Skin Diseases: Skin Health and Skin Diseases
... The two most common types are basal cell cancer and squamous cell cancer. Melanoma, a more serious type of skin ... The two most common types are basal cell cancer and squamous cell cancer. They usually form on the head, face, ...
Common themes and cell type specific variations of higher order chromatin arrangements in the mouse
Mayer, Robert; Brero, Alessandro; von Hase, Johann; Schroeder, Timm; Cremer, Thomas; Dietzel, Steffen
2005-01-01
Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes) with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation. PMID:16336643
Stages of Thymoma and Thymic Carcinoma
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... cancer cells have places where hormones can attach ( receptors ), drugs, surgery, or radiation therapy is used to ...
Treatment Option Overview (Carcinoma of Unknown Primary)
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... cancer cells have places where hormones can attach ( receptors ), drugs, surgery, or radiation therapy are used to ...
Stages of Childhood Non-Hodgkin Lymphoma
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... Patients with anaplastic large cell lymphoma have a receptor , called CD30, on the surface of their T ...
Treatment Options for Thymoma and Thymic Carcinoma
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... cancer cells have places where hormones can attach ( receptors ), drugs, surgery, or radiation therapy is used to ...
Urethral Cancer—Health Professional Version
Urethral cancer is a rare cancer. There are three types of urethral cancer. Squamous cell carcinoma is the most common type. Transitional cell carcinoma of the urethra, and adenocarcinoma in the glands around the urethra are less common. Find evidence-based information on urethral cancer treatment.
Malignant Mesothelioma—Health Professional Version
Epithelial mesothelioma is the most common type of malignant mesothelioma, which forms in the cells that line organs. The other types begin in spindle-shaped cells called sarcomatoid cells or are a mixture of both cell types. Find evidence-based information on malignant mesothelioma treatment.
... The two most common types are basal cell cancer and squamous cell cancer. Melanoma, a more serious type of skin cancer, ... million people are treated for basal cell or squamous cell skin cancer each year. Basal cell skin cancer is several ...
CCR investigators are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma. are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma.
CCR investigators are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma. are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin
Cho, Eun-Yoon; Kim, Ki-Hyun; Kim, Won-Seog; Yoo, Keon Hee; Koo, Hong-Hoe
2008-01-01
This study is to identify the spectrum of Epstein-Barr virus (EBV)-positive lymphoproliferative diseases (LPD) and relationships between these diseases in Korea. The EBV status and clinicopathology of 764 patients, including acute EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV (CAEBV) infections, B-LPD arising in chronic latent EBV infection, T & natural killer (NK) cell non-Hodgkin's lymphomas (NHL), B-NHLs, and Hodgkin's lymphomas (HD), were analyzed. T or NK cell NHLs were the most common forms of EBV-positive NHLs (107/167, 64%); among these, nasal-type NK/T cell lymphomas were the most common (89/107, 83%). According to the age, Burkitt's lymphoma was the most common in early childhood; in teenagers, chronic (active) EBV infection-associated LPD was the most common type. The incidence of NK/T cell lymphoma began to increase from the twenties and formed the major type of EBV-associated tumor throughout life. Diffuse large B cell lymphoma formed the major type in the sixties and seventies. In conclusion, primary infections in early childhood are complicated by the development of CAEBV infections that are main predisposing factors for EBV-associated T or NK cell malignancies in young adults. In old patients, decreased immunity associated with old age and environmental cofactors may provoke the development of peripheral T cell lymphoma, unspecified, and diffuse large B cell lymphoma. PMID:18436998
Cho, Eun-Yoon; Kim, Ki-Hyun; Kim, Won-Seog; Yoo, Keon Hee; Koo, Hong-Hoe; Ko, Young-Hyeh
2008-04-01
This study is to identify the spectrum of Epstein-Barr virus (EBV)-positive lymphoproliferative diseases (LPD) and relationships between these diseases in Korea. The EBV status and clinicopathology of 764 patients, including acute EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), chronic active EBV (CAEBV) infections, B-LPD arising in chronic latent EBV infection, T & natural killer (NK) cell non-Hodgkin's lymphomas (NHL), B-NHLs, and Hodgkin's lymphomas (HD), were analyzed. T or NK cell NHLs were the most common forms of EBV-positive NHLs (107/167, 64%); among these, nasal-type NK/T cell lymphomas were the most common (89/107, 83%). According to the age, Burkitt's lymphoma was the most common in early childhood; in teenagers, chronic (active) EBV infection-associated LPD was the most common type. The incidence of NK/T cell lymphoma began to increase from the twenties and formed the major type of EBV-associated tumor throughout life. Diffuse large B cell lymphoma formed the major type in the sixties and seventies. In conclusion, primary infections in early childhood are complicated by the development of CAEBV infections that are main predisposing factors for EBV-associated T or NK cell malignancies in young adults. In old patients, decreased immunity associated with old age and environmental cofactors may provoke the development of peripheral T cell lymphoma, unspecified, and diffuse large B cell lymphoma.
Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.
Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M
1990-06-01
It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.
Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.
2016-01-01
ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity. PMID:27440904
... States. The two most common types are basal cell cancer and squamous cell cancer. They usually form on the head, face, ... If not treated, some types of skin cancer cells can spread to other tissues and organs. Treatments ...
Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing.
Renthal, William
2018-01-01
Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.
Chimeric antigen receptor (CAR) T-cell immunotherapy has emerged as a promising treatment for pre-B cell acute lymphoblastic leukemia (B-ALL), the most common type of childhood cancer. B-ALL is characterized by an overproduction of immature white blood cells called lymphoblasts. In a trial led by Center for Cancer Research investigators, around 70 to 90 percent of patients
Chimeric antigen receptor (CAR) T-cell immunotherapy has emerged as a promising treatment for pre-B cell acute lymphoblastic leukemia (B-ALL), the most common type of childhood cancer. B-ALL is characterized by an overproduction of immature white blood cells called lymphoblasts. In a trial led by Center for Cancer Research investigators, around 70 to 90 percent of patients whose B-ALL has relapsed or developed resistance to chemotherapy entered remission after CAR T-cell therapy targeting CD19. Read more…
2015-12-01
cells (HSCs) are multipotent cells that differentiate into myeloid, lymphoid and erythroid lineages, and have short-term or long-term regenerative...All rights reserved Nature Reviews | Rheumatology a b MPP CMP CLP Lymphoid cells NK cellB cell T cell Megakaryocyte and erythrocytes Macrophage and...into other cell types. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MPP, multipotent progenitor; NK cell , natural killer cell . R E
Genetic identification of brain cell types underlying schizophrenia.
Skene, Nathan G; Bryois, Julien; Bakken, Trygve E; Breen, Gerome; Crowley, James J; Gaspar, Héléna A; Giusti-Rodriguez, Paola; Hodge, Rebecca D; Miller, Jeremy A; Muñoz-Manchado, Ana B; O'Donovan, Michael C; Owen, Michael J; Pardiñas, Antonio F; Ryge, Jesper; Walters, James T R; Linnarsson, Sten; Lein, Ed S; Sullivan, Patrick F; Hjerling-Leffler, Jens
2018-06-01
With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. By applying knowledge of the cellular taxonomy of the brain from single-cell RNA sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common-variant genomic results consistently mapped to pyramidal cells, medium spiny neurons (MSNs) and certain interneurons, but far less consistently to embryonic, progenitor or glial cells. These enrichments were due to sets of genes that were specifically expressed in each of these cell types. We also found that many of the diverse gene sets previously associated with schizophrenia (genes involved in synaptic function, those encoding mRNAs that interact with FMRP, antipsychotic targets, etc.) generally implicated the same brain cell types. Our results suggest a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. The genetic risk associated with MSNs did not overlap with that of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically distinct roles in schizophrenia.
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... Heart disease. Head and neck cancers . Lung cancer . Bladder cancer . Pancreatic cancer . It is not known if the ...
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...
Evaluation of surgical margins according to the histological type of basal cell carcinoma.
Godoy, Charles Antonio Pires de; Neta, Alice Lima de Oliveira; Leão, Sofia Silveira de Souza; Dantas, Raul Lima; Carvalho, Valeska Oliveira Fonseca; Silva, Samuel Freire da
2017-01-01
Basal cell carcinoma is the most common skin cancer in the world. The aim of this study was to evaluate the surgical margin of basal cell carcinoma and correlate this with its histologic subtype. A retrospective analysis of pathology laboratory records from 1990 to 2000 was performed and the following data was collected: age, sex, race, anatomical location, histological type, and state of the excision margins in 1,428 histopathological reports of basal cell carcinoma. Ages ranged from 6 to 99 years, with an average of 57. There was a slight predominance of lesions in white women patients, and the most common histological subtype was the nodular, followed by the superficial. The most common locations were in the head and neck, with highest prevalence appeared in the nose. Surgical margins revealed a lateral involvement of 20.14% and a deep involvement of 12.47%. The fibrosing basal cell carcinoma is the histological type that most often presented positive surgical margins.
Treatment Option Overview (Colon Cancer)
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...
Treatment Options by Stage (Rectal Cancer)
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...
Treatment Option Overview (Rectal Cancer)
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...
Childhood Non-Hodgkin Lymphoma Treatment (PDQ®)—Health Professional Version
Childhood non-Hodgkin lymphoma (NHL) has three main types (aggressive mature B-cell [Burkitt, diffuse large B-cell, primary mediastinal B-cell], lymphoblastic and anaplastic large cell lymphoma) and other less common types of NHL. Get detailed information about the presentation, diagnosis, staging, prognosis, and treatment of all types of newly diagnosed and recurrent childhood NHL and lymphoproliferative disease in this summary for clinicians.
Treatment Options (by Stage) for Colon Cancer
... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... VEGF inhibitors and angiogenesis inhibitors . Epidermal growth factor receptor (EGFR) inhibitor therapy: EGFRs are proteins found on ...
Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.
Letessier, Anne; Millot, Gaël A; Koundrioukoff, Stéphane; Lachagès, Anne-Marie; Vogt, Nicolas; Hansen, R Scott; Malfoy, Bernard; Brison, Olivier; Debatisse, Michelle
2011-02-03
Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.
Surface Antigens Common to Mouse Cleavage Embryos and Primitive Teratocarcinoma Cells in Culture
Artzt, Karen; Dubois, Philippe; Bennett, Dorothea; Condamine, Hubert; Babinet, Charles; Jacob, François
1973-01-01
Syngeneic antisera have been produced in mouse strain 129/Sv-CP males against the primitive cells of teratocarcinoma. These sera react specifically with the primitive cells and are negative on various types of differentiated teratoma cells derived from the same original tumor. They are negative on all other mouse cells tested, with the exception of male germ cells and cleavage-stage embryos. Thus, teratoma cells possess cell-surface antigens in common with normal cleavage-stage embryos. Images PMID:4355379
Impaired interferon signaling is a common immune defect in human cancer
Critchley-Thorne, Rebecca J.; Simons, Diana L.; Yan, Ning; Miyahira, Andrea K.; Dirbas, Frederick M.; Johnson, Denise L.; Swetter, Susan M.; Carlson, Robert W.; Fisher, George A.; Koong, Albert; Holmes, Susan; Lee, Peter P.
2009-01-01
Immune dysfunction develops in patients with many cancer types and may contribute to tumor progression and failure of immunotherapy. Mechanisms underlying cancer-associated immune dysfunction are not fully understood. Efficient IFN signaling is critical to lymphocyte function; animals rendered deficient in IFN signaling develop cancer at higher rates. We hypothesized that altered IFN signaling may be a key mechanism of immune dysfunction common to cancer. To address this, we assessed the functional responses to IFN in peripheral blood lymphocytes from patients with 3 major cancers: breast cancer, melanoma, and gastrointestinal cancer. Type-I IFN (IFN-α)-induced signaling was reduced in T cells and B cells from all 3 cancer-patient groups compared to healthy controls. Type-II IFN (IFN-γ)-induced signaling was reduced in B cells from all 3 cancer patient groups, but not in T cells or natural killer cells. Impaired-IFN signaling was equally evident in stage II, III, and IV breast cancer patients, and downstream functional defects in T cell activation were identified. Taken together, these findings indicate that defects in lymphocyte IFN signaling arise in patients with breast cancer, melanoma, and gastrointestinal cancer, and these defects may represent a common cancer-associated mechanism of immune dysfunction. PMID:19451644
Pancreatic Cancer—Patient Version
Pancreatic cancer can form in exocrine cells and neuroendocrine cells. The exocrine type is more common and is usually found at an advanced stage. Pancreatic neuroendocrine tumors are less common but have a better prognosis. Start here to find information on pancreatic cancer treatment, research, and statistics.
Work-relatedness of lung cancer by smoking and histologic type in Korea.
Lee, Young-Il; Lee, Sang-Gil; Kang, Dong-Mug; Kim, Jong-Eun; Kim, Young-Ki; Leem, Jong-Han; Kim, Hwan-Cheol
2014-01-01
This study investigated the distribution of causative agents related to occupational lung cancer, their relationships with work, and associations between work-relatedness and the histologic type of lung cancer. We used data from the occupational surveillance system in Korea in 2013. In addition, data from 1,404 participants diagnosed with lung cancer were collected through interviews. We included the patients' longest-held job in the analysis. Work-relatedness was categorized as "definite," "probable," "possible," "suspicious," "none," or "undetermined." Among the subjects, 69.3% were men and 30.7% were women. Regarding smoking status, current smokers were the most prevalent (35.5%), followed by non-smokers (32.3%), ex-smokers (32.2%). Regarding the causative agents of lung cancer, asbestos (1.0%) and crystalline silica (0.9%) were the most common in definite work-related cases, while non-arsenical insecticide (2.8%) was the most common in probable cases followed by diesel engine exhaust (1.9%) and asbestos (1.0%). Regarding histologic type, adenocarcinoma was the most common (41.7%), followed by squamous cell carcinoma (21.2%). Among current smokers, squamous cell carcinoma was the most common among definite and probable cases (13.4%), while non-small cell lung cancer was the least common (7.1%). Among non-smokers, squamous cell carcinoma was the most common (21.4%), while the least common was adenocarcinoma (1.6%). Approximately, 9.5% of all lung cancer cases in Korea are occupational-related lung cancer. Well-known substances associated with lung cancer, such as crystalline silica, asbestos, and diesel engine exhaust, are of particular concern. However, the histologic types of lung cancer related to smoking were inconsistent with previous studies when work-relatedness was taken into account. Future studies are required to clarify the incidence of occupational lung cancer in agricultural workers exposed to non-arsenical insecticides and the associations between work-relatedness and the histologic type of lung cancer.
Stem cell therapy for treatment of epilepsy.
Goodarzi, Parisa; Aghayan, Hamid Reza; Soleimani, Masoud; Norouzi-Javidan, Abbas; Mohamadi-Jahani, Fereshteh; Jahangiri, Sharareh; Emami-Razavi, Seyed Hasan; Larijani, Bagher; Arjmand, Babak
2014-01-01
Epilepsy as one of the most common neurological disorders affects more than 50 million people worldwide with a higher prevalence rate in low-income countries. Excessive electrical discharges in neurons following neural cell damage or loss cause recurrent seizures. One of the most common and difficult to treat types of epilepsy is temporal lobe epilepsy (TLE) which results from hippocampal sclerosis. Nowadays, similar to other diseases, epilepsy also is a candidate for treatment with different types of stem cells. Various stem cell types were used for treatment of epilepsy in basic and experimental researches. Two major roles of stem cell therapy in epilepsy are prophylaxis against chronic epilepsy and amelioration cognitive function after the occurrence of TLE. Several animal studies have supported the use of these cells for treating drug-resistant TLE. Although stem cell therapy seems like a promising approach for treatment of epilepsy in the future however, there are some serious safety and ethical concerns that are needed to be eliminated before clinical application.
A web-server of cell type discrimination system.
Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan
2014-01-01
Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.
A Web-Server of Cell Type Discrimination System
Zhong, Yan
2014-01-01
Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells. PMID:24578634
Nikolić, Miloš; Papantonis, Argyris
2017-01-01
Abstract Genome-wide association studies (GWAS) have emerged as a powerful tool to uncover the genetic basis of human common diseases, which often show a complex, polygenic and multi-factorial aetiology. These studies have revealed that 70–90% of all single nucleotide polymorphisms (SNPs) associated with common complex diseases do not occur within genes (i.e. they are non-coding), making the discovery of disease-causative genetic variants and the elucidation of the underlying pathological mechanisms far from straightforward. Based on emerging evidences suggesting that disease-associated SNPs are frequently found within cell type-specific regulatory sequences, here we present GARLIC (GWAS-based Prediction Toolkit for Connecting Diseases and Cell Types), a user-friendly, multi-purpose software with an associated database and online viewer that, using global maps of cis-regulatory elements, can aetiologically connect human diseases with relevant cell types. Additionally, GARLIC can be used to retrieve potential disease-causative genetic variants overlapping regulatory sequences of interest. Overall, GARLIC can satisfy several important needs within the field of medical genetics, thus potentially assisting in the ultimate goal of uncovering the elusive and complex genetic basis of common human disorders. PMID:28007912
Immunohistochemical study on gastrointestinal endocrine cells of four reptiles
Huang, Xu-Gen; Wu, Xiao-Bing
2005-01-01
AIM: To clarify the types, regional distributions and distribution densities as well as morphological features of gastrointestinal (GI) endocrine cells in various parts of the gastrointestinal track (GIT) of four reptiles, Gekko japonicus, Eumeces chinensis, Sphenomorphus indicus and Eumeces elegans. METHODS: Paraffin-embedded sections (5 μm) of seven parts (cardia, fundus, pylorus, duodenum, jejunum, ileum, rectum) of GIT dissected from the four reptiles were prepared. GI endocrine cells were revealed by using immunohistochemical techniques of streptavidin-peroxidase (S-P) method. Seven types of antisera against 5-hydroxy-tryptamine (5-HT), somatostatin (SS), gastrin (GAS), glucagon (GLU), substance P (SP), insulin and pancreatic polypeptide were identified and then GI endocrine cells were photomicrographed and counted. RESULTS: The GI endocrine system of four reptiles was a complex structure containing many endocrine cell types similar in morphology to those found in higher vertebrates. Five types of GI endocrine cells, namely 5-HT, SS, GAS, SP and GLU immunoreactive (IR) cells were identified in the GIT of G. japonicus, E. chinensis and S. indicus; while in the GIT of E. elegans only the former three types of endocrine cells were observed. No PP- and INS- IR cells were found in all four reptiles. 5-HT-IR cells, which were most commonly found in the pylorus or duodenum, distributed throughout the whole GIT of four reptiles. However, their distribution patterns varied from each other. SS-IR cells, which were mainly found in the stomach especially in the pylorus and/or fundus, were demonstrated in the whole GIT of E. chinensis, only showed restricted distribution in the other three species. GAS-IR cells, with a much restricted distribution, were mainly demonstrated in the pylorus and/or the proximal small intestine of four reptiles. GLU-IR cells exhibited a limited and species-dependent variant distribution in the GIT of four reptiles. SP-IR cells were found throughout the GIT except for jejunum in E. elegans and showed a restricted distribution in the GIT of G. japonicus and S. indicus. In the GIT of four reptiles the region with the highest degree of cell type heterogeneity was pylorus and most types of GI endocrine cells along the GIT showed the peak density in pylorus as well. CONCLUSION: Some common and unique features of the distribution and morphology of different types of GI endocrine cells are found in four reptiles. This common trait may reflect the similarity in digestive physiology of various vertebrates. PMID:16222743
Leukemia is cancer of the white blood cells. It is the most common type of childhood cancer. ... blood cells help your body fight infection. In leukemia, the bone marrow produces abnormal white blood cells. ...
Testing lung cancer drugs and therapies in mice
National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with
2013-01-01
Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445
Hervonen, H; Eränkö, O
1975-01-01
Lumbar sympathetic ganglia of 12-day-old chick embryos were cultured in organ cultures for 14 days with 1, 10 or 100 mg/l of hydrocortisone or without it. Catecholamines were demonstrated by the formaldehyde-induced fluorescence method. For electron microscopy, the cultures were fixed with glutarialdehyde and osmium tetroxide. Two types of cells with catecholamine fluoresecence were observed in the control cultures: (1) weakly fluorescent sympathetic neurons and sympathicoblasts with long nerve fibres, which were the most common cell type in the explant, and (2) brightly fluorescent cells with or without fluorescent processes, which were less common and were scattered in the explant. Hydrocortisone caused a great increase in the number of the brightly fluorescent cells. With 10 mg/l of hydrocortisone the increase was about ten-fold as compared with the control cultures. There was no change in the morphology of the cells, nor could any change be observed in the fluorescence intensity by eye. Electron microscopically the mature neurons were the most common cell type on the surface of the culture, while more immature sympathicoblasts were seen in the deeper layers. Cells were also found which contained large numbers of catecholamine-strong granular vesicles 105-275 nm in diameter. These cells were infrequent. They had round vesicular nuclei and resembled also in other respects sympathicoblasts or young nerve cells. One such cell was found in mitotic division by electron microscopy. Hydrocortisone caused a marked increase in the number of these granule-containing cells and their processes. Cells which could have been classified as the small intensely fluorescent cells of the mammalian ganglion type or their electron microscopic equivalent, the granule-containing cells were found neither in the control cultures nor in the hydrocortisone-containing cultures. It is concluded that most brightly fluorescent cells in cultured sympathetic ganglia of the chick are nerve cells or sympathicoblasts rich in amine-storing granular vesicles.
Infection of endothelial cells by common human viruses.
Friedman, H M
1989-01-01
Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.
García-Verdugo, Jose Manuel; Ferrón, Sacri; Flames, Nuria; Collado, Lucía; Desfilis, Ester; Font, Enrique
2002-04-01
Although evidence accumulated during the last decades has advanced our understanding of adult neurogenesis in the vertebrate brain, many aspects of this intriguing phenomenon remain controversial. Here we review the organization and cellular composition of the ventricular wall of reptiles, birds, and mammals in an effort to identify differences and commonalities among these vertebrate classes. Three major cell types have been identified in the ventricular zone of reptiles and birds: migrating (Type A) cells, radial glial (Type B) cells, and ependymal (Type E) cells. Cells similar anatomically and functionally to Types A, B, and E have also been described in the ventricular wall of mammals, which contains an additional cell type (Type C) not found in reptiles or birds. The bulk of the evidence points to a role of Type B cells as primary neural precursors (stem cells) in the three classes of living amniotic vertebrates. This finding may have implications for the development of strategies for the possible treatment of human neurological disorders.
Mo, X; Xu, L; Yang, Q; Feng, H; Peng, J; Zhang, Y; Yuan, W; Wang, Y; Li, Y; Deng, Y; Wan, Y; Chen, Z; Li, F; Wu, X
2011-08-01
To study the common molecular mechanisms of various viruses infections that might result in congential cardiovascular diseases in perinatal period, changes in mRNA expression levels of ECV304 cells infected by rubella virus (RUBV), human cytomegalovirus (HCMV), and herpes simplex virus type 2 (HSV-2) were analyzed using a microarray system representing 18,716 human genes. 99 genes were found to exhibit differential expression (80 up-regulated and 19 down-regulated). Biological process analysis showed that 33 signaling pathways including 22 genes were relevant significantly to RV, HCMV and HSV-II infections. Of these 33 biological processes, 28 belong to one-gene biological processes and 5 belong to multiple-gene biological processes. Gene annotation indicated that the 5 multiple-gene biological processes including regulation of cell growth, collagen fibril organization, mRNA transport, cell adhesion and regulation of cell shape, and seven down- or up-regulated genes [CRIM1 (cysteine rich transmembrane BMP regulator 1), WISP2 (WNT1 inducible signaling pathway protein 2), COL12A1 (collagen, type XII, alpha 1), COL11A2 (collagen, type XI, alpha 2), CNTN5 (contactin 5), DDR1 (discoidin domain receptor tyrosine kinase 1), VEGF (vascular endothelial growth factor precursor)], are significantly correlated to RUBV, HCMV and HSV-2 infections in ECV304 cells. The results obtained in this study suggested the common molecular mechanisms of viruses infections that might result in congential cardiovascular diseases.
Skin Cancer (Including Melanoma)—Patient Version
Skin cancer is the most common type of cancer. The main types of skin cancer are squamous cell carcinoma, basal cell carcinoma, and melanoma. Most deaths from skin cancer are caused by melanoma. Start here to find information on skin cancer treatment, causes and prevention, screening, research, and statistics.
Dedifferentiated liposarcoma of thigh with chondrosarcomatous dedifferentiated component.
Yoon, Richard S; Benevenia, Joseph; Beebe, Kathleen S; Hameed, Meera
2010-11-01
Liposarcomas are common soft-issue sarcomas arising predominantly in deep soft tissue and the retroperitoneum with varied mortality and recurrence rates, largely dependent on histologic type. Thought to arise de novo, liposarcomas typically are classified into 5 types based on strict morphologic characteristics: well-differentiated, dedifferentiated, myxoid, round cell, and pleomorphic. More specifically, dedifferentiated liposarcoma, a common type most prevalent in the retroperitoneum, often has 2 distinct components, a well-differentiated lipomatous component and a dedifferentiated nonlipomatous component composed of sarcomas, such as myxofibrosarcomas or other spindle-cell sarcomas. Morphology typically ranges from low- to high-grade components, most commonly exhibiting myxofibrosarcoma and malignant fibrous histiocytoma components. However, the case reported in this article is unique-the dedifferentiated component exhibited only chondrosarcomatous differentiation-and it is, to our knowledge, the first such case to be described.
Dual-Anode Nickel/Hydrogen Cell
NASA Technical Reports Server (NTRS)
Gahn, Randall F.; Ryan, Timothy P.
1994-01-01
Use of two hydrogen anodes in nickel/hydrogen cell reduces ohmic and concentration polarizations contributing to internal resistance, yielding cell with improved discharging performance compared to single-anode cell. Dual-anode concept incorporated into nickel/hydrogen cells of individual pressure-vessel type (for use aboard spacecraft) and common pressure-vessel type, for use on Earth to store electrical energy from photovoltaic sources, "uninterruptible" power supplies of computer and telephone systems, electric vehicles, and load leveling on power lines. Also applicable to silver/hydrogen and other metal/gas batteries.
Capacitance measurements of regulated exocytosis in mouse taste cells.
Vandenbeuch, Aurelie; Zorec, Robert; Kinnamon, Sue C
2010-11-03
Exocytosis, consisting of the merger of vesicle and plasma membrane, is a common mechanism used by different types of nucleated cells to release their vesicular contents. Taste cells possess vesicles containing various neurotransmitters to communicate with adjacent taste cells and afferent nerve fibers. However, whether these vesicles engage in exocytosis on a stimulus is not known. Since vesicle membrane merger with the plasma membrane is reflected in plasma membrane area fluctuations, we measured membrane capacitance (C(m)), a parameter linearly related to membrane surface area. To investigate whether taste cells undergo regulated exocytosis, we used the compensated tight-seal whole-cell recording technique to monitor depolarization-induced changes in C(m) in the different types of taste cells. To identify taste cell types, mice expressing green fluorescent protein from the TRPM5 promoter or from the GAD67 promoter were used to discriminate type II and type III taste cells, respectively. Moreover, the cell types were also identified by monitoring their voltage-current properties. The results demonstrate that only type III taste cells show significant depolarization-induced increases in C(m), which were correlated to the voltage-activated calcium currents. The results suggest that type III, but neither type II nor type I cells exhibit depolarization-induced regulated exocytosis to release transmitter and activate gustatory afferent nerve fibers.
Setting the Stage for Personalized Treatment of Glioma | Center for Cancer Research
Gliomas, the most common type of primary brain tumors in adults, arise from different types of glial cells, which support and protect the neurons of the central nervous system. How a patient’s glioma is treated depends in part on the type of glial cell from which the tumor developed. Classification of gliomas has traditionally been done by microscopic analysis of tumor
Neoplastic and Nonneoplastic Cutaneous Tumors of Dogs in Grenada, West Indies
Chikweto, A.; McNeil, P.; Bhaiyat, M. I.; Stone, D.; Sharma, R. N.
2011-01-01
This retrospective survey was undertaken between 2002 and 2007 on samples from dogs residing in Grenada. The objectives of the study were to identify the most common histologic types of canine cutaneous tumors, determine the relative frequency of each tumor type, and compare results to reports from other regions. In a series of 225 skin masses examined, the proportion of neoplasms was 72% whereas nonneoplastic tumors accounted for 15.6%, and inflammatory conditions constituted 12.4%. There were 10 types of nonneoplastic tumors with hamartomas being the most common (28.5%), followed by sebaceous hyperplasia (25.7%) and fibroepithelial polyps (22.8%). The 10 most common cutaneous neoplasms were hemangiosarcomas (19.1%), histiocytomas (8.6%), melanocytomas (8%), mast cell tumors (6.8%), lipomas (6.8%), hemangiopericytomas (6.2%), papillomas (5.6%), fibrosarcomas (5.6%), hemangiomas (4.9%), and squamous cell carcinomas (4.3%). Tumors of vascular origin and transmissible venereal tumors were more common in dogs in our study than reported from other regions. PMID:23738097
Langerhans Cell Histiocytosis—Patient Version
Langerhans cell histiocytosis is a rare blood cancer that forms when a type of white blood cell called Langerhans cells becomes abnormal and grows in different parts of the body. LCH is most common in young children but can occur at any age. Start here to find information on Langerhans cell histiocytosis treatment.
Cell structure for electrochemical devices and method of making same
Kaun, Thomas D.
1993-01-01
An electrochemical device comprises a plurality of cells, each cell including a laminate cell membrane, made up of a separator/electrolyte means interposed between alternating positive and negative electrodes, each type of electrode being respectively in common contact to a single current collector.
Cancer - stomach; Gastric cancer; Gastric carcinoma; Adenocarcinoma of the stomach ... Several types of cancer can occur in the stomach. The most common type is called adenocarcinoma. It starts from one of the cell ...
Endoscopic gastritis, serum pepsinogen assay, and Helicobacter pylori infection
Lee, Sun-Young
2016-01-01
Endoscopic findings of the background gastric mucosa are important in the Helicobacter pylori-seroprevalent population. It is strongly correlated not only with the risk of gastric cancer, but also with the excretion ability of gastric mucosa cells. In noninfected subjects, common endoscopic findings are regular arrangement of collecting venules, chronic superficial gastritis, and erosive gastritis. In cases of active H. pylori infection, nodularity on the antrum, hemorrhagic spots on the fundus, and thickened gastric folds are common endoscopic findings. The secreting ability of the gastric mucosa cells is usually intact in both noninfected and actively infected stomachs, and the intragastric condition becomes hyperacidic upon inflammation. Increased serum pepsinogen II concentration correlates well with active H. pylori infection, and also indicates an increased risk of diffuse-type gastric cancer. In chronic inactive H. pylori infection, metaplastic gastritis and atrophic gastritis extending from the antrum (closed-type chronic atrophic gastritis) toward the corpus (open-type chronic atrophic gastritis) are common endoscopic findings. The intragastric environment is hypoacidic and the risk of intestinal-type gastric cancer is increased in such conditions. Furthermore, there is a decrease in serum pepsinogen I concentration when the secreting ability of the gastric mucosa cells is damaged. Serologic and endoscopic changes that occur upon H. pylori infection are important findings for estimating the secreting ability of the gastric mucosa cells, and could be applied for the secondary prevention of gastric cancer. PMID:27604795
Endoscopic gastritis, serum pepsinogen assay, and Helicobacter pylori infection.
Lee, Sun-Young
2016-09-01
Endoscopic findings of the background gastric mucosa are important in the Helicobacter pylori-seroprevalent population. It is strongly correlated not only with the risk of gastric cancer, but also with the excretion ability of gastric mucosa cells. In noninfected subjects, common endoscopic findings are regular arrangement of collecting venules, chronic superficial gastritis, and erosive gastritis. In cases of active H. pylori infection, nodularity on the antrum, hemorrhagic spots on the fundus, and thickened gastric folds are common endoscopic findings. The secreting ability of the gastric mucosa cells is usually intact in both noninfected and actively infected stomachs, and the intragastric condition becomes hyperacidic upon inflammation. Increased serum pepsinogen II concentration correlates well with active H. pylori infection, and also indicates an increased risk of diffuse-type gastric cancer. In chronic inactive H. pylori infection, metaplastic gastritis and atrophic gastritis extending from the antrum (closed-type chronic atrophic gastritis) toward the corpus (open-type chronic atrophic gastritis) are common endoscopic findings. The intragastric environment is hypoacidic and the risk of intestinal-type gastric cancer is increased in such conditions. Furthermore, there is a decrease in serum pepsinogen I concentration when the secreting ability of the gastric mucosa cells is damaged. Serologic and endoscopic changes that occur upon H. pylori infection are important findings for estimating the secreting ability of the gastric mucosa cells, and could be applied for the secondary prevention of gastric cancer.
Kidney (Renal Cell) Cancer—Health Professional Version
Kidney cancer has three main types. Renal cell cancer, or renal cell adenocarcinoma, forms in the tubules of the kidney. Transitional cell carcinoma forms in the renal pelvis and ureter. Wilms tumors are common in children. Find evidence-based information on kidney cancer treatment, research, genetics, and statistics.
Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus.
Bing, Peng-Fei; Xia, Wei; Wang, Lan; Zhang, Yong-Hong; Lei, Shu-Feng; Deng, Fei-Yan
2016-01-01
Systemic lupus erythematosus (SLE) is a complex auto-immune disease. Gene expression studies have been conducted to identify SLE-related genes in various types of samples. It is unknown whether there are common marker genes significant for SLE but independent of sample types, which may have potentials for follow-up translational research. The aim of this study is to identify common marker genes across various sample types for SLE. Based on four public microarray gene expression datasets for SLE covering three representative types of blood-born samples (monocyte; peripheral blood mononuclear cell, PBMC; whole blood), we utilized three statistics (fold-change, FC; t-test p value; false discovery rate adjusted p value) to scrutinize genes simultaneously regulated with SLE across various sample types. For common marker genes, we conducted the Gene Ontology enrichment analysis and Protein-Protein Interaction analysis to gain insights into their functions. We identified 10 common marker genes associated with SLE (IFI6, IFI27, IFI44L, OAS1, OAS2, EIF2AK2, PLSCR1, STAT1, RNASE2, and GSTO1). Significant up-regulation of IFI6, IFI27, and IFI44L with SLE was observed in all the studied sample types, though the FC was most striking in monocyte, compared with PBMC and whole blood (8.82-251.66 vs. 3.73-74.05 vs. 1.19-1.87). Eight of the above 10 genes, except RNASE2 and GSTO1, interact with each other and with known SLE susceptibility genes, participate in immune response, RNA and protein catabolism, and cell death. Our data suggest that there exist common marker genes across various sample types for SLE. The 10 common marker genes, identified herein, deserve follow-up studies to dissert their potentials as diagnostic or therapeutic markers to predict SLE or treatment response.
Stopping Liver Cancer's Rogue COP | Center for Cancer Research
Liver cancer is the fourth most common cancer type and the third leading cause of cancer death worldwide. Many liver tumors are actually metastases, tumors seeded in the liver by cancer cells from another organ, but hepatocellular carcinomas (HCCs), the most common liver tumors, are a heterogeneous family of cancers that arise in hepatocytes, the functional cells of the liver.
ABO and Rh blood group genotypes in a cohort of Saudi stem cell donors.
Alzahrani, M; Jawdat, D; Alaskar, A; Cereb, N; Hajeer, A H
2018-04-01
The ABO and rhesus (Rh) blood group antigens are the most frequently studied genetic markers in a large group of people. Blood type frequencies vary in different racial/ethnic groups. Our objective was to investigate the distribution of the ABO and rhesus (Rh) blood groups by molecular typing method in a population of Saudi stem cell donors. Our data indicate that the most common blood group in our population is group O followed by group A then group B, and finally, the least common is group AB. © 2018 John Wiley & Sons Ltd.
Substrate-oriented nanorod scaffolds in polymer-fullerene bulk heterojunction solar cells.
Ogawa, Yuta; White, Matthew S; Sun, Lina; Scharber, Markus C; Sariciftci, Niyazi Serdar; Yoshida, Tsukasa
2014-04-14
The use of a p-type inorganic semiconductor to form a nanorod scaffold within a polymer-fullerene bulk heterojunction solar cell is reported. The performance of this cell is compared to those made of the commonly used n-type scaffold of ZnO, which has been reported many times in the literature. The scaffold is designed to improve charge-carrier collection by increased mobility in thicker samples. Observations show that generally the device performance shows a negative correlation to nanorod length. By using CuSCN as a p-type inorganic scaffold, a very similar trend is observed. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
NASA Technical Reports Server (NTRS)
Lewis, Marian L.; Morrison, Dennis R.
1987-01-01
The culture of human kidney cells on microcarrier beads in the Bioprocessing Laboratory at the Johnson Space Center is described. These were the first series of studies performed before and during 1983 to determine optimum conditions, including medium type, bead type and density. The composition of several medium types and the molecular weights of some common culture medium supplements and cellular proteins are included. The microgravity cell-to-bead attachment experiment performed on Space Transportation System Flight 8 is described.
Skin Cancer Treatment (PDQ®)—Patient Version
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common types of skin cancer. Find out about risk factors, symptoms, tests to diagnose, prognosis, staging, and treatment for skin cancer.
Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K
2014-02-01
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.
The type I interferon response during viral infections: a "SWOT" analysis.
Gaajetaan, Giel R; Bruggeman, Cathrien A; Stassen, Frank R
2012-03-01
The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes. Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like receptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the translation from animal models to the human situation remains difficult. With a Strengths-Weaknesses-Opportunities-Threats ("SWOT") analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related to the type I IFN system. Copyright © 2011 John Wiley & Sons, Ltd.
Wu, Liang; Ehlin-Henriksson, Barbro; Zhou, Xiaoying; Zhu, Hong; Ernberg, Ingemar; Kis, Lorand L; Klein, George
2017-12-01
Diffuse large B-cell lymphoma (DLBCL), the most common type of malignant lymphoma, accounts for 30% of adult non-Hodgkin lymphomas. Epstein-Barr virus (EBV) -positive DLBCL of the elderly is a newly recognized subtype that accounts for 8-10% of DLBCLs in Asian countries, but is less common in Western populations. Five DLBCL-derived cell lines were employed to characterize patterns of EBV latent gene expression, as well as response to cytokines and chemotaxis. Interleukin-4 and interleukin-21 modified LMP1, EBNA1 and EBNA2 expression depending on cell phenotype and type of EBV latent programme (type I, II or III). These cytokines also affected CXCR4- or CCR7-mediated chemotaxis in two of the cell lines, Farage (type III) and Val (type II). Further, we investigated the effect of EBV by using dominant-negative EBV nuclear antigen 1(dnEBNA1) to eliminate EBV genomes. This resulted in decreased chemotaxis. By employing an alternative way to eliminate EBV genomes, Roscovitine, we show an increase of apoptosis in the EBV-positive lines. These results show that EBV plays an important role in EBV-positive DLBCL lines with regard to survival and chemotactic response. Our findings provide evidence for the impact of microenvironment on EBV-carrying DLBCL cells and might have therapeutic implications. © 2017 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Feeder-cells of irradiated mouse fibroblasts are commonly used for, and are generally necessary for, the in vitro maintenance and growth of many fastidious cell types, particularly embryonic stem cells or induced pluripotent stem cells. Quantitative and semi-quantitative immunoassays were performed...
Thyroid hormone (TH) may control the ratio of oligodendrocytes to astrocytes in white matter by acting on a common precursor of these two cell types. If so, then TH should produce an equal but opposite effect on the density of these two cells types across all TH levels. To test t...
All Tumor Cells Are Not Created Equal | Center for Cancer Research
Cell division is commonly thought of as a process whereby one cell gives rise to two identical daughter cells. However, rare cell divisions are asymmetric, generating daughter cells that may differ in size, developmental potential, or even DNA content. The ability of stem cells to undergo asymmetric division allows them to self-renew while simultaneously generate daughter cells committed to differentiating into specialized cell types.
Alikhan, Mir; Song, Joo Y; Sohani, Aliyah R; Moroch, Julien; Plonquet, Anne; Duffield, Amy S; Borowitz, Michael J; Jiang, Liuyan; Bueso-Ramos, Carlos; Inamdar, Kedar; Menon, Madhu P; Gurbuxani, Sandeep; Chan, Ernest; Smith, Sonali M; Nicolae, Alina; Jaffe, Elaine S; Gaulard, Philippe; Venkataraman, Girish
2016-10-01
Nodal follicular helper T-cell-derived lymphoproliferations (specifically the less common peripheral T-cell lymphomas of follicular type) exhibit a spectrum of histologic features that may mimic reactive hyperplasia or Hodgkin lymphoma. Even though angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma of follicular type share a common biologic origin from follicular helper T-cells and their morphology has been well characterized, flow cytometry of peripheral T-cell lymphomas of follicular type has not been widely discussed as a tool for identifying this reactive hyperplasia/Hodgkin lymphoma mimic. We identified 10 peripheral T-cell lymphomas of follicular type with available flow cytometry data from five different institutions, including two cases with peripheral blood evaluation. For comparison, we examined flow cytometry data for 8 classical Hodgkin lymphomas (including 1 lymphocyte-rich classical Hodgkin lymphoma), 15 nodular lymphocyte predominant Hodgkin lymphomas, 15 angioimmunoblastic T-cell lymphomas, and 26 reactive nodes. Lymph node histology and flow cytometry data were reviewed, specifically for the presence of a CD3(-/dim)CD4(+) aberrant T-cell population (described in angioimmunoblastic T-cell lymphomas), besides other T-cell aberrancies. Nine of 10 (90%) peripheral T-cell lymphomas of follicular type showed a CD3(-/dim)CD4(+) T-cell population constituting 29.3% (range 7.9-62%) of all lymphocytes. Five of 10 (50%) had nodular lymphocyte predominant Hodgkin lymphoma or lymphocyte-rich classical Hodgkin lymphoma-like morphology with scattered Hodgkin-like cells that expressed CD20, CD30, CD15, and MUM1. Three cases had a nodular growth pattern and three others exhibited a perifollicular growth pattern without Hodgkin-like cells. Epstein-Barr virus was positive in 1 of 10 cases (10%). PCR analysis showed clonal T-cell receptor gamma gene rearrangement in all 10 peripheral T-cell lymphomas of follicular type. By flow cytometry, 11 of 15 (73.3%) angioimmunoblastic T-cell lymphomas showed the CD3(-/dim)CD4(+) population (mean: 19.5%, range: 3-71.8%). Using a threshold of 3% for CD3(-/dim)CD4(+) T cells, all 15 nodular lymphocyte predominant Hodgkin lymphoma controls and 8 classical Hodgkin lymphomas were negative (Mann-Whitney P=0.01, F-PTCL vs Hodgkin lymphomas), as were 25 of 26 reactive lymph nodes. The high frequency of CD3(-/dim)CD4(+) aberrant T cells is similar in angioimmunoblastic T-cell lymphomas and peripheral T-cell lymphomas of follicular type, and is a useful feature in distinguishing peripheral T-cell lymphomas of follicular type from morphologic mimics such as reactive hyperplasia or Hodgkin lymphoma.
Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes
2016-01-01
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1–5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes—potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity—have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable “human models” that have contributed to our understanding of the pathophysiological basis of common T1D and T2D. PMID:27035557
Moran, Yehu; Genikhovich, Grigory; Gordon, Dalia; Wienkoop, Stefanie; Zenkert, Claudia; Ozbek, Suat; Technau, Ulrich; Gurevitz, Michael
2012-04-07
Jellyfish, hydras, corals and sea anemones (phylum Cnidaria) are known for their venomous stinging cells, nematocytes, used for prey and defence. Here we show, however, that the potent Type I neurotoxin of the sea anemone Nematostella vectensis, Nv1, is confined to ectodermal gland cells rather than nematocytes. We demonstrate massive Nv1 secretion upon encounter with a crustacean prey. Concomitant discharge of nematocysts probably pierces the prey, expediting toxin penetration. Toxin efficiency in sea water is further demonstrated by the rapid paralysis of fish or crustacean larvae upon application of recombinant Nv1 into their medium. Analysis of other anemone species reveals that in Anthopleura elegantissima, Type I neurotoxins also appear in gland cells, whereas in the common species Anemonia viridis, Type I toxins are localized to both nematocytes and ectodermal gland cells. The nematocyte-based and gland cell-based envenomation mechanisms may reflect substantial differences in the ecology and feeding habits of sea anemone species. Overall, the immunolocalization of neurotoxins to gland cells changes the common view in the literature that sea anemone neurotoxins are produced and delivered only by stinging nematocytes, and raises the possibility that this toxin-secretion mechanism is an ancestral evolutionary state of the venom delivery machinery in sea anemones.
