverse mutagenesis studies validate the impact of one or a few sites toward increasing activity with ancestrally nonpreferred substrates. In one case, we document the occurrence of an evolutionary reversal of an active site residue that reversed enzyme properties. Furthermore, these studies show that functionally important amino acid replacements result in substrate discrimination as reflected in evolutionary changes in the specificity constant (kcat/KM) for competing substrates, even though adaptive substitutions may affect KM and kcat separately. In total, these results indicate that nonpreferred, or even latent, ancestral protein activities may be coopted at later times to become the primary or preferred protein activities. PMID:22315396