Sawamoto, Kazunobu; Hirota, Yuki; Alfaro-Cervello, Clara; Soriano-Navarro, Mario; He, Xiaoping; Hayakawa-Yano, Yoshika; Yamada, Masayuki; Hikishima, Keigo; Tabata, Hidenori; Iwanami, Akio; Nakajima, Kazunori; Toyama, Yoshiaki; Itoh, Toshio; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel; Okano, Hideyuki
2014-01-01
The adult subventricular zone (SVZ) of the lateral ventricle contains neural stem cells. In rodents, these cells generate neuroblasts that migrate as chains toward the olfactory bulb along the rostral migratory stream (RMS). The neural-stem-cell niche at the ventricular wall is conserved in various animal species, including primates. However, it is unclear how the SVZ and RMS organization in nonhuman primates relates to that of rodents and humans. Here we studied the SVZ and RMS of the adult and neonatal common marmoset (Callithrix jacchus), a New World primate used widely in neuroscience, by electron microscopy, and immunohistochemical detection of cell-type-specific markers. The marmoset SVZ contained cells similar to type B, C, and A cells of the rodent SVZ in their marker expression and morphology. The adult marmoset SVZ had a three-layer organization, as in the human brain, with ependymal, hypocellular, and astro-cyte-ribbon layers. However, the hypocellular layer was very thin or absent in the adult-anterior and neonatal SVZ. Anti-PSA-NCAM staining of the anterior SVZ in whole-mount ventricular wall preparations of adult marmosets revealed an extensive network of elongated cell aggregates similar to the neuroblast chains in rodents. Time-lapse recordings of marmoset SVZ explants cultured in Matrigel showed the neuroblasts migrating in chains, like rodent type A cells. These results suggest that some features of neurogenesis and neuronal migration in the SVZ are common to marmosets, humans, and rodents. This basic description of the adult and neonatal marmoset SVZ will be useful for future studies on adult neurogenesis in primates. PMID:21246550
Li, Xiaomei; Xu, Feng; Liang, Dandan; Liang, Shaoshan; Zhu, Xiaodong; Zhang, Mingchao; Huang, Xianghua; Liu, Zhihong; Zeng, Caihong
2018-02-01
Light chain proximal tubulopathy (LCPT) associated with plasma cell dyscrasias is a rare abnormality, especially cases involving multiple cell types. The aim of this study is to explore the characteristics and outcomes of these diseases. We comprehensively evaluated the clinical-pathological data, treatment, and outcomes of 6 LCPT patients with involvement of multiple cell types. In 3 cases, we found that the inclusions largely existed in tubular cells, while in 2 cases they coexisted in podocytes and tubular cells, and in 1 case they coexisted in histiocytes and tubular cells. The stain features and appearances of inclusions were specific and varied. Five patients displayed κ-light chains with crystal formation, while 1 patient displayed a λ subtype with increased lysosomes instead of crystals. Six patients presented with proteinuria, 4 with renal insufficiency, and 4 with complete or partial Fanconi syndrome. Our findings indicate that tubular cells are the most common location of cytoplasmic inclusions. Cases with κ-light chain storage are more common than λ, and the formation of crystals may be associated with the subtype of light chains. Immunoelectron microscopy could be used to increase sensitivity for the detection and location of monoclonal light chains. Therefore, these patients have some common clinical features with varied pathologic characteristics and prognoses but the same subtype of light chains. .
Hung, Chen-Yi; Lin, Yan; Zhang, Meng; Pollock, Susan; David Marks, M.; Schiefelbein, John
1998-01-01
A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling. PMID:9576776
1995-01-10
C-8029) (5) Type Exposure group and total number of each tumor type Adenoma II (1), III (1) Cholangioma II (1) Hepatocellular carcinoma I (1), II (2...antitrypsin Common marker for hepatocellular carcinoma Factor VIII/UEA-I Markers for endothelial cell differentiation S-100 protein Marker for nerve sheath...cells *Different cytokeratins can be used to detect different types of epithelium, i.e. to differentiate hepatocellular carcinoma from cholangiocellular
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de; Mueller, Thomas; Blasczyk, Rainer
Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application andmore » transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.« less
Stem cells in the Drosophila digestive system.
Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X
2013-01-01
Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.
Recent developments in small molecule therapies for renal cell carcinoma.
Song, Minsoo
2017-12-15
Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and is known to be the 10th most common type of cancer in the world. Most of the currently available RCC drugs are tyrosine kinase inhibitors (TKIs). However, combination therapies of TKIs and immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed cell death protein 1 ligand 1 (PD-L1) inhibitors are the focus of most of the final stage clinical trials. Meanwhile, other small molecule therapies for RCC that target indoleamine-2,3-dioxygenase (IDO1), glutaminase, C-X-C chemokine receptor 4 (CXCR4), and transglutaminase 2 (TG2) are emerging as the next generation of therapeutics. In this review, these three major streams for the development of small molecule drugs for RCC are described. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.
Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam
2016-07-01
Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schwer, Bjoern; Wei, Pei-Chi; Chang, Amelia N; Kao, Jennifer; Du, Zhou; Meyers, Robin M; Alt, Frederick W
2016-02-23
High-throughput, genome-wide translocation sequencing (HTGTS) studies of activated B cells have revealed that DNA double-strand breaks (DSBs) capable of translocating to defined bait DSBs are enriched around the transcription start sites (TSSs) of active genes. We used the HTGTS approach to investigate whether a similar phenomenon occurs in primary neural stem/progenitor cells (NSPCs). We report that breakpoint junctions indeed are enriched around TSSs that were determined to be active by global run-on sequencing analyses of NSPCs. Comparative analyses of transcription profiles in NSPCs and B cells revealed that the great majority of TSS-proximal junctions occurred in genes commonly expressed in both cell types, possibly because this common set has higher transcription levels on average than genes transcribed in only one or the other cell type. In the latter context, among all actively transcribed genes containing translocation junctions in NSPCs, those with junctions located within 2 kb of the TSS show a significantly higher transcription rate on average than genes with junctions in the gene body located at distances greater than 2 kb from the TSS. Finally, analysis of repair junction signatures of TSS-associated translocations in wild-type versus classical nonhomologous end-joining (C-NHEJ)-deficient NSPCs reveals that both C-NHEJ and alternative end-joining pathways can generate translocations by joining TSS-proximal DSBs to DSBs on other chromosomes. Our studies show that the generation of transcription-associated DSBs is conserved across divergent cell types.
Cell uptake survey of pegylated nanographene oxide.
Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M
2012-11-23
Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.
Treatment of Ovarian Germ Cell Tumors (PDQ®)—Patient Version
Surgery is the most common treatment of ovarian germ cell tumor. Types of surgery include hysterectomy and removal of one or both ovaries and fallopian tubes (bilateral salpingo-oophorectomy). Treatment may also include chemotherapy or radiation therapy. Learn about treatment options for ovarian germ cell tumors.
... layer of tissue underneath the retina that contains connective tissue and melanocytes, which are pigmented (colored) cells, and nourishes the inside of the eye. The choroid is the most common site for a tumor. Types of intraocular cancer The most common intraocular cancer in adults is ...
Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ®)—Health Professional Version
Wilms tumor is the most common type of childhood kidney tumor. Other types include renal cell carcinoma, congenital mesoblastic lymphoma, nephroblastomatosis, and rhabdoid, clear cell, Ewing, and anaplastic sarcoma of the kidney. Get detailed information about the associated syndromes, presentation, diagnosis, genomics, prognosis, and treatment for newly diagnosed and recurrent Wilms tumor and other kidney tumors in this summary for clinicians.
Understanding Papillary Renal Cell Carcinoma | Center for Cancer Research
Renal cell carcinoma (RCC), the most common form of kidney cancer in adults, is not a single disease but rather a collection of different tumor types driven by distinct genetic changes that arise within the same tissue.
Huang, Lei; Owen, Jonas K.; Xie, Anna; Navarro, Antonia; Monsivais, Diana; Coon V, John S.; Kim, J. Julie; Dai, Yang; Bulun, Serdar E.
2012-01-01
Background Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells. Principal Findings ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types. Conclusions Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and breast cancer. PMID:22272226
Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina
2017-01-01
Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352
A-type potassium currents in smooth muscle.
Amberg, Gregory C; Koh, Sang Don; Imaizumi, Yuji; Ohya, Susumu; Sanders, Kenton M
2003-03-01
A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.
Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong
2014-08-20
This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.
2010-01-01
Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR) was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers. PMID:20525401
Helms, My N; Jain, Lucky; Self, Julie L; Eaton, Douglas C
2008-08-15
The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 +/- 3.2 and 22.5 +/- 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 microm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 +/- 0.26 to 0.82 +/- 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (O2.) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that O2. and NO signaling plays an important role in maintaining lung fluid balance.
Cell fate control in the developing central nervous system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatmentsmore » of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.« less
Porter, J; Barrett, T
2005-01-01
Type 2 diabetes mellitus is caused by a combination of insulin resistance and ß cell failure. The polygenic nature of type 2 diabetes has made it difficult to study. Although many candidate genes for this condition have been suggested, in most cases association studies have been equivocal. Monogenic forms of diabetes have now been studied extensively, and the genetic basis of many of these syndromes has been elucidated, leading to greater understanding of the functions of the genes involved. Common variations in the genes causing monogenic disorders have been associated with susceptibility to type 2 diabetes in several populations and explain some of the linkage seen in genome-wide scans. Monogenic disorders are also helpful in understanding both normal and disordered glucose and insulin metabolism. Three main areas of defect contribute to diabetes: defects in insulin signalling leading to insulin resistance; defects of insulin secretion leading to hypoinsulinaemia; and apoptosis leading to decreased ß cell mass. These three pathological pathways are reviewed, focusing on rare genetic syndromes which have diabetes as a prominent feature. Apoptosis seems to be a final common pathway in both type 1 and type 2 diabetes. Study of rare forms of diabetes may help ion determining new therapeutic targets to preserve or increase ß cell mass and function. PMID:15772126
Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death
ERIC Educational Resources Information Center
Novaleski, Carolyn K.; Carter, Bruce D.; Sivasankar, M. Preeti; Ridner, Sheila H.; Dietrich, Mary S.; Rousseau, Bernard
2017-01-01
Purpose: Vocal fold diseases affecting the epithelium have a detrimental impact on vocal function. This review article provides an overview of apoptosis, the most commonly studied type of programmed cell death. Because apoptosis can damage epithelial cells, this article examines the implications of apoptosis on diseases affecting the vocal fold…
Wang, Ying; Guo, Shuangshuang
2015-01-01
Primary renal lymphoma is a rare entity. Of these, diffuse large B-cell lymphoma is the most common pathological type and, R-CHOP regimen was the preferred chemotherapy for it. Here we present an adult case of primary renal diffuse large B-cell lymphoma.
Gage, P J; Roller, M L; Saunders, T L; Scarlett, L M; Camper, S A
1996-01-01
The Ames dwarf mouse transmits a recessive mutation (df) resulting in a profound anterior pituitary hypocellularity due to a general lack of thyrotropes, somatotropes and lactotropes. These cell types are also dependent on the pituitary-specific transcription factor, Pit-1. We present evidence that expression of Pit-1 and limited commitment to these cells lineages occurs in df/df pituitaries. Thus, the crucial role of df may be in lineage-specific proliferation, rather than cytodifferentiation. The presence of all three Pit-1-dependent cell types in clonally derived clusters provides compelling evidence that these three lineages share a common, pluripotent precursor cell. Clusters containing different combinations of Pit-1-dependent cell types suggests that the Pit-1+ precursor cells choose from multiple developmental options during ontogeny. Characterization of df/df<-->+/+ chimeric mice demonstrated that df functions by a cell-autonomous mechanism. Therefore, df and Pit-1 are both cell-autonomous factors required for thyrotrope, somatotrope and lactotrope ontogeny, but their relative roles are different.
Chicha, Laurie; Jarrossay, David; Manz, Markus G
2004-12-06
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.
Kato, Harumi; Yamamoto, Kazuhito; Kodaira, Takeshi; Higuchi, Yusuke; Yamamoto, Hideyuki; Saito, Toko; Taji, Hirofumi; Yatabe, Yasushi; Nakamura, Shigeo; Kinoshita, Tomohiro
2018-03-01
Immunophenotype is an important prognostic factor for childhood and adult T-cell acute lymphoblastic leukemia. However, immunophenotypic data from adult patients with T-cell lymphoblastic lymphoma (T-LBL) are scarcely available. Subjects were unselected adult patients with T-LBL who were treated with intensive chemotherapy. Immunophenotyping of tumor cells was performed according to standard techniques. A total of eight patients with a median age of 31 years were analyzed who received hyper-CVAD treatment for LBL. Immunophenotypic analysis showed that the most common tumor type was cortical T-cell type [early T (n = 2), cortical T (n = 4), and medullary T (n = 2)]. Two patients diagnosed with early T-cell type had early disease progression. Assessment of T-cell differentiation stages in malignant T lymphoblasts would be important in choosing treatment strategies for adult patients with T-LBL.
Sripadi, Prabhakar; Shrestha, Bindesh; Easley, Rebecca L; Carpio, Lawrence; Kehn-Hall, Kylene; Chevalier, Sebastien; Mahieux, Renaud; Kashanchi, Fatah; Vertes, Akos
2010-09-07
Viral transformation of a cell starts at the genetic level, followed by changes in the proteome and the metabolome of the host. There is limited information on the broad metabolic changes in HTLV transformed cells. Here, we report the detection of key changes in metabolites and lipids directly from human T-lymphotropic virus type 1 and type 3 (HTLV1 and HTLV3) transformed, as well as Tax1 and Tax3 expressing cell lines by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Comparing LAESI-MS spectra of non-HTLV1 transformed and HTLV1 transformed cells revealed that glycerophosphocholine (PC) lipid components were dominant in the non-HTLV1 transformed cells, and PC(O-32:1) and PC(O-34:1) plasmalogens were displaced by PC(30:0) and PC(32:0) species in the HTLV1 transformed cells. In HTLV1 transformed cells, choline, phosphocholine, spermine and glutathione, among others, were downregulated, whereas creatine, dopamine, arginine and AMP were present at higher levels. When comparing metabolite levels between HTLV3 and Tax3 transfected 293T cells, there were a number of common changes observed, including decreased choline, phosphocholine, spermine, homovanillic acid, and glycerophosphocholine and increased spermidine and N-acetyl aspartic acid. These results indicate that the lipid metabolism pathway as well as the creatine and polyamine biosynthesis pathways are commonly deregulated after expression of HTLV3 and Tax3, indicating that the noted changes are likely due to Tax3 expression. N-acetyl aspartic acid is a novel metabolite that is upregulated in all cell types and all conditions tested. We demonstrate the high throughput in situ metabolite profiling of HTLV transformed and Tax expressing cells, which facilitates the identification of virus-induced perturbations in the biochemical processes of the host cells. We found virus type-specific (HTLV1 vs. HTLV3), expression-specific (Tax1 vs. Tax3) and cell-type-specific (T lymphocytes vs. kidney epithelial cells) changes in the metabolite profiles. The new insight on the affected metabolic pathways can be used to better understand the molecular mechanisms of HTLV induced transformation, which in turn can result in new treatment strategies.
Gunawan, Bastian; von Heydebreck, Anja; Fritsch, Thekla; Huber, Wolfgang; Ringert, Rolf-Hermann; Jakse, Gerhard; Füzesi, László
2003-10-01
We evaluated clinical characteristics, patient outcome (mean follow-up, 47 months), and cytogenetic abnormalities in the largest as yet reported cytogenetic series of 47 primary and 11 secondary papillary renal cell carcinomas for differences between the recently proposed type 1 and type 2 subtypes. Secondary tumors were more often of type 2 morphology (P = 0.02), whereas primary type 2 tumors were associated with higher clinical stage (P = 0.001) and worse patient outcome (P = 0.02). Although both subtypes had at least one of the primary chromosomal gains at 17q, 7, and 16q, type 2 tumors had moderately lower frequencies of primary gains at 17p (61 versus 94%; P = 0.007) and 17q (72 versus 97%; P = 0.02). On the other hand, type 2 tumors overall had more chromosomal alterations than type 1 tumors (P = 0.01), particularly gains of 1q (28 versus 3%; P = 0.02) and losses of 8p (33 versus 0%; P = 0.001), 11 (28 versus 3%; P = 0.02), and 18 (44 versus 9%; P = 0.01). Hierarchical clustering suggested cytogenetic patterns common but not restricted to type 2 morphology, one characterized by multiple additional gains, and another predominantly showing additional losses. These findings provide genetic evidence that type 1 and type 2 tumors arise from common cytogenetic pathways and that type 2 tumors evolve from type 1 tumors. Independently of type, losses of 9p were statistically correlated with advanced disease (P = 0.0008) and may serve as a potential adverse prognostic marker in papillary renal cell carcinomas.
Identification of transcript regulatory patterns in cell differentiation.
Gusnanto, Arief; Gosling, John Paul; Pope, Christopher
2017-10-15
Studying transcript regulatory patterns in cell differentiation is critical in understanding its complex nature of the formation and function of different cell types. This is done usually by measuring gene expression at different stages of the cell differentiation. However, if the gene expression data available are only from the mature cells, we have some challenges in identifying transcript regulatory patterns that govern the cell differentiation. We propose to exploit the information of the lineage of cell differentiation in terms of correlation structure between cell types. We assume that two different cell types that are close in the lineage will exhibit many common genes that are co-expressed relative to those that are far in the lineage. Current analysis methods tend to ignore this correlation by testing for differential expression assuming some sort of independence between cell types. We employ a Bayesian approach to estimate the posterior distribution of the mean of expression in each cell type, by taking into account the cell formation path in the lineage. This enables us to infer genes that are specific in each cell type, indicating the genes are involved in directing the cell differentiation to that particular cell type. We illustrate the method using gene expression data from a study of haematopoiesis. R codes to perform the analysis are available in http://www1.maths.leeds.ac.uk/∼arief/R/CellDiff/. a.gusnanto@leeds.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin
2010-02-01
The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.
Sathe, Priyanka; Metcalf, Donald; Vremec, David; Naik, Shalin H; Langdon, Wallace Y; Huntington, Nicholas D; Wu, Li; Shortman, Ken
2014-07-17
The relationship between dendritic cells (DCs) and macrophages is often debated. Here we ask whether steady-state, lymphoid-tissue-resident conventional DCs (cDCs), plasmacytoid DCs (pDCs), and macrophages share a common macrophage-DC-restricted precursor (MDP). Using new clonal culture assays combined with adoptive transfer, we found that MDP fractions isolated by previous strategies are dominated by precursors of macrophages and monocytes, include some multipotent precursors of other hematopoietic lineages, but contain few precursors of resident cDCs and pDCs and no detectable common precursors restricted to these DC types and macrophages. Overall we find no evidence for a common restricted MDP leading to both macrophages and FL-dependent, resident cDCs and pDCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M
2010-02-26
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.
Setting the Stage for Personalized Treatment of Glioma | Center for Cancer Research
Gliomas, the most common type of primary brain tumors in adults, arise from different types of glial cells, which support and protect the neurons of the central nervous system. How a patient’s glioma is treated depends in part on the type of glial cell from which the tumor developed. Classification of gliomas has traditionally been done by microscopic analysis of tumor sections. This process is subjective and prone to inconsistencies, which may explain in part the wide-ranging and often suboptimal responses of gliomas to treatment.
Klein-Szanto, A. J.; Nettesheim, P.; Pine, A.; Martin, D.
1981-01-01
Dark epithelial basal cells were found in both carcinogen-induced and non-carcinogen-induced squamous metaplasias of the tracheal epithelium. Formaldehyde-induced squamous metaplasias exhibited 4% dark cells in the basal layer. Metaplasias induced by vitamin A deficiency and those induced by dimethylbenz(alpha)anthracene (DMBA) without atypia showed 18--20% basal dark cells. DMBA-induced metaplasias with moderate to severe atypia exhibited 50% basal dark cells. The labeling index of basal cells in metaplastic epithelia, regardless of the inducing agent, was 16--18%, ie, the same as that of the normal esophageal stratified squamous epithelium. The percentage of labeled dark basal cells per total dark cell population was approximately 19% in the non-carcinogen-induced metaplasias and in the DMBA-induced metaplasias without atypia. In the atypical metaplasias induced by DMA this percentage increased to 26. On the basis of ultrastructural observations, five types of dark epithelial cells could be distinguished in the metaplastic epithelia: Type I (ovoid or fusiform dark cell with abundant cytoplasmic filaments, desmosomes, and free ribosomes--dark keratinocyte type); Type II (ovoid or spherical small cell with scant cytoplasm with few organelles--basal respiratory type); Type III (irregular or ovoid, few cytoplasmic filaments and organelles and desmosomes, extremely abundant free ribosomes--dedifferentiated type); Type IV (fusiform or ovoid, large mitochondria, prominent ergastoplasm, secretion droplets--mucous cell type); and type V (irregular shape, organelle remnants, vacuoles, pyknotic nuclei--involutional-cell type). Type I was the predominant cell type in formaldehyde-induced metaplasias and was also commonly seen in DMBA-induced metaplasias without atypia. Type II predominated in metaplasias induced by vitamin A deficiency. Type III was seen in DMBA-induced metaplasias and was the predominant cell type in the atypical epithelial alterations. Type IV cells occurred only in the latter, and Type V cells were occasionally seen in formaldehyde- as well as in DMBA-induced atypical metaplasias. Each type of squamous metaplasia could thus be recognized by a determined numerical distribution of dark cells in the basal layer and a specific pattern of distribution of the ultrastructurally defined dark cell categories. Images Figure 3 Figure 4 Figure 5 Figure 1 Figure 2 Figure 6 Figure 7 PMID:6786102
Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.
Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H
2016-03-01
Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.
NASA Astrophysics Data System (ADS)
Tamaddon, M.; Burrows, M.; Ferreira, S. A.; Dazzi, F.; Apperley, J. F.; Bradshaw, A.; Brand, D. D.; Czernuszka, J.; Gentleman, E.
2017-03-01
Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.
Rost-Roszkowska, M M; Kszuk-Jendrysik, M; Marchewka, A; Poprawa, I
2018-01-01
The midgut of millipedes is composed of a simple epithelium that rests on a basal lamina, which is surrounded by visceral muscles and hepatic cells. As the material for our studies, we chose Telodeinopus aoutii (Demange, 1971) (Kenyan millipede) (Diplopoda, Spirostreptida), which lives in the rain forests of Central Africa. This commonly reared species is easy to obtain from local breeders and easy to culture in the laboratory. During our studies, we used transmission and scanning electron microscopes and light and fluorescent microscopes. The midgut epithelium of the species examined here shares similarities to the structure of the millipedes analyzed to date. The midgut epithelium is composed of three types of cells-digestive, secretory, and regenerative cells. Evidence of three types of secretion have been observed in the midgut epithelium: merocrine, apocrine, and microapocrine secretion. The regenerative cells of the midgut epithelium in millipedes fulfill the role of midgut stem cells because of their main functions: self-renewal (the ability to divide mitotically and to maintain in an undifferentiated state) and potency (ability to differentiate into digestive cells). We also confirmed that spot desmosomes are common intercellular junctions between the regenerative and digestive cells in millipedes.
Liu, G T; Shen, C; Ren, X H; Yang, L; Yu, Y M; Xiu, Y X; Li, R H; Jiang, L; Zhang, C L; Li, Y W
2017-01-01
Esophageal squamous cell carcinoma is the most common type of esophageal cancer in Eastern Europe and Asia, being the 6th most common cause of cancer deaths worldwide. The aim of this study was to analyze the expression of transmembrane serine protein in esophageal squamous cell carcinoma, and to correlate it with the clinical biological features of esophageal cancer. The expression of transmembrane protease serine 4 (TMPRSS4) mRNA and protein in carcinoma tissues and corresponding adjacent tissues and non-tumorous esophageal tissues was determined using PCR (qRT-PCR). The results show that both TMPRSS4 mRNA and protein expression were remarkably lower in adjacent normal tissues than in tumorous tissues. TMPRSS4 protein expression in esophageal carcinoma was correlated with patient demographic characteristics, tumor type, high TNM stages and overall survival (OS). Based on the experimental results, we conclude that TMPRSS4 is closely related to the occurrence, development and metastasis of esophageal squamous cell carcinoma.
Squamous cell carcinoma in chronic wound: Marjolin ulcer.
Cocchetto, Vanessa; Magrin, Paula; de Paula, Roberta Andrade; Aidé, Márcia; Monte Razo, Leonardo; Pantaleão, Luciana
2013-02-15
Cutaneous squamous cell carcinoma (SCC) is a malignant tumor that can occur in normal skin, but commonly evolves from precursor lesions. SCC arising in ulcers is a rare and often aggressive cutaneous malignancy that arises from chronic wounds or old scars and is the most common histological tumor type found in Marjolin ulcer. Most frequently occurs in patients of low socioeconomic status, with limited access to health services, as a result of burns and other neglected injuries. Herein, we report a case of squamous cell carcinoma originating from a longstanding decubitus ulcer in a 56-year-old paraplegic man.
Plant stem cells as innovation in cosmetics.
Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula
2014-01-01
The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.
[The types of macrophages in the central lymph of rabbits during the use of radon baths].
Kuznetsov, A V
1995-01-01
Three types of macrophages circulating in central lymph were revealed by original method of lymph getting from rabbits. Type I has common morphological properties, type II and III are described in central lymph for the first time. Processes and protrusion are present in these types. Macrophages with processes are called by the author dendritic macrophages. They get into contact with lymphocytes. Type II and III macrophages number increases after radon balneotreatment in proportion with radon content, which is connected with radon effect on the skin receptor area, where intraepithelial macrophages are located. The latter are the precursors of dendritic cells of the other types and are the main antigen-presenting cells in the initial phase of the immune response.
CellNet: Network Biology Applied to Stem Cell Engineering
Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.
2014-01-01
SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793
The Evolution of Human Cells in Terms of Protein Innovation
Sardar, Adam J.; Oates, Matt E.; Fang, Hai; Forrest, Alistair R.R.; Kawaji, Hideya; Gough, Julian; Rackham, Owen J.L.
2014-01-01
Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type–specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type–specific domain architectures. PMID:24692656
Evans, D G; Sainio, M; Baser, M E
2000-12-01
Neurofibromatosis type 2 is an often devastating autosomal dominant disorder which, until relatively recently, was confused with its more common namesake neurofibromatosis type 1. Subjects who inherit a mutated allele of the NF2 gene inevitably develop schwannomas, affecting particularly the superior vestibular branch of the 8th cranial nerve, usually bilaterally. Meningiomas and other benign central nervous system tumours such as ependymomas are other common features. Much of the morbidity from these tumours results from their treatment. It is now possible to identify the NF2 mutation in most families, although about 20% of apparently sporadic cases are actually mosaic for their mutation. As a classical tumour suppressor, inactivation of the NF2 gene product, merlin/schwannomin, leads to the development of both NF2 associated and sporadic tumours. Merlin/schwannomin associates with proteins at the cell cytoskeleton near the plasma membrane and it inhibits cell proliferation, adhesion, and migration.
NASA Astrophysics Data System (ADS)
Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen
2013-08-01
We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.
NASA Technical Reports Server (NTRS)
Huang, S.; Ingber, D. E.
2000-01-01
Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or clusters of genes with common activity profiles may overlook the most critical features of cellular information processing which normally determine how signal specificity is established and maintained in living cells. Copyright 2000 Academic Press.
Perspectives on testicular germ cell neoplasms.
Cheng, Liang; Lyu, Bingjian; Roth, Lawrence M
2017-01-01
Our knowledge of testicular germ cell neoplasms has progressed in the last few decades due to the description of germ cell neoplasia in situ (GCNIS) and a variety of specific forms of intratubular germ cell neoplasia, the discovery of isochromosome 12p and its importance in the development of invasiveness in germ cell tumors (GCTs), the identification of specific transcription factors for GCTs, and the recognition that a teratomatous component in mixed GCT represents terminal differentiation. Isochromosome 12p and 12p overrepresentation, collectively referred to as 12p amplification, are fundamental abnormalities that account for many types of malignant GCTs of the testis. Embryonal carcinoma is common in the testis but rare in the ovary, whereas the converse is true for mature cystic teratoma. Spermatocytic tumor occurs only in the testis; it has not been described in the ovary or extragonadal sites. The origin of ovarian mature cystic teratoma is similar to that of prepubertal-type testicular teratoma and dermoid cyst at any age in that it arises from a nontransformed germ cell, whereas postpubertal-type testicular teratoma arises from a malignant germ cell, most commonly through the intermediary of GCNIS. Somatic neoplasms, often referred to as monodermal teratomas, arise not infrequently from mature cystic teratoma of the ovary, whereas such neoplasms are rare in testicular teratoma with the exception of carcinoid. Integration of classical morphologic observations and emerging novel molecular studies will result in better understanding of the pathogenesis of GCTs and will optimize patient therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Grange, Pascal
2015-09-01
The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.
Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko
2015-01-20
Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.
The Oncogenic Role of RhoGAPs in Basal-Like Breast Cancer
2016-04-01
somatic mutations of RhoA in peripheral T cell lymphomas (PTCLs) (16-18) and in diffuse-type gastric carcinomas (19-21). Surprisingly, unlike Rac1...Diffuse-type gastric cancers exhibited mutations in the effector binding domain of RhoA, most commonly Y42C (19-21), which prevents binding to the...Impiombato A, Perez-Garcia A, et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas . Nat Genet 2014;46
Digilio, Laura; Yap, Chan Choo; Winckler, Bettina
2015-01-01
The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilton, Susan C.; Karin, Norman J.; Tolic, Ana
2014-08-01
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and highmore » (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.« less
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.
Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment
Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026
Electrochemical cell and separator plate thereof
Baker, Bernard S.; Dharia, Dilip J.
1979-10-02
A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.
Chicha, Laurie; Jarrossay, David; Manz, Markus G.
2004-01-01
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c− natural type I interferon–producing cells (IPCs) and CD11c+ dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I–producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system. PMID:15557348
Examining the Origins of Myeloid Leukemia | Center for Cancer Research
Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The
ERIC Educational Resources Information Center
Ozkaya, Ali Riza
2002-01-01
A previous study of prospective teachers found that students from different countries and different levels of electrochemistry hold common misconceptions, indicating that concepts were presented to them poorly. Reports on how prospective teachers' scientifically incorrect ideas were used to form assertion-reason-type questions and how these…
A Complete Developmental Sequence of a Drosophila Neuronal Lineage as Revealed by Twin-Spot MARCM
He, Yisheng; Ding, Peng; Kao, Jui-Chun; Lee, Tzumin
2010-01-01
Drosophila brains contain numerous neurons that form complex circuits. These neurons are derived in stereotyped patterns from a fixed number of progenitors, called neuroblasts, and identifying individual neurons made by a neuroblast facilitates the reconstruction of neural circuits. An improved MARCM (mosaic analysis with a repressible cell marker) technique, called twin-spot MARCM, allows one to label the sister clones derived from a common progenitor simultaneously in different colors. It enables identification of every single neuron in an extended neuronal lineage based on the order of neuron birth. Here we report the first example, to our knowledge, of complete lineage analysis among neurons derived from a common neuroblast that relay olfactory information from the antennal lobe (AL) to higher brain centers. By identifying the sequentially derived neurons, we found that the neuroblast serially makes 40 types of AL projection neurons (PNs). During embryogenesis, one PN with multi-glomerular innervation and 18 uniglomerular PNs targeting 17 glomeruli of the adult AL are born. Many more PNs of 22 additional types, including four types of polyglomerular PNs, derive after the neuroblast resumes dividing in early larvae. Although different offspring are generated in a rather arbitrary sequence, the birth order strictly dictates the fate of each post-mitotic neuron, including the fate of programmed cell death. Notably, the embryonic progenitor has an altered temporal identity following each self-renewing asymmetric cell division. After larval hatching, the same progenitor produces multiple neurons for each cell type, but the number of neurons for each type is tightly regulated. These observations substantiate the origin-dependent specification of neuron types. Sequencing neuronal lineages will not only unravel how a complex brain develops but also permit systematic identification of neuron types for detailed structure and function analysis of the brain. PMID:20808769
Breast Cancer—Health Professional Version
The most common type of breast cancer is ductal carcinoma, which begins in the cells of the ducts. Breast cancer can also begin in the cells of a lobule and in other tissues of the breast. Find evidence-based information on breast cancer treatment, causes and prevention, genetics, screening, research, and statistics.
The effect of the size of fluorescent dextran on its endocytic pathway.
Li, Lei; Wan, Tao; Wan, Min; Liu, Bei; Cheng, Ran; Zhang, Rongying
2015-05-01
Fluorescent dextrans are commonly used as macropinocytic probes to study the properties of endocytic cargoes; however, the effect of the size of dextrans on endocytic mechanisms has not been carefully analyzed. By using chemical and siRNA inhibition of individual endocytic pathways, we evaluated the internalization of two commonly used dextrans, Dex10 (dextran 10 kDa) and Dex70 (dextran 70 kDa), in mammalian HeLa cells and Caenorhabditis elegans coelomocytes. We revealed that Dex70 enters these two cell types predominantly via clathrin- and dynamin-independent and amiloride-sensitive macropinocytosis process; Dex10, on the other hand, enters the two cell types through clathrin-/dynamin-dependent micropinocytosis in addition to macropinocytosis. In addition, although different-sized dextrans follow different endocytic processes, they share common post-endocytic events. Herein, though straightforward, our studies support that the size of nanomaterials could play a paramount role in their inclusion into endocytic vesicles and suggest that care should be taken while selecting endocytic pathway markers. Based on our results, we propose that Dex70 is a better probe for macropinocytosis, whereas Dex10 and smaller molecules are better for probing general fluid-phase endocytosis, which includes macropinocytic and micropinocytic processes. © 2015 International Federation for Cell Biology.
Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael; Keefe, Damian; Liu, Zheng; London, Darin; McDaniell, Ryan M.; Shibata, Yoichiro; Showers, Kimberly A.; Simon, Jeremy M.; Vales, Teresa; Wang, Tianyuan; Winter, Deborah; Zhang, Zhuzhu; Clarke, Neil D.; Birney, Ewan; Iyer, Vishwanath R.; Crawford, Gregory E.; Lieb, Jason D.; Furey, Terrence S.
2011-01-01
The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map “open chromatin.” Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease. PMID:21750106
Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun
2017-12-21
Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.
Bauer, Johann; Bussen, Markus; Wise, Petra; Wehland, Markus; Schneider, Sabine; Grimm, Daniela
2016-07-01
More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.
Disease and Stem Cell-Based Analysis of the 2014 ASNTR Meeting
Eve, David J.
2015-01-01
A wide variety of subjects are presented at the annual American Society of Neural Therapy and Repair meeting every year, as typified by this summary of the 2014 meeting. Parkinson’s disease-related presentations were again the most popular topic, with traumatic brain injury, spinal cord injury, and stroke being close behind. Other disorders included Huntington’s disease, brain cancer, and bipolar disorders. Several studies were related to multiple diseases, and many studies attempted to reveal more about the disease process. The use of scaffolds, drugs, and gene therapy as disease models and/or potential therapies were also featured. An increasing proportion of presentations related to stem cells, with the study of multiple stem cell types being the most common. Induced pluripotent stem cells were increasingly popular, including two presentations each on a muscle-derived dedifferentiated cell type and cells derived from bipolar patients. Other stem cells, including neural stem cells, mesenchymal stem cells, umbilical cord blood cells, and embryonic stem cells, were featured. More than 55% of the stem cell studies involved transplantation, with human-derived cells being the most frequently transplanted, while rats were the most common recipient. Two human autologous studies for spinal cord injury and hypoxia-derived encephalopathy, while a further three allogenic studies for stroke and spinal cord injury, were also featured. This year’s meeting highlights the increasing promise of stem cells and other therapies for the treatment of neurodegenerative disorders. PMID:26858901
Bladder Cancer Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version
There are three types of bladder cancer. Transitional cell carcinoma, or urothelial carcinoma, is the most common type. Signs of bladder cancer can include blood in the urine and pain during urination. Find out about other symptoms, risk factors, tests to diagnose, and stages of bladder cancer.
IL-21: an executor of B cell fate.
Konforte, Danijela; Simard, Nathalie; Paige, Christopher J
2009-02-15
IL-21 is a type I cytokine that shares the common receptor gamma-chain with IL-2, IL-4, IL-7, IL-9, and IL-15. B cells are one of the lymphoid cell types whose development and function are regulated by IL-21. Depending on the interplay with costimulatory signals and on the developmental stage of a B cell, IL-21 can induce proliferation, differentiation into Ig-producing plasma cells, or apoptosis in both mice and humans. Alone and in combination with Th cell-derived cytokines IL-21 can regulate class switch recombination to IgG, IgA, or IgE isotypes, indicating its important role in shaping the effector function of B cells. This review highlights the role of IL-21 in B cell development, function, and disease and provides some perspectives on the future studies in this area.
The potential for stem cells in cerebral palsy--piecing together the puzzle.
Faulkner, Stuart D; Ruff, Crystal A; Fehlings, Michael G
2013-06-01
The substantial socioeconomic burden of a diagnosis of cerebral palsy, coupled with a positive anecdotal and media spin on stem cell treatments, drives many affected families to seek information and treatment outside of the current clinical and scientific realm. Preclinical studies using several types of stem and adult cells--including mesenchymal stem cells, neural precursor cells, olfactory ensheathing glia and Schwann cells--have demonstrated some regenerative and functional efficacy in neurologic paradigms. This paper describes the most common cell types investigated for transplant in vivo and summarizes the current state of early-phase clinical trials. It investigates the most relevant and promising coadministered therapies, including rehabilitation, drug targeting, magnetic stimulation, and bioengineering approaches. We highlight the need for adjunctive combinatorial strategies to successfully transfer stem cell treatments from bench to bedside. Copyright © 2013 Elsevier Inc. All rights reserved.
A golgi study of the optic tectum of the tegu lizard, Tupinambis nigropunctatus.
Butler, A B; Ebbesson, O E
1975-06-01
The dendritic patterns of cells in the optic tectum of the tegu lizard, Tupinambis nigropunctatus, were analyzed with the Ramon-Moliner modification of the Golgi-Cox technique. Cell types were compared with those described by other authors in the tectum of other reptiles; particular comparisons of our results were made with the description of cell types in the chameleon (Ramń, 1896), as the latter is the most complete analysis in the literature. The periventricular gray layers 3 and 5 consist primarily of two cell types--piriform or pyramidal shaped cells and horizontal cells. Cells in the medial portion of the tectum, in an area coextensive with the bilateral spinal projection zone, possess dendrites that extend across the midline. The latter cells have either fusiform or pyramidal shaped somas. The central white zone, layer 6, contains fibers, large fusiform or pyramidal shaped cells, fusiform cells, and small horizontal cells. The central gray zone, layer 7, is composed predominately of fusiform cells which have dendrites extending to the superficial optic layers, large polygonal cells, and horizontal cells. The superficial gray and white layers, layers 8-13, contain polygonal, fusiform, stellate, and horizontal elements. Layer 14 is composed solely of afferent optic tract fibers. Several differences in the occurrence and distribution of cell types between the tegu and the other reptiles studied are noted. Additionally, the laminar distribution of retinal, tectotectal, telencephalic, and spinal projections in the tegutectum can be related to the distribution of cell types, and those cells which may be postsynaptic to specific inputs can be identified. The highly differentiated laminar structure of the reptilian optic tectum, both in regard to cell type and to afferent and efferent connections, may serve as a model for studying some functional properties of lamination common to cortical structures.
The insulin-like growth factor pathway is altered in Spinocerebellar ataxia type 1 and type 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatchel, Jennifer R.; Watase, Kei; Thaller, Christina
2008-01-29
Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG trinucleotide repeats encoding a polyglutamine tract in the disease-causing proteins. There are nine of these disorders each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with corresponding degeneration of Purkinje cells. Given this common phenotype, we asked whether the two disorders share common molecular pathogenic events. To address this question we studied two genetically accurate mouse models of SCA1 and SCA7—Sca1154Q/2Q and Sca7266Q/5Q knock-in mice—that express the glutamine-expanded proteins from the respective endogenousmore » loci. We found common transcriptional changes in early symptomatic mice, with downregulation of Insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust transcriptional changes that closely correlates with disease state. Interestingly, down-regulation of Igfbp5 occurred in granule neurons through a non-cell autonomous mechanism and was concomitant with activation of the Insulin-like growth factor I (Igf-I) pathway, and, in particular, the Igf-I receptor, expressed in part on Purkinje cells (PC). These data define a possible common pathogenic response in SCA1 and SCA7 and reveal the importance of neuron-neuron interactions in SCA1 and SCA7 pathogenesis. The sensitivity of Igfbp5 levels to disease state could render it and other components of its effector pathway useful as biomarkers in this class of diseases.« less
Daugherty, Michael; Blakely, Stephen; Shapiro, Oleg; Vourganti, Srinivas; Mollapour, Mehdi; Bratslavsky, Gennady
2016-04-01
The renal cell cancer incidence is relatively low in younger patients, encompassing 3% to 7% of all renal cell cancers. While young patients may have renal tumors due to hereditary syndromes, in some of them sporadic renal cancers develop without any family history or known genetic mutations. Our recent observations from clinical practice have led us to hypothesize that there is a difference in histological distribution in younger patients compared to the older cohort. We queried the SEER (Surveillance, Epidemiology and End Results) 18-registry database for all patients 20 years old or older who were surgically treated for renal cell carcinoma between 2001 and 2008. Patients with unknown race, grade, stage or histology and those with multiple tumors were excluded from study. Four cohorts were created by dividing patients by gender, including 1,202 females and 1,715 males younger than 40 years old, and 18,353 females and 30,891 males 40 years old or older. Chi-square analysis was used to compare histological distributions between the cohorts. While clear cell carcinoma was still the most common renal cell cancer subtype across all genders and ages, chromophobe renal cell cancer was the most predominant type of nonclear renal cell cancer histology in young females, representing 62.3% of all nonclear cell renal cell cancers (p <0.0001). In all other groups papillary renal cell cancer remained the most common type of nonclear renal cell cancer. It is possible that hormonal factors or specific pathway dysregulations predispose chromophobe renal cell cancer to develop in younger women. We hope that this work provides some new observations that could lead to further studies of gender and histology specific renal tumorigenesis. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Craddock, Nick; Hurles, Matthew E; Cardin, Niall; Pearson, Richard D; Plagnol, Vincent; Robson, Samuel; Vukcevic, Damjan; Barnes, Chris; Conrad, Donald F; Giannoulatou, Eleni; Holmes, Chris; Marchini, Jonathan L; Stirrups, Kathy; Tobin, Martin D; Wain, Louise V; Yau, Chris; Aerts, Jan; Ahmad, Tariq; Andrews, T Daniel; Arbury, Hazel; Attwood, Anthony; Auton, Adam; Ball, Stephen G; Balmforth, Anthony J; Barrett, Jeffrey C; Barroso, Inês; Barton, Anne; Bennett, Amanda J; Bhaskar, Sanjeev; Blaszczyk, Katarzyna; Bowes, John; Brand, Oliver J; Braund, Peter S; Bredin, Francesca; Breen, Gerome; Brown, Morris J; Bruce, Ian N; Bull, Jaswinder; Burren, Oliver S; Burton, John; Byrnes, Jake; Caesar, Sian; Clee, Chris M; Coffey, Alison J; Connell, John M C; Cooper, Jason D; Dominiczak, Anna F; Downes, Kate; Drummond, Hazel E; Dudakia, Darshna; Dunham, Andrew; Ebbs, Bernadette; Eccles, Diana; Edkins, Sarah; Edwards, Cathryn; Elliot, Anna; Emery, Paul; Evans, David M; Evans, Gareth; Eyre, Steve; Farmer, Anne; Ferrier, I Nicol; Feuk, Lars; Fitzgerald, Tomas; Flynn, Edward; Forbes, Alistair; Forty, Liz; Franklyn, Jayne A; Freathy, Rachel M; Gibbs, Polly; Gilbert, Paul; Gokumen, Omer; Gordon-Smith, Katherine; Gray, Emma; Green, Elaine; Groves, Chris J; Grozeva, Detelina; Gwilliam, Rhian; Hall, Anita; Hammond, Naomi; Hardy, Matt; Harrison, Pile; Hassanali, Neelam; Hebaishi, Husam; Hines, Sarah; Hinks, Anne; Hitman, Graham A; Hocking, Lynne; Howard, Eleanor; Howard, Philip; Howson, Joanna M M; Hughes, Debbie; Hunt, Sarah; Isaacs, John D; Jain, Mahim; Jewell, Derek P; Johnson, Toby; Jolley, Jennifer D; Jones, Ian R; Jones, Lisa A; Kirov, George; Langford, Cordelia F; Lango-Allen, Hana; Lathrop, G Mark; Lee, James; Lee, Kate L; Lees, Charlie; Lewis, Kevin; Lindgren, Cecilia M; Maisuria-Armer, Meeta; Maller, Julian; Mansfield, John; Martin, Paul; Massey, Dunecan C O; McArdle, Wendy L; McGuffin, Peter; McLay, Kirsten E; Mentzer, Alex; Mimmack, Michael L; Morgan, Ann E; Morris, Andrew P; Mowat, Craig; Myers, Simon; Newman, William; Nimmo, Elaine R; O'Donovan, Michael C; Onipinla, Abiodun; Onyiah, Ifejinelo; Ovington, Nigel R; Owen, Michael J; Palin, Kimmo; Parnell, Kirstie; Pernet, David; Perry, John R B; Phillips, Anne; Pinto, Dalila; Prescott, Natalie J; Prokopenko, Inga; Quail, Michael A; Rafelt, Suzanne; Rayner, Nigel W; Redon, Richard; Reid, David M; Renwick; Ring, Susan M; Robertson, Neil; Russell, Ellie; St Clair, David; Sambrook, Jennifer G; Sanderson, Jeremy D; Schuilenburg, Helen; Scott, Carol E; Scott, Richard; Seal, Sheila; Shaw-Hawkins, Sue; Shields, Beverley M; Simmonds, Matthew J; Smyth, Debbie J; Somaskantharajah, Elilan; Spanova, Katarina; Steer, Sophia; Stephens, Jonathan; Stevens, Helen E; Stone, Millicent A; Su, Zhan; Symmons, Deborah P M; Thompson, John R; Thomson, Wendy; Travers, Mary E; Turnbull, Clare; Valsesia, Armand; Walker, Mark; Walker, Neil M; Wallace, Chris; Warren-Perry, Margaret; Watkins, Nicholas A; Webster, John; Weedon, Michael N; Wilson, Anthony G; Woodburn, Matthew; Wordsworth, B Paul; Young, Allan H; Zeggini, Eleftheria; Carter, Nigel P; Frayling, Timothy M; Lee, Charles; McVean, Gil; Munroe, Patricia B; Palotie, Aarno; Sawcer, Stephen J; Scherer, Stephen W; Strachan, David P; Tyler-Smith, Chris; Brown, Matthew A; Burton, Paul R; Caulfield, Mark J; Compston, Alastair; Farrall, Martin; Gough, Stephen C L; Hall, Alistair S; Hattersley, Andrew T; Hill, Adrian V S; Mathew, Christopher G; Pembrey, Marcus; Satsangi, Jack; Stratton, Michael R; Worthington, Jane; Deloukas, Panos; Duncanson, Audrey; Kwiatkowski, Dominic P; McCarthy, Mark I; Ouwehand, Willem; Parkes, Miles; Rahman, Nazneen; Todd, John A; Samani, Nilesh J; Donnelly, Peter
2010-04-01
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.
... most common types of cancer treatment are surgery, radiotherapy, and chemotherapy. Treatment is aimed at removing the ... vital organs, such as the liver or brain. Radiotherapy Radiotherapy uses radiation to damage cancer cells so ...
Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures
Sanes, Joshua R.
2017-01-01
The retina communicates with the brain using ≥30 parallel channels, each carried by axons of distinct types of retinal ganglion cells. In every mammalian retina one finds so-called "alpha" ganglion cells (αRGCs), identified by their large cell bodies, stout axons, wide and mono-stratified dendritic fields, and high levels of neurofilament protein. In the mouse, three αRGC types have been described based on responses to light steps: On-sustained, Off-sustained, and Off-transient. Here we employed a transgenic mouse line that labels αRGCs in the live retina, allowing systematic targeted recordings. We characterize the three known types and identify a fourth, with On-transient responses. All four αRGC types share basic aspects of visual signaling, including a large receptive field center, a weak antagonistic surround, and absence of any direction selectivity. They also share a distinctive waveform of the action potential, faster than that of other RGC types. Morphologically, they differ in the level of dendritic stratification within the IPL, which accounts for their response properties. Molecularly, each type has a distinct signature. A comparison across mammals suggests a common theme, in which four large-bodied ganglion cell types split the visual signal into four channels arranged symmetrically with respect to polarity and kinetics. PMID:28753612
Eberle, R; Russell, R G; Rouse, B T
1981-01-01
In this communication, we examine the specificity of anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL). Serological studies of the two related HSV serotypes (HSV-1 and HSV-2) have revealed both type-specific and cross-reactive antigenic determinants in the viral envelope and on the surface of infected cells. By analysis of cytotoxicity of CTL, generated in vitro by restimulation of splenocytes from mice primed with one or the other HSV serotype, the recognition of both type-specific and cross-reactive determinants on infected target cells by anti-HSV CTL was detectable. Thus, effector cells generated by priming and restimulating with the same virus recognized both type-specific and cross-reactive determinants on target cells infected with the homologous virus, but only cross-reactive determinants on target cells infected with the heterologous HSV serotype. CTL generated by restimulation with the heterologous virus were capable of recognizing only the cross-reactive determinants on either HSV-1- or HSV-2-infected target cells. These results indicate that two subpopulations of CTL exist in a population of anti-HSV immune spleen cells--those which recognize type-specific determinants and those specific for cross-reactive antigenic determinants present on the surface of HSV infected cells. The type-specific subset of anti-HSV CTL was shown to recognize the gC glycoprotein of HSV-1 infected target cells. In addition to the gC glycoprotein, at least one other type-specific surface antigen was also recognized by anti-HSV CTL in addition to the cross-reactive determinants recognized by anti-HSV CTL. PMID:6277790
Crystallization and preliminary crystallographic analysis of human common-type acylphosphatase
Yeung, Rachel C. Y.; Lam, Sonia Y.; Wong, Kam-Bo
2006-01-01
Human acylphosphatase, an 11 kDa enzyme that catalyzes the hydrolysis of carboxyl phosphate bonds, has been studied extensively as a model system for amyloid-fibril formation. However, the structure is still not known of any isoform of human acylphosphatase. Here, the crystallization and preliminary X-ray diffraction data analysis of human common-type acylphosphatase are reported. Crystals of human common-type acylphosphatase have been grown by the sitting-drop vapour-diffusion method at 289 K using polyethylene glycol 4000 as precipitant. Diffraction data were collected to 1.45 Å resolution at 100 K. The crystals belong to space group P212121, with unit-cell parameters a = 42.58, b = 47.23, c = 57.26 Å. PMID:16511269
Single cell transcriptome profiling of developing chick retinal cells.
Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M
2017-08-15
The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.
Extranodal non-Hodgkins lymphoma of larynx.
Aiyer, R G; Soni, Geeta; Chougule, Sachin; Unnikrishnan; Nagpal, Tapan
2004-10-01
Non-Hodgkins lymphoma is found in the older age group with extranoda involvement more commonly seen than in Hodgkins lymphomna. It isusually of B-cell type which has a better prognosis than T-cell type, Extranodal Non-Hodkin's lymphomas of larynx are rare. they can present as isolated lesions in larynx or associated with multiple involvement. They are usually found in the supraglottic region of the larynx. We present a case of 70-year-old female with extranodal Hodgkins lymphoma of epiglottis with metastasis in the liver.
Evaluating cell lines as tumour models by comparison of genomic profiles
Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus
2013-01-01
Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242
Yun, Xinming; Huang, Qingchun; Rao, Wenbing; Xiao, Ciying; Zhang, Tao; Mao, Zhifan; Wan, Ziyi
2017-03-01
The cytotoxic potential of 13 commonly used agricultural insecticides was examined using cell-based systems with three human HepG2, Hek293, HeLa cells and three insect Tn5B1-4, Sf-21, and Drosophila S2 cells. Data showed that (1) an enhancement of some insecticides (e.g. pyrethroids) on cells proliferation; (2) an inhibition of some insecticides on cells viability; (3) various levels of susceptibility of different cells to the same insecticide; and (4) the cell type dependent sensitivity to different insecticides. The degree of cytotoxicity of insecticides on human cells was significantly lower than that on insect cells (P<0.05). Methomyl, even 20μg/ml, showed little cytotoxicity at 24h exposure whereas emamectin benzoate possessed the strongest cytotoxic potential in a dose-dependent fashion. The results revealed comparable cytotoxic property of agricultural insecticides against intact cells. Copyright © 2016 Elsevier Inc. All rights reserved.
[Clinical characteristics of central diabetes insipidus: a retrospective analysis of 230 cases].
Zhang, J P; Guo, Q H; Mu, Y M; Lyu, Z H; Gu, W J; Yang, G Q; Du, J; Ba, J M; Lu, J M
2018-03-01
Objective: To evaluate the clinical characteristics and etiologies of central diabetes insipidus (CDI). Methods: The clinical data of 230 patients with CDI in the Department of Endocrinology of Chinese PLA General Hospital from 2008 June to 2014 December were collected and analyzed retrospectively. Results: The three most common causes of CDI were idiopathic CDI, lymphocytic hypophysitis and intracranial germ cell tumors. Among all the CDI, the idiopathic CDI accounted for 37.48%. There were significant differences in age onset and gender distribution among the different causes of CDI. The patients with intracranial germ cell tumors [age of onset(19.2±10.2) years] were younger than the other types of CDI. Germ cell tumors patients were more common in male, and lymphocytic hypophysitis patients were more common in female. The most frequent abnormality of anterior pituitary in patients with CDI was growth hormone deficiency, followed by hypogonadism, adrenal insufficiency and hypothyroidism. The dysfunction of thyroid axis and adrenal axis in patients with germ cell tumor was more common than those in patients with idiopathic and lymphocytic hypophysitis. Conclusions: The most common causes of central diabetes insipidus were idiopathic CDI, lymphocytic hypophysitis and intracranial germ cell tumors. There were differences in age of onset, gender distribution and abnormal production of anterior pituitary hormones among all causes of CDI patients.
Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells
NASA Astrophysics Data System (ADS)
Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.
2006-07-01
We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.
Dromey, James A; Weenink, Sarah M; Peters, Günther H; Endl, Josef; Tighe, Patrick J; Todd, Ian; Christie, Michael R
2004-04-01
IA-2 is a major target of autoimmunity in type 1 diabetes. IA-2 responsive T cells recognize determinants within regions represented by amino acids 787-817 and 841-869 of the molecule. Epitopes for IA-2 autoantibodies are largely conformational and not well defined. In this study, we used peptide phage display and homology modeling to characterize the epitope of a monoclonal IA-2 Ab (96/3) from a human type 1 diabetic patient. This Ab competes for IA-2 binding with Abs from the majority of patients with type 1 diabetes and therefore binds a region close to common autoantibody epitopes. Alignment of peptides obtained after screening phage-displayed peptide libraries with purified 96/3 identified a consensus binding sequence of Asn-x-Glu-x-x-(aromatic)-x-x-Gly. The predicted surface on a three-dimensional homology model of the tyrosine phosphatase domain of IA-2 was analyzed for clusters of Asn, Glu, and aromatic residues and amino acids contributing to the epitope investigated using site-directed mutagenesis. Mutation of each of amino acids Asn(858), Glu(836), and Trp(799) reduced 96/3 Ab binding by >45%. Mutations of these residues also inhibited binding of serum autoantibodies from IA-2 Ab-positive type 1 diabetic patients. This study identifies a region commonly recognized by autoantibodies in type 1 diabetes that overlaps with dominant T cell determinants.
Biciliated ependymal cell proliferation contributes to spinal cord growth
Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel
2013-01-01
Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by three-dimensional ultrastructural reconstructions of [3H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+ and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from that of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post-labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord. PMID:22434575
Balachandran, Indra; Walker, Joe W; Broman, Jerry
2010-03-01
Post transplant lymphoproliferative disorders (PTLD) complicates the course of 0.3 to 3% of renal transplant patients receiving immunosuppression. Epstein-Barr virus (EBV) related non-Hodgkin's lymphomas of B-cell type is more common than those of T-cell origin. CD30 positive Anaplastic Large Cell Lymphoma (ALCL) is a Non-Hodgkin's lymphoma (B or T cell type) that accounts for a small percentage of PTLD's. ALCL of T-cell type are a spectrum of disease ranging from primary cutaneous to systemic nodal ALCL. The systemic nodal ALCL is further subdivided into anaplastic lymphoma kinase-1 (ALK-1) positive or negative. ALK-1 protein is a gene fusion product of translocation (2;5) and carries prognostic implications. We present an unusual manifestation of ALK-1 negative CD30 positive ALCL in a post renal transplant patient in FNA cytology with all supportive adjuvant studies and differential diagnoses and review the cytology literature on this topic.
Defining the cellular precursors to human breast cancer
Keller, Patricia J.; Arendt, Lisa M.; Skibinski, Adam; Logvinenko, Tanya; Klebba, Ina; Dong, Shumin; Smith, Avi E.; Prat, Aleix; Perou, Charles M.; Gilmore, Hannah; Schnitt, Stuart; Naber, Stephen P.; Garlick, Jonathan A.; Kuperwasser, Charlotte
2012-01-01
Human breast cancers are broadly classified based on their gene-expression profiles into luminal- and basal-type tumors. These two major tumor subtypes express markers corresponding to the major differentiation states of epithelial cells in the breast: luminal (EpCAM+) and basal/myoepithelial (CD10+). However, there are also rare types of breast cancers, such as metaplastic carcinomas, where tumor cells exhibit features of alternate cell types that no longer resemble breast epithelium. Until now, it has been difficult to identify the cell type(s) in the human breast that gives rise to these various forms of breast cancer. Here we report that transformation of EpCAM+ epithelial cells results in the formation of common forms of human breast cancer, including estrogen receptor-positive and estrogen receptor-negative tumors with luminal and basal-like characteristics, respectively, whereas transformation of CD10+ cells results in the development of rare metaplastic tumors reminiscent of the claudin-low subtype. We also demonstrate the existence of CD10+ breast cells with metaplastic traits that can give rise to skin and epidermal tissues. Furthermore, we show that the development of metaplastic breast cancer is attributable, in part, to the transformation of these metaplastic breast epithelial cells. These findings identify normal cellular precursors to human breast cancers and reveal the existence of a population of cells with epidermal progenitor activity within adult human breast tissues. PMID:21940501
LocExpress: a web server for efficiently estimating expression of novel transcripts.
Hou, Mei; Tian, Feng; Jiang, Shuai; Kong, Lei; Yang, Dechang; Gao, Ge
2016-12-22
The temporal and spatial-specific expression pattern of a transcript in multiple tissues and cell types can indicate key clues about its function. While several gene atlas available online as pre-computed databases for known gene models, it's still challenging to get expression profile for previously uncharacterized (i.e. novel) transcripts efficiently. Here we developed LocExpress, a web server for efficiently estimating expression of novel transcripts across multiple tissues and cell types in human (20 normal tissues/cells types and 14 cell lines) as well as in mouse (24 normal tissues/cell types and nine cell lines). As a wrapper to RNA-Seq quantification algorithm, LocExpress efficiently reduces the time cost by making abundance estimation calls increasingly within the minimum spanning bundle region of input transcripts. For a given novel gene model, such local context-oriented strategy allows LocExpress to estimate its FPKMs in hundreds of samples within minutes on a standard Linux box, making an online web server possible. To the best of our knowledge, LocExpress is the only web server to provide nearly real-time expression estimation for novel transcripts in common tissues and cell types. The server is publicly available at http://loc-express.cbi.pku.edu.cn .
Studying cell biology in the skin.
Morrow, Angel; Lechler, Terry
2015-11-15
Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. © 2015 Morrow and Lechler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
CellNet: network biology applied to stem cell engineering.
Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J
2014-08-14
Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.
Onorati, M; Petracco, G; Uboldi, P; Redaelli, D G; Romagnoli, S; Albertoni, M; Di Nuovo, F
2013-08-01
The incidence of gastric metastasis is 2.6%. Although all primary neoplasms can metastasize to the stomach, most originate from melanoma or breast and lung cancer. Their most common endoscopic appearance is a "volcano-like" polypoid mass covered by normal mucosa that may show a central ulceration. Renal cell carcinoma, clear cell type, is known to spread hematogenously, and isolated metastasis to the stomach is a rare event. In this report, we describe a gastric recurrence of RCC, clear-cell type, in a 80-year-old patient who had undergone nephrectomy 20 years before. We also performed a brief review of the literature to update the number of cases described to date. Metastatic involvement of the stomach should be suspected in any patient with a previous history of renal cell carcinoma, clear cell type, presenting with gastrointestinal symptoms, even if many years after nephrectomy. The peculiarity of our case is due to the very late presentation of the gastric metastasis. Only two cases of very late gastric metastases from RCC, clear cell type, have been described in the literature, to date.
Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.
Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji
2015-04-07
To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.
Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W
2015-02-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.
Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.
2015-01-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142
Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun
2015-11-01
Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.
Single molecule and single cell epigenomics.
Hyun, Byung-Ryool; McElwee, John L; Soloway, Paul D
2015-01-15
Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Single Molecule and Single Cell Epigenomics
Hyun, Byung-Ryool; McElwee, John L.; Soloway, Paul D.
2014-01-01
Dynamically regulated changes in chromatin states are vital for normal development and can produce disease when they go awry. Accordingly, much effort has been devoted to characterizing these states under normal and pathological conditions. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is the most widely used method to characterize where in the genome transcription factors, modified histones, modified nucleotides and chromatin binding proteins are found; bisulfite sequencing (BS-seq) and its variants are commonly used to characterize the locations of DNA modifications. Though very powerful, these methods are not without limitations. Notably, they are best at characterizing one chromatin feature at a time, yet chromatin features arise and function in combination. Investigators commonly superimpose separate ChIP-seq or BS-seq datasets, and then infer where chromatin features are found together. While these inferences might be correct, they can be misleading when the chromatin source has distinct cell types, or when a given cell type exhibits any cell to cell variation in chromatin state. These ambiguities can be eliminated by robust methods that directly characterize the existence and genomic locations of combinations of chromatin features in very small inputs of cells or ideally, single cells. Here we review single molecule epigenomic methods under development to overcome these limitations, the technical challenges associated with single molecule methods and their potential application to single cells. PMID:25204781
Classifying GABAergic interneurons with semi-supervised projected model-based clustering.
Mihaljević, Bojan; Benavides-Piccione, Ruth; Guerra, Luis; DeFelipe, Javier; Larrañaga, Pedro; Bielza, Concha
2015-09-01
A recently introduced pragmatic scheme promises to be a useful catalog of interneuron names. We sought to automatically classify digitally reconstructed interneuronal morphologies according to this scheme. Simultaneously, we sought to discover possible subtypes of these types that might emerge during automatic classification (clustering). We also investigated which morphometric properties were most relevant for this classification. A set of 118 digitally reconstructed interneuronal morphologies classified into the common basket (CB), horse-tail (HT), large basket (LB), and Martinotti (MA) interneuron types by 42 of the world's leading neuroscientists, quantified by five simple morphometric properties of the axon and four of the dendrites. We labeled each neuron with the type most commonly assigned to it by the experts. We then removed this class information for each type separately, and applied semi-supervised clustering to those cells (keeping the others' cluster membership fixed), to assess separation from other types and look for the formation of new groups (subtypes). We performed this same experiment unlabeling the cells of two types at a time, and of half the cells of a single type at a time. The clustering model is a finite mixture of Gaussians which we adapted for the estimation of local (per-cluster) feature relevance. We performed the described experiments on three different subsets of the data, formed according to how many experts agreed on type membership: at least 18 experts (the full data set), at least 21 (73 neurons), and at least 26 (47 neurons). Interneurons with more reliable type labels were classified more accurately. We classified HT cells with 100% accuracy, MA cells with 73% accuracy, and CB and LB cells with 56% and 58% accuracy, respectively. We identified three subtypes of the MA type, one subtype of CB and LB types each, and no subtypes of HT (it was a single, homogeneous type). We got maximum (adapted) Silhouette width and ARI values of 1, 0.83, 0.79, and 0.42, when unlabeling the HT, CB, LB, and MA types, respectively, confirming the quality of the formed cluster solutions. The subtypes identified when unlabeling a single type also emerged when unlabeling two types at a time, confirming their validity. Axonal morphometric properties were more relevant that dendritic ones, with the axonal polar histogram length in the [π, 2π) angle interval being particularly useful. The applied semi-supervised clustering method can accurately discriminate among CB, HT, LB, and MA interneuron types while discovering potential subtypes, and is therefore useful for neuronal classification. The discovery of potential subtypes suggests that some of these types are more heterogeneous that previously thought. Finally, axonal variables seem to be more relevant than dendritic ones for distinguishing among the CB, HT, LB, and MA interneuron types. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W; Sun, Lu-Zhe
2016-08-25
Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies.
Cell type-specific long-range connections of basal forebrain circuit.
Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang
2016-09-19
The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.
Sun, Yanjun; Nguyen, Amanda; Nguyen, Joseph; Le, Luc; Saur, Dieter; Choi, Jiwon; Callaway, Edward M.; Xu, Xiangmin
2014-01-01
Summary We applied a new Cre-dependent, genetically modified rabies-based tracing system to map direct synaptic connections to CA1 excitatory and inhibitory neuron types in mouse hippocampus. We found common inputs to excitatory and inhibitory CA1 neurons from CA3, CA2, entorhinal cortex and the medial septum (MS), and unexpectedly also from the subiculum. Excitatory CA1 neurons receive inputs from both cholinergic and GABAergic MS neurons while inhibitory CA1 neurons receive a great majority of input from GABAergic MS neurons; both cell types also receive weaker input from glutamatergic MS neurons. Comparisons of inputs to CA1 PV+ interneurons versus SOM+ interneurons showed similar strengths of input from the subiculum, but PV+ interneurons receive much stronger input than SOM+ neurons from CA3, entorhinal cortex and MS. Differential input from CA3 to specific CA1 cell types was also demonstrated functionally using laser scanning photostimulation and whole cell recordings. PMID:24656815
Eight types of stem cells in the life cycle of the moss Physcomitrella patens.
Kofuji, Rumiko; Hasebe, Mitsuyasu
2014-02-01
Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss. Copyright © 2013 Elsevier Ltd. All rights reserved.
Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes
Zhou, Kaixin; Bellenguez, Celine; Spencer, Chris CA; Bennett, Amanda J; Coleman, Ruth L; Tavendale, Roger; Hawley, Simon A.; Donnelly, Louise A; Schofield, Chris; Groves, Christopher J; Burch, Lindsay; Carr, Fiona; Strange, Amy; Freeman, Colin; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Craddock, Nicholas; Deloukas, Panos; Dronov, Serge; Duncanson, Audrey; Edkins, Sarah; Gray, Emma; Hunt, Sarah; Jankowski, Janusz; Langford, Cordelia; Markus, Hugh S; Mathew, Christopher G; Plomin, Robert; Rautanen, Anna; Sawcer, Stephen J; Samani, Nilesh J; Trembath, Richard; Viswanathan, Ananth C; Wood, Nicholas W; Harries, Lorna W; Hattersley, Andrew T; Doney, Alex SF; Colhoun, Helen; Morris, Andrew D; Sutherland, Calum; Hardie, D. Grahame; Peltonen, Leena; McCarthy, Mark I; Holman, Rury R.; Palmer, Colin N.A.; Donnelly, Peter; Pearson, Ewan R
2010-01-01
Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We carried out a GWA study on glycaemic response to metformin in 1024 Scottish patients with type 2 diabetes. Replication was in two cohorts consisting of 1783 Scottish patients and 1113 patients from the UK Prospective Diabetes Study. In a meta-analysis (n=3920) we observed an association (P=2.9 *10−9) for a SNP rs11212617 at a locus containing the ataxia telangiectasia mutated (ATM) gene with an odds ratio of 1.35 (95% CI 1.22 to 1.49) for treatment success. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMPK in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMPK, and variation in this gene alters glycaemic response to metformin. PMID:21186350
Evans, D; Sainio, M; Baser, M.
2000-01-01
Neurofibromatosis type 2 is an often devastating autosomal dominant disorder which, until relatively recently, was confused with its more common namesake neurofibromatosis type 1. Subjects who inherit a mutated allele of the NF2 gene inevitably develop schwannomas, affecting particularly the superior vestibular branch of the 8th cranial nerve, usually bilaterally. Meningiomas and other benign central nervous system tumours such as ependymomas are other common features. Much of the morbidity from these tumours results from their treatment. It is now possible to identify the NF2 mutation in most families, although about 20% of apparently sporadic cases are actually mosaic for their mutation. As a classical tumour suppressor, inactivation of the NF2 gene product, merlin/schwannomin, leads to the development of both NF2 associated and sporadic tumours. Merlin/schwannomin associates with proteins at the cell cytoskeleton near the plasma membrane and it inhibits cell proliferation, adhesion, and migration. Keywords: NF2; vestibular schwannomma; meningioma; mosaic PMID:11106352
Three-dimensional epithelial tissues generated from human embryonic stem cells.
Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A
2009-11-01
The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.
Rosu-Myles, Michael; Taylor, Barbara J; Wolff, Linda
2007-03-01
The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.
Clinical application of adipose stem cells in plastic surgery.
Kim, Yong-Jin; Jeong, Jae-Ho
2014-04-01
Adipose stem cells (ASCs) are a type of adult stem cells that share common characteristics with typical mesenchymal stem cells. In the last decade, ASCs have been shown to be a useful cell resource for tissue regeneration. The major role of regenerative medicine in this century is based on cell therapy in which ASCs hold a key position. Active research on this new type of adult stem cell has been ongoing and these cells now have several clinical applications, including fat grafting, overcoming wound healing difficulties, recovery from local tissue ischemia, and scar remodeling. The application of cultured cells will increase the efficiency of cell therapy. However, the use of cultured stem cells is strictly controlled by government regulation to ensure patient safety. Government regulation is a factor that can limit more versatile clinical application of ASCs. In this review, current clinical applications of ASCs in plastic surgery are introduced. Future stem cell applications in clinical field including culturing and banking of ASCs are also discussed in this review.
Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells
Hibaoui, Youssef; Feki, Anis
2015-01-01
Down syndrome (DS, trisomy 21), is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming. PMID:26239351
Association of human papilloma virus infection and oral squamous cell carcinoma in Bangladesh.
Akhter, Mahmuda; Ali, Liaquat; Hassan, Zahid; Khan, Imran
2013-03-01
Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell carcinoma were included in the study. Extracted DNA from the cancerous tissues was checked for PCR reaction to detect the subtypes of human papilloma virus. Data of the present study suggest that oral squamous cell carcinoma are almost absent in Bangladeshi patients with human papilloma virus, particularly HPV 16 and 18.
β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.
Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter
2018-01-01
β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.
The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.
ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I; Davison, Noel L; de Vries, Teun J; Everts, Vincent
2015-01-01
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K.
The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts
ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent
2015-01-01
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K. PMID:26426806
C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.
Wojciechowski, Konrad; Leijtens, Tomas; Siprova, Svetlana; Schlueter, Christoph; Hörantner, Maximilian T; Wang, Jacob Tse-Wei; Li, Chang-Zhi; Jen, Alex K-Y; Lee, Tien-Lin; Snaith, Henry J
2015-06-18
Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.
McCullough, KM; Morrison, FG; Ressler, KJ
2016-01-01
Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092
Jinawath, Natini; Furukawa, Yoichi; Hasegawa, Suguru; Li, Meihua; Tsunoda, Tatsuhiko; Satoh, Seiji; Yamaguchi, Toshiharu; Imamura, Hiroshi; Inoue, Masatomo; Shiozaki, Hitoshi; Nakamura, Yusuke
2004-09-02
Gastric cancer is the fourth leading cause of cancer-related death in the world. Two histologically distinct types of gastric carcinoma, 'intestinal' and 'diffuse', have different epidemiological and pathophysiological features that suggest different mechanisms of carcinogenesis. A number of studies have investigated intestinal-type gastric cancers at the molecular level, but little is known about mechanisms involved in the diffuse type, which has a more invasive phenotype and poorer prognosis. To clarify the mechanisms that underlie its development and/or progression, we compared the expression profiles of 20 laser-microbeam-microdissected diffuse-type gastric-cancer tissues with corresponding noncancerous mucosae by means of a cDNA microarray containing 23,040 genes. We identified 153 genes that were commonly upregulated and more than 1500 that were commonly downregulated in the tumors. We also identified a number of genes related to tumor progression. Furthermore, comparison of the expression profiles of diffuse-type with those of intestinal-type gastric cancers identified 46 genes that may represent distinct molecular signatures of each histological type. The putative signature of diffuse-type cancer exhibited altered expression of genes related to cell-matrix interaction and extracellular-matrix (ECM) components, whereas that of intestinal-type cancer represented enhancement of cell growth. These data provide insight into different mechanisms underlying gastric carcinogenesis and may also serve as a starting point for identifying novel diagnostic markers and/or therapeutic targets for diffuse-type gastric cancers.
Restrictive loads powered by separate or by common electrical sources
NASA Technical Reports Server (NTRS)
Appelbaum, J.
1989-01-01
In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.
Hou, Jin-Jun; Shen, Yao; Yang, Zhou; Fang, Lin; Cai, Lu-Ying; Yao, Shuai; Long, Hua-Li; Wu, Wan-Ying; Guo, De-An
2017-10-01
Euphorbia kansui is a commonly used traditional Chinese medicine for the treatment of edema, pleural effusion, and asthma, etc. According to the previous researches, terpenoids in E. kansui possess various biological activities, e.g., anti-virus, anti-allergy, antitumor effects. In this work, twenty five terpenoids were isolated from E. kansui, including thirteen ingenane- and eight jatrophane-type diterpenoids (with two new compounds, kansuinin P and Q) and four triterpenoids. Eighteen of them were analyzed by MTS assay for in vitro anticancer activity in five human cancer cell lines. Structure-activity relationship for 12 ingenane-type diterpenoids in colorectal cancer Colo205 cells were preliminary studied. Significant anti-proliferation activities were observed in human melanoma cells breast cancer MDA-MB-435 cells and Colo205 cells. More than half of the isolated ingenane-type diterpenoids showed inhibitory activities in MDA-MB-435 cells. Eight ingenane- and one jatrophane-type diterpenoids possessed much lower IC 50 values in MDA-MB-435 cells than positive control staurosporine. Preliminary structure-activity relationship analysis showed that substituent on position 20 was important for the activity of ingenane-type diterpenoids in Colo205 cells and substituent on position 3 contributed more significant biological activity of the compounds than that on position 5 in both MDA-MB-435 and Colo205 cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs.
Hagey, Daniel W; Klum, Susanne; Kurtsdotter, Idha; Zaouter, Cecile; Topcic, Danijal; Andersson, Olov; Bergsland, Maria; Muhr, Jonas
2018-02-01
Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.
Rijlaarsdam, Martin A.; Tax, David M. J.; Gillis, Ad J. M.; Dorssers, Lambert C. J.; Koestler, Devin C.; de Ridder, Jeroen; Looijenga, Leendert H. J.
2015-01-01
The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809). PMID:25859847
USDA-ARS?s Scientific Manuscript database
This manuscript served to characterize and evaluate Human Serum Albumin-encapsulated Nanoparticles (NPs) for drug delivery of a tyrosine kinase inhibitor combined with induction of photothermal ablation (PTA) combination therapy of Renal Cell Carcinoma (RCC). RCC is the most common type of kidney c...
Cells on Gels: Cell Behavior at the Air-Gel Interface
NASA Astrophysics Data System (ADS)
O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas
Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.
Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.
Bonakdar, Shahin; Mahmoudi, Morteza; Montazeri, Leila; Taghipoor, Mojtaba; Bertsch, Arnaud; Shokrgozar, Mohammad Ali; Sharifi, Shahriar; Majidi, Mohammad; Mashinchian, Omid; Hamrang Sekachaei, Mohammad; Zolfaghari, Pegah; Renaud, Philippe
2016-06-08
Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demonstrated their potential for differentiation, redifferentiation, and transdifferentiation. Analysis of shape and upregulation/downregulation of specific genes of stem cells, which were seeded on these cell-imprinted substrates, confirmed that imprinted substrates have the capability to induce specific shapes and molecular characteristics of the cell types that were used as templates for cell-imprinting. Interestingly, immunofluorescent staining of a specific protein in chondrocytes (i.e., collagen type II) confirmed that adipose-derived stem cells, semifibroblasts, and tenocytes can acquire the chondrocyte phenotype after a 14 day culture on chondrocyte-imprinted substrates. In summary, we propose that common polystyrene tissue culture plates can be replaced by this imprinting technique as an effective and promising way to regulate any cell phenotype in vitro with significant potential applications in regenerative medicine and cell-based therapies.
Ruijtenberg, Suzan; van den Heuvel, Sander
2016-01-01
ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227
Mediators and mechanisms of herpes simplex virus entry into ocular cells.
Farooq, Asim V; Valyi-Nagy, Tibor; Shukla, Deepak
2010-06-01
The entry of herpes simplex virus into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of herpes simplex virus into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis, and other ocular diseases.
Mediators and Mechanisms of Herpes Simplex Virus Entry into Ocular Cells
Farooq, Asim V.; Valyi-Nagy, Tibor; Shukla, Deepak
2010-01-01
The entry of herpes simplex virus (HSV) into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of HSV into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis and other ocular diseases. PMID:20465436
Cell-based therapy technology classifications and translational challenges
Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan
2015-01-01
Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686
Plasticity within stem cell hierarchies in mammalian epithelia.
Tetteh, Paul W; Farin, Henner F; Clevers, Hans
2015-02-01
Tissue homeostasis and regeneration are fueled by resident stem cells that have the capacity to self-renew, and to generate all the differentiated cell types that characterize a particular tissue. Classical models of such cellular hierarchies propose that commitment and differentiation occur unidirectionally, with the arrows 'pointing away' from the stem cell. Recent studies, all based on genetic lineage tracing, describe various strategies employed by epithelial stem cell hierarchies to replace damaged or lost cells. While transdifferentiation from one tissue type into another ('metaplasia') appears to be generally forbidden in nonpathological contexts, plasticity within an individual tissue stem cell hierarchy may be much more common than previously appreciated. In this review, we discuss recent examples of such plasticity in selected mammalian epithelia, highlighting the different modes of regeneration and their implications for our understanding of cellular hierarchy and tissue self-renewal. Copyright © 2014 Elsevier Ltd. All rights reserved.
Smith, R; Lehner, T
1989-09-01
Three monoclonal antibodies (MAb) were prepared against a cell surface antigen which cross-react between Streptococcus mutans (serotypes c, e and f) and Streptococcus sobrinus (serotypes d and g). Two of the MAb also recognise a determinant on the surface of Streptococcus cricetus (serotype a). The common antigen shared between S. mutans and S. sobrinus was demonstrated by Western blotting to be about 200 kD in size. This antigen is shared not only by the cell surfaces of serotypes a, c, d, e, f and g, but also by the major cell surface antigen of S. mutans of 185 kD and another of 150 kD. These MAb identify all but one mutans type of streptococci and can be utilised as analytical reagents.
Sharpe, Benjamin; Alghezi, Dhafer A; Cattermole, Claire; Beresford, Mark; Bowen, Rebecca; Mitchard, John; Chalmers, Andrew D
2017-05-01
There is a pressing need to identify prognostic and predictive biomarkers for prostate cancer to aid treatment decisions in both early and advanced disease settings. Syndecan-1, a heparan sulfate proteoglycan, has been previously identified as a potential prognostic biomarker by multiple studies at the tissue and serum level. However, other studies have questioned its utility. Anti-Syndecan-1 immunohistochemistry was carried out on 157 prostate tissue samples (including cancerous, adjacent normal tissue, and non-diseased prostate) from three independent cohorts of patients. A population of Syndecan-1 positive stromal cells was identified and the number and morphological parameters of these cells quantified. The identity of the Syndecan-1-positive stromal cells was assessed by multiplex immunofluorescence using a range of common cell lineage markers. Finally, the burden of Syndecan-1 positive stromal cells was tested for association with clinical parameters. We identified a previously unreported cell type which is marked by Syndecan-1 expression and is found in the stroma of prostate tumors and adjacent normal tissue but not in non-diseased prostate. We call these cells Prostate Cancer Syndecan-1 Positive (PCSP) cells. Immunofluorescence analysis revealed that the PCSP cell population did not co-stain with markers of common prostate epithelial, stromal, or immune cell populations. However, morphological analysis revealed that PCSP cells are often elongated and displayed prominent lamellipodia, suggesting they are an unidentified migratory cell population. Analysis of clinical parameters showed that PCSP cells were found with a frequency of 20-35% of all tumors evaluated, but were not present in non-diseased normal tissue. Interestingly, a subset of primary Gleason 5 prostate tumors had a high burden of PCSP cells. The current study identifies PCSP cells as a novel, potentially migratory cell type, which is marked by Syndecan-1 expression and is found in the stroma of prostate carcinomas, adjacent normal tissue, but not in non-diseased prostate. A subset of poor prognosis high Gleason grade 5 tumors had a particularly high PCSP cell burden, suggesting an association between this unidentified cell type and tumor aggressiveness. © 2017 Wiley Periodicals, Inc.
Chen, Shaoxiong; Idrees, Muhammad; Lin, Jingmei; Wu, Howard H
2017-01-01
Central type primitive neuroectodermal tumors (PNET) are some of the most frequent somatic type tumors derived from germ cell tumors and can metastasize. We studied the cytomorphological features of metastatic central type PNET by fine-needle aspiration (FNA). A computerized search of our laboratory information system was performed for the 9-year period from 2005 through 2014 to identify all cytology cases in which a diagnosis of metastatic central type PNET had been rendered. A total of 5 FNA cases were collected and direct smears were reexamined. All patients had a history of testicular or ovarian germ cell tumors. Direct smears displayed single and clusters of atypical round to oval cells with scant to moderate cytoplasm. Abundant naked nuclei were present in Diff-Quik-stained smears with mild to marked crushed artifacts and nuclear molding. Tumor cells showed fine granular chromatin, nuclear size variation (up to 1:3), and one or more small nucleoli. Pseudorosettes (Homer Wright-like rosette) were noticed in 1 case. Tumor cells were commonly positive for synaptophysin. Metastatic PNET can be reliably diagnosed by FNA. Differential diagnoses include Ewing sarcoma/peripheral PNET, alveolar rhabdomyosarcoma, neuroblastoma, etc. It is important to be familiar with this entity to avoid diagnostic pitfalls. © 2017 S. Karger AG, Basel.
Nardone, Beatrice; Orrell, Kelsey A; Vakharia, Paras P; West, Dennis P
2018-02-01
Skin cancers, including both malignant melanoma (MM) and nonmelanoma skin cancer (NMSC), are the most commonly diagnosed cancers in the US. The incidence of both MM and NMSC continues to rise. Areas covered: Current evidence for an association between four of the most commonly prescribed classes of drugs in the U.S. and risk for MM and NMSC is reported. Medline was searched (January 2000 to May 2017) for each drug in the classes and for 'basal cell carcinoma', 'squamous cell carcinoma', 'non-melanoma skin cancer', 'skin cancer' and 'melanoma'. Skin cancer risk information was reported for: tumor necrosis factor alpha inhibitors (TNF-αIs), angiotensin-receptor blockers (ARBs), phosphodiesterase type 5 inhibitors (PDE5Is) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)-reductase inhibitors (statins). Expert opinion: Since skin cancer risk is associated with all four classes of these commonly prescribed drugs that represent nearly 20% of the Top 100 drugs in the U.S., these important findings warrant enhanced education, especially for prescribers and those patients at high risk for skin cancer.
Ontogeny and function of murine epidermal Langerhans cells.
Kaplan, Daniel H
2017-09-19
Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.
ERIC Educational Resources Information Center
Waite, Duncan
2010-01-01
This article informs school improvement and educational change from a radically different perspective. Building upon work done recently in neural psychology, primatology and ethology, the article examines four common and general types of organisational form: the cell, the silo, the pyramidal, and the network types of organisational structures.…
ERIC Educational Resources Information Center
Siniscalco, Dario; Sapone, Anna; Giordano, Catia; Cirillo, Alessandra; de Magistris, Laura; Rossi, Francesco; Fasano, Alessio; Bradstreet, James Jeffrey; Maione, Sabatino; Antonucci, Nicola
2013-01-01
Autistic disorders (ADs) are heterogeneous neurodevelopmental disorders arised by the interaction of genes and environmental factors. Dysfunctions in social interaction and communication skills, repetitive and stereotypic verbal and non-verbal behaviours are common features of ADs. There are no defined mechanisms of pathogenesis, rendering…
Automatic identification of informative regions with epigenomic changes associated to hematopoiesis
Carrillo-de-Santa-Pau, Enrique; Pancaldi, Vera; Were, Felipe; Martin-Subero, Ignacio
2017-01-01
Abstract Hematopoiesis is one of the best characterized biological systems but the connection between chromatin changes and lineage differentiation is not yet well understood. We have developed a bioinformatic workflow to generate a chromatin space that allows to classify 42 human healthy blood epigenomes from the BLUEPRINT, NIH ROADMAP and ENCODE consortia by their cell type. This approach let us to distinguish different cells types based on their epigenomic profiles, thus recapitulating important aspects of human hematopoiesis. The analysis of the orthogonal dimension of the chromatin space identify 32,662 chromatin determinant regions (CDRs), genomic regions with different epigenetic characteristics between the cell types. Functional analysis revealed that these regions are linked with cell identities. The inclusion of leukemia epigenomes in the healthy hematological chromatin sample space gives us insights on the healthy cell types that are more epigenetically similar to the disease samples. Further analysis of tumoral epigenetic alterations in hematopoietic CDRs points to sets of genes that are tightly regulated in leukemic transformations and commonly mutated in other tumors. Our method provides an analytical approach to study the relationship between epigenomic changes and cell lineage differentiation. Method availability: https://github.com/david-juan/ChromDet. PMID:28934481
Epstein-Barr Virus Sequence Variation—Biology and Disease
Tzellos, Stelios; Farrell, Paul J.
2012-01-01
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease. PMID:25436768
Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan
2017-06-01
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.
The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs
Bard, Jonathan B. L.
2012-01-01
This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/. PMID:22347883
The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs.
Bard, Jonathan B L
2012-01-01
This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/.
Variations in cell morphology in the canine cruciate ligament complex.
Smith, K D; Vaughan-Thomas, A; Spiller, D G; Clegg, P D; Innes, J F; Comerford, E J
2012-08-01
Cell morphology may reflect the mechanical environment of tissues and influence tissue physiology and response to injury. Normal cruciate ligaments (CLs) from disease-free stifle joints were harvested from dog breeds with a high (Labrador retriever) and low (Greyhound) risk of cranial cruciate ligament (CCL) rupture. Antibodies against the cytoskeletal components vimentin and alpha tubulin were used to analyse cell morphology; nuclei were stained with 4',6-diamidino-2-phenylindole, and images were collected using conventional and confocal microscopy. Both cranial and caudal CLs contained cells of heterogenous morphologies. Cells were arranged between collagen bundles and frequently had cytoplasmic processes. Some of these processes were long (type A cells), others were shorter, thicker and more branched (type B cells), and some had no processes (type C cells). Processes were frequently shown to contact other cells, extending longitudinally and transversely through the CLs. Cells with longer processes had fusiform nuclei, and those with no processes had rounded nuclei and were more frequent in the mid-substance of both CLs. Cells with long processes were more commonly noted in the CLs of the Greyhound. As contact between cells may facilitate direct communication, variances in cell morphology between breeds at a differing risk of CCL rupture may reflect differences in CL physiology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Integrin Expression Regulates Neuroblastoma Attachment and Migration1
Meyer, Amy; van Golen, Cynthia M.; Kim, Bhumsoo; van Golen, Kenneth L.; Feldman, Eva L.
2004-01-01
Abstract Neuroblastoma (NBL) is the most common malignant disease of infancy, and children with bone metastasis have a mortality rate greater than 90%. Two major classes of proteins, integrins and growth factors, regulate the metastatic process. We have previously shown that tumorigenic NBL cells express higher levels of the type I insulin-like growth factor receptor (IGF-IR) and that β1 integrin expression is inversely proportional to tumorigenic potential in NBL. In the current study, we analyze the effect of β1 integrin and IGF-IR on NBL cell attachment and migration. Nontumorigenic S-cells express high levels of β1 integrin, whereas tumorigenic N-cells express little β1 integrin. Alterations in β1 integrin are due to regulation at the protein level, as translation is decreased in N-type cells. Moreover, inhibition of protein synthesis shows that β1 integrin is degraded more slowly in S-type cells (SHEP) than in N-type cells (SH-SY5Y and IMR32). Inhibition of α5β1 integrin prevents SHEP (but not SH-SY5Y or IMR32) cell attachment to fibronectin and increases SHEP cell migration. Increases in IGF-IR decrease β1 integrin expression, and enhance SHEP cell migration, potentially through increased expression of αvβ3. These data suggest that specific classes of integrins in concert with IGF-IR regulate NBL attachment and migration. PMID:15256055
Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph
2013-05-01
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.
Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.
2014-01-01
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165
Rare cancers: a sea of opportunity.
Boyd, Niki; Dancey, Janet E; Gilks, C Blake; Huntsman, David G
2016-02-01
Rare cancers, as a collective, account for around a quarter of all cancer diagnoses and deaths. Historically, they have been divided into two groups: cancers defined by their unusual histogenesis (cell of origin or differentiation state)--including chordomas or adult granulosa cell tumours--and histologically defined subtypes of common cancers. Most tumour types in the first group are still clinically and biologically relevant, and have been disproportionately important as sources of insight into cancer biology. By contrast, most of those in the second group have been shown to have neither defining molecular features nor clinical utility. Omics-based analyses have splintered common cancers into a myriad of molecularly, rather than histologically, defined subsets of common cancers, many of which have immediate clinical relevance. Now, almost all rare cancers are either histomolecular entities, which often have pathognomonic mutations, or molecularly defined subsets of more common cancers. The presence of specific genetic variants provides rationale for the testing of targeted drugs in rare cancers. However, in addition to molecular alterations, it is crucial to consider the contributions of both mutation and cell context in the development, biology, and behaviour of these cancers. Patients with rare cancers are disadvantaged because of the challenge of leading clinical trials in this setting due to poor accrual. However, the number of patients with rare cancers will only increase as more molecular subsets of common cancers are identified, necessitating a shift in the focus of clinical trials and research into these cancer types, which, by epidemiological definitions, will become rare tumours. Copyright © 2016 Elsevier Ltd. All rights reserved.
Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.
Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L
2015-01-01
Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.
Stopping Liver Cancer's Rogue COP | Center for Cancer Research
Liver cancer is the fourth most common cancer type and the third leading cause of cancer death worldwide. Many liver tumors are actually metastases, tumors seeded in the liver by cancer cells from another organ, but hepatocellular carcinomas (HCCs), the most common liver tumors, are a heterogeneous family of cancers that arise in hepatocytes, the functional cells of the liver. HCCs are often associated with cirrhosis or liver scarring. Because of the variation in tumor phenotypes, the poor understanding of the molecular origins of these tumors, and the increasing number of diagnoses especially in the US, HCC is a major clinical challenge.
Diatoms are a type of algae that are typically abundant in marine and freshwater ecosystems. They have inorganic cell walls made up of silica (glass). Diatoms most commonly grow suspended in water, although they can also attach to substrates.
Xu, Baojun; Chang, Sam K C
2011-12-01
The effects of boiling and steaming processes on the antiproliferative and cellular antioxidant properties, as well as phytochemicals, of two types of common beans (pinto and black beans) and two types of soybeans (yellow and black) were investigated. All thermal-processing methods caused significant (p<0.05) decreases in total phenolic content (TPC), total saponin content (TSC) and phytic acid content (PAC) values in all bean types (except for TPC values in pressure-steamed yellow soybeans) as compared to those of the raw beans. All types of uncooked raw beans exhibited cellular antioxidant activities (CAA) in dose-dependent manners. Black soybeans exhibited the greatest CAA, followed by black beans, pinto beans and yellow soybeans. The CAA of cooked beans were generally diminished or eliminated by thermal processing. The hydrophilic extracts from raw pinto beans, black beans and black soybeans exhibited antiproliferation capacities against human gastric (AGS) and colorectal (SW480) cancer cells in dose-dependent manners. The raw yellow soybeans exhibited dose-dependent antiproliferation activities against the SW480 cells. Most of the cooked beans lost their antiproliferation capacities as observed in the raw beans. These results indicate that different processing methods may have various effects on phytochemical profiles and bioactivities. Overall, thermal processing caused a significant reduction of the health-promotion effects of beans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Toplin, J A; Norris, T B; Lehr, C R; McDermott, T R; Castenholz, R W
2008-05-01
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extreme environments that combine low pH levels ( approximately 0.2 to 4.0) and moderately high temperatures of 40 to 56 degrees C. These unicellular algae occur in far-flung volcanic areas throughout the earth. Three genera (Cyanidium, Galdieria, and Cyanidioschyzon) are recognized. The phylogenetic diversity of culture isolates of the Cyanidiales from habitats throughout Yellowstone National Park (YNP), three areas in Japan, and seven regions in New Zealand was examined by using the chloroplast RuBisCO large subunit gene (rbcL) and the 18S rRNA gene. Based on the nucleotide sequences of both genes, the YNP isolates fall into two groups, one with high identity to Galdieria sulphuraria (type II) and another that is by far the most common and extensively distributed Yellowstone type (type IA). The latter is a spherical, walled cell that reproduces by internal divisions, with a subsequent release of smaller daughter cells. This type, nevertheless, shows a 99 to 100% identity to Cyanidioschyzon merolae (type IB), which lacks a wall, divides by "fission"-like cytokinesis into two daughter cells, and has less than 5% of the cell volume of type IA. The evolutionary and taxonomic ramifications of this disparity are discussed. Although the 18S rRNA and rbcL genes did not reveal diversity among the numerous isolates of type IA, chloroplast short sequence repeats did show some variation by location within YNP. In contrast, Japanese and New Zealand strains showed considerable diversity when we examined only the sequences of 18S and rbcL genes. Most exhibited identities closer to Galdieria maxima than to other strains, but these identities were commonly as low as 91 to 93%. Some of these Japanese and New Zealand strains probably represent undescribed species that diverged after long-term geographic isolation.
Jenny, Robert A; Hirst, Claire; Lim, Sue Mei; Goulburn, Adam L; Micallef, Suzanne J; Labonne, Tanya; Kicic, Anthony; Ling, Kak-Ming; Stick, Stephen M; Ng, Elizabeth S; Trounson, Alan; Giudice, Antonietta; Elefanty, Andrew G; Stanley, Edouard G
2015-06-01
Airway epithelial cells generated from pluripotent stem cells (PSCs) represent a resource for research into a variety of human respiratory conditions, including those resulting from infection with common human pathogens. Using an NKX2.1-GFP reporter human embryonic stem cell line, we developed a serum-free protocol for the generation of NKX2.1(+) endoderm that, when transplanted into immunodeficient mice, matured into respiratory cell types identified by expression of CC10, MUC5AC, and surfactant proteins. Gene profiling experiments indicated that day 10 NKX2.1(+) endoderm expressed markers indicative of early foregut but lacked genes associated with later stages of respiratory epithelial cell differentiation. Nevertheless, NKX2.1(+) endoderm supported the infection and replication of the common respiratory pathogen human rhinovirus HRV1b. Moreover, NKX2.1(+) endoderm upregulated expression of IL-6, IL-8, and IL-1B in response to infection, a characteristic of human airway epithelial cells. Our experiments provide proof of principle for the use of PSC-derived respiratory epithelial cells in the study of cell-virus interactions. This report provides proof-of-principle experiments demonstrating, for the first time, that human respiratory progenitor cells derived from stem cells in the laboratory can be productively infected with human rhinovirus, the predominant cause of the common cold. ©AlphaMed Press.
Mathias, Jonathan R.; Zhang, Zhanying; Saxena, Meera T.
2014-01-01
Abstract Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology. PMID:24428354
Mathias, Jonathan R; Zhang, Zhanying; Saxena, Meera T; Mumm, Jeff S
2014-04-01
Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.
Helms, My N.; Jain, Lucky; Self, Julie L.; Eaton, Douglas C.
2008-01-01
The alveolar surface of the lung is lined by alveolar type 1 (AT1) and type 2 (AT2) cells. Using single channel patch clamp analysis in lung slice preparations, we are able to uniquely study AT1 and AT2 cells separately from intact lung. We report for the first time the Na+ transport properties of type 2 cells accessed in live lung tissue (as we have done in type 1 cells). Type 2 cells in lung tissue slices express both highly selective cation and nonselective cation channels with average conductances of 8.8 ± 3.2 and 22.5 ± 6.3 picosiemens, respectively. Anion channels with 10-picosiemen conductance are also present in the apical membrane of type 2 cells. Our lung slice studies importantly verify the use of cultured cell model systems commonly used in lung epithelial sodium channel (ENaC) studies. Furthermore, we identify novel functional differences between the cells that make up the alveolar epithelium. One important difference is that exposure to the nitric oxide (NO) donor, PAPA-NONOate (1.5 μm), significantly decreases average ENaC NPo in type 2 cells (from 1.38 ± 0.26 to 0.82 ± 0.16; p < 0.05 and n = 18) but failed to alter ENaC activity in alveolar type 1 cells. Elevating endogenous superoxide (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document}) levels with Ethiolat, a superoxide dismutase inhibitor, prevented NO inhibition of ENaC activity in type 2 cells, supporting the novel hypothesis that \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{O}}_{2}^{\\overline{.}}\\end{equation*}\\end{document} and NO signaling plays an important role in maintaining lung fluid balance. PMID:18541535
Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.
2015-01-01
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381
Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N; McMahon, D G; Brecha, N C
2015-10-29
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. Published by Elsevier Ltd.
Thompson, Helen; Shimeld, Sebastian M
2015-06-01
Spawned ascidian oocytes are surrounded by a membrane called the chorion (or vitelline coat) and associated with two populations of maternally-supplied cells. Outside the chorion are follicle cells, which may affect the buoyancy of eggs. Inside the chorion are test cells, which during oogenesis provision the egg and which after fertilisation contribute to the larval tunic. The structure of maternal cells may vary between species. The model ascidian Ciona intestinalis has been recently split into two species, currently named type A and type B. The ultrastructure of extraembryonic cells and structures from type A embryos has been reported. Here we describe the ultrastructure of follicle and test cells from C. intestinalis type B embryos. Test cells are about 5 µm in diameter and line the inside of the chorion of developing embryos in a dense sheet. Follicle cells are large (> 100 µm long) and spike-shaped, with many large vesicles. Terminal electron dense granules are found towards the tips of spikes, adjacent to cytoplasm containing numerous small electron dense bodies connected by filaments. These are probably vesicles containing material for the terminal granules. Removal of maternal structures and cells just after fertilisation, as commonly used in many experiments manipulating C. intestinalis development, has been reported to affect embryonic patterning. We examined the impact of this on embryonic ectoderm cells by scanning electron microscopy. Cells of embryos that developed without maternal structures still developed cilia, but had indistinct cell boundaries and a more flattened appearance than those that developed within the chorion.
Glycobiology of ocular angiogenesis
Markowska, Anna I; Cao, Zhiyi; Panjwani, Noorjahan
2014-01-01
Ocular neovascularization can affect almost all the tissues of the eye: the cornea, the iris, the retina, and the choroid. Pathological neovascularization is the underlying cause of vision loss in common ocular conditions such as diabetic retinopathy, retinopathy of prematurity and age-related macular neovascularization. Glycosylation is the most common covalent posttranslational modification of proteins in mammalian cells. A growing body of evidence demonstrates that glycosylation influences the process of angiogenesis and impacts activation, proliferation, and migration of endothelial cells as well as the interaction of angiogenic endothelial cells with other cell types necessary to form blood vessels. Recent studies have provided evidence that members of the galectin class of β-galactoside-binding proteins modulate angiogenesis by novel carbohydrate-based recognition systems involving interactions between glycans of angiogenic cell surface receptors and galectins. This review discusses the significance of glycosylation and the role of galectins in the pathogenesis of ocular neovascularization. PMID:25108228
Modeling Inborn Errors of Hepatic Metabolism Using Induced Pluripotent Stem Cells.
Pournasr, Behshad; Duncan, Stephen A
2017-11-01
Inborn errors of hepatic metabolism are because of deficiencies commonly within a single enzyme as a consequence of heritable mutations in the genome. Individually such diseases are rare, but collectively they are common. Advances in genome-wide association studies and DNA sequencing have helped researchers identify the underlying genetic basis of such diseases. Unfortunately, cellular and animal models that accurately recapitulate these inborn errors of hepatic metabolism in the laboratory have been lacking. Recently, investigators have exploited molecular techniques to generate induced pluripotent stem cells from patients' somatic cells. Induced pluripotent stem cells can differentiate into a wide variety of cell types, including hepatocytes, thereby offering an innovative approach to unravel the mechanisms underlying inborn errors of hepatic metabolism. Moreover, such cell models could potentially provide a platform for the discovery of therapeutics. In this mini-review, we present a brief overview of the state-of-the-art in using pluripotent stem cells for such studies. © 2017 American Heart Association, Inc.
Lange, Jonas; Lenz, Georg; Burkhardt, Birgit
2017-02-01
Mature B-cell lymphoma represents the most common type of Non-Hodgkin lymphoma, and different subtypes prevail at different patient ages. Areas covered: We review recent data on differences and commonalities in mature B-cell lymphoma occurring in adult and pediatric patients, with a special emphasis on molecular advances and therapeutic implications. To this end, we will discuss knowledge on diffuse large B-cell lymphoma and Burkitt lymphoma/leukemia, which are the most frequent subtypes in adult and pediatric patients, respectively, and on primary mediastinal B-cell lymphoma, which is a subtype of mature B-cell lymphoma occurring mainly in adolescents and young adults with a female predominance. Expert commentary: Molecular profiling has revealed molecular alterations that can be used to further classify the subtypes of mature B-cell lymphoma. These new subgroups frequently respond differentially to targeted therapeutic strategies. Future clinical trials utilizing new drugs will address this issue by combining clinical data and response assessment with a molecular workup of the corresponding lymphomas.
Zn(II)-curc targets p53 in thyroid cancer cells.
Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella
2015-10-01
TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.
Association of Human Papilloma Virus Infection and Oral Squamous Cell Carcinoma in Bangladesh
Ali, Liaquat; Hassan, Zahid; Khan, Imran
2013-01-01
Oral squamous cell carcinoma is the sixth most common malignancy worldwide. In Bangladesh, it comprises 20% of the whole body malignancies. Several studies found that 15% to 25% of oropharyngeal cancer cases are associated with human papilloma virus (HPV). This study is done to find the association of human papilloma virus subtypes, particularly HPV type 16 and HPV type 18, with the oral squamous cell carcinoma in Bangladeshi patients. In total, 34 diagnosed patients of oral squamous cell carcinoma were included in the study. Extracted DNA from the cancerous tissues was checked for PCR reaction to detect the subtypes of human papilloma virus. Data of the present study suggest that oral squamous cell carcinoma are almost absent in Bangladeshi patients with human papilloma virus, particularly HPV 16 and 18. PMID:23617206
Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma
Chen, Zhiguo; Liu, Chiachi; Patel, Amish J.; Liao, Chung-Ping; Wang, Yong; Le, Lu Q.
2014-01-01
Summary Neurofibromatosis type 1 is a tumor-predisposing genetic disorder. Plexiform neurofibromas are common NF1 tumors carrying a risk of malignant transformation, which is typically fatal. Little is known about mechanisms mediating initiation and identity of specific cell-type that gives rise to neurofibromas. Using cell-lineage tracing, we identify a population of GAP43+ PLP+ precursors in embryonic nerve roots as the cells of origin for these tumors and report a non-germline model of neurofibroma for preclinical drug screening to identify effective therapies. The identity of tumor cell-of-origin and facility for isolation and expansion provides fertile ground for continued analysis to define intrinsic and extrinsic factors critical for neurofibromagenesis. It also provides unique approaches to develop therapies to prevent neurofibroma formation in NF1 patients. PMID:25446898
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
NASA Astrophysics Data System (ADS)
Canfield, Victor; West, A. Brian; Goldenring, James R.; Levenson, Robert
1996-03-01
The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.
Brossier, Nicole M; Carroll, Steven L
2012-05-01
Neurofibromatosis type 1 (NF1), the most common genetic disorder affecting the human nervous system, is characterized by the development of multiple benign Schwann cell tumors in skin and large peripheral nerves. These neoplasms, which are termed dermal and plexiform neurofibromas respectively, have distinct clinical courses; of particular note, plexiform, but not dermal, neurofibromas often undergo malignant progression to form malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy occurring in NF1 patients. In recent years, a number of genetically engineered mouse models have been created to investigate the molecular mechanisms driving the pathogenesis of these tumors. These models have been designed to address key questions including: (1) whether NF1 loss in the Schwann cell lineage is essential for tumorigenesis; (2) what cell type(s) in the Schwann cell lineage gives rise to dermal neurofibromas, plexiform neurofibromas and MPNSTs; (3) how the tumor microenvironment contributes to neoplasia; (4) what additional mutations contribute to neurofibroma-MPNST progression; (5) what role different neurofibromin-regulated Ras proteins play in this process and (6) how dysregulated growth factor signaling facilitates PNS tumorigenesis. In this review, we summarize the major findings from each of these models and their limitations as well as how discrepancies between these models may be reconciled. We also discuss how information gleaned from these models can be synthesized to into a comprehensive model of tumor formation in peripheral nervous system and consider several of the major questions that remain unanswered about this process. Copyright © 2011 Elsevier Inc. All rights reserved.
Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.
Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas
2017-08-01
Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.
Pavel, Ana B; Korolev, Kirill S
2017-05-16
Genetic alterations initiate tumors and enable the evolution of drug resistance. The pro-cancer view of mutations is however incomplete, and several studies show that mutational load can reduce tumor fitness. Given its negative effect, genetic load should make tumors more sensitive to anticancer drugs. Here, we test this hypothesis across all major types of cancer from the Cancer Cell Line Encyclopedia, which provides genetic and expression data of 496 cell lines together with their response to 24 common anticancer drugs. We found that the efficacy of 9 out of 24 drugs showed significant association with genetic load in a pan-cancer analysis. The associations for some tissue-drug combinations were remarkably strong, with genetic load explaining up to 83% of the variance in the drug response. Overall, the role of genetic load depended on both the drug and the tissue type with 10 tissues being particularly vulnerable to genetic load. We also identified changes in gene expression associated with increased genetic load, which included cell-cycle checkpoints, DNA damage and apoptosis. Our results show that genetic load is an important component of tumor fitness and can predict drug sensitivity. Beyond being a biomarker, genetic load might be a new, unexplored vulnerability of cancer.
JÄNICKE, MARTINA; RENISCH, BJÖRN; HAMMERSCHMIDT, MATTHIAS
2012-01-01
Grainyhead/CP2 transcription factor family members are widely conserved among the animal kingdom and have been implicated in different developmental processes. Thus far, nothing has been known about their roles in zebrafish. Here we identify seven zebrafish grainyhead-like (grhl) / cp2 genes, with focus on grhl1, which is expressed in the periderm and in epidermal ionocyte progenitors, but downregulated when ionocytes differentiate. In addition, expression was detected in other “non-keratinocyte” cell types of the epidermis, such as pvalb8-expressing cells, which according to our lineage tracing experiments are derived from the same pool of progenitor cells like keratinocytes and ionocytes. Antisense morpholino oligonucleotide-based loss-of-function analysis revealed that grhl1 is dispensable for the development and function of all investigated epidermal cell types, but required as a negative regulator of its own transcription during ionocyte differentiation. Knockdown of the transcription factor Foxi3a, which is expressed in a subset of the grhl1 population, caused a loss of ionocytes and a corresponding increase in the number of pvalb8-expressing cells, while leaving the number of grhl1-positive cells unaltered. We propose that grhl1 is a novel common marker of all or most “non-keratinocyte” epidermal progenitors, and that the sub-functionalisation of these cells is regulated by differential positive and negative effects of Foxi3 factors. PMID:19757382
Pepe, Daniele; Do, Jin Hwan
2015-12-16
Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.
Fernandez, L; Serraino, D; Rezza, G; Lence, J; Ortiz, R M; Cruz, T; Vaccarella, S; Sarmati, L; Andreoni, M; Franceschi, S
2002-01-01
Infection with human herpesvirus type 8 and with human T-cell leukaemia virus type-1 shows strong geographic variations. We conducted this study to assess prevalence and risk factors for human herpesvirus type 8 infection in Havana City, Cuba. Information and residual serum samples already collected for a hospital based case–control study were used. A total of 379 individuals (267 males and 112 females; median age=63 years) were evaluated. Antibodies to the lytic antigen of human herpesvirus type 8 were detected by using an immunofluorescence assay, while human T-cell leukaemia virus type-1 serology was performed by means of an ELISA test (alpha Biotech). Overall, 64 subjects (16.9%, 95% confidence interval: 13.1–20.0) were positive for human herpesvirus type 8 antibodies. Human herpesvirus type 8 seroprevalence significantly increased with age (odds ratio=1.9 for ⩾65 vs <55 years), and was twice as frequent in blacks than in whites. No association emerged with gender, socio-economic indicators, family size, history of sexually transmitted disease, sexual behaviour. Overall, 16 persons had anti-human T-cell leukaemia virus type-1 antibodies (4.2%, 95% confidence interval: 2.2–6.4). No relationship emerged between human T-cell leukaemia virus type-1 and human herpesvirus type 8 serostatus. The study findings indicate that human herpesvirus type 8 infection is relatively common in Havana City, Cuba, suggesting that Cuba may represent an intermediate endemical area. Sexual transmission does not seem to play a major role in the spread human herpesvirus type 8 infection. British Journal of Cancer (2002) 87, 1253–1256. doi:10.1038/sj.bjc.6600613 www.bjcancer.com © 2002 Cancer Research UK PMID:12439714
Helicobacter pylori infection in gastric mucosa-associated lymphoid tissue lymphoma
Park, Jeong Bae; Koo, Ja Seol
2014-01-01
Gastrointestinal lymphoma is the most common type of extranodal lymphoma, and most commonly affects the stomach. Marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT) and diffuse large B-cell lymphoma are the most common histologic types of gastric lymphoma. Despite its increasing incidence, diagnosis of gastric lymphoma is difficult at an earlier stage due to its nonspecific symptoms and endoscopic findings, and, thus, a high index of suspicion, and multiple, deep, repeated biopsies at abnormally and normally appearing sites in the stomach are needed. In addition, testing for Helicobacter pylori (H. pylori) infection and endoscopic ultrasonography to determine the depth of tumor invasion and involvement of regional lymph nodes is essential for predicting response to H. pylori eradication and for assessment of disease progression. In addition, H. pylori infection and MALT lymphoma development are associated, and complete regression of low-grade MALT lymphomas after H. pylori eradication has been demonstrated. Radiotherapy and/or chemotherapy can be used in cases that show poor response to H. pylori eradication, negativity for H. pylori infection, or high-grade lymphoma. PMID:24659867
Helicobacter pylori infection in gastric mucosa-associated lymphoid tissue lymphoma.
Park, Jeong Bae; Koo, Ja Seol
2014-03-21
Gastrointestinal lymphoma is the most common type of extranodal lymphoma, and most commonly affects the stomach. Marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue (MALT) and diffuse large B-cell lymphoma are the most common histologic types of gastric lymphoma. Despite its increasing incidence, diagnosis of gastric lymphoma is difficult at an earlier stage due to its nonspecific symptoms and endoscopic findings, and, thus, a high index of suspicion, and multiple, deep, repeated biopsies at abnormally and normally appearing sites in the stomach are needed. In addition, testing for Helicobacter pylori (H. pylori) infection and endoscopic ultrasonography to determine the depth of tumor invasion and involvement of regional lymph nodes is essential for predicting response to H. pylori eradication and for assessment of disease progression. In addition, H. pylori infection and MALT lymphoma development are associated, and complete regression of low-grade MALT lymphomas after H. pylori eradication has been demonstrated. Radiotherapy and/or chemotherapy can be used in cases that show poor response to H. pylori eradication, negativity for H. pylori infection, or high-grade lymphoma.
Analysis of molecular aberrations across multiple cancer types, known as pan-cancer analysis, identifies commonalities and differences in key biological processes that are dysregulated in cancer cells from diverse lineages. Pan-cancer analyses have been performed for adult1–4 but not paediatric cancers, which commonly occur in developing mesodermic rather than adult epithelial tissues5.
Promise of precision medicine for common type of lymphoma
A clinical trial has shown that patients with a specific molecular subtype of diffuse large B-cell lymphoma are more likely to respond to the drug ibrutinib than patients with another molecular subtype of the disease
One-Piece Battery Incorporating A Circulating Fluid Type Heat Exchanger
Verhoog, Roelof
2001-10-02
A one-piece battery comprises a tank divided into cells each receiving an electrode assembly, closure means for the tank and a circulating fluid type heat exchanger facing the relatively larger faces of the electrode assembly. The fluid flows in a compartment defined by two flanges which incorporate a fluid inlet orifice communicating with a common inlet manifold and a fluid outlet orifice communicating with a common outlet manifold. The tank comprises at least two units and each unit comprises at least one cell delimited by walls. The wall facing a relatively larger face of the electrode assembly constitutes one of the flanges. Each unit further incorporates a portion of an inlet and outlet manifold. The units are fastened together so that the flanges when placed face-to-face form a sealed circulation compartment and the portions of the same manifold are aligned with each other.
Cervical HPV type-specific pre-vaccination prevalence and age distribution in Croatia.
Sabol, Ivan; Milutin Gašperov, Nina; Matovina, Mihaela; Božinović, Ksenija; Grubišić, Goran; Fistonić, Ivan; Belci, Dragan; Alemany, Laia; Džebro, Sonja; Dominis, Mara; Šekerija, Mario; Tous, Sara; de Sanjosé, Silvia; Grce, Magdalena
2017-01-01
The main etiological factor of precancerous lesion and invasive cervical cancer are oncogenic human papillomaviruses types (HPVs). The objective of this study was to establish the distribution of the most common HPVs in different cervical lesions and cancer prior to the implementation of organized population-based cervical screening and HPV vaccination in Croatia. In this study, 4,432 cervical specimens, collected through a 16-year period, were tested for the presence of HPV-DNA by polymerase chain reaction (PCR) with three sets of broad-spectrum primers and type-specific primers for most common low-risk (LR) types (HPV-6, 11) and the most common high-risk (HR) types (HPV-16, 18, 31, 33, 45, 52, 58). Additional 35 archival formalin-fixed, paraffin embedded tissue of cervical cancer specimens were analyzed using LiPA25 assay. The highest age-specific HPV-prevalence was in the group 18-24 years, which decreased continuously with age (P<0.0001) regardless of the cytological diagnosis. The prevalence of HR-HPV types significantly increased (P<0.0001) with the severity of cervical lesions. HPV-16 was the most common type found with a prevalence (with or without another HPV-type) of 6.9% in normal cytology, 15.5% in atypical squamous cells of undetermined significance, 14.4% in low-grade squamous intraepithelial lesions, 33.3% in high-grade squamous intraepithelial lesions, and 60.9% in cervical cancer specimens (P<0.0001). This study provides comprehensive and extensive data on the distribution of the most common HPV types among Croatian women, which will enable to predict and to monitor the impact of HPV-vaccination and to design effective screening strategies in Croatia.
Biswas, Saptarshi; McNerney, Patrick
2016-01-01
Non-melanoma skin cancer is the most common malignancy amongst Caucasians worldwide with basal cell and squamous cell cancer being the most common. Giant skin cancers are a relatively rare type of skin cancer that are, by definition, greater than 5 cm. This subtype by itself is associated with a significantly increased risk of complications and mortality. Myiasis is defined as infestation of body tissues of humans by dipterous larvae. Myiasis is often associated with malignant skin conditions. We describe a rare case of cutaneous myiasis located on a giant squamous cell carcinoma of the scalp in an elderly female. Myiasis coupled with malignant skin conditions provides a unique surgical challenge. This is especially true if the malignancy is invasive, as in our case, often requiring a multidisciplinary multimodality treatment plan. PMID:28983361
Chandolu, Vijay; Dass, Crispin R.
2012-01-01
Cancer is becoming an increasingly common disease in which abnormal cells aggressively grow, invade, and metastasize. In this paper, we review the biological functions of PEDF (pigmented epithelium-derived factor) against cancer, with a focus on a particular type of bone cancer called osteosarcoma. PEDF is a 50 kDa glycoprotein and is a potent inhibitor of angiogenesis, via its ability to decrease proliferation and migration of endothelial cells. This paper critically examines the anticancer activities of PEDF via its role in antiangiogenesis, apoptosis-mediated tumor suppression, and increased tumor cell differentiation. Recently, an orthotopic model of osteosarcoma was used to show that treatment with PEDF had the greatest impact on metastases, warranting an evaluation of PEDF efficacy in other types of cancers. PMID:22690122
Mouse Regenerating Myofibers Detected as False-Positive Donor Myofibers with Anti-Human Spectrin
Rozkalne, Anete; Adkin, Carl; Meng, Jinhong; Lapan, Ariya; Morgan, Jennifer E.
2014-01-01
Abstract Stem cell transplantation is being tested as a potential therapy for a number of diseases. Stem cells isolated directly from tissue specimens or generated via reprogramming of differentiated cells require rigorous testing for both safety and efficacy in preclinical models. The availability of mice with immune-deficient background that carry additional mutations in specific genes facilitates testing the efficacy of cell transplantation in disease models. The muscular dystrophies are a heterogeneous group of disorders, of which Duchenne muscular dystrophy is the most severe and common type. Cell-based therapy for muscular dystrophy has been under investigation for several decades, with a wide selection of cell types being studied, including tissue-specific stem cells and reprogrammed stem cells. Several immune-deficient mouse models of muscular dystrophy have been generated, in which human cells obtained from various sources are injected to assess their preclinical potential. After transplantation, the presence of engrafted human cells is detected via immunofluorescence staining, using antibodies that recognize human, but not mouse, proteins. Here we show that one antibody specific to human spectrin, which is commonly used to evaluate the efficacy of transplanted human cells in mouse muscle, detects myofibers in muscles of NOD/Rag1nullmdx5cv, NOD/LtSz-scid IL2Rγnull mice, or mdx nude mice, irrespective of whether they were injected with human cells. These “reactive” clusters are regenerating myofibers, which are normally present in dystrophic tissue and the spectrin antibody is likely recognizing utrophin, which contains spectrin-like repeats. Therefore, caution should be used in interpreting data based on detection of single human-specific proteins, and evaluation of human stem cell engraftment should be performed using multiple human-specific labeling strategies. PMID:24152287
Fei, Dennis Liang; Motowski, Hayley; Chatrikhi, Rakesh; Gao, Shaojian; Kielkopf, Clara L.; Varmus, Harold
2016-01-01
We have asked how the common S34F mutation in the splicing factor U2AF1 regulates alternative splicing in lung cancer, and why wild-type U2AF1 is retained in cancers with this mutation. A human lung epithelial cell line was genetically modified so that U2AF1S34F is expressed from one of the two endogenous U2AF1 loci. By altering levels of mutant or wild-type U2AF1 in this cell line and by analyzing published data on human lung adenocarcinomas, we show that S34F-associated changes in alternative splicing are proportional to the ratio of S34F:wild-type gene products and not to absolute levels of either the mutant or wild-type factor. Preferential recognition of specific 3′ splice sites in S34F-expressing cells is largely explained by differential in vitro RNA-binding affinities of mutant versus wild-type U2AF1 for those same 3′ splice sites. Finally, we show that lung adenocarcinoma cell lines bearing U2AF1 mutations do not require the mutant protein for growth in vitro or in vivo. In contrast, wild-type U2AF1 is required for survival, regardless of whether cells carry the U2AF1S34F allele. Our results provide mechanistic explanations of the magnitude of splicing changes observed in U2AF1-mutant cells and why tumors harboring U2AF1 mutations always retain an expressed copy of the wild-type allele. PMID:27776121
Hou, Ruixia; Li, Junqin; Niu, Xuping; Liu, Ruifeng; Chang, Wenjuan; Zhao, Xincheng; Wang, Qiang; Li, Xinhua; Yin, Guohua; Zhang, Kaiming
2017-06-01
Psoriasis is a complex chronic relapsing inflammatory disease. Although the exact mechanism remains unknown, it is commonly accepted that the development of psoriasis is a result of multi-system interactions among the epidermis, dermis, blood vessels, immune system, neuroendocrine system, metabolic system, and hematopoietic system. Many cell types have been confirmed to participate in the pathogenesis of psoriasis. Here, we review the stem cell abnormalities related to psoriasis that have been investigated recently. Copyright © 2016. Published by Elsevier B.V.
The common γ-chain cytokine IL-7 promotes immunopathogenesis during fungal asthma.
Reeder, Kristen M; Dunaway, Chad W; Blackburn, Jonathan P; Yu, Zhihong; Matalon, Sadis; Hastie, Annette T; Ampleford, Elizabeth J; Meyers, Deborah A; Steele, Chad
2018-06-15
Asthmatics sensitized to fungi are reported to have more severe asthma, yet the immunopathogenic pathways contributing to this severity have not been identified. In a pilot assessment of human asthmatics, those subjects sensitized to fungi demonstrated elevated levels of the common γ-chain cytokine IL-7 in lung lavage fluid, which negatively correlated with the lung function measurement PC20. Subsequently, we show that IL-7 administration during experimental fungal asthma worsened lung function and increased the levels of type 2 cytokines (IL-4, IL-5, IL-13), proallergic chemokines (CCL17, CCL22) and proinflammatory cytokines (IL-1α, IL-1β). Intriguingly, IL-7 administration also increased IL-22, which we have previously reported to drive immunopathogenic responses in experimental fungal asthma. Employing IL22 Cre R26R eYFP reporter mice, we identified γδ T cells, iNKT cells, CD4 T cells and ILC3s as sources of IL-22 during fungal asthma; however, only iNKT cells were significantly increased after IL-7 administration. IL-7-induced immunopathogenesis required both type 2 and IL-22 responses. Blockade of IL-7Rα in vivo resulted in attenuated IL-22 production, lower CCL22 levels, decreased iNKT cell, CD4 T-cell and eosinophil recruitment, yet paradoxically increased dynamic lung resistance. Collectively, these results suggest a complex role for IL-7 signaling in allergic fungal asthma.
Clinical Characteristics of Transplant-associated Encephalopathy in Children.
Lee, Yun Jeong; Yum, Mi Sun; Kim, Eun Hee; Kim, Min Jee; Kim, Kyung Mo; Im, Ho Joon; Kim, Young Hwue; Park, Young Seo; Ko, Tae Sung
2017-03-01
We aimed to analyze characteristics of encephalopathy after both hematopoietic stem cell and solid organ pediatric transplantation. We retrospectively reviewed medical records of 662 pediatric transplant recipients (201 with liver transplantation [LT], 55 with heart transplantation [HT], and 67 with kidney transplantation [KT], 339 with allogeneic hematopoietic stem cell transplantation [HSCT]) who received their graft organs at Asan Medical Center between January 2000 and July 2014. Of the 662 patients, 50 (7.6%) experienced encephalopathy after transplantation. The incidence of encephalopathy was significantly different according to the type of organ transplant: LT, 16/201 (8.0%), HT, 13/55 (23.6%), KT, 5/67 (7.5%), and HSCT, 16/339 (4.7%) (P < 0.001). Drug-induced encephalopathy (n = 14) was the most common encephalopathy for all transplant types, but particularly after HSCT. Hypertensive encephalopathy was the most common after KT and HT, whereas metabolic encephalopathy was the most common after LT. The median time to encephalopathy onset also differed according to the transplant type: 5 days after KT (range 0-491 days), 10 days after HT (1-296 days), 49.5 days after HSCT (9-1,405 days), and 39 days after LT (1-1,092 days) (P = 0.018). The mortality rate among patients with encephalopathy was 42.0% (n = 21/50). Only 5 patients died of neurologic complications. Transplant-associated encephalopathy presented different characteristics according to the type of transplant. Specialized diagnostic approach for neurologic complications specific to the type of transplant may improve survival and quality of life in children after transplantation.
Clinical Characteristics of Transplant-associated Encephalopathy in Children
2017-01-01
We aimed to analyze characteristics of encephalopathy after both hematopoietic stem cell and solid organ pediatric transplantation. We retrospectively reviewed medical records of 662 pediatric transplant recipients (201 with liver transplantation [LT], 55 with heart transplantation [HT], and 67 with kidney transplantation [KT], 339 with allogeneic hematopoietic stem cell transplantation [HSCT]) who received their graft organs at Asan Medical Center between January 2000 and July 2014. Of the 662 patients, 50 (7.6%) experienced encephalopathy after transplantation. The incidence of encephalopathy was significantly different according to the type of organ transplant: LT, 16/201 (8.0%), HT, 13/55 (23.6%), KT, 5/67 (7.5%), and HSCT, 16/339 (4.7%) (P < 0.001). Drug-induced encephalopathy (n = 14) was the most common encephalopathy for all transplant types, but particularly after HSCT. Hypertensive encephalopathy was the most common after KT and HT, whereas metabolic encephalopathy was the most common after LT. The median time to encephalopathy onset also differed according to the transplant type: 5 days after KT (range 0–491 days), 10 days after HT (1–296 days), 49.5 days after HSCT (9–1,405 days), and 39 days after LT (1–1,092 days) (P = 0.018). The mortality rate among patients with encephalopathy was 42.0% (n = 21/50). Only 5 patients died of neurologic complications. Transplant-associated encephalopathy presented different characteristics according to the type of transplant. Specialized diagnostic approach for neurologic complications specific to the type of transplant may improve survival and quality of life in children after transplantation. PMID:28145649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan
Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to themore » resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.« less
Stem Cell Therapy to Treat Diabetes Mellitus
Liew, Chee Gee; Andrews, Peter W.
2008-01-01
Transplantation of pancreatic islets offers a direct treatment for type 1 diabetes and in some cases, insulin-dependent type 2 diabetes. However, its widespread use is hampered by a shortage of donor organs. Many extant studies have focused on deriving β-cell progenitors from pancreas and pluripotent stem cells. Efforts to generate β-cells in vitro will help elucidate the mechanisms of β-cell formation and thus provide a versatile in vivo system to evaluate the therapeutic potential of these cells to treat diabetes. Various successful experiments using β-cells in animal models have generated extensive interest in using human embryonic stem cells to restore normoglycemia in diabetic patients. While new techniques are continually unveiled, the success of β-cell generation rests upon successful manipulation of culture conditions and the induction of key regulatory genes implicated in pancreas development. In this review, we compare successfully conducted protocols, highlight essential steps and identify some of the remarkable shortfalls common to these methods. In addition, we discuss recent advancements in the derivation of patient-specific pluripotent stem cells that may facilitate the use of autologous β-cells in stem cell therapy. PMID:19290381
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yea-Jin; Kim, Sung-Jo, E-mail: sungjo@hoseo.edu; Heo, Tae-Hwe, E-mail: thhur92@catholic.ac.kr
Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset inmore » adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.« less
Ingram, David A.; Yang, Feng-Chun; Travers, Jeffrey B.; Wenning, Mary Jo; Hiatt, Kelly; New, Sheryl; Hood, Antoinette; Shannon, Kevin; Williams, David A.; Clapp, D. Wade
2000-01-01
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's “two hit” model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1−/− murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W41 mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras–mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W41) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types. PMID:10620616
Ingram, D A; Yang, F C; Travers, J B; Wenning, M J; Hiatt, K; New, S; Hood, A; Shannon, K; Williams, D A; Clapp, D W
2000-01-03
Neurofibromatosis type 1 (NF1) is a common autosomal-dominant disorder characterized by cutaneous neurofibromas infiltrated with large numbers of mast cells, melanocyte hyperplasia, and a predisposition to develop malignant neoplasms. NF1 encodes a GTPase activating protein (GAP) for Ras. Consistent with Knudson's "two hit" model of tumor suppressor genes, leukemias and malignant solid tumors in NF1 patients frequently demonstrate somatic loss of the normal NF1 allele. However, the phenotypic and biochemical consequences of heterozygous inactivation of Nf1 are largely unknown. Recently neurofibromin, the protein encoded by NF1, was shown to negatively regulate Ras activity in Nf1-/- murine myeloid hematopoietic cells in vitro through the c-kit receptor tyrosine kinase (dominant white spotting, W). Since the W and Nf1 locus appear to function along a common developmental pathway, we generated mice with mutations at both loci to examine potential interactions in vivo. Here, we show that haploinsufficiency at Nf1 perturbs cell fates in mast cells in vivo, and partially rescues coat color and mast cell defects in W(41) mice. Haploinsufficiency at Nf1 also increased mast cell proliferation, survival, and colony formation in response to Steel factor, the ligand for c-kit. Furthermore, haploinsufficiency was associated with enhanced Ras-mitogen-activated protein kinase activity, a major downstream effector of Ras, via wild-type and mutant (W(41)) c-kit receptors. These observations identify a novel interaction between c-kit and neurofibromin in vivo, and offer experimental evidence that haploinsufficiency of Nf1 alters both cellular and biochemical phenotypes in two cell lineages that are affected in individuals with NF1. Collectively, these data support the emerging concept that heterozygous inactivation of tumor suppressor genes may have profound biological effects in multiple cell types.
Arakaki, Kazunari; Chinen, Katsuya; Kamiya, Masuzo; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Uehara, Karina; Shimabukuro, Hiroichi; Kinjo, Takao
2014-01-01
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas. PMID:25674275
Arakaki, Kazunari; Chinen, Katsuya; Kamiya, Masuzo; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Uehara, Karina; Shimabukuro, Hiroichi; Kinjo, Takao
2014-01-01
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas.
Sugie, Atsushi; Murai, Koji; Takumi, Shigeo
2007-06-01
Mitochondrial alternative oxidase (AOX) is the terminal oxidase responsible for cyanide-insensitive and salicylhydroxamic acid-sensitive respiration in plants. AOX is a key enzyme of the alternative respiration pathway. To study the effects of necrotic cell death on the mitochondrial function, production of reactive oxygen species (ROS), respiration capacities and accumulation patterns of mitochondria-targeted protein-encoding gene transcripts were compared between wild-type, lesion-mimic mutant and hybrid necrosis wheat plants. Around cells with the necrosis symptom, ROS accumulated abundantly in the intercellular spaces. The ratio of the alternative pathway to the cytochrome pathway was markedly enhanced in the necrotic leaves. Transcripts of a wheat AOX gene, Waox1a, were more abundant in a novel lesion-mimic mutant of common wheat than in the wild-type plants. An increased level of the Waox1a transcripts was also observed in hybrid plants containing Ne1 and Ne2 genes. These results indicated that an increase of the wheat AOX transcript level resulted in enhancement of respiration capacity of the alternative pathway in the necrotic cells.
Palin, Eino JH; Lesonen, Annamari; Farr, Carol L; Euro, Liliya; Suomalainen, Anu; Kaguni, Laurie S
2010-01-01
Mitochondrial DNA polymerase, POLG, is the sole DNA polymerase found in animal mitochondria. In humans, POLGα W748S in cis with an E1143G mutation has been linked to a new type of recessive ataxia, MIRAS, which is the most common inherited ataxia in Finland. We investigated the biochemical phenotypes of the W748S amino acid change, using recombinant human POLG. We measured processive and non-processive DNA polymerase activity, DNA binding affinity, enzyme processivity, and subunit interaction with recombinant POLGβ. In addition, we studied the effects of the W748S and E1143G mutations in primary human cell cultures using retroviral transduction. Here, we examined cell viability, mitochondrial DNA copy number, and products of mitochondrial translation. Our results indicate that the W748S mutant POLGα does not exhibit a clear biochemical phenotype, making it indistinguishable from wild type POLGα and as such, fail to replicate previously published results. Furthermore, results from the cell models were concurrent with the findings from patients, and support our biochemical findings. PMID:20153822
Metabolic rescue in pluripotent cells from patients with mtDNA disease.
Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat
2015-08-13
Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.
HPASubC: A suite of tools for user subclassification of human protein atlas tissue images.
Cornish, Toby C; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K
2015-01-01
The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.
HPASubC: A suite of tools for user subclassification of human protein atlas tissue images
Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.
2015-01-01
Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380
Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier
2016-09-01
The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lu, Chenggang; Fuller, Margaret T
2015-12-01
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.
Wullink, Bart; Pas, Hendri H.; Van der Worp, Roelofje J.; Kuijer, Roel; Los, Leonoor I.
2015-01-01
Type VII collagen, as a major component of anchoring fibrils found at basement membrane zones, is crucial in anchoring epithelial tissue layers to their underlying stroma. Recently, type VII collagen was discovered in the inner human retina by means of immunohistochemistry, while proteomic investigations demonstrated type VII collagen at the vitreoretinal interface of chicken. Because of its potential anchoring function at the vitreoretinal interface, we further assessed the presence of type VII collagen at this site. We evaluated the vitreoretinal interface of human donor eyes by means of immunohistochemistry, confocal microscopy, immunoelectron microscopy, and Western blotting. Firstly, type VII collagen was detected alongside vitreous fibers6 at the vitreoretinal interface. Because of its known anchoring function, it is likely that type VII collagen is involved in vitreoretinal attachment. Secondly, type VII collagen was found within cytoplasmic vesicles of inner retinal cells. These cells resided most frequently in the ganglion cell layer and inner plexiform layer. Thirdly, type VII collagen was found in astrocytic cytoplasmic inclusions, known as corpora amylacea. The intraretinal presence of type VII collagen was confirmed by Western blotting of homogenized retinal preparations. These data add to the understanding of vitreoretinal attachment, which is important for a better comprehension of common vitreoretinal attachment pathologies. PMID:26709927
Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli
2010-03-23
The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.
FlpStop, a tool for conditional gene control in Drosophila
Fisher, Yvette E; Yang, Helen H; Isaacman-Beck, Jesse; Xie, Marjorie; Gohl, Daryl M; Clandinin, Thomas R
2017-01-01
Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation. DOI: http://dx.doi.org/10.7554/eLife.22279.001 PMID:28211790
Will stem cell therapies be safe and effective for treating spinal cord injuries?
Thomas, Katharine E.; Moon, Lawrence D. F.
2017-01-01
Introduction A large number of different cells including embryonic and adult stem cells have been transplanted into animal models of spinal cord injury, and in many cases these procedures have resulted in modest sensorimotor benefits. In October 2010 the world’s first clinical trial using human embryonic stem cells began, using stem cells converted into oligodendrocyte precursor cells. Sources of data In this review we examine some of the publically-available pre-clinical evidence that some of these cell types improve outcome in animal models of spinal cord injury. Much evidence is not available for public scrutiny, however, being private commercial property of various stem cell companies. Areas of agreement Transplantation of many different types of stem and progenitor cell enhances spontaneous recovery of function when transplanted acutely after spinal cord injury in animal models. Areas of disagreement The common mechanism(s) whereby the generic procedure of cellular transplantation enhances recovery of function are not well understood, although a range of possibilities are usually cited (including preservation of tissue, remyelination, axon sprouting, glial cell replacement). Only in exceptional cases has it been shown that functional recovery depends causally on the survival and differentiation of the transplanted cells. There is no agreement about the optimal cell type for transplantation: candidate stem cells have not yet been compared with each other or with other cell types (e.g., autologous Schwann cells) in a single study. Areas timely for developing research Transplantation of cells into animals with a long lifespan is important to determine whether or not tumours will eventually form. It will also be important to determine whether long-term survival of cells is required for functional recovery, and if so, how many are optimal. PMID:21586446
McLean, Will J.; McLean, Dalton T.; Eatock, Ruth Anne
2016-01-01
Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear – the vestibular and cochlear sensory epithelia and the spiral ganglion – by measuring electrophysiological properties and gene expression. Lgr5+ progenitor cells from the sensory epithelia gave rise to hair cell-like cells, but not neurons or glial cells. Newly created hair cell-like cells had hair bundle proteins, synaptic proteins and membrane proteins characteristic of the compartment of origin. PLP1+ glial cells from the spiral ganglion were identified as neural progenitors, which gave rise to neurons, astrocytes and oligodendrocytes, but not hair cells. Thus, distinct progenitor populations from the neonatal inner ear differentiate to cell types associated with their organ of origin. PMID:27789624
Rojas Ramos, Enrique; Martínez Jiménez, Norma E; Reyes Salina, Alfredo
2004-01-01
Recently stem cell transplantation has been suggested like novel treatment in some severe auto-immune diseases, specifically in severe and refractory to conventional treatment in systemic lupus erythematosus patients. Autologus hematopoietic steam cell transplantation has been used in systemic lupus erythematosus, because it does not represent risk of development in graft versus host disease, which is the most common and severe complication in alogenic transplant. This type of transplant is poorly used because of the difficulty to get donors and laboratory background. Patients under this type of treatment received high dosage of chemotherapy, followed by alogenic hematopoietic steam cell transplantation with or without T cell depletion. Most of cases have successes in treatment and some patients get clinical and serological remission even for 34 months. However, a longer following is necessary to obtain concluding results. This paper reviews those treatments in clinical cases reported in the literature.
[Neuroimaging of Langerhans cell histiocytosis in the central nervous system of children].
De La Hoz Polo, M; Rebollo Polo, M; Fons Estupiña, C; Muchart López, J; Cruz Martinez, O
2015-01-01
Langerhans cell histiocytosis (LCH) is a rare disease characterized by the accumulation within tissues of anomalous dendritic cells similar to Langerhans cells. The clinical presentation varies, ranging from the appearance of a single bone lesion to multisystemic involvement. Central nervous system (CNS) involvement, manifesting as diabetes insipidus secondary to pituitary involvement, has been known since the original description of the disease. Two types of CNS lesions are currently differentiated. The first, pseudotumoral lesions with infiltration by Langerhans cells, most commonly manifests as pituitary infiltration. The second, described more recently, consists of neurodegenerative lesions of the CNS associated with neurologic deterioration. This second type of lesion constitutes a complication of the disease; however, there is no consensus about the cause of this complication. Our objective was to describe the radiologic manifestations of LCH in the CNS in pediatric patients. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.
Zhang, Lu; Theodoropoulos, Panayotis C; Eskiocak, Ugur; Wang, Wentian; Moon, Young-Ah; Posner, Bruce; Williams, Noelle S; Wright, Woodring E; Kim, Sang Bum; Nijhawan, Deepak; De Brabander, Jef K; Shay, Jerry W
2016-10-19
Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC. Copyright © 2016, American Association for the Advancement of Science.
Hu, Yuanjie; Ru, Ning; Xiao, Huasheng; Chaturbedi, Abhishek; Hoa, Neil T.; Tian, Xiao-Jun; Zhang, Hang; Ke, Chao; Yan, Fengrong; Nelson, Jodi; Li, Zhenzhi; Gramer, Robert; Yu, Liping; Siegel, Eric; Zhang, Xiaona; Jia, Zhenyu; Jadus, Martin R.; Limoli, Charles L.; Linskey, Mark E.; Xing, Jianhua; Zhou, Yi-Hong
2013-01-01
Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7) copy number variation (CNV) in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers. PMID:24282558
Neutrophils, dendritic cells and Toxoplasma.
Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya
2004-03-09
Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.
Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami
2015-08-01
Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rodríguez-Seguel, Elisa; Mah, Nancy; Naumann, Heike; Pongrac, Igor M.; Cerdá-Esteban, Nuria; Fontaine, Jean-Fred; Wang, Yongbo; Chen, Wei; Andrade-Navarro, Miguel A.; Spagnoli, Francesca M.
2013-01-01
Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. PMID:24013505
Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector
2012-01-01
Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930
Lui, Pauline Po Yee
2015-01-01
Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed. PMID:26715856
2010-01-01
A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759
Radioligand therapy of metastatic castration-resistant prostate cancer: current approaches.
Awang, Zool Hilmi; Essler, Markus; Ahmadzadehfar, Hojjat
2018-05-23
Prostate Cancer is the forth most common type of cancer. Prostate-specific membrane antigen (PSMA) is anchored in the cell membrane of prostate epithelial cells. PSMA is highly expressed on prostate epithelial cells and strongly up-regulated in prostate cancer. Therefore it is an appropriate target for diagnostic and therapy of prostate cancer and its metastases. This article discusses several articles on radionuclide treatments in prostate cancer and the results on PSMA therapy with either beta or alpha emitters as a salvage therapy.
[Association between obesity and ovarian cancer].
Valladares, Macarena; Corsini, Gino; Romero, Carmen
2014-05-01
Obesity is a risk factor for cancer. Epidemiological evidences associate ovarian cancer with obesity. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer and accounts for a high rate of mortality. The association between ovarian cancer and obesity could be explained by molecular factors secreted by adipose tissue such as leptin. In EOC, leptin increases cell proliferation and inhibits apoptosis. Additionally, adipose tissue synthesizes endogenous estrogens, which increase cell proliferation of epithelial ovarian cells. Also, obesity associated hyperinsulinism could increase ovarian estrogen secretion.
Cutaneous metastasis of bilateral renal cell carcinoma.
Abbasi, Fariba; Alizadeh, Mansur; Noroozinia, Farahnaz; Moradi, Amin
2013-01-01
Renal cell carcinoma (RCC) is a malignant lethal tumour with high potential of metastasis. However, metastasis from RCC to the skin is much less common. It is virtually a sign of poor prognosis. We represent a 42 years old man with bilateral RCC of clear cell type followed by metastasis to the scalp one month later. In this case the relatively young age of the patient, bilaterality of RCC and occurance of skin metastasis in the absence of recurrent kidney tumour are interesting.
Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.
2016-01-01
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795
Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J
2016-02-17
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.
Ben-Ari, Z; Broida, E; Monselise, Y; Kazatsker, A; Baruch, J; Pappo, O; Skappa, E; Tur-Kaspa, R
2000-03-01
Giant cell hepatitis (GCH) in adults is a rare event. The diagnosis of GCH is based on findings of syncytial giant hepatocytes. It is commonly associated with either viral infection or autoimmune hepatitis type I. A patient with GCH due to autoimmune hepatitis type II (LKM1+) is described, a combination that has not been previously reported. Corticosteroid therapy was effective in decreasing serum liver enzymes; however, the patient deteriorated rapidly and developed subfulminant hepatic failure. Although an emergency orthotopic liver transplantation was performed, the patient died because of reperfusion injury. Interestingly, only a few giant hepatocytes were noted in the explanted liver. This case stresses the association of GCH with autoimmune disorders, the possible immune mechanism involved in the formation of giant cell hepatocytes, and illustrates the rapidly progressive course and unfavorable prognosis that these patients can develop.
Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula
2016-01-01
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. PMID:27494133
Barbazuk, W. Brad
2017-01-01
RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3. Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates. PMID:28242684
Gasco, Samanta; Rando, Amaya; Zaragoza, Pilar; García-Redondo, Alberto; Calvo, Ana Cristina; Osta, Rosario
2017-12-01
Hematopoietic stem and progenitor cells (HSPCs) are attractive targets in regenerative medicine, although the differences in their homeostatic maintenance between sexes along time are still under debate. We accurately monitored hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs) frequencies by flow cytometry, by performing serial peripheral blood extractions from male and female B6SJL wild-type mice and found no significant differences. Only modest differences were found in the gene expression profile of Slamf1 and Gata2. Our findings suggest that both sexes could be used indistinctly to perform descriptive studies in the murine hematopoietic system, especially for flow cytometry studies in peripheral blood. This would allow diminishing the number of animals needed for the experimental procedures. In addition, the use of serial extractions in the same animals drastically decreases the number of animals needed. © 2017 International Federation for Cell Biology.
Oxidative Stress, Nitric Oxide, and Diabetes
Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni
2010-01-01
In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435
Women with HIV are more commonly infected with non-16 and -18 high-risk HPV types.
McKenzie, Nathalie Dauphin; Kobetz, Erin N; Hnatyszyn, James; Twiggs, Leo B; Lucci, Joseph A
2010-03-01
To review and summarize evidence from clinical, translational and epidemiologic studies which have examined the clinically relevant aspects of HPV type prevalence and cervical dysplasia in HIV-infected women. Relevant studies were identified through a MEDLINE search. References of identified reports were also used to identify additional published articles for review. HIV-infected women in different geographic regions (such as Zambia, Brazil, Rochester NY) appear to be infected with less prevalent types of HR-HPV as compared to the general population who, across all continents, are more commonly infected with types 16 and 18. Secondly, integration of HPV DNA into the host genome is no longer thought to be a necessary cause of malignant transformation of cervical cells. However, rate of integration appears to differ by the type of HPV. In fact, the types of HPV which appear to be more common in cervical dysplasia of HIV-infected women are the same types which are more likely to require integration for malignant transformation. Finally, HPV types found in HIV-infected women are relatively common and likely to persist. The most common among these types belong to the alpha-9 and -7 species which are the most carcinogenic species. Given that current vaccines target HR-HPV-16/18, the findings from the above mentioned studies may have important implications for the design of HPV vaccines that target the types of HPV associated with disease risk in HIV-infected women. HPV typing and assessment of the physical state (whether it is integrated or episomal) appear to be two valuable parameters for the prognostic evaluation of dysplastic lesions of the uterine cervix. This, however, has not yet been assessed in HIV-infected women. Recent data about the immune response in HPV/HIV co-infection may lead to understanding potential mechanisms for less virulent HPV causing malignant transformation in HIV-infected women.
Myosin VIIa as a common component of cilia and microvilli.
Wolfrum, U; Liu, X; Schmitt, A; Udovichenko, I P; Williams, D S
1998-01-01
The distribution of myosin VIIa, which is defective or absent in Usher syndrome 1B, was studied in a variety of tissues by immunomicroscopy. The primary aim was to determine whether this putative actin-based mechanoenzyme is a common component of cilia. Previously, it has been proposed that defective ciliary function might be the basis of some forms of Usher syndrome. Myosin VIIa was detected in cilia from cochlear hair cells, olfactory neurons, kidney distal tubules, and lung bronchi. It was also found to cofractionate with the axonemal fraction of retinal photoreceptor cells. Immunolabeling appeared most concentrated in the periphery of the transition zone of the cilia. This general presence of a myosin in cilia is surprising, given that cilia are dominated by microtubules, and not actin filaments. In addition to cilia, myosin VIIa was also found in actin-rich microvilli of different types of cell. We conclude that myosin VIIa is a common component of cilia and microvilli.
Haverkos, Bradley M; Pan, Zenggang; Gru, Alejandro A; Freud, Aharon G; Rabinovitch, Rachel; Xu-Welliver, Meng; Otto, Brad; Barrionuevo, Carlos; Baiocchi, Robert A; Rochford, Rosemary; Porcu, Pierluigi
2016-12-01
Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT) is an aggressive extranodal non-Hodgkin lymphoma most commonly occurring in East Asia and Latin America but with increasing incidence in the United States. Data on epidemiology, disease presentation, and outcome for European and North American ("Western") cases are very limited. We review published landmark clinical studies on ENKTL-NT in the West and report in detail recent data, including our institutional experience. We highlight key observations in its epidemiology, natural history, and trends in clinical management. In the USA, ENKTL-NT is more common among Asian Pacific Islanders (API) and Hispanics compared to non-Hispanic whites. Published studies indicate less heterogeneity in clinical presentation in Western ENKTL-NT compared to Asian patients. While there is variation in age at diagnosis, presence of antecedent lymphoproliferative disorders, and outcomes among racial/ethnic groups, the universal association of ENKTL-NT with EBV and the poor response of this neoplasm to anthracycline-based therapy is consistent across all geographic areas. Data on epidemiology, disease presentation, and clinical outcomes in mature T cell and NK cell (T/NK cell) neoplasms, including ENKTL-NT, in Europe and North America are very limited. As the classification and diagnostic characterization of the currently recognized T/NK cell lymphoma disease entities continue to evolve, gaps and inconsistencies in data reporting across different studies are being recognized. Despite these limitations, several studies from the USA suggest that the incidence of ENKTL-NT is higher in Asian Pacific Islanders (API) and non-white Hispanics and that outcomes may be worse in non-whites. However, the universal association of ENKTL-NT with Epstein-Barr virus (EBV) across all ethnic groups suggests a common pathogenesis. Given the overlap between the entities included in the category of T/NK cell neoplasms, there is a need to further define biological and clinical differences that may affect diagnosis, treatment, and outcome.
Han, Qinglin; Shi, Hongguang; Liu, Fan
2016-05-01
Osteosarcoma is one of the most common childhood cancers with high numbers of cancer-related deaths. Progress in conventional therapies is showing limited improvement. An adaptive T cell-based immunotherapy represents a promising new therapeutic option, but to improve its efficacy, regulatory mechanisms in osteosarcoma need further elucidation. Here, to evaluate the regulatory effect of tumor microenvironment of T cells in osteosarcoma, we examined the peripheral blood (PB) and tumor infiltrating (TI) T cells, and their correlations with PB and tumor immune characteristics. We found that TI T cells contained significantly higher levels of TIM-3(+)PD-1(-) and TIM-3(+)PD-1(+) cells than their PB counterparts. Similar to that in chronic HIV and HCV infections, these TIM-3(+)PD-1(-) and TIM-3(+)PD-1(+) T cells presented reduced proliferation and proinflammatory cytokine secretion in response to stimulation. Presence of M2-type (CD163(+)) macrophages exacerbated T cell immunosuppression, since frequencies of CD163(+) tumor-associated macrophages were directly correlated with the frequencies of suppressed TIM-3(+)PD-1(+) T cells. Moreover, depletion of CD163(+) macrophages significantly improved T cell proliferation and proinflammatory cytokine production. Overall, our data presented an intratumoral T cell-specific immunosuppression that was amplified by M2-type tumor-associated macrophages. Copyright © 2016. Published by Elsevier B.V.
Pathologic findings in human scabies.
Fernandez, N; Torres, A; Ackerman, A B
1977-03-01
The histologic findings in the papular, vesicular, nodular, and Norwegian variant of scabies have in common a superficial and deep perivascular mixed inflammatory cell infiltrate of lymphocytes, histiocytes, and numerous eosinophils. A spongiotic vesicle occurs in the papulovesicular type, a dense cellular infiltrate in the nodular type, and a hyperkeratotic psoriasiform dermatitis in the Norwegian type. Eggs, larvae, and adult mites are abundant in the cornified layer of Norwegian scabies, are practically never found in biopsy specimens from lesions of nodular scabies, and are discovered only episodically in papulovesicular lesions.
Foxman, Ellen F; Storer, James A; Vanaja, Kiran; Levchenko, Andre; Iwasaki, Akiko
2016-07-26
Most strains of rhinovirus (RV), the common cold virus, replicate better at cool temperatures found in the nasal cavity (33-35 °C) than at lung temperature (37 °C). Recent studies found that although 37 °C temperature suppressed RV growth largely by engaging the type 1 IFN response in infected epithelial cells, a significant temperature dependence to viral replication remained in cells devoid of IFN induction or signaling. To gain insight into IFN-independent mechanisms limiting RV replication at 37 °C, we studied RV infection in human bronchial epithelial cells and H1-HeLa cells. During the single replication cycle, RV exhibited temperature-dependent replication in both cell types in the absence of IFN induction. At 37 °C, earlier signs of apoptosis in RV-infected cells were accompanied by reduced virus production. Furthermore, apoptosis of epithelial cells was enhanced at 37 °C in response to diverse stimuli. Dynamic mathematical modeling and B cell lymphoma 2 (BCL2) overexpression revealed that temperature-dependent host cell death could partially account for the temperature-dependent growth observed during RV amplification, but also suggested additional mechanisms of virus control. In search of a redundant antiviral pathway, we identified a role for the RNA-degrading enzyme RNAseL. Simultaneous antagonism of apoptosis and RNAseL increased viral replication and dramatically reduced temperature dependence. These findings reveal two IFN-independent mechanisms active in innate defense against RV, and demonstrate that even in the absence of IFNs, temperature-dependent RV amplification is largely a result of host cell antiviral restriction mechanisms operating more effectively at 37 °C than at 33 °C.
Rocha, Cristina S J; Lundin, Karin E; Behlke, Mark A; Zain, Rula; El Andaloussi, Samir; Smith, C I Edvard
2016-12-01
New advances in oligonucleotide (ON) chemistry emerge continuously, and over the last few years, several aspects of ON delivery have been improved. However, clear knowledge regarding how certain chemistries behave alone, or in combination with various delivery vectors, is limited. Moreover, characterization is frequently limited to a single reporter cell line and, when different cell types are studied, experiments are commonly not carried out under similar conditions, hampering comparative analysis. To address this, we have developed a small "tissue" library of new, stable, pLuc/705 splice-switching reporter cell lines (named HuH7_705, U-2 OS_705, C2C12_705, and Neuro-2a_705). Our data show that, indeed, the cell type used in activity screenings influences the efficiency of ONs of different chemistry (phosphorothioate with locked nucleic acid or 2'-O-methyl with or without N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine). Likewise, the delivery method, Lipofectamine ® 2000, PepFect14 nanoparticles, or "naked" uptake, also demonstrates cell-type-dependent outcomes. Taken together, these cell lines can potentially become useful tools for future in vitro evaluation of new nucleic acid-based oligomers as well as delivery compounds for splice-switching approaches and cell-specific therapies.
Glickman, Randolph D.; Tolstykh, Gleb P.; Estlack, Larry E.; Moen, Erick K.; Echchgadda, Ibtissam; Beier, Hope T.; Barnes, Ronald A.; Ibey, Bennett L.
2016-01-01
Nanosecond electrical pulse (nsEP) exposure activates signaling pathways, produces oxidative stress, stimulates hormone secretion, causes cell swelling and induces apoptotic and necrotic death. The underlying biophysical connection(s) between these diverse cellular reactions and nsEP has yet to be elucidated. Using global genetic analysis, we evaluated how two commonly studied cell types, U937 and Jurkat, respond to nsEP exposure. We hypothesized that by studying the genetic response of the cells following exposure, we would gain direct insight into the stresses experienced by the cell and in turn better understand the biophysical interaction taking place during the exposure. Using Ingenuity Systems software, we found genes associated with cell growth, movement and development to be significantly up-regulated in both cell types 4 h post exposure to nsEP. In agreement with our hypothesis, we also found that both cell lines exhibit significant biological changes consistent with mechanical stress induction. These results advance nsEP research by providing strong evidence that the interaction of nsEPs with cells involves mechanical stress. PMID:27135944
Espin cytoskeletal proteins in the sensory cells of rodent taste buds
Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R.
2010-01-01
Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste bud cells contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of rat circumvallate taste buds. In confocal images, we counted 21.5±0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7±1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP3R3),α-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP3R3, PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP3R3, α-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of ~3 μm-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10-12 μm into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells. PMID:16841162
Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls
Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.
2013-01-01
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450
A small test of a sequence-based typing method: definition of the B*1520 allele.
Domena, J D; Little, A M; Arnett, K L; Adams, E J; Marsh, S G; Parham, P
1994-10-01
Santamaria et al. (Human Immunology 1993 37: 39-50) describe a method of sequence-based typing (SBT) for HLA-A, B and C alleles said to give "unambiguous typing of any sample, heterozygous or homozygous, without requiring additional typing information". From SBT analysis, which involves determination of partial sequences of mixed alleles, these investigators reported that cell lines KT17 (HLA-B35,62) and OLGA (HLA-B62) from the reference panel of the 10th International Histocompatibility Workshop express novel variants of HLA-B15 (B1501-MN6) and HLA-B35 (B3501-MN7) respectively. To study further the novel alleles, we cloned and sequenced full-length HLA-B cDNA clones isolated from the KT17 and OLGA cell lines. We find that KT17 expresses B*3501, as assigned by SBT, and B*1501, the common allele encoding the B62 antigen. We were unable to confirm that KT17 expresses the novel B1501-MN6 variant identified by SBT. For OLGA our analysis confirms the partial sequences obtained by SBT. Thus OLGA expresses B*1501 and a novel HLA-B allele. The complete sequence of the latter shows it is a hybrid having exons 1 and 2 in common with B*1501 and other B15 subtypes and exons 3-7 in common with B*3501 and related molecules including B*5301 and B*5801. The novel allele has been designated B*1520 because of its sequence similarity with the B15 group; furthermore, serological analysis shows that the B*1520 product does not express epitopes in common with either B35, B53 or B58. The B*1520 heavy chain has a similar isoelectric point to A*3101; B*1520 was undetected by previous applications of isoelectric focusing because B*1520 and A31 are both expressed by OLGA. In conclusion, HLA-B typing of two cell lines by cDNA cloning and sequencing gives concordant results with SBT for three of the four alleles. The cause of the discrepancy for the fourth allele is unknown, however, this finding indicates that the novel HLA-A, B and C sequences emerging from SBT studies need independent verification.
Labeeuw, Leen; Khey, Joleen; Bramucci, Anna R; Atwal, Harjot; de la Mata, A Paulina; Harynuk, James; Case, Rebecca J
2016-01-01
Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.
Type I and II Endometrial Cancers: Have They Different Risk Factors?
Setiawan, Veronica Wendy; Yang, Hannah P.; Pike, Malcolm C.; McCann, Susan E.; Yu, Herbert; Xiang, Yong-Bing; Wolk, Alicja; Wentzensen, Nicolas; Weiss, Noel S.; Webb, Penelope M.; van den Brandt, Piet A.; van de Vijver, Koen; Thompson, Pamela J.; Strom, Brian L.; Spurdle, Amanda B.; Soslow, Robert A.; Shu, Xiao-ou; Schairer, Catherine; Sacerdote, Carlotta; Rohan, Thomas E.; Robien, Kim; Risch, Harvey A.; Ricceri, Fulvio; Rebbeck, Timothy R.; Rastogi, Radhai; Prescott, Jennifer; Polidoro, Silvia; Park, Yikyung; Olson, Sara H.; Moysich, Kirsten B.; Miller, Anthony B.; McCullough, Marjorie L.; Matsuno, Rayna K.; Magliocco, Anthony M.; Lurie, Galina; Lu, Lingeng; Lissowska, Jolanta; Liang, Xiaolin; Lacey, James V.; Kolonel, Laurence N.; Henderson, Brian E.; Hankinson, Susan E.; Håkansson, Niclas; Goodman, Marc T.; Gaudet, Mia M.; Garcia-Closas, Montserrat; Friedenreich, Christine M.; Freudenheim, Jo L.; Doherty, Jennifer; De Vivo, Immaculata; Courneya, Kerry S.; Cook, Linda S.; Chen, Chu; Cerhan, James R.; Cai, Hui; Brinton, Louise A.; Bernstein, Leslie; Anderson, Kristin E.; Anton-Culver, Hoda; Schouten, Leo J.; Horn-Ross, Pamela L.
2013-01-01
Purpose Endometrial cancers have long been divided into estrogen-dependent type I and the less common clinically aggressive estrogen-independent type II. Little is known about risk factors for type II tumors because most studies lack sufficient cases to study these much less common tumors separately. We examined whether so-called classical endometrial cancer risk factors also influence the risk of type II tumors. Patients and Methods Individual-level data from 10 cohort and 14 case-control studies from the Epidemiology of Endometrial Cancer Consortium were pooled. A total of 14,069 endometrial cancer cases and 35,312 controls were included. We classified endometrioid (n = 7,246), adenocarcinoma not otherwise specified (n = 4,830), and adenocarcinoma with squamous differentiation (n = 777) as type I tumors and serous (n = 508) and mixed cell (n = 346) as type II tumors. Results Parity, oral contraceptive use, cigarette smoking, age at menarche, and diabetes were associated with type I and type II tumors to similar extents. Body mass index, however, had a greater effect on type I tumors than on type II tumors: odds ratio (OR) per 2 kg/m2 increase was 1.20 (95% CI, 1.19 to 1.21) for type I and 1.12 (95% CI, 1.09 to 1.14) for type II tumors (Pheterogeneity < .0001). Risk factor patterns for high-grade endometrioid tumors and type II tumors were similar. Conclusion The results of this pooled analysis suggest that the two endometrial cancer types share many common etiologic factors. The etiology of type II tumors may, therefore, not be completely estrogen independent, as previously believed. PMID:23733771
Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression
Goldberg, Michael S.
2012-01-01
The development of cancer-specific therapeutics has been limited because most healthy cells and cancer cells depend on common pathways. Pyruvate kinase (PK) exists in M1 (PKM1) and M2 (PKM2) isoforms. PKM2, whose expression in cancer cells results in aerobic glycolysis and is suggested to bestow a selective growth advantage, is a promising target. Because many oncogenes impart a common alteration in cell metabolism, inhibition of the M2 isoform might be of broad applicability. We show that several small interfering (si) RNAs designed to target mismatches between the M2 and M1 isoforms confer specific knockdown of the former, resulting in decreased viability and increased apoptosis in multiple cancer cell lines but less so in normal fibroblasts or endothelial cells. In vivo delivery of siPKM2 additionally causes substantial tumor regression of established xenografts. Our results suggest that the inherent nucleotide-level specificity of siRNA can be harnessed to develop therapeutics that target isoform-specific exons in genes exhibiting differential splicing patterns in various cell types. PMID:22271574
Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is slow growing and can affect smokers and non-smokers alike. David S. Schrump, M.D., Surgical Chief of the Thoracic and Gastrointestinal Oncology Branch, is leading the NCI’s participation in a multicenter trial of a combination drug therapy in patients with NSCLC. Read more...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corvinus, D.A.
1982-01-01
The Okefenokee Swamp, over 400,000 acres, is a swamp-marsh complex dominated by Taxodium-swamp vegetaion on its west side and Nymphaea-marsh vegetation onits east side. The Albemarle-Pamlico Peninsular Swamps primarily support a pocosin-bay vegetation. The Taxodium-dominated peats of the Okefenokee are more similar botanically to the Albemarle-Pamlico bay peats than are the Okefenokee Nymphaea-dominated peats. Some petrographic characteristics are common to all three peat types. The majority of cell walls in the peat exhibit colors (yellow to orange to red) which they did not display in their living state. This is believed to be from impregnation by the various cell fillingsmore » present in the peats. Unoxidized fragmented (granular) material in all three peat types usually occurs in larger amounts than oxidized (darkened) material. In Taxodium-dominated and bay peats the fragmented matrix is also usually more prevalent than the preserved material (intact cell walls and cell fillings). On the other hand, preserved material is most common in Nymphaea-dominated peats. It is believed that the majority of fragmented material is derived from the surface litter and that swamp vegetation contributes more surface litter than does marsh vegetation.« less
Shinomiya, Kazunori; Takemura, Shin-ya; Rivlin, Patricia K.; Plaza, Stephen M.; Scheffer, Louis K.; Meinertzhagen, Ian A.
2015-01-01
Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use respectively either T4 or T5, two cell types of the fourth neuropil, or lobula plate (LOP), that exhibit narrow-field direction-selective responses and provide input to wide-field tangential neurons. T4 or T5 both have four subtypes that terminate one each in the four strata of the LOP. Representatives are reported in a wide range of Diptera, and both cell types exhibit various similarities in: (1) the morphology of their dendritic arbors; (2) their four morphological and functional subtypes; (3) their cholinergic profile in Drosophila; (4) their input from the pathways of L3 cells in the first neuropil, or lamina (LA), and by one of a pair of LA cells, L1 (to the T4 pathway) and L2 (to the T5 pathway); and (5) their innervation by a single, wide-field contralateral tangential neuron from the central brain. Progenitors of both also express the gene atonal early in their proliferation from the inner anlage of the developing optic lobe, being alone among many other cell type progeny to do so. Yet T4 receives input in the second neuropil, or medulla (ME), and T5 in the third neuropil or lobula (LO). Here we suggest that these two cell types were originally one, that their ancestral cell population duplicated and split to innervate separate ME and LO neuropils, and that a fiber crossing—the internal chiasma—arose between the two neuropils. The split most plausibly occurred, we suggest, with the formation of the LO as a new neuropil that formed when it separated from its ancestral neuropil to leave the ME, suggesting additionally that ME input neurons to T4 and T5 may also have had a common origin. PMID:26217193
Esophageal Cancer—Patient Version
The most common types of esophageal cancer are adenocarcinoma and squamous cell carcinoma. These forms of esophageal cancer develop in some parts of the esophagus and are driven by genetic changes. Start here to find information on esophageal cancer treatment, causes and prevention, screening, research, and statistics.
Bladder Cancer—Patient Version
The most common type of bladder cancer is transitional cell carcinoma, also called urothelial carcinoma. Smoking is a major risk factor for bladder cancer. Bladder cancer is often diagnosed at an early stage. Start here to find information on bladder cancer treatment, screening, research, and statistics.
Vaginal cancer is a rare type of cancer. It is more common in women 60 and older. You are also more likely to get it if you have had a human ... test can find abnormal cells that may be cancer. Vaginal cancer can often be cured in its ...
Hypoxia-Inducible Factor Prolyl Hydroxylases are Oxygen Sensors in the Brain
2005-03-01
astrocytes. It has been appreciated that increased HIF-1α protein levels are commonly found in several cancer types (Zhong, De Marzo et al. 1999...A 98(17): 9630-5. Zhong, H., A. M. De Marzo , et al. (1999). "Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their...rat brain” Discussion 17-23 Bibliography 24 -31 ix INTRODUCTION Vertebrate cells possess adaptive responses to hypoxia
Zou, Jinfeng; Wang, Edwin
2017-04-01
With the technology development on detecting circulating tumor cells (CTCs) and cell-free DNAs (cfDNAs) in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs) of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86-0.96) and high recall rates (0.79-0.92) for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78-0.92) and recall rates (0.58-0.95) have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.
Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes
Matias Rodrigues, João F.; Rankin, Daniel J.; Rossetti, Valentina; Wagner, Andreas; Bagheri, Homayoun C.
2012-01-01
Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. PMID:22511858
Signaling, Regulation, and Specificity of the Type II p21-activated Kinases.
Ha, Byung Hak; Morse, Elizabeth M; Turk, Benjamin E; Boggon, Titus J
2015-05-22
The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Quennedey, André; Peppuy, Alexis; Courrent, Annie; Robert, Alain; Everaerts, Claude; Bordereau, Christian
2004-12-01
In female alates of Macrotermes annandalei, two types of abdominal glands are involved in the secretion of sex pheromone. Tergal glands are found at the anterior margin of tergites 6-10 and posterior sternal glands (PSGs) are located at the anterior margin of sternites 6-7. The cytological features of both types of glands are quite similar. The fine structural organization of PSGs is studied more precisely and described for the first time. The glandular cuticle is pitted with narrow apertures corresponding to the openings of numerous subcuticular pouches. Several Class 3 glandular units open in each pouch. One canal cell and one secretory cell make an individual glandular unit. The canal cell is enlarged apically and is connected with the other canal cells to form a common pouch. Based on the structural features found in these glands, we propose a common secretory process for PSGs and tergal glands. During the physiological maturation of alates inside the nest, secretory vesicles amass in the cytoplasm of secretory cells, while large intercellular spaces collapse the cuticular pouches. At the time of dispersal flight, pouches are filled with the content of secretory vesicles while intercellular spaces are sharply reduced. After calling behavior, no secretion remains in the glands and pouches collapse again, while secretory cells are drastically reduced in size. The structure and the secretory processes of PSGs and tergal glands are compared to those of abdominal sexual glands known in termites.
Comparative analyses identify molecular signature of MRI-classified SVZ-associated glioblastoma
Lin, Chin-Hsing Annie; Rhodes, Christopher T.; Lin, ChenWei; Phillips, Joanna J.; Berger, Mitchel S.
2017-01-01
ABSTRACT Glioblastoma (GBM) is a highly aggressive brain cancer with limited therapeutic options. While efforts to identify genes responsible for GBM have revealed mutations and aberrant gene expression associated with distinct types of GBM, patients with GBM are often diagnosed and classified based on MRI features. Therefore, we seek to identify molecular representatives in parallel with MRI classification for group I and group II primary GBM associated with the subventricular zone (SVZ). As group I and II GBM contain stem-like signature, we compared gene expression profiles between these 2 groups of primary GBM and endogenous neural stem progenitor cells to reveal dysregulation of cell cycle, chromatin status, cellular morphogenesis, and signaling pathways in these 2 types of MRI-classified GBM. In the absence of IDH mutation, several genes associated with metabolism are differentially expressed in these subtypes of primary GBM, implicating metabolic reprogramming occurs in tumor microenvironment. Furthermore, histone lysine methyltransferase EZH2 was upregulated while histone lysine demethylases KDM2 and KDM4 were downregulated in both group I and II primary GBM. Lastly, we identified 9 common genes across large data sets of gene expression profiles among MRI-classified group I/II GBM, a large cohort of GBM subtypes from TCGA, and glioma stem cells by unsupervised clustering comparison. These commonly upregulated genes have known functions in cell cycle, centromere assembly, chromosome segregation, and mitotic progression. Our findings highlight altered expression of genes important in chromosome integrity across all GBM, suggesting a common mechanism of disrupted fidelity of chromosome structure in GBM. PMID:28278055
The differential expression of IL-4 and IL-13 and its impact on type-2 immunity.
Bao, Katherine; Reinhardt, R Lee
2015-09-01
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alford, Lea M; Stoddard, Daniel; Li, Jennifer H; Hunter, Emily L; Tritschler, Douglas; Bower, Raqual; Nicastro, Daniela; Porter, Mary E; Sale, Winfield S
2016-06-01
We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models. ATP-induced reactivation failed in a subset of drc cell models, despite forward motility in live drc cells. Dark-field light microscopic observations of drc cell models revealed various degrees of axonemal splaying. In contrast, >98% of axonemes from wild-type reactivated cell models remained intact. The sup-pf4 and drc3 mutants, unlike other drc mutants, retain most of the N-DRC linker that interconnects outer doublet microtubules. Reactivated sup-pf4 and drc3 cell models displayed nearly wild-type levels of forward motility. Thus, the N-DRC linker is required for axonemal integrity. We also examined reactivated motility and axoneme integrity in mutants defective in tubulin polyglutamylation. ATP-induced reactivation resulted in forward swimming of >75% of tpg cell models. Analysis of double mutants defective in tubulin polyglutamylation and different regions of the N-DRC indicate B-tubule polyglutamylation and the distal lobe of the linker region are both important for axonemal integrity and normal N-DRC function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
2011-01-01
Background Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231). Methods Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion. Results Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis. Conclusions Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer. PMID:21849050
Krustrup, Dorrit; Jensen, Helle Lone; van den Brule, Adriaan J C; Frisch, Morten
2009-01-01
A high prevalence of cervical cancer associated high-risk types of human papillomavirus (hrHPV) has been demonstrated in premalignant and invasive squamous cell lesions of the penis, but large studies correlating histological characteristics with HPV status are few in number. Tumour tissues from 145 patients with invasive (n = 116) or in situ (n = 29) penile squamous cell carcinoma were subjected to systematic histological evaluation and were PCR-tested for 14 hrHPV types and 23 low-risk HPV types. Around half (52%) of invasive and nine-tenths (90%) of in situ lesions were positive for an hrHPV type, of which HPV 16 was by far the predominant type (91% of hrHPV-positive lesions). In relation to histological characteristics, hrHPV positivity was statistically significantly more common in high-grade tumours, lesions dominated by small tumour cells, lesions with a high number of multinucleated cells and mitoses, and lesions with a small amount of parakeratosis. In conclusion, about half of invasive penile squamous carcinomas in this study were hrHPV-positive, most notably to HPV 16, and probably arose through in situ lesions whereas the other half of invasive penile lesions appeared to be unrelated to hrHPV. A number of histological characteristics differed significantly between hrHPV-positive and -negative invasive penile carcinomas. PMID:19335557
Testing for Drug Hypersensitivity Syndromes
Rive, Craig M; Bourke, Jack; Phillips, Elizabeth J
2013-01-01
Adverse drug reactions are a common cause of patient morbidity and mortality. Type B drug reactions comprise only 20% of all drug reactions but they tend to be primarily immunologically mediated and less dependent on the drug’s pharmacological action and dose. Common Type B reactions seen in clinical practice are those of the immediate, IgE, Gell-Coombs Type I reactions, and the delayed, T-cell mediated, Type IV reactions. Management of these types of reactions, once they have occurred, requires careful consideration and recognition of the utility of routine diagnostic tests followed by ancillary specialised diagnostic testing. For Type I, IgE mediated reactions this includes prick/intradermal skin testing and oral provocation. For Type IV, T-cell mediated reactions this includes a variety of in vivo (patch testing) and ex vivo tests, many of which are currently mainly used in highly specialised research laboratories. The recent association of many serious delayed (Type IV) hypersensitivity reactions to specific drugs with HLA class I and II alleles has created the opportunity for HLA screening to exclude high risk populations from exposure to the implicated drug and hence prevent clinical reactions. For example, the 100% negative predictive value of HLA-B*5701 for true immunologically mediated abacavir hypersensitivity and the development of feasible, inexpensive DNA-based molecular tests has led to incorporation of HLA-B*5701 screening in routine HIV clinical practice. The mechanism by which drugs specifically interact with HLA has been recently characterised and promises to lead to strategies for pre-clinical screening to inform drug development and design. PMID:23592889
Xeroderma pigmentosum at a tertiary care center in Saudi Arabia.
Alwatban, Lenah; Binamer, Yousef
2017-01-01
Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder caused by defective DNA repair that results in extreme sensitivity to ultraviolet (UV) rays. Depending on the type of XP, the disease may affect the skin, eyes and nervous system. Describe the dermatologic manifestations in patients suffering from XP. Retrospective, descriptive review of medical records. Dermatology clinic at tertiary care center in Riyadh. This study included Saudi patients with clinically confirmed XP. Demographic and clinical data including pathology and associated conditions and outcomes. Of 21 patients with XP, the most common manifestation was lentigines, affecting 18 patients (86%). The most common skin cancer was basal cell carcinoma followed by squamous cell carcinoma (SCC) affecting 15 (71.4%) and 9 (42.8%), respectively. Other skin findings included neurofibroma, trichilemmoma and seborrheic keratosis. Ocular involvement included photophobia, which was the most common finding followed by dryness and ocular malignancies. Two patients showed neurological involvement, which correlated with the type of mutation. Considering that XP is a rare genetic disease, this description of our patient population will aid in early recognition and diagnosis. Retrospective and small number of patients. Genetic analyses were done for only 5 of the 21 patients.
Orkić, Želimir; Puntarić, Dinko; Puntarić, Eda; Puntarić, Ida; Vidosavljević, Domagoj; Gvozdić, Vlatka; Mayer, Dijana
2015-03-01
The aim of this study was to investigate the incidence and characteristics of malignant neoplasms of the skin of the head and neck region in the Osijek-Baranya County during the 2004-2012 period according to gender, age, place of residence, place of work, occupation, type and location of the neoplasm, and phenotypic characteristics of patients. The study included all subjects with the diagnosis confirmed by histopathology finding and residents of the Osijek-Baranya County. The study included a total of 2952 persons, 1487 (50.4%) male and 1465 (49.6%) female, yielding an approximate annual incidence of 104/100,000. Mean age was 72 years. Respondents were mostly from rural areas (n = 1952, 66.2%). There were 2137 (72.4%) of respondents mostly working outdoors, mainly farmers (n = 907, 42.4%) and construction workers (n = 889, 41.6%). According to the type of neoplasm, the basal cell type was most common with 2160 (73.2%) patients. Ninety-three (3.1 %) patients had malignant melanoma. According to localization, face was the most common site of malignant neoplasms with 839 (28.7%) and nose with 643 (22.0%) patients. Squamous cell carcinoma was significantly more common in men (n = 341, 56.6%) as compared with women (n = 262, (43.4%; p = 0.005). Subjects with malignant melanoma were significantly younger, with median age of 67 years. There were no significant differences according to the type of malignant neoplasms and place of residence, place of business, and occupation with regard to working outdoors or indoors. According to localization, significantly more squamous cell malignancies were found on the ears and lips (p = 0.039 and p < 0.001, respectively), malignant melanomas on the neck, head and eyes (p = 0.004, p < 0.001 and p = 0.026, respectively), and basal cell neoplasms on the nose (p = 0.002). There were no significant differences in the type and frequency of malignant neoplasms according to hair and eye color. It is obvious that the disease occurs after a decades-long incubation period and the cumulative effect of exposure to risk factors, with direct sun exposure, seems to have a significant role. Additional research is needed.
Stratoulias, Vassilis; Heino, Tapio I
2015-05-01
Glia are abundant cells in the brain of animals ranging from flies to humans. They perform conserved functions not only in neural development and wiring, but also in brain homeostasis. Here we show that by manipulating gene expression in glia, a previously unidentified cell type appears in the Drosophila brain during metamorphosis. More specifically, this cell type appears in three contexts: (1) after the induction of either immunity, or (2) autophagy, or (3) by silencing of neurotrophic factor DmMANF in glial cells. We call these cells MANF immunoreactive Cells (MiCs). MiCs are migratory based on their shape, appearance in brain areas where no cell bodies exist and the nuclear localization of dSTAT. They are labeled with a unique set of molecular markers including the conserved neurotrophic factor DmMANF and the transcription factor Zfh1. They possess the nuclearly localized protein Relish, which is the hallmark of immune response activation. They also express the conserved engulfment receptor Draper, therefore indicating that they are potentially phagocytic. Surprisingly, they do not express any of the common glial and neuronal markers. In addition, ultrastructural studies show that MiCs are extremely rich in lysosomes. Our findings reveal critical molecular and functional components of an unusual cell type in the Drosophila brain. We suggest that MiCs resemble macrophages/hemocytes and vertebrate microglia based on their appearance in the brain upon genetically challenged conditions and the expression of molecular markers. Interestingly, macrophages/hemocytes or microglia-like cells have not been reported in the fly nervous system before.
Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study
Liu, Kunpeng; Ren, Yuan; Pang, Lijuan; Qi, Yan; Jia, Wei; Tao, Lin; Hu, Zhengyan; Zhao, Jin; Zhang, Haijun; Li, Li; Yue, Haifeng; Han, Juan; Liang, Weihua; Hu, Jianming; Zou, Hong; Yuan, Xianglin; Li, Feng
2015-01-01
Papillary renal cell carcinoma (PRCC) represents the second most common histological subtype of RCC, and comprises 2 subtypes. Prognosis for type 1 PRCC is relatively good, whereas type 2 PRCC is associated with poor clinical outcomes. The aim of the present study was to evaluate the clinicopathological and mutations characteristics of PRCC. Hence, we reported on 13 cases of PRCC analyzed using whole-exome sequencing. Histologically, type 2 PRCC showed a higher nuclear grade and lymphovascular invasion rate versus type 1 PRCC (P < 0.05). Immunostaining revealed type 1 PRCC had higher CK7 and lower Top IIα expression rates (P < 0.05). Whole-exome sequencing data analysis revealed that the mutational statuses of 373 genes (287 missense, 69 silent, 6 nonsense, and 11 synonymous mutations) differed significantly between PRCC and normal renal tissues (P < 0.05). Functional enrichment analysis was used to classify the 287 missense-mutated genes into 11 biological process clusters (comprised of 61 biological processes) and 5 pathways, involved in cell adhesion, microtubule-based movement, the cell cycle, polysaccharide biosynthesis, muscle cell development and differentiation, cell death, and negative regulation. Associated pathways included the ATP-binding cassette transporter, extracellular matrix-receptor interaction, lysosome, complement and coagulation cascades, and glyoxylate and dicarboxylate metabolism pathways. The missense mutation status of 19 genes differed significantly between the groups (P < 0.05), and alterations in the EEF1D, RFNG, GPR142, and RAB37 genes were located in different chromosomal regions in type 1 and 2 PRCC. These mutations may contribute to future studies on pathogenic mechanisms and targeted therapy of PRCC. PMID:26339402
Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph
2013-01-01
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism. PMID:23564230
[Using of cell biocomposite material in tissue engineering of the urinary bladder].
Glybochko, P V; Olefir, Yu V; Alyaev, Yu G; Butnaru, D V; Bezrukov, E A; Chaplenko, A A; Zharikova, T M
2017-06-01
In a systematic review, to present an overview of the current situation in the field of tissue engineering of urinary bladder related to the use of cell lines pre-cultured on matrices. The selection of eligible publications was conducted according to the method described in the article Glybochko P.V. et al. "Tissue engineering of urinary bladder using acellular matrix." At the final stage, studies investigating the application of matrices with human and animal cell lines were analyzed. Contemporary approaches to using cell-based tissue engineering of the bladder were analyzed, including the formation of 3D structures from several types of cells, cell layers and genetic modification of injected cells. The most commonly used cell lines are urothelial cells, mesenchymal stem cells and fibroblasts. The safety and efficacy of any types of composite cell structures used in the cell-based bladder tissue engineering has not been proven sufficiently to warrant clinical studies of their usefulness. The results of cystoplasty of rat bladder are almost impossible to extrapolate to humans; besides, it is difficult to predict possible side effects. For the transition to clinical trials, additional studies on relevant animal models are needed.
3-D Reconstruction of Macular Type II Cell Innervation Patterns in Space-Flight and Control Rats
NASA Technical Reports Server (NTRS)
Ross, Muriel Dorothy; Montgomery, K.; Linton, S.; Cheng, R.; Tomko, David L. (Technical Monitor)
1995-01-01
A semiautomated method for reconstructing objects from serial thin sections has been developed in the Biocomputation Center. The method is being used to completely, for the first time, type II hair cells and their innervations. The purposes are to learn more about the fundamental circuitry of the macula on Earth and to determine whether changes in connectivities occur under space flight conditions. Data captured directly from a transmission electron microscope via a video camera are sent to a graphics workstation. There, the digitized micrographs are mosaicked into sections and contours are traced, registered and displayed by semiautomated methods. Current reconstructions are of type II cells from the medial part of rat maculas collected in-flight on the Space Life Sciences-2 mission, 4.5 hrs post-flight, and from a ground control. Results show that typical type II cells receive processes from tip to six nearby calyces or afferents. Nearly all processes are elongated and have bouton-like enlargements; some have numerous vesicles. Multiple (2 to 4) processes from a single calyx to a type II cell are common, and approximately 1/3 of the processes innervale 2 or 3 type II cells or a neighboring cluster. From 2% to 6% of the cells resemble type I cells morphologically but have demi-calyces. Thus far, increments in synaptic number in type II cells of flight rats are prominent along processes that supply two hair cells. It is clear that reconstruction methods provide insights into details of macular circuitry not obtainable by other techniques. The results demonstrate a morphological basis for interactions between adjacent receptive fields through feed back-feed forward connections, and for dynamic alterations in receptive field range and activity during preprocessing of linear acceleratory information by the maculas. The reconstruction method we have developed will find further applications in the study of the details of neuronal architecture of more complex systems, to seek out shared organizational properties or neuronal networks and to understand better localization of synaptic changes in altered environments.
2011-01-01
Background Epithelial folding is a common morphogenetic process during the development of multicellular organisms. In metazoans, the biological and biomechanical processes that underlie such three-dimensional (3D) developmental events are usually complex and difficult to investigate. Spheroidal green algae of the genus Volvox are uniquely suited as model systems for studying the basic principles of epithelial folding. Volvox embryos begin life inside out and then must turn their spherical cell monolayer outside in to achieve their adult configuration; this process is called 'inversion.' There are two fundamentally different sequences of inversion processes in Volvocaceae: type A and type B. Type A inversion is well studied, but not much is known about type B inversion. How does the embryo of a typical type B inverter, V. globator, turn itself inside out? Results In this study, we investigated the type B inversion of V. globator embryos and focused on the major movement patterns of the cellular monolayer, cell shape changes and changes in the localization of cytoplasmic bridges (CBs) connecting the cells. Isolated intact, sectioned and fragmented embryos were analyzed throughout the inversion process using light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy techniques. We generated 3D models of the identified cell shapes, including the localizations of CBs. We show how concerted cell-shape changes and concerted changes in the position of cells relative to the CB system cause cell layer movements and turn the spherical cell monolayer inside out. The type B inversion of V. globator is compared to the type A inversion in V. carteri. Conclusions Concerted, spatially and temporally coordinated changes in cellular shapes in conjunction with concerted migration of cells relative to the CB system are the causes of type B inversion in V. globator. Despite significant similarities between type A and type B inverters, differences exist in almost all details of the inversion process, suggesting analogous inversion processes that arose through parallel evolution. Based on our results and due to the cellular biomechanical implications of the involved tensile and compressive forces, we developed a global mechanistic scenario that predicts epithelial folding during embryonic inversion in V. globator. PMID:22206406
Genetic modulation of sickle cell anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, M.H.
1995-05-01
Sickle cell anemia, a common disorder associated with reduced life span of the red blood cell and vasoocclusive events, is caused by a mutation in the {Beta}-hemoglobin gene. Yet, despite this genetic homogeneity, the phenotype of the disease is heterogeneous. This suggests the modulating influence of associated inherited traits. Some of these may influence the accumulation of fetal hemoglobin, a hemoglobin type that interferes with the polymerization of sickle hemoglobin. Another inherited trait determines the accumulation of {alpha}-globin chains. This review focuses on potential genetic regulators of the phenotype of sickle cell anemia. 125 refs., 6 figs., 3 tabs.
Replication-Dependent Sister Chromatid Recombination in Rad1 Mutants of Saccharomyces Cerevisiae
Kadyk, L. C.; Hartwell, L. H.
1993-01-01
Homolog recombination and unequal sister chromatid recombination were monitored in rad1-1/rad1-1 diploid yeast cells deficient for excision repair, and in control cells, RAD1/rad1-1, after exposure to UV irradiation. In a rad1-1/rad1-1 diploid, UV irradiation stimulated much more sister chromatid recombination relative to homolog recombination when cells were irradiated in the G(1) or the G(2) phases of the cell cycle than was observed in RAD1/rad1-1 cells. Since sister chromatids are not present during G(1), this result suggested that unexcised lesions can stimulate sister chromatid recombination events during or subsequent to DNA replication. The results of mating rescue experiments suggest that unexcised UV dimers do not stimulate sister chromatid recombination during the G(2) phase, but only when they are present during DNA replication. We propose that there are two types of sister chromatid recombination in yeast. In the first type, unexcised UV dimers and other bulky lesions induce sister chromatid recombination during DNA replication as a mechanism to bypass lesions obstructing the passage of DNA polymerase, and this type is analogous to the type of sister chromatid exchange commonly observed cytologically in mammalian cells. In the second type, strand scissions created by X-irradiation or the excision of damaged bases create recombinogenic sites that result in sister chromatid recombination directly in G(2). Further support for the existence of two types of sister chromatid recombination is the fact that events induced in rad1-1/rad1-1 were due almost entirely to gene conversion, whereas those in RAD1/rad1-1 cells were due to a mixture of gene conversion and reciprocal recombination. PMID:8454200
Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C
2012-01-01
Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949
Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging.
Soenen, Stefaan J; Manshian, Bella B; Aubert, Tangi; Himmelreich, Uwe; Demeester, Jo; De Smedt, Stefaan C; Hens, Zeger; Braeckmans, Kevin
2014-06-16
The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. In order to overcome this problem, several strategies have been tested, such as the generation of cadmium-free QDots. In the present study, two types of cadmium-free QDots, composed of ZnSe/ZnS (QDotZnSe) and InP/ZnS (QDotInP), were studied with respect to their cytotoxicity and cellular uptake in a variety of cell types. A multiparametric cytotoxicity approach is used, where the QDots are studied with respect to cell viability, oxidative stress, cell morphology, stem cell differentiation, and neurite outgrowth. The data reveal slight differences in uptake levels for both types of QDots (maximal for QDotZnSe), but clear differences in cytotoxicity and cell functionality effects exist, with highest toxicity for QDotZnSe. Differences between cell types and between both types of QDots can be explained by the intrinsic sensitivity of certain cell types and chemical composition of the QDots. At concentrations at which no toxic effects can be observed, the functionality of the QDots for fluorescence cell visualization is evaluated, revealing that the higher brightness of QDotZnSe overcomes most of the toxicity issues compared to that of QDotInP. Comparing the results obtained with common Cd2+-containing QDots tested under identical conditions, the importance of particle functionality is demonstrated, revealing that cadmium-free QDots tested in this study are not significantly better than Cd2+-containing QDots for long-term cell imaging and that more work needs to be performed in optimizing the brightness and surface chemistry of cadmium-free QDots for them to replace currently used Cd2+-containing QDots.
Chimeric antigen receptor T cells: power tools to wipe out leukemia and lymphoma.
Riet, Tobias; Abken, Hinrich
2015-08-01
Adoptive cell therapy for malignant diseases is showing promise in recent early-phase trials in the treatment of B cell leukemia/lymphoma. Genetically engineered with a tumor-specific chimeric antigen receptor, patient's T cells produce lasting and complete leukemia regression. However, treatment is associated with some toxicity which needs our attention and the field still faces some hurdles at the scientific, technologic and clinical levels. Surmounting these obstacles will establish chimeric antigen receptor T cell therapy as a powerful approach to cure hematologic malignancies, paving the way for the treatment of other common types of cancer in the future.
Ojeda, Isidro; Francisco-Ortega, Javier; Cronk, Quentin C B
2009-11-01
The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.
Hu, Dong Gui; McKinnon, Ross A; Hulin, Julie-Ann; Mackenzie, Peter I; Meech, Robyn
2016-12-27
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer ( PCGEM1 , PEG3 , EPHA3 , and EFNB2 ) or other types of human cancers ( TOX3 , ST8SIA4 , and SLITRK3 ), and genes that are diagnostic/prognostic biomarkers of prostate cancer ( GRINA3 , and BCHE ).
Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm
2015-01-01
Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.
Assessement of angiogenesis reveals blood vessel heterogeneity in lung carcinoma
BIRAU, AMALIA; CEAUSU, RALUCA AMALIA; CIMPEAN, ANCA MARIA; GAJE, PUSA; RAICA, MARIUS; OLARIU, TEODORA
2012-01-01
Despite advances in treatment, the prognosis for lung cancer patients remains poor. Angiogenesis appears to be a promising target for lung cancer therapy; however, the clinical significance of vascular changes are not completely understood. The aim of this study was to evaluate the types and morphology of blood vessels in various lung carcinomas. Using double immunostaining, we investigated 39 biopsies from patients admitted with various histological types of lung carcinoma. Tumor blood vessels were quantified separately for CD34/smooth muscle actin and described as either immature, intermediate or mature. Double immunostaining evaluation of the type of blood vessels in lung carcinomas revealed a marked heterogeneity. The immature and intermediate type of vessels were more common in adenocarcinomas (ADCs) and squamous cell carcinomas (SCCs) of the lung. Small cell lung carcinomas revealed a significant correlation between pathological and immature types of blood vessels. Therefore, quantifying the types of tumor vessels in lung carcinomas may be an important element to improve the results of anti-vascular therapy. PMID:23205116
Bhatia, Neal; Lynde, Charles; Vender, Ronald; Bourcier, Marc
2013-12-01
As the most commonly sexually transmitted disease worldwide, human papillomavirus (HPV) infections are associated with significant morbidity and mortality. HPV infections most commonly affect young adults, women under 25 in particular. The most common risk factor for HPV infection in both sexes is a high number of lifetime sexual partners, whereas leading protective factors include circumcision, consistent condom use, and abstinence. Over 100 HPV types have been identified to date and are classified according to their level of oncogenic potential. HPV types 6 and 11 are responsible for approximately 90% of genital warts; HPV types 16 and 18 are responsible for 70% of invasive cervical cancers. External genital warts (EGWs) are the most common clinical manifestation of nononcogenic HPV infection. Coinfection with multiple HPV types is possible and may combine both low- and high-risk types, even in cases of genital warts. HPV infections are DNA viruses transmitted through skin-to-skin contact, invading the basal epithelial cells via microtears and evading the host immune response. Although non-life threatening, even low-risk HPV-type infections such as EGW carry a substantial psychosocial and economic burden. Stressors include the shame and embarrassment related to diagnosis, as well as the inconvenience and discomfort of treatment and the fear of recurrence, transmission, and the possible threat of cancer. Costs relate to routine screening for cervical cancer, treatment of genital warts, and the management and follow-up of malignancies.
Shirakawa, Makoto; Ueda, Haruko; Nagano, Atsushi J.; Shimada, Tomoo; Kohchi, Takayuki; Hara-Nishimura, Ikuko
2014-01-01
Brassicales plants, including Arabidopsis thaliana, have an ingenious two-compartment defense system, which sequesters myrosinase from the substrate glucosinolate and produces a toxic compound when cells are damaged by herbivores. Myrosinase is stored in vacuoles of idioblast myrosin cells. The molecular mechanism that regulates myrosin cell development remains elusive. Here, we identify the basic helix-loop-helix transcription factor FAMA as an essential component for myrosin cell development along Arabidopsis leaf veins. FAMA is known as a regulator of stomatal development. We detected FAMA expression in myrosin cell precursors in leaf primordia in addition to stomatal lineage cells. FAMA deficiency caused defects in myrosin cell development and in the biosynthesis of myrosinases THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1) and TGG2. Conversely, ectopic FAMA expression conferred myrosin cell characteristics to hypocotyl and root cells, both of which normally lack myrosin cells. The FAMA interactors ICE1/SCREAM and its closest paralog SCREAM2/ICE2 were essential for myrosin cell development. DNA microarray analysis identified 32 candidate genes involved in myrosin cell development under the control of FAMA. This study provides a common regulatory pathway that determines two distinct cell types in leaves: epidermal guard cells and inner-tissue myrosin cells. PMID:25304202
Prediction of type III secretion signals in genomes of gram-negative bacteria.
Löwer, Martin; Schneider, Gisbert
2009-06-15
Pathogenic bacteria infecting both animals as well as plants use various mechanisms to transport virulence factors across their cell membranes and channel these proteins into the infected host cell. The type III secretion system represents such a mechanism. Proteins transported via this pathway ("effector proteins") have to be distinguished from all other proteins that are not exported from the bacterial cell. Although a special targeting signal at the N-terminal end of effector proteins has been proposed in literature its exact characteristics remain unknown. In this study, we demonstrate that the signals encoded in the sequences of type III secretion system effectors can be consistently recognized and predicted by machine learning techniques. Known protein effectors were compiled from the literature and sequence databases, and served as training data for artificial neural networks and support vector machine classifiers. Common sequence features were most pronounced in the first 30 amino acids of the effector sequences. Classification accuracy yielded a cross-validated Matthews correlation of 0.63 and allowed for genome-wide prediction of potential type III secretion system effectors in 705 proteobacterial genomes (12% predicted candidates protein), their chromosomes (11%) and plasmids (13%), as well as 213 Firmicute genomes (7%). We present a signal prediction method together with comprehensive survey of potential type III secretion system effectors extracted from 918 published bacterial genomes. Our study demonstrates that the analyzed signal features are common across a wide range of species, and provides a substantial basis for the identification of exported pathogenic proteins as targets for future therapeutic intervention. The prediction software is publicly accessible from our web server (www.modlab.org).
Sakaue, Yuko; Bellier, Jean-Pierre; Kimura, Shin; D'Este, Loredana; Takeuchi, Yoshihiro; Kimura, Hiroshi
2014-01-01
Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.
Park, S; Suh, Y-L; Nam, D-H; Kim, S T
2009-01-01
Gliomatosis cerebri (GC) is defined as a diffuse neoplastic glial cell infiltration of the brain with the preservation of anatomical architecture and the sparing of neurons and can be classified into Type 1 (diffuse) and Type 2 (mass forming) GCs macroscopically. There is little information on subtypes of GC. The aim of this study was to evaluate the clinicopathologic findings of GCs and to compare the clinicopathologic findings between Type 1 and Type 2 GCs. A total of 33 cases of GC were obtained from pathology file of Samsung Medical Center. The diagnosis was based on magnetic resonance imaging findings and histological confirmation for all patients. Fifteen cases were classified into Type 1 and 18 were Type 2 based on the MR images. Clinical information included patients' age, sex, tumor extent, treatment modality and survival. Pathologic features included the amount of rod cells and cytologic anaplasia such as multinucleated tumor giant cells, endothelial cell proliferation, or mitosis. Immunohistochemical study was performed for GFAP, O1, Gal-C, Ki-67, and p53. Clinicopathologic comparison between subtypes and statistical analysis were performed. Median age at diagnosis was older (56 years) in Type 1 than in Type 2 (44 years). Male to female ratio was about 1.54:1. Mean survival time was shorter (21 months) in Type 2 than in Type 1 GCs (24 months) (p = 0.0447). Histologically, 33 cases of GC were classified into two histologic grades (low and high grade) by cytologic anaplasia. High-grade GC was more common in Type 2 than Type 1 (p = 0.027). Immunohistochemical results demonstrated that the infiltrating tumor cells were undifferentiated cells with astrocytic or oligodendroglial differentiation. Ki-67 labeling index was correlated with subtypes (p = 0.0096). Pathologic features were not correlated with survival. Type 1 and 2 GCs are somewhat different in clinical presentation and pathologic features. The age group, survival time, histologic grade, and Ki-67 labeling index were significantly correlated with subtypes ofGCs. Type 2 GC was correlated with poor survival but histologic grade was not.
Anal Cancer—Health Professional Version
Anal cancer is a rare malignancy and accounts for a small percentage of cancers of the lower alimentary tract. The most common type of anal cancer is squamous cell carcinoma in the anal canal. Find evidence-based information on anal cancer treatment, causes and prevention, research, and statistics.
Jang, Minjeong; Koh, Ilkyoo; Lee, Seok Jae; Cheong, Jae-Ho; Kim, Pilnam
2017-01-27
Gastric cancer (GC) is a common aggressive malignant tumor with high incidence and mortality worldwide. GC is classified into intestinal and diffuse types according to the histo-morphological features. Because of distinctly different clinico-pathological features, new cancer therapy strategies and in vitro preclinical models for the two pathological variants of GC is necessary. Since extracellular matrix (ECM) influence the biological behavior of tumor cells, we hypothesized that GC might be more similarly modeled in 3D with matrix rather than in 2D. Herein, we developed a microfluidic-based a three-dimensional (3D) in vitro gastric cancer model, with subsequent drug resistance assay. AGS (intestinal type) and Hs746T (diffuse type) gastric cancer cell lines were encapsulated in collagen beads with high cellular viability. AGS exhibited an aggregation pattern with expansive growth, whereas Hs746T showed single-cell-level infiltration. Importantly, in microtumor models, epithelial-mesenchymal transition (EMT) and metastatic genes were upregulated, whereas E-cadherin was downregulated. Expression of ß-catenin was decreased in drug-resistant cells, and chemosensitivity toward the anticancer drug (5-FU) was observed in microtumors. These results suggest that in vitro microtumor models may represent a biologically relevant platform for studying gastric cancer cell biology and tumorigenesis, and for accelerating the development of novel therapeutic targets.
Polarization speckle imaging as a potential technique for in vivo skin cancer detection.
Tchvialeva, Lioudmila; Dhadwal, Gurbir; Lui, Harvey; Kalia, Sunil; Zeng, Haishan; McLean, David I; Lee, Tim K
2013-06-01
Skin cancer is the most common cancer in the Western world. In order to accurately detect the disease, especially malignant melanoma-the most fatal form of skin cancer-at an early stage when the prognosis is excellent, there is an urgent need to develop noninvasive early detection methods. We believe that polarization speckle patterns, defined as a spatial distribution of depolarization ratio of traditional speckle patterns, can be an important tool for skin cancer detection. To demonstrate our technique, we conduct a large in vivo clinical study of 214 skin lesions, and show that statistical moments of the polarization speckle pattern could differentiate different types of skin lesions, including three common types of skin cancers, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and two benign lesions, melanocytic nevus and seborrheic keratoses. In particular, the fourth order moment achieves better or similar sensitivity and specificity than many well-known and accepted optical techniques used to differentiate melanoma and seborrheic keratosis.
The use and effectiveness of complementary and alternative medicine for pain in sickle cell anemia.
Majumdar, Suvankar; Thompson, Wendy; Ahmad, Naveed; Gordon, Catherine; Addison, Clifton
2013-11-01
Pain is the clinical hallmark for sickle cell disease (SCD). The objective of this study was to survey the extent and effectiveness of complementary and alternative medicine (CAM) use for pain control among adults with SCD. Of a total of 227 African-American adults with SCD, 208 (92%) admitted to using at least one type of CAM. The three most common types of CAM were prayer (61%), relaxation technique (44%), and massage (35%). Multiple logistic regression showed that marital status was associated with use of relaxation techniques (p = 0.044), and age between 18 and 24 years and at least a high school level of education were associated with use of prayer (p = 0.008 and p = 0.004 respectively). Our study showed that CAM use is common among adult patients with SCD. Further well designed prospective studies are needed to help develop best practices that emphasize an optimized balance of conventional and evidence based CAM therapies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Signaling networks in joint development
Salva, Joanna E.; Merrill, Amy E.
2016-01-01
Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints unite adjacent bones through either a hyaline cartilage or fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. PMID:27859991
Polarization speckle imaging as a potential technique for in vivo skin cancer detection
NASA Astrophysics Data System (ADS)
Tchvialeva, Lioudmila; Dhadwal, Gurbir; Lui, Harvey; Kalia, Sunil; Zeng, Haishan; McLean, David I.; Lee, Tim K.
2013-06-01
Skin cancer is the most common cancer in the Western world. In order to accurately detect the disease, especially malignant melanoma-the most fatal form of skin cancer-at an early stage when the prognosis is excellent, there is an urgent need to develop noninvasive early detection methods. We believe that polarization speckle patterns, defined as a spatial distribution of depolarization ratio of traditional speckle patterns, can be an important tool for skin cancer detection. To demonstrate our technique, we conduct a large in vivo clinical study of 214 skin lesions, and show that statistical moments of the polarization speckle pattern could differentiate different types of skin lesions, including three common types of skin cancers, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, and two benign lesions, melanocytic nevus and seborrheic keratoses. In particular, the fourth order moment achieves better or similar sensitivity and specificity than many well-known and accepted optical techniques used to differentiate melanoma and seborrheic keratosis.
The Roles and Regulation of Polycomb Complexes in Neural Development
Corley, Matthew; Kroll, Kristen L.
2014-01-01
In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb Repressive Complexes, effectively limiting the expression of fate-determining genes. Here, we review distinct roles that the Polycomb Repressive Complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of how Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation, facilitating the efficient generation of specific neuronal and glial cell types for many biological applications. PMID:25367430
SEM Imaging for Observation of Morphological Changes in Anaemic Human Blood Cell
NASA Astrophysics Data System (ADS)
Datta, Triparna; Roychoudhury, Uttam
Scanning Electron Microscopy (SEM) is utilized to elucidate the morphological changes in anaemic human red blood cells. Haemoglobin concentration in human blood is in the range of 11.5-13.5 g/dl in healthy adults. Haemoglobin concentration in anaemic red blood is below the lower limit of normal range. Sometimes, the nature of the abnormal shape of the blood cell determines the cause of anaemia. Normally, there occurs a variation in the diameter of the red blood cell (RBC) for different types of anaemia. Increased variation of size in blood cell is termed anisocytosis (a type of anaemia) (Mohan H, Text book of pathology, New Delhi). In case of anisocytosis, diameter of cells larger than normal cell is observed. The classification of anaemia by the size of blood cell is logical, i.e. common morphological abnormality of human blood cell (Davidson's principle and practice of medicine, Publisher Churchill Livingstone, London). Cells are studied under ZEISS SEM with different magnification and applied potential of kV range. Thus the diameters of RBCs in SEM have been compared with RBCs photographed with light microscope. Anaemic cells are observed overlapped with each other with increasing diameter.
Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad
2012-01-01
Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease
Hickson, LaTonya J.; Eirin, Alfonso; Lerman, Lilach O.
2016-01-01
Chronic kidney disease (CKD) is a global healthcare burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including pro-angiogenic, anti-inflammatory, and anti-fibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. PMID:26924058
Challenges and opportunities for stem cell therapy in patients with chronic kidney disease.
Hickson, LaTonya J; Eirin, Alfonso; Lerman, Lilach O
2016-04-01
Chronic kidney disease (CKD) is a global health care burden affecting billions of individuals worldwide. The kidney has limited regenerative capacity from chronic insults, and for the most common causes of CKD, no effective treatment exists to prevent progression to end-stage kidney failure. Therefore, novel interventions, such as regenerative cell-based therapies, need to be developed for CKD. Given the risk of allosensitization, autologous transplantation of cells to boost regenerative potential is preferred. Therefore, verification of cell function and vitality in CKD patients is imperative. Two cell types have been most commonly applied in regenerative medicine. Endothelial progenitor cells contribute to neovasculogenesis primarily through paracrine angiogenic activity and partly by differentiation into mature endothelial cells in situ. Mesenchymal stem cells also exert paracrine effects, including proangiogenic, anti-inflammatory, and antifibrotic activity. However, in CKD, multiple factors may contribute to reduced cell function, including older age, coexisting cardiovascular disease, diabetes, chronic inflammatory states, and uremia, which may limit the effectiveness of an autologous cell-based therapy approach. This Review highlights current knowledge on stem and progenitor cell function and vitality, aspects of the uremic milieu that may serve as a barrier to therapy, and novel methods to improve stem cell function for potential transplantation. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
Moon, Sunghyun; Kim, Kangho; Kim, Youngjo; Heo, Junseok; Lee, Jaejin
2016-07-20
There has been much interest in developing a thin-film solar cell because it is lightweight and flexible. The GaAs thin-film solar cell is a top contender in the thin-film solar cell market in that it has a high power conversion efficiency (PCE) compared to that of other thin-film solar cells. There are two common structures for the GaAs solar cell: n (emitter)-on-p (base) and p-on-n. The former performs better due to its high collection efficiency because the electron diffusion length of the p-type base region is much longer than the hole diffusion length of the n-type base region. However, it has been limited to fabricate highly efficient n-on-p single-junction GaAs thin film solar cell on a flexible substrate due to technical obstacles. We investigated a simple and fast epitaxial lift-off (ELO) method that uses a stress originating from a Cr/Au bilayer on a 125-μm-thick flexible substrate. A metal combination of AuBe/Pt/Au is employed as a new p-type ohmic contact with which an n-on-p single-junction GaAs thin-film solar cell on flexible substrate was successfully fabricated. The PCE of the fabricated single-junction GaAs thin-film solar cells reached 22.08% under air mass 1.5 global illumination.
Changing Trends of Types of Skin Cancer in Iran.
Razi, Saeid; Rafiemanesh, Hosein; Ghoncheh, Mahshid; Khani, Yousef; Salehiniya, Hamid
2015-01-01
Skin cancer is the most common type of cancer worldwide. It has an increasing trend. This study investigated the epidemiological trend and morphological changes in skin cancer in Iran. This study was done using existing data, extracted from the National Cancer Registry System and the Disease Management Center of Iranian Ministry of Health between 2003 and 2008. Data on epidemiologic trend was analyzed using Joinpoint software package. The incidence of skin cancer is increasing in Iran, and more in men than women. There was a declining trend for basal cell carcinoma. Basal squamous cell carcinoma and melanoma had an increasing trend. The increase of skin cancer was related to squamous cell carcinoma. Our findings indicated that the increase of skin cancer was attributed to squamous cell carcinoma. It is necessary to be planning for the control and prevention of this disease as a priority for health policy makers.
Litzov, Ivan; Brabec, Christoph J.
2013-01-01
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423
Litzov, Ivan; Brabec, Christoph J
2013-12-10
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.
[The role of endothelial cells and endothelial precursor cells in angiogenesis].
Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz
2006-01-01
Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.
Basal Cell Carcinoma Arising within Seborrheic Keratosis
Yurdakul, Cüneyt; Güçer, Hasan; Sehitoglu, Ibrahim
2014-01-01
Malignant tumour development within a seborrheic keratosis (SK) is extremely rare. Though the most commonly developed malignant tumour is the basal cell carcinoma (BCC), other tumour types have also been reported in literature. Herein, we will report a superficial type BCC case developed within SK localized in hairy skin of a 78-year-old female patient. In immunohistochemical evaluation, diffuse positive staining with CK19 and over-expression in p53 compared with non-neoplastic areas were determined in neoplastic basaloid islands. It is always not easy to differentiate especially superficial type BCC cases from non-neoplastic epithelium of SK with histopathological evaluation. As far as this reason we believe that in difficult differentiation of these 2 lesions, in order to show the differentiation in basal epithelium, immunohistochemical evaluation may be helpful. PMID:25177624
Prevention of type 2 Diabetes Mellitus: Potential of pharmacological agents.
Samson, Susan L; Garber, Alan J
2016-06-01
People with impaired glucose tolerance or impaired fasting glucose, or "pre-diabetes", are at high risk for progression to type 2 diabetes, as are those with metabolic syndrome or a history of gestational diabetes. Both glucose-lowering and anti-obesity pharmacotherapies have been studied to determine if the onset of type 2 diabetes can be delayed or prevented. Here we review the available data in the field. The most common theme is the reduction in insulin resistance, such as with weight loss, decreasing demands on the beta cell to improve insulin secretion and prolong its function. Overall, therapies which decrease diabetes incidence in high-risk populations delay the onset of diabetes but do not correct the underlying beta cell defect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Choi, Hyung Jin; Cho, Young Min; Moon, Min Kyong; Choi, Hye Hun; Shin, Hyoung Doo; Jang, Hak Chul; Kim, Seong Yeon; Lee, Hong Kyu; Park, Kyong Soo
2006-11-01
Ghrelin is known to play a role in glucose metabolism and in beta-cell function. There are controversies regarding the role of ghrelin polymorphisms in diabetes and diabetes-related phenotypes. The objective of this study was to examine polymorphisms of the ghrelin gene in a Korean cohort and investigate associations between them and susceptibility to type 2 diabetes and its related phenotypes. The ghrelin gene was sequenced to identify polymorphisms in 24 DNA samples. Common variants were then genotyped in 760 type 2 diabetic patients and 641 nondiabetic subjects. Genetic associations with diabetes-related phenotypes were also analyzed. Nine polymorphisms were identified, and four common polymorphisms [g.-1500C>G, g.-1062G > C, g.-994C > T, g.+408C > A (Leu72Met)] were genotyped in a larger study. The genotype distributions of these four common polymorphisms in type 2 diabetes patients were similar to those of normal nondiabetic controls. However, these four common polymorphisms were variably associated with several diabetes-related phenotypes, such as high-density lipoprotein (HDL) cholesterol, fasting plasma glucose, and homeostasis model assessment of insulin resistance. In particular, subjects harboring g.-1062C were associated with a lower serum HDL cholesterol level after adjusting for other variables (P = 0.0004 or 0.01 after Bonferroni correction for 24 tests). The aforementioned four common polymorphisms in the ghrelin gene were not found to be significantly associated with susceptibility to type 2 diabetes mellitus in the Korean population. However, the common polymorphism g.-1062G > C in the promoter region of the ghrelin gene was found to be significantly associated with serum HDL cholesterol levels.
Weng, Chia-Jui; Wu, Cheng-Feng; Huang, Hsiao-Wen; Ho, Chi-Tang; Yen, Gow-Chin
2010-11-01
Hepatocellular carcinoma is the most common type of liver cancer and is highly metastatic. Metastasis is considered to be the major cause of death in cancer patients. Ginger is a natural dietary rhizome with anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. The aims of this study were to evaluate the anti-invasion activity of 6-shogaol and 6-gingerol, two compounds found in ginger, on hepatoma cells. The migratory and invasive abilities of phorbol 12-myristate 13-acetate (PMA)-treated HepG2 and PMA-untreated Hep3B cells were both reduced in a dose-dependent manner by treatment with 6-shogaol and 6-gingerol. Upon incubation of PMA-treated HepG2 cells and PMA-untreated Hep3B cells with 6-shogaol and 6-gingerol, matrix metalloproteinase (MMP)-9 activity decreased, whereas the expression of tissue inhibitor metalloproteinase protein (TIMP)-1 increased in both cell types. Additionally, urokinase-type plasminogen activator activity was dose-dependently decreased in Hep3B cells after incubation with 6-shogaol for 24 h. Analysis with semi-quantitative reverse transcription-PCR showed that the regulation of MMP-9 by 6-shogaol and 6-gingerol and the regulation of TIMP-1 by 6-shogaol in Hep3B cells may on the transcriptional level. These results suggest that 6-shogaol and 6-gingerol might both exert anti-invasive activity against hepatoma cells through regulation of MMP-9 and TIMP-1 and that 6-shogaol could further regulate urokinase-type plasminogen activity.
Cell structure and function in the visual cortex of the cat
Kelly, J. P.; Van Essen, D. C.
1974-01-01
1. The organization of the visual cortex was studied with a technique that allows one to determine the physiology and morphology of individual cells. Micro-electrodes filled with the fluorescent dye Procion yellow were used to record intracellularly from cells in area 17 of the cat. The visual receptive field of each neurone was classified as simple, complex, or hypercomplex, and the cell was then stained by the iontophoretic injection of dye. 2. Fifty neurones were successfully examined in this way, and their structural features were compared to the varieties of cell types seen in Golgi preparations of area 17. The majority of simple units were stellate cells, whereas the majority of complex and hypercomplex units were pyramidal cells. Several neurones belonged to less common morphological types, such as double bouquet cells. Simple cells were concentrated in layer IV, hypercomplex cells in layer II + III, and complex cells in layers II + III, V and VI. 3. Electrically inexcitable cells that had high resting potentials but no impulse activity were stained and identified as glial cells. Glial cells responded to visual stimuli with slow graded depolarizations, and many of them showed a preference for a stimulus orientation similar to the optimal orientation for adjacent neurones. 4. The results show that there is a clear, but not absolute correlation between the major structural and functional classes of cells in the visual cortex. This approach, linking the physiological properties of a single cell to a given morphological type, will help in furthering our understanding of the cerebral cortex. ImagesPlate 4Plate 1Plate 2Plate 3 PMID:4136579
Rare case of unifocal Langerhans cell histiocytosis in four-month-old child.
Martins, Marco Antonio T; Gheno, José Luis N; Sant'Ana Filho, Manoel; Pinto, Décio S; Tenis, Carlos Alberto; Martins, Manoela D
2011-07-01
Langerhans cell histiocytosis (LCH) comprises a group of disorders, the common feature of which is Langerhans cell proliferation. The clinical presentation is highly varied. The severity and prognosis of the disease are dependent on the type and extent of organ involvement. This paper reports a rare case of a four-month-old white male with unifocal LCH limited exclusively to the mandible, discussing the diagnosis, radiographic and immunohistochemical aspects, treatment and monitoring multidisciplinary of the case. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Imaging Tumor Cell Movement In Vivo
Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E.
2013-01-01
This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging them. Additional protocols for labeling macrophages, blood vessel imaging, and image analysis are also included. PMID:23456602
High Risk But Not Always Lethal: The Effect of Cirrhosis on Thermally Injured Adults
2013-01-01
115 Cirrhosis is the final common pathway on the spec- trum of many types of chronic liver injury.1 In the United States, the two most common causes ... cirrhosis are bridg- ing fibrous septa, the formation of regenerative parenchymal nodules, and disruption to the entire hepatic architecture.3 This...extensive liver fibrosis is caused by the activation of the hepatic stellate cell, and this loss of hepatocellular function can lead to jaundice, edema
Wang, Wen; Li, Hao; Zhao, Zheng; Wang, Haoyuan; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Cao, Yong; Zhao, Jizong
2018-04-01
Abdominal aortic aneurysms (AAAs) and intracranial saccular aneurysms (IAs) are the most common types of aneurysms. This study was to investigate the common pathogenesis shared between these two kinds of aneurysms. We collected 12 IAs samples and 12 control arteries from the Beijing Tiantan Hospital and performed microarray analysis. In addition, we utilized the microarray datasets of IAs and AAAs from the Gene Expression Omnibus (GEO), in combination with our microarray results, to generate messenger RNA expression profiles for both AAAs and IAs in our study. Functional exploration and protein-protein interaction (PPI) analysis were performed. A total of 727 common genes were differentially expressed (404 was upregulated; 323 was downregulated) for both AAAs and IAs. The GO and pathway analyses showed that the common dysregulated genes were mainly enriched in vascular smooth muscle contraction, muscle contraction, immune response, defense response, cell activation, IL-6 signaling and chemokine signaling pathways, etc. The further protein-protein analysis identified 35 hub nodes, including TNF, IL6, MAPK13, and CCL5. These hub node genes were enriched in inflammatory response, positive regulation of IL-6 production, chemokine signaling pathway, and T/B cell receptor signaling pathway. Our study will gain new insight into the molecular mechanisms for the pathogenesis of both types of aneurysms and provide new therapeutic targets for the patients harboring AAAs and IAs.
NIFLUMIC ACID BLOCKS NATIVE AND RECOMBINANT T-TYPE CHANNELS
Balderas, E; Arteaga-Tlecuitl, R; Rivera, M; Gomora, JC; Darszon, A
2012-01-01
Voltage-dependent calcium channels are widely distributed in animal cells, including spermatozoa. Calcium is fundamental in many sperm functions such as: motility, capacitation and the acrosome reaction, all essential for fertilization. Pharmacological evidence has suggested T-type calcium channels participate in the acrosome reaction. Niflumic acid (NA), a non-steroidal anti-inflammatory drug commonly used as chloride channel blocker, blocks T-currents in mouse spermatogenic cells and Cl− channels in testicular sperm. Here we examine the mechanism of NA blockade and explore if it can be used to separate the contribution of different CaV3 members previously detected in these cells. Electrophysiological patch-clamp recordings were performed in isolated mouse spermatogenic cells and in HEK cells heterologously expressing CaV3 channels. NA blocks mouse spermatogenic cell T-type currents with an IC50 of 73.5 µM, without major voltage-dependent effects. The NA blockade is more potent in the open and in the inactivated state than in the closed state of the T-type channels. Interestingly, we found that heterologously expressed CaV3.1 and CaV3.3 channels were more sensitive to NA than CaV3.2 channels, and this drug substantially slowed the recovery from inactivation of the three isoforms. Molecular docking modeling of drug-channel binding predicts that NA binds preferentially to the extracellular face of CaV3.1 channels. The biophysical characteristics of mouse spermatogenic cell T-type currents more closely resemble those from heterologously expressed CaV3.1 channels, including their sensitivity to NA. As CaV3.1 null mice maintain their spermatogenic cell T-currents, it is likely that a novel CaV3.2 isoform is responsible for them. PMID:21898399
Rhalem, A; Sahibi, H; Kazanji, M; Laurent, F; Berrag, B; Péry, P
1993-01-01
The transfer of 5 x 10(7) or 10(8) spleen cells from E tenella-infected chickens to virgin animals after 12-20-h in vitro stimulation with whole sporozoite homogenates confers significant protection to recipients. The oocyst contents of ceca on d 7 post-infection with 20,000 E tenella oocysts were (1.33 +/- 1.10) x 10(6) in chickens which received 5 x 10(7) immune cells after 20-h in vitro stimulation and (4.64 +/- 2.85) x 10(6) in chickens receiving 5 x 10(7) stimulated cells from normal chickens (85% protection). Adoptive transfer by spleen cells revealed an asymmetric cross-protection between E tenella and E acervulina. Spleen cells from E tenella immune chickens protected only against a subsequent infection with the same parasite, while spleen cells from E acervulina immune chickens protected against infection with E acervulina (78%) but also against infection with E tenella (68% protection). The common antigen permits better stimulation, but common surface sporozoite antigens purified from E tenella sporozoites via anti-E acervulina biliary antibodies are capable of stimulating both types of cells without, however, changing their properties.
Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana
2014-01-01
Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker. PMID:25926909
Horta, Mariana; Cunha, Teresa Margarida; Marques, Rita Canas; Félix, Ana
2014-11-01
Here we describe the case of a 19-year-old woman with a poorly differentiated ovarian Sertoli-Leydig cell tumor and an elevated serum alpha-fetoprotein level. The patient presented with diffuse abdominal pain and bloating. Physical examination, ultrasound, and magnetic resonance imaging revealed a right ovarian tumor that was histopathologically diagnosed as a poorly differentiated Sertoli-Leydig cell tumor with heterologous elements. Her alpha-fetoprotein serum level was undetectable after tumor resection. Sertoli-Leydig cell tumors are rare sex cord-stromal tumors that account for 0.5% of all ovarian neoplasms. Sertoli-Leydig cell tumors tend to be unilateral and occur in women under 30 years of age. Although they are the most common virilizing tumor of the ovary, about 60% are endocrine-inactive tumors. Elevated serum levels of alpha-fetoprotein are rarely associated with Sertoli-Leydig cell tumors, with only approximately 30 such cases previously reported in the literature. The differential diagnosis should include common alpha-fetoprotein-producing ovarian entities such as germ cell tumors, as well as other non-germ cell tumors that have been rarely reported to produce this tumor marker.
Vitamin D and diabetes mellitus: an update 2013.
Griz, Luiz Henrique Maciel; Bandeira, Francisco; Gabbay, Mônica Andrade Lima; Dib, Sergio Atala; Carvalho, Eduardo Freese de
2014-02-01
Vitamin D deficiency and diabetes mellitus are two common conditions and they are widely prevalent across all ages, races, geographical regions, and socioeconomic conditions. Epidemiologic studies have shown association of vitamin D deficiency and increased risk of chronic diseases, such as cancer, cardiovascular disease, type 2 diabetes, and autoimmune diseases, such as multiple sclerosis and type 1 diabetes mellitus. The identification of 1,25(OH)2D receptors and 1-α-hydroxilase expression in pancreatic beta cells, in cells of the immune system, and in various others tissues, besides the bone system support the role of vitamin D in the pathogenesis of type 2 diabetes. Observational studies have revealed an association between 25(OH) D deficiency and the prevalence of type 1 diabetes in children and adolescents. This review will focus on the concept of vitamin D deficiency, its prevalence, and its role in the pathogenesis and risk of diabetes mellitus and cardiovascular diseases.
Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J
2015-08-21
Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as "apoptosis-necrosis continuum." To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J.
2015-01-01
Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as “apoptosis-necrosis continuum.” To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death. PMID:26124276
Using Pre-Assessment and In-Class Questions to Change Student Understanding of Molecular Movements †
Shi, J.; Knight, Jennifer K.; Chun, Hyonho; Guild, Nancy A.; Martin, Jennifer M.
2017-01-01
Understanding how different types of molecules move through cell membranes is a fundamental part of cell biology. To identify and address student misconceptions surrounding molecular movement through cell membranes, we surveyed student understanding on this topic using pre-class questions, in-class clicker questions, and subsequent exam questions in a large introductory biology course. Common misconceptions identified in student responses to the pre-class assessment questions were used to generate distractors for clicker questions. Two-tier diagnostic clicker questions were used to probe incoming common student misconceptions (first tier) and their reasoning (second tier). Two subsequent lectures with assessment clicker questions were used to help students construct a new framework to understand molecular movement through cell membranes. Comparison of pre-assessment and post-assessment (exam) performance showed dramatic improvement in students’ understanding of molecular movement: student answers to exam questions were 74.6% correct with correct reasoning while only 1.3% of the student answers were correct with correct reasoning on the pre-class assessment. Our results show that students’ conceptual understanding of molecular movement through cell membranes progressively increases through discussions of a series of clicker questions and suggest that this clicker-based teaching strategy was highly effective in correcting common student misconceptions on this topic. PMID:28512521
Zhang, Lingxin; Yang, Chen; Lewis, James S; El-Mofty, Samir K; Chernock, Rebecca D
2017-08-01
Follicular dendritic cell sarcoma is a rare mesenchymal neoplasm that most commonly occurs in cervical lymph nodes. It has histologic and clinical overlap with the much more common p16-positive human papillomavirus (HPV)-related squamous cell carcinoma of the oropharynx, which characteristically has nonkeratinizing morphology and often presents as an isolated neck mass. Not surprisingly, follicular dendritic cell sarcomas are commonly misdiagnosed as squamous cell carcinoma. Immunohistochemistry is helpful in separating the 2 entities. Follicular dendritic cell sarcoma expresses dendritic markers such as CD21 and CD23 and is almost always cytokeratin negative. However, in many cases of HPV-related oropharyngeal carcinoma, only p16 immunohistochemistry as a prognostic and surrogate marker for HPV is performed. p16 expression in follicular dendritic cell sarcoma has not been characterized. Here, we investigate the expression of p16 in follicular dendritic cell sarcoma and correlate it with retinoblastoma protein expression. A pilot study of dendritic marker expression in HPV-related oropharyngeal squamous cell carcinoma was also performed. We found that 4 of 8 sarcomas expressed p16 with strong and diffuse staining in 2 cases. In 2 of the 4 cases, p16 expression corresponded to loss of retinoblastoma protein expression. Dendritic marker expression (CD21 and CD23) was not found in HPV-related oropharyngeal squamous cell carcinomas. As such, positive p16 immunohistochemistry cannot be used as supportive evidence for the diagnosis of squamous cell carcinoma as strong and diffuse p16 expression may also occur in follicular dendritic cell sarcoma. Cytokeratins and dendritic markers are critical in separating the two tumor types. Copyright © 2017 Elsevier Inc. All rights reserved.
Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, Christopher D., E-mail: codonn3@uic.ed; Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; Kovacs, Maria, E-mail: marcsika101@yahoo.co
2010-02-20
Heparan sulfate (HS) proteoglycans are commonly exploited by multiple viruses for initial attachment to host cells. Herpes simplex virus-1 (HSV-1) is unique because it can use HS for both attachment and penetration, provided specific binding sites for HSV-1 envelope glycoprotein gD are present. The interaction with gD is mediated by specific HS moieties or 3-O sulfated HS (3-OS HS), which are generated by all but one of the seven isoforms of 3-O sulfotransferases (3-OSTs). Here we demonstrate that several common experimental cell lines express unique sets of 3-OST isoforms. While the isoforms 3-OST-3, -5 and -6 were most commonly expressed,more » isoforms 3-OST-2 and -4 were undetectable in the cell lines examined. Since most cell lines expressed multiple 3-OST isoforms, we addressed the significance of 3-OS HS in HSV-1 entry by down-regulating 2-O-sulfation, a prerequisite for 3-OS HS formation, by knocking down 2-OST expression by RNA interference (RNAi). 2-OST knockdown was verified by reverse-transcriptase PCR and Western blot analysis, while 3-OS HS knockdown was verified by immunofluorescence. Cells showed a significant decrease in viral entry, suggesting an important role for 3-OS HS. Implicating 3-OS HS further, cells knocked down for 2-OST expression also demonstrated decreased cell-cell fusion when cocultivated with effector cells transfected with HSV-1 glycoproteins. Our findings suggest that 3-OS HS may play an important role in HSV-1 entry into many different cell lines.« less
Ajore, Ram; Raiser, David; McConkey, Marie; Jöud, Magnus; Boidol, Bernd; Mar, Brenton; Saksena, Gordon; Weinstock, David M; Armstrong, Scott; Ellis, Steven R; Ebert, Benjamin L; Nilsson, Björn
2017-04-01
Heterozygous inactivating mutations in ribosomal protein genes (RPGs) are associated with hematopoietic and developmental abnormalities, activation of p53, and altered risk of cancer in humans and model organisms. Here we performed a large-scale analysis of cancer genome data to examine the frequency and selective pressure of RPG lesions across human cancers. We found that hemizygous RPG deletions are common, occurring in about 43% of 10,744 cancer specimens and cell lines. Consistent with p53-dependent negative selection, such lesions are underrepresented in TP53 -intact tumors ( P ≪ 10 -10 ), and shRNA-mediated knockdown of RPGs activated p53 in TP53 -wild-type cells. In contrast, we did not see negative selection of RPG deletions in TP53 -mutant tumors. RPGs are conserved with respect to homozygous deletions, and shRNA screening data from 174 cell lines demonstrate that further suppression of hemizygously deleted RPGs inhibits cell growth. Our results establish RPG haploinsufficiency as a strikingly common vulnerability of human cancers that associates with TP53 mutations and could be targetable therapeutically. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Villar-Cheda, Begoña; Costa-Besada, Maria A; Valenzuela, Rita; Perez-Costas, Emma; Melendez-Ferro, Miguel; Labandeira-Garcia, Jose L
2017-01-01
The ‘classical’ renin–angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells. PMID:28880266
An estimation of the number of cells in the human body.
Bianconi, Eva; Piovesan, Allison; Facchin, Federica; Beraudi, Alina; Casadei, Raffaella; Frabetti, Flavia; Vitale, Lorenza; Pelleri, Maria Chiara; Tassani, Simone; Piva, Francesco; Perez-Amodio, Soledad; Strippoli, Pierluigi; Canaider, Silvia
2013-01-01
All living organisms are made of individual and identifiable cells, whose number, together with their size and type, ultimately defines the structure and functions of an organism. While the total cell number of lower organisms is often known, it has not yet been defined in higher organisms. In particular, the reported total cell number of a human being ranges between 10(12) and 10(16) and it is widely mentioned without a proper reference. To study and discuss the theoretical issue of the total number of cells that compose the standard human adult organism. A systematic calculation of the total cell number of the whole human body and of the single organs was carried out using bibliographical and/or mathematical approaches. A current estimation of human total cell number calculated for a variety of organs and cell types is presented. These partial data correspond to a total number of 3.72 × 10(13). Knowing the total cell number of the human body as well as of individual organs is important from a cultural, biological, medical and comparative modelling point of view. The presented cell count could be a starting point for a common effort to complete the total calculation.
Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.
Kis, Viktor; Barti, Benjámin; Lippai, Mónika; Sass, Miklós
2015-01-01
Lipid droplets (LDs) are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp), as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.
Emergence and patterning of the five cell types of the Zea mays anther locule
Kelliher, Timothy; Walbot, Virginia
2011-01-01
One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis, however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium the somatic tissues consist of four concentric cell layers which surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over thirty days of wild type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2′-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain. PMID:21070762
From iPSC towards cardiac tissue-a road under construction.
Peischard, Stefan; Piccini, Ilaria; Strutz-Seebohm, Nathalie; Greber, Boris; Seebohm, Guiscard
2017-10-01
The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.
IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.
Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V
2012-09-01
Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.
Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations
Denning, Warren; Das, Suvendu; Guo, Siqi; Xu, Jun; Kappes, John C.; Hel, Zdenek
2012-01-01
Lentiviral vectors are widely used as effective gene-delivery vehicles. Optimization of the conditions for efficient lentiviral transduction is of a high importance for a variety of research applications. Presence of positively-charged polycations reduces the electrostatic repulsion forces between a negatively-charged cell and an approaching enveloped lentiviral particle resulting in an increase in the transduction efficiency. Although a variety of polycations are commonly used to enhance the transduction with retroviruses, the relative effect of various types of polycations on the efficiency of transduction and on the potential bias in the determination of titer of lentiviral vectors is not fully understood. Here we present data suggesting that DEAE-dextran provides superior results in enhancing lentiviral transduction of most tested cell lines and primary cell cultures. Specific type and source of serum affects the efficiency of transduction of target cell populations. Non-specific binding of enhanced green fluorescent protein (EGFP)-containing membrane aggregates in the presence of DEAE-dextran does not significantly affect the determination of the titer of EGFP-expressing lentiviral vectors. In conclusion, various polycations and types of sera should be tested when optimizing lentiviral transduction of target cell populations. PMID:22407723
Optimization of the transductional efficiency of lentiviral vectors: effect of sera and polycations.
Denning, Warren; Das, Suvendu; Guo, Siqi; Xu, Jun; Kappes, John C; Hel, Zdenek
2013-03-01
Lentiviral vectors are widely used as effective gene-delivery vehicles. Optimization of the conditions for efficient lentiviral transduction is of a high importance for a variety of research applications. Presence of positively charged polycations reduces the electrostatic repulsion forces between a negatively charged cell and an approaching enveloped lentiviral particle resulting in an increase in the transduction efficiency. Although a variety of polycations are commonly used to enhance the transduction with retroviruses, the relative effect of various types of polycations on the efficiency of transduction and on the potential bias in the determination of titer of lentiviral vectors is not fully understood. Here, we present data suggesting that DEAE-dextran provides superior results in enhancing lentiviral transduction of most tested cell lines and primary cell cultures. Specific type and source of serum affects the efficiency of transduction of target cell populations. Non-specific binding of enhanced green fluorescent protein (EGFP)-containing membrane aggregates in the presence of DEAE-dextran does not significantly affect the determination of the titer of EGFP-expressing lentiviral vectors. In conclusion, various polycations and types of sera should be tested when optimizing lentiviral transduction of target cell populations.
Wu, Chenggang; Al Mamun, Abu Amar Mohamed; Luong, Truc Thanh; Hu, Bo; Gu, Jianhua; Lee, Ju Huck; D'Amore, Melissa; Das, Asis; Ton-That, Hung
2018-04-24
Fusobacterium nucleatum is a key member of the human oral biofilm. It is also implicated in preterm birth and colorectal cancer. To facilitate basic studies of fusobacterial virulence, we describe here a versatile transposon mutagenesis procedure and a pilot screen for mutants defective in biofilm formation. Out of 10 independent biofilm-defective mutants isolated, the affected genes included the homologs of the Escherichia coli cell division proteins FtsX and EnvC, the electron transport protein RnfA, and four proteins with unknown functions. Next, a facile new gene deletion method demonstrated that nonpolar, in-frame deletion of ftsX or envC produces viable bacteria that are highly filamentous due to defective cell division. Transmission electron and cryo-electron microscopy revealed that the Δ ftsX and Δ envC mutant cells remain joined with apparent constriction, and scanning electron microscopy (EM) uncovered a smooth cell surface without the microfolds present in wild-type cells. FtsX and EnvC proteins interact with each other as well as a common set of interacting partners, many with unknown function. Last, biofilm development is altered when cell division is blocked by MinC overproduction; however, unlike the phenotypes of Δ ftsX and Δ envC mutants, a weakly adherent biofilm is formed, and the wild-type rugged cell surface is maintained. Therefore, FtsX and EnvC may perform novel functions in Fusobacterium cell biology. This is the first report of an unbiased approach to uncover genetic determinants of fusobacterial biofilm development. It points to an intriguing link among cytokinesis, cell surface dynamics, and biofilm formation, whose molecular underpinnings remain to be elucidated. IMPORTANCE Little is known about the virulence mechanisms and associated factors in F. nucleatum , due mainly to the lack of convenient genetic tools for this organism. We employed two efficient genetic strategies to identify F. nucleatum biofilm-defective mutants, revealing FtsX and EnvC among seven biofilm-associated factors. Electron microscopy established cell division defects of the Δ ftsX and Δ envC mutants, accompanied with a smooth cell surface, unlike the microfold, rugged appearance of wild-type bacteria. Proteomic studies demonstrated that FtsX and EnvC interact with each other as well as a set of common and unique interacting proteins, many with unknown functions. Importantly, blocking cell division by MinC overproduction led to formation of a weakly adherent biofilm, without alteration of the wild-type cell surface. Thus, this work links cell division and surface dynamics to biofilm development and lays a foundation for future genetic and biochemical investigations of basic cellular processes in this clinically significant pathogen. Copyright © 2018 Wu et al.
Functional diversity of human vaginal APC subsets in directing T cell responses
Duluc, Dorothée; Gannevat, Julien; Anguiano, Esperanza; Zurawski, Sandra; Carley, Michael; Boreham, Muriel; Stecher, Jack; Dullaers, Melissa; Banchereau, Jacques; Oh, SangKon
2012-01-01
Human vaginal mucosa is the major entry site of sexually transmitted pathogens and thus has long been attractive as a site for mounting mucosal immunity. It is also known as a tolerogenic microenvironment. Here, we demonstrate that immune responses in the vagina are orchestrated by the functional diversity of four major antigen-presenting cell (APC) subsets. Langerhans cells (LCs) and CD14− lamina propria (LP)-DCs polarize CD4+ and CD8+ T cells toward Th2, whereas CD14+ LP-DCs and macrophages polarize CD4+ T cells toward Th1. Both LCs and CD14− LP-DCs are potent inducers of Th22. Due to their functional specialties and the different expression levels of pattern-recognition receptors on the APC subsets, microbial products do not bias them to elicit common types of immune responses (Th1 or Th2). To evoke desired types of adaptive immune responses in the human vagina, antigens may need to be targeted to proper APC subsets with right adjuvants. PMID:23131784
Ning, Gang; Bijron, Jonathan G.; Yamamoto, Yusuke; Wang, Xia; Howitt, Brooke E.; Herfs, Michael; Yang, Eric; Hong, Yue; Cornille, Maxence; Wu, Lingyan; Hanamornroongruang, Suchanan; McKeon, Frank D.; Crum, Christopher P.; Xian, Wa
2014-01-01
The oviducts contain high grade serous cancer (HGSC) precursors (serous tubal intraepithelial neoplasia or STINs), which are γ-H2AXp- and TP53 mutation-positive. Although they express wild type p53, secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer; moreover both STINs and SCOUTs share a loss of PAX2 expression (PAX2n). We evaluated PAX2 expression in proliferating adult and embryonic oviductal cells, normal mucosa, SCOUTs, Walthard cell nests (WCNs), STINs and HGSCs, and the expression of genes chosen empirically or from SCOUT expression arrays. Clones generated in vitro from embryonic gynecologic tract and adult fallopian tube were Krt7p/PAX2n/EZH2p and underwent ciliated (PAX2n/EZH2n/FOXJ1p) and basal (Krt7n/EZH2n/Krt5p) differentiation. Similarly non-ciliated cells in normal mucosa were PAX2p but became PAX2n in multilayered epithelium undergoing ciliated or basal (Walthard cell nests or WCN) cell differentiation. PAX2n SCOUTs fell into two groups; Type I were secretory or secretory/ciliated with a “tubal” phenotype and were ALDH1n and β-cateninmem (membraneous only). Type II displayed a columnar to pseudostratified (endometrioid) phenotype, with an EZH2p, ALDH1p, β-cateninnc (nuclear and cytoplasmic), stathminp, LEF1p, RCN1p and RUNX2p expression signature. STINs and HGSCs shared the Type I immunophenotype of PAX2n, ALDH1n, β-cateninmem, but highly expressed EZH2p, LEF1p, RCN1p, and stathminp. This study, for the first time, links PAX2n with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumor suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2), calcium binding (RCN1) and oncogenesis (stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target for early prevention. PMID:25130537
Larval body patterning and apical organs are conserved in animal evolution
2014-01-01
Background Planktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles. These relationships have remained enigmatic due to the scarcity of comparative molecular data. Results To compare apical organs and larval body patterning, we have studied regionalization of the episphere, the upper hemisphere of the trochophore larva of the marine annelid Platynereis dumerilii. We examined the spatial distribution of transcription factors and of Wnt signaling components previously implicated in anterior neural development. Pharmacological activation of Wnt signaling with Gsk3β antagonists abolishes expression of apical markers, consistent with a repressive role of Wnt signaling in the specification of apical tissue. We refer to this Wnt-sensitive, six3- and foxq2-expressing part of the episphere as the ‘apical plate’. We also unraveled a molecular signature of the apical organ - devoid of six3 but expressing foxj, irx, nkx3 and hox - that is shared with other marine phyla including cnidarians. Finally, we characterized the cell types that form part of the apical organ by profiling by image registration, which allows parallel expression profiling of multiple cells. Besides the hox-expressing apical tuft cells, this revealed the presence of putative light- and mechanosensory as well as multiple peptidergic cell types that we compared to apical organ cell types of other animal phyla. Conclusions The similar formation of a six3+, foxq2+ apical plate, sensitive to Wnt activity and with an apical tuft in its six3-free center, is most parsimoniously explained by evolutionary conservation. We propose that a simple apical organ - comprising an apical tuft and a basal plexus innervated by sensory-neurosecretory apical plate cells - was present in the last common ancestors of cnidarians and bilaterians. One of its ancient functions would have been the control of metamorphosis. Various types of apical plate cells would then have subsequently been added to the apical organ in the divergent bilaterian lineages. Our findings support an ancient and common origin of primary ciliated larvae. PMID:24476105
Molecular analysis of mixed endometrial carcinomas shows clonality in most cases
Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han
2016-01-01
Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180
Lertanekawattana, S; Wichatrong, T; Chaisari, K; Uchikawa, R; Arizono, N
2005-01-01
To determine whether common helminth infections could modify the intestinal immunopathological status of the host, the expression in the human duodenal mucosa of cytokines, eosinophil- and mast-cell-specific molecules and monosaccharide transporters of the glucose-transporter (GLUT) family was explored. The 31 subjects were all patients at the gastro-intestinal disease unit of Nongkhai Hospital, Thailand. Four of the 10 patients who presented with eosinophilia (> or = 6.0% of their leucocytes were eosinophils), and five of the other 21 patients, had intestinal infections with helminths when they presented or within the previous 3 months. Studies based on semi-quantitative, reverse-transcriptase PCR revealed that the interleukin-5/interferon-gamma ratio was significantly higher in the noneosinophilic, helminth-infected patients than in the non-eosinophilic, uninfected patients, whereas the IgE receptor type I (Fc epsilon RI)/mast-cell tryptase ratio was significantly higher in the eosinophilic, helminth-infected patients than in the eosinophilic, uninfected patients. Expression of Charcot-Leyden-crystal protein, GLUT-1 and GLUT-5, however, showed no significant inter-group differences. Principal-components analysis of the data on eosinophils, interleukin-5, interferon-gamma, Fc epsilon RI and mast-cell tryptase revealed that one principal component could discriminate the patients who had helminth infection from the non-eosinophilic, uninfected patients, but not from the eosinophilic, uninfected patients. These results indicate that, whatever the intestinal pathology, patients infected with common intestinal helminths tend to develop a mucosal immunological response of the Th2 type.
Pathological aspects of so called "hilar cholangiocarcinoma"
Castellano-Megías, Víctor M; Ibarrola-de Andrés, Carolina; Colina-Ruizdelgado, Francisco
2013-01-01
Cholangiocarcinoma (CC) arising from the large intrahepatic bile ducts and extrahepatic hilar bile ducts share clinicopathological features and have been called hilar and perihilar CC as a group. However, “hilar and perihilar CC” are also used to refer exclusively to the intrahepatic hilar type CC or, more commonly, the extrahepatic hilar CC. Grossly, a major distinction can be made between papillary and non-papillary tumors. Histologically, most hilar CCs are well to moderately differentiated conventional type (biliary) carcinomas. Immunohistochemically, CK7, CK20, CEA and MUC1 are normally expressed, being MUC2 positive in less than 50% of cases. Two main premalignant lesions are known: biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the biliary tract (IPNB). IPNB includes the lesions previously named biliary papillomatosis and papillary carcinoma. A series of 29 resected hilar CC from our archives is reviewed. Most (82.8%) were conventional type adenocarcinomas, mostly well to moderately differentiated, although with a broad morphological spectrum; three cases exhibited a poorly differentiated cell component resembling signet ring cells. IPNB was observed in 5 (17.2%), four of them with an associated invasive carcinoma. A clear cell type carcinoma, an adenosquamous carcinoma and two gastric foveolar type carcinomas were observed. PMID:23919110
Pathological aspects of so called "hilar cholangiocarcinoma".
Castellano-Megías, Víctor M; Ibarrola-de Andrés, Carolina; Colina-Ruizdelgado, Francisco
2013-07-15
Cholangiocarcinoma (CC) arising from the large intrahepatic bile ducts and extrahepatic hilar bile ducts share clinicopathological features and have been called hilar and perihilar CC as a group. However, "hilar and perihilar CC" are also used to refer exclusively to the intrahepatic hilar type CC or, more commonly, the extrahepatic hilar CC. Grossly, a major distinction can be made between papillary and non-papillary tumors. Histologically, most hilar CCs are well to moderately differentiated conventional type (biliary) carcinomas. Immunohistochemically, CK7, CK20, CEA and MUC1 are normally expressed, being MUC2 positive in less than 50% of cases. Two main premalignant lesions are known: biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the biliary tract (IPNB). IPNB includes the lesions previously named biliary papillomatosis and papillary carcinoma. A series of 29 resected hilar CC from our archives is reviewed. Most (82.8%) were conventional type adenocarcinomas, mostly well to moderately differentiated, although with a broad morphological spectrum; three cases exhibited a poorly differentiated cell component resembling signet ring cells. IPNB was observed in 5 (17.2%), four of them with an associated invasive carcinoma. A clear cell type carcinoma, an adenosquamous carcinoma and two gastric foveolar type carcinomas were observed.
Herpes simplex virus type 1-derived recombinant and amplicon vectors.
Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L
2011-01-01
Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.
Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao
2012-01-01
Background Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as “replication domains”, and recent findings indicate that replication timing is under developmental and cell type-specific regulation. Methodology/Principal Findings We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Conclusions Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome. PMID:22879953
Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao
2012-01-01
Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as "replication domains", and recent findings indicate that replication timing is under developmental and cell type-specific regulation. We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome.
Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping
2017-09-01
Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.
Sánchez-Vega, Francisco; Gotea, Valer; Margolin, Gennady; Elnitski, Laura
2015-01-01
The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking. We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define CIMP+ and CIMP- samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate accurate pan-cancer separation of the 12 CIMP+/- subpopulations, based on their average levels of methylation. Tumor samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing consistent associations with CIMP+/- status include genes involved in DNA repair, chromatin remodeling genes, and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall survival in several cancer types, highlight the importance of the CIMP+/- designation for individual tumor evaluation and personalized medicine. We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which protects against known biases that have hindered classic methods previously used to define CIMP. The results that we provide can be used to refine existing molecular subtypes of cancer into more homogeneously behaving subgroups, potentially leading to more uniform responses in clinical trials.
Viral infections in transplant recipients.
Razonable, R R; Eid, A J
2009-12-01
Solid organ and hematopoietic stem cell transplant recipients are uniquely predisposed to develop clinical illness, often with increased severity, due to a variety of common and opportunistic viruses. Patients may acquire viral infections from the donor (donor-derived infections), from reactivation of endogenous latent virus, or from the community. Herpes viruses, most notably cytomegalovirus and Epstein Barr virus, are the most common among opportunistic viral pathogens that cause infection after solid organ and hematopoietic stem cell transplantation. The polyoma BK virus causes opportunistic clinical syndromes predominantly in kidney and allogeneic hematopoietic stem cell transplant recipients. The agents of viral hepatitis B and C present unique challenges particularly among liver transplant recipients. Respiratory viral illnesses due to influenza, respiratory syncytial virus, and parainfluenza virus may affect all types of transplant recipients, although severe clinical disease is observed more commonly among lung and allogeneic hematopoietic stem cell transplant recipients. Less common viral infections affecting transplant recipients include those caused by adenoviruses, parvovirus B19, and West Nile virus. Treatment for viruses with proven effective antiviral drug therapies should be complemented by reduction in the degree of immunosuppression. For others with no proven antiviral drugs for therapy, reduction in the degree of immunosuppression remains as the sole effective strategy for management. Prevention of viral infections is therefore of utmost importance, and this may be accomplished through vaccination, antiviral strategies, and aggressive infection control measures.
Usher syndrome: molecular links of pathogenesis, proteins and pathways.
Kremer, Hannie; van Wijk, Erwin; Märker, Tina; Wolfrum, Uwe; Roepman, Ronald
2006-10-15
Usher syndrome is the most common form of deaf-blindness. The syndrome is both clinically and genetically heterogeneous, and to date, eight causative genes have been identified. The proteins encoded by these genes are part of a dynamic protein complex that is present in hair cells of the inner ear and in photoreceptor cells of the retina. The localization of the Usher proteins and the phenotype in animal models indicate that the Usher protein complex is essential in the morphogenesis of the stereocilia bundle in hair cells and in the calycal processes of photoreceptor cells. In addition, the Usher proteins are important in the synaptic processes of both cell types. The association of other proteins with the complex indicates functional links to a number of basic cell-biological processes. Prominently present is the connection to the dynamics of the actin cytoskeleton, involved in cellular morphology, cell polarity and cell-cell interactions. The Usher protein complex can also be linked to the cadherins/catenins in the adherens junction-associated protein complexes, suggesting a role in cell polarity and tissue organization. A third link can be established to the integrin transmembrane signaling network. The Usher interactome, as outlined in this review, participates in pathways common in inner ear and retina that are disrupted in the Usher syndrome.
2012-01-01
Background Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure. Methods We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells. Results Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested. Conclusions We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific. PMID:22631225
Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid
2017-01-01
The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.
Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru
2017-06-01
Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
IG20/MADD Plays a Critical Role in Glucose-Induced Insulin Secretion
Li, Liang-cheng; Wang, Yong; Carr, Ryan; Haddad, Christine Samir; Li, Ze; Qian, Lixia; Oberholzer, Jose; Maker, Ajay V.; Wang, Qian; Prabhakar, Bellur S.
2014-01-01
Pancreatic β-cell dysfunction is a common feature of type 2 diabetes. Earlier, we had cloned IG20 cDNA from a human insulinoma and had shown that IG20/MADD can encode six different splice isoforms that are differentially expressed and have unique functions, but its role in β-cell function was unexplored. To investigate the role of IG20/MADD in β-cell function, we generated conditional knockout (KMA1ko) mice. Deletion of IG20/MADD in β-cells resulted in hyperglycemia and glucose intolerance associated with reduced and delayed glucose-induced insulin production. KMA1ko β-cells were able to process insulin normally but had increased insulin accumulation and showed a severe defect in glucose-induced insulin release. These findings indicated that IG20/MADD plays a critical role in glucose-induced insulin release from β-cells and that its functional disruption can cause type 2 diabetes. The clinical relevance of these findings is highlighted by recent reports of very strong association of the rs7944584 single nucleotide polymorphism (SNP) of IG20/MADD with fasting hyperglycemia/diabetes. Thus, IG20/MADD could be a therapeutic target for type 2 diabetes, particularly in those with the rs7944584 SNP. PMID:24379354
Clark, A M; Garland, K K; Russell, L D
2000-12-01
Testes from adult and prepubertal mice lacking the Desert hedgehog (DHH:) gene were examined in order to describe further the role of Dhh in spermatogenesis because, in a previous report, DHH:-null male mice were shown to be sterile. Dhh is a signaling molecule expressed by Sertoli cells. Its receptor, patched (Ptc), has been previously localized to Leydig cells and is herein described as being localized also to peritubular cells. Two phenotypes of the mice were observed: masculinized (7.5% of DHH:-null males) and feminized (92.5%), both of which displayed abnormal peritubular tissue and severely restricted spermatogenesis. Testes from adult feminized animals lacked adult-type Leydig cells and displayed numerous undifferentiated fibroblastic cells in the interstitium that produced abundant collagen. The basal lamina, normally present between the myoid cells and Sertoli cells, was focally absent. We speculate that the abnormal basal lamina contributed to other characteristics, such as extracordal gonocytes, apolar Sertoli cells, and anastomotic seminiferous tubules. The two DHH:-null phenotypes described have common peritubular cell defects that may be indicative of the essential role of peritubular cells in development of tubular morphology, the differentiation of Leydig cells, and the ultimate support of spermatogenesis.
Distribution of protein kinase C isoforms in the cat retina.
Fyk-Kolodziej, Bozena; Cai, Wenhui; Pourcho, Roberta G
2002-01-01
Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCalpha was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCbetaI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCbetaI was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCepsilon and PKCzeta was found in rod bipolar cells; PKCepsilon was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCzeta was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCbetaII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCbetaII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.
DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki
2011-01-01
Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.
De Vos, R; De Wolf-Peeters, C; Facchetti, F; Desmet, V
1990-01-01
Plasmacytoid monocytes, the so-called plasmacytoid T cells, were originally described in rare cases of lymphadenitis. Recent immunohistochemical studies have demonstrated their monocytic origin. Plasmacytoid monocytes have in common with epithelioid cells and multinucleated giant cells the expression of several antigens; they also occur in close topographic association with epithelioid and multinucleated giant cells in epithelioid cell granulomas. On the basis of these data it has been suggested that plasmacytoid monocytes may transform into epithelioid cells. The present ultrastructural and immunoelectron microscopic study of epithelioid cell granulomas provides further arguments in favor of this hypothesis. Moreover, the existence of a transitional cell type with characteristics of plasmacytoid monocytes and epithelioid cells is documented. Subplasmalemmal linear densities present on focal areas of the plasma membrane of the main cell components of granulomas are also discussed.
Topologically associating domains are stable units of replication-timing regulation.
Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L; Wang, Yanli; Hansen, R Scott; Canfield, Theresa K; Thurman, Robert E; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H; Snyder, Michael P; Stamatoyannopoulos, John A; Taylor, James; Hardison, Ross C; Kahveci, Tamer; Ren, Bing; Gilbert, David M
2014-11-20
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Caroccia, Brasilina; Prisco, Selene; Seccia, Teresa Maria; Piazza, Maria; Maiolino, Giuseppe; Rossi, Gian Paolo
2017-12-01
Aldosterone-producing adenoma (APA), a major subtype of primary hyperaldosteronism, the main curable cause of human endocrine hypertension, involves somatic mutations in the potassium channel Kir3.4 ( KCNJ5 ) in 30% to 70% of cases, typically the more florid phenotypes. Because KCNJ5 mutated channels were reported to be specifically sensitive to inhibition by macrolide antibiotics, which concentration dependently blunts aldosterone production in HAC15 transfected with the G151R and L168R mutated channel, we herein tested the effect of clarithromycin on aldosterone synthesis and secretion in a pure population of aldosterone-secreting cells obtained by immunoseparation (CD56 + cells) from APA tissues with/without the 2 most common KCNJ5 mutations. From a large cohort of patients with an unambiguous APA diagnosis, we recruited those who were wild type (n=3) or had G151R (n=2) and L168R (n=2) mutations. We found that clarithromycin concentration dependently lowered CYP11B2 gene expression (by 60%) and aldosterone secretion (by 70%; P <0.001 for both) in CD56 + cells isolated ex vivo from KCNJ5 mutated APAs, although it was ineffective in CD56 + cells from wild-type APAs. By proving the principle that the oversecretion of aldosterone can be specifically blunted in APA cells ex vivo with G151R and L168R mutations, these results provide compelling evidence of the possibility of specifically correcting aldosterone excess in patients with APA carrying the 2 most common KCNJ5 somatic mutations. © 2017 American Heart Association, Inc.
Reutter, K; Boudriot, F; Witt, M
2000-01-01
Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist. PMID:11079403
Reutter, K; Boudriot, F; Witt, M
2000-09-29
Taste buds are the peripheral sensory organs of the gustatory system. They occur in all taxa of vertebrates and are pear-shaped intra-epithelial organs of about 80 microm height and 50 microm width. Taste buds mainly consist of specialized epithelial cells, which synapse at their bases and therefore are secondary sensory cells. Taste buds have been described based on studies of teleostean species, but it turned out that the ultrastructure of teleostean taste buds may differ between distinct systematic groups and that this description is not representative of those taste buds in other main taxa of fishes, such as selachians, holosteans and dipnoans. Furthermore, it is not known how variable the micromorphologies of non-teleostean taste buds are. For this reason the taste buds of two holosteans, Lepisosteus oculatus and Amia calva, were investigated and compared. While in both species the taste buds are of the same shapes and sizes, the cellular components of their sensory epithelia differ: in Lepisosteus taste buds comprise two types of elongated light cells and one type of dark cells. In contrast, Amia taste buds contain only one type of light, but two types of dark elongated cells. Afferent synapses are common in the buds of both species, efferent synapses occur only in Lepisosteus taste buds. These differences show that even in the small group of holostean fishes the taste buds are differently organized. Consequently, a representative type of fish taste buds does not exist.
Ştefănescu, Eugen Horaţiu; Balica, Nicolae Constantin; Horhat, Ioana Delia; Baderca, Flavia; Pricop, Marius Octavian; Urechescu, Horaţiu Constantin; Lighezan, Daniel Florin; Sarău, Cristian Andrei
2017-01-01
Extranodal natural killer (NK)÷T-cell lymphomas, nasal type are rare and aggressive non-Hodgkin's lymphomas (NHLs), with unknown etiology, rapid evolution and poor prognosis, due to midline tissue destruction and rapid spreading of the tumor. These lymphomas occur commonly in the nasal cavity and upper aerodigestive tract, but can also present involvement of the skin, salivary gland, and testis. We describe a case of nasal type T-cell NHL involving the nasal cavity and determining right thigh cutaneous metastases in a 47-year-old female associated with liver comorbidities and occupational dust exposure. The patient was suffering from chronic type C hepatitis and cirrhosis and she has been occupationally exposed to metal dust for 10 years. Clinical and laboratory investigations were performed. Essential for diagnosis and treatment protocol was nasal endoscopy and biopsy of nasal and cutaneous lesions. The histopathological exam was consistent with NK÷T-cell lymphoma. Patient was diagnosed in Ann Arbor stage IVA. Chemotherapy was initiated with Bleomycin, Etoposide, Adriamycin (Doxorubicin), Cyclophosphamide, Oncovin (Vincristine), Procarbazine and Prednisone, but it was stopped after two cycles because of the liver condition. The treatment plan also included radiotherapy, but soon after initiation, the patient died because of a liver complication. We present a rare case of extranodal NK÷T-cell lymphoma, nasal type, with cutaneous involvement to which the treatment could not be properly applied because of the late diagnosis and liver comorbidities.
Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases.
Charles, Joël P; Fuchs, Jeannette; Hefter, Mirjam; Vischedyk, Jonas B; Kleint, Maximilian; Vogiatzi, Fotini; Schäfer, Jonas A; Nist, Andrea; Timofeev, Oleg; Wanzel, Michael; Stiewe, Thorsten
2014-06-03
Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours--the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy.
Cell identity regulators link development and stress responses in the Arabidopsis root.
Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N
2011-10-18
Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes. Copyright © 2011 Elsevier Inc. All rights reserved.
Monitoring the dynamics of clonal tumour evolution in vivo using secreted luciferases
Charles, Joël P.; Fuchs, Jeannette; Hefter, Mirjam; Vischedyk, Jonas B.; Kleint, Maximilian; Vogiatzi, Fotini; Schäfer, Jonas A.; Nist, Andrea; Timofeev, Oleg; Wanzel, Michael; Stiewe, Thorsten
2014-01-01
Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours—the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy. PMID:24889111
The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...
USDA-ARS?s Scientific Manuscript database
Cancer cells tend to utilize aerobic glycolysis even under normoxic conditions, commonly called the "Warburg Effect." Aerobic glycolysis often directly correlates with malignancy, but its purpose, if any, in metastasis remains unclear. When wild-type KISS1 metastasis suppressor is expressed, aerob...
Ammonia toxicity: from head to toe?
Dasarathy, Srinivasan; Mookerjee, Rajeshwar P; Rackayova, Veronika; Rangroo Thrane, Vinita; Vairappan, Balasubramaniyan; Ott, Peter; Rose, Christopher F
2017-04-01
Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw
1990-01-01
Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.
Hindy, Ahmed; Farahmand, Farzam; Tabatabaei, Fahimeh Sadat
2017-07-01
There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords "titanium dental implants," "laser," "biocompatibility," and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.
Multiplex Detection of KRAS Mutations Using Passive Droplet Fusion.
Pekin, Deniz; Taly, Valerie
2017-01-01
We describe a droplet microfluidics method to screen for multiple mutations of a same oncogene in a single experiment using passive droplet fusion. Genomic DNA from H1573 cell-line was screened for the presence of the six common mutations of the KRAS oncogene as well as wild-type sequences with a detection efficiency of 98 %. Furthermore, the mutant allelic fraction of the cell-line was also assessed correctly showing that the technique is quantitative.
Kelava, Iva; Reillo, Isabel; Murayama, Ayako Y.; Kalinka, Alex T.; Stenzel, Denise; Tomancak, Pavel; Matsuzaki, Fumio; Lebrand, Cécile; Sasaki, Erika; Schwamborn, Jens C.; Okano, Hideyuki; Borrell, Víctor
2012-01-01
Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type. PMID:22114084
Behavior of HepG2 liver cancer cells using microfluidic-microscopy: a preliminary study
NASA Astrophysics Data System (ADS)
Karamahmutoglu, Hande; ćetin, Metin; Yaǧcı, Tamer; Elitaş, Meltem
2018-02-01
Hepatocellular carcinoma is one of the most common types of liver cancer causing death all over the world. Although early-stage liver cancer can sometimes be treated with partial hepatectomy, liver transplantation, ablation, and embolization, sorafenib treatment is the only approved systemic therapy for advanced HCC. The aim of this research is to develop tools and methods to understand the individuality of hepatocellular carcinoma. Microfluidic cell-culture platform has been developed to observe behavior of single-cells; fluorescence microscopy has been implemented to investigate phenotypic changes of cells. Our preliminary data proved high-level heterogeneity of hepatocellular carcinoma while verifying limited growth of liver cancer cell lines on the silicon wafer.
Podhorecka, Monika; Macheta, Arkadiusz; Bozko, Maria; Bozko, Andrzej; Malek, Nisar P; Bozko, Przemyslaw
2016-01-01
Chronic lymphocytic leukemia (CLL), a clonal expansion of B CD5+ cells, is the most common type of adult leukemia in western countries. The accumulation of neoplastic B-cells is primarily caused by prolonged life-span of these cells due to deregulation of apoptosis, and only marginally due to a higher proliferation rate. In spite of numerous reports characterizing particular mechanisms of B-CLL cell apoptosis, still relatively little is known about the complex regulation of this process. Therefore, more detailed research is required to understand the complicated mechanisms and regulatory processes of apoptosis in neoplastic B lymphocytes.
High Occurrence of Non-Clear Cell Renal Cell Carcinoma in Oman.
Venniyoor, Ajit; Essam, Abdul Monem; Ramadhan, Fatma; Keswani, Heeranand; Mehdi, Itrat; Bahrani, Bassim Al
2016-01-01
It is conventionally accepted that renal cell carcinoma (RCC) occurs in older patients and the clear cell type is the most common histology. However, ethnic variations exist and this study was carried out to determine the epidemiological pattern of RCC in Oman. Ninety RCC patients who presented to a tertiary care center in the Sultanate of Oman from 2010 to 2014 were studied. The main findings were that the median age of presentation was low, more patients presented with localized stage, and there was a higher incidence of non-clear (especially papillary) histology. Data from other Gulf countries and possible reasons for the different profile are discussed.
Squamous cell carcinoma – similarities and differences among anatomical sites
Yan, Wusheng; Wistuba, Ignacio I; Emmert-Buck, Michael R; Erickson, Heidi S
2011-01-01
Squamous cell carcinoma (SCC) is an epithelial malignancy involving many anatomical sites and is the most common cancer capable of metastatic spread. Development of early diagnosis methods and novel therapeutics are important for prevention and mortality reduction. In this effort, numerous molecular alterations have been described in SCCs. SCCs share many phenotypic and molecular characteristics, but they have not been extensively compared. This article reviews SCC as a disease, including: epidemiology, pathology, risk factors, molecular characteristics, prognostic markers, targeted therapy, and a new approach to studying SCCs. Through this comparison, several themes are apparent. For example, HPV infection is a common risk factor among the four major SCCs (NMSC, HNSC, ESCC, and NSCLC) and molecular abnormalities in cell-cycle regulation and signal transduction predominate. These data reveal that the molecular insights, new markers, and drug targets discovered in individual SCCs may shed light on this type of cancer as a whole. PMID:21938273
Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.
Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R
2013-11-01
Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.
Antitumor activity of Type I and Type III interferons in BNL hepatoma model
Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew
2015-01-01
Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-α) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-α toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-λ) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-λ treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-α and IFN-λ in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-λ (BNL.IFN-λ cells) or IFN-α (BNL.IFN-α cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-λ and BNL.IFN-α cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-λ. There was also a marked NK cell infiltration in IFN-λ producing tumors. In addition, IFN-λ and, to a lesser extent, IFN-α enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-λ, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD1 1c+ and mPDCA+ dendritic cells responded directly to IFN-λ. The antitumor activities of IFN-λ against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-λ to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer. PMID:20217081
Antitumor activity of type I and type III interferons in BNL hepatoma model.
Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew; Lasfar, Ahmed; Kotenko, Sergei V
2010-07-01
Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-alpha) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-alpha toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-lambda) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-lambda treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-alpha and IFN-lambda in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-lambda (BNL.IFN-lambda cells) or IFN-alpha (BNL.IFN-alpha cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-lambda and BNL.IFN-alpha cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-lambda. There was also a marked NK cell infiltration in IFN-lambda producing tumors. In addition, IFN-lambda and, to a lesser extent, IFN-alpha enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-gamma, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD11c+ and mPDCA+ dendritic cells responded directly to IFN-lambda. The antitumor activities of IFN-lambda against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-lambda to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer.
Oxidative Stress in Diabetes: Implications for Vascular and Other Complications
Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine
2013-01-01
In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients. PMID:24177571
Morin, Timothy R; Ghassem-Zadeh, Sean A; Lee, Juliet
2014-08-15
Retraction is a major rate-limiting step in cell motility, particularly in slow moving cell types that form large stable adhesions. Myosin II dependent contractile forces are thought to facilitate detachment by physically pulling up the rear edge. However, retraction can occur in the absence of myosin II activity in cell types that form small labile adhesions. To investigate the role of contractile force generation in retraction, we performed traction force microscopy during the movement of fish epithelial keratocytes. By correlating changes in local traction stress at the rear with the area retracted, we identified four distinct modes of retraction. "Recoil" retractions are preceded by a rise in local traction stress, while rear edge is temporarily stuck, followed by a sharp drop in traction stress upon detachment. This retraction type was most common in cells generating high average traction stress. In "pull" type retractions local traction stress and area retracted increase concomitantly. This was the predominant type of retraction in keratocytes and was observed mostly in cells generating low average traction stress. "Continuous" type retractions occur without any detectable change in traction stress, and are seen in cells generating low average traction stress. In contrast, to many other cell types, "release" type retractions occur in keratocytes following a decrease in local traction stress. Our identification of distinct modes of retraction suggests that contractile forces may play different roles in detachment that are related to rear adhesion strength. To determine how the regulation of contractility via MLCK or Rho kinase contributes to the mechanics of detachment, inhibitors were used to block or augment these pathways. Modulation of MLCK activity led to the most rapid change in local traction stress suggesting its importance in regulating attachment strength. Surprisingly, Rho kinase was not required for detachment, but was essential for localizing retraction to the rear. We suggest that in keratocytes MLCK and Rho kinase play distinct, complementary roles in the respective temporal and spatial control of rear detachment that is essential for maintaining rapid motility. Copyright © 2014 Elsevier Inc. All rights reserved.
Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C
2007-01-01
The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.
Pashaei, Elnaz; Guzel, Esra; Ozgurses, Mete Emir; Demirel, Goksun; Aydin, Nizamettin; Ozen, Mustafa
MicroRNAs, which are small regulatory RNAs, post-transcriptionally regulate gene expression by binding 3'-UTR of their mRNA targets. Their deregulation has been shown to cause increased proliferation, migration, invasion, and apoptosis. miR-145, an important tumor supressor microRNA, has shown to be downregulated in many cancer types and has crucial roles in tumor initiation, progression, metastasis, invasion, recurrence, and chemo-radioresistance. Our aim is to investigate potential common target genes of miR-145, and to help understanding the underlying molecular pathways of tumor pathogenesis in association with those common target genes. Eight published microarray datasets, where targets of mir-145 were investigated in cell lines upon mir-145 over expression, were included into this study for meta-analysis. Inter group variabilities were assessed by box-plot analysis. Microarray datasets were analyzed using GEOquery package in Bioconducter 3.2 with R version 3.2.2 and two-way Hierarchical Clustering was used for gene expression data analysis. Meta-analysis of different GEO datasets showed that UNG, FUCA2, DERA, GMFB, TF, and SNX2 were commonly downregulated genes, whereas MYL9 and TAGLN were found to be commonly upregulated upon mir-145 over expression in prostate, breast, esophageal, bladder cancer, and head and neck squamous cell carcinoma. Biological process, molecular function, and pathway analysis of these potential targets of mir-145 through functional enrichments in PPI network demonstrated that those genes are significantly involved in telomere maintenance, DNA binding and repair mechanisms. As a conclusion, our results indicated that mir-145, through targeting its common potential targets, may significantly contribute to tumor pathogenesis in distinct cancer types and might serve as an important target for cancer therapy.
Liu, Ming-Hao; Li, Ya; Han, Lu; Zhang, Yao-Yuan; Wang, Di; Wang, Zhi-Hao; Zhou, Hui-Min; Song, Ming; Li, Yi-Hui; Tang, Meng-Xiong; Zhang, Wei; Zhong, Ming
2017-07-01
Atherosclerosis (AS) is the most common and serious complication of type 2 diabetes mellitus (T2DM) and is accelerated via chronic systemic inflammation rather than hyperglycemia. Adipose tissue is the major source of systemic inflammation in abnormal metabolic state. Pro-inflammatory CD4 + T cells play pivotal role in promoting adipose inflammation. Adipose-derived stem cells (ADSCs) for fat regeneration have potent ability of immunosuppression and restricting CD4 + T cells as well. Whether T2DM ADSCs are impaired in antagonizing CD4 + T cell proliferation and polarization remains unclear. We constructed type 2 diabetic ApoE -/- mouse models and tested infiltration and subgroups of CD4 + T cell in stromal-vascular fraction (SVF) in vivo. Normal/T2DM ADSCs and normal splenocytes with or without CD4 sorting were separated and co-cultured at different scales ex vivo. Immune phenotypes of pro- and anti-inflammation of ADSCs were also investigated. Flow cytometry (FCM) and ELISA were applied in the experiments above. CD4 + T cells performed a more pro-inflammatory phenotype in adipose tissue in T2DM ApoE -/- mice in vivo. Restriction to CD4 + T cell proliferation and polarization was manifested obviously weakened after co-cultured with T2DM ADSCs ex vivo. No obvious distinctions were found in morphology and growth type of both ADSCs. However, T2DM ADSCs acquired a pro-inflammatory immune phenotype, with secreting less PGE2 and expressing higher MHC-II and co-stimulatory molecules (CD40, CD80). Normal ADSCs could also obtain the phenotypic change after cultured with T2DM SVF supernatant. CD4 + T cell infiltration and pro-inflammatory polarization exist in adipose tissue in type 2 diabetic ApoE -/- mice. T2DM ADSCs had impaired function in restricting CD4 + T lymphocyte proliferation and pro-inflammatory polarization due to immune phenotypic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hashemikhabir, Seyedsasan; Budak, Gungor; Janga, Sarath Chandra
2016-01-01
Survival analysis in biomedical sciences is generally performed by correlating the levels of cellular components with patients’ clinical features as a common practice in prognostic biomarker discovery. While the common and primary focus of such analysis in cancer genomics so far has been to identify the potential prognostic genes, alternative splicing – a posttranscriptional regulatory mechanism that affects the functional form of a protein due to inclusion or exclusion of individual exons giving rise to alternative protein products, has increasingly gained attention due to the prevalence of splicing aberrations in cancer transcriptomes. Hence, uncovering the potential prognostic exons can not only help in rationally designing exon-specific therapeutics but also increase specificity toward more personalized treatment options. To address this gap and to provide a platform for rational identification of prognostic exons from cancer transcriptomes, we developed ExSurv (https://exsurv.soic.iupui.edu), a web-based platform for predicting the survival contribution of all annotated exons in the human genome using RNA sequencing-based expression profiles for cancer samples from four cancer types available from The Cancer Genome Atlas. ExSurv enables users to search for a gene of interest and shows survival probabilities for all the exons associated with a gene and found to be significant at the chosen threshold. ExSurv also includes raw expression values across the cancer cohort as well as the survival plots for prognostic exons. Our analysis of the resulting prognostic exons across four cancer types revealed that most of the survival-associated exons are unique to a cancer type with few processes such as cell adhesion, carboxylic, fatty acid metabolism, and regulation of T-cell signaling common across cancer types, possibly suggesting significant differences in the posttranscriptional regulatory pathways contributing to prognosis. PMID:27528797
Muthumalage, Thivanka; Prinz, Melanie; Ansah, Kwadwo O; Gerloff, Janice; Sundar, Isaac K; Rahman, Irfan
2017-01-01
Background: The respiratory health effects of inhalation exposure to e-cigarette flavoring chemicals are not well understood. We focused our study on the immuno-toxicological and the oxidative stress effects by these e-cigarette flavoring chemicals on two types of human monocytic cell lines, Mono Mac 6 (MM6) and U937. The potential to cause oxidative stress by these flavoring chemicals was assessed by measuring the production of reactive oxygen species (ROS). We hypothesized that the flavoring chemicals used in e-juices/e-liquids induce an inflammatory response, cellular toxicity, and ROS production. Methods: Two monocytic cell types, MM6 and U937 were exposed to commonly used e-cigarette flavoring chemicals; diacetyl, cinnamaldehyde, acetoin, pentanedione, o-vanillin, maltol and coumarin at different doses between 10 and 1,000 μM. Cell viability and the concentrations of the secreted inflammatory cytokine interleukin 8 (IL-8) were measured in the conditioned media. Cell-free ROS produced by these commonly used flavoring chemicals were also measured using a 2',7'dichlorofluorescein diacetate probe. These DCF fluorescence data were expressed as hydrogen peroxide (H 2 O 2 ) equivalents. Cytotoxicity due to the exposure to selected e-liquids was assessed by cell viability and the IL-8 inflammatory cytokine response in the conditioned media. Results: Treatment of the cells with flavoring chemicals and flavored e-liquid without nicotine caused cytotoxicity dose-dependently. The exposed monocytic cells secreted interleukin 8 (IL-8) chemokine in a dose-dependent manner compared to the unexposed cell groups depicting a biologically significant inflammatory response. The measurement of cell-free ROS by the flavoring chemicals and e-liquids showed significantly increased levels of H 2 O 2 equivalents in a dose-dependent manner compared to the control reagents. Mixing a variety of flavors resulted in greater cytotoxicity and cell-free ROS levels compared to the treatments with individual flavors, suggesting that mixing of multiple flavors of e-liquids are more harmful to the users. Conclusions: Our data suggest that the flavorings used in e-juices can trigger an inflammatory response in monocytes, mediated by ROS production, providing insights into potential pulmonary toxicity and tissue damage in e-cigarette users.
Muthumalage, Thivanka; Prinz, Melanie; Ansah, Kwadwo O.; Gerloff, Janice; Sundar, Isaac K.; Rahman, Irfan
2018-01-01
Background: The respiratory health effects of inhalation exposure to e-cigarette flavoring chemicals are not well understood. We focused our study on the immuno-toxicological and the oxidative stress effects by these e-cigarette flavoring chemicals on two types of human monocytic cell lines, Mono Mac 6 (MM6) and U937. The potential to cause oxidative stress by these flavoring chemicals was assessed by measuring the production of reactive oxygen species (ROS). We hypothesized that the flavoring chemicals used in e-juices/e-liquids induce an inflammatory response, cellular toxicity, and ROS production. Methods: Two monocytic cell types, MM6 and U937 were exposed to commonly used e-cigarette flavoring chemicals; diacetyl, cinnamaldehyde, acetoin, pentanedione, o-vanillin, maltol and coumarin at different doses between 10 and 1,000 μM. Cell viability and the concentrations of the secreted inflammatory cytokine interleukin 8 (IL-8) were measured in the conditioned media. Cell-free ROS produced by these commonly used flavoring chemicals were also measured using a 2′,7′dichlorofluorescein diacetate probe. These DCF fluorescence data were expressed as hydrogen peroxide (H2O2) equivalents. Cytotoxicity due to the exposure to selected e-liquids was assessed by cell viability and the IL-8 inflammatory cytokine response in the conditioned media. Results: Treatment of the cells with flavoring chemicals and flavored e-liquid without nicotine caused cytotoxicity dose-dependently. The exposed monocytic cells secreted interleukin 8 (IL-8) chemokine in a dose-dependent manner compared to the unexposed cell groups depicting a biologically significant inflammatory response. The measurement of cell-free ROS by the flavoring chemicals and e-liquids showed significantly increased levels of H2O2 equivalents in a dose-dependent manner compared to the control reagents. Mixing a variety of flavors resulted in greater cytotoxicity and cell-free ROS levels compared to the treatments with individual flavors, suggesting that mixing of multiple flavors of e-liquids are more harmful to the users. Conclusions: Our data suggest that the flavorings used in e-juices can trigger an inflammatory response in monocytes, mediated by ROS production, providing insights into potential pulmonary toxicity and tissue damage in e-cigarette users. PMID:29375399
Kwaaitaal, M A C J; de Vries, S C; Russinova, E
2005-10-01
Arabidopsis thaliana plants expressing AtSERK1 fused to yellow-fluorescent protein were generated. Fluorescence was detected predominantly at the cell periphery, most likely the plasma membrane, of cells in ovules, embryo sacs, anthers, and embryos and in seedlings. The AtSERK1 protein was detected in diverse cell types including the epidermis and the vascular bundles. In some cells, fluorescent receptors were seen in small vesicle-like compartments. After application of the fungal toxin Brefeldin A, the fluorescent receptors were rapidly internalized in the root meristem and root vascular tissue. We conclude that the AtSERK1 receptor functions in a common signalling pathway employed in both sporophytic and gametophytic cells.
The Innate Lymphoid Cell Precursor.
Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert
2016-05-20
The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.
Testicular Cancer and Cryptorchidism
Ferguson, Lydia; Agoulnik, Alexander I.
2013-01-01
The failure of testicular descent or cryptorchidism is the most common defect in newborn boys. The descent of the testes during development is controlled by insulin-like 3 peptide and steroid hormones produced in testicular Leydig cells, as well as by various genetic and developmental factors. While in some cases the association with genetic abnormalities and environmental causes has been shown, the etiology of cryptorchidism remains uncertain. Cryptorchidism is an established risk factor for infertility and testicular germ cell tumors (TGCT). Experimental animal models suggest a causative role for an abnormal testicular position on the disruption of spermatogenesis however the link between cryptorchidism and TGCT is less clear. The most common type of TGCT in cryptorchid testes is seminoma, believed to be derived from pluripotent prenatal germ cells. Recent studies have shown that seminoma cells and their precursor carcinoma in situ cells express a number of spermatogonial stem cell (SSC) markers suggesting that TGCTs might originate from adult stem cells. We review here the data on changes in the SSC somatic cell niche observed in cryptorchid testes of mouse models and in human patients. We propose that the misregulation of growth factors’ expression may alter the balance between SSC self-renewal and differentiation and shift stem cells toward neoplastic transformation. PMID:23519268
Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism.
Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby; Day, Daniel Sindt; Zamudio, Alicia Viridiana; Hnisz, Denes; Lee, Tong Ihn; Young, Richard Allen
2018-04-10
Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Oncogenic Kras initiates leukemia in hematopoietic stem cells.
Sabnis, Amit J; Cheung, Laurene S; Dail, Monique; Kang, Hio Chung; Santaguida, Marianne; Hermiston, Michelle L; Passegué, Emmanuelle; Shannon, Kevin; Braun, Benjamin S
2009-03-17
How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic Kras(G12D) from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D) expression in a highly restricted population enriched for hematopoietic stem cells (HSCs), but not in common myeloid progenitors. Kras(G12D) HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D) expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D) HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D) mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.
CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.
Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui
2018-01-10
Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.
The Structure of the Mammalian Area Postrema
NASA Technical Reports Server (NTRS)
Brizzee, K. R.; Klara, P. M.
1984-01-01
The area postrema in mammals other than rodents and lagomorphs is a bilateral mound of gelatinous-appearing tissue that protrudes into the caudal fourth ventricle on either side of the obex. In rodents and lagomorphs it is a single midline structure at the apex of the calamus scriptorius. The vasculature is derived mainly from the posterior inferior cerebellar arteries and consists mainly of sinusoidal capillaries. It appears to constitute a portal system, at least in the rat. Many of the capillaries are fenestrated, and many large perivascular spaces with both vascular and parenchymal basal laminae are present. The cell population is composed of flattened ependymal cells exhibiting microvilli, and of small neurons, normal astrocytes, glialoid cells, and a very few oligodendroglia. Mast cells are occasionally present. The glialoid cells appear to be the predominant cell type and exhibit great numbers of vascular podia. Axodendritic synapses are numerous and axosomatic synapses are occasionally seen in the parenchyma. Synaptic vesicles are mainly of the clear-cored type but large dense-cored vesicles are commonly observed in some axon terminals.
Phenytoin promotes Th2 type immune response in mice
Okada, K; Sugiura, T; Kuroda, E; Tsuji, S; Yamashita, U
2001-01-01
The effects of chronic administration of phenytoin, a common anticonvulsive drug, on immune responses were studied in mice. Anti-keyhole limpet haemocyanin (KLH) IgE antibody response after KLH-immunization was enhanced in phenytoin-treated mice. Proliferative responses of spleen cells induced with KLH, concanavalin A (ConA), lipopolysaccharide and anti-CD3 antibody were reduced in phenytoin-treated mice. Accessory function of spleen adherent cells on ConA-induced T cell proliferative response was reduced in phenytoin-treated mice. KLH-induced IL-4 production of spleen cells was enhanced, while IFN-γ production was reduced in phenytoin-treated mice. In addition, production of IL-1α, but not IL-6 and IL-12 by spleen adherent cells from phenytoin-treated mice was reduced. Natural killer cell activity was reduced in phenytoin-treated mice. These results suggest that phenytoin treatment preferentially induces a Th2 type response. We also observed that plasma ACTH and corticosterone levels were increased in phenytoin-treated mice, and speculated that phenytoin might act directly and indirectly, through HPA axis activation, on the immune system to modulate Th1/Th2 balance. PMID:11472401
Cheng, Liang; Jones, Timothy D.; McCarthy, Ryan P.; Eble, John N.; Wang, Mingsheng; MacLennan, Gregory T.; Lopez-Beltran, Antonio; Yang, Ximing J.; Koch, Michael O.; Zhang, Shaobo; Pan, Chong-Xian; Baldridge, Lee Ann
2005-01-01
In most cases, small-cell carcinoma of the urinary bladder is admixed with other histological types of bladder carcinoma. To understand the pathogenetic relationship between the two tumor types, we analyzed histologically distinct tumor cell populations from the same patient for loss of heterozygosity (LOH) and X chromosome inactivation (in female patients). We examined five polymorphic microsatellite markers located on chromosome 3p25-26 (D3S3050), chromosome 9p21 (IFNA and D9S171), chromosome 9q32-33 (D9S177), and chromosome 17p13 (TP53) in 20 patients with small-cell carcinoma of the urinary bladder and concurrent urothelial carcinoma. DNA samples were prepared from formalin-fixed, paraffin-embedded tissue sections using laser-assisted microdissection. A nearly identical pattern of allelic loss was observed in the two tumor types in all cases, with an overall frequency of allelic loss of 90% (18 of 20 cases). Three patients showed different allelic loss patterns in the two tumor types at a single locus; however, the LOH patterns at the remaining loci were identical. Similarly, the same pattern of nonrandom X chromosome inactivation was present in both carcinoma components in the four cases analyzed. Concordant genetic alterations and X chromosome inactivation between small-cell carcinoma and coexisting urothelial carcinoma suggest that both tumor components originate from the same cells in the urothelium. PMID:15855652
Increased Hormone-Negative Endocrine Cells in the Pancreas in Type 1 Diabetes.
Md Moin, Abu Saleh; Dhawan, Sangeeta; Shieh, Christine; Butler, Peter C; Cory, Megan; Butler, Alexandra E
2016-09-01
Type 1 diabetes (T1D) is characterized by a β-cell deficit due to autoimmune inflammatory-mediated β-cell destruction. It has been proposed the deficit in β-cell mass in T1D may be in part due to β-cell degranulation to chromogranin-positive, hormone-negative (CPHN) cells. We investigated the frequency and distribution of CPHN cells in the pancreas of 15 individuals with T1D, 17 autoantibody-positive nondiabetic individuals, and 17 nondiabetic controls. CPHN cells were present at a low frequency in the pancreas from nondiabetic and autoantibody-positive, brain-dead organ donors but are more frequently found in the pancreas from donors with T1D (islets: 1.11% ± 0.20% vs 0.26% ± 0.06 vs 0.27% ± 0.10% of islet endocrine cells, T1D vs autoantibody positive [AA+] vs nondiabetic [ND]; T1D vs AA+, and ND, P < .001). CPHN cells are most commonly found in the single cells and small clusters of endocrine cells rather than within established islets (clusters: 18.99% ± 2.09% vs 9.67% ± 1.49% vs 7.42% ± 1.26% of clustered endocrine cells, T1D vs AA+ vs ND; T1D vs AA+ and ND, P < .0001), mimicking the distribution present in neonatal pancreas. From these observations, we conclude that CPHN cells are more frequent in T1D and, as in type 2 diabetes, are distributed in a pattern comparable with the neonatal pancreas, implying a possible attempted regeneration. In contrast to rodents, CPHN cells are insufficient to account for loss of β-cell mass in T1D.
Near-field photothermal microspectroscopy for adult stem-cell identification and characterization.
Grude, Olaug; Hammiche, Azzedine; Pollock, Hubert; Bentley, Adam J; Walsh, Michael J; Martin, Francis L; Fullwood, Nigel J
2007-12-01
The identification of stem cells in adult tissue is a challenging problem in biomedicine. Currently, stem cells are identified by individual epitopes, which are generally tissue specific. The discovery of a stem-cell marker common to other adult tissue types could open avenues in the development of therapeutic stem-cell strategies. We report the use of the novel technique of Fourier transform infrared near-field photothermal microspectroscopy (FTIR-PTMS) for the characterization of stem cells, transit amplifying (TA) cells and terminally differentiated (TD) cells in the corneal epithelium. Principal component analysis (PCA) data demonstrate excellent discrimination of cell type by spectra. PCA in combination with linear discriminant analysis (PCA-LDA) shows that FTIR-PTMS very effectively discriminates between the three cell populations. Statistically significant differences above the 99% confidence level between IR spectra from stem cells and TA cells suggest that nucleic acid conformational changes are an important component of the differences between spectral data from the two cell types. FTIR-PTMS is a new addition to existing spectroscopy methods based on the concept of interfacing a conventional FTIR spectrometer with an atomic force microscope equipped with a near-field thermal sensing probe. FTIR-PTMS spectroscopy currently has spatial resolution that is similar to that of diffraction-limited optical detection FTIR spectroscopy techniques, but as a near-field probing technique has considerable potential for further improvement. Our work also suggests that FTIR-PTMS is potentially more sensitive than synchrotron radiation FTIR spectroscopy for some applications. Microspectroscopy techniques like FTIR-PTMS provide information about the entire molecular composition of cells, in contrast to epitope recognition that only considers the presence or absence of individual molecules. Our results with FTIR-PTMS on corneal stem cells are promising for the potential development of an IR spectral fingerprint for stem cells.
Zhang, Yu; Nagata, Hiroshi; Ikeuchi, Tatsuro; Mukai, Hiroyuki; Oyoshi, Michiko K; Demachi, Ayako; Morio, Tomohiro; Wakiguchi, Hiroshi; Kimura, Nobuhiro; Shimizu, Norio; Yamamoto, Kohtaro
2003-06-01
In this study, we describe the cytological and cytogenetic features of six Epstein-Barr virus (EBV)-infected natural killer (NK) cell clones. Three cell clones, SNK-1, -3 and -6, were derived from patients with nasal T/NK-cell lymphomas; two cell clones, SNK-5 and -10, were isolated from patients with chronic active EBV infection (CAEBV); and the other cell clone, SNK-11, was from a patient with hydroa vacciniforme (HV)-like eruptions. An analysis of the number of EBV-terminal repeats showed that the SNK cell clones had monoclonal EBV genomes identical to the original EBV-infected cells of the respective patients, and SNK cells had the type II latency of EBV infection, suggesting that not only the cell clones isolated from nasal T/NK-cell lymphomas but also those isolated from CAEBV and HV-like eruptions had been transformed by EBV to a certain degree. Cytogenetic analysis detected deletions in chromosome 6q in five out of the six SNK cell clones, while 6q was not deleted in four control cell lines of T-cell lineage. This suggested that a 6q deletion is a characteristic feature of EBV-positive NK cells, which proliferated in the diseased individuals. The results showed that EBV-positive NK cells in malignant and non-malignant lymphoproliferative diseases shared common cytological and cytogenetic features.
Combined Treatments with Photodynamic Therapy for Non-Melanoma Skin Cancer
Lucena, Silvia Rocío; Salazar, Nerea; Gracia-Cazaña, Tamara; Zamarrón, Alicia; González, Salvador; Juarranz, Ángeles; Gilaberte, Yolanda
2015-01-01
Non-melanoma skin cancer (NMSC) is the most common form of cancer in the Caucasian population. Among NMSC types, basal cell carcinoma (BCC) has the highest incidence and squamous cell carcinoma (SCC) is less common although it can metastasize, accounting for the majority of NMSC-related deaths. Treatment options for NMSC include both surgical and non-surgical modalities. Even though surgical approaches are most commonly used to treat these lesions, Photodynamic Therapy (PDT) has the advantage of being a non-invasive option, and capable of field treatment, providing optimum cosmetic outcomes. Numerous clinical research studies have shown the efficacy of PDT for treating pre-malignant and malignant NMSC. However, resistant or recurrent tumors appear and sometimes become more aggressive. In this sense, the enhancement of PDT effectiveness by combining it with other therapeutic modalities has become an interesting field in NMSC research. Depending on the characteristics and the type of tumor, PDT can be applied in combination with immunomodulatory (Imiquimod) and chemotherapeutic (5-fluorouracil, methotrexate, diclofenac, or ingenol mebutate) agents, inhibitors of some molecules implicated in the carcinogenic process (COX2 or MAPK), surgical techniques, or even radiotherapy. These new strategies open the way to a wider improvement of the prevention and eradication of skin cancer. PMID:26516853
Combined Treatments with Photodynamic Therapy for Non-Melanoma Skin Cancer.
Lucena, Silvia Rocío; Salazar, Nerea; Gracia-Cazaña, Tamara; Zamarrón, Alicia; González, Salvador; Juarranz, Ángeles; Gilaberte, Yolanda
2015-10-28
Non-melanoma skin cancer (NMSC) is the most common form of cancer in the Caucasian population. Among NMSC types, basal cell carcinoma (BCC) has the highest incidence and squamous cell carcinoma (SCC) is less common although it can metastasize, accounting for the majority of NMSC-related deaths. Treatment options for NMSC include both surgical and non-surgical modalities. Even though surgical approaches are most commonly used to treat these lesions, Photodynamic Therapy (PDT) has the advantage of being a non-invasive option, and capable of field treatment, providing optimum cosmetic outcomes. Numerous clinical research studies have shown the efficacy of PDT for treating pre-malignant and malignant NMSC. However, resistant or recurrent tumors appear and sometimes become more aggressive. In this sense, the enhancement of PDT effectiveness by combining it with other therapeutic modalities has become an interesting field in NMSC research. Depending on the characteristics and the type of tumor, PDT can be applied in combination with immunomodulatory (Imiquimod) and chemotherapeutic (5-fluorouracil, methotrexate, diclofenac, or ingenol mebutate) agents, inhibitors of some molecules implicated in the carcinogenic process (COX2 or MAPK), surgical techniques, or even radiotherapy. These new strategies open the way to a wider improvement of the prevention and eradication of skin cancer.
Dong, Qiongye; Wei, Lei; Zhang, Michael Q; Wang, Xiaowo
2018-06-24
Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich
2015-01-01
Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Heyu; Nan, Xu; Li, Xuefen
Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 wasmore » down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.« less
Cremer, Marion; Küpper, Katrin; Wagler, Babett; Wizelman, Leah; Hase, Johann v.; Weiland, Yanina; Kreja, Ludwika; Diebold, Joachim; Speicher, Michael R.; Cremer, Thomas
2003-01-01
A gene density–related difference in the radial arrangement of chromosome territories (CTs) was previously described for human lymphocyte nuclei with gene-poor CT #18 located toward the nuclear periphery and gene-dense CT #19 in the nuclear interior (Croft, J.A., J.M. Bridger, S. Boyle, P. Perry, P. Teague, and W.A. Bickmore. 1999. J. Cell Biol. 145:1119–1131). Here, we analyzed the radial distribution of chromosome 18 and 19 chromatin in six normal cell types and in eight tumor cell lines, some of them with imbalances and rearrangements of the two chromosomes. Our findings demonstrate that a significant difference in the radial distribution of #18 and #19 chromatin is a common feature of higher order chromatin architecture in both normal and malignant cell types. However, in seven of eight tumor cell lines, the difference was less pronounced compared with normal cell nuclei due to a higher fraction of nuclei showing an inverted CT position, i.e., a CT #18 located more internally than a CT #19. This observation emphasizes a partial loss of radial chromatin order in tumor cell nuclei. PMID:12952935
Hepatitis E virus persists in the presence of a type III interferon response.
Yin, Xin; Li, Xinlei; Ambardekar, Charuta; Hu, Zhimin; Lhomme, Sébastien; Feng, Zongdi
2017-05-01
The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E virus (HEV), does not appear to encode a functional protease yet persists in infected cells. We investigated HEV-induced IFN responses in human hepatoma cells and primary human hepatocytes. HEV infection resulted in persistent virus replication despite poor spread. This was companied by a type III IFN response that upregulated multiple IFN-stimulated genes (ISGs), but type I IFNs were barely detected. Blocking type III IFN production or signaling resulted in reduced ISG expression and enhanced HEV replication. Unlike HAV and HCV, HEV did not cleave MAVS; MAVS protein size, mitochondrial localization, and function remained unaltered in HEV-replicating cells. Depletion of MAVS or MDA5, and to a less extent RIG-I, also diminished IFN production and increased HEV replication. Furthermore, persistent activation of the JAK/STAT signaling rendered infected cells refractory to exogenous IFN treatment, and depletion of MAVS or the receptor for type III IFNs restored the IFN responsiveness. Collectively, these results indicate that unlike other hepatotropic RNA viruses, HEV does not target MAVS and its persistence is associated with continuous production of type III IFNs.
Beleut, Manfred; Soeldner, Robert; Egorov, Mark; Guenther, Rolf; Dehler, Silvia; Morys-Wortmann, Corinna; Moch, Holger; Henco, Karsten; Schraml, Peter
2016-01-01
Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC) as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs) which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.
Hultsch, T; Albers, M W; Schreiber, S L; Hohman, R J
1991-01-01
Investigations of the actions and interactions of the immunophilin ligands FK506, cyclosporin A (CsA), rapamycin, and 506BD suggest that complexes of FK506 with an FK506-binding protein or of CsA with a cyclophilin (CsA-binding protein) inhibit the T-cell receptor-mediated signal transduction that results in the transcription of interleukin 2. Now we report an identical spectrum of activities of FK506, CsA, rapamycin, and 506BD on IgE receptor-mediated signal transduction that results in exocytosis of secretory granules from the rat basophilic leukemia cell line RBL-2H3, a mast cell model. Both FK506 and CsA inhibit receptor-mediated exocytosis (CsA IC50 = 200 nM; FK506 IC50 = 2 nM) without affecting early receptor-associated events (hydrolysis of phosphatidylinositol, synthesis and release of eicosanoids, uptake of Ca2+). In contrast, rapamycin and 506BD, which share common structural elements with FK506, by themselves have no effect on IgE receptor-mediated exocytosis. Both compounds, however, prevent inhibition by FK506 but not by CsA. Affinity chromatography with FK506, CsA, and rapamycin matrices indicates that the same set of immunophilins present in RBL-2H3 cells have been found in Jurkat T cells and calf thymus; however, the relative amounts of these proteins differ in the two cell types. These results suggest the existence of a common step in cytoplasmic signaling in T cells and mast cells that may be part of a general signaling mechanism. Images PMID:1712484
Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd
2015-01-01
Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720
The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals.
Decotto, Eva; Spradling, Allan C
2005-10-01
The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.
Thyrotoxicosis: a rare presenting symptom of Hurthle cell carcinoma of the thyroid.
Wong, C P; AuYong, T K; Tong, C M
2003-10-01
Hurthle cell carcinoma of the thyroid is a rare type of thyroid neoplasm. The most common clinical presentation is a single palpable thyroid nodule. The neoplasm typically presents as a nonfunctioning or cold nodule on a Tc-99m sodium pertechnetate or radioiodine thyroid scan. We report a case of Hurthle cell carcinoma of the thyroid in a woman presenting with thyrotoxicosis. The Tc-99m thyroid scan was also interesting in that the nodule was a hot or hyperfunctioning area, resulting in a rare scintigraphic finding in a rare tumor. Clinicopathologic aspects and related issues are further discussed.
Advanced catalyst supports for PEM fuel cell cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Shao, Yuyan; Sun, Junming
2016-11-01
Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided.
De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic
2017-05-01
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Snowdrift game dynamics and facultative cheating in yeast.
Gore, Jeff; Youk, Hyun; van Oudenaarden, Alexander
2009-05-14
The origin of cooperation is a central challenge to our understanding of evolution. The fact that microbial interactions can be manipulated in ways that animal interactions cannot has led to a growing interest in microbial models of cooperation and competition. For the budding yeast Saccharomyces cerevisiae to grow on sucrose, the disaccharide must first be hydrolysed by the enzyme invertase. This hydrolysis reaction is performed outside the cytoplasm in the periplasmic space between the plasma membrane and the cell wall. Here we demonstrate that the vast majority ( approximately 99 per cent) of the monosaccharides created by sucrose hydrolysis diffuse away before they can be imported into the cell, serving to make invertase production and secretion a cooperative behaviour. A mutant cheater strain that does not produce invertase is able to take advantage of and invade a population of wild-type cooperator cells. However, over a wide range of conditions, the wild-type cooperator can also invade a population of cheater cells. Therefore, we observe steady-state coexistence between the two strains in well-mixed culture resulting from the fact that rare strategies outperform common strategies-the defining features of what game theorists call the snowdrift game. A model of the cooperative interaction incorporating nonlinear benefits explains the origin of this coexistence. We are able to alter the outcome of the competition by varying either the cost of cooperation or the glucose concentration in the media. Finally, we note that glucose repression of invertase expression in wild-type cells produces a strategy that is optimal for the snowdrift game-wild-type cells cooperate only when competing against cheater cells.
Thiers, Fabio A; Nadol, Joseph B; Liberman, M Charles
2008-12-01
Cochlear outer hair cells (OHCs) serve both as sensory receptors and biological motors. Their sensory function is poorly understood because their afferent innervation, the type-II spiral ganglion cell, has small unmyelinated axons and constitutes only 5% of the cochlear nerve. Reciprocal synapses between OHCs and their type-II terminals, consisting of paired afferent and efferent specialization, have been described in the primate cochlea. Here, we use serial and semi-serial-section transmission electron microscopy to quantify the nature and number of synaptic interactions in the OHC area of adult cats. Reciprocal synapses were found in all OHC rows and all cochlear frequency regions. They were more common among third-row OHCs and in the apical half of the cochlea, where 86% of synapses were reciprocal. The relative frequency of reciprocal synapses was unchanged following surgical transection of the olivocochlear bundle in one cat, confirming that reciprocal synapses were not formed by efferent fibers. In the normal ear, axo-dendritic synapses between olivocochlear terminals and type-II terminals and/or dendrites were as common as synapses between olivocochlear terminals and OHCs, especially in the first row, where, on average, almost 30 such synapses were seen in the region under a single OHC. The results suggest that a complex local neuronal circuitry in the OHC area, formed by the dendrites of type-II neurons and modulated by the olivocochlear system, may be a fundamental property of the mammalian cochlea, rather than a curiosity of the primate ear. This network may mediate local feedback control of, and bidirectional communication among, OHCs throughout the cochlear spiral.
Effect of cationic polyelectrolytes on the performance of paper diagnostics for blood typing.
McLiesh, Heather; Sharman, Scot; Garnier, Gil
2015-09-01
We investigated the effect that two common types of cationic polyelectrolytes used in papermaking might have on the performance of paper diagnostics using blood typing as an example. The results were analyzed in terms of red blood cells (RBC) retention and antibody-antigen specificity. Two questions were addressed: (1) can poly(amido-amine) epichlorohydrin (PAE) typically used for paper wet strength affect the diagnostic performance? (2) can high molecular weight cationic polyacrylamide (CPAM) employed as retention aid enhance or affect the selectivity and sensitivity of paper diagnostics? A series of paper varying in type of fibers and drying process were constructed with PAE and tested for blood typing performance. Residual PAE has no significant effect on blood typing paper diagnostics under normal conditions. Positives are unaffected with PAE, while negatives lose slight sharpness as some RBCs are unselectively retained. CPAM, the most common retention aid, can also be used to retain cells and biomolecules on paper. Paper towel was treated with CPAM solutions varying in polymer concentration and charge density and tested for blood typing. We found that CPAM dried on paper can retain RBC. CPAM affects the negative tests by retaining non-specifically individual RBC on fibers. RBC retention increases non-linearly with the CPAM charge density and concentration. As expected, wet CPAM retain RBCs at concentrations higher than 0.1wt%. As paper diagnostics are becoming a reality, more realistic papers than the Whatman filter paper will be engineered. This study provides guidance on how best use the required polymeric wet-strength and retention agents. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Fujita-Jimbo, Eriko; Momoi, Takashi
2014-04-30
The R553H mutation has been found in the FOXP2 gene of patients with speech-language disorder. Foxp2(R552H) knock-in (KI) mice exhibit poor dendritic development of Purkinje cells in the cerebellum and impaired ultrasonic vocalization (USV), which is related to human speech and language; compared with wild-type mice, heterozygous Foxp2(R552H)-KI pups exhibit the reduced number of whistle-type USVs and the increased short-type ones, while homozygous pups exhibit only click-type USVs but no whistle-type or short-type ones. To make clear the relationship between the role of Foxp2 in the cerebellum and whistle-type USVs activity, we prepared transgenic (Tg) mice specifically expressing human FOXP2-myc in cerebellum (Pcp2-FOXP2-myc-Tg mice) by using purkinje cell protein-2 (Pcp2) promoter. FOXP2-myc expression in the cerebellum increased the relative numbers of whistle-type USVs in the heterozygous Foxp2(R552H)-KI pups and recovered their USVs but did not in the homozygous ones. Foxp2 in the cerebellum may pertain to the brain network engaged in whistle-type USVs activities including modification, but not their production. There may be common molecular contribution of Purkinje cells to human FOXP2-mediated speech-language and mouse Foxp2-mediated USVs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Diagnosis and treatment of diffuse large B-cell lymphoma in an orangutan (Pongo pygmaeus).
Ikpatt, Offiong F; Reavill, Drury; Chatfield, Jason; Clubb, Susan; Rosenblatt, Joseph D; Fonte, Glenn; Fan, Yao-Shan; Cray, Carolyn
2014-12-01
Lymphoma is a common malignancy observed in companion animals. This type of naturally occurring neoplasia has been uncommonly reported in great apes. Diffuse large B-cell lymphoma was diagnosed in an 8-yr-old captive orangutan (Pongo pygmaeus) with gastrointestinal disease by histologic and immunohistochemical methodologies. The orangutan was treated with three cycles of combination chemotherapy (intravenous Rituxan, cyclophosphamide, doxorubicin, and vincristine). The primate has been in good health and exhibiting normal behaviors for more than 15 mo following treatment.
Inulin based glutathione-responsive delivery system for colon cancer treatment.
Wang, Dongdong; Sun, Feifei; Lu, Chunbo; Chen, Peng; Wang, Zhaojie; Qiu, Yuanhao; Mu, Haibo; Miao, Zehong; Duan, Jinyou
2018-05-01
Colorectal cancer is one of the most common types of tumor in the world. Here we developed a lipoic acid esterified polysaccharide (inulin) delivery system for tanshinone IIA to treat colorectal cancer in vitro. The release of tanshinone IIA in the system was highly responsive to glutathione, which is commonly abundant in cancer cells. In addition, this drug delivery system was proliferative to Bifidobacterium longum, the common inhabitant of human intestine. Thus, this strategy might be useful to improve colon cancer therapy efficacy of anticancer drugs and meanwhile promote the growth of beneficial commensal flora in the gut. Copyright © 2018 Elsevier B.V. All rights reserved.
Bergot, Anne-Sophie; Monnet, Nastasia; Tran, Le Son; Mittal, Deepak; Al-Kouba, Jane; Steptoe, Raymond J.; Grimbaldeston, Michele A.; Frazer, Ian H.; Wells, James W.
2014-01-01
Atopic dermatitis is a common pruritic and inflammatory skin disorder with unknown etiology. Most commonly occurring during early childhood, atopic dermatitis is associated with eczematous lesions and lichenification, in which the epidermis becomes hypertrophied resulting in thickening of the skin. In this study, we report an atopic dermatitis-like pathophysiology results in a murine model following the expression of the high-risk Human Papillomavirus (HPV) 16 oncoprotein E7 in keratinocytes under the Keratin 14 promoter. We show that HPV 16 E7 expression in the skin is associated with skin thickening, acanthosis and light spongiosis. Locally, HPV 16 E7 expressing skin secreted high levels of TSLP and contained increased numbers of ILCs. High levels of circulating IgE were associated with increased susceptibility to skin allergy in a model of cutaneous challenge, and to airway bronchiolar inflammation, enhanced airway goblet cell metaplasia and mucus production in a model of atopic march. Surprisingly, skin pathology occurred independently of T-cells and mast cells. Thus, our findings suggest that the expression of a single HPV oncogene in the skin can drive the onset of atopic dermatitis-like pathology through the induction of TSLP and type 2 ILC infiltration. PMID:25601274
Stanewsky, R.; Rendahl, K. G.; Dill, M.; Saumweber, H.
1993-01-01
We have performed a genetic analysis of the 14C region of the X chromosome of Drosophila melanogaster to isolate loss of function alleles of no-on-transient A (nonA; 14C1-2; 1-52.3). NONA is a nuclear protein common to many cell types, which is present in many puffs on polytene chromosomes. Sequence data suggest that the protein contains a pair of RNA binding motifs (RRM) found in many single-strand nucleic acid binding proteins. Hypomorphic alleles of this gene, which lead to aberrant visual and courtship song behavior, still contain normally distributed nonA RNA and NONA protein in embryos, and in all available alleles NONA protein is present in puffs of third instar larval polytene chromosomes. We find that complete loss of this general nuclear protein is semilethal in hemizygous males and homozygous cell lethal in the female germline. Surviving males show more extreme defects in nervous system function than have been described for the hypomorphic alleles. Five other essential genes that reside within this region have been partially characterized. PMID:8244005
Pirger, Zsolt; Rácz, Boglárka; Kiss, Tibor
2009-02-01
PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.
Buetow, Bernard S.; Tappan, Kristen A.; Crosby, Jeffrey R.; Seifert, Ronald A.; Bowen-Pope, Daniel F.
2003-01-01
The carotid artery shows a common response to many forms of injury, including a rapid activation of smooth muscle cell (SMC) proliferation in the media and migration of SMCs into the intima to form a neointima. Platelet-derived growth factor (PDGF) is believed to play a role in this response to injury, but it has proven difficult to distinguish whether it is stimulating cell migration or cell proliferation, and whether the action is direct or indirect. To determine this, we created chimeric mice composed of both wild-type (WT) and marked PDGF receptor β (PDGFRβ)-deficient cells, and determined the consequences of PDGFRβ expression for SMC participation in response to ligation of the left common carotid artery. The proportion of PDGFRβ−/− SMCs increased 4.5-fold in the media and decreased 1.8-fold during formation of the neointima, consistent with migration of WT SMCs out of the media and into the intima, leaving the PDGFRβ−/− cells behind. The fibrotic reaction in the adventitia, which does not involve cell migration, did not result in any change in relative abundance of WT and PDGFRβ-deficient fibroblasts. We conclude that the most significant direct role of PDGFRβ is to mediate responses that involve cell migration rather than proliferation. PMID:12937138
Masuda, Tomomi; Shimazawa, Masamitsu; Takata, Shinsuke; Nakamura, Shinsuke; Tsuruma, Kazuhiro; Hara, Hideaki
2016-05-01
Choroidal neovascularization (CNV) is a main characteristic in exudative type of age-related macular degeneration (AMD). Our study aimed to evaluate the effects of edaravone, a free radical scavenger on laser-induced CNV. CNV was induced by laser photocoagulation to the subretinal choroidal area of mice and common marmosets. Edaravone was administered either intraperitoneally twice a day for 2 weeks or intravenously just once after laser photocoagulation. The effects of edaravone on laser-induced CNV were evaluated by fundus fluorescein angiography, CNV area measurements, and the expression of 4-hydroxy-2-nonenal (4-HNE) modified proteins, a marker of oxidative stress. Furthermore, the effects of edaravone on the production of H2O2-induced reactive oxygen species (ROS) and vascular endothelial growth factor (VEGF)-induced cell proliferation were evaluated using human retinal pigment epithelium cells (ARPE-19) and human retinal microvascular endothelial cells, respectively. CNV areas in the edaravone-treated group were significantly smaller in mice and common marmosets. The expression of 4-HNE modified proteins was upregulated 3 h after laser photocoagulation, and intravenously administered edaravone decreased it. In in vitro studies, edaravone inhibited H2O2-induced ROS production and VEGF-induced cell proliferation. These findings suggest that edaravone may protect against laser-induced CNV by inhibiting oxidative stress and endothelial cell proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Convergence of the Insulin and Serotonin Programs in the Pancreatic β-Cell
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B.; Honig, Gerard; Kim, Hail; Gasa, Rosa M.; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H.; Deneris, Evan S.; German, Michael S.
2011-01-01
OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes. PMID:22013016
Convergence of the insulin and serotonin programs in the pancreatic β-cell.
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B; Honig, Gerard; Kim, Hail; Gasa, Rosa M; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H; Deneris, Evan S; German, Michael S
2011-12-01
Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.
Dysregulated IL-1β Secretion in Autoinflammatory Diseases: A Matter of Stress?
Carta, Sonia; Semino, Claudia; Sitia, Roberto; Rubartelli, Anna
2017-01-01
Infectious and sterile inflammation is induced by activation of innate immune cells. Triggering of toll-like receptors by pathogen-associated molecular pattern or damage-associated molecular pattern (PAMP or DAMP) molecules generates reactive oxygen species that in turn induce production and activation of pro-inflammatory cytokines such as IL-1β. Recent evidence indicates that cell stress due to common events, like starvation, enhanced metabolic demand, cold or heat, not only potentiates inflammation but may also directly trigger it in the absence of PAMPs or DAMPs. Stress-mediated inflammation is also a common feature of many hereditary disorders, due to the proteotoxic effects of mutant proteins. We propose that harmful mutant proteins can induce dysregulated IL-1β production and inflammation through different pathways depending on the cell type involved. When expressed in professional inflammatory cells, stress induced by the mutant protein activates in a cell-autonomous way the onset of inflammation and mediates its aberrant development, resulting in the explosive responses that hallmark autoinflammatory diseases. When expressed in non-immune cells, the mutant protein may cause the release of transcellular stress signals that trigger and propagate inflammation. PMID:28421072
Chen, Chen; Gao, George F.
2012-01-01
A growing number of pathogens are being found to possess specialized secretion systems which they use in various ways to subvert host defenses. Type IV secretion system (T4SS) is one of versatile secretion systems essential for the virulence and even survival of some bacteria species, and they enable the secretion of protein and DNA substrates across the cell envelope. T4SS was once believed to be present only in Gram-negative bacteria. In this study, we present evidence of a new subclass of T4SS, Type-IVC secretion system and indicate its common existence in the Gram-positive bacterial genus Streptococcus. We further identified that VirB1, VirB4, VirB6 and VirD4 are the minimal key components of this system. Using genome comparisons and evolutionary relationship analysis, we proposed that Type-IVC secretion system is movable via transposon factors and mediates the conjugative transfer of DNA, enhances bacterial pathogenicity, and could cause large-scale outbreaks of infections in humans. PMID:23056296
Improving Attachments of Non-Invasive (Type III) Electronic Data Loggers to Cetaceans
2013-09-30
logged using a netbook and USB analog to digital converter. Initial testing of the SSSCup was conducted on a common dolphin (Delphinus delphis) cadaver...cell and five pressure sensors (four to measure internal cup pressure and one for atmospheric pressure). Sensor data are logged using a netbook and
Haverkos, Bradley M.; Pan, Zenggang; Gru, Alejandro A.; Freud, Aharon G.; Rabinovitch, Rachel; Xu-Welliver, Meng; Otto, Brad; Barrionuevo, Carlos; Baiocchi, Robert A.; Rochford, Rosemary; Porcu, Pierluigi
2016-01-01
Extranodal NK/T-cell lymphoma, nasal type (ENKTL-NT) is an aggressive extranodal non-Hodgkin lymphoma most commonly occurring in East Asia and Latin America but with increasing incidence in the U.S. Data on epidemiology, disease presentation, and outcome for European and North American (“Western”) cases are very limited. We review published landmark clinical studies on ENKTL-NT in the West and report in detail recent data, including our institutional experience. We highlight key observations in its epidemiology, natural history, and trends in clinical management. In the U.S., ENKTL-NT is more common among Asian Pacific Islanders (API) and Hispanics compared to non-Hispanic whites. Published studies indicate less heterogeneity in clinical presentation in Western ENKTL-NT compared to Asian patients. While there is variation in age at diagnosis, presence of antecedent lymphoproliferative disorders, and outcomes among racial/ethnic groups, the universal association of ENKTL-NT with EBV and the poor response of this neoplasm to anthracycline-based therapy are consistent across all geographic areas. PMID:27778143
Khamechian, Tahereh; Irandoust, Behnaz; Mohammadi, Hanieh; Nikoueinejad, Hassan; Akbari, Hossein
2018-04-01
In recent years, it has been recognized that regulatory T cells (Tregs) play a critical role in maintaining immune tolerance. Moreover, the expression of two markers named Helios and neurophilin-1 (NRP-1) has been highlighted in such cells. Helios, an intracellular transcription marker, largely differentiates twomost operative sub group of Tregs, namely naturally occurring (nTreg) and induced (iTreg) Tregs, and NRP-1 is reckoned as a membranous activity marker of Tregs. We aimed to count peripheral mononuclear cells expressing such markers in a group of type 1 diabetes patients to elucidate the possible role of Tregs in the pathogenesis of such disease and its complications. Blood samples from 61 adult patients with type 1 diabetes and 61 sex and age-matched healthy controls were tested to count two types of Tregs, namely naturally occurring and inducible types, according to the expression of cell surface markers of CD4/CD25/CD47-FITC/PE/APC and intracellular markers of FoxP3/Helios-PE-CY5/eFlour450 by flow cytometry, respectively.We also investigated the relation between expression of such markers with HbA1c, urine albumin/creatinine ratio (UACR), and common carotid intima thickness (CIMT). The circulatory frequency of both Helios+ and Helios- T-cells were significantly decreased in patients compared to those in healthy controls (p<0.001). There was also a significant decrease in circulatory frequency of Helios+ NRP-1+ and Helios- NRP-1+ cells in the patients compared to controls (p=0.029). According to expression of Helios and NRP-1 markers, the number and function of both Tregs were decreased in diabetic patients. Moreover, the neurophilin expression was inversely associated with complications of type 1 diabetes.
Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael
2013-06-01
Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.
Gerhardt, Josefine; Steinbrech, Corinna; Büchi, Oralea; Behnke, Silvia; Bohnert, Annette; Fritzsche, Florian; Liewen, Heike; Stenner, Frank; Wild, Peter; Hermanns, Thomas; Müntener, Michael; Dietel, Manfred; Jung, Klaus; Stephan, Carsten; Kristiansen, Glen
2011-01-01
Previously, we identified the calcium-activated nucleotidase 1 (CANT1) transcript as up-regulated in prostate cancer. Now, we studied CANT1 protein expression in a large cohort of nearly 1000 prostatic tissue samples including normal tissue, prostatic intraepithelial neoplasia (PIN), primary carcinomas, metastases, and castrate-resistant carcinomas, and further investigated its functional relevance. CANT1 displayed predominantly a Golgi-type immunoreactivity with additional and variable cytoplasmic staining. In comparison to normal tissues, the staining intensity was significantly increased in PIN lesions and cancer. In cancer, high CANT1 levels were associated with a better prognosis, and castrate-resistant carcinomas commonly showed lower CANT1 levels than primary carcinomas. The functional role of CANT1 was investigated using RNA interference in two prostate cancer cell lines with abundant endogenous CANT1 protein. On CANT1 knockdown, a significantly diminished cell number and DNA synthesis rate, a cell cycle arrest in G1 phase, and a strong decrease of cell transmigration rate and wound healing capacity of CANT1 knockdown cells was found. However, on forced CANT1 overexpression, cell proliferation and migration remained unchanged. In summary, CANT1 is commonly overexpressed in the vast majority of primary prostate carcinomas and in the precursor lesion PIN and may represent a novel prognostic biomarker. Moreover, this is the first study to demonstrate a functional involvement of CANT1 in tumor biology. PMID:21435463
Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina
Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm
2014-01-01
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942
Ernsberger, Uwe
2015-01-01
With the establishment of the 'neuron theory' at the turn of the twentieth century, this remarkably powerful term was introduced to name a breathtaking diversity of cells unified by a characteristic structural compartmentalization and unique information processing and propagating features. At the beginning of the twenty-first century, developmental, stem cell and reprogramming studies converged to suggest a common mechanism involved in the generation of possibly all vertebrate, and at least a significant number of invertebrate, neurons. Sox and, in particular, SoxB and SoxC proteins as well as basic helix-loop-helix proteins play major roles, even though their precise contributions to progenitor programming, proliferation and differentiation are not fully resolved. In addition to neuronal development, these transcription factors also regulate sensory receptor and endocrine cell development, thus specifying a range of cells with regulatory and communicative functions. To what extent microRNAs contribute to the diversification of these cell types is an upcoming question. Understanding the transcriptional and post-transcriptional regulation of genes coding for cell type-specific cytoskeletal and motor proteins as well as synaptic and ion channel proteins, which mark differences but also similarities between the three communicator cell types, will provide a key to the comprehension of their diversification and the signature of 'generic neuronal' differentiation. Apart from the general scientific significance of a putative universal core instruction for neuronal development, the impact of this line of research for cell replacement therapy and brain tumor treatment will be of considerable interest.
Munson-McGee, Jacob H; Peng, Shengyun; Dewerff, Samantha; Stepanauskas, Ramunas; Whitaker, Rachel J; Weitz, Joshua S; Young, Mark J
2018-06-01
The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.
Single cell gene expression profiling in Alzheimer's disease.
Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J
2006-07-01
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Wu, Yi-Cheng; Chang, Il-Chi; Wang, Chi-Liang; Chen, Tai-Di; Chen, Ya-Ting; Liu, Hui-Ping; Chu, Yen; Chiu, Yu-Ting; Wu, Tzu-Hua; Chou, Li-Hui; Chen, Yi-Rong; Huang, Shiu-Feng
2013-01-01
Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian. Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended.