Science.gov

Sample records for common cvd process

  1. Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.

    1999-01-01

    A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.

  2. A facile process for soak-and-peel delamination of CVD graphene from substrates using water

    PubMed Central

    Gupta, Priti; Dongare, Pratiksha D.; Grover, Sameer; Dubey, Sudipta; Mamgain, Hitesh; Bhattacharya, Arnab; Deshmukh, Mandar M.

    2014-01-01

    We demonstrate a simple technique to transfer chemical vapour deposited (CVD) graphene from copper and platinum substrates using a soak-and-peel delamination technique utilizing only hot deionized water. The lack of chemical etchants results in cleaner CVD graphene films minimizing unintentional doping, as confirmed by Raman and electrical measurements. The process allows the reuse of substrates and hence can enable the use of oriented substrates for growth of higher quality graphene, and is an inherently inexpensive and scalable process for large-area production. PMID:24457558

  3. Microstructure fabrication process induced modulations in CVD graphene

    SciTech Connect

    Matsubayashi, Akitomo Zhang, Zhenjun; Lee, Ji Ung; LaBella, Vincent P.

    2014-12-15

    The systematic Raman spectroscopic study of a “mimicked” graphene device fabrication is presented. Upon photoresist baking, compressive stress is induced in the graphene which disappears after it is removed. The indirect irradiation from the electron beam (through the photoresist) does not significantly alter graphene characteristic Raman peaks indicating that graphene quality is preserved upon the exposure. The 2D peak shifts and the intensity ratio of 2D and G band, I(2D)/I(G), decreases upon direct metal deposition (Co and Py) suggesting that the electronic modulation occurs due to sp{sup 2} C-C bond weakening. In contrast, a thin metal oxide film deposited graphene does not show either the significant 2D and G peaks shift or I(2D)/I(G) decrease upon the metal deposition suggesting the oxide protect the graphene quality in the fabrication process.

  4. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    NASA Astrophysics Data System (ADS)

    Okunishi, T.; Sato, N.; Yazawa, K.

    2013-06-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  5. The role of free radical condensates in the production of carbon nanotubes during the hydrocarbon CVD process

    SciTech Connect

    Reilly, Pete; Whitten, William B

    2006-06-01

    Hydrocarbon CVD synthesis of carbon nanotubes (CNTs) is not well understood because it does not follow intuitive gas phase kinetics. Consequently, progress towards industrialization of CNT synthesis has been arduously slow. However, an intuitive understanding of the CNT CVD process can be gained through understanding of the chemistry of free radical condensates that are produced during the pyrolysis of any hydrocarbon. It is our contention that free radical condensates act as an intermediate and reaction medium for hydrocarbon-based CVD production of nanotubes. The insight gained from this understanding can be used to explain much of the literature and to coherently direct the efforts to industrialize the CVD process and produce higher quality nanotubes for materials research and commercial exploitation.

  6. Estimation of magnetic relaxation property for CVD processed YBCO-coated conductors

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2010-11-01

    Ion Beam Assist Deposition/Chemical Vapor Deposition(IBAD/CVD)-processed YBCO-coated conductors with high critical current density Jc at high magnetic fields are expected to be applied to superconducting equipments such as superconducting magnetic energy storage (SMES). For application to superconducting magnet in SMES one of the most important properties for superconductors is the relaxation property of superconducting current. In this paper, the relaxation property is investigated for IBAD/CVD-processed YBCO-coated conductors of the superconducting layer in the range of 0.18-0.90 μm. This property can be quantitatively characterized by the apparent pinning potential, U0∗. It is found that U0∗ takes a smaller value due to the two-dimensional pinning mechanism at high magnetic fields for conductor with thinner superconducting layer. Although U0∗ decreases with increasing thickness at low magnetic fields at 20 K, it increases at high magnetic fields. The results are theoretically explained by the model of the flux creep and flow based on the dimensionality of flux pinning. Scaling analysis is examined for the dependence of U0∗ on the magnetic field, temperature and the layer thickness.

  7. [The interaction between nerve cells and carbon nanotube networks made by CVD process investigation].

    PubMed

    Bobrinetskiĭ, I I; Seleznev, A S; Gaĭduchenko, I A; Fedorov, G E; Domantovskiĭ, A G; Presniakov, M Iu; Podcherniaeva, R Ia; Mikhaĭlova, G R; Suetina, I A

    2013-01-01

    In this research we investigate neuroblastoma cells cultivated on single-walled carbon nanotubes networks made by CVD method on silicon substrates. The complex analysis of grown cells made by atomic force, electron microscopy and Raman spectroscopy was carried out and the effect of nanotube growth process on proliferation factor was investigated. It is shown that despite of a weak decrease in proliferation, cell morphology remains unchanged and no physical or chemical interaction between carbon nanotubes and cells is observed. The results of the research can be used to investigate the interaction between conductive nanomaterials and cells for the development of neural replacement implants. Also they can be useful in bio-electronic interface investigation of signal propagation in neurons. PMID:24159823

  8. From graphene to carbon nanotube: The oxygen effect on the synthesis of carbon nanomaterials on nickel foil during CVD process

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Ching; Wu, Hsuan-Chung; Hsieh, Chien-Kuo

    2016-01-01

    In this study, we demonstrated an oxygen-assisted ultralow-pressure (20 mTorr) chemical vapor deposition (CVD) method for the synthesis of carbon nanomaterials, including multilayer graphene (MLG), double-layer graphene (DLG), single-layer graphene (SLG), and carbon nanotubes (CNTs) on a Ni foil substrate. Oxygen is typically considered undesirable to synthesize carbon nanomaterials during the CVD process. However, our study provided evidence demonstrating that the growth of MLG, DLG, SLG, and CNTs can be maintained by adjusting the oxygen concentration during the CVD process; it also provided an easy way in controlling the layer of graphene. It was observed that oxygen played an important role in controlling the synthesis of carbon nanomaterials.

  9. Study of the triton-burnup process in different JET scenarios using neutron monitor based on CVD diamond

    NASA Astrophysics Data System (ADS)

    Nemtsev, G.; Amosov, V.; Meshchaninov, S.; Popovichev, S.; Rodionov, R.

    2016-11-01

    We present the results of analysis of triton burn-up process using the data from diamond detector. Neutron monitor based on CVD diamond was installed in JET torus hall close to the plasma center. We measure the part of 14 MeV neutrons in scenarios where plasma current varies in a range of 1-3 MA. In this experiment diamond neutron monitor was also able to detect strong gamma bursts produced by runaway electrons arising during the disruptions. We can conclude that CVD diamond detector will contribute to the study of fast particles confinement and help predict the disruption events in future tokamaks.

  10. Modeling and simulation of CVD processes for manufacturing ceramic composites. Final report, 30 September 1994-25 June 1995

    SciTech Connect

    Adjerid, S.; Flaherty, J.E.; Hudson, J.B.; Shephard, M.S.; Webster, B.E.

    1995-06-29

    A chemical vapor deposition (CVD) process used to coat crystal sapphire fibers with B-Al2O3 has been mathematically modelled and numerically simulated using adaptive finite element software. This software system is applicable for solving transient and steady partial differential equations and is capable of automatic mesh generation, mesh-order variation, and/or mesh refinement.

  11. Enhancing quality of carbon nanotubes through a real-time controlled CVD process with application to next-generation nanosystems

    NASA Astrophysics Data System (ADS)

    Laxminarayana, Karthik; Jalili, Nader

    2004-07-01

    Nanocrystals and nanostructures will be the building blocks for future materials that will exhibit enhanced or entirely new combinations of properties with tremendous opportunity for novel technologies that can have far-reaching impact on our society. It is, however, realized that a major challenge for the near future is the design, synthesis and integration of nanostructures to develop functional nanosystems. In view of this, this exploratory research seeks to facilitate the development of a controlled and deterministic framework for nanomanufacturing of nanotubes as the most suitable choice among nanostructures for a plethora of potential applications in areas such as nanoelectronic devices, biological probes, fuel cell electrodes, supercapacitors and filed emission devices. Specifically, this paper proposes to control and maintain the most common nanotube growth parameters (i.e., reaction temperature and gas flow rate) through both software and hardware modifications. The influence of such growth parameters in a CVD process on some of the most vital and crucial aspects of nanotubes (e.g., length, diameter, yield, growth rate and structure) can be utilized to arrive at some unique and remarkable properties for the nanotubes. The objective here is, therefore, to control the process parameters to pinpoint accuracy, which would enable us to fabricate nanotubes having the desired properties and thereby maximize their ability to function at its fullest potential. To achieve this and in order to provide for experimental validation of the proposed research program, an experimental test-bed using the nanotube processing test chamber and a mechatronics workstation are being constructed.

  12. Elementary Process for CVD Graphene on Cu(110): Size-selective Carbon Clusters

    PubMed Central

    Zhang, Jialin; Wang, Zhunzhun; Niu, Tianchao; Wang, Shengnan; Li, Zhenyu; Chen, Wei

    2014-01-01

    Revealing the graphene growth mechanism at the atomic-scale is of great importance for achieving high quality graphene. However, the lack of direct experimental observation and density functional theory (DFT) verification hinders a comprehensive understanding of the structure of the carbon clusters and evolution of the graphene growth on surface. Here, we report an in-situ low-temperature scanning tunneling microscopy (LT-STM) study of the elementary process of chemical vapor deposition (CVD) graphene growth via thermal decomposition of methane on Cu(110), including the formation of monodispersed carbon clusters at the initial stage, the graphene nucleation and the ripening of graphene islands to form continuous graphene film. STM measurement, supported by DFT calculations, suggests that the carbon clusters on the surface are C2H5. It is found that graphene layers can be joined by different domains, with a relative misorientation of 30°. These graphene layers can be decoupled from Cu(110) through low temperature thermal cycling. PMID:24651211

  13. Preparation of tantalum-based alloys by a unique CVD process

    NASA Technical Reports Server (NTRS)

    Bryant, W. A.; Meier, G. H.

    1975-01-01

    The paper describes a sequential pulsing technique for deposition of refractory alloys and evaluates the technique for the deposition of the tantalum-base alloys Ta-10W (Ta-10 st% W) and T-111 (Ta-8 wt% W-2 wt% Hf). The deposition cycle for Ta-10W was chosen as alternate injections of TaCl5 plus hydrogen and WCl6 plus hydrogen. The cycle for T-111 was chosen as injections of TaCl5 plus hydrogen interspersed with injections of WCl6 plus hydrogen. A temperature range of 900-1300 C was chosen for both alloys. The ability of the pulse process to blanket a uniformly heated section of substrate with a mixture of gases, whose composition varies not with position on the substrate but instead with time of residence in the reactor, allows metal of uniform thickness to be deposited. It is shown that Ta and W can be deposited at high temperature with the formation of a dense columnar grain structure, so that the feasibility of preparing uniformly thick deposits of these elements by a 'pulsing' modification of CVD is demonstrated. A similar attempt to deposit T-111 was unsuccessful due to the difficulty in reducing HfCl4.

  14. 2{eta} or not 2{eta}? Insights into the Cu CVD process using a Cu(I) precursor

    SciTech Connect

    Kumar, R.; Maverick, A.W.; Fronczek, F.R.; Kim, A.J.; Butler, L.G.

    1993-12-31

    One of the first successful Cu(I) CVD precursors is (hfac)Cu{sup I}(COD), and this species continues to served as a model system. In the CVD process, a significant step is dissociation of the COD ligand. The energetics of this process have been estimated previously. However, it now appears that, in the solid state, (hfac)Cu{sup I}(COD) undergoes an exchange process that allows additional insight into the potential energy surface governing the Cu-COD interaction. The solid-state structure of (hfac)Cu{sup I}(COD) has been difficult to establish, but a combination of variable temperature X-ray and solid-state {sup 13}C NMR studies leads to the following picture. Cu{sup I} is three-coordinate, bound to the hfac ligand and bound preferentially to one olefin of the COD ligand. There is a small energy barrier associated with motion of the Cu into position for {eta}{sup 2}-binding to the other olefin; the COD and hfac ligands remain approximately stationary. Thus, there are two sites for Cu, now labeled {eta}{sup 2} and {eta}{sup 2}. This new interpretation of the solid-state structure differs from that of our 300 K data set and a previous report. In addition, the exchange process is intimately connected with the Cu-COD dissociation step in the CVD process.

  15. Advanced Synthesis of Spinnable MWCNT Forests by RF-Induction Heating Enhanced CVD Process

    NASA Astrophysics Data System (ADS)

    Zakhidov, Anvar; Holmes, William; UTD Solarno Team; Solarno UTD Team

    2015-03-01

    We demonstrate here an advanced method to effectively grow tall multi-wall carbon nanotubes (MWCNT) vertically oriented forests which are highly spinnable. Heating of the Fe catalyst is achieved extremely fast by RF induction heating using coils outside the quartz tube. This method and the new apparatus designed and presented in this paper allow separate control over the temperature of the substrate and the temperature of the incoming gases. In addition to temperature control, the fast T-ramping of the substrate preserves the catalyst nanoclusters from Ostwald ripening and other growth quenching effects such as carbon overgrowth of the catalyst. We show that the parametric sweet spot or bell curve of substrate spinnability can be increased significantly with this improved RF-CVD method. The catalyst nanoclusters also show a wide band of density arrangements that very positively effect spinnability and the drawing ratio. Drawing ratios can vary from 2 meters to 12 meters of sheets drawn from only 1cm of forest. RF-CVD method allows to grow fast (in several minuts) higher CNT forests at higher temperature of synthesis up to 800 K, and obtain dry-spinable CNTs, Characterization results of the samples created in the newRF-CVD system will be presented and compared to previous CNT sheet samples by conventional three-zone resistive heating CVD to measure the extent of property improvements of the CNT sheets and forests. Specifics of the experimental system will be addressed in detail and future property improvements and applications explored.

  16. Hand controller commonality evaluation process

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.

    1990-01-01

    A hand controller evaluation process has been developed to determine the appropriate hand controller configurations for supporting remotely controlled devices. These devices include remote manipulator systems (RMS), dexterous robots, and remotely-piloted free flyers. Standard interfaces were developed to evaluate six different hand controllers in three test facilities including dynamic computer simulations, kinematic computer simulations, and physical simulations. The hand controllers under consideration were six degree-of-freedom (DOF) position and rate minimaster and joystick controllers, and three-DOF rate controllers. Task performance data, subjective comments, and anthropometric data obtained during tests were used for controller configuration recommendations to the SSF Program.

  17. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  18. Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes

    DOEpatents

    Tsuo, Simon; Langford, Alison A.

    1989-01-01

    Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate.

  19. Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes

    DOEpatents

    Tsuo, S.; Langford, A.A.

    1989-03-28

    Unwanted build-up of the film deposited on the transparent light-transmitting window of a photochemical vacuum deposition (photo-CVD) chamber is eliminated by flowing an etchant into the part of the photolysis region in the chamber immediately adjacent the window and remote from the substrate and from the process gas inlet. The respective flows of the etchant and the process gas are balanced to confine the etchant reaction to the part of the photolysis region proximate to the window and remote from the substrate. The etchant is preferably one that etches film deposit on the window, does not etch or affect the window itself, and does not produce reaction by-products that are deleterious to either the desired film deposited on the substrate or to the photolysis reaction adjacent the substrate. 3 figs.

  20. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  1. Effect of CVD Process Temperature on Activation Energy and Structural Growth of MWCNTs

    NASA Astrophysics Data System (ADS)

    Shukrullah, S.; Mohamed, N. M.; Shaharun, M. S.; Saheed, M. S. M.; Irshad, M. I.

    2016-03-01

    This study investigated the effect of process temperature and activation energy on chemical vapor deposition growth of multi-walled carbon nanotubes (MWCNTs). A vertically fluidized bed reactor was used to grow MWCNTs by catalytic decomposition of ethylene over Fe2O3/Al2O3 at the cost of very low activation energy of 19.516 kJ/mole. FESEM, TEM, and Raman spectroscopy were used to characterize the growth parameters of MWCNTs in the temperature range of 873.15 K to 1273.15 K (600 °C to 1000 °C). SAED patterns were taken to investigate the crystallinity of the grown structures. The experimental results revealed that MWCNTs grown at the optimum process temperature of 1073.15 K (800 °C) exhibited hexagonal crystal structures, narrow diameter distribution and shorter inter-layer spacing. However, the inner and outer walls of most of MWCNTs grown at the temperatures above and below the optimum were non-uniform and defective. The higher process temperatures promoted the agglomeration of the catalyst particles and decomposition of the carbon precursor, which in return increased the tube diameter, surface defects and amorphous carbon content in the product. The intensity ratio plots also predicted low crystallinity in MWCNTs grown at unoptimized process temperatures. The highest I G/ I D ratio of 1.43 was determined at 1073.15 K (800 °C), which reflects high pct yield, purity and crystalline growth of MWCNTs.

  2. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    DOEpatents

    Caputo, Anthony J.; Devore, Charles E.; Lowden, Richard A.; Moeller, Helen H.

    1990-01-01

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited.

  3. CVD apparatus and process for the preparation of fiber-reinforced ceramic composites

    DOEpatents

    Caputo, A.J.; Devore, C.E.; Lowden, R.A.; Moeller, H.H.

    1990-01-23

    An apparatus and process for the chemical vapor deposition of a matrix into a preform having circumferentially wound ceramic fibers, comprises heating one surface of the preform while cooling the other surface thereof. The resulting product may have fibers that are wound on radial planes or at an angle from the radial planes. The fibers can also be precoated with pyrolytic carbon before application of the matrix. The matrix is applied by passing reactant gas through the preform thereof to the other side thereof for the initial deposition of matrix near such other surface of the preform. The matrix fills in the preform from the other side surface thereof to the surface of the side of application thereof until a desired amount of matrix has been deposited. 6 figs.

  4. Interrelationship between single- and multi-wall carbon nanotube growth rates for CVD process

    SciTech Connect

    Wood, Richard F; Pannala, Sreekanth; Wells, Jack C; Puretzky, Alexander A; Geohegan, David B

    2007-01-01

    Recent time-resolved measurements of carbon nanotube (CNT) growth on Fe and Fe/Mo catalysts have identified a maximum growth rate and temperature corresponding to the onset of small-diameter, single-wall CNT (SWNT) formation. A simple model described here emphasizes the essential role of the SWNTs in the growth process of CNTs. Remarkably, it shows that the growth rate (i.e. the time derivative of the length) of a multi-walled CNT (MWNT) is the same as that of a SWNT at the carbon flux and diffusion coefficient corresponding to a given temperature. Moreover, below ~700C, the temperature above which SWNT growth is observed for a 6 sccm C2H2 flow rate, the number of walls as a function of temperature is uniquely determined by the interplay of the incident flux of atomic C and diffusion rates consistent with bulk diffusion. Even partial melting of the catalytic particle is unnecessary to explain the experimental results on growth rate and number of walls. Above 700C, where severe catalyst poisoning ordinarily begins, the growth rate without poisoning is consistent with recent results of Hata and co-workers for "supergrowth".

  5. Superconducting layer thickness dependence of magnetic relaxation property in CVD processed YGdBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Shikimachi, K.; Watanabe, T.; Kashima, N.; Nagaya, S.

    2011-11-01

    One of the most important properties of coated conductors for Superconducting Magnetic Energy Storage (SMES) is the relaxation property of persistent superconducting current. This property can be quantitatively characterized by the apparent pinning potential U0∗. In this paper, the dependence of U0∗ on the thickness of superconducting layer d is investigated in the range of 0.33-1.43 μm at the temperature range of 20-30 K and in magnetic fields up to 6.5 T for Y 0.7Gd 0.3Ba 2Cu 3O 7- δ coated conductors. It was found that the value of critical current density did not appreciably depend on d at 20 K. This indicates that no structural deterioration of superconducting layer occurs during the process of increasing thickness. U0∗ increases and then tends to decrease with an increasing magnetic field. The magnetic field at which U0∗ starts to decrease increases with increasing thickness. This property was analyzed using the flux creep-flow model. Application of scaling law is examined for the dependence of U0∗ on magnetic field and temperature. It was found that the dependence could be expressed using scaling parameters B,U0 peak∗ in the temperature range 20-30 K.

  6. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    SciTech Connect

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  7. Synthesis of Carbon Nanotube-Nanotubular Titania Composites by Catalyst-Free CVD Process: Insights into the Formation Mechanism and Photocatalytic Properties.

    PubMed

    Alsawat, Mohammed; Altalhi, Tariq; Gulati, Karan; Santos, Abel; Losic, Dusan

    2015-12-30

    This work presents the synthesis of carbon nanotubes (CNTs) inside titania nanotube (TNTs) templates by a catalyst-free chemical vapor deposition (CVD) approach as composite platforms for photocatalytic applications. The nanotubular structure of TNTs prepared by electrochemical anodization provides a unique platform to grow CNTs with precisely controlled geometric features. The formation mechanism of carbon nanotubes inside nanotubular titania without using metal catalysts is explored and explained. The structural features, crystalline structures, and chemical composition of the resulting CNTs-TNTs composites were systematically characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The deposition time during CVD process was used to determine the formation mechanism of CNTs inside TNTs template. The photocatalytic properties of CNTs-TNTs composites were evaluated via the degradation of rhodamine B, an organic model molecule, in aqueous solution under mercury-xenon Hg (Xe) lamp irradiation monitored by UV-visible spectroscopy. The obtained results reveal that CNTs induces a synergestic effect on the photocatalytic activity of TNTs for rhodamine B degradation, opening new opportunities to develop advanced photocatalysts for environmental and energy applications.

  8. Synthesis of Carbon Nanotube-Nanotubular Titania Composites by Catalyst-Free CVD Process: Insights into the Formation Mechanism and Photocatalytic Properties.

    PubMed

    Alsawat, Mohammed; Altalhi, Tariq; Gulati, Karan; Santos, Abel; Losic, Dusan

    2015-12-30

    This work presents the synthesis of carbon nanotubes (CNTs) inside titania nanotube (TNTs) templates by a catalyst-free chemical vapor deposition (CVD) approach as composite platforms for photocatalytic applications. The nanotubular structure of TNTs prepared by electrochemical anodization provides a unique platform to grow CNTs with precisely controlled geometric features. The formation mechanism of carbon nanotubes inside nanotubular titania without using metal catalysts is explored and explained. The structural features, crystalline structures, and chemical composition of the resulting CNTs-TNTs composites were systematically characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The deposition time during CVD process was used to determine the formation mechanism of CNTs inside TNTs template. The photocatalytic properties of CNTs-TNTs composites were evaluated via the degradation of rhodamine B, an organic model molecule, in aqueous solution under mercury-xenon Hg (Xe) lamp irradiation monitored by UV-visible spectroscopy. The obtained results reveal that CNTs induces a synergestic effect on the photocatalytic activity of TNTs for rhodamine B degradation, opening new opportunities to develop advanced photocatalysts for environmental and energy applications. PMID:26587676

  9. Fermented dairy food and CVD risk.

    PubMed

    Tapsell, Linda C

    2015-04-01

    Fermented dairy foods such as yoghurt and cheese are commonly found in the Mediterranean diet. Recent landmark research has confirmed the effect of the Mediterranean diet on reducing the CVD risk, but the relative contributions of fermented dairy foods have not been fully articulated. The present study provides a review of the relationship between fermented dairy foods consumption and CVD risk in the context of the whole diet. Studies show that people who eat healthier diets may be more likely to consume yoghurt, so there is a challenge in attributing separate effects to yoghurt. Analyses from large population studies list yoghurt as the food most negatively associated with the risk of weight gain (a problem that may lead to CVD). There is some suggestion that fermented dairy foods consumption (yoghurt or cheese) may be associated with reduced inflammatory biomarkers associated with the development of CVD. Dietary trials suggest that cheese may not have the same effect on raising LDL-cholesterol levels as butter with the same saturated fat content. The same might be stated for yoghurt. The use of different probiotic cultures and other aspects of study design remain a problem for research. Nevertheless, population studies from a range of countries have shown that a reduced risk of CVD occurs with the consumption of fermented dairy foods. A combination of evidence is necessary, and more research is always valuable, but indications remain that fermented dairy foods such as cheese and yoghurt are integral to diets that are protective against CVD.

  10. How probable is common ancestry according to different evolutionary processes?

    PubMed

    Sober, Elliott; Steel, Mike

    2015-05-21

    Darwin and contemporary biologists argue that all present-day life traces back to one or a few common ancestors. Here we investigate the relationship of different evolutionary processes to this hypothesis of common ancestry. We identify the property of an evolutionary process that determines what its probabilistic impact on the common ancestry thesis will be. The point of this exercise is to understand how the parts of Darwin׳s powerful theory fit together, not to call into question common ancestry or natural selection, since these two pillars of Darwin׳s theory enjoy strong support.

  11. Unknown Word Processing Method for the Common Sense Judgement System

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Seiji; Kojima, Kazuhide; Watabe, Hirokazu; Kawaoka, Tsukasa

    When we humans receive uncertain information, we interpret it properly, so we can expand the conversation, and take the proper actions. This is possible because we have “common sense” concerning the basic word concept, which is built up from long time experience storing knowledge of our language. Of the common sense we use in our every day lives we think that there are; common sense concerning quantity such as size, weight, speed, time, or place; common sense concerning sense or feeling such as hot, beautiful, or loud; and moreover common sense concerning emotion such as happy or sad. In order to make computers closer to human beings, we think that the construction of a “Common Sense Judgment System” which deals with these kinds of common sense is necessary. When aiming to realize this “Common Sense Judgment System” and trying to make a computer have the same common sense knowledge and judgment ability as human beings, a very important factor is the handling of unknown words. Judgment concerning words which were given to the computer as knowledge before hand, it can refer to that knowledge, and the process will have no problem at all. But when an unknown word, which is not registered as knowledge, is inputted, how to process that word is a very difficult problem. In this paper, by using a concept base, which is made from several electric dictionaries; the degree of association, which is done based on the concept base; neural network, putting the closeness of meaning in consideration, we propose a method of unknown word processing, which connects an inputted unknown word to a representing word that is registered in the judgment knowledge base, and we will verify its effectiveness by experiment applied to the emotional judgment subsystem.

  12. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, J. T.; Kazaroff, J. M.; Appel, M. A.

    1989-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the melting temperature of iridium, 2400 C (4350 F).

  13. Iridium-coated rhenium thrusters by CVD

    NASA Technical Reports Server (NTRS)

    Harding, John T.; Kazaroff, John M.; Appel, Marshall A.

    1988-01-01

    Operation of spacecraft thrusters at increased temperature reduces propellant requirements. Inasmuch as propellant comprises the bulk of a satellite's mass, even a small percentage reduction makes possible a significant enhancement of the mission in terms of increased payload. Because of its excellent high temperature strength, rhenium is often the structural material of choice. It can be fabricated into free-standing shapes by chemical vapor deposition (CVD) onto an expendable mandrel. What rhenium lacks is oxidation resistance, but this can be provided by a coating of iridium, also by CVD. This paper describes the process used by Ultramet to fabricate 22-N (5-lbf) and, more recently, 445-N (100-lbf) Ir/Re thrusters; characterizes the CVD-deposited materials; and summarizes the materials effects of firing these thrusters. Optimal propellant mixture ratios can be employed because the materials withstand an oxidizing environment up to the meltimg temperature of iridium, 2400 C (4350 F).

  14. A Common Data Processing Model for HST and JWST

    NASA Astrophysics Data System (ADS)

    Swam, M.; Pierfederici, F.; Gaffney, N. I.

    2014-05-01

    Experience gained in operating and maintaining the Hubble Space Telescope (HST) data processing system is providing valuable lessons-learned to apply to the design of the data processing model for the James Webb Space Telescope (JWST). This paper will describe the aspects of a new common processing model that will be applied to both missions. A refactoring of HST data processing to fit this model will introduce flexibility to meet future processing needs, and reliability improvements through updated technologies not present in the current OPUS-based system. Adoption of the model by JWST will result in a proven data processing infrastructure, with years of operational use already completed under HST, by the start of JWST mission operations in 2018. Advantages will also be seen by the unified operations team managing both the HST and JWST data processing systems, who will see a common model applied to both missions, simplifying their daily duties of pipeline monitoring and control. None of the aspects of this model are particular to HST or JWST, so the model may have general applicability to other missions as well.

  15. Towards a general growth model for graphene CVD on transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Braeuninger-Weimer, Philipp; Caneva, Sabina; Hofmann, Stephan

    2016-01-01

    The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture.The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture. Electronic supplementary information (ESI) available: Fig. S1. See DOI: 10.1039/c5nr06873h

  16. Computer simulation of a few common process control systems

    SciTech Connect

    Muncy, M.P.

    1986-06-01

    This paper shows how to simulate five common process control systems on an IBM PC with a commercially available software package named TUTSIM. All steps involved in producing and checking each simulation are described as clearly as possible. Complete computer listings and output line plots are included to fully document each simulation. Sufficient information is provided so that readers of this paper can duplicate each simulation if they desire to do so. 10 refs., 13 figs., 11 tbls.

  17. Facile preparation of carbon coated magnetic Fe{sub 3}O{sub 4} particles by a combined reduction/CVD process

    SciTech Connect

    Tristao, Juliana C.; Oliveira, Aline A.S.; Ardisson, Jose D.; Dias, Anderson; Lago, Rochel M.

    2011-05-15

    Graphical abstract: Magnetic carbon coated Fe{sub 3}O{sub 4} particles are prepared by a one step combined reduction of Fe{sub 2}O{sub 3} together with a CVD process of using methane. Analyses show that the Fe{sub 2}O{sub 3} is reduced by methane to produce mainly Fe{sub 3}O{sub 4} particles coated with amorphous carbon. These materials can be separated into two fractions by simple dispersion in water and can be used as adsorbents, catalyst supports and rapid coagulation systems. Research highlights: {yields} Magnetic Fe{sub 3}O{sub 4} particles coated with a very thin layer of amorphous carbon (4 wt%). {yields} Combined reduction of Fe{sub 2}O{sub 3} with a Chemical Vapor Deposition process using methane. {yields} Nanoparticles with an average size of 100-200 nm. {yields} Uses as adsorbent, catalyst support and rapid coagulation systems. -- Abstract: In this work, we report a simple method for the preparation of magnetic carbon coated Fe{sub 3}O{sub 4} particles by a single step combined reduction of Fe{sub 2}O{sub 3} together with a Chemical Vapor Deposition process using methane. The temperature programmed reaction monitored by Moessbauer, X-ray Diffraction and Raman analyses showed that Fe{sub 2}O{sub 3} is directly reduced by methane at temperatures between 600 and 900 {sup o}C to produce mainly Fe{sub 3}O{sub 4} particles coated with up to 4 wt% of amorphous carbon. These magnetic materials can be separated into two fractions by simple dispersion in water, i.e., a settled material composed of large magnetic particles and a suspended material composed of nanoparticles with an average size of 100-200 nm as revealed by Scanning Electron Microscopy and High-resolution Transmission Electron Microscopy. Different uses for these materials, e.g., adsorbents, catalyst supports, rapid coagulation systems, are proposed.

  18. Common processes at unique volcanoes - a volcanological conundrum

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine; Biggs, Juliet

    2014-11-01

    An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or “personality”). In contrast, volcano classification schemes define eruption “styles” referenced to “type” volcanoes (e.g. Plinian, Strombolian, Vulcanian); this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1). The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  19. Nuts and CVD.

    PubMed

    Ros, Emilio

    2015-04-01

    Nuts are nutrient-dense foods with complex matrices rich in unsaturated fatty acids and other bioactive compounds, such as l-arginine, fibre, healthful minerals, vitamin E, phytosterols and polyphenols. By virtue of their unique composition, nuts are likely to beneficially affect cardiovascular health. Epidemiological studies have associated nut consumption with a reduced incidence of CHD in both sexes and of diabetes in women, but not in men. Feeding trials have clearly demonstrated that consumption of all kinds of nuts has a cholesterol-lowering effect, even in the context of healthy diets. There is increasing evidence that nut consumption has a beneficial effect on oxidative stress, inflammation and vascular reactivity. Blood pressure, visceral adiposity and the metabolic syndrome also appear to be positively influenced by nut consumption. Contrary to expectations, epidemiological studies and clinical trials suggest that regular nut consumption is not associated with undue weight gain. Recently, the PREvención con DIeta MEDiterránea randomised clinical trial of long-term nutrition intervention in subjects at high cardiovascular risk provided first-class evidence that regular nut consumption is associated with a 50 % reduction in incident diabetes and, more importantly, a 30 % reduction in CVD. Of note, incident stroke was reduced by nearly 50 % in participants allocated to a Mediterranean diet enriched with a daily serving of mixed nuts (15 g walnuts, 7.5 g almonds and 7.5 g hazelnuts). Thus, it is clear that frequent nut consumption has a beneficial effect on CVD risk that is likely to be mediated by salutary effects on intermediate risk factors. PMID:26148914

  20. Nuts and CVD.

    PubMed

    Ros, Emilio

    2015-04-01

    Nuts are nutrient-dense foods with complex matrices rich in unsaturated fatty acids and other bioactive compounds, such as l-arginine, fibre, healthful minerals, vitamin E, phytosterols and polyphenols. By virtue of their unique composition, nuts are likely to beneficially affect cardiovascular health. Epidemiological studies have associated nut consumption with a reduced incidence of CHD in both sexes and of diabetes in women, but not in men. Feeding trials have clearly demonstrated that consumption of all kinds of nuts has a cholesterol-lowering effect, even in the context of healthy diets. There is increasing evidence that nut consumption has a beneficial effect on oxidative stress, inflammation and vascular reactivity. Blood pressure, visceral adiposity and the metabolic syndrome also appear to be positively influenced by nut consumption. Contrary to expectations, epidemiological studies and clinical trials suggest that regular nut consumption is not associated with undue weight gain. Recently, the PREvención con DIeta MEDiterránea randomised clinical trial of long-term nutrition intervention in subjects at high cardiovascular risk provided first-class evidence that regular nut consumption is associated with a 50 % reduction in incident diabetes and, more importantly, a 30 % reduction in CVD. Of note, incident stroke was reduced by nearly 50 % in participants allocated to a Mediterranean diet enriched with a daily serving of mixed nuts (15 g walnuts, 7.5 g almonds and 7.5 g hazelnuts). Thus, it is clear that frequent nut consumption has a beneficial effect on CVD risk that is likely to be mediated by salutary effects on intermediate risk factors.

  1. A common type system for clinical natural language processing

    PubMed Central

    2013-01-01

    Background One challenge in reusing clinical data stored in electronic medical records is that these data are heterogenous. Clinical Natural Language Processing (NLP) plays an important role in transforming information in clinical text to a standard representation that is comparable and interoperable. Information may be processed and shared when a type system specifies the allowable data structures. Therefore, we aim to define a common type system for clinical NLP that enables interoperability between structured and unstructured data generated in different clinical settings. Results We describe a common type system for clinical NLP that has an end target of deep semantics based on Clinical Element Models (CEMs), thus interoperating with structured data and accommodating diverse NLP approaches. The type system has been implemented in UIMA (Unstructured Information Management Architecture) and is fully functional in a popular open-source clinical NLP system, cTAKES (clinical Text Analysis and Knowledge Extraction System) versions 2.0 and later. Conclusions We have created a type system that targets deep semantics, thereby allowing for NLP systems to encapsulate knowledge from text and share it alongside heterogenous clinical data sources. Rather than surface semantics that are typically the end product of NLP algorithms, CEM-based semantics explicitly build in deep clinical semantics as the point of interoperability with more structured data types. PMID:23286462

  2. CVD diamond substrate for microelectronics. Final report

    SciTech Connect

    Burden, J.; Gat, R.

    1996-11-01

    Chemical Vapor Deposition (CVD) of diamond films has evolved dramatically in recent years, and commercial opportunities for diamond substrates in thermal management applications are promising. The objective of this technology transfer initiative (TTI) is for Applied Science and Technology, Inc. (ASTEX) and AlliedSignal Federal Manufacturing and Technologies (FM&T) to jointly develop and document the manufacturing processes and procedures required for the fabrication of multichip module circuits using CVD diamond substrates, with the major emphasis of the project concentrating on lapping/polishing prior to metallization. ASTEX would provide diamond films for the study, and FM&T would use its experience in lapping, polishing, and substrate metallization to perform secondary processing on the parts. The primary goal of the project was to establish manufacturing processes that lower the manufacturing cost sufficiently to enable broad commercialization of the technology.

  3. Challenges to natural process restoration: common dam removal management concerns

    NASA Astrophysics Data System (ADS)

    Collins, M. J.; Tullos, D. D.; Bellmore, J. R.; Bountry, J.; Connolly, P. J.; Shafroth, P. B.; Wilcox, A. C.

    2015-12-01

    Practitioners must make dam removal decisions in spite of uncertainty about physical and ecological responses. This can result in implementing structural controls or other interventions at a site to avoid anticipated negative effects, sometimes even if a given concern is not warranted. We used a newly available dam removal science database and other information sources to explore seven frequently raised issues we call "Common Management Concerns" (CMCs), investigating their occurrence and the contributing biophysical controls. We describe these controls to enable managers to better assess if further analyses are warranted at their sites before interventions are planned and implemented. The CMCs addressed are: rate and degree of reservoir sediment erosion; drawdown impacts on local water infrastructure; excessive channel incision; downstream sediment aggradation; elevated turbidity; colonization of reservoir sediments by non-native plants; and expansion of invasive fish. The relative dearth of case studies available for many CMCs limited the generalizable conclusions we could draw about prevalence, but the available data and established understanding of relevant processes revealed important biophysical phenomena controlling the likelihood of CMC occurrence. To assess CMC risk, we recommend managers concurrently evaluate if site conditions suggest the ecosystem, infrastructure, or other human uses will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other important factors like watershed disturbance history, natural variability, and dam removal tradeoffs. Better understanding CMCs and how to evaluate them will enable practitioners to avoid unnecessary interventions and thus maximize opportunities for working with natural processes to restore river

  4. Epigenetic modifications and human pathologies: cancer and CVD.

    PubMed

    Duthie, Susan J

    2011-02-01

    Epigenetic changes are inherited alterations in DNA that affect gene expression and function without altering the DNA sequence. DNA methylation is one epigenetic process implicated in human disease that is influenced by diet. DNA methylation involves addition of a 1-C moiety to cytosine groups in DNA. Methylated genes are not transcribed or are transcribed at a reduced rate. Global under-methylation (hypomethylation) and site-specific over-methylation (hypermethylation) are common features of human tumours. DNA hypomethylation, leading to increased expression of specific proto-oncogenes (e.g. genes involved in proliferation or metastasis) can increase the risk of cancer as can hypermethylation and reduced expression of tumour suppressor (TS) genes (e.g. DNA repair genes). DNA methyltransferases (DNMT), together with the methyl donor S-adenosylmethionine (SAM), facilitate DNA methylation. Abnormal DNA methylation is implicated not only in the development of human cancer but also in CVD. Polyphenols, a group of phytochemicals consumed in significant amounts in the human diet, effect risk of cancer. Flavonoids from tea, soft fruits and soya are potent inhibitors of DNMT in vitro, capable of reversing hypermethylation and reactivating TS genes. Folates, a group of water-soluble B vitamins found in high concentration in green leafy vegetables, regulate DNA methylation through their ability to generate SAM. People who habitually consume the lowest level of folate or with the lowest blood folate concentrations have a significantly increased risk of developing several cancers and CVD. This review describes how flavonoids and folates in the human diet alter DNA methylation and may modify the risk of human colon cancer and CVD.

  5. Common Mountain-Building Processes on Ceres and Pluto?

    NASA Astrophysics Data System (ADS)

    Sykes, Mark V.; Bland, Michael; Buczkowski, Debra L.; Feldman, William; Hoffmann, Martin; Hughson, Kynan; Jaumann, Ralf; King, Scott; LeCorre, Lucille; Li, Jian-Yang; Mest, Scott; Natheus, Andreas; O'Brien, David; Platz, Thomas; Prettyman, Thomas; Raymond, Carol; Reddy, Vishnu; Reusch, Ottaviano; Russell, Christopher T.; Schenk, Paul; Sizemore, Hanna; Schmidt, Britney; Travis, Bryan

    2015-11-01

    The Dawn Framing Camera has revealed a unique feature on the surface of Ceres, popularly referred to as the “pyramid.” It is a roughly conical and flat-topped feature with an elevation of ~5 km and base diameter of ~20 km. The side slopes are roughly consistent with an angle of repose one expects of particulate material on Earth (which may change with gravity). The pyramid is also notable for its striations down its side over half of its circumference. These striations sharply terminate at the base of the cone without a distinctive talus deposit, including an adjacent crater. Recently released images of Norgay Montes and a second mountain chain in Tombaugh Regio on Pluto by the New Horizons mission reveal mountains with strikingly similar morphologies with the Ceres pyramid. They are of similar size to within a factor of a few. We investigate the hypothesis that there may be a common mechanism giving rise to these features on the two dwarf planets. Given their significantly different heliocentric distances, the remarkable ongoing widespread processing of the surface of Pluto and increasing evidence of relatively recent activity in some areas of Ceres, interior processes such as plume activity or tectonics may be responsible. A comparative study of uplift morphology on the two dwarf planets may also lend insights into heat production and retention on such bodies throughout the solar system.

  6. Homocysteine, B-vitamins and CVD.

    PubMed

    McNulty, Helene; Pentieva, Kristina; Hoey, Leane; Ward, Mary

    2008-05-01

    There is considerable interest in plasma homocysteine (tHcy) as a CVD risk factor. Although the secondary prevention trials published to date have been inconclusive in confirming a benefit of tHcy-lowering treatment with B-vitamins on CVD events generally, such studies are widely recognised to have been insufficiently powered to detect a significant effect for the predicted magnitude of association between tHcy and heart disease risk, and therefore cannot be interpreted as evidence that no relationship exists. In fact, a recent meta-analysis of clinical trials has confirmed that folic acid supplementation reduces the risk of stroke, particularly in individuals without a history of stroke. Evidence supporting a causal relationship between elevated tHcy and heart disease also comes from genetic studies. The most important genetic determinant of tHcy in the general population is the common C677T variant in methylenetetrahydrofolate reductase (MTHFR) that results in higher tHcy. Individuals with the homozygous mutant (TT) genotype have a significantly higher (14-21%) risk of heart disease. Plasma tHcy is very responsive to intervention with the B-vitamins required for its metabolism, in particular folic acid, and to a lesser extent vitamins B12 and B6. Thus, although primarily aimed at reducing neural-tube defects, folic acid fortification may have an important role in the primary prevention of CVD via tHcy lowering. Besides folate, riboflavin is required as a cofactor for MTHFR and enhanced riboflavin status results in a marked lowering in tHcy specifically in individuals with the TT genotype, presumably by neutralising the variant form of the enzyme. About 10% of the UK and Irish populations have the TT genotype. In the present paper the potential role of folate and related B-vitamins in the primary prevention of CVD and the implications for nutrition policy are explored. PMID:18412997

  7. CVD-Enabled Graphene Manufacture and Technology

    PubMed Central

    2015-01-01

    Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth. PMID:26240694

  8. A 'Common Information Model' for the climate modelling process

    NASA Astrophysics Data System (ADS)

    Treshansky, Allyn; Devine, Gerard

    2010-05-01

    The Common Information Model (CIM), developed by the EU-funded METAFOR project (http://metaforclimate.eu), is a formal model of the climate modeling process. It provides a rich structured description of not only climate data but also the "provenance" of that data: the software models and tools used to generate that data, the simulations those models implement, the experiments those simulations conform to, etc.. This formal metadata model is expected to add value to those datasets by firstly codifying what is currently found only in the heads of climate experts (the aforementioned provenance of climate datasets), and secondly by allowing tools to be developed that make searching for and analysing climate datasets a much more intuitive process than it has been in the past. This paper will describe the structure of the CIM, concentrating on how it works with and what it adds to other metadata standards. As alluded to above, current metadata standards concentrate on the contents of a climate dataset. Scientific detail and relevance of the model components that generated that data as well as the context for why it was run are missing. The CIM addresses this gap. However, it does not aim to replace existing standards. Rather, wherever possible it re-uses them. It also attempts to standardise our understanding of climate modeling at a very high level, at a conceptual level. This results in a UML description of climate modeling, the CONCIM. METAFOR extracts from this high-level UML the bits of the CIM that we want to use in our applications; These bits get converted into a set of XSD application schemas, the APPCIM. Other user groups may derive a different APPCIM (in a different format) that suits them from the same CONCIM. Thus there is a common understanding of the concepts used in climate modeling even if the implementation differs. In certain key places the CIM describes a general structure over which a specific Controlled Vocabulary (CV) can be applied. For example

  9. Observation of twinning in diamond CVD films

    NASA Astrophysics Data System (ADS)

    Marciniak, W.; Fabisiak, K.; Orzeszko, S.; Rozploch, F.

    1992-10-01

    Diamond particles prepared by dc-glow-discharge enhanced HF-CVD hybrid method, from a mixture of acetone vapor and hydrogen gas have been examined by TEM, RHEED and dark field method of observation. Results suggest the presence of twinned diamond particles, which can be reconstructed by a sequence of twinning operations. Contrary to the 'stick model' of the lattice, very common five-fold symmetry of diamond microcrystals may be obtained by applying a number of edge dislocations rather than the continuous deformation of many tetrahedral C-C bonds.

  10. C(1) metabolism and CVD outcomes in older adults.

    PubMed

    McNulty, Helene; Strain, J J; Pentieva, Kristina; Ward, Mary

    2012-05-01

    CVD is the most common cause of death in people over 65 years. This review considers the latest evidence for a potential protective effect of C(1) donors (folate and the metabolically related B-vitamins) in CVD. Such an effect may or may not be mediated via the role of these nutrients in maintaining plasma homocysteine concentrations within a desirable range. Despite predictions from epidemiological studies that lowering plasma homocysteine would reduce cardiovascular risk, several secondary prevention trials in at-risk patients published since 2004 have failed to demonstrate a benefit of homocysteine-lowering therapy with B-vitamins on CVD events generally. All these trials were performed in CVD patients with advanced disease; thus current evidence suggests that intervention with high-dose folic acid is of no benefit in preventing another event, at least in the case of heart disease. The evidence at this time, however, is stronger for stroke, with meta-analyses of randomised trials showing that folic acid reduces the risk of stroke, particularly in people with no history of stroke. Genetic studies provide convincing evidence to support a causal relationship between sub-optimal B-vitamin status and CVD. People homozygous for the common C677T variant in the gene encoding the folate-metabolising enzyme, methylenetetrahydrofolate reductase (MTHFR), typically have a 14-21% higher risk of CVD. Apart from folate, riboflavin is required as a co-factor for MTHFR. New evidence shows that riboflavin intervention results in marked lowering of blood pressure, specifically in patients with the MTHFR 677TT genotype. This novel gene-nutrient interaction may provide insights as to the mechanism that links C(1) metabolism with CVD outcomes. PMID:22152927

  11. CVD Diamond Dielectric Accelerating Structures

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Gat, R.

    2009-01-22

    The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerating structures: high RF breakdown field, extremely low dielectric losses and the highest available thermoconductive coefficient. Using chemical vapor deposition (CVD) cylindrical diamond structures have been manufactured with dimensions corresponding to fundamental TM{sub 01} mode frequencies in the GHz to THz range. Surface treatments are being developed to reduce the secondary electron emission (SEE) coefficient below unity to reduce the possibility of multipactor. The diamond CVD cylindrical waveguide technology developed here can be applied to a variety of other high frequency, large-signal applications.

  12. Reliability analysis of common hazardous waste treatment processes

    SciTech Connect

    Waters, R.D.

    1993-05-01

    Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

  13. Conversational Common Ground and Memory Processes in Language Production

    ERIC Educational Resources Information Center

    Horton, William S.; Gerrig, Richard J.

    2005-01-01

    Speakers in conversation routinely engage in audience design. That is, they construct their utterances to be understood by particular addressees. Standard accounts of audience design have frequently appealed to the notion of common ground. On this view, speakers produce well-designed utterances by expressly considering the knowledge they take as…

  14. Formation pathway, structural characterization and optimum processing parameters of synthetic topaz - Al2SiO4(OH,F)2 - by CVD

    NASA Astrophysics Data System (ADS)

    Trujillo-Vázquez, E.; Pech-Canul, M. I.

    2015-10-01

    A novel synthesis route for topaz (Al2SiO4(OH,F)2) by chemical vapor deposition (CVD) using Na2SiF6 as solid precursor was developed. Synthesis tests were conducted with and without a flow of nitrogen, positioning the Al(OH)3 substrate at 0° and 90° with respect to the gas flow direction, at 700 and 750 °C, for 60 and 90 min, respectively. It was found that topaz is synthesized through two pathways, directly and indirectly, involving a series of endothermic and exothermic, heterogeneous and homogeneous reactions between Al(OH)3 and SiF4(g). Analytical structural determination confirmed existence of orthorhombic polycrystals with lattice parameters of a =4.6558 Å, b=8.8451 Å and c=8.4069 Å. According to ANOVA, while temperature, time and interaction of substrate angular position with atmosphere (P×A) are the parameters that most significantly influence the variability in the amount of topaz formed - equivalent contributions of 31% - topaz lattice parameters are mostly impacted by the same factors (T, t, P, A), but without the interaction factor. The projected amount of topaz is in good agreement with that obtained in confirmation tests under optimal conditions: Al(OH)3 substrate compact placed at 0°, treated at 750 °C for 90 min in the absence of N2.

  15. CVD diamond - fundamental phenomena

    SciTech Connect

    Yarbrough, W.A.

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  16. Common processes may contribute to extinction and habituation.

    PubMed

    McSweeney, Frances K; Swindell, Samantha

    2002-10-01

    Psychologists routinely attribute the characteristics of conditioned behavior to complicated cognitive processes. For example, many of the characteristics of behavior undergoing extinction have been attributed to retrieval from memory. The authors argue that these characteristics may result from the simpler process of habituation. In particular, conditioned responding may decrease during extinction partially because habituation occurs to the stimuli that control responding when those stimuli are presented repeatedly or for a prolonged time (e.g., the experimental context, the conditioned stimulus in classical conditioning). This idea is parsimonious, has face validity, and evokes only processes that are well established by other evidence. In addition, behavior undergoing extinction shows 12 of the fundamental properties of behavior undergoing habituation. However, this model probably cannot provide a complete theory of extinction. It provides no obvious explanation for some of the other characteristics of extinguished behavior.

  17. Characterization of interfaces in mosaic CVD diamond crystal

    NASA Astrophysics Data System (ADS)

    Muchnikov, Anatoly B.; Radishev, Dmitry B.; Vikharev, Anatoly L.; Gorbachev, Alexei M.; Mitenkin, Anatoly V.; Drozdov, Mikhail N.; Drozdov, Yuri N.; Yunin, Pavel A.

    2016-05-01

    Detailed description of a way to accrete diamond single crystals in one plate using the CVD method is presented. It was found that each region of the mosaic CVD diamond crystal grown over a certain seed substrate "inherits" the crystallographic orientation of its substrate. No correlation was found between the value of misorientation of the accreted crystals and entrance of hydrogen to the boundary. It is shown that successful accretion of single crystal diamond plates in a single mosaic crystal occurs even in the case of great misorientation of crystals. The mechanical stresses appear during the fabrication of the mosaic CVD diamond crystal. Stresses accumulate during accretion of the regions, which grow over substrates with different orientations, in a common structure.

  18. Improved Statistical Processing for Common Conversion Point Stacked Receiver Functions

    NASA Astrophysics Data System (ADS)

    Leahy, G. M.; Collins, J. A.

    2008-12-01

    The interpretation of teleseismic receiver functions is typically limited by poor constraints on the uncertainty of amplitudes of converted phases. In continental regions these problems are overcome by stacking large amounts of data. In oceanic regions, however, data quality is notoriously noisy and the number of events are limited by significantly shorter station deployment times. In order to obtain maximum value from a data set, it is necessary to have estimates of uncertainty. Here we combine a common-conversion point stacking technique with multiple-taper correlation RF estimates that allow frequency domain weighting. We then compute jackknife uncertainties to estimate local uncertainties in RF amplitude. We apply this technique to a continental station in Arabia (RAYN) as a benchmark, and also to the ocean island station at Raratonga, Cook Islands (RAR). The structure we recover matches previous crustal studies at both stations, and provides new interpretations of conversions in the upper mantle. At single stations, this technique works well to resolve crust and mantle structure up to a depth of 100 km. Geographical dispersion of raypaths at larger depths decreases the number of events per bin, and therefore increases the uncertainty in converted amplitude. We therefore propose that this method will be well suited to the analysis of data from seismic arrays.

  19. Comparative evaluation of CVD diamond technologies

    SciTech Connect

    Anthony, T.R.

    1993-01-01

    Chemical vapor deposition (CVD) of diamonds occurs from hydrogen-hydrocarbon gas mixtures in the presence of atomic hydrogen at subatmospheric pressures. Most CVD methods are based on different means of generating and transporting atomic hydrogen in a particular system. Evaluation of these different techniques involves their capital costs, material costs, energy costs, labor costs and the type and quality of diamond that they produce. Currently, there is no universal agreement on which is the best technique and technique selection has been largely driven by the professional background of the user as well as the particular application of interest. This article discusses the criteria for evaluating a process for low-pressure deposition of diamond. Next, a brief history of low-pressure diamond synthesis is reviewed. Several specific processes are addressed, including the hot filament process, hot filament electron-assisted chemical vapor deposition, and plasma generation of atomic hydrogen by glow discharge, microwave discharge, low pressure radio frequency discharge, high pressure DC discharge, high pressure microwave discharge jets, high pressure RF discharge, and high and low pressure flames. Other types of diamond deposition methods are also evaluated. 101 refs., 15 figs.

  20. Primary prevention of CVD: diet

    PubMed Central

    2014-01-01

    Introduction Diet is important in the cause of many chronic diseases. Individual change in dietary behaviour has the potential to decrease the burden of chronic disease, particularly cardiovascular disease (CVD). Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of dietary advice in generally healthy adults without existing CVD or increased CVD risk factors to improve cardiovascular outcomes (mortality, cardiovascular events, and cardiovascular risk factors)? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2014 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 14 studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: advice to increase fibre intake alone, advice to increase fruit and vegetable intake alone, advice to reduce and/or modify fat intake alone, and advice to reduce sodium intake alone. PMID:25268279

  1. Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers.

    PubMed

    Liu, Yanpeng; Yuan, Li; Yang, Ming; Zheng, Yi; Li, Linjun; Gao, Libo; Nerngchamnong, Nisachol; Nai, Chang Tai; Sangeeth, C S Suchand; Feng, Yuan Ping; Nijhuis, Christian A; Loh, Kian Ping

    2014-11-20

    Layer-by-layer-stacked chemical vapour deposition (CVD) graphene films find applications as transparent and conductive electrodes in solar cells, organic light-emitting diodes and touch panels. Common to lamellar-type systems with anisotropic electron delocalization, the plane-to-plane (vertical) conductivity in such systems is several orders lower than its in-plane conductivity. The poor electronic coupling between the planes is due to the presence of transfer process organic residues and trapped air pocket in wrinkles. Here we show the plane-to-plane tunnelling conductivity of stacked CVD graphene layers can be improved significantly by inserting 1-pyrenebutyric acid N-hydroxysuccinimide ester between the graphene layers. The six orders of magnitude increase in plane-to-plane conductivity is due to hole doping, orbital hybridization, planarization and the exclusion of polymer residues. Our results highlight the importance of interfacial modification for enhancing the performance of LBL-stacked CVD graphene films, which should be applicable to other types of stacked two-dimensional films.

  2. Giant enhancement in vertical conductivity of stacked CVD graphene sheets by self-assembled molecular layers.

    PubMed

    Liu, Yanpeng; Yuan, Li; Yang, Ming; Zheng, Yi; Li, Linjun; Gao, Libo; Nerngchamnong, Nisachol; Nai, Chang Tai; Sangeeth, C S Suchand; Feng, Yuan Ping; Nijhuis, Christian A; Loh, Kian Ping

    2014-01-01

    Layer-by-layer-stacked chemical vapour deposition (CVD) graphene films find applications as transparent and conductive electrodes in solar cells, organic light-emitting diodes and touch panels. Common to lamellar-type systems with anisotropic electron delocalization, the plane-to-plane (vertical) conductivity in such systems is several orders lower than its in-plane conductivity. The poor electronic coupling between the planes is due to the presence of transfer process organic residues and trapped air pocket in wrinkles. Here we show the plane-to-plane tunnelling conductivity of stacked CVD graphene layers can be improved significantly by inserting 1-pyrenebutyric acid N-hydroxysuccinimide ester between the graphene layers. The six orders of magnitude increase in plane-to-plane conductivity is due to hole doping, orbital hybridization, planarization and the exclusion of polymer residues. Our results highlight the importance of interfacial modification for enhancing the performance of LBL-stacked CVD graphene films, which should be applicable to other types of stacked two-dimensional films. PMID:25410480

  3. A common stochastic process in solar and stellar flares

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Fang, Cheng

    2015-08-01

    Solar flares, with energies of 1027 - 1032 ergs, are believed to be powered by sudden release of magnetic energy stored in the corona. Stellar flares, observationally 102 - 106 more intense than solar flares, are generally assumed to release energy through the same underlying mechanism: magnetic reconnection. It is thus expected similar statistical properties between two groups of flares. The selected candidates are 23400 solar flares observed over one solar cycle by GOES spacecraft and 3140 stellar flares from Kepler data adapted from the catalog of Balona (MNRAS, 447, 2714, 2015). We examine the flare frequency as a function of duration, energy, and waiting time. The distributions of flare duration and energy can be well understood in the context of the avalanche model of a self-organized criticality (SOC) system (Aschwanden, A&A, 539, 2, 2012). The waiting time distribution of the SOC system can be explained by a non-stationary Poisson process (Li et al. ApJ Letters, 792, 26, 2014).

  4. CVD Growth of Carbon Nanotubes: Structure, Catalyst, and Growth

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance

    2003-01-01

    Carbon nanotubes (CNTs) exhibit extraordinary mechanical and unique electronic properties and hence have been receiving much attention in recent years for their potential in nanoelectronics, field emission devices, scanning probes, high strength composites and many more applications. Catalytic decomposition of hydrocarbon feedstock with the aid of supported transition metal catalysts - also known as chemical vapor deposition (CVD) - has become popular to produce single-walled and multi-walled nanotubes (SWNTs, MWNTs) and multiwalled nanofibers (MWNFs). The ability to grow CNTs on patterned substrates and in vertically aligned arrays, and the simplicity of the process, has made CVD growth of CNTs an attractive approach.

  5. Cold Vacuum Drying (CVD) Set Point Determination

    SciTech Connect

    PHILIPP, B.L.

    2000-01-12

    This document provides the calculations used to determine the error of safety class signals used for the CVD process These errors are used with the Parameter limits to arrive at the initial set point. The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated would result in a safety event. Specifically actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge the SCIC receives signals from MCO pressure (both positive pressure and vacuum) helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.

  6. Electro-cortical manifestations of common vs. proper name processing during reading.

    PubMed

    Adorni, Roberta; Manfredi, Mirella; Proverbio, Alice Mado

    2014-08-01

    The main purpose of the present study was to investigate how proper and common nouns are represented in the brain independent of memory retrieval processes. Participants were instructed to perform a lexical decision task while dense-array EEG was continuously recorded. Both ERP components (namely N400 and P300) and swLORETA suggested that proper name processing engaged a more widespread neural network and required more cognitive resources than common noun processing. Overall, our results come down in favor of the hypothesis that specific effects of proper vs. common noun processing exist, and they suggest a possible neuro-functional segregation of proper vs. common noun processing. The difference in proper and common noun processing seems to emerge at the level of storage or representation of lexical knowledge, and it may crucially depend on their semantic characteristics.

  7. Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication.

    PubMed

    Marchand, Peter; Hassan, Iman A; Parkin, Ivan P; Carmalt, Claire J

    2013-07-14

    The production of thin films of materials has become the attention of a great deal of research throughout academia and industry worldwide owing to the array of applications which utilise them, including electronic devices, gas sensors, solar cells, window coatings and catalytic systems. Whilst a number of deposition techniques are in common use, chemical vapour deposition (CVD) is an attractive process for the production of a wide range of materials due to the control it offers over film composition, coverage and uniformity, even on large scales. Conventional CVD processes can be limited, however, by the need for suitably volatile precursors. Aerosol-assisted (AA)CVD is a solution-based process which relies on the solubility of the precursor, rather than its volatility and thus vastly extends the range of potentially applicable precursors. In addition, AACVD offers extra means to control film morphology and concurrently the properties of the deposited materials. In this perspective we discuss the AACVD process, the influence of deposition conditions on film characteristics and a number of materials and applications to which AACVD has been found beneficial. PMID:23629474

  8. CVD and obesity in transitional Syria: a perspective from the Middle East

    PubMed Central

    Barakat, Hani; Barakat, Hanniya; Baaj, Mohamad K

    2012-01-01

    Purpose Syria is caught in the middle of a disruptive nutritional transition. Its healthcare system is distracted by challenges and successes in other areas while neglecting to address the onslaught of Syria’s cardiovascular disease (CVD) epidemic. Despite the official viewpoint touting improvement in health indicators, current trends jeopardize population health, and several surveys in the Syrian population signal the epidemic spreading far and wide. The goal is to counteract the indifference towards obesity as a threat to Syrian’s health, as the country is slowly becoming a leader in CVD mortality globally. Methods PubMed, World Health Organization, and official government websites were searched for primary surveys in Syria related to CVD morbidity, mortality, and risk factors. Inclusion criteria ensured that results maximized relevance while producing comparable studies. Statistical analysis was applied to detect the most common risk factor and significant differences in risk factor prevalence and CVD rates. Results Obesity remained the prevailing CVD risk factor except in older Syrian men, where smoking and hypertension were more common. CVD mortality was more common in males due to coronary disease, while stroke dominated female mortality. The young workforce is especially impacted, with 50% of CVD mortality occurring before age 65 years and an 81% prevalence of obesity in women over 45 years. Conclusion Syria can overcome its slow response to the CVD epidemic and curb further deterioration by reducing obesity and, thus, inheritance and clustering of risk factors. This can be achieved via multilayered awareness and intensive parental and familial involvement. Extinguishing the CVD epidemic is readily achievable as demonstrated in other countries. PMID:22454558

  9. Very low-pressure VLP-CVD growth of high quality γ-Al 2O 3 films on silicon by multi-step process

    NASA Astrophysics Data System (ADS)

    Tan, Liwen; Zan, Yude; Wang, Jun; Wang, Qiyuan; Yu, Yuanhuan; Wang, Shurui; Liu, Zhongli; Lin, Lanying

    2002-03-01

    γ-Al 2O 3 films were grown on Si (1 0 0) substrates using the sources of TMA (Al(CH 3) 3) and O 2 by very low-pressure chemical vapor deposition. The effects of temperature control on the crystalline quality, surface morphology, uniformity and dielectricity were investigated. It has been found that the γ-Al 2O 3 film prepared at a temperature of 1000°C has a good crystalline quality, but the surface morphology, uniformity and dielectricity were poor due to the etching reaction between O 2 and Si substrate in the initial growth stage. However, under a temperature-varied multi-step process the properties of γ-Al 2O 3 film were improved. The films have a mirror-like surface and the dielectricity was superior to that grown under a single-step process. The uniformity of γ-Al 2O 3 films for 2-in epi-wafer was <5%, it is better than that disclosed elsewhere. In order to improve the crystalline quality, the γ-Al 2O 3 films were annealed for 1 h in O 2 atmosphere.

  10. Controlled incorporation of mid-to-high Z transition metals in CVD diamond

    SciTech Connect

    Biener, M M; Biener, J; Kucheyev, S O; Wang, Y M; El-Dasher, B; Teslich, N E; Hamza, A V; Obloh, H; Mueller-Sebert, W; Wolfer, M; Fuchs, T; Grimm, M; Kriele, A; Wild, C

    2010-01-08

    We report on a general method to fabricate transition metal related defects in diamond. Controlled incorporation of Mo and W in synthetic CVD diamond was achieved by adding volatile metal precursors to the diamond chemical vapor deposition (CVD) growth process. Effects of deposition temperature, grain structure and precursor exposure on the doping level were systematically studied, and doping levels of up to 0.25 at.% have been achieved. The metal atoms are uniformly distributed throughout the diamond grains without any indication of inclusion formation. These results are discussed in context of the kinetically controlled growth process of CVD diamond.

  11. Common Core Units in Business Education: Data Processing and the (W)5.

    ERIC Educational Resources Information Center

    Muscat, Eugene

    This secondary unit of instruction on data processing is one of sixteen Common Core Units in Business Education (CCUBE). The units were designed for implementing the sixteen common core competencies identified in the California Business Education Program Guide for Office and Distributive Education. Each competency-based unit is designed to…

  12. Radiation monitoring with CVD diamonds in BABAR

    NASA Astrophysics Data System (ADS)

    Edwards, A. J.; Bruinsma, M.; Burchat, P.; Kagan, H.; Kass, R.; Kirkby, D.; Petersen, B. A.; Pulliam, T.

    2005-10-01

    The BABAR experiment has been using two polycrystalline chemical-vapor-deposition (pCVD) diamonds for radiation monitoring for nearly 2 years. In July 2005, an additional 12 diamond based radiation sensors will be installed inside the BABAR detector. These diamonds will take over the function of 12 silicon PIN-diodes that are currently used in the radiation protection and monitoring system. We describe our highly successful experience with using pCVD diamond radiation sensors in a high energy physics experiment. We also detail our findings of persistent signal currents and magnetically suppressed erratic dark currents in pCVD diamond based radiation sensors.

  13. Infrared absorption of fs-laser textured CVD diamond

    NASA Astrophysics Data System (ADS)

    Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Polini, R.; Mezzetti, A.; Di Fonzo, F.; Trucchi, D. M.

    2016-03-01

    Nanoscale periodic texturing on polycrystalline CVD diamond surface was performed to obtain a significant increase in optical absorptance to visible and near-infrared radiation. Surface texturing, obtained by the use of fs-laser ultrashort pulses, has been demonstrated to induce a controlled periodicity of ripples of about 170 nm and length of several µm, able to drastically increase the diamond capability of interacting with solar radiation from its intrinsic visible blindness. Ultraviolet and visible Raman spectroscopy has been used to confirm the absence of non-diamond phases resulting from the process for the fs-laser-textured sample. Moreover, here we investigate the optical properties in the range 200 nm-25 µm. Absorbance of fs-laser-textured CVD diamond is considerably higher than the untreated one at every wavelength, resulting in a remarkable increase in the emittance: It points out the need for an optimization of process parameters to enhance the selective absorption capability.

  14. Similar Local and Landscape Processes Affect Both a Common and a Rare Newt Species

    PubMed Central

    Denoël, Mathieu; Perez, Amélie; Cornet, Yves; Ficetola, Gentile Francesco

    2013-01-01

    Although rare species are often the focus of conservation measures, more common species may experience similar decline and suffer from the same threatening processes. We tested this hypothesis by examining, through an information-theoretic approach, the importance of ecological processes at multiple scales in the great crested newt Triturus cristatus, regionally endangered and protected in Europe, and the more common smooth newt, Lissotriton vulgaris. Both species were similarly affected by the same processes, i.e. suitability of aquatic and terrestrial components of their habitat at different scales, connectivity among breeding sites, and the presence of introduced fish. T. cristatus depended more on water depth and aquatic vegetation than L. vulgaris. The results show that environmental pressures threaten both common and rare species, and therefore the more widespread species should not be neglected in conservation programs. Because environmental trends are leading to a deterioration of aquatic and terrestrial habitat features required by newt populations, populations of the common species may follow the fate of the rarest species. This could have substantial conservation implications because of the numerical importance of common species in ecosystems and because commonness could be a transient state moving towards rarity. On the other hand, in agreement with the umbrella species concept, targeting conservation efforts on the most demanding species would also protect part of the populations of the most common species. PMID:23658765

  15. Fracture Characteristics of Monolayer CVD-Graphene

    PubMed Central

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996

  16. Development of CVD mullite coatings for Si-based ceramics

    NASA Astrophysics Data System (ADS)

    Auger, Michael Lawrence

    1999-09-01

    To raise fuel efficiencies, the next generation of engines and fuel systems must be lighter and operate at higher temperatures. Ceramic-based materials, which are considerably lighter than metals and can withstand working temperatures of up to 1400sp°C, have been targeted to replace traditional metal-based components. The materials used in combustion environments must also be capable of withstanding erosion and corrosion caused by combustion gases, particulates, and deposit-forming corrodants. With these demanding criteria, silicon-based ceramics are the leading candidate materials for high temperature engine and heat exchanger structural components. However, these materials are limited in gaseous environments and in the presence of molten salts since they form liquid silicates on exposed surfaces at temperatures as low as 800sp°C. Protective coatings that can withstand higher operating temperatures and corrosive atmospheres must be developed for silicon-based ceramics. Mullite (3Alsb2Osb3{*}2SiOsb2) was targeted as a potential coating material due to its unique ability to resist corrosion, retain its strength, resist creep, and avoid thermal shock failure at elevated temperatures. Several attempts to deposit mullite coatings by various processing methods have met with limited success and usually resulted in coatings that have had pores, cracks, poor adherence, and required thermal post-treatments. To overcome these deficiencies, the direct formation of chemically vapor deposited (CVD) mullite coatings has been developed. CVD is a high temperature atomistic deposition technique that results in dense, adherent crystalline coatings. The object of this dissertation was to further the understanding of the CVD mullite deposition process and resultant coating. The kinetics of CVD mullite deposition were investigated as a function of the following process parameters: temperature, pressure, and the deposition reactor system. An empirical kinetic model was developed

  17. 77 FR 27658 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions AGENCY: Federal Crop Insurance... amend the Common Crop Insurance Regulations, Processing Sweet Corn Crop Insurance Provisions. The.... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24,...

  18. Multiwalled carbon nanotube CVD synthesis, modification, and composite applications

    NASA Astrophysics Data System (ADS)

    Qian, Dali

    Well-aligned carbon multiwall nanotube (MWNT) arrays have been continuously synthesized by a floating catalytic chemical vapor deposition (CVD) method involving the pyrolysis of xylene-ferrocene mixtures. The CVD parameters have been studied to selectively synthesize nanotubes with required dimensions. A mixed tip-root growth model has been proposed for the floating catalytic CVD synthesis. Coarsening of the catalyst particle at the root end promoted MWNT wall coarsening (addition of new concentric graphene shells), while the smaller catalyst particle at the tip contributed to MWNT elongation. A two-step process in which ferrocene was fed for only five minutes to nucleate the DTs was developed to understand if a continuous supply of catalyst was necessary for continued growth. The results show that the ferrocene was only necessary for initial nucleation. To simplify the CVD process further, another two-step synthesis method was developed in which the ferrocene was pre-decomposed so that the nanotube nucleation could be isolated from the growth, enabling quantification of growth mechanisms and kinetics. Mass spectra and hydrocarbon analyses of the CVD reactor tail gas were performed to understand the pyrolysis chemistry. Well-aligned N-doped and Ru-doped MWNT arrays have been produced by pyrolysis of pyridine ferrocene mixtures and xylene-ferrocene-ruthenocene mixtures, respectively. Various material characterization techniques were used to measure the dopant distributions and correlate the catalyst phase with the novel nanotube structures. High-temperature annealing has been shown to be a viable means to remove both the catalyst particles and certain microstructural defects within the CVD-derived DTs. The phase transformation of catalyst during annealing has also been studied. Homogeneous distribution of MWNTs in polystyrene matrices was achieved by an ultrasonic assisted solution-evaporation method. Addition of only 1 wt % DTs to polystyrene increased the polymer

  19. Underestimating risk in women delays diagnosis of CVD.

    PubMed

    Keteepe-Arachi, Tracey; Sharma, Sanjay

    2016-03-01

    CVD remains the most common cause of mortality in women. In 2007, the annual mortality in women secondary to CAD was 4.7 times that of breast cancer. Around 2.8 million women are living with CVD in the UK. There has been an increase in the prevalence of MI in women aged 35 to 54, while a decline in prevalence was observed in age-matched men. Difficulty in evaluating symptoms of ischaemic heart disease in women is well documented and remains challenging because of their atypical nature. The main gender difference is that women tend to present less frequently with exertional symptoms of chest pain before an AMI. Although men and women share classic cardiovascular risk factors the relative importance of each risk factor may be gender specific. The impact of smoking is greater in women than men, especially in those under 50. Diabetes is a more potent risk factor for fatal CHD in women than men. Risk factors specific to women include postmenopausal status, hysterectomy and complications during pregnancy. Women who develop gestational diabetes mellitus or pre-eclampsia more than double their risk of CVD later in life. Transition to the menopause is associated with a worsening CHD risk profile. After the menopause women may experience an increase in weight, alteration in fat distribution and an increase in other CVD risk factors such as diabetes and a more adverse lipid profile. Pharmacological stress testing is preferred for diagnosing CAD in females with lower exercise capacity. Stress cardiomyopathy is triggered by intense, unexpected emotional or physical stress and is characterised by transient apical systolic dysfunction or ballooning of the left ventricle. The syndrome predominantly affects postmenopausal women. Women presenting with STEMI have worse outcomes compared with men. However, in those presenting with NSTEMI there were no differences in outcomes. PMID:27214974

  20. Controlled CVD growth of Cu-Sb alloy nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-01

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu11Sb3 nanowires (NWs), Cu2Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu11Sb3 NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu11Sb3 nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu11Sb3 nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co.

  1. CVD 908, CVD 908-htrA, and CVD 909 live oral typhoid vaccines: a logical progression.

    PubMed

    Tacket, Carol O; Levine, Myron M

    2007-07-15

    Typhoid fever remains an important public health problem in many parts of the world. Despite the availability of oral Ty21a (Vivotif; Berna Biotech) and parenteral Vi polysaccharide vaccine (Typhim Vi; Aventis Pasteur), improved typhoid fever vaccines have been sought. These include a series of vaccine candidates developed at the Center for Vaccine Development, University of Maryland, based on attenuation of Salmonella enterica serovar Typhi by deletions in the aroC, aroD, and htrA genes. These vaccine candidates, designated "CVD 908," "CVD 908-htrA," and "CVD 909," have been developed and tested in volunteers with variable success. This review summarizes the clinical data that directed the logical progression of this vaccine development strategy.

  2. Developing Common Measures in Evaluation Capacity Building: An Iterative Science and Practice Process

    ERIC Educational Resources Information Center

    Labin, Susan N.

    2014-01-01

    A fundamental reason for doing evaluation capacity building (ECB) is to improve program outcomes. Developing common measures of outcomes and the activities, processes, and factors that lead to these outcomes is an important step in moving the science and the practice of ECB forward. This article identifies a number of existing ECB measurement…

  3. Common Processes of Change in Psychotherapy and Seven Other Social Interactions.

    ERIC Educational Resources Information Center

    Lampropoulos, Georgios K.

    2001-01-01

    Argues that change processes in psychotherapy can be understood more clearly by comparing them with other change-inducing social relationships. In showing how this may be done, describes different social interactions and discusses them in terms of a parsimonious set of common factors in change. Stresses the importance of the cross-fertilization of…

  4. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    SciTech Connect

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  5. Electroluminescent and photosensitive films prepared by DTC-CVD method

    NASA Astrophysics Data System (ADS)

    Zavyalova, Ludmila V.; Svechnikov, George S.

    1997-08-01

    The original chemical vapor deposition (CVD) method used in fabrication A2B6 films, photodetectors and electro- luminescent emitters based on these films have been reported. The basic idea behind this method is thermal decomposition of dithiocarbamates (DTC). The proposed method does not require expensive materials and vacuum equipment. Moreover, the DTC-CVD method differs from the known CVD methods in source material delivery method, a low deposition temperature and a non-sealed reactor geometry. Both CdS and CdS1-xSex were obtained at temperature of 240- 280 degrees C and were activated directly in the grown process by Cu and In, or by annealing in mixture CdS: Cu, Cl. Photodetectors with absorption maxima at 500-750 nm have dark conductivity (sigma) D EQ 10-9 divided by 10-8 (Omega) -1 cm-1 and photoconductivity (sigma) ph equals 10-2 divided by 10-1 (Omega) -1 cm-1 at 200 lux. CdS films with thickness of 6 divided by 12 micrometers have been used as sandwich-type photoconductor detectors. Electroluminescence ZnS:Mn films prepared by DTC-CVD method at the substrate temperature of 200 DIV 300 degrees C without additional annealing have high luminance and luminous efficiency. Deposition at a law temperature makes it possible to use flexible polymer films or low cost glasses as substrates. Because the technique is rather simple and can be applied to obtain all types of thin film electroluminescence structure layers, we expect a low price of light sources based on these films.

  6. Dependent Neyman type A processes based on common shock Poisson approach

    NASA Astrophysics Data System (ADS)

    Kadilar, Gamze Özel; Kadilar, Cem

    2016-04-01

    The Neyman type A process is used for describing clustered data since the Poisson process is insufficient for clustering of events. In a multivariate setting, there may be dependencies between multivarite Neyman type A processes. In this study, dependent form of the Neyman type A process is considered under common shock approach. Then, the joint probability function are derived for the dependent Neyman type A Poisson processes. Then, an application based on forest fires in Turkey are given. The results show that the joint probability function of the dependent Neyman type A processes, which is obtained in this study, can be a good tool for the probabilistic fitness for the total number of burned trees in Turkey.

  7. Intention processing in communication: a common brain network for language and gestures.

    PubMed

    Enrici, Ivan; Adenzato, Mauro; Cappa, Stefano; Bara, Bruno G; Tettamanti, Marco

    2011-09-01

    Human communicative competence is based on the ability to process a specific class of mental states, namely, communicative intention. The present fMRI study aims to analyze whether intention processing in communication is affected by the expressive means through which a communicative intention is conveyed, that is, the linguistic or extralinguistic gestural means. Combined factorial and conjunction analyses were used to test two sets of predictions: first, that a common brain network is recruited for the comprehension of communicative intentions independently of the modality through which they are conveyed; second, that additional brain areas are specifically recruited depending on the communicative modality used, reflecting distinct sensorimotor gateways. Our results clearly showed that a common neural network is engaged in communicative intention processing independently of the modality used. This network includes the precuneus, the left and right posterior STS and TPJ, and the medial pFC. Additional brain areas outside those involved in intention processing are specifically engaged by the particular communicative modality, that is, a peri-sylvian language network for the linguistic modality and a sensorimotor network for the extralinguistic modality. Thus, common representation of communicative intention may be accessed by modality-specific gateways, which are distinct for linguistic versus extralinguistic expressive means. Taken together, our results indicate that the information acquired by different communicative modalities is equivalent from a mental processing standpoint, in particular, at the point at which the actor's communicative intention has to be reconstructed.

  8. Effective use of a common problem-solving process as an integral part of TQM.

    PubMed

    Pescod, W D

    1994-01-01

    Many organizations implement TQM programmes, but it is estimated that only 25 per cent of them can be classified as successful in terms of delivering the benefits that should be expected from them. Failure to create the conditions through systems and procedures which highlight problems in the organization and provide common approaches to solving them (such as an "in-company" problem-solving process) is often a main reason for such a low success rate. The benefits of successfully implementing the extensive use of a common problem-solving process and adopting a management style at all levels that supports, allows and encourages employees to use it are enormous. The problem-solving process should be an integral part of the TQM initiative and supported by ongoing training and facilitation, and used by management at all levels.

  9. Recent results on CVD diamond radiation sensors

    NASA Astrophysics Data System (ADS)

    Weilhammer, P.; Adam, W.; Bauer, C.; Berdermann, E.; Bogani, F.; Borchi, E.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; v. d. Eijk, R.; van Eijk, B.; Fallou, A.; Fish, D.; Fried, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Knopfle, K. T.; Krammer, M.; Manfredi, P. F.; Meier, D.; LeNormand; Pan, L. S.; Pernegger, H.; Pernicka, M.; Plano, R.; Re, V.; Riester, J. L.; Roe, S.; Roff; Rudge, A.; Schieber, M.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Turchetta, R.; RD 42 Collaboration

    1998-02-01

    CVD diamond radiation sensors are being developed for possible use in trackers in the LHC experiments. The diamond promises to be radiation hard well beyond particle fluences that can be tolerated by Si sensors. Recent results from the RD 42 collaboration on charge collection distance and on radiation hardness of CVD diamond samples will be reported. Measurements with diamond tracking devices, both strip detectors and pixel detectors, will be discussed. Results from beam tests using a diamond strip detector which was read out with fast, 25 ns shaping time, radiation-hard pipeline electronics will be presented.

  10. Development of CVD Mullite Coatings for SiC Fibers

    SciTech Connect

    Sarin, V.K.; Varadarajan, S.

    2000-03-15

    A process for depositing CVD mullite coatings on SiC fibers for enhanced oxidation and corrosion, and/or act as an interfacial protective barrier has been developed. Process optimization via systematic investigation of system parameters yielded uniform crystalline mullite coatings on SiC fibers. Structural characterization has allowed for tailoring of coating structure and therefore properties. High temperature oxidation/corrosion testing of the optimized coatings has shown that the coatings remain adherent and protective for extended periods. However, preliminary tests of coated fibers showed considerable degradation in tensile strength.

  11. A common framework of signal processing in the induction of cerebellar LTD and cortical STDP.

    PubMed

    Honda, Minoru; Urakubo, Hidetoshi; Koumura, Takuya; Kuroda, Shinya

    2013-07-01

    Cerebellar long-term depression (LTD) and cortical spike-timing-dependent synaptic plasticity (STDP) are two well-known and well-characterized types of synaptic plasticity. Induction of both types of synaptic plasticity depends on the spike timing, pairing frequency, and pairing numbers of two different sources of spiking. This implies that the induction of synaptic plasticity may share common frameworks in terms of signal processing regardless of the different signaling pathways involved in the two types of synaptic plasticity. Here we propose that both types share common frameworks of signal processing for spike-timing, pairing-frequency, and pairing-numbers detection. We developed system models of both types of synaptic plasticity and analyzed signal processing in the induction of synaptic plasticity. We found that both systems have upstream subsystems for spike-timing detection and downstream subsystems for pairing-frequency and pairing-numbers detection. The upstream systems used multiplication of signals from the feedback filters and nonlinear functions for spike-timing detection. The downstream subsystems used temporal filters with longer time constants for pairing-frequency detection and nonlinear switch-like functions for pairing-numbers detection, indicating that the downstream subsystems serve as a leaky integrate-and-fire system. Thus, our findings suggest that a common conceptual framework for the induction of synaptic plasticity exists despite the differences in molecular species and pathways.

  12. A signal and image processing object-based system using CLOS. [Common LISP Object System (CLOS)

    SciTech Connect

    Hernandez, J.E.; Lu, Shin-Yee; Sherwood, R.J.; Clark, G.A.; Lawver, B.S.

    1991-09-01

    This paper presents a LISP based system for signal and image processing. Using an object based approach the system integrates signal and image processing algorithms, supervised and unsupervised neural network algorithms, and mild-level computer vision capabilities, into a cohesive framework. This framework is suitable for prototyping complex algorithms dealing with multiple classes of data. The system, known as VISION, is currently used as a prototyping environment for wide range of scientific applications internal to LLNL. This paper highlights some of the capabilities of VISION, and how they were implemented using the Common LISP Object System, CLOS. 13 refs.

  13. Thin CVD Coating Protects Titanium Aluminide Alloys

    NASA Technical Reports Server (NTRS)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  14. Surprise and error: common neuronal architecture for the processing of errors and novelty.

    PubMed

    Wessel, Jan R; Danielmeier, Claudia; Morton, J Bruce; Ullsperger, Markus

    2012-05-30

    According to recent accounts, the processing of errors and generally infrequent, surprising (novel) events share a common neuroanatomical substrate. Direct empirical evidence for this common processing network in humans is, however, scarce. To test this hypothesis, we administered a hybrid error-monitoring/novelty-oddball task in which the frequency of novel, surprising trials was dynamically matched to the frequency of errors. Using scalp electroencephalographic recordings and event-related functional magnetic resonance imaging (fMRI), we compared neural responses to errors with neural responses to novel events. In Experiment 1, independent component analysis of scalp ERP data revealed a common neural generator implicated in the generation of both the error-related negativity (ERN) and the novelty-related frontocentral N2. In Experiment 2, this pattern was confirmed by a conjunction analysis of event-related fMRI, which showed significantly elevated BOLD activity following both types of trials in the posterior medial frontal cortex, including the anterior midcingulate cortex (aMCC), the neuronal generator of the ERN. Together, these findings provide direct evidence of a common neural system underlying the processing of errors and novel events. This appears to be at odds with prominent theories of the ERN and aMCC. In particular, the reinforcement learning theory of the ERN may need to be modified because it may not suffice as a fully integrative model of aMCC function. Whenever course and outcome of an action violates expectancies (not necessarily related to reward), the aMCC seems to be engaged in evaluating the necessity of behavioral adaptation.

  15. Surprise and error: common neuronal architecture for the processing of errors and novelty.

    PubMed

    Wessel, Jan R; Danielmeier, Claudia; Morton, J Bruce; Ullsperger, Markus

    2012-05-30

    According to recent accounts, the processing of errors and generally infrequent, surprising (novel) events share a common neuroanatomical substrate. Direct empirical evidence for this common processing network in humans is, however, scarce. To test this hypothesis, we administered a hybrid error-monitoring/novelty-oddball task in which the frequency of novel, surprising trials was dynamically matched to the frequency of errors. Using scalp electroencephalographic recordings and event-related functional magnetic resonance imaging (fMRI), we compared neural responses to errors with neural responses to novel events. In Experiment 1, independent component analysis of scalp ERP data revealed a common neural generator implicated in the generation of both the error-related negativity (ERN) and the novelty-related frontocentral N2. In Experiment 2, this pattern was confirmed by a conjunction analysis of event-related fMRI, which showed significantly elevated BOLD activity following both types of trials in the posterior medial frontal cortex, including the anterior midcingulate cortex (aMCC), the neuronal generator of the ERN. Together, these findings provide direct evidence of a common neural system underlying the processing of errors and novel events. This appears to be at odds with prominent theories of the ERN and aMCC. In particular, the reinforcement learning theory of the ERN may need to be modified because it may not suffice as a fully integrative model of aMCC function. Whenever course and outcome of an action violates expectancies (not necessarily related to reward), the aMCC seems to be engaged in evaluating the necessity of behavioral adaptation. PMID:22649231

  16. Selected Topics in CVD Diamond Research

    NASA Astrophysics Data System (ADS)

    Koizumi, Satoshi; Nebel, Christoph E.; Nesladek, Milos

    2006-10-01

    Since the discovery of Chemical Vapor Deposition (CVD) diamond growth in 1976, the steady scientific progress often resulted in surprising new discoveries and breakthroughs. This brought us to the idea to publish the special issue Selected Topics in CVD Diamond Research in physica status solidi (a), reflecting such advancements and interesting results at the leading edge of diamond research.The present issue summarizes this progress in the CVD diamond field by selecting contributions from several areas such as superconductivity, super-excitonic radiation, quantum computing, bio-functionalization, surface electronic properties, the nature of phosphorus doping, transport properties in high energy detectors, CVD growth and properties of nanocrystalline diamond. In all these directions CVD diamond appears to be very competitive in comparison with other semiconducting materials.As Editors of this special issue, we must admit that the selection is biased by our opinion. Nonetheless, we are sure that each contribution introduces new ideas and results which will improve the understanding of the current level of physics and chemistry of this attractive wide-bandgap semiconductor and which will help to bring it closer to applications.All submissions were invited based on the contributions of the authors to their specific research field. The Feature Articles have the format of topical reviews to give the reader a comprehensive summary. Partially, however, they are written in research paper style to report new results of ongoing research.We hope that this issue will attract the attention of a broad community of scientists and engineers, and that it will facilitate the utilization of diamond in electronic applications and technologies of the future.

  17. Interference in character processing reflects common perceptual expertise across writing systems.

    PubMed

    Wong, Alan C-N; Qu, Zhiyi; McGugin, Rankin W; Gauthier, Isabel

    2011-01-01

    Perceptual expertise, even within the visual domain, can take many forms, depending on the goals of the practiced task and the visual information available to support performance. Given the same goals, expertise for different categories can recruit common perceptual resources, which could lead to interference during concurrent processing. We measured whether irrelevant characters of one writing system produce interference during visual search for characters of another writing system, as a function of expertise. Chinese-English bilinguals and English readers searched for target Roman letters among other distractors in a rapid serial visual presentation (RSVP) sequence. Chinese character distractors interfered with Roman letter search more than pseudoletter distractors, only for bilingual readers, suggesting a common perceptual bottleneck for Roman and Chinese processing in experts with both domains. We ruled out an explanation at the level of phonetic codes, by showing that concurrent verbal rehearsal has no effect on the magnitude of such interference. These findings converge with results showing competition between faces and cars in car experts to suggest that different domains of expertise that overlap in their cortical representations also possess a common perceptual bottleneck. PMID:21245276

  18. Common or redundant neural circuits for duration processing across audition and touch.

    PubMed

    Butler, John S; Molholm, Sophie; Fiebelkorn, Ian C; Mercier, Manuel R; Schwartz, Theodore H; Foxe, John J

    2011-03-01

    Certain features of objects or events can be represented by more than a single sensory system, such as roughness of a surface (sight, sound, and touch), the location of a speaker (audition and sight), and the rhythm or duration of an event (by all three major sensory systems). Thus, these properties can be said to be sensory-independent or amodal. A key question is whether common multisensory cortical regions process these amodal features, or does each sensory system contain its own specialized region(s) for processing common features? We tackled this issue by investigating simple duration-detection mechanisms across audition and touch; these systems were chosen because fine duration discriminations are possible in both. The mismatch negativity (MMN) component of the human event-related potential provides a sensitive metric of duration processing and has been elicited independently during both auditory and somatosensory investigations. Employing high-density electroencephalographic recordings in conjunction with intracranial subdural recordings, we asked whether fine duration discriminations, represented by the MMN, were generated in the same cortical regions regardless of the sensory modality being probed. Scalp recordings pointed to statistically distinct MMN topographies across senses, implying differential underlying cortical generator configurations. Intracranial recordings confirmed these noninvasive findings, showing generators of the auditory MMN along the superior temporal gyrus with no evidence of a somatosensory MMN in this region, whereas a robust somatosensory MMN was recorded from postcentral gyrus in the absence of an auditory MMN. The current data clearly argue against a common circuitry account for amodal duration processing. PMID:21368051

  19. Ultratough CVD single crystal diamond and three dimensional growth thereof

    DOEpatents

    Hemley, Russell J.; Mao, Ho-kwang; Yan, Chih-shiue

    2009-09-29

    The invention relates to a single-crystal diamond grown by microwave plasma chemical vapor deposition that has a toughness of at least about 30 MPa m.sup.1/2. The invention also relates to a method of producing a single-crystal diamond with a toughness of at least about 30 MPa m.sup.1/2. The invention further relates to a process for producing a single crystal CVD diamond in three dimensions on a single crystal diamond substrate.

  20. Selective, pulsed CVD of platinum on microfilament gas sensors

    SciTech Connect

    Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Moreno, D.J.; Hughes, R.C.; Huber, R.J.; Senturia, S.D.

    1996-05-01

    A post-processing, selective micro-chemical vapor deposition (``micro-CVD``) technology for the deposition of catalytic films on surface-micromachined, nitride-passivated polysilicon filaments has been investigated. Atmospheric pressure deposition of Pt on microfilaments was accomplished by thermal decomposition of Pt acetylacetonate; deposition occurs selectively only on those filaments which are electrically heated. Catalyst morphology, characterized by SEM, can be controlled by altering deposition time, filament temperature, and through the use of pulsed heating of the filament during deposition. Morphology plays an important role in determining the sensitivity of these devices when used as combustible gas sensors.

  1. Spray CVD for Making Solar-Cell Absorber Layers

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Harris, Jerry; Jin, Michael H.; Hepp, Aloysius

    2007-01-01

    Spray chemical vapor deposition (spray CVD) processes of a special type have been investigated for use in making CuInS2 absorber layers of thin-film solar photovoltaic cells from either of two subclasses of precursor compounds: [(PBu3) 2Cu(SEt)2In(SEt)2] or [(PPh3)2Cu(SEt)2 In(SEt)2]. The CuInS2 films produced in the experiments have been characterized by x-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and four-point-probe electrical tests.

  2. Applicability of the Existing CVD Risk Assessment Tools to Type II Diabetics in Oman: A Review.

    PubMed

    Al-Rawahi, Abdulhakeem; Lee, Patricia

    2015-09-01

    Patients with type II diabetes (T2DM) have an elevated risk for cardiovascular disease (CVD), and it is considered to be a leading cause of morbidity and premature mortality in these patients. Many traditional risk factors such as age, male sex, hypertension, dyslipidemia, glycemic control, diabetes duration, renal dysfunction, obesity, and smoking have been studied and identified as independent factors for CVD. Quantifying the risk of CVD among diabetics using the common risk factors in order to plan the treatment and preventive measures is important in the management of these patients as recommended by many clinical guidelines. Therefore, several risk assessment tools have been developed in different parts of the world for this purpose. These include the tools that have been developed for general populations and considered T2DM as a risk factor, and the tools that have been developed for T2DM populations specifically. However, due to the differences in sociodemographic factors and lifestyle patterns, as well as the differences in the distribution of various CVD risk factors in different diabetic populations, the external applicability of these tools on different populations is questionable. This review aims to address the applicability of the existing CVD risk models to the Omani diabetic population.

  3. Common African cooking processes do not affect the aflatoxin binding efficacy of refined calcium montmorillonite clay

    PubMed Central

    Elmore, Sarah E.; Mitchell, Nicole; Mays, Travis; Brown, Kristal; Marroquin-Cardona, Alicia; Romoser, Amelia; Phillips, Timothy D.

    2013-01-01

    Aflatoxins are common contaminants of staple crops, such as corn and groundnuts, and a significant cause of concern for food safety and public health in developing countries. Aflatoxin B1 (AFB1) has been implicated in the etiology of acute and chronic disease in humans and animals, including growth stunting, liver cancer and death. Cost effective and culturally acceptable intervention strategies for the reduction of dietary AFB1 exposure are of critical need in populations at high risk for aflatoxicosis. Fermented gruels consisting of cornmeal are a common source for such exposure and are consumed by both children and adults in many countries with a history of frequent, high-level aflatoxin exposure. One proposed method to reduce aflatoxins in the diet is to include a selective enterosorbent, Uniform Particle Size NovaSil (UPSN), as a food additive in contaminated foods. For UPSN to be effective in this capacity, it must be stable in complex, acidic mixtures that are often exposed to heat during the process of fermented gruel preparation. Therefore, the objective of the present study was to test the ability of UPSN to sorb aflatoxin while common cooking conditions were applied. The influence of fermentation, heat treatment, acidity, and processing time were investigated with and without UPSN. Analyses were performed using the field-practical Vicam assay with HPLC verification of trends. Our findings demonstrated that UPSN significantly reduced aflatoxin levels (47-100%) in cornmeal, regardless of processing conditions. Upon comparison of each element tested, time appeared to be the primary factor influencing UPSN efficacy. The greatest decreases in AFB1 were reported in samples allowed to incubate (with or without fermentation) for 72 hrs. This data suggests that addition of UPSN to staple corn ingredients likely to contain aflatoxins would be a sustainable approach to reduce exposure. PMID:24311894

  4. Controlled CVD growth of Cu-Sb alloy nanostructures.

    PubMed

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-12

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu(11)Sb(3) nanowires (NWs), Cu(2)Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu(11)Sb(3) NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu(11)Sb(3) nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu(11)Sb(3) nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co. PMID:21757793

  5. Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process.

    PubMed

    Tian, Ruiyuan; Liu, Haiqiang; Jiang, Yi; Chen, Jiankun; Tan, Xinghua; Liu, Guangyao; Zhang, Lina; Gu, Xiaohua; Guo, Yanjun; Wang, Hanfu; Sun, Lianfeng; Chu, Weiguo

    2015-06-01

    Application of LiFePO4 (LFP) to large current power supplies is greatly hindered by its poor electrical conductivity (10(-9) S cm(-1)) and sluggish Li+ transport. Carbon coating is considered to be necessary for improving its interparticle electronic conductivity and thus electrochemical performance. Here, we proposed a novel, green, low cost and controllable CVD approach using solid glucose as carbon source which can be extended to most cathode and anode materials in need of carbon coating. Hydrothermally synthesized LFP nanorods with optimized thickness of carbon coated by this recipe are shown to have superb high-rate performance, high energy, and power densities, as well as long high-rate cycle lifetime. For 200 C (18s) charge and discharge, the discharge capacity and voltage are 89.69 mAh g(-1) and 3.030 V, respectively, and the energy and power densities are 271.80 Wh kg(-1) and 54.36 kW kg(-1), respectively. The capacity retention of 93.0%, and the energy and power density retention of 93.6% after 500 cycles at 100 C were achieved. Compared to the conventional carbon coating through direct mixing with glucose (or other organic substances) followed by annealing (DMGA), the carbon phase coated using this CVD recipe is of higher quality and better uniformity. Undoubtedly, this approach enhances significantly the electrochemical performance of high power LFP and thus broadens greatly the prospect of its applications to large current power supplies such as electric and hybrid electric vehicles.

  6. Towards a Common Platform to Support Business Processes, Services and Semantics

    NASA Astrophysics Data System (ADS)

    Piprani, Baba

    The search for the Holy Grail in achieving interoperability of business processes, services and semantics continues with every new type or search for the Silver Bullet. Most approaches towards interoperability either are focusing narrowly on the simplistic notion using technology supporting a cowboy-style development without much regard to metadata or semantics. At the same time, the distortions on semantics created by many of current modeling paradigms and approaches - including the disharmony created by multiplicity of parallel approaches to standardization - are not helping us resolve the real issues facing knowledge and semantics management. This paper will address some of the issues facing us, like: What have we achieved? Where did we go wrong? What are we doing right? - providing an ipso-facto encapsulated candid snapshot on an approach to harmonizing our approach to interoperability, and propose a common platform to support Business Processes, Services and Semantics.

  7. Dopant Incorporation Efficiency in CVD Silicon Carbide Epilayers

    NASA Technical Reports Server (NTRS)

    Larkin, D. J.

    1996-01-01

    In order to ensure reproducible and reliable SiC semiconductor device characteristics, controlled dopant incorporation must be accomplished. Some of the many factors which greatly influence dopant incorporation are the site-competition effect, SiC(0001) substrate polarity, substrate temperature, and the dopant-source reactor concentration. In this paper, dopant incorporation is considered and compared for various dopants in the context of dopant incorporation efficiency. By using secondary ion mass spectrometry (SIMS), the relative dopant incorporation efficiencies were calculated by dividing the SIMS determined dopant concentration in the resulting epitaxial layer by the intentional gas phase dopant concentration used during the SiC CVD. Specifically, the relative magnitudes of dopant incorporation efficiencies for nitrogen, phosphorus, and boron in 6H-SiC (0001) Si-face epitaxial layers are compared as a function of the site-competition effect and the dopant-source reactor concentrations. This serves as a first approximation for comparison of the relative 'doping potencies' of some common dopants used in SiC CVD epitaxial growth.

  8. Recent Results with CVD Diamond Trackers

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; White, C.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-08-01

    We present recent results on the use of Chemical Vapor Deposition (CVD) diamond microstrip detectors for charged particle tracking. A series of detectors was fabricated using 1 x 1 cm 2 diamonds. Good signal-to-noise ratios were observed using both slow and fast readout electronics. For slow readout electronics, 2 μs shaping time, the most probable signal-to-noise ratio was 50 to 1. For fast readout electronics, 25 ns peaking time, the most probable signal-to-noise ratio was 7 to 1. Using the first 2 x 4 cm 2 diamond from a production CVD reactor with slow readout electronics, the most probable signal-to-noise ratio was 23 to 1. The spatial resolution achieved for the detectors was consistent with the digital resolution expected from the detector pitch.

  9. Scrolling of Suspended CVD Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Martynov, Oleg; Yeom, Sinchul; Bockrath, Marc; UC: Riverside Team

    Carbon Nanoscrolls, one dimensional spiral forms of graphitic carbon, have attracted recent interest due to their novel proposed properties. Although various production methods and studies of carbon nanoscrolls have been performed, low yield and poor controllability of their synthesis have slowed progress in this field. Suspended graphene membranes and carbon nanotubes have been predicted as promising systems for the formation of graphene scrolls. We have suspended chemical vapor deposition (CVD)-grown graphene over large holes in a Si/SiO2 substrate to make suspended membranes upon which nanotubes are placed. Initial experiments have been performed showing that tears or cuts of the suspended sheet can initiate scrolling. Our latest progress towards carbon nanotube initiated formation of graphene scrolls and suspended CVD graphene scrolling, along with measurements of these novel structures will be presented.

  10. Are depictive gestures like pictures? commonalities and differences in semantic processing.

    PubMed

    Wu, Ying Choon; Coulson, Seana

    2011-12-01

    Conversation is multi-modal, involving both talk and gesture. Does understanding depictive gestures engage processes similar to those recruited in the comprehension of drawings or photographs? Event-related brain potentials (ERPs) were recorded from neurotypical adults as they viewed spontaneously produced depictive gestures preceded by congruent and incongruent contexts. Gestures were presented either dynamically in short, soundless video-clips, or statically as freeze frames extracted from gesture videos. In a separate ERP experiment, the same participants viewed related or unrelated pairs of photographs depicting common real-world objects. Both object photos and gesture stimuli elicited less negative ERPs from 400 to 600ms post-stimulus when preceded by matching versus mismatching contexts (dN450). Object photos and static gesture stills also elicited less negative ERPs between 300 and 400ms post-stimulus (dN300). Findings demonstrate commonalities between the conceptual integration processes underlying the interpretation of iconic gestures and other types of image-based representations of the visual world.

  11. Are depictive gestures like pictures? Commonalities and differences in semantic processing

    PubMed Central

    Wu, Ying Choon; Coulson, Seana

    2011-01-01

    Conversation is multi-modal, involving both talk and gesture. Does understanding depictive gestures engage processes similar to those recruited in the comprehension of drawings or photographs? Event-related brain potentials (ERPs) were recorded from neurotypical adults as they viewed spontaneously produced depictive gestures preceded by congruent and incongruent contexts. Gestures were presented either dynamically in short, soundless video-clips, or statically as freeze frames extracted from gesture videos. In a separate ERP experiment, the same participants viewed related or unrelated pairs of photographs depicting common real-world objects. Both object photos and gesture stimuli elicited less negative ERPs from 400–600ms post-stimulus when preceded by matching versus mismatching contexts (dN450). Object photos and static gesture stills also elicited less negative ERPS between 300 and 400ms post-stimulus (dN300). Findings demonstrate commonalities between the conceptual integration processes underlying the interpretation of iconic gestures and other types of image-based representations of the visual world. PMID:21864890

  12. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  13. Plasma CVD of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Cruden, B.; Hash, D.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Carbon nanotubes(CNT) exhibit remarkable mechanical and unique electronic properties and thus have created excitement in the research community about their potential in electronics, computing, sensor and structural applications. Realization of these applications critically depends on the ability to control the properties(such as diameter, chirality) as well purity. We have investigated CNT growth using an inductively coupled plasma(ICP) process using hydrocarbon feedstock. The catalyst required for nanotube growth consists of thin sputtered layers of aluminum and iron(10 nm each) and aligned carbon nanotubes have been obtained. Optical emission diagnostics as well as a plasma modeling effort have been undertaken to understand growth mechanisms. This presentation will discuss growth characteristics under various pressure, power and feedgas compositions and our understanding from modeling and diagnostics.

  14. Temperature threshold and water role in CVD growth of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Geng, Junfeng; Motta, Marcelo; Angels, Volker; Luo, Jikui; Johnson, Brian

    2016-02-01

    An in-depth understanding of the growth process of single walled carbon nanotubes is of vital importance to the control of the yield of the material and its carbon structure. Using a nickel/silica (Ni/SiOx) catalyst we have conducted a series of growth experiments with a chemical vapour deposition (CVD) system. We find that there is a temperature threshold in the CVD process, and if the reaction temperature sets above this threshold there will be no growth of the nanotubes. In association with this temperature effect, water plays an important role in the promotion or termination of the growth of single walled carbon nanotubes.

  15. The Effect of Excess Carbon on the Crystallographic, Microstructural, and Mechanical Properties of CVD Silicon Carbide Fibers

    SciTech Connect

    Marzik, J V; Croft, W J; Staples, R J; MoberlyChan, W J

    2006-12-05

    Silicon carbide (SiC) fibers made by chemical vapor deposition (CVD) are of interest for organic, ceramic, and metal matrix composite materials due their high strength, high elastic modulus, and retention of mechanical properties at elevated processing and operating temperatures. The properties of SCS-6{trademark} silicon carbide fibers, which are made by a commercial process and consist largely of stoichiometric SiC, were compared with an experimental carbon-rich CVD SiC fiber, to which excess carbon was added during the CVD process. The concentration, homogeneity, and distribution of carbon were measured using energy dispersive x-ray spectroscopy (SEM/EDS). The effect of excess carbon on the tensile strength, elastic modulus, and the crystallographic and microstructural properties of CVD silicon carbide fibers was investigated using tensile testing, x-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  16. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    SciTech Connect

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  17. Transfer of Training between Music and Speech: Common Processing, Attention, and Memory

    PubMed Central

    Besson, Mireille; Chobert, Julie; Marie, Céline

    2011-01-01

    After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than non-musicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-term experience in one domain influences the building-up of abstract and specific percepts in another domain, results are taken as evidence for transfer of training effects. Moreover, we also discuss the influence of attention and working memory on transfer effects and we highlight the usefulness of the event-related potentials method to disentangle the different processes that unfold in the course of music and speech perception. Finally, we give an overview of an on-going longitudinal project with children aimed at testing transfer effects from music to different levels and aspects of speech processing. PMID:21738519

  18. Crystallographic anisotropy of growth and etch rates of CVD diamond

    SciTech Connect

    Wolfer, M; Biener, J; El-dasher, B S; Biener, M M; Hamza, A V; Kriele, A; Wild, C

    2008-08-05

    The investigation of orientation dependent crystal growth and etch processes can provide deep insights into the underlying mechanisms and thus helps to validate theoretical models. Here, we report on homoepitaxial diamond growth and oxygen etch experiments on polished, polycrystalline CVD diamond wafers by use of electron backscatter diffraction (EBSD) and white-light interferometry (WLI). Atomic force microscopy (AFM) was applied to provide additional atomic scale surface morphology information. The main advantage of using polycrystalline diamond substrates with almost random grain orientation is that it allows determining the orientation dependent growth (etch) rate for different orientations within one experiment. Specifically, we studied the effect of methane concentration on the diamond growth rate, using a microwave plasma CVD process. At 1 % methane concentration a maximum of the growth rate near <100> and a minimum near <111> is detected. Increasing the methane concentration up to 5 % shifts the maximum towards <110> while the minimum stays at <111>. Etch rate measurements in a microwave powered oxygen plasma reveal a pronounced maximum at <111>. We also made a first attempt to interpret our experimental data in terms of local micro-faceting of high-indexed planes.

  19. Formation pathway, structural characterization and optimum processing parameters of synthetic topaz – Al{sub 2}SiO{sub 4}(OH,F){sub 2} – by CVD

    SciTech Connect

    Trujillo-Vázquez, E. Pech-Canul, M.I.

    2015-10-15

    A novel synthesis route for topaz (Al{sub 2}SiO{sub 4}(OH,F){sub 2}) by chemical vapor deposition (CVD) using Na{sub 2}SiF{sub 6} as solid precursor was developed. Synthesis tests were conducted with and without a flow of nitrogen, positioning the Al(OH){sub 3} substrate at 0° and 90° with respect to the gas flow direction, at 700 and 750 °C, for 60 and 90 min, respectively. It was found that topaz is synthesized through two pathways, directly and indirectly, involving a series of endothermic and exothermic, heterogeneous and homogeneous reactions between Al(OH){sub 3} and SiF{sub 4}(g). Analytical structural determination confirmed existence of orthorhombic polycrystals with lattice parameters of a =4.6558 Å, b=8.8451 Å and c=8.4069 Å. According to ANOVA, while temperature, time and interaction of substrate angular position with atmosphere (P×A) are the parameters that most significantly influence the variability in the amount of topaz formed – equivalent contributions of 31% – topaz lattice parameters are mostly impacted by the same factors (T, t, P, A), but without the interaction factor. The projected amount of topaz is in good agreement with that obtained in confirmation tests under optimal conditions: Al(OH){sub 3} substrate compact placed at 0°, treated at 750 °C for 90 min in the absence of N{sub 2}. - Highlights: • Topaz synthesis as a unique phase by CVD, using solid precursor Na{sub 2}SiF{sub 6} is feasible. • Two pathways, a series of endothermic/exothermic, heterogeneous/homogeneous reactions. • Crystal structure, orthorhombic polycrystals: a =4.6558 Å, b=8.8451 Å, c=8.4069 Å. • Anova: amount of topaz formed and lattice parameters are impacted by same factors. • Projection of topaz quantity in good agreement with those from confirmation tests.

  20. The gallbladder: uncommon gallbladder conditions and unusual presentations of the common gallbladder pathological processes.

    PubMed

    Revzin, Margarita V; Scoutt, Leslie; Smitaman, Edward; Israel, Gary M

    2015-02-01

    This article reviews a spectrum of gallbladder conditions that are either uncommon or represent unusual manifestations of common diseases. These conditions are divided into four major categories: (a) congenital anomalies and normal variants including duplication, ectopia, and lymphangioma; (b) inflammatory processes and stone-related diseases and complications including adenomyomatosis, emphysematous cholecystitis, xanthogranulomatous cholecystitis, gangrenous and hemorrhagic cholecystitis, perforation, gallstone ileus, and Bouveret and Mirizzi syndromes; (c) gallbladder neoplasms including adenocarcinoma with associated porcelain gallbladder, squamous cell carcinoma, lymphoma, melanoma, and neurofibroma. A thorough understanding of the imaging characteristics of each condition can help the radiologist to make a timely and accurate diagnosis, thus avoiding potentially harmful delays in patient management and decreasing morbidity and mortality rates.

  1. Symbolic gestures and spoken language are processed by a common neural system.

    PubMed

    Xu, Jiang; Gannon, Patrick J; Emmorey, Karen; Smith, Jason F; Braun, Allen R

    2009-12-01

    Symbolic gestures, such as pantomimes that signify actions (e.g., threading a needle) or emblems that facilitate social transactions (e.g., finger to lips indicating "be quiet"), play an important role in human communication. They are autonomous, can fully take the place of words, and function as complete utterances in their own right. The relationship between these gestures and spoken language remains unclear. We used functional MRI to investigate whether these two forms of communication are processed by the same system in the human brain. Responses to symbolic gestures, to their spoken glosses (expressing the gestures' meaning in English), and to visually and acoustically matched control stimuli were compared in a randomized block design. General Linear Models (GLM) contrasts identified shared and unique activations and functional connectivity analyses delineated regional interactions associated with each condition. Results support a model in which bilateral modality-specific areas in superior and inferior temporal cortices extract salient features from vocal-auditory and gestural-visual stimuli respectively. However, both classes of stimuli activate a common, left-lateralized network of inferior frontal and posterior temporal regions in which symbolic gestures and spoken words may be mapped onto common, corresponding conceptual representations. We suggest that these anterior and posterior perisylvian areas, identified since the mid-19th century as the core of the brain's language system, are not in fact committed to language processing, but may function as a modality-independent semiotic system that plays a broader role in human communication, linking meaning with symbols whether these are words, gestures, images, sounds, or objects. PMID:19923436

  2. Combining formulation and process aspects for optimizing the high-shear wet granulation of common drugs.

    PubMed

    Cavinato, Mauro; Andreato, Enrico; Bresciani, Massimo; Pignatone, Isabella; Bellazzi, Guido; Franceschinis, Erica; Realdon, Nicola; Canu, Paolo; Santomaso, Andrea C

    2011-09-15

    The purpose of this research was to determine the effects of some important drug properties (such as particle size distribution, hygroscopicity and solubility) and process variables on the granule growth behaviour and final drug distribution in high shear wet granulation. Results have been analyzed in the light of widely accepted theories and some recently developed approaches. A mixture composed of drug, some excipients and a dry binder was processed using a lab-scale high-shear mixer. Three common active pharmaceutical ingredients (paracetamol, caffeine and acetylsalicylic acid) were used within the initial formulation. Drug load was 50% (on weight basis). Influences of drug particle properties (e.g. particle size and shape, hygroscopicity) on the granule growth behaviour were evaluated. Particle size distribution (PSD) and granule morphology were monitored during the entire process through sieve analysis and scanning electron microscope (SEM) image analysis. Resistance of the wet mass to mixing was furthermore measured using the impeller torque monitoring technique. The observed differences in the granule growth behaviour as well as the discrepancies between the actual and the ideal drug content in the final granules have been interpreted in terms of dimensionless quantity (spray flux number, bed penetration time) and related to torque measurements. Analysis highlighted the role of liquid distribution on the process. It was demonstrated that where the liquid penetration time was higher (e.g. paracetamol-based formulations), the liquid distribution was poorer leading to retarded granule growth and selective agglomeration. On the other hand where penetration time was lower (e.g. acetylsalicylic acid-based formulations), the growth was much faster but uniformity content problem arose because of the onset of crushing and layering phenomena. PMID:21763764

  3. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy.

    PubMed

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan

    2015-10-14

    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities.

  4. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. PMID:26785633

  5. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties.

    PubMed

    Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K

    2016-03-01

    A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed.

  6. Microbiota and the nitrogen cycle: Implications in the development and progression of CVD and CKD.

    PubMed

    Briskey, David; Tucker, Patrick S; Johnson, David W; Coombes, Jeff S

    2016-07-01

    Chronic kidney disease (CKD) is associated with an increased risk of death from cardiovascular disease (CVD). One factor involved in CVD development is nitric oxide (NO), which acts as a powerful vasodilator. NO is produced via the nitrogen cycle, through the reduction of nitrate to nitrite with the process mainly occurring in the mouth by commensal microbiota. People with CKD have compromised microbiota (dysbiosis) with an increased abundance of potentially pathogenic and pro-inflammatory bacteria capable of producing uremic toxins that contribute to CKD development and reduce enzymatic NO production. However, to date, few studies have comprehensively documented the gut or saliva microbiota in the CKD population or investigated the role of NO in people with CKD. This review will discuss NO pathways that are linked to the progression of CKD and CVD and therapeutic options for targeting these pathways. PMID:27164294

  7. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  8. VOx effectively doping CVD-graphene for transparent conductive films

    NASA Astrophysics Data System (ADS)

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  9. CVD Rhenium Engines for Solar-Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Fortini, Arthur J.; Tuffias, Robert H.; Duffy, Andrew J.; Tucker, Stephen P.

    1999-01-01

    Solar-thermal upper-stage propulsion systems have the potential to provide specific impulse approaching 900 seconds, with 760 seconds already demonstrated in ground testing. Such performance levels offer a 100% increase in payload capability compared to state-of-the-art chemical upper-stage systems, at lower cost. Although alternatives such as electric propulsion offer even greater performance, the 6- to 18- month orbital transfer time is a far greater deviation from the state of the art than the one to two months required for solar propulsion. Rhenium metal is the only material that is capable of withstanding the predicted thermal, mechanical, and chemical environment of a solar-thermal propulsion device. Chemical vapor deposition (CVD) is the most well-established and cost-effective process for the fabrication of complex rhenium structures. CVD rhenium engines have been successfully constructed for the Air Force ISUS program (bimodal thrust/electricity) and the NASA Shooting Star program (thrust only), as well as under an Air Force SBIR project (thrust only). The bimodal engine represents a more long-term and versatile approach to solar-thermal propulsion, while the thrust-only engines provide a potentially lower weight/lower cost and more near-term replacement for current upper-stage propulsion systems.

  10. A framework for a process-driven common foundation programme for graduates.

    PubMed

    Jasper, M; Rolfe, G

    1993-10-01

    This paper discusses some of the problems encountered in writing a shortened Common Foundation Programme in nursing for graduates, and outlines a course which takes as its starting point the particular educational needs and requirements of the student group. Thus, the first question to be addressed by the curriculum writers when designing the course was "How can we teach these students?", rather than "What can we teach them?". The resulting process-driven course is heavily influenced by the student-centred philosophy of Carl Rogers, and utilizes a variety of large- and small-group methods to facilitate the students in gradually taking responsibility for, and making decisions about, their learning needs. The paper continues with some strategies for ensuring a smooth transition from a tutor-led, syllabus-driven start to the course, to a student-led, process-driven finish for both the theoretical and clinical components, and for the assessment schedule. Finally, a student-centred approach to evaluation is briefly outlined, and the paper concludes by suggesting that the principles employed in designing and implementing this course could be successfully transferred to a wide variety of other educational settings.

  11. A framework for a process-driven common foundation programme for graduates.

    PubMed

    Jasper, M; Rolfe, G

    1993-10-01

    This paper discusses some of the problems encountered in writing a shortened Common Foundation Programme in nursing for graduates, and outlines a course which takes as its starting point the particular educational needs and requirements of the student group. Thus, the first question to be addressed by the curriculum writers when designing the course was "How can we teach these students?", rather than "What can we teach them?". The resulting process-driven course is heavily influenced by the student-centred philosophy of Carl Rogers, and utilizes a variety of large- and small-group methods to facilitate the students in gradually taking responsibility for, and making decisions about, their learning needs. The paper continues with some strategies for ensuring a smooth transition from a tutor-led, syllabus-driven start to the course, to a student-led, process-driven finish for both the theoretical and clinical components, and for the assessment schedule. Finally, a student-centred approach to evaluation is briefly outlined, and the paper concludes by suggesting that the principles employed in designing and implementing this course could be successfully transferred to a wide variety of other educational settings. PMID:8225804

  12. Decomposed multidimensional control grid interpolation for common consumer electronic image processing applications

    NASA Astrophysics Data System (ADS)

    Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.

    2012-10-01

    Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation

  13. Tip-based patterning of HOPG and CVD graphene

    NASA Astrophysics Data System (ADS)

    Hicks, Bryan T.; Yoshimizu, Norimasa; O'Connell, Christopher; Lal, Amit; Pollock, Clifford R.

    2011-06-01

    Nanometer-scale patterning of graphite and graphene has been accomplished through local anodic oxidation using an AFM tip. The underlying mechanism is explained. To date, protrusions, holes, trenches, and even words have been patterned in HOPG over scales ranging from 1nm2 to 1mm2 and depths ranging from sub nm to as deep as 200nm with less than 5 nm variation on the feature size and placement. This same method has also been applied to CVD-grown graphene providing a resist-free process for patterning graphene at the single nanometer scale. This capability could provide a method to rival e-beam lithography resolution but without any pre- or post-processing.

  14. Transfer printing of CVD graphene FETs on patterned substrates

    NASA Astrophysics Data System (ADS)

    Abhilash, T. S.; de Alba, R.; Zhelev, N.; Craighead, H. G.; Parpia, J. M.

    2015-08-01

    We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA-cleaning step to improve the surface quality. In contrast to conventional fabrication routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FET devices display nearly zero Dirac voltage, and the contact resistance between the graphene and metal contacts is on the order of 910 +/- 340 Ω μm. This approach enables formation of conducting graphene channel lengths up to one millimeter. The resist-free transfer process provides a clean graphene surface that is promising for use in high sensitivity graphene FET biosensors.We describe a simple and scalable method for the transfer of CVD graphene for the fabrication of field effect transistors. This is a dry process that uses a modified RCA-cleaning step to improve the surface quality. In contrast to conventional fabrication routes where lithographic steps are performed after the transfer, here graphene is transferred to a pre-patterned substrate. The resulting FET devices display nearly zero Dirac voltage, and the contact resistance between the graphene and metal contacts is on the order of 910 +/- 340 Ω μm. This approach enables formation of conducting graphene channel lengths up to one millimeter. The resist-free transfer process provides a clean graphene surface that is promising for use in high sensitivity graphene FET biosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03501e

  15. Defining Alzheimer as a common age-related neurodegenerative process not inevitably leading to dementia.

    PubMed

    Ferrer, Isidro

    2012-04-01

    Since the description by Alois Alzheimer, more than 50 years have passed during which senile dementia and pre-senile dementia have been considered Alzheimer disease (AD) on the basis of their common neuropathological and clinical manifestations. AD now covers pre-senile dementia, senile dementia, mild cognitive impairment and pre-clinical AD, all of them within the context of AD-related pathology. However, there is still a gray area between normal aging with AD-related pathology and AD. Here it is proposed that Alzheimer (or alzheimer) is an age-related neurodegenerative process distinguished from normal aging by the presence of senile plaques and neurofibrillary tangles. Alzheimer affects about 80% of individuals aged 65 years but dementia only occurs in a small percentage of individuals at this age; prevalence of dementia in Alzheimer increases to 25% in individuals aged 80 years. The concepts derived from the β-amyloid hypothesis support β-amyloid as a conductor in the pathogenesis of familial AD and as a prodding factor in sporadic AD. Moreover, seeding of β-amyloid and truncated tau explains incorporation, enhancement and perpetuation of AD-related changes. Therefore, the earliest Alzheimer changes confined to selected regions are the first grounds and the main risk factor for developing dementia. The term Alzheimer embraces this assumption and likens its meaning to other degenerative biological processes, such as atherosclerosis, that may eventually progress to disease. In this context, the first stages of Alzheimer should be considered as primary targets of therapeutic intervention in order to prevent progression to diseased states.

  16. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling

    NASA Astrophysics Data System (ADS)

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-10-01

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique.Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of 12C-lattice and surface deposition of 13C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like 13C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new

  17. In vitro availability of some essential minerals in commonly eaten processed and unprocessed Caribbean tuber crops.

    PubMed

    Dilworth, Lowell L; Omoruyi, Felix O; Asemota, Helen N

    2007-02-01

    The levels of three essential minerals Ca, Fe and Mg and the extent of their availability were assessed in four commonly eaten Caribbean tuber crops [dasheen (Xanthosoma spp.), Irish potato (Solanum tuberosum), sweet potato (Ipomoea batatas) and yellow yam (Dioscorea cayenensis)] in their processed and unprocessed states. Calcium was highest in cooked dasheen (5150+/-50 mg/kg) while Magnesium was highest in uncooked Irish potato (3600+/-200 mg/kg). There was no significant loss of calcium from the food samples upon cooking. All the uncooked food samples displayed higher levels minerals assessed compared to the cooked samples except for cooked Irish potato that recorded the level of iron (182.25+/-8.75 mg/kg). Availability of these minerals in the cooked and uncooked tubers crops upon digestion also showed a similar pattern. In conclusion, the consumption of these tuber crops in the Caribbean may not be responsible for the reported cases of iron deficiency in the region. However, the availability of minerals from these tuber crops when consumed with other foods (the usual practice in the Caribbean) needs further investigation.

  18. Role of BCA in TIGER grant reviews: common errors and influence on the selection process.

    PubMed

    Homan, Anthony C

    2014-07-01

    Abstract As directed by the American Recovery and Reinvestment Act of 2009, the US Department of Transportation (DOT) created the Transportation Investment Generating Economic Recovery (TIGER) discretionary grant program for surface transportation infrastructure projects. Through 2013, there have been five rounds of the grant program. TIGER uses a multi-step competitive application process to award surface transportation funds. TIGER applications are initially screened by US DOT's staff of technical experts. For projects forwarded by the review team, US DOT economic experts then review the applicant's benefit-cost analysis (BCA) and attempt to determine the likelihood that the benefits exceeded costs (i.e. not the applicant's self-determination). The final awardees are then selected by a Review Team of Modal Administrators and DOT Office of the Secretary level officials. The purpose of this paper is to discuss many of the common errors in preparing, and issues in reviewing the applicant's BCA and in making a net benefit determination. A secondary purpose is to determine if the most deserving projects, based on an applicant's BCA and the likelihood that benefits exceeded costs, are more likely to receive grant funding. We do so for the second through the fifth rounds of the program.

  19. CVD boron on calcium chromate powder

    SciTech Connect

    Coonen, R.M.

    1984-09-01

    This study was an experimental effort to improve the compositional homogeneity of a pyrotechnic mixture of boron and calcium chromate (CaCrO/sub 4/). Boron was deposited onto calcium chromate powders at 350/sup 0/C from a diborane and hydrogen gas mixture at a pressure of 40 torr by Chemical Vapor Deposition (CVD). The B:CaCrO/sub 4/ ratio of the coated powders was analyzed by inductively-coupled plasma spectroscopy and the distribution of the two phases was observed by electron microprobe analysis. The pyrotechnic activity was determined by differential thermal analysis. In addition to varying the composition of the mixture, an attempt was made to vary the boron distribution by coating both sized and unsized CaCrO/sub 4/ powders. Boron was deposited for 2 h onto sized CaCrO/sub 4/ powder, which resulted in a higher weight percentage of boron in comparison to the unsized powder. CVD coated CaCrO/sub 4/ powders began their pyrotechnic activity at an auto ignition temperature that was lower than the auto ignition temperature observed for mechanically blended mixtures. The coating of sized CaCrO/sub 4/ powder improved the uniformity of boron deposition of CaCrO/sub 4/, but it also decreased the pyrotechnic activity.

  20. Synthesis of Carbon Nanotubes Array by CVD

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C.; Cochrane, J. C.; Lehoczky, S. L.; Muntele, I.; Ila, D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Since the properties of multi-wall carbon nanotubes (MWCNT) are superior in many devices such as electronics and sensors, many efforts have been involved in synthesizing particular structural or dimensional MWCNT. Uniform aligned MWCNT array is one of the prototype structures for devices such as filed emission device and microelectromechanical systems in which a large length to diameter ratio may also be required. Most aligned MWCNT recently synthesized by plasma enhanced chemical vapor deposition (CVD) have cone shaped structures. This presentation will illustrate aligned MWCNT array synthesized on silicon substrates using thermal CVD that could produce MWCNT with uniform diameter. An array of nickel particles was used as catalyst for MWCNT growth. A thin Ti or Au buffer layer was coated on the substrate prior to depositing nickel particles. Because the MWCNT size depends on the catalyst particle size, the nickel particle size annealed at various temperatures was investigated. MWCNT were grown on the substrate in the temperature range of 700 C - 1000 C and the pressure range of 1 to 300 torr. Methane and hydrogen gases with methane content of 1 - 10 % were used for the MWCNT synthesis. Morphology, length and diameter of MWCNT were determined by scanning electron microscopy and Raman spectroscopy. The detailed results of synthesis and characterizations will be discussed in the presentation.

  1. Systemic Inflammation: Methodological Approaches to Identification of the Common Pathological Process

    PubMed Central

    Zotova, N. V.; Chereshnev, V. A.; Gusev, E. Yu.

    2016-01-01

    We defined Systemic inflammation (SI) as a “typical, multi-syndrome, phase-specific pathological process, developing from systemic damage and characterized by the total inflammatory reactivity of endotheliocytes, plasma and blood cell factors, connective tissue and, at the final stage, by microcirculatory disorders in vital organs and tissues.” The goal of the work: to determine methodological approaches and particular methodical solutions for the problem of identification of SI as a common pathological process. SI can be defined by the presence in plasma of systemic proinflammatory cell stress products—cytokines and other inflammatory mediators, and also by the complexity of other processes signs. We have developed 2 scales: 1) The Reactivity Level scale (RL)–from 0 to 5 points: 0-normal level; RL-5 confirms systemic nature of inflammatory mediator release, and RL- 2–4 defines different degrees of event probability. 2) The SI scale, considering additional criteria along with RL, addresses more integral criteria of SI: the presence of ≥ 5 points according to the SI scale proves the high probability of SI developing. To calculate the RL scale, concentrations of 4 cytokines (IL-6, IL-8, IL-10, TNF-α) and C-reactive protein in plasma were examined. Additional criteria of the SI scale were the following: D-dimers>500ng/ml, cortisol>1380 or <100nmol/l, troponin I≥0.2ng/ml and/or myoglobin≥800ng/ml. 422 patients were included in the study with different septic (n-207) and aseptic (n-215) pathologies. In 190 cases (of 422) there were signs of SI (lethality 38.4%, n-73). In only 5 of 78 cases, lethality was not confirmed by the presence of SI. SI was registered in 100% of cases with septic shock (n-31). There were not significant differences between AU-ROC of CR, SI scale and SOFA to predict death in patients with sepsis and trauma. PMID:27153324

  2. Towards a general growth model for graphene CVD on transition metal catalysts† †Electronic supplementary information (ESI) available: Fig. S1. See DOI: 10.1039/c5nr06873h Click here for additional data file.

    PubMed Central

    Cabrero-Vilatela, Andrea; Braeuninger-Weimer, Philipp; Caneva, Sabina; Hofmann, Stephan

    2016-01-01

    The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture. PMID:26730836

  3. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.

    PubMed

    Gottlieb, Steven; Wöhrl, Nicolas; Schulz, Stephan; Buck, Volker

    2016-01-01

    The simultaneous growth of both nanodiamonds and graphene on copper samples is described for the first time. A PE-CVD process is used to synthesize graphene layers and nanodiamond clusters from a hydrogen/methane gas mixture as it is typically done successfully in thermal CVD processes for graphene synthesis. However, the standard thermal CVD process is not without problems since the deposition of graphene is affected by the evaporation of a notable amount of copper caused by the slow temperature increase typical for thermal CVD resulting in a long process time. In sharp contrast, the synthesis of graphene by PE-CVD can circumvent this problem by substantially shortening the process time at holding out the prospect of a lower substrate temperature. The reduced thermal load and the possibility to industrially scale-up the PE-CVD process makes it a very attractive alternative to the thermal CVD process with respect to the graphene production in the future. Nanodiamonds are synthesized in PE-CVD reactors for a long time because these processes offer a high degree of control over the film's nanostructure and simultaneously providing a significant high deposition rate. To model the co-deposition process, the three relevant macroscopic parameters (pressure, gas mixture and microwave power) are correlated with three relevant process properties (plasma ball size, substrate temperature and C2/Hα-ratio) and the influence on the quality of the deposited carbon allotropes is investigated. For the evaluation of the graphene as well as the nanodiamond quality, Raman spectroscopy used whereas the plasma properties are measured by optical methods. It is found that the diamond nucleation can be influenced by the C2/Hα-ratio in the plasma, while the graphene quality remains mostly unchanged by this parameter. Moreover it is derived from the experimental data that the direct plasma contact with the copper surface is beneficial for the nucleation of the diamond while the growth and

  4. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.

    PubMed

    Gottlieb, Steven; Wöhrl, Nicolas; Schulz, Stephan; Buck, Volker

    2016-01-01

    The simultaneous growth of both nanodiamonds and graphene on copper samples is described for the first time. A PE-CVD process is used to synthesize graphene layers and nanodiamond clusters from a hydrogen/methane gas mixture as it is typically done successfully in thermal CVD processes for graphene synthesis. However, the standard thermal CVD process is not without problems since the deposition of graphene is affected by the evaporation of a notable amount of copper caused by the slow temperature increase typical for thermal CVD resulting in a long process time. In sharp contrast, the synthesis of graphene by PE-CVD can circumvent this problem by substantially shortening the process time at holding out the prospect of a lower substrate temperature. The reduced thermal load and the possibility to industrially scale-up the PE-CVD process makes it a very attractive alternative to the thermal CVD process with respect to the graphene production in the future. Nanodiamonds are synthesized in PE-CVD reactors for a long time because these processes offer a high degree of control over the film's nanostructure and simultaneously providing a significant high deposition rate. To model the co-deposition process, the three relevant macroscopic parameters (pressure, gas mixture and microwave power) are correlated with three relevant process properties (plasma ball size, substrate temperature and C2/Hα-ratio) and the influence on the quality of the deposited carbon allotropes is investigated. For the evaluation of the graphene as well as the nanodiamond quality, Raman spectroscopy used whereas the plasma properties are measured by optical methods. It is found that the diamond nucleation can be influenced by the C2/Hα-ratio in the plasma, while the graphene quality remains mostly unchanged by this parameter. Moreover it is derived from the experimental data that the direct plasma contact with the copper surface is beneficial for the nucleation of the diamond while the growth and

  5. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene

    NASA Astrophysics Data System (ADS)

    Shautsova, Viktoryia; Gilbertson, Adam M.; Black, Nicola C. G.; Maier, Stefan A.; Cohen, Lesley F.

    2016-07-01

    We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers possess lower doping concentration, and improved carrier mobilities compared to graphene films produced by conventional transfer methods onto untreated SiO2/Si, SAM-modified and hBN covered SiO2/Si substrates. Moreover, we show that the top hBN layer used in the transfer process acts as an effective top encapsulation resulting in improved stability to ambient exposure. The transfer method is applicable to other CVD-grown 2D materials on copper foils, thereby facilitating the preparation of van der Waals heterostructures with controlled doping.

  6. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene

    PubMed Central

    Shautsova, Viktoryia; Gilbertson, Adam M.; Black, Nicola C. G.; Maier, Stefan A.; Cohen, Lesley F.

    2016-01-01

    We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers possess lower doping concentration, and improved carrier mobilities compared to graphene films produced by conventional transfer methods onto untreated SiO2/Si, SAM-modified and hBN covered SiO2/Si substrates. Moreover, we show that the top hBN layer used in the transfer process acts as an effective top encapsulation resulting in improved stability to ambient exposure. The transfer method is applicable to other CVD-grown 2D materials on copper foils, thereby facilitating the preparation of van der Waals heterostructures with controlled doping. PMID:27443219

  7. A thermocouple-based remote temperature controller of an electrically floated sample to study plasma CVD growth of carbon nanotube

    NASA Astrophysics Data System (ADS)

    Miura, Takuya; Xie, Wei; Yanase, Takashi; Nagahama, Taro; Shimada, Toshihiro

    2015-09-01

    Plasma chemical vapor deposition (CVD) is now gathering attention from a novel viewpoint, because it is easy to combine plasma processes and electrochemistry by applying a bias voltage to the sample. In order to explore electrochemistry during the plasma CVD, the temperature of the sample must be controlled precisely. In traditional equipment, the sample temperature is measured by a radiation thermometer. Since emissivity of the sample surface changes in the course of the CVD growth, it is difficult to measure the exact temperature using the radiation thermometer. In this work, we developed new equipment to control the temperature of electrically floated samples by thermocouple with Wi-Fi transmission. The growth of the CNT was investigated using our plasma CVD equipment. We examined the temperature accuracy and stability controlled by the thermocouple with monitoring the radiation thermometer. We noticed that the thermocouple readings were stable, whereas the readings of the radiation thermometer changes significantly (20 °C) during plasma CVD. This result clearly shows that the sample temperature should be measured with direct connection. On the result of CVD experiment, different structures of carbon including CNT were obtained by changing the bias voltages.

  8. CVD fabrication of thermionic converter and heat pipe

    SciTech Connect

    Reagan, P.; Lieb, D.; Miskolczy, G.; Goodale, D.; Huffman, F.

    1983-07-01

    Thermionic converters and heat pipes fabricated by chemical-vapor deposition (CVD) have operated for extended periods of more than 12,500 hours in natural gas flames at temperatures more than 1700 K. These CVD-trilayer silicon carbide, graphite, and tungsten structures have survived thermal shock and thermal cycle tests.

  9. 76 FR 42590 - Retrospective Review Under E.O. 13563; Improving Common Acreage Reporting Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... information multiple times; and (3) Acreage reporting is inefficient and does not use Geographic Information... Comprehensive Information Management System (CIMS), which compiles common producer, program, and land... information from their farm management and precision agriculture systems for reporting production, planted...

  10. Nanoelectronic biosensors based on CVD grown graphene

    NASA Astrophysics Data System (ADS)

    Huang, Yinxi; Dong, Xiaochen; Shi, Yumeng; Li, Chang Ming; Li, Lain-Jong; Chen, Peng

    2010-08-01

    Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors.Graphene, a single-atom-thick and two-dimensional carbon material, has attracted great attention recently. Because of its unique electrical, physical, and optical properties, graphene has great potential to be a novel alternative to carbon nanotubes in biosensing. We demonstrate the use of large-sized CVD grown graphene films configured as field-effect transistors for real-time biomolecular sensing. Glucose or glutamate molecules were detected by the conductance change of the graphene transistor as the molecules are oxidized by the specific redox enzyme (glucose oxidase or glutamic dehydrogenase) functionalized onto the graphene film. This study indicates that graphene is a promising candidate for the development of real-time nanoelectronic biosensors. Electronic supplementary information (ESI) available: AFM images of graphene film before and after functionalization, transfer curves of graphene after every step, SEM image of CNT-net, and detection results using CNT-net devices. See DOI: 10.1039/c0nr00142b

  11. Why simulations of colour for CVD observers might not be what they seem

    NASA Astrophysics Data System (ADS)

    Green, Phil

    2015-01-01

    A common task in universal design is to create a 'simulation' of the appearance of a colour image as it appears to a CVD observer. Although such simulations are useful in illustrating the particular problems that a CVD observer has in discriminating between colours in an image, it may not be reasonable to assume that such a simulation accurately conveys the experience of the CVD observer to an observer with normal vision. Two problems with this assumption are discussed here. First, it risks confusing appearance with sensation. A colour appearance model can more or less accurately predict the change in appearance of a colour when it is viewed under different conditions, but does not define the actual sensation. Such a sensation cannot be directly communicated but merely located on a scale with other related sensations. In practice we avoid this epistemological problem by asking observers to judge colour matches, relations and differences, none of which requires examination of the sensation itself. Since we do not truly know what sensation a normal observer experiences, it seems unscientific to suppose that we can do so for CVD observers. Secondly, and following from the above, the relation between stimulus and corresponding sensation is established as part of neural development during infancy, and while we can determine the stimulus we cannot readily determine what sensation the stimulus is mapped to, or what the available range of sensations is for a given observer. It is suggested that a similar range of sensations could be available to CVD observers as to normal observers.

  12. Plasma lipoprotein (a), homocysteine, and other cardiovascular disease (CVD) risk factors in Nigerians with CVD.

    PubMed

    Ebesunun, M O; Agbedana, E O; Taylor, G O L; Oladapo, O O

    2008-04-01

    Elevated plasma lipoprotein (a) (Lp(a)) and total homocysteine (tHcy) concentrations, as well as fat distributions, are associated with cardiovascular disease (CVD) risk. The purpose of this study was to evaluate plasma Lp(a), tHcy, percentage body fat, anthropometric indices, and blood pressure (BP) and their relationships with each other in well-defined, hospital-based, CVD patients in a Nigerian African community. One hundred seventy patients suffering from hypertensive heart disease, hypertension, ischaemic heart disease, and myocardial infraction with the mean age of 45.3 +/- 1.3 years and 58 apparently healthy volunteers with the mean age of 44.8 +/-1.2 years were selected. Anthropometric indices and BP were measured. Percentage body fat, body mass index, and waist-to-hip ratio (WHR) were calculated. Plasma Lp(a) and tHcy concentrations were determined. The results showed significant increases in BP, skinfold thickness (SFT) variables, and WHR in all of the CVD patients. Plasma Lp(a) was also significantly increased (p < 0.001), whereas the slight increase in the mean tHcy was not statistically significant. Positive significant correlations were found between systolic BP, triceps, SFT, and percentage body fat (p < 0.01), whereas significant correlations were found between some body composition variables, tHcy, and systolic BP (p < 0.05). Our findings provide supportive evidence for altered plasma Lp(a) concentration in addition to some other traditional CVD risk factors in Nigerians. The role of homocysteine is not well defined.

  13. CVD diamond Brewster window: feasibility study by FEM analyses

    NASA Astrophysics Data System (ADS)

    Aiello, G.; Grossetti, G.; Meier, A.; Scherer, T.; Schreck, S.; Spaeh, P.; Strauss, D.; Vaccaro, A.

    2012-09-01

    Chemical vapor deposition (CVD) diamond windows are a crucial component in heating and current drive (H&CD) applications. In order to minimize the amount of reflected power from the diamond disc, its thickness must match the desired beam wavelength, thus proper targeting of the plasma requires movable beam reflectors. This is the case, for instance, of the ITER electron cyclotron H&CD system. However, looking at DEMO, the higher heat loads and neutron fluxes could make the use of movable parts close to the plasma difficult. The issue might be solved by using gyrotrons able to tune the beam frequency to the desired resonance, but this concept requires transmission windows that work in a given frequency range, such as the Brewster window. It consists of a CVD diamond disc brazed to two copper cuffs at the Brewster angle. The brazing process is carried out at about 800°C and then the temperature is decreased down to room temperature. Diamond and copper have very different thermal expansion coefficients, therefore high stresses build up during the cool down phase that might lead to failure of the disc. Considering also the complex geometry of the window with the skewed position of the disc, analyses are required in the first place to check its feasibility. The cool down phase was simulated by FEM structural analyses for several geometric and constraint configurations of the window. A study of indirect cooling of the window by water was also performed considering a HE11 mode beam. The results are here reported.

  14. Recent Advances in High-Growth Rate Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50-100 {micro}m/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m{sup 1/2} in comparison to 5-10 MPa m{sup 1/2} for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.

  15. Raman spectroscopic investigation of polycrystalline structures of CVD-grown graphene by isotope labeling.

    PubMed

    Wang, Shengnan; Suzuki, Satoru; Hibino, Hiroki

    2014-11-21

    Topological defects, such as point defects, dislocations and grain boundaries, have a dramatic influence on the chemical and physical properties of large-scale graphene grown by chemical vapor deposition (CVD) method. Here we demonstrate the Raman visualization of polycrystalline structures in an isotopically modified CVD graphene. By means of the reversible reaction of methane on a copper catalyst, the etching of (12)C-lattice and surface deposition of (13)C-atoms occur in CVD graphene by sequentially introducing hydrogen and isotopic methane after standard growth of graphene with full monolayer coverage. Spatial Raman spectroscopic mapping on labeled graphene reveals pronounced network-like (13)C-rich regions, which are further identified to exist along the grain boundaries of graphene by low-energy electron microscopy. The structural defects inside the graphene grains are also targeted in the isotope labeling process. Our work opens a new way to investigate multiple grain structures in CVD graphene with a simple spectroscopic technique. PMID:25303722

  16. Using Dragonflies as Common, Flexible & Charismatic Subjects for Teaching the Scientific Process

    ERIC Educational Resources Information Center

    Switzer, Paul V.

    2007-01-01

    Biology laboratories are usually designed around convenient and available subjects. For example, for animal laboratories "Daphnia magna," "Drosophila melanogaster," frogs, rats, and mice are common animals that are relatively easy to obtain, relatively cheap, and consequently lend themselves well to laboratory experimentation. On many campuses, …

  17. Global Conceptualization of the Professional Learning Community Process: Transitioning from Country Perspectives to International Commonalities

    ERIC Educational Resources Information Center

    Huffman, Jane B.; Olivier, Dianne F.; Wang, Ting; Chen, Peiying; Hairon, Salleh; Pang, Nicholas

    2016-01-01

    The authors seek to find common PLC structures and actions among global educational systems to enhance understanding and practice. Six international researchers formed the Global Professional Learning Community Network (GloPLCNet), conducted literature reviews of each country's involvement with PLC actions, and noted similarities and common…

  18. Fabrication of contamination-free CVD Graphene devices using soak and peel method

    NASA Astrophysics Data System (ADS)

    Sebastian, Abhilash; Kakatkar, Aniket; de Alba, Roberto; Zhelev, Nikolay; McEuen, Paul; Craighead, Harold; Parpia, Jeevak

    2014-03-01

    Large area graphene-based devices are commonly fabricated by transferring the CVD grown graphene from metal foils to semiconductor substrates. However, during device fabrication, the transfer process involves chemical etching of metal that leads to the degradation of electrical properties of graphene. Recently, a clean transfer of graphene to devices with improved electrical properties, by delamination of graphene from metal substrates by soak and peel using DI-water has been demonstrated. We employed the soak and peel scheme to fabricate graphene transistor arrays on a SiO2/Si substrate with a back gate configuration. The source-drain contacts are patterned using Ti/Pt with graphene channel length varying from 2-50um. The graphene is transferred subsequently to the substrate and yields a high quality junction between metal electrodes and graphene. The contact resistance is low and the Dirac peak is observed across the array. The suitability of the graphene transistors for chemical functionalization will be presented. Possible application of this transfer technique for fabricating large area suspended nano-electro mechanical systems will be discussed.

  19. Parametric amplification and cascaded-nonlinearity processes in common atomic system.

    PubMed

    Zheng, Huaibin; Zhang, Xun; Zhang, Zhaoyang; Tian, Yaling; Chen, Haixia; Li, Changbiao; Zhang, Yanpeng

    2013-01-01

    For the first time, we study the parametric amplification process of multi-wave mixing (PA-MWM) signal and cascaded-nonlinearity process (CNP) in sodium vapors both theoretically and experimentally, based on a conventional phase-conjugate MWM and a self-diffraction four-wave mixing (SD-FWM) processes, which are pumped by laser or amplified spontaneous emission (ASE), respectively. For laser pumping case, SD-FWM process serves as a quantum linear amplifier (a CNP) out (inside) of the resonant absorption region. While for ASE case, only the CNP occurs and the output linewidth is much narrower than that of the MWM signal due to the second selected effect of its electromagnetically induced transparency window. In addition, the phase-sensitive amplifying process seeded by two MWM processes is discussed for the first time. Theoretical fittings agree well with the experiment. The investigations have important potential applications in quantum communication.

  20. The 'dying back' process. A common denominator in many naturally occurring and toxic neuropathies.

    PubMed

    Cavanagh, J B

    1979-12-01

    The "dying back" process can be defined as a pathological changes affecting certain neurons in a number of systematized degenerative conditions. Examples exist to illustrate the nature of this process, which is unique to nervous tissue, and there is an association of this process with certain chronic vitamin-deficiency syndromes and some important neurotoxic chemicals. Albeit largely speculative, one can attempt to group the conditions showing the dying back process in terms of putative metabolic lesions. Although this attempt is admittedly only a first approximation, it enables us to look ahead to a future understanding of the metabolic problems of long neurons and how their selective degeneration comes about.

  1. Is There a Common Linkage among Reading Comprehension, Visual Attention, and Magnocellular Processing?

    ERIC Educational Resources Information Center

    Solan, Harold A.; Shelley-Tremblay, John F.; Hansen, Peter C.; Larson, Steven

    2007-01-01

    The authors examined the relationships between reading comprehension, visual attention, and magnocellular processing in 42 Grade 7 students. The goal was to quantify the sensitivity of visual attention and magnocellular visual processing as concomitants of poor reading comprehension in the absence of either vision therapy or cognitive…

  2. 78 FR 55171 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ...; Processing Sweet Corn Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION... Regulations, Processing Sweet Corn Crop Insurance Provisions. The intended effect of this action is to provide.... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24,...

  3. How Gene Networks Can Uncover Novel CVD Players

    PubMed Central

    Parnell, Laurence D; Casas-Agustench, Patricia; Iyer, Lakshmanan K; Ordovas, Jose M

    2014-01-01

    Cardiovascular diseases (CVD) are complex, involving numerous biological entities from genes and small molecules to organ function. Placing these entities in networks where the functional relationships among the constituents are drawn can aid in our understanding of disease onset, progression and prevention. While networks, or interactomes, are often classified by a general term, say lipids or inflammation, it is a more encompassing class of network that is more informative in showing connections among the active entities and allowing better hypotheses of novel CVD players to be formulated. A range of networks will be presented whereby the potential to bring new objects into the CVD milieu will be exemplified. PMID:24683432

  4. CVD diamond detectors for radiation pulse characterisation

    NASA Astrophysics Data System (ADS)

    Foulon, F.; Bergonzo, P.; Jany, C.; Gicquel, A.; Pochet, T.

    Polycrystalline diamond films deposited by microwave plasma-enhanced chemical vapour deposition (MPCVD) have been used for the fabrication of resistive photoconductors. Such detectors can be used to measure the intensity and the temporal shape of pulsed radiation such as IR, visible, UV and X-rays. The photodetector response times were characterised under fast Nd:Yag laser pulses ( λ = 266 nm, τL = 30 ps at FWHM). The detector sensitivities were measured under both pulsed UV laser and steady-state X-ray excitations (40 keV). The detector response time strongly depends on the CVD diamond film structural and physical properties, i.e., the film growth conditions. They exhibit a response signal presenting full widths at half maximum down to about 100 ps and decay times down to about 130 ps. The diamond detector responses are compared to the responses measured on typical ultrafast photoconductors made from gallium arsenide pre-irradiated at 3 × 10 15 neutrons/cm 2 as well as from natural type IIa bulk diamond.

  5. Impurities and Growth Morphology in Diamond CVD

    NASA Astrophysics Data System (ADS)

    Koidl, Peter

    1996-03-01

    This paper reports on recent investigations of the structural evolution and morphogical control in the low-pressure deposition of diamond. It will be shown that minor gas contaminations may drastically influence the film structure and morphology. Gas additions that are substitutionally incorporated like nitrogen and boron are of special importance. Nitrogen at concentrations on the ppm level has been found to promote <100> textured growth and thus assists in forming smooth films with coplanar 100 facets.(R. Locher, C. Wild, N. Herres, D. Behr, P. Koidl, Appl. Phys. Lett. 65), 34 (1994) Boron - on the other hand - is shown to have an opposite effect: it destabilizes the 100 surface.(R. Locher, J. Wagner, F. Fuchs, M. Maier, P. Gonon, P. Koidl, Diamond Relat. Mater. 4), 678 (1995) In addition, both types of gas contaminations do influence the twin formation. The structure and morphology of CVD diamond films are strongly affected by competitive growth between 100- and 111-growth sectors as determined by the relative growth rate parameter α = √3 v_100/v_111.(C. Wild, R. Kohl, N. Herres, W. Müller-Sebert, P. Koidl, Diamond Relat. Mater. 3), 373 (1994) Using in-situ interferometry, it has been shown that nitrogen selectively increases the growth rate of 100 faces, while additional boron reduces it. The structural implications of nitrogen and boron additions are discussed as a result of their growth sector dependent reaction and incorporation and the resulting change of α.

  6. Schizotypal thinking and associative processing: a response commonality analysis of verbal fluency.

    PubMed Central

    Duchêne, A; Graves, R E; Brugger, P

    1998-01-01

    OBJECTIVE: To determine whether people with high scores for schizotypal thinking generate more uncommon words in a letter fluency task than people with low scores. DESIGN: Prospective study. SETTING: University psychology department. PATIENTS: Forty healthy, right-handed students. INTERVENTIONS: Students were administered the Magical Ideation (MI) Scale and a 2-minute letter fluency task in which they named as many nouns as possible beginning with "A" or "F," in any order. OUTCOME MEASURES: Total number of words produced and percentage of unique, rare and common words (as determined by the responses of the whole group); scores on MI scale. RESULTS: Participants with high scores (above the median) on the MI scale generated as many words as those who had low scores. People in both groups also generated a comparable number of unique words (named by only 1 person) and common words (named by 6 or more people). As hypothesized, people with high scores on the MI scale generated more rare words (named by fewer than 6 people) than those with low scores. CONCLUSIONS: These findings support the view of a disinhibition of semantic network functioning as the neuropsychological basis of creative thought, magical ideation and thought disorder. PMID:9505061

  7. A first principles study on the CVD graphene growth on copper surfaces: A carbon atom incorporation to graphene edges

    NASA Astrophysics Data System (ADS)

    Tajima, Nobuo; Kaneko, Tomoaki; Nara, Jun; Ohno, Takahisa

    2016-11-01

    Carbon atom reactions in the chemical vapor deposition (CVD) processes for graphene production on copper surfaces have been studied by first principles molecular dynamics (MD) simulations at a typical CVD growth temperature. This study focuses on the processes of a carbon atom incorporation to graphene edges. The energy barriers of these carbon atom incorporation reactions have been calculated as ~ 1 eV, which are comparable or slightly larger than the barriers of carbon atom dimerization. We have also found that the surface copper atoms form step like structures to terminate the carbon dangling bonds at graphene edges, which are markedly different from the graphene-copper interactions observed in static calculations.

  8. Purification of carbon nanotubes grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Porro, S.; Musso, S.; Vinante, M.; Vanzetti, L.; Anderle, M.; Trotta, F.; Tagliaferro, A.

    2007-03-01

    We show the results of a set of purifications on carbon nanotubes (CNT) by acid and basic treatments. CNTs were obtained by thermal decomposition of camphor at 850 °C in a CVD growth system, by means of a growth process catalyzed by iron clusters originating from the addition of ferrocene in the precursors mixture. The purification procedures involved HNO 3, H 2SO 4, HSO 3Cl and NaOH for different process temperatures. As-grown CNTs showed a consistent presence of metal catalyst (about 6 wt%), evidenced by TGA. The purification treatments led to a certain amount of opening of the CNT tips, with a consequent loss of metal catalyst encapsulated in tips. This is also confirmed by BET analysis, which showed an increase of the surface area density of CNT after the purification. FT-IR and XPS revealed the presence of carboxylic groups on the CNT surface chemically modified by the harsh environment of the purification process. Among the various treatments that have been tested, the 1:3 solution of nitric and sulphuric acid was the most effective in modifying the CNT surface and inducing the formation of functional groups.

  9. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene

    NASA Astrophysics Data System (ADS)

    Elliott, James A.; Shibuta, Yasushi; Amara, Hakim; Bichara, Christophe; Neyts, Erik C.

    2013-07-01

    We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles.

  10. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene.

    PubMed

    Elliott, James A; Shibuta, Yasushi; Amara, Hakim; Bichara, Christophe; Neyts, Erik C

    2013-08-01

    We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles. PMID:23774798

  11. Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert

    2013-01-01

    Demonstrated viability and utilization of: a) Fluidized powder bed. b) WCl6 CVD process. c) Coated spherical particles with tungsten. The highly corrosive nature of the WCl6 solid reagent limits material of construction. Indications that identifying optimized process variables with require substantial effort and will likely vary with changes in fuel requirements.

  12. Photo-oxidation of Polymers Synthesized by Plasma and Initiated CVD

    DOE PAGES

    Baxamusa, Salmaan H.; Suresh, Aravind; Ehrmann, Paul; Laurence, Ted; Hanania, Jiries; Hayes, Jeff; Harley, Stephen; Burkey, Daniel D.

    2015-11-09

    Plasma polymers are often limited by their susceptibility to spontaneous and photo-oxidation. We show that the unusual photoluminescence (PL) behavior of a plasma polymer of trans-2-butene is correlated with its photoluminescence strength. These photo-processes occur under blue light illumination (λ=405 nm), distinguishing them from traditional ultraviolet degradation of polymers. These photo-active defects are likely formed during the plasma deposition process and we show that a polymer synthesized using initiated (i)CVD, non-plasma method, has 1000× lower PL signal and enhanced photo-stability. In conclusion, non-plasma methods such as iCVD may therefore be a route to overcoming material aging issues that limit themore » adoption of plasma polymers.« less

  13. Photo-oxidation of Polymers Synthesized by Plasma and Initiated CVD

    SciTech Connect

    Baxamusa, Salmaan H.; Suresh, Aravind; Ehrmann, Paul; Laurence, Ted; Hanania, Jiries; Hayes, Jeff; Harley, Stephen; Burkey, Daniel D.

    2015-11-09

    Plasma polymers are often limited by their susceptibility to spontaneous and photo-oxidation. We show that the unusual photoluminescence (PL) behavior of a plasma polymer of trans-2-butene is correlated with its photoluminescence strength. These photo-processes occur under blue light illumination (λ=405 nm), distinguishing them from traditional ultraviolet degradation of polymers. These photo-active defects are likely formed during the plasma deposition process and we show that a polymer synthesized using initiated (i)CVD, non-plasma method, has 1000× lower PL signal and enhanced photo-stability. In conclusion, non-plasma methods such as iCVD may therefore be a route to overcoming material aging issues that limit the adoption of plasma polymers.

  14. CVD facility electrical system captor/dapper study

    SciTech Connect

    SINGH, G.

    1999-10-28

    Project W-441, CVD Facility Electrical System CAPTOWDAPPER Study validates Meier's hand calculations. This study includes Load flow, short circuit, voltage drop, protective device coordination, and transient motor starting (TMS) analyses.

  15. Finding Commonalities: Social Information Processing and Domain Theory in the Study of Aggression

    ERIC Educational Resources Information Center

    Nucci, Larry

    2004-01-01

    The Arsenio and Lemerise (this issue) proposal integrating social information processing (SIP) and domain theory to study children's aggression is evaluated from a domain theory perspective. Basic tenets of domain theory rendering it compatible with SIP are discussed as well as points of divergence. Focus is directed to the proposition that…

  16. Are Depictive Gestures like Pictures? Commonalities and Differences in Semantic Processing

    ERIC Educational Resources Information Center

    Wu, Ying Choon; Coulson, Seana

    2011-01-01

    Conversation is multi-modal, involving both talk and gesture. Does understanding depictive gestures engage processes similar to those recruited in the comprehension of drawings or photographs? Event-related brain potentials (ERPs) were recorded from neurotypical adults as they viewed spontaneously produced depictive gestures preceded by congruent…

  17. Defense Dollars and Sense: A Common Cause Guide to the Defense Budget Process.

    ERIC Educational Resources Information Center

    Rovner, Mark

    Designed to increase public awareness of military spending, this 5-part guide examines the process and problems of preparing the national defense budget. The publication begins with a brief overview of the 1984 defense budget. Major military programs, trends in budgeting, and key concerns in budget formulation are explored. Graphs and charts…

  18. Towards a common benchmark for long-term process control and monitoring performance evaluation.

    PubMed

    Rosen, C; Jeppsson, U; Vanrolleghem, P A

    2004-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of biological wastewater treatment processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also worldwide, demonstrates the interest for such a tool in the research community. In this paper, an extension of the benchmark simulation model no. 1 (BSM1) is proposed. It aims at facilitating evaluation of two closely related operational tasks: long-term control strategy performance and process monitoring performance. The motivation for the extension is that these two tasks typically act on longer time scales. The extension proposed here consists of 1) prolonging the evaluation period to one year (including influent files), 2) specifying time varying process parameters and 3) including sensor and actuator failures. The prolonged evaluation period is necessary to obtain a relevant and realistic assessment of the effects of such disturbances. Also, a prolonged evaluation period allows for a number of long-term control actions/handles that cannot be evaluated in a realistic fashion in the one week BSM1 evaluation period. In the paper, models for influent file design, parameter changes and sensor failures, initialization procedure and evaluation criteria are discussed. Important remaining topics, for which consensus is required, are identified. The potential of a long-term benchmark is illustrated with an example of process monitoring algorithm benchmarking.

  19. Ionization Properties of Molecules Commonly Used for Plasma Processing of Semi-Conductors

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    2000-01-01

    Two types of processes are involved in plasma processing of semi-conductors. They are: plasma etching or cleaning and plasma deposition of the semi-conducting materials. For plasma etching of semi-conductors mostly halogen containing gases are used as additives to gases such as O2 and N2. For plasma deposition gases such as C2H2, SiH4, Si2H6 have been tested in the past. For an optimal performance of a reactor it is important to model the plasma. In this modeling effort electron impact excitation and ionization cross sections play a central role. For ionization balance calculations values of ionization cross sections are needed. Ion molecule reactions determine the ultimate composition of the plasma. Recently it has been discovered that the by products of many of these plasmas are per fluro hydrocarbons (PFCs) which are highly infrared absorbing species and have long life times in the atmosphere. They cause global warming. A lot of research is being pursued at the present time to find alternative molecules which do not produce global warming gases as the and product of the plasma processing reactor. There is also interest in the ionization and dissociative ionization properties of these molecules from the point view of the plasma abatement of the pollutant gases at the exhaust of the semi-conductor processing reactors. At the conference ionization and dissociative ionization properties of some of these molecules will be presented.

  20. Combining Natural Language Processing and Statistical Text Mining: A Study of Specialized versus Common Languages

    ERIC Educational Resources Information Center

    Jarman, Jay

    2011-01-01

    This dissertation focuses on developing and evaluating hybrid approaches for analyzing free-form text in the medical domain. This research draws on natural language processing (NLP) techniques that are used to parse and extract concepts based on a controlled vocabulary. Once important concepts are extracted, additional machine learning algorithms,…

  1. Global protein profiling studies of chikungunya virus infection identify different proteins but common biological processes.

    PubMed

    Smith, Duncan R

    2015-01-01

    Chikungunya fever (CHIKF) caused by the mosquito-transmitted chikungunya virus (CHIKV) swept into international prominence from late 2005 as an epidemic of CHIKF spread around countries surrounding the Indian Ocean. Although significant advances have been made in understanding the pathobiology of CHIKF, numerous questions still remain. In the absence of commercially available specific drugs to treat the disease, or a vaccine to prevent the diseases, the questions have particular significance. A number of studies have used global proteome analysis to increase our understanding of the process of CHIKV infection using a number of different experimental techniques and experimental systems. In all, over 700 proteins have been identified in nine different analyses by five different groups as being differentially regulated. Remarkably, only a single protein, eukaryotic elongation factor 2, has been identified by more than two different groups as being differentially regulated during CHIKV infection. This review provides a critical overview of the studies that have used global protein profiling to understand CHIKV infection and shows that while a broad consensus is emerging on which biological processes are altered during CHIKV infection, this consensus is poorly supported in terms of consistent identification of any key proteins mediating those biological processes.

  2. Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Hull, Patrick V.

    2015-01-01

    Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.

  3. The characterization of boron carbide nanowires grown by PECVD and CVD

    NASA Astrophysics Data System (ADS)

    Alkhateeb, Abdullah; Zhang, Daqing; McIlroy, D. N.; Norton, M. Grant

    2001-03-01

    The growth of boron carbide nanowires by chemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition (PECVD) has been compared. In both cases the single source compound orthocarborane (C2B10H12) was used. The two processes vary dramatically from one another primarily due to the differences in fragmentation pathways of the precursor orthocarborane, which is extremely stable. For simple CVD the process is limited by thermal fragmentation of the precursor at the surface. However, for plasma enhanced CVD there are many more fragmentation pathways and the fragmentation can occur far away from the surface. This study has shown that there is competition between thin film growth and nanowire growth that strongly depends on the fragmentation process of the precursor. It has been determined that nanowires growth can be promoted over thin film growth by reducing the fragmentation pathways of orthocarborane and that probability of thermal fragmentation is higher at the surface of the catalyst (NiB) than at the substrate (silicon).

  4. Corrosion protection of SiC-based ceramics with CVD mullite coatings

    SciTech Connect

    Sarin, V.; Mulpuri, R.; Auger, M.

    1996-04-20

    SiC based ceramics have been identified as the leading candidate materials for elevated temperature applications in harsh oxidation/corrosion environments. It has been established that a protective coating can be effectively used to avoid problems with excessive oxidation and hot corrosion. However, to date, no coating configuration has been developed that can withstand the rigorous requirements imposed by such applications. Chemical vapor deposited (CVD) mullite coatings due to their desirable properties of toughness, corrosion resistance, and good coefficient of thermal expansion match with SiC are being developed as a potential solution. Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Thermodynamic calculations performed on the AlCl{sub 3}- SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  5. Radio Frequency Transistors and Circuits Based on CVD MoS2.

    PubMed

    Sanne, Atresh; Ghosh, Rudresh; Rai, Amritesh; Yogeesh, Maruthi Nagavalli; Shin, Seung Heon; Sharma, Ankit; Jarvis, Karalee; Mathew, Leo; Rao, Rajesh; Akinwande, Deji; Banerjee, Sanjay

    2015-08-12

    We report on the gigahertz radio frequency (RF) performance of chemical vapor deposited (CVD) monolayer MoS2 field-effect transistors (FETs). Initial DC characterizations of fabricated MoS2 FETs yielded current densities exceeding 200 μA/μm and maximum transconductance of 38 μS/μm. A contact resistance corrected low-field mobility of 55 cm(2)/(V s) was achieved. Radio frequency FETs were fabricated in the ground-signal-ground (GSG) layout, and standard de-embedding techniques were applied. Operating at the peak transconductance, we obtain short-circuit current-gain intrinsic cutoff frequency, fT, of 6.7 GHz and maximum intrinsic oscillation frequency, fmax, of 5.3 GHz for a device with a gate length of 250 nm. The MoS2 device afforded an extrinsic voltage gain Av of 6 dB at 100 MHz with voltage amplification until 3 GHz. With the as-measured frequency performance of CVD MoS2, we provide the first demonstration of a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications. PMID:26134588

  6. Implicit and Explicit Second Language Training Recruit Common Neural Mechanisms for Syntactic Processing

    PubMed Central

    Batterink, Laura; Neville, Helen

    2015-01-01

    In contrast to native language acquisition, adult second language (L2) acquisition occurs under highly variable learning conditions. While most adults acquire their L2 at least partially through explicit instruction, as in a classroom setting, many others acquire their L2 primarily through implicit exposure, as is typical of an immersion environment. Whether these differences in acquisition environment play a role in determining the neural mechanisms that are ultimately recruited to process L2 grammar has not been well characterized. The present study investigated this issue by comparing the event-related potential response to novel L2 syntactic rules acquired under conditions of implicit exposure and explicit instruction, using a novel laboratory language-learning paradigm. Native speakers tested on these stimuli showed a biphasic response to syntactic violations, consisting of an earlier negativity followed by a later P600 effect. After merely an hour of training, both implicitly- and explicitly-trained learners who were capable of detecting grammatical violations also elicited P600 effects. In contrast, learners who were unable to discriminate between grammatically correct and incorrect sentences did not show significant P600 effects. The magnitude of the P600 effect was found to correlate with learners’ behavioral proficiency. Behavioral measures revealed that successful learners from both the implicit and explicit groups gained explicit, verbalizable knowledge about the L2 grammar rules. Taken together, these results indicate that late, controlled mechanisms indexed by the P600 play a crucial role in processing a late-learned L2 grammar, regardless of training condition. These findings underscore the remarkable plasticity of later, attention-dependent processes and their importance in lifelong learning. PMID:23631551

  7. Implicit and explicit second language training recruit common neural mechanisms for syntactic processing.

    PubMed

    Batterink, Laura; Neville, Helen

    2013-06-01

    In contrast to native language acquisition, adult second-language (L2) acquisition occurs under highly variable learning conditions. Although most adults acquire their L2 at least partially through explicit instruction, as in a classroom setting, many others acquire their L2 primarily through implicit exposure, as is typical of an immersion environment. Whether these differences in acquisition environment play a role in determining the neural mechanisms that are ultimately recruited to process L2 grammar has not been well characterized. This study investigated this issue by comparing the ERP response to novel L2 syntactic rules acquired under conditions of implicit exposure and explicit instruction, using a novel laboratory language-learning paradigm. Native speakers tested on these stimuli showed a biphasic response to syntactic violations, consisting of an earlier negativity followed by a later P600 effect. After merely an hour of training, both implicitly and explicitly trained learners who were capable of detecting grammatical violations also elicited P600 effects. In contrast, learners who were unable to discriminate between grammatically correct and incorrect sentences did not show significant P600 effects. The magnitude of the P600 effect was found to correlate with learners' behavioral proficiency. Behavioral measures revealed that successful learners from both the implicit and explicit groups gained explicit, verbalizable knowledge about the L2 grammar rules. Taken together, these results indicate that late, controlled mechanisms indexed by the P600 play a crucial role in processing a late-learned L2 grammar, regardless of training condition. These findings underscore the remarkable plasticity of later, attention-dependent processes and their importance in lifelong learning.

  8. How common are aeolian processes on planetary bodies with very thin atmospheres?

    NASA Astrophysics Data System (ADS)

    Pähtz, Thomas; Duran, Orencio

    2016-04-01

    Observations from the Voyager 2, New Horizons, and Rosetta missions indicate that aeolian surface features, such as ripples and dunes, do not only occur on the surfaces of Earth, Mars, and Titan, but seemingly also on the surfaces of planetary bodies with extremely thin atmospheres, such as Triton, Pluto, and the comet 67P/Churyumov-Gerasimenko. This is highly intriguing since the saltation-threshold wind shear velocities predicted for these bodies from standard saltation-threshold models are so large that wind erosion actually should not occur. Here, guided by coupled DEM/RANS numerical simulations of sediment transport in Newtonian fluid using the numerical model by Duran et al. (POF 24, 103306, 2012), we propose an analytical model based entirely on physical princinples that predicts the minimal fluid speeds required to sustain sediment transport in Newtonian fluid. The analytical model is consistent with measurements of the transport threshold in water and Earth's air and with a recent observational estimate of the threshold on Mars. When applied to Triton and Pluto, it predicts threshold wind shear velocities (ut) of about 1-3m/s, which is comparable to wind shear occurring during storms on Earth and Mars, for particles with diameters (d) within the range d ∈ [200,3000]μm. The minimal values (≈ 1m/s) are thereby predicted for surprisingly large particles with d ≈ 2000μm. When applied to 67P/Churyumov-Gerasimenko, the analytical model predicts threshold wind shear velocities that are fairly extreme (e.g., ut = 45m/s for d = 1cm), but nonetheless consistent with wind shear velocities estimated to occur on this comet. From our results, we conclude that surface-shaping wind erosion and thus the occurrence of aeolian surface features might be much more common on low-air-density planetary bodies than previously thought.

  9. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes.

    PubMed

    Fuhlendorff, J; Rorsman, P; Kofod, H; Brand, C L; Rolin, B; MacKay, P; Shymko, R; Carr, R D

    1998-03-01

    The action of repaglinide, a novel insulin secretagogue, was compared with the sulfonylurea glibenclamide with regard to the hypoglycemic action in vivo, binding to betaTC-3 cells, insulin secretion from perifused mouse islets, and capacity to stimulate exocytosis by direct interaction with the secretory machinery in single voltage-clamped mouse beta-cells. Two binding sites were identified: a high-affinity repaglinide (KD = 3.6 nmol/l) site having lower affinity for glibenclamide (14.4 nmol/l) and one high-affinity glibenclamide (25 nmol/l) site having lower affinity for repaglinide (550 nmol/l). In contrast to glibenclamide, repaglinide (in concentrations as high as 5 micromol/l) lacked the ability to enhance exocytosis in voltage-clamped beta-cells. Repaglinide was more potent than glibenclamide in stimulating insulin release from perifused mouse islets (EC50 29 vs. 80 nmol/l). The greater potency of repaglinide in vitro was paralleled by similar actions in vivo. The ED50 values for the hypoglycemic action were determined to be 10.4 and 15.6 microg/kg after intravenous and oral administration, respectively. The corresponding values for glibenclamide were 70.3 microg/kg (intravenous) and 203.2 microg/kg (oral). Further, repaglinide (1 mg/kg p.o.) was effective (P < 0.001) as an insulin-releasing agent in a rat model (low-dose streptozotocin) of type 2 diabetes. These observations suggest that the insulinotropic actions of repaglinide and glibenclamide in vitro and in vivo are secondary to their binding to the high-affinity repaglinide site and that the insulinotropic action of repaglinide involves both distinct and common cellular mechanisms.

  10. Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions.

    PubMed

    Schoenbaum, G; Setlow, B

    2001-01-01

    Currently, many theories highlight either representational memory or rule representation as the hallmark of prefrontal function. Neurophysiological findings in the primate dorsolateral prefrontal cortex indicate that both features may characterize prefrontal processing. Neurons in the dorsolateral prefrontal cortex encode information in working memory, and this information is represented when relevant to the rules governing performance in a task. In this review, we discuss recent reports of encoding in primate and rat orbitofrontal regions indicating that these features also characterize activity in the orbitofrontal subdivision of the prefrontal cortex. These data indicate that (1) neural activity in the orbitofrontal cortex links the current incentive value of reinforcers to cues, rather than representing the physical features of cues or associated reinforcers; (2) this incentive-based information is represented in the orbitofrontal cortex when it is relevant to the rules guiding performance in a task; and (3) incentive information is also represented in the orbitofrontal cortex in working memory during delays when neither the cues nor reinforcers are present. Therefore, although the orbitofrontal cortex appears to be uniquely specialized to process incentive or motivational information, it may be integrated into a more global framework of prefrontal function characterized by representational encoding of performance-relevant information.

  11. Improvement of the hypocholesterolemic activities of two common fruit fibers by micronization processing.

    PubMed

    Wu, She-Ching; Wu, Shiuan-Huei; Chau, Chi-Fai

    2009-06-24

    This study investigated and compared the potential hypocholesterolemic activities of different insoluble fibers (IFs) prepared from carambola and orange pomace with or without micronization processing. After micronization, the cation-exchange and water-holding capacities of these pectic polysaccharide-rich IFs were effectively increased (from 140 to 180% and from 260 to 290%, respectively). The abilities of these microsized fruit IFs to lower the concentrations of serum triglyceride (by 15.6-17.8%) and serum total cholesterol (by 15.7-17.0%) were significantly (p < 0.05) improved, possibly by means of enhancing the excretion of cholesterol (123-126%) and bile acids (129-133%) in feces. Fecal moisture content was also increased (127-131%) by the consumption of microsized IFs. These results demonstrated that particle size is an important factor in affecting the characteristics and physiological functions of insoluble fibers. The approach of micronization processing might offer the industry an opportunity to improve the physiological functions of food fibers in fiber-rich functional food applications.

  12. [Examination of processed vegetable foods for the presence of common DNA sequences of genetically modified tomatoes].

    PubMed

    Kitagawa, Mamiko; Nakamura, Kosuke; Kondo, Kazunari; Ubukata, Shoji; Akiyama, Hiroshi

    2014-01-01

    The contamination of processed vegetable foods with genetically modified tomatoes was investigated by the use of qualitative PCR methods to detect the cauliflower mosaic virus 35S promoter (P35S) and the kanamycin resistance gene (NPTII). DNA fragments of P35S and NPTII were detected in vegetable juice samples, possibly due to contamination with the genomes of cauliflower mosaic virus infecting juice ingredients of Brassica species and soil bacteria, respectively. Therefore, to detect the transformation construct sequences of GM tomatoes, primer pairs were designed for qualitative PCR to specifically detect the border region between P35S and NPTII, and the border region between nopaline synthase gene promoter and NPTII. No amplification of the targeted sequences was observed using genomic DNA purified from the juice ingredients. The developed qualitative PCR method is considered to be a reliable tool to check contamination of products with GM tomatoes.

  13. Water chemistry at Snowshoe Mountain, Colorado: mixed processes in a common bedrock

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.

    2001-01-01

    At Snowshoe Mountain the primary bedrock is quite homogeneous, but weathering processes vary as waters moves through the soils, vadose zone and phreatic zone of the subsurface. In the thin soil, physical degradation of tuff facilitates preferential dissolution of potassium ion from glass within the rock matrix, while other silicate minerals remain unaltered. In the vadose zone, in the upper few meters of fractured bedrock, dilute water infiltrates during spring snowmelt and summer storms, leading to preferential dissolution of augite exposed on fracture surfaces. Deeper yet, in the phreatic zone of the fractured bedrock, Pleistocene calcite fracture fillings dissolve, and dioctahedral and trioctahedral clays form as penetrative weathering alters feldspar and pyroxene. Alkalinity is generated and silica concentrations are buffered by mineral alteration reactions.

  14. [Examination of processed vegetable foods for the presence of common DNA sequences of genetically modified tomatoes].

    PubMed

    Kitagawa, Mamiko; Nakamura, Kosuke; Kondo, Kazunari; Ubukata, Shoji; Akiyama, Hiroshi

    2014-01-01

    The contamination of processed vegetable foods with genetically modified tomatoes was investigated by the use of qualitative PCR methods to detect the cauliflower mosaic virus 35S promoter (P35S) and the kanamycin resistance gene (NPTII). DNA fragments of P35S and NPTII were detected in vegetable juice samples, possibly due to contamination with the genomes of cauliflower mosaic virus infecting juice ingredients of Brassica species and soil bacteria, respectively. Therefore, to detect the transformation construct sequences of GM tomatoes, primer pairs were designed for qualitative PCR to specifically detect the border region between P35S and NPTII, and the border region between nopaline synthase gene promoter and NPTII. No amplification of the targeted sequences was observed using genomic DNA purified from the juice ingredients. The developed qualitative PCR method is considered to be a reliable tool to check contamination of products with GM tomatoes. PMID:25743587

  15. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  16. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst.

    PubMed

    Wang, Yu; Zheng, Yi; Xu, Xiangfan; Dubuisson, Emilie; Bao, Qiaoliang; Lu, Jiong; Loh, Kian Ping

    2011-12-27

    The separation of chemical vapor deposited (CVD) graphene from the metallic catalyst it is grown on, followed by a subsequent transfer to a dielectric substrate, is currently the adopted method for device fabrication. Most transfer techniques use a chemical etching method to dissolve the metal catalysts, thus imposing high material cost in large-scale fabrication. Here, we demonstrate a highly efficient, nondestructive electrochemical route for the delamination of CVD graphene film from metal surfaces. The electrochemically delaminated graphene films are continuous over 95% of the surface and exhibit increasingly better electronic quality after several growth cycles on the reused copper catalyst, due to the suppression of quasi-periodical nanoripples induced by copper step edges. The electrochemical delamination process affords the advantages of high efficiency, low-cost recyclability, and minimal use of etching chemicals.

  17. Enhancement of the Electrical Properties of CVD-Grown Graphene with Ascorbic Acid Treatment

    NASA Astrophysics Data System (ADS)

    Tang, Chunmiao; Chen, Zhiying; Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Sui, Yanping; Yu, Guanghui; Cao, Yijiang

    2016-02-01

    Ascorbic acid was used to modify to chemical vapor deposition (CVD)-grown graphene films transferred onto SiO2 substrate. Residual polymer (polymethyl methacrylate), Fe3+, Cl-, H2O, and O2 affected the electrical and thermal properties on graphene during the transfer or device fabrication processes. Exposure of transferred graphene to ascorbic acid resulted in significantly enhanced electrical properties with increased charge carrier mobility. All devices exhibited more than 30% improvement in room temperature carrier mobility in air. The carrier mobility of the treated graphene did not significantly decrease in 21 days. This result can be attributed to electron donation to graphene through the -OH functional group in ascorbic acid that is absorbed in graphene. This work provides a method to enhance the electrical properties of CVD-grown graphene.

  18. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst.

    PubMed

    Wang, Yu; Zheng, Yi; Xu, Xiangfan; Dubuisson, Emilie; Bao, Qiaoliang; Lu, Jiong; Loh, Kian Ping

    2011-12-27

    The separation of chemical vapor deposited (CVD) graphene from the metallic catalyst it is grown on, followed by a subsequent transfer to a dielectric substrate, is currently the adopted method for device fabrication. Most transfer techniques use a chemical etching method to dissolve the metal catalysts, thus imposing high material cost in large-scale fabrication. Here, we demonstrate a highly efficient, nondestructive electrochemical route for the delamination of CVD graphene film from metal surfaces. The electrochemically delaminated graphene films are continuous over 95% of the surface and exhibit increasingly better electronic quality after several growth cycles on the reused copper catalyst, due to the suppression of quasi-periodical nanoripples induced by copper step edges. The electrochemical delamination process affords the advantages of high efficiency, low-cost recyclability, and minimal use of etching chemicals. PMID:22034835

  19. Modeling the optimum conditions for the formation of defect-free CVD graphene on copper melt

    NASA Astrophysics Data System (ADS)

    Alekseev, N. I.

    2014-09-01

    The nucleation and growth of nuclei of graphene (graphene islets) on the surfaces of copper melts during catalytic CVD, i.e., the catalytic decomposition of a gas-phase carbon support, is considered. It is shown that on a copper melt the optimum combination of conditions for the preservation of islets with almost perfect hexagonal shape and the necessary conditions of the CVD-process are reached at the same time. The average distance between the islets and the dimensionless parameter that determines changes in the shape of islets is calculated. The maximum rate of decomposition of the carbon support at which this parameter simultaneously promotes the growth of defect-free islets and the maximum possible rate of growth of the graphene monolayer is determined.

  20. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    SciTech Connect

    Azira, A. A.; Rusop, M.

    2010-03-11

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  1. Mechanistic studies of the CVD of silicon nitride from SiF[sub 4] and NH[sub 3

    SciTech Connect

    Buss, R J; Ho, P

    1992-01-01

    An industrial process for the CVD of silicon nitride from SiF[sub 4] and NH[sub 3] was studied with a wide variety of techniques, ranging from numerical models of the coupled chemistry and fluid mechanics to experimental studies of chemical reactions. The latter includes a set of molecular beam experiments that probed the temperature and flux dependencies of the reaction of SiF[sub 4] and NH[sub 3] at the surface. These experiments showed that the CVD reactor chemistry was dominated by surface kinetics rather than gas-phase decomposition.

  2. Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes.

    PubMed

    Wang, Jiangtao; Liu, Peng; Xia, Bingyu; Wei, Haoming; Wei, Yang; Wu, Yang; Liu, Kai; Zhang, Lina; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2016-07-13

    Carbon nanotube (CNT) is believed to be the most promising material for next generation IC industries with the prerequisite of chirality specific growth. For various approaches to controlling the chiral indices of CNTs, the key is to deepen the understanding of the catalytic growth mechanism in chemical vapor deposition (CVD). Here we show our discovery that the as-grown CNTs are all negatively charged after Fe-catalyzed CVD process. The extra electrons come from the charge generation and transfer during the growth of CNTs, which indicates that an electrochemical process happens in the surface reaction step. We then designed an in situ measurement equipment, verifying that the CVD growth of CNTs can be regarded as a primary battery system. Furthermore, we found that the variation of the Fermi level in Fe catalysts have a significant impact on the chirality of CNTs when different external electric fields are applied. These findings not only provide a new perspective on the growth of CNTs but also open up new possibilities for controlling the growth of CNTs by electrochemical methods.

  3. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.

    PubMed

    Wang, Huaping; Yu, Gui

    2016-07-01

    Graphene is the most broadly discussed and studied two-dimensional material because of its preeminent physical, mechanical, optical, and thermal properties. Until now, metal-catalyzed chemical vapor deposition (CVD) has been widely employed for the scalable production of high-quality graphene. However, in order to incorporate the graphene into electronic devices, a transfer process from metal substrates to targeted substrates is inevitable. This process usually results in contamination, wrinkling, and breakage of graphene samples - undesirable in graphene-based technology and not compatible with industrial production. Therefore, direct graphene growth on desired semiconductor and dielectric substrates is considered as an effective alternative. Over the past years, there have been intensive investigations to realize direct graphene growth using CVD methods without the catalytic role of metals. Owing to the low catalytic activity of non-metal substrates for carbon precursor decomposition and graphene growth, several strategies have been designed to facilitate and engineer graphene fabrication on semiconductors and insulators. Here, those developed strategies for direct CVD graphene growth on semiconductors and dielectrics for transfer-free fabrication of electronic devices are reviewed. By employing these methods, various graphene-related structures can be directly prepared on desired substrates and exhibit excellent performance, providing versatile routes for varied graphene-based materials fabrication.

  4. Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes.

    PubMed

    Wang, Jiangtao; Liu, Peng; Xia, Bingyu; Wei, Haoming; Wei, Yang; Wu, Yang; Liu, Kai; Zhang, Lina; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2016-07-13

    Carbon nanotube (CNT) is believed to be the most promising material for next generation IC industries with the prerequisite of chirality specific growth. For various approaches to controlling the chiral indices of CNTs, the key is to deepen the understanding of the catalytic growth mechanism in chemical vapor deposition (CVD). Here we show our discovery that the as-grown CNTs are all negatively charged after Fe-catalyzed CVD process. The extra electrons come from the charge generation and transfer during the growth of CNTs, which indicates that an electrochemical process happens in the surface reaction step. We then designed an in situ measurement equipment, verifying that the CVD growth of CNTs can be regarded as a primary battery system. Furthermore, we found that the variation of the Fermi level in Fe catalysts have a significant impact on the chirality of CNTs when different external electric fields are applied. These findings not only provide a new perspective on the growth of CNTs but also open up new possibilities for controlling the growth of CNTs by electrochemical methods. PMID:27254079

  5. Colonization process of the Brazilian common vesper mouse, Calomys expulsus (Cricetidae, Sigmodontinae): a biogeographic hypothesis.

    PubMed

    Nascimento, Fabrícia Ferreira do; Pereira, Luciana G; Geise, Lena; Bezerra, Alexandra M R; D'Andrea, Paulo S; Bonvicino, Cibele R

    2011-01-01

    Riverine barriers have been associated to genetic diversification and speciation of several taxa. The Rio São Francisco is one of the largest rivers in South America, representing the third largest river basin in Brazil and operating as a geographic barrier to gene flow of different taxa. To evaluate the influence of the Rio São Francisco in the speciation of small rodents, we investigated the genetic structure of Calomys expulsus with phylogenetic and network analyses of cytochrome b DNA. Our results suggested that C. expulsus can be divided into 3 subpopulations, 2 on the left and another one on the right bank of this river. The time of divergence of these subpopulations, using a Bayesian framework, suggested colonization from the south to the north/northeast. Spatial analysis using a clustering method and the Monmonier's algorithm suggested that the Rio São Francisco is a biogeographic barrier to gene flow and indicated that this river may play a role in the incipient speciation process of these subpopulations. PMID:21441460

  6. Colonization process of the Brazilian common vesper mouse, Calomys expulsus (Cricetidae, Sigmodontinae): a biogeographic hypothesis.

    PubMed

    Nascimento, Fabrícia Ferreira do; Pereira, Luciana G; Geise, Lena; Bezerra, Alexandra M R; D'Andrea, Paulo S; Bonvicino, Cibele R

    2011-01-01

    Riverine barriers have been associated to genetic diversification and speciation of several taxa. The Rio São Francisco is one of the largest rivers in South America, representing the third largest river basin in Brazil and operating as a geographic barrier to gene flow of different taxa. To evaluate the influence of the Rio São Francisco in the speciation of small rodents, we investigated the genetic structure of Calomys expulsus with phylogenetic and network analyses of cytochrome b DNA. Our results suggested that C. expulsus can be divided into 3 subpopulations, 2 on the left and another one on the right bank of this river. The time of divergence of these subpopulations, using a Bayesian framework, suggested colonization from the south to the north/northeast. Spatial analysis using a clustering method and the Monmonier's algorithm suggested that the Rio São Francisco is a biogeographic barrier to gene flow and indicated that this river may play a role in the incipient speciation process of these subpopulations.

  7. Recovery of CVD Diamond Detectors using Laser Double Pulses

    SciTech Connect

    Dauffy, L S; Lerche, R A; Schmid, G J; Koch, J A; Silbenagel, C

    2005-09-27

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its associated electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 {micro}J, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (E{sub bandgap} = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  8. Contact resistance study of various metal electrodes with CVD graphene

    NASA Astrophysics Data System (ADS)

    Gahoi, Amit; Wagner, Stefan; Bablich, Andreas; Kataria, Satender; Passi, Vikram; Lemme, Max C.

    2016-11-01

    In this study, the contact resistance of various metals to chemical vapor deposited (CVD) monolayer graphene is investigated. Transfer length method (TLM) structures with varying channel widths and separation between contacts have been fabricated and electrically characterized in ambient air and vacuum condition. Electrical contacts are made with five metals: gold, nickel, nickel/gold, palladium and platinum/gold. The lowest value of 92 Ω μm is observed for the contact resistance between graphene and gold, extracted from back-gated devices at an applied back-gate bias of -40 V. Measurements carried out under vacuum show larger contact resistance values when compared with measurements carried out in ambient conditions. Post processing annealing at 450 °C for 1 h in argon-95%/hydrogen-5% atmosphere results in lowering the contact resistance value which is attributed to the enhancement of the adhesion between metal and graphene. The results presented in this work provide an overview for potential contact engineering for high performance graphene-based electronic devices.

  9. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    PubMed Central

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  10. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter.

    PubMed

    Borzenets, I V; Shimazaki, Y; Jones, G F; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S

    2016-01-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation. PMID:26971450

  11. High Efficiency CVD Graphene-lead (Pb) Cooper Pair Splitter

    NASA Astrophysics Data System (ADS)

    Borzenets, I. V.; Shimazaki, Y.; Jones, G. F.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S.

    2016-03-01

    Generation and manipulation of quantum entangled electrons is an important concept in quantum mechanics, and necessary for advances in quantum information processing; but not yet established in solid state systems. A promising device is a superconductor-two quantum dots Cooper pair splitter. Early nanowire based devices, while efficient, are limited in scalability and further electron manipulation. We demonstrate an optimized, high efficiency, CVD grown graphene-based Cooper pair splitter. Our device is designed to induce superconductivity in graphene via the proximity effect, resulting in both a large superconducting gap Δ = 0.5 meV, and coherence length ξ = 200 nm. The flat nature of the device lowers parasitic capacitance, increasing charging energy EC. Our design also eases geometric restrictions and minimizes output channel separation. As a result we measure a visibility of up to 86% and a splitting efficiency of up to 62%. This will pave the way towards near unity efficiencies, long distance splitting, and post-splitting electron manipulation.

  12. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    PubMed Central

    2010-01-01

    Background Cardiovascular disease (CVD) is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC) were incubated overnight with control media with dimethylsulfoxide (DMSO) vehicle (1% v/v) or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL), which included Agaricus bisporus (white button and crimini), Lentinula edodes (shiitake), Pleurotus ostreatus (oyster), and Grifola frondosa (maitake). Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL) for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM). AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p < 0.05) VCAM-1, ICAM-1, and E-selectin-1 expression, whereas other test mushrooms significantly modulated AM expression singly, collectively, or combinatorially. All mushrooms, however, significantly reduced binding of monocytes to both quiescent and cytokine-stimulated monolayers. Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support

  13. Changes in CVD risk factors in the activity counseling trial

    PubMed Central

    Baruth, Meghan; Wilcox, Sara; Sallis, James F; King, Abby C; Marcus, Bess H; Blair, Steven N

    2011-01-01

    Primary care facilities may be a natural setting for delivering interventions that focus on behaviors that improve cardiovascular disease (CVD) risk factors. The purpose of this study was to examine the 24-month effects of the Activity Counseling Trial (ACT) on CVD risk factors, to examine whether changes in CVD risk factors differed according to baseline risk factor status, and to examine whether changes in fitness were associated with changes in CVD risk factors. ACT was a 24-month multicenter randomized controlled trial to increase physical activity. Participants were 874 inactive men and women aged 35–74 years. Participants were randomly assigned to one of three arms that varied by level of counseling, intensity, and resource requirements. Because there were no significant differences in change over time between arms on any of the CVD risk factors examined, all arms were combined, and the effects of time, independent of arm, were examined separately for men and women. Time × Baseline risk factor status interactions examined whether changes in CVD risk factors differed according to baseline risk factor status. Significant improvements in total cholesterol, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol, the ratio of total cholesterol to HDL-C, and triglycerides were seen in both men and women who had high (or low for HDL-C) baseline levels of risk factors, whereas significant improvements in diastolic blood pressure were seen only in those men with high baseline levels. There were no improvements in any risk factors among participants with normal baseline levels. Changes in fitness were associated with changes in a number of CVD risk factors. However, most relationships disappeared after controlling for changes in body weight. Improvements in lipids from the ACT interventions could reduce the risk of coronary heart disease in people with already high levels of lipids by 16%–26% in men and 11%–16% in women

  14. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure.

    PubMed

    Losurdo, Maria; Giangregorio, Maria Michela; Capezzuto, Pio; Bruno, Giovanni

    2011-12-14

    Understanding the chemical vapor deposition (CVD) kinetics of graphene growth is important for advancing graphene processing and achieving better control of graphene thickness and properties. In the perspective of improving large area graphene quality, we have investigated in real-time the CVD kinetics using CH(4)-H(2) precursors on both polycrystalline copper and nickel. We highlighted the role of hydrogen in differentiating the growth kinetics and thickness of graphene on copper and nickel. Specifically, the growth kinetics and mechanism is framed in the competitive dissociative chemisorption of H(2) and dehydrogenating chemisorption of CH(4), and in the competition of the in-diffusion of carbon and hydrogen, being hydrogen in-diffusion faster in copper than nickel, while carbon diffusion is faster in nickel than copper. It is shown that hydrogen acts as an inhibitor for the CH(4) dehydrogenation on copper, contributing to suppress deposition onto the copper substrate, and degrades quality of graphene. Additionally, the evidence of the role of hydrogen in forming C-H out of plane defects in CVD graphene on Cu is also provided. Conversely, resurfacing recombination of hydrogen aids CH(4) decomposition in the case of Ni. Understanding better and providing other elements to the kinetics of graphene growth is helpful to define the optimal CH(4)/H(2) ratio, which ultimately can contribute to improve graphene layer thickness uniformity even on polycrystalline substrates. PMID:22006173

  15. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    DOE PAGES

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.

    2015-02-11

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. But, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500more » C. Moreover, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.« less

  16. Projected Impact of a Sodium Consumption Reduction Initiative in Argentina: An Analysis from the CVD Policy Model – Argentina

    PubMed Central

    Konfino, Jonatan; Mekonnen, Tekeshe A.; Coxson, Pamela G.; Ferrante, Daniel; Bibbins-Domingo, Kirsten

    2013-01-01

    Background Cardiovascular disease (CVD) is the leading cause of death in adults in Argentina. Sodium reduction policies targeting processed foods were implemented in 2011 in Argentina, but the impact has not been evaluated. The aims of this study are to use Argentina-specific data on sodium excretion and project the impact of Argentina’s sodium reduction policies under two scenarios - the 2-year intervention currently being undertaken or a more persistent 10 year sodium reduction strategy. Methods We used Argentina-specific data on sodium excretion by sex and projected the impact of the current strategy on sodium consumption and blood pressure decrease. We assessed the projected impact of sodium reduction policies on CVD using the Cardiovascular Disease (CVD) Policy Model, adapted to Argentina, modeling two alternative policy scenarios over the next decade. Results Our study finds that the initiative to reduce sodium consumption currently in place in Argentina will have substantial impact on CVD over the next 10 years. Under the current proposed policy of 2-year sodium reduction, the mean sodium consumption is projected to decrease by 319–387 mg/day. This decrease is expected to translate into an absolute reduction of systolic blood pressure from 0.93 mmHg to 1.81 mmHg. This would avert about 19,000 all-cause mortality, 13,000 total myocardial infarctions, and 10,000 total strokes over the next decade. A more persistent sodium reduction strategy would yield even greater CVD benefits. Conclusion The impact of the Argentinean initiative would be effective in substantially reducing mortality and morbidity from CVD. This paper provides evidence-based support to continue implementing strategies to reduce sodium consumption at a population level. PMID:24040085

  17. Mechanical properties of nanostructured carbon layers grown by CVD and PLD techniques

    NASA Astrophysics Data System (ADS)

    Mangione, A.; Lanzara, G.; Torrisi, L.; Caridi, F.

    2010-10-01

    Pulsed laser deposition (PLD) and chemical vapour deposition (CVD) have been proven to be among the most successful techniques for growing the entire spectrum of carbon films, which can be used in a wide range of technical applications. Here an investigation has been performed to explore the effect of different growing techniques (PLD and CVD) and process parameters (such as deposition time and substrate type) on the films' morphology and mechanical properties. The mechanical properties of the grown thin films were characterised by means of nano/micro indentation and scratch test techniques. It was observed that the thickness of the Al2O3 interlayer (between the Fe catalyst nanoparticles and the silicon substrate) is a critical parameter that can be used to significantly enhance the adhesion strength of PLD-grown carbon films. PLD-grown carbon films were in fact found to have higher adhesion to the substrate than CVD-grown carbon nanotubes (CNT), and the adhesion strength was found to increase with increasing thickness of the Al2O3 interlayer. On the other hand, CVD-grown carbon films (made of aligned CNTs) seem to offer a greater response in terms of elastic modulus. A thorough scanning electron microscopy characterisation suggested that the observed mechanical responses might be correlated to the films' morphology at the nano/microscale. It was in fact observed that, in PLD-grown samples, an increasing deposition time and Al2O3 content leads to a grain size increase and to a clustering effect, thus to a loss in film uniformity.

  18. Fabricating Large-Area Sheets of Single-Layer Graphene by CVD

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Manohara, Harish

    2008-01-01

    This innovation consists of a set of methodologies for preparing large area (greater than 1 cm(exp 2)) domains of single-atomic-layer graphite, also called graphene, in single (two-dimensional) crystal form. To fabricate a single graphene layer using chemical vapor deposition (CVD), the process begins with an atomically flat surface of an appropriate substrate and an appropriate precursor molecule containing carbon atoms attached to substituent atoms or groups. These molecules will be brought into contact with the substrate surface by being flowed over, or sprayed onto, the substrate, under CVD conditions of low pressure and elevated temperature. Upon contact with the surface, the precursor molecules will decompose. The substituent groups detach from the carbon atoms and form gas-phase species, leaving the unfunctionalized carbon atoms attached to the substrate surface. These carbon atoms will diffuse upon this surface and encounter and bond to other carbon atoms. If conditions are chosen carefully, the surface carbon atoms will arrange to form the lowest energy single-layer structure available, which is the graphene lattice that is sought. Another method for creating the graphene lattice includes metal-catalyzed CVD, in which the decomposition of the precursor molecules is initiated by the catalytic action of a catalytic metal upon the substrate surface. Another type of metal-catalyzed CVD has the entire substrate composed of catalytic metal, or other material, either as a bulk crystal or as a think layer of catalyst deposited upon another surface. In this case, the precursor molecules decompose directly upon contact with the substrate, releasing their atoms and forming the graphene sheet. Atomic layer deposition (ALD) can also be used. In this method, a substrate surface at low temperature is covered with exactly one monolayer of precursor molecules (which may be of more than one type). This is heated up so that the precursor molecules decompose and form one

  19. Method for growth of CVD diamond on thin film refractory coatings and glass ceramic materials

    NASA Astrophysics Data System (ADS)

    Moran, Mark B.; Johnson, Linda F.; Klemm, Karl A.

    1994-09-01

    This paper describes a new method for significantly improving diamond film quality and growth rate on insulating substrates and thin films. The usual method of abrading the substrate surface with diamond particles yields good quality CVD diamond films at reasonable deposition rates on semiconducting materials like silicon. However, on insulating materials like fused silica and sapphire, the conventional method of diamond seeding and surface abrasion almost always results in slow growth rates and poor quality films. Current in-house diamond nucleation and growth studies have focused on depositing CVD diamond on substrates such as fused silica, sapphire, and glass ceramics. Diamond was grown successfully on these types of materials using a sacrificial metal layer method called metal induced nucleation of diamond (MIND). This technique offers a way to deposit diamond on glassy materials with improved adhesion and at lower deposition temperatures (less than 650 degree(s)C). In addition, the MIND technique can be used in combination with metal masking and conventional etching to deposit patterns of diamond. The MIND method was combined with another in-house developed technique called sputtered refractory interlayer nucleation technique (SPRINT). Diamond-crystallite size and orientation can be controlled with SPRINT to fabricate low-scatter diamond films. Both techniques are discussed. A reliable, efficient method for growing diamond on insulating materials significantly enhances the feasibility for practical applications of CVD diamond technology. For example, further development of the MIND technique may provide low-scatter, protective diamond films on sapphire and glass ceramics for visible-wavelength windows and missile domes. For electronic applications, reduction in the growth temperature makes CVD diamond more compatible with existing semiconductor processes. The lower growth temperature also helps to alleviate diffusion problems in metal alloys and facilitates

  20. Common Core State Standards for Mathematics: Teacher Self-Learning Series. Module 1: Introduction to the Common Core State Standards in Mathematics--The Need, the Development Process, the Common Languages, and the Structure

    ERIC Educational Resources Information Center

    Louisiana Department of Education, 2013

    2013-01-01

    This module provides background information and presents the new terminology used in the Common Core State Standards for Mathematics (CCSSM). Educators should complete this module to understand the need for common standards, determine information about who developed the Standards, and learn the terminology and the coding used in the CCSSM. An…

  1. The extended growth of graphene oxide flakes using ethanol CVD

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Larisika, Melanie; Fam, W. H. Derrick; He, Qiyuan; Nimmo, Myra A.; Nowak, Christoph; Tok, I. Y. Alfred

    2013-03-01

    We report the extended growth of Graphene Oxide (GO) flakes using atmospheric pressure ethanol Chemical Vapor Deposition (CVD). GO was used to catalyze the deposition of carbon on a substrate in the ethanol CVD with Ar and H2 as carrier gases. Raman, SEM, XPS and AFM characterized the growth to be a reduced GO (RGO) of <5 layers. This newly grown RGO possesses lower defect density with larger and increased distribution of sp2 domains than chemically reduced RGO. Furthermore this method without optimization reduces the relative standard deviation of electrical conductivity between chips, from 80.5% to 16.5%, enabling RGO to be used in practical electronic devices.We report the extended growth of Graphene Oxide (GO) flakes using atmospheric pressure ethanol Chemical Vapor Deposition (CVD). GO was used to catalyze the deposition of carbon on a substrate in the ethanol CVD with Ar and H2 as carrier gases. Raman, SEM, XPS and AFM characterized the growth to be a reduced GO (RGO) of <5 layers. This newly grown RGO possesses lower defect density with larger and increased distribution of sp2 domains than chemically reduced RGO. Furthermore this method without optimization reduces the relative standard deviation of electrical conductivity between chips, from 80.5% to 16.5%, enabling RGO to be used in practical electronic devices. Electronic supplementary information (ESI) available: The ethanol CVD setup, TEM of CVD treated RGO, graphite 2D Raman spectra, GO synthesis, transfer and reduction methods and details of characterization techniques are described in the document. See DOI: 10.1039/c3nr33704a

  2. Tractable Chemical Models for CVD of Silicon and Carbon

    NASA Technical Reports Server (NTRS)

    Blanquet, E.; Gokoglu, S. A.

    1993-01-01

    Tractable chemical models are validated for the CVD of silicon and carbon. Dilute silane (SiH4) and methane (CH4) in hydrogen are chosen as gaseous precursors. The chemical mechanism for each systems Si and C is deliberately reduced to three reactions in the models: one in the gas phase and two at the surface. The axial-flow CVD reactor utilized in this study has well-characterized flow and thermal fields and provides variable deposition rates in the axial direction. Comparisons between the experimental and calculated deposition rates are made at different pressures and temperatures.

  3. Origin of residual particles on transferred graphene grown by CVD

    NASA Astrophysics Data System (ADS)

    Yasunishi, Tomohiro; Takabayashi, Yuya; Kishimoto, Shigeru; Kitaura, Ryo; Shinohara, Hisanori; Ohno, Yutaka

    2016-08-01

    Large-area single-layer graphene can be grown on Cu foil by CVD, but for device applications, the layer must to be transferred onto an insulating substrate. As residual particles are often observed on transferred graphene, we investigated their origin using scanning electron microscopy and energy-dispersive X-ray spectrometry (EDX). The results show that these residual particles are composed either of silicon or an alloy of a few metals, and hence, likely originate from the quartz tube of the CVD furnace and the impurities contained in the Cu foil.

  4. Fairly processing rare and common species in multivariate analysis of ecological series. Application to macrobenthic communities from Algiers harbour.

    PubMed

    Manté, C; Claudet, J; Rebzani-Zahaf, C

    2003-01-01

    Systematic sampling of communities gives rise to large contingency tables summing up possible changes in the assemblages' structure. Such tables are generally analysed by multivariate statistical methods, which are ill-suited for simultaneously analysing rare and common species (Field et al., 1982). In order to separately process species belonging to either of these categories, we propose a statistical method to select common species in a sequence of ecological surveys. It is based on a precise definition of rarity, and depends on a rarity parameter. In this work, this parameter will be optimised so that the sub-table of common species captures the essential features of the complete table as well as possible. In this way we analysed the spatio-temporal evolution of macrobenthic communities from the Algiers harbour to study the pollution influence during a year. The examination of the communities' structuring was done through Principal Components Analysis (PCA) of the species proportions table. Environmental variables were simultaneously sampled. We show that the data structure can be explained by about 25% of the total number of present species. Two environmental gradients were brought to the fore inside the harbour, the first one representing pollution, and the second one representing hydrological instabilities. Since rare species can also convey information, the complete table was also coded according to a generalised presence/absence index and submitted to Correspondence Analysis. The results were consistent with those of PCA, but they depended on more species, and highlighted the influence of sedimentology on the assemblages composition. PMID:14669877

  5. Reduction of antiproliferative capacities, cell-based antioxidant capacities and phytochemical contents of common beans and soybeans upon thermal processing.

    PubMed

    Xu, Baojun; Chang, Sam K C

    2011-12-01

    The effects of boiling and steaming processes on the antiproliferative and cellular antioxidant properties, as well as phytochemicals, of two types of common beans (pinto and black beans) and two types of soybeans (yellow and black) were investigated. All thermal-processing methods caused significant (p<0.05) decreases in total phenolic content (TPC), total saponin content (TSC) and phytic acid content (PAC) values in all bean types (except for TPC values in pressure-steamed yellow soybeans) as compared to those of the raw beans. All types of uncooked raw beans exhibited cellular antioxidant activities (CAA) in dose-dependent manners. Black soybeans exhibited the greatest CAA, followed by black beans, pinto beans and yellow soybeans. The CAA of cooked beans were generally diminished or eliminated by thermal processing. The hydrophilic extracts from raw pinto beans, black beans and black soybeans exhibited antiproliferation capacities against human gastric (AGS) and colorectal (SW480) cancer cells in dose-dependent manners. The raw yellow soybeans exhibited dose-dependent antiproliferation activities against the SW480 cells. Most of the cooked beans lost their antiproliferation capacities as observed in the raw beans. These results indicate that different processing methods may have various effects on phytochemical profiles and bioactivities. Overall, thermal processing caused a significant reduction of the health-promotion effects of beans.

  6. Low-temperature growth of nitrogen-doped carbon nanofibers by acetonitrile catalytic CVD using Ni-based catalysts

    NASA Astrophysics Data System (ADS)

    Iwasaki, Tomohiro; Makino, Yuri; Fukukawa, Makoto; Nakamura, Hideya; Watano, Satoru

    2016-06-01

    To synthesize nitrogen-doped carbon nanofibers (N-CNFs) at high growth rates and low temperatures less than 673 K, nickel species (metallic nickel and nickel oxide) supported on alumina particles were used as the catalysts for an acetonitrile catalytic chemical vapor deposition (CVD) process. The nickel:alumina mass ratio in the catalysts was fixed at 0.05:1. The catalyst precursors were prepared from various nickel salts (nitrate, chloride, sulfate, acetate, and lactate) and then calcined at 1073 K for 1 h in oxidative (air), reductive (hydrogen-containing argon), or inert (pure argon) atmospheres to activate the nickel-based catalysts. The effects of precursors and calcination atmosphere on the catalyst activity at low temperatures were studied. We found that the catalysts derived from nickel nitrate had relatively small crystallite sizes of nickel species and provided N-CNFs at high growth rates of 57 ± 4 g-CNF/g-Ni/h at 673 K in the CVD process using 10 vol% hydrogen-containing argon as the carrier gas of acetonitrile vapor, which were approximately 4 times larger than that of a conventional CVD process. The obtained results reveal that nitrate ions in the catalyst precursor and hydrogen in the carrier gas can contribute effectively to the activation of catalysts in low-temperature CVD. The fiber diameter and nitrogen content of N-CNFs synthesized at high growth rates were several tens of nanometers and 3.5 ± 0.3 at.%, respectively. Our catalysts and CVD process may lead to cost reductions in the production of N-CNFs.

  7. First year chemical engineering students' conceptions of energy in solution processes: Phenomenographic categories for common knowledge construction

    NASA Astrophysics Data System (ADS)

    Ebenezer, Jazlin V.; Fraser, Duncan M.

    2001-09-01

    In this article, we examine first-year chemical engineering students' conceptions of the energy changes taking place in dissolution. Students were individually interviewed with three tasks in which three different salts were dissolved in water, and 17 transcripts were analyzed using a phenomenographic methodology. Four descriptive categories of energy in dissolution were discerned: (a) you give energy (n = 1); (b) water gives energy (n = 17); (c) salt gives off energy (n = 13); and (d) reaction gives off energy (n = 7). Four students gave the same explanation for all three tasks, but more students used the same explanation for two of the tasks: four for Tasks A and B, four for Tasks B and C, and eight for Tasks A and C. Moreover, salt gives off energy was the most common explanation for Tasks A and B (n = 3), reaction gives off energy for Tasks B and C (n = 3), and water gives energy for Tasks A and C (n = 8). Four of the students showed variations of conception within tasks. Students described the solution process of all three tasks using a range of concepts, including previously learned chemical concepts. Even where students used the same chemical concepts in each of the tasks, they did not always give the same meaning to the concepts they used. The phenomenographic categories explanations given by students were used as a basis for developing an approach to teaching energy in solution processes. It is argued that this approach of using phenomenographic categories described at a collective level as a basis for discourse for constructing common knowledge should be used in teaching. It is proposed that a future study must be conducted to develop new trajectories students take to arrive at common knowledge and to understand how to move learners from their personal conceptions to plausible models in solution chemistry within the classroom learning community. Implications for policy are also discussed.

  8. Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients.

    PubMed

    Maes, Michael; Ruckoanich, Piyanuj; Chang, Young Seun; Mahanonda, Nithi; Berk, Michael

    2011-04-29

    There is evidence that there is a bidirectional relationship between major depression and cardiovascular disorder (CVD): depressed patients are a population at risk for increased cardiac morbidity and mortality, and depression is more frequent in patients who suffer from CVD. There is also evidence that inflammatory and oxidative and nitrosative stress (IO&NS) pathways underpin the common pathophysiology of both CVD and major depression. Activation of these pathways may increase risk for both disorders and contribute to shared risk. The shared IO&NS pathways that may contribute to CVD and depression comprise the following: increased levels of pro-inflammatory cytokines, like interleukin-1β (IL-1β), IL-2, IL-6, IL-8, IL-12, tumor necrosis factor-α, and interferon-γ; T cell activation; increased acute phase proteins, like C-reactive protein, haptoglobin, fibrinogen and α1-antitrypsin; complement factors; increased LPS load through bacterial translocation and subsequent gut-derived inflammation; induction of indoleamine 2,3-dioxygenase with increased levels of tryptophan catabolites; decreased levels of antioxidants, like coenzyme Q10, zinc, vitamin E, glutathione and glutathione peroxidase; increased O&NS characterized by oxidative damage to low density lipoprotein (LDL) and phospholipid inositol, increased malondialdehyde, and damage to DNA and mitochondria; increased nitrosative stress; and decreased ω3 polyunsaturated fatty acids (PUFAs). The complex interplay between the abovementioned IO&NS pathways in depression results in pro-atherogenic effects and should be regarded as a risk factor to future clinical CVD and due mortality. We suggest that major depression should be added as a risk factor to the Charlson "comorbidity" index. It is advised that patients with (sub)chronic or recurrent major depression should routinely be assessed by serology tests to predict if they have an increased risk to cardiovascular disorders.

  9. Dopamine modulation of emotional processing in cortical and subcortical neural circuits: evidence for a final common pathway in schizophrenia?

    PubMed

    Laviolette, Steven R

    2007-07-01

    The neural regulation of emotional perception, learning, and memory is essential for normal behavioral and cognitive functioning. Many of the symptoms displayed by individuals with schizophrenia may arise from fundamental disturbances in the ability to accurately process emotionally salient sensory information. The neurotransmitter dopamine (DA) and its ability to modulate neural regions involved in emotional learning, perception, and memory formation has received considerable research attention as a potential final common pathway to account for the aberrant emotional regulation and psychosis present in the schizophrenic syndrome. Evidence from both human neuroimaging studies and animal-based research using neurodevelopmental, behavioral, and electrophysiological techniques have implicated the mesocorticolimbic DA circuit as a crucial system for the encoding and expression of emotionally salient learning and memory formation. While many theories have examined the cortical-subcortical interactions between prefrontal cortical regions and subcortical DA substrates, many questions remain as to how DA may control emotional perception and learning and how disturbances linked to DA abnormalities may underlie the disturbed emotional processing in schizophrenia. Beyond the mesolimbic DA system, increasing evidence points to the amygdala-prefrontal cortical circuit as an important processor of emotionally salient information and how neurodevelopmental perturbances within this circuitry may lead to dysregulation of DAergic modulation of emotional processing and learning along this cortical-subcortical emotional processing circuit. PMID:17519393

  10. Preparation of Fe/Mo/molecular sieves by CVD

    SciTech Connect

    Yoo, Jin S.; Donohu, J.A.; Choi-Feng, C.

    1995-12-01

    A series of mixed metal oxide catalysts was prepared via the chemical vapor deposition (CVD) technique by using the silanol moiety existing on various zeolite matrices as an anchoring site for metals. The novel CVD Fe/Mo/DBH catalyst was made by depositing FeCl{sub 3} and then MoO{sub 2}Cl{sub 2} on the partially deboronated borosilicate (DBH). The catalyst precursor was activated by calcining it at 650-690{degrees}C for prolonged period. Among the zeolite matrices such as borosilicate, silicalite, ZSM-5, {beta}-zeolite and {Upsilon}-zeolite, the DBH exhibited a unique papra-selective oxidation property for the gas-phase O{sub 2} oxidation of polymethylated benzenes. Terephthaldehyde was produced in the oxidation of p-xylene. The impregnated catalyst was also prepared by the incipient wetness method. The catalyst performance and the stability of the impregnated catalyst were compared with those of the CVD counterpart. The CVD catalyst was more active and showed better stability than the impregnated catalyst. These catalysts were characterized by ammonia TPD, Raman spectroscopy, and electron microscopy with an objective of explaining these findings.

  11. THE RELATIONSHIP BETWEEN OZONE-INDUCED LUNG INJURY, ANTIOXIDANT COMPENSATION AND UNDERLYING CARDIOVASCULAR DISEASE (CVD).

    EPA Science Inventory

    Increased levels of oxidants and compromised compensatory response are associated with CVD susceptibility. We hypothesized that rat strains demonstrating genetic CVD will have lower levels of antioxidants and greater ozone-induced pulmonary injury relative to healthy strains. Mal...

  12. COMPARATIVE EVALUATION OF RISK FACTORS FOR CARDIOVASCULAR DISEASE (CVD) IN GENETICALLY PREDISPOSED RATS

    EPA Science Inventory

    Rodent CVD models are increasingly used for understanding individual differences in susceptibility to environmental stressors such as air pollution. We characterized pathologies and a number of known human risk factors of CVD in genetically predisposed, male young adult Spontaneo...

  13. Food processing methods influence the glycaemic indices of some commonly eaten West Indian carbohydrate-rich foods.

    PubMed

    Bahado-Singh, P S; Wheatley, A O; Ahmad, M H; Morrison, E Y St A; Asemota, H N

    2006-09-01

    Glycaemic index (GI) values for fourteen commonly eaten carbohydrate-rich foods processed by various methods were determined using ten healthy subjects. The foods studied were round leaf yellow yam (Dioscorea cayenensis), negro and lucea yams (Dioscorea rotundata), white and sweet yams (Dioscorea alata), sweet potato (Solanum tuberosum), Irish potato (Ipomoea batatas), coco yam (Xanthosoma spp.), dasheen (Colocasia esculenta), pumpkin (Cucurbita moschata), breadfruit (Artocarpus altilis), green banana (Musa sapientum), and green and ripe plantain (Musa paradisiaca). The foods were processed by boiling, frying, baking and roasting where applicable. Pure glucose was used as the standard with a GI value of 100. The results revealed marked differences in GI among the different foods studied ranging from 35 (se 3) to 94 (se 8). The area under the glucose response curve and GI value of some of the roasted and baked foods were significantly higher than foods boiled or fried (P<0.05). The results indicate that foods processed by roasting or baking may result in higher GI. Conversely, boiling of foods may contribute to a lower GI diet.

  14. Food processing methods influence the glycaemic indices of some commonly eaten West Indian carbohydrate-rich foods.

    PubMed

    Bahado-Singh, P S; Wheatley, A O; Ahmad, M H; Morrison, E Y St A; Asemota, H N

    2006-09-01

    Glycaemic index (GI) values for fourteen commonly eaten carbohydrate-rich foods processed by various methods were determined using ten healthy subjects. The foods studied were round leaf yellow yam (Dioscorea cayenensis), negro and lucea yams (Dioscorea rotundata), white and sweet yams (Dioscorea alata), sweet potato (Solanum tuberosum), Irish potato (Ipomoea batatas), coco yam (Xanthosoma spp.), dasheen (Colocasia esculenta), pumpkin (Cucurbita moschata), breadfruit (Artocarpus altilis), green banana (Musa sapientum), and green and ripe plantain (Musa paradisiaca). The foods were processed by boiling, frying, baking and roasting where applicable. Pure glucose was used as the standard with a GI value of 100. The results revealed marked differences in GI among the different foods studied ranging from 35 (se 3) to 94 (se 8). The area under the glucose response curve and GI value of some of the roasted and baked foods were significantly higher than foods boiled or fried (P<0.05). The results indicate that foods processed by roasting or baking may result in higher GI. Conversely, boiling of foods may contribute to a lower GI diet. PMID:16925852

  15. Manually controlled human balancing using visual, vestibular and proprioceptive senses involves a common, low frequency neural process

    PubMed Central

    Lakie, Martin; Loram, Ian D

    2006-01-01

    Ten subjects balanced their own body or a mechanically equivalent unstable inverted pendulum by hand, through a compliant spring linkage. Their balancing process was always characterized by repeated small reciprocating hand movements. These bias adjustments were an observable sign of intermittent alterations in neural output. On average, the adjustments occurred at intervals of ∼400 ms. To generate appropriate stabilizing bias adjustments, sensory information about body or load movement is needed. Subjects used visual, vestibular or proprioceptive sensation alone and in combination to perform the tasks. We first ask, is the time between adjustments (bias duration) sensory specific? Vision is associated with slow responses. Other senses involved with balance are known to be faster. Our second question is; does bias duration depend on sensory abundance? An appropriate bias adjustment cannot occur until unplanned motion is unambiguously perceived (a sensory threshold). The addition of more sensory data should therefore expedite action, decreasing the mean bias adjustment duration. Statistical analysis showed that (1) the mean bias adjustment duration was remarkably independent of the sensory modality and (2) the addition of one or two sensory modalities made a small, but significant, decrease in the mean bias adjustment duration. Thus, a threshold effect can alter only a very minor part of the bias duration. The bias adjustment duration in manual balancing must reflect something more than visual sensation and perceptual thresholds; our suggestion is that it is a common central motor planning process. We predict that similar processes may be identified in the control of standing. PMID:16959857

  16. Material removal characteristics of orthogonal velocity polishing tool for efficient fabrication of CVD SiC mirror surfaces

    NASA Astrophysics Data System (ADS)

    Seo, Hyunju; Han, Jeong-Yeol; Kim, Sug-Whan; Seong, Sehyun; Yoon, Siyoung; Lee, Kyungmook; Lee, Haengbok

    2015-09-01

    Today, CVD SiC mirrors are readily available in the market. However, it is well known to the community that the key surface fabrication processes and, in particular, the material removal characteristics of the CVD SiC mirror surface varies sensitively depending on the shop floor polishing and figuring variables. We investigated the material removal characteristics of CVD SiC mirror surfaces using a new and patented polishing tool called orthogonal velocity tool (OVT) that employs two orthogonal velocity fields generated simultaneously during polishing and figuring machine runs. We built an in-house OVT machine and its operating principle allows for generation of pseudo Gaussian shapes of material removal from the target surface. The shapes are very similar to the tool influence functions (TIFs) of other polishing machine such as IRP series polishing machines from Zeeko. Using two CVD SiC mirrors of 150 mm in diameter and flat surface, we ran trial material removal experiments over the machine run parameter ranges from 12.901 to 25.867 psi in pressure, 0.086 m/sec to 0.147 m/sec in tool linear velocity, and 5 to 15 sec in dwell time. An in-house developed data analysis program was used to obtain a number of Gaussian shaped TIFs and the resulting material removal coefficient varies from 3.35 to 9.46 um/psi hour m/sec with the mean value to 5.90 ± 1.26(standard deviation). We report the technical details of the new OVT machine, of the data analysis program, of the experiments and the results together with the implications to the future development of the OVT machine and process for large CVD SiC mirror surfaces.

  17. Numerical modeling of chemical vapor deposition (CVD) in a horizontal reactor

    NASA Technical Reports Server (NTRS)

    Sheikholeslami, M. Z.; Jasinski, T.; Fretz, K. W.

    1988-01-01

    In the present numerical prediction of the deposition rate of silicon from silane in a CVD process, the conservation equations for mass, momentum, energy, and chemical species are solved on a staggered grid using the SIMPLE algorithm, while the rate of chemical reactions in the gas phase and on the susceptor surface is obtained from an Arrhenius rate equation. Predicted deposition rates as a function of position along the susceptor with and without the gas phase chemical reaction are compared with the available experimental and numerical data; agreement is excellent except at the leading edge of the susceptor, where the deposition rate is overpredicted.

  18. Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure

    PubMed Central

    Cho, Ye Ram; Kim, Hyung Suk; Yu, Young-Jun; Suh, Min Chul

    2015-01-01

    We prepared highly-efficient solution-processed red phosphorescent organic light emitting diodes (PHOLEDs) with a blue common layer structure that can reasonably confine the triplet excitons inside of the red emission layer (EML) with the assistance of a bipolar exciton blocking layer. The red PHOLEDs containing EML with a 7 : 3 ratio of 11-(4,6-diphenyl-[1,3,5]triazin-2-yl)-12-phenyl-11,12-dihydro-11,12-diaza-indeno[2,1-a]fluorene (n-type host, NH) : 4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene (p-type host, PH) doped with 5% Iridium(III) bis(2-(3,5-dimethylphenyl)quinolinato-N,C2’)tetramethylheptadionate (Red Dopant, RD) produced the highest current and power efficiencies at 23.4 cd/A and 13.6 lm/W, with a 19% external quantum efficiency at 1000 cd/m2. To the best of our knowledge, such efficiency was the best among those that have been obtained from solution-processed small molecular red PHOLEDs. In addition, the host molecules utilized in this study have no flexible spacers, such as an alkyl chain, which normally deteriorate the stability of the device. PMID:26514274

  19. Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure

    NASA Astrophysics Data System (ADS)

    Cho, Ye Ram; Kim, Hyung Suk; Yu, Young-Jun; Suh, Min Chul

    2015-10-01

    We prepared highly-efficient solution-processed red phosphorescent organic light emitting diodes (PHOLEDs) with a blue common layer structure that can reasonably confine the triplet excitons inside of the red emission layer (EML) with the assistance of a bipolar exciton blocking layer. The red PHOLEDs containing EML with a 7 : 3 ratio of 11-(4,6-diphenyl-[1,3,5]triazin-2-yl)-12-phenyl-11,12-dihydro-11,12-diaza-indeno[2,1-a]fluorene (n-type host, NH) : 4-(3-(triphenylen-2-yl)phenyl)dibenzo[b,d]thiophene (p-type host, PH) doped with 5% Iridium(III) bis(2-(3,5-dimethylphenyl)quinolinato-N,C2’)tetramethylheptadionate (Red Dopant, RD) produced the highest current and power efficiencies at 23.4 cd/A and 13.6 lm/W, with a 19% external quantum efficiency at 1000 cd/m2. To the best of our knowledge, such efficiency was the best among those that have been obtained from solution-processed small molecular red PHOLEDs. In addition, the host molecules utilized in this study have no flexible spacers, such as an alkyl chain, which normally deteriorate the stability of the device.

  20. β-glucan enriched bath directly stimulates the wound healing process in common carp (Cyprinus carpio L.).

    PubMed

    Przybylska-Diaz, D A; Schmidt, J G; Vera-Jiménez, N I; Steinhagen, D; Nielsen, M E

    2013-09-01

    Wound healing is a complex and well-organized process in which physiological factors and immune mechanisms are involved. A number of different immune modulators have been found to enhance the non-specific defence system in vertebrates, among which β-glucans are the most powerful and extensively investigated. The aim of the present study was to investigate the biological impact of two different commercially available β glucan containing products on the wound healing process in carp. Throughout a two week experiment fish were kept either untreated (control), or in water supplemented with the two different types of β-glucans. The wound healing process was monitored using a multispectral visualisation system. The correlation between wound closure and immune response was investigated by measuring the gene expression patterns of IL-1β, IL-6 family member M17, IL-8 and Muc5b, and measurement of production of radical oxygen species. PAMPs/DAMPs stimulation caused by the wounding and or β-glucans resulted in an inflammatory response by activating IL-1β, IL-6 family member M17 and IL-8 and differences in the expression pattern were seen depending on stimuli. IL-1β, IL-6 family member M17 and IL-8 were activated in all wounds regardless of treatment. Expression of all three interleukins was highly up regulated in control wounded muscle already at day 1 post-wounding and decreased at subsequent time-points. The reverse was the case with control wounded skin, where expression increased from day 1 through day 14. The results for the β-glucan treated wounds were more complex. The images showed significantly faster wound contraction in both treated groups compared to the control. The obtained results clearly demonstrated that a β glucan enriched bath promotes the closure of wounds in common carp and induce a local change in cytokine expression.

  1. Process evaluation of a problem solving intervention to prevent recurrent sickness absence in workers with common mental disorders.

    PubMed

    Arends, Iris; Bültmann, Ute; Nielsen, Karina; van Rhenen, Willem; de Boer, Michiel R; van der Klink, Jac J L

    2014-01-01

    Common mental disorders (CMDs) are a major cause of sickness absence. Twenty to 30% of the workers who return to work after sickness absence due to CMDs experience recurrent sickness absence. We developed the Stimulating Healthy participation And Relapse Prevention (SHARP)-at work intervention, a problem solving intervention delivered by occupational physicians (OPs), to prevent recurrent sickness absence in this worker population in The Netherlands. A process evaluation was conducted alongside a cluster-randomised controlled trial to (1) evaluate whether the SHARP-at work intervention was implemented according to the protocol and differed from treatment in the control group, and (2) to investigate the relationship between the key elements of the intervention and the effect outcome (i.e. recurrent sickness absence). We collected process data for both the intervention and control group on recruitment, reach, dose delivered, dose received, fidelity, context and satisfaction. Data on recurrent sickness absence was collected through the registry system of the collaborating occupational health service. The study was performed in the Netherlands, and between 2010 and 2012, 154 OPs and 158 participants participated. Compared to the control group, participants in the intervention group more frequently had two or more consultations with the OP (odds ratio [OR] = 3.2, 95% confidence interval [CI] = 1.2-8.8) and completed more assignments (OR = 33.8, 95% CI = 10.4-109.5) as recommended in the intervention protocol. OPs and participants were satisfied with the intervention and rated it as applicable. Several individual intervention components were linked to the effect outcome. The process evaluation showed that the SHARP-at work intervention was conducted according to the protocol for the majority of the participants and well-received by OPs and participants. Furthermore, the intervention differed from treatment in the control group. Overall, the results provide

  2. Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: an fMRI study.

    PubMed

    Kuperberg, G R; McGuire, P K; Bullmore, E T; Brammer, M J; Rabe-Hesketh, S; Wright, I C; Lythgoe, D J; Williams, S C; David, A S

    2000-03-01

    Extracting meaning from speech requires the use of pragmatic, semantic, and syntactic information. A central question is: Does the processing of these different types of linguistic information have common or distinct neuroanatomical substrates? We addressed this issue using functional magnetic resonance imaging (fMRI) to measure neural activity when subjects listened to spoken normal sentences contrasted with sentences that had either (A) pragmatical, (B) semantic (selection restriction), or (C) syntactic (subcategorical) violations sentences. All three contrasts revealed robust activation of the left-inferior-temporal/fusiform gyrus. Activity in this area was also observed in a combined analysis of all three experiments, suggesting that it was modulated by all three types of linguistic violation. Planned statistical comparisons between the three experiments revealed (1) a greater difference between conditions in activation of the left-superior-temporal gyrus for the pragmatic experiment than the semantic/syntactic experiments; (2) a greater difference between conditions in activation of the right-superior and middle-temporal gyrus in the semantic experiment than in the syntactic experiment; and (3) no regions activated to a greater degree in the syntactic experiment than in the semantic experiment. These data show that, while left- and right-superior-temporal regions may be differentially involved in processing pragmatic and lexico-semantic information within sentences, the left-inferior-temporal/fusiform gyrus is involved in processing all three types of linguistic information. We suggest that this region may play a key role in using pragmatic, semantic (selection restriction), and subcategorical information to construct a higher representation of meaning of sentences. PMID:10771415

  3. Process evaluation of a problem solving intervention to prevent recurrent sickness absence in workers with common mental disorders.

    PubMed

    Arends, Iris; Bültmann, Ute; Nielsen, Karina; van Rhenen, Willem; de Boer, Michiel R; van der Klink, Jac J L

    2014-01-01

    Common mental disorders (CMDs) are a major cause of sickness absence. Twenty to 30% of the workers who return to work after sickness absence due to CMDs experience recurrent sickness absence. We developed the Stimulating Healthy participation And Relapse Prevention (SHARP)-at work intervention, a problem solving intervention delivered by occupational physicians (OPs), to prevent recurrent sickness absence in this worker population in The Netherlands. A process evaluation was conducted alongside a cluster-randomised controlled trial to (1) evaluate whether the SHARP-at work intervention was implemented according to the protocol and differed from treatment in the control group, and (2) to investigate the relationship between the key elements of the intervention and the effect outcome (i.e. recurrent sickness absence). We collected process data for both the intervention and control group on recruitment, reach, dose delivered, dose received, fidelity, context and satisfaction. Data on recurrent sickness absence was collected through the registry system of the collaborating occupational health service. The study was performed in the Netherlands, and between 2010 and 2012, 154 OPs and 158 participants participated. Compared to the control group, participants in the intervention group more frequently had two or more consultations with the OP (odds ratio [OR] = 3.2, 95% confidence interval [CI] = 1.2-8.8) and completed more assignments (OR = 33.8, 95% CI = 10.4-109.5) as recommended in the intervention protocol. OPs and participants were satisfied with the intervention and rated it as applicable. Several individual intervention components were linked to the effect outcome. The process evaluation showed that the SHARP-at work intervention was conducted according to the protocol for the majority of the participants and well-received by OPs and participants. Furthermore, the intervention differed from treatment in the control group. Overall, the results provide

  4. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    SciTech Connect

    Bartram, Michael E.; Creighton, J. Randall

    1999-05-26

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia.

  5. THERMAL DIFFUSIVITY/CONDUCTIVITY OF IRRADIATED MONOLITHIC CVD-SIC

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2003-03-31

    Several thermal diffusivity disc samples of high purity CVD-SiC were neutron-irradiated to equivalent doses of about 5-8 dpa-SiC at temperatures from 252 up to 800 C. For this temperature range, the degradation in the thermal diffusivity ranged from about 95 percent down to 89 percent, respectively. The reciprocal thermal diffusivity method was used to estimate the phonon mean free paths and defect concentrations before and after the irradiations for these materials. Even though the CVD-SiC material is an excellent monitor of certain neutron irradiation effects, the degradation in the thermal diffusivity (conductivity) appears to be more than a factor of two greater than predicted by recent theoretical model simulations.

  6. CVD Diamonds in the BaBar Radiation Monitoring System

    NASA Astrophysics Data System (ADS)

    Bruinsma, M.; Burchat, P.; Edwards, A. J.; Kagan, H.; Kass, R.; Kirkby, D.; Petersen, B. A.

    2006-01-01

    To prevent excessive radiation damage to its Silicon Vertex Tracker, the BaBar experiment at SLAC uses a radiation monitoring and protection system that triggers a beam abort whenever radiation levels are anomalously high. The existing system, which employs large area Si PIN diodes as radiation sensors, has become increasingly difficult to operate due to radiation damage. We have studied CVD diamond sensors as a potential alternative for these silicon sensors. Two diamond sensors have been routinely used since their installation in the Vertex Tracker in August 2002. The experience with these sensors and a variety of tests in the laboratory have shown CVD diamonds to be a viable solution for dosimetry in high radiation environments. However, our studies have also revealed surprising side-effects.

  7. Cold Vacuum Drying (CVD) OCRWM Loop Error Determination

    SciTech Connect

    PHILIPP, B.L.

    2000-07-26

    Characterization is specifically identified by the Richland Operations Office (RL) for the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), as requiring application of the requirements in the Quality Assurance Requirements and Description (QARD) (RW-0333P DOE 1997a). Those analyses that provide information that is necessary for repository acceptance require application of the QARD. The cold vacuum drying (CVD) project identified the loops that measure, display, and record multi-canister overpack (MCO) vacuum pressure and Tempered Water (TW) temperature data as providing OCRWM data per Application of the Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements to the Hanford Spent Nuclear Fuel Project HNF-SD-SNF-RPT-007. Vacuum pressure transmitters (PT 1*08, 1*10) and TW temperature transmitters (TIT-3*05, 3*12) are used to verify drying and to determine the water content within the MCO after CVD.

  8. Catalytic CVD of SWCNTs at Low Temperatures and SWCNT Devices

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Liebau, Maik; Unger, Eugen; Graham, Andrew P.; Duesberg, Georg S.; Kreupl, Franz; Hoenlein, Wolfgang; Pompe, Wolfgang

    2004-09-01

    New results on the planar growth of single-walled carbon nanotubes (SWCNTs) by catalytic chemical vapor deposition (CVD) at low temperatures will be reported. Optimizing catalyst, catalyst support, and growth parameters yields SWCNTs at temperatures as low as 600 °C. Growth at such low temperatures largely affects the diameter distribution since coalescence of the catalyst is suppressed. A phenomenological growth model will be suggested for CVD growth at low temperatures. The model takes into account surface diffusion and is an alternative to the bulk diffusion based vapor-liquid-solid (VLS) model. Furthermore, carbon nanotubes field effect transistors based on substrate grown SWCNTs will be presented. In these devices good contact resistances could be achieved by electroless metal deposition or metal evaporation of the contacts.

  9. Development of CVD diamond detectors for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Piliero, M. A.; Hugtenburg, R. P.; Ryde, S. J. S.; Oliver, K.

    2014-11-01

    The use of chemical vapour deposition (CVD) methods for the manufacture of diamonds could lead to detectors for high-resolution radiotherapy dosimetry that are cheaper and more reproducible than detectors based on natural diamonds. In this work two prototype designs (Diamond Detectors Ltd, Poole) of CVD diamond detectors were considered. The detectors were encapsulated in a water-proof housing in a form-factor that would be suitable for dosimetry measurements in water, as well as solid material phantoms. Stability of the dosimeter over time, the dose-response, dose-rate response and angular-response were examined. The study demonstrated that the detector behaviour conformed with theory in terms of the dose-rate response and had acceptable properties for use in the clinic.

  10. Argan oil improves surrogate markers of CVD in humans.

    PubMed

    Sour, Souad; Belarbi, Meriem; Khaldi, Darine; Benmansour, Nassima; Sari, Nassima; Nani, Abdelhafid; Chemat, Farid; Visioli, Francesco

    2012-06-01

    Limited - though increasing - evidence suggests that argan oil might be endowed with potential healthful properties, mostly in the areas of CVD and prostate cancer. We sought to comprehensively determine the effects of argan oil supplementation on the plasma lipid profile and antioxidant status of a group of healthy Algerian subjects, compared with matched controls. A total of twenty healthy subjects consumed 15 g/d of argan oil - with toasted bread - for breakfast, during 4 weeks (intervention group), whereas twenty matched controls followed their habitual diet, but did not consume argan oil. The study lasted 30 d. At the end of the study, argan oil-supplemented subjects exhibited higher plasma vitamin E concentrations, lower total and LDL-cholesterol, lower TAG and improved plasma and cellular antioxidant profile, when compared with controls. In conclusion, we showed that Algerian argan oil is able to positively modulate some surrogate markers of CVD, through mechanisms which warrant further investigation.

  11. Argan oil improves surrogate markers of CVD in humans.

    PubMed

    Sour, Souad; Belarbi, Meriem; Khaldi, Darine; Benmansour, Nassima; Sari, Nassima; Nani, Abdelhafid; Chemat, Farid; Visioli, Francesco

    2012-06-01

    Limited - though increasing - evidence suggests that argan oil might be endowed with potential healthful properties, mostly in the areas of CVD and prostate cancer. We sought to comprehensively determine the effects of argan oil supplementation on the plasma lipid profile and antioxidant status of a group of healthy Algerian subjects, compared with matched controls. A total of twenty healthy subjects consumed 15 g/d of argan oil - with toasted bread - for breakfast, during 4 weeks (intervention group), whereas twenty matched controls followed their habitual diet, but did not consume argan oil. The study lasted 30 d. At the end of the study, argan oil-supplemented subjects exhibited higher plasma vitamin E concentrations, lower total and LDL-cholesterol, lower TAG and improved plasma and cellular antioxidant profile, when compared with controls. In conclusion, we showed that Algerian argan oil is able to positively modulate some surrogate markers of CVD, through mechanisms which warrant further investigation. PMID:22082585

  12. Enhancing CVD graphene's inter-grain connectivity by a graphite promoter

    NASA Astrophysics Data System (ADS)

    Hsieh, Ya-Ping; Chiu, Yi-Jing; Hofmann, Mario

    2015-11-01

    Graphene's impact on future applications is intimately linked to advances in the synthesis of high quality materials. Chemical vapor deposition (CVD) shows great potential in this area but insufficient connectivity between single-crystalline domains deteriorates the achievable electrical and mechanical performance. We here demonstrate that the inter-grain connectivity can be significantly improved by adding a second material in the vicinity of the growth substrate. This promoter decreases the amount of structural defects that remain at the grain boundaries of conventionally grown graphene even after 6 hour growth. A two-step growth process was employed to selectively enhance the grain connectivity while maintaining an identical graphene grain morphology with and without a promoter. Graphite was found to yield the largest enhancement in the connectivity of graphene grains due to its high catalytic activity compared to other promoter materials. A novel cap-design ensured a large scale and uniform improvement of the inter-grain connectivity results which led to an enhancement of large scale carrier mobilities from 2700 cm2 V-1 s-1 to 4000 cm2 V-1 s-1 and highlights the potential of our approach to improving the connectivity of CVD-grown graphene.Graphene's impact on future applications is intimately linked to advances in the synthesis of high quality materials. Chemical vapor deposition (CVD) shows great potential in this area but insufficient connectivity between single-crystalline domains deteriorates the achievable electrical and mechanical performance. We here demonstrate that the inter-grain connectivity can be significantly improved by adding a second material in the vicinity of the growth substrate. This promoter decreases the amount of structural defects that remain at the grain boundaries of conventionally grown graphene even after 6 hour growth. A two-step growth process was employed to selectively enhance the grain connectivity while maintaining an

  13. Evidence relating sodium intake to blood pressure and CVD.

    PubMed

    O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2014-01-01

    Sodium is an essential nutrient, mostly ingested as salt (sodium chloride). Average sodium intake ranges from 3 to 6 g per day (7.5-15 g/day of salt) in most countries, with regional variations. Increasing levels of sodium intake have a positive association with higher blood pressure. Randomized controlled trials report a reduction in blood pressure with reducing sodium intake from moderate to low levels, which is the evidence that forms the basis for international guidelines recommending all people consume less than 2.0 g of sodium per day. However, no randomized trials have demonstrated that reducing sodium leads to a reduction in cardiovascular disease (CVD). In their absence, the next option is to examine the association between sodium consumption and CVD in prospective cohort studies. Several recent prospective cohort studies have indicated that while high intake of sodium (>6 g/d) is associated with higher risk of CVD compared to those with moderate intake (3 to 5 g/d), lower intake (<3 g/day) is also associated with a higher risk (despite lower blood pressure levels). However, most of these studies were conducted in populations at increased risk of cardiovascular disease. Current epidemiologic evidence supports that an optimal level of sodium intake is in the range of about 3-5 g/day, as this range is associated with lowest risk of CVD in prospective cohort studies. Randomized controlled trials, comparing the effect of low sodium intake to moderate intake on incidence of cardiovascular events and mortality, are required to truly define optimal intake range.

  14. A Comparison of Drug Coverage in Alberta Before and After the Introduction of the National Common Drug Review Process

    PubMed Central

    Gamble, John-Michael; Eurich, Dean T.; Johnson, Jeffrey A.

    2010-01-01

    Objective: The integration of the Common Drug Review (CDR) was a substantial change for Canada's public drug plans. Detailed comparisons of time-to-listing and proportion of medications covered by the province of Alberta's drug plans within the context of the CDR process have not been rigorously conducted. Methods: New drugs approved by Health Canada were identified five years prior to the CDR's first recommendation (May 2004) and five years after. The time-to-listing and proportion of new drugs covered on the Alberta Health and Wellness Drug Benefit List (AHWDBL) was compared between these periods. The level of agreement between CDR recommendations and coverage in Alberta was calculated using a kappa score. Results: Two hundred and twenty new drugs were identified and met the study eligibility criteria (118 pre-CDR, 102 post-CDR). The median time-to-listing was 312 vs. 524 days in the pre-CDR and post-CDR periods, respectively, with the difference largely driven by time from notice of compliance (NOC) to the CDR recommendation. The level of agreement between 73 drugs with CDR recommendations and coverage in Alberta was fair (kappa 0.55). Conclusion: Following the implementation of the CDR, the proportion of drugs covered has decreased and overall median time-to-listing of new drugs has increased in the province of Alberta. For drugs listed on the AHWDBL, the proportion of time attributable to the CDR process (NOC to CDR recommendation) was 63% of the overall time-to-listing. PMID:22043227

  15. Relationship between Processing Method and the Glycemic Indices of Ten Sweet Potato (Ipomoea batatas) Cultivars Commonly Consumed in Jamaica.

    PubMed

    Bahado-Singh, Perceval S; Riley, Cliff K; Wheatley, Andrew O; Lowe, Henry I C

    2011-01-01

    This study investigated the effect of different traditional cooking methods on glycemic index (GI) and glycemic response of ten Sweet potato (Ipomoea batatas) cultivars commonly eaten in Jamaica. Matured tubers were cooked by roasting, baking, frying, or boiling then immediately consumed by the ten nondiabetic test subjects (5 males and 5 females; mean age of 27 ± 2 years). The GI varied between 41 ± 5-93 ± 5 for the tubers studied. Samples prepared by boiling had the lowest GI (41 ± 5-50 ± 3), while those processed by baking (82 ± 3-94 ± 3) and roasting (79 ± 4-93 ± 2) had the highest GI values. The study indicates that the glycemic index of Jamaican sweet potatoes varies significantly with the method of preparation and to a lesser extent on intravarietal differences. Consumption of boiled sweet potatoes could minimize postprandial blood glucose spikes and therefore, may prove to be more efficacious in the management of type 2 diabetes mellitus.

  16. Relationship between Processing Method and the Glycemic Indices of Ten Sweet Potato (Ipomoea batatas) Cultivars Commonly Consumed in Jamaica

    PubMed Central

    Bahado-Singh, Perceval S.; Riley, Cliff K.; Wheatley, Andrew O.; Lowe, Henry I. C.

    2011-01-01

    This study investigated the effect of different traditional cooking methods on glycemic index (GI) and glycemic response of ten Sweet potato (Ipomoea batatas) cultivars commonly eaten in Jamaica. Matured tubers were cooked by roasting, baking, frying, or boiling then immediately consumed by the ten nondiabetic test subjects (5 males and 5 females; mean age of 27 ± 2 years). The GI varied between 41 ± 5–93 ± 5 for the tubers studied. Samples prepared by boiling had the lowest GI (41 ± 5–50 ± 3), while those processed by baking (82 ± 3–94 ± 3) and roasting (79 ± 4–93 ± 2) had the highest GI values. The study indicates that the glycemic index of Jamaican sweet potatoes varies significantly with the method of preparation and to a lesser extent on intravarietal differences. Consumption of boiled sweet potatoes could minimize postprandial blood glucose spikes and therefore, may prove to be more efficacious in the management of type 2 diabetes mellitus. PMID:22132322

  17. Analyzing How Formalist, Cognitive-Processing, and Literacy Practices Learning Paradigms are Shaping the Implementation of the Common Core State Standards

    ERIC Educational Resources Information Center

    Beach, Richard

    2011-01-01

    This paper analyzes the influence of three different learning paradigms for learning literacy--formalist, cognitive-processing, and literacy practices--on the implementation of the Common Core State Standards. It argues that the Common Core State Standards are based largely on a formalist paradigm as evident in the emphasis on teaching text…

  18. Deposition of moisture barrier films by catalytic CVD using hexamethyldisilazane

    NASA Astrophysics Data System (ADS)

    Ohdaira, Keisuke; Matsumura, Hideki

    2014-01-01

    Hexamethyldisilazane (HMDS) is utilized to deposit moisture barrier films by catalytic chemical vapor deposition (Cat-CVD). An increase in the thickness of silicon oxynitride (SiOxNy) films leads to a better water-vapor transmission rate (WVTR), indicating that Cat-CVD SiOxNy films deposited using HMDS do not severely suffer from cracking. A WVTR on the order of 10-3 g m-2 day-1 can be realized by a Cat-CVD SiOxNy film formed using HMDS on a poly(ethylene terephthalate) (PET) substrate without any stacking structures at a substrate temperature of as low as 60 °C. X-ray reflectivity (XRR) measurement reveals that a film density of >2.0 g/cm3 is necessary for SiOxNy films to demonstrate an effective moisture barrier ability. The use of HMDS will give us safer production of moisture barrier films because of its non-explosive and non-toxic nature.

  19. Approach to diabetes management in patients with CVD.

    PubMed

    Lathief, Sanam; Inzucchi, Silvio E

    2016-02-01

    Epidemiologic analyses have established a clear association between diabetes and macrovascular disease. Vascular dysfunction caused by metabolic abnormalities in patients with diabetes is associated with accelerated atherosclerosis and increased risk of myocardial infarction (MI), stroke, and peripheral arterial disease. Patients with diabetes are at two to four fold higher CV risk as compared to non-diabetic individuals, and CVD remains the leading cause of mortality in patients with this condition. One strategy to reduce CVD burden in patients with diabetes has been to focus on controlling the major metabolic abnormality in this condition, namely hyperglycemia. However, this has not been unequivocally demonstrated to reduced CV events, in contrast to controlling other CVD risk factors linked to hyperglycemia, such as blood pressure, dyslipidemia, and platelet dysfunction. However, In contradistinction, accrued data from a number of large, randomized clinical trials in both type 1 (T1DM) and type 2 diabetes (T2DM) over the past 3 decades have proven that more intensive glycemic control retards the onset and progression of microvascular disease. In this review, we will summarize the key glucose-lowering CV outcomes trials in diabetes, provide an overview of the different drugs and their impact on the CV system, and describe our approach to management of the frequently encountered patient with T2DM and coronary artery disease (CAD) and/or heart failure (HF).

  20. CVD silicon carbide characterization. Final report, August 1992-October 1993

    SciTech Connect

    Graves, G.A.; Iden, D.

    1994-08-01

    Chemically vapor deposited (CVD) silicon carbide is a candidate material for high quality ground and space-based mirror substrates and high quality reflective optics. Statistically valid material property data has not been available, however, to make durability and lifetime predictions for such optics. The primary purpose of this study was to determine the Weibull and slow crack growth parameters for CVD silicon carbide. Specimens were cut from various locations in a 25 mm thick, 50 cm diameter piece of SiC to analyze bulk material property homogeneity. Flexural strength was measured using a four-point bend technique. In addition to mechanical testing for strength, hardness, and fracture toughness, the material crystallography and microstructure were studied. Thermal expansion, thermal diffusivity, specific heat, optical absorption, and infrared reflectivity measurements were also conducted. Raman spectroscopy was used to check for any residual stress. Test results show this CVD silicon carbide is a high-purity, homogeneous, fine-grained substrate material with very good mechanical, optical, and thermal properties.

  1. A symmetrical bi-electrode electrochemical technique for high-efficiency transfer of CVD-grown graphene

    NASA Astrophysics Data System (ADS)

    Shi, Liangjing; Liu, Yangqiao; Yang, Fan; Gao, Lian; Sun, Jing

    2014-04-01

    Graphene transfer is a critical process in the journey from CVD-grown graphene to device application. The current transfer techniques use a chemical-etching method to oxidize the metal catalyst, which is heavily time-consuming and involves a high material cost. In this study, a highly efficient symmetrical bi-electrode technique has been developed to simultaneously delaminate the CVD-grown graphene from the metal catalyst at both the anode and cathode of the electrolytic cell. Raman spectra, UV-visible transmittance, and four-probe measurements confirm that this transfer process is nondestructive and can produce similar electrical properties to those produced by the conventional metal-etching transfer method. This bi-electrode transfer technique possesses the advantages of high efficiency, recyclable use of metal catalyst, and high electrical conductivity, and it can be potentially applied for industrial applications.

  2. Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten

    NASA Technical Reports Server (NTRS)

    Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert

    2013-01-01

    W-UO2 CERMET fuels are under development to enable Nuclear Thermal Propulsion (NTP) for deep space exploration. Research efforts with an emphasis on fuel fabrication, testing, and identification of potential risks is underway. One primary risk is fuel loss due to CTE mismatch between W and UO2 and the grain boundary structure of W particles resulting in higher thermal stresses. Mechanical failure can result in significant reduction of the UO2 by hot hydrogen. Fuel loss can be mitigated if the UO2 particles are coated with a layer of high density tungsten before the consolidation process. This paper discusses the work to date, results, and advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process. Keywords: Space, Nuclear, Thermal, Propulsion, Fuel, CERMET, CVD, Tungsten, Uranium

  3. Graphene growth on Ge(100)/Si(100) substrates by CVD method

    PubMed Central

    Pasternak, Iwona; Wesolowski, Marek; Jozwik, Iwona; Lukosius, Mindaugas; Lupina, Grzegorz; Dabrowski, Pawel; Baranowski, Jacek M.; Strupinski, Wlodek

    2016-01-01

    The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm−1. PMID:26899732

  4. Graphene growth on Ge(100)/Si(100) substrates by CVD method

    NASA Astrophysics Data System (ADS)

    Pasternak, Iwona; Wesolowski, Marek; Jozwik, Iwona; Lukosius, Mindaugas; Lupina, Grzegorz; Dabrowski, Pawel; Baranowski, Jacek M.; Strupinski, Wlodek

    2016-02-01

    The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm-1.

  5. Controlled growth of CNT in mesoporous AAO through optimized conditions for membrane preparation and CVD operation

    NASA Astrophysics Data System (ADS)

    Ciambelli, P.; Arurault, L.; Sarno, M.; Fontorbes, S.; Leone, C.; Datas, L.; Sannino, D.; Lenormand, P.; Le Blond Du Plouy, S.

    2011-07-01

    Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.

  6. Climatic change and evaporative processes in the development of Common Era hypersaline lakes, East Antarctica: A study of Lake Suribati

    NASA Astrophysics Data System (ADS)

    Nakashima, H.; Seto, K.; Katsuki, K.; Kaneko, H.; yamada, K.; Imura, S.; Dettman, D. L.

    2011-12-01

    The Antarctic continent was uplifted by glacioisostatic rebound due to the regression of ice sheets after the last glacial period. Today's saline lakes were formed in shallow basins originally below sea level. Antarctic hypersaline lakes are formed by concentration of isolated seawater bodies as affected by recent climate change. Many saline lakes are found in the ice-free area of the Soya coast, East Antarctica. Lake Suribati is located in Sukarvsnes on the Soya coast. It is a hypersaline lake with maximum salinity ~200 psu, and an observable stable halocline at 7~12m depth. This study uses Lake Suribati sediment core Sr4C-01, collected by the 46th Japanese Antarctica Research Expedition, to examine the relationship of climatic change to evaporative processes and solute concentration in Lake Suribati in the Common Era. Sr4C-01 core was collected at 9.53m water depth in Lake Suribati in 2005 (core length is 63cm). This core primarily consists of black mud and laminated black organic mud. In the interval from 10 to 24cm below the sediment surface evaporite crystals occur. The age of the Sr4C-01 core bottom is estimated to be ~3,500 cal yrs BP, based on AMS carbon-14 dating at 6 core horizons. The evaporite crystals were indentified as aragonite based on XRD. Total inorganic carbon (TIC) content is low, around 0.5%, throughout the Sr4C-01 core, with higher values, approximately 1~4%, in two intervals, 57~52cm and 29~10cm core depth. Variation in CaO content tracks TIC content. We suggest that synchronous change in CaO and TIC contents indicate the vertical change in the amount of aragonite. Two intervals of evaporite precipition imply two intervals of evaporation and concentration of lake water. Hypersaline lake conditions did not occur soon after the isolation from the sea, rather these occurred under repeated concentration and dilution of lake water. Dilution of saline lake water could occur through the inflow of melt water from local snow or ice, indicating a warm

  7. Effects of Light Intensity Activity on CVD Risk Factors: A Systematic Review of Intervention Studies

    PubMed Central

    Batacan, Romeo B.; Duncan, Mitch J.; Dalbo, Vincent J.; Tucker, Patrick S.; Fenning, Andrew S.

    2015-01-01

    The effects of light intensity physical activity (LIPA) on cardiovascular disease (CVD) risk factors remain to be established. This review summarizes the effects of LIPA on CVD risk factors and CVD-related markers in adults. A systematic search of four electronic databases (PubMed, Academic Search Complete, SPORTDiscus, and CINAHL) examining LIPA and CVD risk factors (body composition, blood pressure, glucose, insulin, glycosylated hemoglobin, and lipid profile) and CVD-related markers (maximal oxygen uptake, heart rate, C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and tumor necrosis factor receptors 1 and 2) published between 1970 and 2015 was performed on 15 March 2015. A total of 33 intervention studies examining the effect of LIPA on CVD risk factors and markers were included in this review. Results indicated that LIPA did not improve CVD risk factors and CVD-related markers in healthy individuals. LIPA was found to improve systolic and diastolic blood pressure in physically inactive populations with a medical condition. Reviewed studies show little support for the role of LIPA to reduce CVD risk factors. Many of the included studies were of low to fair study quality and used low doses of LIPA. Further studies are needed to establish the value of LIPA in reducing CVD risk. PMID:26543862

  8. Effects of Light Intensity Activity on CVD Risk Factors: A Systematic Review of Intervention Studies.

    PubMed

    Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Tucker, Patrick S; Fenning, Andrew S

    2015-01-01

    The effects of light intensity physical activity (LIPA) on cardiovascular disease (CVD) risk factors remain to be established. This review summarizes the effects of LIPA on CVD risk factors and CVD-related markers in adults. A systematic search of four electronic databases (PubMed, Academic Search Complete, SPORTDiscus, and CINAHL) examining LIPA and CVD risk factors (body composition, blood pressure, glucose, insulin, glycosylated hemoglobin, and lipid profile) and CVD-related markers (maximal oxygen uptake, heart rate, C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and tumor necrosis factor receptors 1 and 2) published between 1970 and 2015 was performed on 15 March 2015. A total of 33 intervention studies examining the effect of LIPA on CVD risk factors and markers were included in this review. Results indicated that LIPA did not improve CVD risk factors and CVD-related markers in healthy individuals. LIPA was found to improve systolic and diastolic blood pressure in physically inactive populations with a medical condition. Reviewed studies show little support for the role of LIPA to reduce CVD risk factors. Many of the included studies were of low to fair study quality and used low doses of LIPA. Further studies are needed to establish the value of LIPA in reducing CVD risk. PMID:26543862

  9. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor

    PubMed Central

    Polsen, Erik S.; McNerny, Daniel Q.; Viswanath, B.; Pattinson, Sebastian W.; John Hart, A.

    2015-01-01

    We present the design of a concentric tube (CT) reactor for roll-to-roll chemical vapor deposition (CVD) on flexible substrates, and its application to continuous production of graphene on copper foil. In the CTCVD reactor, the thin foil substrate is helically wrapped around the inner tube, and translates through the gap between the concentric tubes. We use a bench-scale prototype machine to synthesize graphene on copper substrates at translation speeds varying from 25 mm/min to 500 mm/min, and investigate the influence of process parameters on the uniformity and coverage of graphene on a continuously moving foil. At lower speeds, high-quality monolayer graphene is formed; at higher speeds, rapid nucleation of small graphene domains is observed, yet coalescence is prevented by the limited residence time in the CTCVD system. We show that a smooth isothermal transition between the reducing and carbon-containing atmospheres, enabled by injection of the carbon feedstock via radial holes in the inner tube, is essential to high-quality roll-to-roll graphene CVD. We discuss how the foil quality and microstructure limit the uniformity of graphene over macroscopic dimensions. We conclude by discussing means of scaling and reconfiguring the CTCVD design based on general requirements for 2-D materials manufacturing. PMID:25997124

  10. CVD-based, photolithographically patterned, highly-sensitive graphene Hall element on hexagonal BN

    NASA Astrophysics Data System (ADS)

    Kim, Joonggyu; Joo, Min-Kyu; Park, Ji-Hoon; Nguyen, Van Luan; Kim, Ki Kang; Lee, Young Hee; Suh, Dongseok

    Graphene is known to have a high carrier mobility, and the carrier density can be minimized at the charge neutrality point (CNP). Because such features are suitable for Hall sensor measuring magnetic field, we examined the possibility of graphene Hall element (GHE) as a highly sensitive magnetic sensor. For the high-throughput production of GHE in the future, the material synthesized by a chemical-vapor-deposition (CVD) method and the fabrication processes based on photolithography were adopted to show its mass-production feasibility. Specifically, the CVD synthesized hexagonal BN (hBN) was tested as a protection layer of graphene from extrinsic doping driven by SiO2 substrate, which causes the shift of CNP. In addition, post annealing sequences were also included between each step, such as the hBN attachment on SiO2 and the graphene transfer on hBN/SiO2 substrate followed by the PMMA removal. From this work, we can get minimum magnetic resolution around 10 mG/Hz0.5 at 300 Hz.

  11. Surface Study of Carbon Nanotubes Prepared by Thermal-CVD of Camphor Precursor

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Surface morphology study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature, which indirectly maybe cost effective. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HR-TEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs. The camphoric hydrocarbons not only found acts as the precursors but also enhances the production rate and the quality of CNTs.

  12. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    SciTech Connect

    Kundrát, Vojtěch; Sullivan, John; Ye, Haitao; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin

    2015-04-15

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) – tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  13. Electrically insulating films deposited on V-4%Cr-4%Ti by reactive CVD

    SciTech Connect

    Park, J.H.

    1998-04-01

    In the design of liquid-metal blankets for magnetic fusion reactors, corrosion resistance of structural materials and the magnetohydrodynamic forces and their influence on thermal hydraulics and corrosion are major concerns. Electrically insulating CaO films deposited on V-4%Cr-4%Ti exhibit high-ohmic insulator behavior even though a small amount of vanadium from the alloy become incorporated into the film. However, when vanadium concentration in the film is > 15 wt.%, the film becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. The objective of this study is to evaluate electrically insulating films that were deposited on V-4%Cr-4%Ti by a reactive chemical vapor deposition (CVD) method. To this end, CaO and Ca-V-O coatings were produced on vanadium alloys by CVD and by a metallic-vapor process to investigate the electrical resistance of the coatings. The authors found that the Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film > 0.9, and semiconductor or conductor behavior when R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, they conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.

  14. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber.

    PubMed

    Huang, Pi Ling; Lin, Shau-Ching; Yeh, Chao-Yung; Kuo, Hsin-Hui; Huang, Shr-Hau; Lin, Gong-Ru; Li, Lain-Jong; Su, Ching-Yuan; Cheng, Wood-Hi

    2012-01-30

    A stable mode-locked fiber laser (MLFL) employing multi-layer graphene as saturable absorber (SA) is presented. The multi-layer graphene were grown by chemical vapor deposition (CVD) on Ni close to A-A stacking. Linear absorbance spectrum of multi-layer graphene was observed without absorption peak from 400 to 2000 nm. Optical nonlinearities of different atomic-layers (7-, 11-, 14-, and 21- layers) graphene based SA are investigated and compared. The results found that the thicker 21-layer graphene based SA exhibited a smaller modulation depth (MD) value of 2.93% due to more available density of states in the band structure of multi-layer graphene and favored SA nonlinearity. A stable MLFL of 21-layer graphene based SA showed a pulsewidth of 432.47 fs, a bandwidth of 6.16 nm, and a time-bandwidth product (TBP) of 0.323 at fundamental soliton-like operation. This study demonstrates that the atomic-layer structure of graphene from CVD process may provide a reliable graphene based SA for stable soliton-like pulse formation of the MLFL.

  15. Kinetic control of catalytic CVD for high-quality graphene at low temperatures.

    PubMed

    Weatherup, Robert S; Dlubak, Bruno; Hofmann, Stephan

    2012-11-27

    Low-temperature (∼600 °C), scalable chemical vapor deposition of high-quality, uniform monolayer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ≤0.08, and carrier mobilities of ≥3000 cm(2) V(-1) s(-1) on SiO(2) support. A kinetic growth model for graphene CVD based on flux balances is established, which is well supported by a systematic study of Ni-based polycrystalline catalysts. A finite carbon solubility of the catalyst is thereby a key advantage, as it allows the catalyst bulk to act as a mediating carbon sink while optimized graphene growth occurs by only locally saturating the catalyst surface with carbon. This also enables a route to the controlled formation of Bernal stacked bi- and few-layered graphene. The model is relevant to all catalyst materials and can readily serve as a general process rationale for optimized graphene CVD. PMID:23025628

  16. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  17. Oats and CVD risk markers: a systematic literature review.

    PubMed

    Thies, Frank; Masson, Lindsey F; Boffetta, Paolo; Kris-Etherton, Penny

    2014-10-01

    High consumption of whole-grain food such as oats is associated with a reduced risk of CVD and type 2 diabetes. The present study aimed to systematically review the literature describing long-term intervention studies that investigated the effects of oats or oat bran on CVD risk factors. The literature search was conducted using Embase, Medline and the Cochrane library, which identified 654 potential articles. Seventy-six articles describing sixty-nine studies met the inclusion criteria. Most studies lacked statistical power to detect a significant effect of oats on any of the risk factors considered: 59 % of studies had less than thirty subjects in the oat intervention group. Out of sixty-four studies that assessed systemic lipid markers, thirty-seven (58 %) and thirty-four (49 %) showed a significant reduction in total cholesterol (2-19 % reduction) and LDL-cholesterol (4-23 % reduction) respectively, mostly in hypercholesterolaemic subjects. Few studies (three and five, respectively) described significant effects on HDL-cholesterol and TAG concentrations. Only three out of twenty-five studies found a reduction in blood pressure after oat consumption. None of the few studies that measured markers of insulin sensitivity and inflammation found any effect after long-term oat consumption. Long-term dietary intake of oats or oat bran has a beneficial effect on blood cholesterol. However, there is no evidence that it favourably modulates insulin sensitivity. It is still unclear whether increased oat consumption significantly affects other risk markers for CVD risk, and comprehensive, adequately powered and controlled intervention trials are required to address this question.

  18. Strain Relaxation in CVD Graphene: Wrinkling with Shear Lag.

    PubMed

    Bronsgeest, Merijntje S; Bendiab, Nedjma; Mathur, Shashank; Kimouche, Amina; Johnson, Harley T; Coraux, Johann; Pochet, Pascal

    2015-08-12

    We measure uniaxial strain fields in the vicinity of edges and wrinkles in graphene prepared by chemical vapor deposition (CVD), by combining microscopy techniques and local vibrational characterization. These strain fields have magnitudes of several tenths of a percent and extend across micrometer distances. The nonlinear shear-lag model remarkably captures these strain fields in terms of the graphene-substrate interaction and provides a complete understanding of strain-relieving wrinkles in graphene for any level of graphene-substrate coherency. PMID:26171667

  19. Paralinear Oxidation of CVD SiC in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Hann, Raiford E., Jr.

    1997-01-01

    The oxidation kinetics of CVD SiC were monitored by thermogravimetric analysis (TGA) in a 50% H2O/50% O2 gas mixture flowing at 4.4 cm/s for temperatures between 1200 and 1400 C. Paralinear weight change kinetics were observed as the water vapor oxidized the SiC and simultaneously volatilized the silica scale. The long-term degradation rate of SiC is determined by the volatility of the silica scale. Rapid SiC surface recession rates were estimated from these data for actual aircraft engine combustor conditions.

  20. The Oxidation of CVD Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynchGiao N.

    1997-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.

  1. Transient current electric field profiling of single crystal CVD diamond

    NASA Astrophysics Data System (ADS)

    Isberg, J.; Gabrysch, M.; Tajani, A.; Twitchen, D. J.

    2006-08-01

    The transient current technique (TCT) has been adapted for profiling of the electric field distribution in intrinsic single crystal CVD diamond. It was found that successive hole transits do not appreciably affect the electric field distribution within the sample. Transits of holes can therefore be used to probe the electric field distribution and also the distribution of trapped charge. Electron transits, on the other hand, cause an accumulation of negative charge in the sample. Illumination with blue or green light was shown to lead to accumulation of positive charge. Low concentrations of trapped charge can be detected in diamond using TCT, corresponding to an ionized impurity concentration below N = 1010 cm-3.

  2. Common Cold

    MedlinePlus

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  3. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    2000-02-03

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  4. The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties

    NASA Astrophysics Data System (ADS)

    Ambrosi, Adriano; Pumera, Martin

    2013-12-01

    High quality graphene films can be fabricated by chemical vapor deposition (CVD) using Ni and Cu as catalytic substrates. Such a synthesis procedure always requires a subsequent transfer process to be performed in order to eliminate the metallic substrate and transfer the graphene onto the desired surface. We show here that such a transfer process causes significant contamination of the graphene film with residual Fe and Ni metal impurities. Fe contamination derives from the use of Fe-based etching solutions to dissolve Ni (or Cu) substrates, while residual Ni (or Cu) is due to an incomplete metal substrate etching. The presence of these metallic impurities within the transferred graphene film affects tremendously its electrochemical behavior when adopted as an electrode material.High quality graphene films can be fabricated by chemical vapor deposition (CVD) using Ni and Cu as catalytic substrates. Such a synthesis procedure always requires a subsequent transfer process to be performed in order to eliminate the metallic substrate and transfer the graphene onto the desired surface. We show here that such a transfer process causes significant contamination of the graphene film with residual Fe and Ni metal impurities. Fe contamination derives from the use of Fe-based etching solutions to dissolve Ni (or Cu) substrates, while residual Ni (or Cu) is due to an incomplete metal substrate etching. The presence of these metallic impurities within the transferred graphene film affects tremendously its electrochemical behavior when adopted as an electrode material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05230c

  5. Kinetics of low pressure CVD growth of SiO2 on InP and Si

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.

    1988-01-01

    The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.

  6. Thermoluminescence in CVD diamond films: application to actinometric dosimetry.

    PubMed

    Barboza-Flores, M; Meléndrez, R; Chernov, V; Castañeda, B; Pedroza-Montero, M; Gan, B; Ahn, J; Zhang, Q; Yoon, S F

    2002-01-01

    Diamond is considered a tissue-equivalent material since its atomic number (Z =6) is close to the effective atomic number of biological tissue (Z =7.42). Such a situation makes it suitable for radiation detection purposes in medical applications. In the present work the analysis is reported of the thermoluminescence (TL) and dosimetric features of chemically vapour deposited (CVD) diamond film samples subjected to ultraviolet (UV) irradiation in the actinometric region. The TL glow curve shows peaks at 120, 220), 320 and 370 degrees C. The 120 and 370 degrees C peaks are too weak and the first one fades away in a few seconds after exposure. The overall room temperature fading shows a 50% TL decay 30 min after exposure. The 320 degrees C glow peak is considered to be the most adequate for dosimetric applications due to its low fading and linear TL behaviour as a function of UV dose in the 180-260 nm range. The TL excitation spectrum presents a broad band with at least two overlapped components around 205 and 220 nm. The results indicate that the TL behaviour of CVD diamond film can be a good alternative to the currently available dosemeter and detector in the actinometric region as well as in clinical and medical applications. PMID:12382917

  7. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    SciTech Connect

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.

    2015-02-11

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. But, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 C. Moreover, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.

  8. States' Implementation of the Common Core State Standards and the Australian Curriculum: A Comparison of the Change Process in Two Countries

    ERIC Educational Resources Information Center

    Watt, Michael

    2015-01-01

    The purpose of this study was to examine and compare key elements of the actions that states in the USA and Australia took to implement the Common Core State Standards or Phase One of the Australian Curriculum, and what processes and products they used to facilitate implementation of these innovations. A rubric adapted from a diagnostic tool,…

  9. Carbon-coated hexagonal magnetite nanoflakes production by spray CVD of alcohols in mixture with water

    NASA Astrophysics Data System (ADS)

    Reyes-Reyes, Marisol; Hernández-Arriaga, Daniel; López-Sandoval, Román

    2014-12-01

    In this study, we report a successful technique for synthesizing magnetite hexagonal nanoflakes coated with carbon layers using spray thermal decomposition, which is a reproducible method that is easy to scale up. We investigated the effects of mixing different volumes of deionized (DI) water with alcohol on the population and quality of single-crystalline Fe3O4 hexagonal nanoflakes. Methanol and ethanol were used as the carbon and oxygen source, while ferrocene was mainly used as the Fe source. To obtain a large quantity of hexagonal structures, a strongly oxidative atmosphere was required. The DI water was used to enhance the oxidative environment during the reaction and was an important component for obtaining well-shaped hexagonal magnetite crystalline nanoflakes. The use of alcohols, water and the spray chemical vapor deposition (CVD) method make this procedure easy to use. In addition, this method provides a one-step process for synthesizing carbon-coated hexagonal Fe3O4 nanocrystals.

  10. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas.

    PubMed

    Bepete, George; Voiry, Damien; Chhowalla, Manish; Chiguvare, Zivayi; Coville, Neil J

    2013-07-21

    Chemical doping of graphene with small boron nitride (BN) domains has been shown to be an effective way of permanently modulating the electronic properties in graphene. Herein we show a facile method of growing large area graphene doped with small BN domains on copper foils using a single step CVD route with methane, boric acid powder and nitrogen gas as the carbon, boron and nitrogen sources respectively. This facile and safe process avoids the use of boranes and ammonia. Optical microscopy confirmed that continuous films were grown and Raman spectroscopy confirmed changes in the electronic structure of the grown BN doped graphene. Using XPS studies we find that both B and N can be substituted into the graphene structure in the form of small BN domains to give a B-N-C system. A novel structure for the BN doped graphene is proposed. PMID:23759928

  11. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas.

    PubMed

    Bepete, George; Voiry, Damien; Chhowalla, Manish; Chiguvare, Zivayi; Coville, Neil J

    2013-07-21

    Chemical doping of graphene with small boron nitride (BN) domains has been shown to be an effective way of permanently modulating the electronic properties in graphene. Herein we show a facile method of growing large area graphene doped with small BN domains on copper foils using a single step CVD route with methane, boric acid powder and nitrogen gas as the carbon, boron and nitrogen sources respectively. This facile and safe process avoids the use of boranes and ammonia. Optical microscopy confirmed that continuous films were grown and Raman spectroscopy confirmed changes in the electronic structure of the grown BN doped graphene. Using XPS studies we find that both B and N can be substituted into the graphene structure in the form of small BN domains to give a B-N-C system. A novel structure for the BN doped graphene is proposed.

  12. Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas

    NASA Astrophysics Data System (ADS)

    Bepete, George; Voiry, Damien; Chhowalla, Manish; Chiguvare, Zivayi; Coville, Neil J.

    2013-06-01

    Chemical doping of graphene with small boron nitride (BN) domains has been shown to be an effective way of permanently modulating the electronic properties in graphene. Herein we show a facile method of growing large area graphene doped with small BN domains on copper foils using a single step CVD route with methane, boric acid powder and nitrogen gas as the carbon, boron and nitrogen sources respectively. This facile and safe process avoids the use of boranes and ammonia. Optical microscopy confirmed that continuous films were grown and Raman spectroscopy confirmed changes in the electronic structure of the grown BN doped graphene. Using XPS studies we find that both B and N can be substituted into the graphene structure in the form of small BN domains to give a B-N-C system. A novel structure for the BN doped graphene is proposed.

  13. Pulsed electrodeposition into AAO templates for CVD growth of carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Sklar, G. P.; Paramguru, K.; Misra, M.; La Combe, J. C.

    2005-08-01

    Anodic aluminium oxide (AAO) templates for multi-walled carbon nanotube (MWCNT) growth were produced by anodization of aluminium followed by pulse-reverse electrodeposition of cobalt inside the AAO pores. Cobalt functioned as the catalyst for H2/C2H2 chemical vapour deposition (CVD) growth of fairly well graphitized MWCNTs initiating inside the majority of the AAO pores and quickly growing beyond the pore confines. A technique is introduced for the production of AAO templates that fill evenly during pulsed electrodeposition. The electrodeposition produced an active metallic catalyst in the pore bottoms, with minimal over-filling. This process also eliminates the reduction step necessary when alternating current (AC) electrodeposition is used for filling AAO pores.

  14. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect

    IRWIN, J.J.

    1999-07-02

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  15. CVD Fiber Coatings for Al2O3/NiAl Composites

    NASA Technical Reports Server (NTRS)

    Boss, Daniel E.

    1995-01-01

    While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.

  16. The common genetic influence over processing speed and white matter microstructure: Evidence from the Old Order Amish and Human Connectome Projects.

    PubMed

    Kochunov, Peter; Thompson, Paul M; Winkler, Anderson; Morrissey, Mary; Fu, Mao; Coyle, Thomas R; Du, Xiaoming; Muellerklein, Florian; Savransky, Anya; Gaudiot, Christopher; Sampath, Hemalatha; Eskandar, George; Jahanshad, Neda; Patel, Binish; Rowland, Laura; Nichols, Thomas E; O'Connell, Jeffrey R; Shuldiner, Alan R; Mitchell, Braxton D; Hong, L Elliot

    2016-01-15

    Speed with which brain performs information processing influences overall cognition and is dependent on the white matter fibers. To understand genetic influences on processing speed and white matter FA, we assessed processing speed and diffusion imaging fractional anisotropy (FA) in related individuals from two populations. Discovery analyses were performed in 146 individuals from large Old Order Amish (OOA) families and findings were replicated in 485 twins and siblings of the Human Connectome Project (HCP). The heritability of processing speed was h(2)=43% and 49% (both p<0.005), while the heritability of whole brain FA was h(2)=87% and 88% (both p<0.001), in the OOA and HCP, respectively. Whole brain FA was significantly correlated with processing speed in the two cohorts. Quantitative genetic analysis demonstrated a significant degree to which common genes influenced joint variation in FA and brain processing speed. These estimates suggested common sets of genes influencing variation in both phenotypes, consistent with the idea that common genetic variations contributing to white matter may also support their associated cognitive behavior. PMID:26499807

  17. CVD growth of graphene under exfoliated hexagonal boron nitride for vertical hybrid structures

    SciTech Connect

    Wang, Min; Jang, Sung Kyu; Song, Young Jae; Lee, Sungjoo

    2015-01-15

    Graphical abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO2, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup −1} s{sup −1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems. - Abstract: We have demonstrated a novel yet simple method for fabricating graphene-based vertical hybrid structures by performing the CVD growth of graphene at an h-BN/Cu interface. Our systematic Raman measurements combined with plasma etching process indicate that a graphene film is grown under exfoliated h-BN rather than on its top surface, and that an h-BN/graphene vertical hybrid structure has been fabricated. Electrical transport measurements of this h-BN/graphene, transferred on SiO{sub 2}, show the carrier mobility up to approximately 2250 cm{sup 2} V{sup −1} s{sup −1}. The developed method would enable the exploration of the possibility of novel hybrid structure integration with two-dimensional material systems.

  18. Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system

    NASA Astrophysics Data System (ADS)

    Ficek, M.; Drijkoningen, S.; Karczewski, J.; Bogdanowicz, R.; Haenen, K.

    2016-01-01

    It is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of a linear antenna microwave plasma enhanced chemical vapor deposition system (LA MW CVD) is the fact that it allows to grow the diamond layers at low temperature (below 300°C) [1]. High quality nanocrystalline diamond (NCD) thin films with thicknesses ranging from 70 nm to 150 nm, were deposited on silicon, glass and optical fibre substrates [2]. Substrates pretreatment by dip-coating and spin coating process with a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) has been applied. During the deposition process the continuous mode of operation of the LA MW CVD system was used, which produces a continuous wave at a maximum power of 1.9 kW (in each antenna). Diamond films on optical fibres were obtained at temperatures below 350°C, providing a clear improvement of results compared to our earlier work [3]. The samples were characterized by scanning electron microscopy (SEM) imaging to investigate the morphology of the nanocrystalline diamond films. The film growth rate, film thickness, and optical properties in the VIS-NIR range, i.e. refractive index and extinction coefficient will be discussed based on measurements on reference quartz plates by using spectroscopic ellipsometry (SE).

  19. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  20. Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics

    SciTech Connect

    Vikharev, A. L. Gorbachev, A. M.; Dukhnovsky, M. P.; Muchnikov, A. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2012-02-15

    The fabrication of diamond substrates in which single-crystalline and polycrystalline CVD diamond form a single wafer, and the epitaxial growth of diamond films on such combined substrates containing polycrystalline and (100) single-crystalline CVD diamond regions are studied.

  1. CVD synthesis of graphene nanoplates on MgO support

    NASA Astrophysics Data System (ADS)

    Jugade, Ravin M.; Sharma, Shalini; Gokhale, Suresh

    2014-06-01

    Synthesis of graphene directly on MgO has been carried out and the structural properties of the obtained material have been investigated. Few-layered graphene was produced by simple thermal decomposition of methane over MgO powder at 950 °C in a CVD reactor. The samples were purified by 10 N HNO3 treatment, and studied by TEM, Raman spectroscopy, EDAX and SEM. TEM clearly indicated the formation of graphene. EDAX showed that the purified sample contained only carbon and no traces of MgO. The characteristic Raman features of graphene were also seen as D-band at 1316 cm-1, G-band at 1602 cm-1, and a small 2D-band at 2700 cm-1 in the Raman spectra. The strong D-band suggests that the graphene possess large number of boundary defects. The small 2D-band indicates the formation of few-layered graphene.

  2. Leakage current measurements of a pixelated polycrystalline CVD diamond detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Maneuski, D.; O'Shea, V.; Bates, R.; Blue, A.; Cunnigham, L.; Stehl, C.; Berderman, E.; Rahim, R. A.

    2013-01-01

    Diamond has several desirable features when used as a material for radiation detection. With the invention of synthetic growth techniques, it has become feasible to look at developing diamond radiation detectors with reasonable surface areas. Polycrystalline diamond has been grown using a chemical vapour deposition (CVD) technique by the University of Augsburg and detector structures fabricated at the James Watt Nanofabrication Centre (JWNC) in the University of Glasgow in order to produce pixelated detector arrays. The anode and cathode contacts are realised by depositing gold to produce ohmic contacts. Measurements of I-V characteristics were performed to study the material uniformity. The bias voltage is stepped from -1000V to 1000V to investigate the variation of leakage current from pixel to pixel. Bulk leakage current is measured to be less than 1nA.

  3. Low temperature CVD of TaB/sub 2/

    SciTech Connect

    Randich, E.

    1980-01-01

    Crystalline TaB/sub 2/ has been deposited using the CVD reaction of TaCl/sub 5/ and B/sub 2/H/sub 6/ in the temperature range of 773-1200/sup 0/K. Thermodynamic calculations have been made which compare the use of both B/sub 2/H/sub 6/ and BCl/sub 3/ as B source gases. The deposits obtained with B/sub 2/H/sub 6/ exhibited extremely small crystal size and contained amorphous B when the deposition temperature was below approx. 873/sup 0/K but were substoichiometric in B above this temperature. Carbon analysis indicated that C may substitute for B and thereby stabilize the diboride structure at high deposition temperatures. Microhardness of the coatings decreased with increasing B/Ta ratio and decreasing crystal size.

  4. Application of HOPG and CVD graphene as ion beam detectors

    NASA Astrophysics Data System (ADS)

    Kozubek, Roland; Ochedowski, Oliver; Zagoranskiy, Igor; Karlušić, Marko; Schleberger, Marika

    2014-12-01

    Highly ordered pyrolytic graphite and graphene created via chemical vapor deposition have been irradiated with high energetic I6+ ions. By Raman mapping an increase of the ID /IG ratio could be identified which arises from the ion induced defects. This ratio grows with increasing fluence. Using this as a tool, HOPG and graphene can be utilized to determine the ion beam spot size and its homogeneity. Both systems seem to be suitable for size determination of the spot. But due to the much higher sensitivity of graphene to ion irradiation, more detailed information regarding the homogeneity of the beam can only be derived using this 2D system. By comparison of both systems we conclude, that CVD graphene is more suitable as an ion beam detector, while HOPG is sufficient for a rough spot size analysis.

  5. Study of magnetotransport across the neutrality point in CVD graphene

    NASA Astrophysics Data System (ADS)

    Mani, Ramesh G.

    Hall effect compensation and a residual resistivity ρxx ~ h / 4e2 are experimentally examined over the p <-->n transition about the nominal Dirac point in CVD graphene. The observed characteristics are reproduced in a model with a parabolic distribution f (VN) of neutrality potentials, VN, and simultaneous electron- and hole- conduction. The results suggest that, broadly about the gate-induced n <--> p transition, charge transport is characterized by domain confined ambipolar currents, which leads to compensation in the global Hall effect and the observed residual resistivity. DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  6. A controlled atmosphere tube furnace was designed for thermal CVD

    NASA Astrophysics Data System (ADS)

    Rashid, M.; Bhatti, J. A.; Hussain, F.; Imran, M.; Khawaja, I. U.; Chaudhary, K. A.; Ahmad, S. A.

    2013-06-01

    High quality materials were used for the fabrication of hi-tech tube furnace. The furnace was especially suitable for thermal Chemical Vapor Deposition (CVD). High density alumina tube was used for the fabrication of furnace. The tube furnace was found to have three different temperature zones with maximum temperature at central zone was found to be 650°C. The flexible heating tape with capacity of 760°C was wrapped on the tube. To minimize the heat losses, asbestos and glass wool were used on heating tape. The temperature of the tube furnace was controlled by a digital temperature controller had accuracy of ±1°C. Methanol was taken as the representative of hydrocarbon sources, to give thin film of carbon. The a-C: H structure was investigated by conventional techniques using optical microscopy, FT-IR and SEM.

  7. A rigorous approach to investigating common assumptions about disease transmission: Process algebra as an emerging modelling methodology for epidemiology.

    PubMed

    McCaig, Chris; Begon, Mike; Norman, Rachel; Shankland, Carron

    2011-03-01

    Changing scale, for example, the ability to move seamlessly from an individual-based model to a population-based model, is an important problem in many fields. In this paper, we introduce process algebra as a novel solution to this problem in the context of models of infectious disease spread. Process algebra allows us to describe a system in terms of the stochastic behaviour of individuals, and is a technique from computer science. We review the use of process algebra in biological systems, and the variety of quantitative and qualitative analysis techniques available. The analysis illustrated here solves the changing scale problem: from the individual behaviour we can rigorously derive equations to describe the mean behaviour of the system at the level of the population. The biological problem investigated is the transmission of infection, and how this relates to individual interactions.

  8. CVD risk factors and ethnicity--a homogeneous relationship?

    PubMed

    Forouhi, Nita G; Sattar, Naveed

    2006-04-01

    Current understanding of cardiovascular disease risk (CVD) is derived largely from studies of Caucasians of European origin. However, people of certain ethnic groups experience a disproportionately greater burden of CVD including coronary heart disease (CHD) and stroke. Adoption of a Westernised lifestyle has different effects on metabolic and vascular dysfunction across populations, e.g. South Asians have a higher prevalence of coronary heart disease (CHD) and cardiovascular mortality compared with Europeans. African-Americans demonstrate higher rates of CHD and stroke while African/Caribbeans in the UK have lower CHD rates and higher stroke rates than British Europeans. Other non-European groups such as the Chinese and Japanese exhibit consistently high rates of stroke but not CHD, while Mexican Americans have a higher prevalence of both stroke and CHD, and North American native Indians also have high rates of CHD. While conventional cardiovascular risk factors such as smoking, blood pressure and total cholesterol predict risk within these ethnic groups, they do not fully account for the differences in risk between ethnic groups, suggesting that alternative explanations might exist. Ethnic groups show differences in levels of visceral adiposity, insulin resistance, and novel risk markers such as C-reactive protein (CRP), adiponectin and plasma homocysteine. The marked differences across racial and ethnic groups in disease risk are likely due in part to each of genetic, host susceptibility and environmental factors, and can provide valuable aetiological clues to differences in patterns of disease presentation, therapeutic needs and response to treatment. Ongoing studies should increase understanding of ethnicity as a potential independent risk factor, thus enabling better identification of treatment targets and selection of therapy in specific populations.

  9. Effects of Task Requirements on Rapid Natural Scene Processing: From Common Sensory Encoding to Distinct Decisional Mechanisms

    ERIC Educational Resources Information Center

    Bacon-Mace, Nadege; Kirchner, Holle; Fabre-Thorpe, Michele; Thorpe, Simon J.

    2007-01-01

    Using manual responses, human participants are remarkably fast and accurate at deciding if a natural scene contains an animal, but recent data show that they are even faster to indicate with saccadic eye movements which of 2 scenes contains an animal. How could it be that 2 images can apparently be processed faster than a single image? To better…

  10. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    NASA Astrophysics Data System (ADS)

    Ballinger, Jared

    . Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels

  11. Introspective Minds: Using ALE Meta-Analyses to Study Commonalities in the Neural Correlates of Emotional Processing, Social & Unconstrained Cognition

    PubMed Central

    Schilbach, Leonhard; Bzdok, Danilo; Timmermans, Bert; Fox, Peter T.; Laird, Angela R.; Vogeley, Kai; Eickhoff, Simon B.

    2012-01-01

    Previous research suggests overlap between brain regions that show task-induced deactivations and those activated during the performance of social-cognitive tasks. Here, we present results of quantitative meta-analyses of neuroimaging studies, which confirm a statistical convergence in the neural correlates of social and resting state cognition. Based on the idea that both social and unconstrained cognition might be characterized by introspective processes, which are also thought to be highly relevant for emotional experiences, a third meta-analysis was performed investigating studies on emotional processing. By using conjunction analyses across all three sets of studies, we can demonstrate significant overlap of task-related signal change in dorso-medial prefrontal and medial parietal cortex, brain regions that have, indeed, recently been linked to introspective abilities. Our findings, therefore, provide evidence for the existence of a core neural network, which shows task-related signal change during socio-emotional tasks and during resting states. PMID:22319593

  12. Microwave engineering of plasma-assisted CVD reactors for diamond deposition

    NASA Astrophysics Data System (ADS)

    Silva, F.; Hassouni, K.; Bonnin, X.; Gicquel, A.

    2009-09-01

    The unique properties of CVD diamond make it a compelling choice for high power electronics. In order to achieve industrial use of CVD diamond, one must simultaneously obtain an excellent control of the film purity, very low defect content and a sufficiently rapid growth rate. Currently, only microwave plasma-assisted chemical vapour deposition (MPACVD) processes making use of resonant cavity systems provide enough atomic hydrogen to satisfy these requirements. We show in this paper that the use of high microwave power density (MWPD) plasmas is necessary to promote atomic hydrogen concentrations that are high enough to ensure the deposition of high purity diamond films at large growth rates. Moreover, the deposition of homogeneous films on large surfaces calls for the production of plasma with appropriate shapes and large volumes. The production of such plasmas needs generating a fairly high electric field over extended regions and requires a careful design of the MW coupling system, especially the cavity. As far as MW coupling efficiency is concerned, the presence of a plasma load represents a mismatching perturbation to the cavity. This perturbation is especially important at high MWPD where the reflected fraction of the input power may be quite high. This mismatch can lead to a pronounced heating of the reactor walls. It must therefore be taken into account from the very beginning of the reactor design. This requires the implementation of plasma modelling tools coupled to detailed electromagnetic simulations. This is discussed in section 3. We also briefly discuss the operating principles of the main commercial plasma reactors before introducing the reactor design methodology we have developed. Modelling results for a new generation of reactors developed at LIMHP, working at very high power density, will be presented. Lastly, we show that scaling up this type of reactor to lower frequencies (915 MHz) can result in high density plasmas allowing for fast and

  13. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  14. Clays, common

    USGS Publications Warehouse

    Virta, R.L.

    1998-01-01

    Part of a special section on the state of industrial minerals in 1997. The state of the common clay industry worldwide for 1997 is discussed. Sales of common clay in the U.S. increased from 26.2 Mt in 1996 to an estimated 26.5 Mt in 1997. The amount of common clay and shale used to produce structural clay products in 1997 was estimated at 13.8 Mt.

  15. Few layers isolated graphene domains grown on copper foils by microwave surface wave plasma CVD using camphor as a precursor

    NASA Astrophysics Data System (ADS)

    Ram Aryal, Hare; Adhikari, Sudip; Uchida, Hideo; Wakita, Koichi; Umeno, Masayoshi

    2016-03-01

    Few layers isolated graphene domains were grown by microwave surface wave plasma CVD technique using camphor at low temperature. Graphene nucleation centers were suppressed on pre-annealed copper foils by supplying low dissociation energy. Scanning electron microscopy study of time dependent growth reveals that graphene nucleation centers were preciously suppressed, which indicates the possibility of controlled growth of large area single crystal graphene domains by plasma processing. Raman spectroscopy revealed that the graphene domains are few layered which consist of relatively low defects.

  16. Student Commons

    ERIC Educational Resources Information Center

    Gordon, Douglas

    2010-01-01

    Student commons are no longer simply congregation spaces for students with time on their hands. They are integral to providing a welcoming environment and effective learning space for students. Many student commons have been transformed into spaces for socialization, an environment for alternative teaching methods, a forum for large group meetings…

  17. Pathway analysis of senescence-associated miRNA targets reveals common processes to different senescence induction mechanisms.

    PubMed

    Lafferty-Whyte, Kyle; Cairney, Claire J; Jamieson, Nigel B; Oien, Karin A; Keith, W Nicol

    2009-04-01

    Multiple mechanisms of senescence induction exist including telomere attrition, oxidative stress, oncogene expression and DNA damage signalling. The regulation of the cellular changes required to respond to these stimuli and create the complex senescent cell phenotype has many different mechanisms. MiRNAs present one mechanism by which genes with diverse functions on multiple pathways can be simultaneously regulated. In this study we investigated 12 miRNAs previously identified as senescence regulators. Using pathway analysis of their target genes we tested the relevance of miRNA regulation in the induction of senescence. Our analysis highlighted the potential of these senescence-associated miRNAs (SA-miRNAs) to regulate the cell cycle, cytoskeletal remodelling and proliferation signalling logically required to create a senescent cell. The reanalysis of publicly available gene expression data from studies exploring different senescence stimuli also revealed their potential to regulate core senescence processes, regardless of stimuli. We also identified stimulus specific apoptosis survival pathways theoretically regulated by the SA-miRNAs. Furthermore the observation that miR-499 and miR-34c had the potential to regulate all 4 of the senescence induction types we studied highlights their future potential as novel drug targets for senescence induction. PMID:19419692

  18. The relationship between verbal and nonverbal auditory signal processing in conduction aphasia: behavioral and anatomical evidence for common decoding mechanisms.

    PubMed

    Sidiropoulos, Kyriakos; de Bleser, Ria; Ablinger, Irene; Ackermann, Hermann

    2015-01-01

    The processing of nonverbal auditory stimuli has not yet been sufficiently investigated in patients with aphasia. On the basis of a duration discrimination task, we examined whether patients with left-sided cerebrovascular lesions were able to perceive time differences in the scale of approximately 150 ms. Further linguistic and memory-related tasks were used to characterize more exactly the relationships in the performances between auditory nonverbal task and selective linguistic or mnemonic disturbances. All examined conduction aphasics showed increased thresholds in the duration discrimination task. The low thresholds on this task were in a strong correlative relation to the reduced performances in repetition and working memory task. This was interpreted as an indication of a pronounced disturbance in integrating auditory verbal information into a long-term window (sampling disturbance) resulting in an additional load of working memory. In order to determine the lesion topography of patients with sampling disturbances, the anatomical and psychophysical data were correlated on the basis of a voxelwise statistical approach. It was found that tissue damage extending through the insula, the posterior superior temporal gyrus, and the supramarginal gyrus causes impairments in sequencing of time-sensitive information.

  19. Development of Micro and Nano Crystalline CVD Diamond TL/OSL Radiation Detectors for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Barboza-Flores, Marcelino

    2015-03-01

    Modern radiotherapy methods requires the use of high photon radiation doses delivered in a fraction to small volumes of cancer tumors. An accurate dose assessment for highly energetic small x-ray beams in small areas, as in stereotactic radiotherapy, is necessary to avoid damage to healthy tissue surrounding the tumor. Recent advances on the controlled synthesis of CVD diamond have demonstrated the possibility of using high quality micro and nano crystalline CVD as an efficient detector and dosimeter suitable for high energy photons and energetic particle beams. CVD diamond is a very attractive material for applications in ionizing radiation dosimetry, particularly in the biomedical field since the radiation absorption by a CVD diamond is very close to that of soft tissue. Furthermore, diamond is stable, non-toxic and radiation hard. In the present work we discuss the CVD diamond properties and dosimeter performance and discuss its relevance and advantages of various dosimetry methods, including thermally stimulated luminescence (TL) as well as optically stimulated luminescence (OSL). The recent CVD improved method of growth allows introducing precisely controlled impurities into diamond to provide it with high dosimetry sensitivity. For clinical dosimetry applications, high accuracy of dose measurements, low fading, high sensitivity, good reproducibility and linear dose response characteristics are very important parameters which all are found in CVD diamonds specimens. In some cases, dose linearity and reproducibility in CVD diamond have been found to be higher than standard commercial TLD materials like LiF. In the present work, we discuss the state-of-the art developments in dosimetry applications using CVD diamond. The financial support from Conacyt (Mexico) is greatly acknowledged

  20. Radiation monitoring with CVD diamonds and PIN diodes at BaBar

    NASA Astrophysics Data System (ADS)

    Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A. J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B. A.

    2007-12-01

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  1. CVD graphene vs. highly ordered pyrolytic graphite for use in electroanalytical sensing.

    PubMed

    Brownson, Dale A C; Gorbachev, Roman V; Haigh, Sarah J; Banks, Craig E

    2012-02-21

    We explore and contrast the electroanalytical performance of a commercially available CVD grown graphene electrode with that of edge- and basal-plane pyrolytic graphite electrodes constructed from highly ordered pyrolytic graphite for the sensing of biologically important analytes, namely β-nicotinamide adenine dinucleotide (NADH) and uric acid (UA). We demonstrate that for the analytes studied here, in the best case, the electroanalytical performance of the CVD-graphene mimics that of edge plane pyrolytic graphite, suggesting no significant advantage of utilising CVD-graphene in this context.

  2. Are your patients with risk of CVD getting the viscous soluble fiber they need?

    PubMed

    Shamliyan, Tatyana A; Jacobs, David R; Raatz, Susan K; Nordstrom, David L; Keenan, Joseph M

    2006-09-01

    A diet that includes 5 to 10 g/d of viscous soluble fiber reduces cardiovascular disease (CVD) events and death independent of baseline risk. Consuming foods rich in viscous soluble fiber reduces low-density lipoprotein cholesterol (LDL-C) blood levels 10% to 15% with expected reduction in CVD events by 10% to 15%. Routinely counsel adults at risk of CVD to promote a healthy diet: assess dietary fiber consumption; recommend specific foods rich in viscous soluble fiber; monitor LDL-C levels and encourage increased dietary fiber intake at follow-up visits; motivate patients to comply with recommendations.

  3. Radiation monitoring with CVD Diamonds and PIN Diodes at BaBar

    SciTech Connect

    Bruinsma, M.; Burchat, P.; Curry, S.; Edwards, A.J.; Kagan, H.; Kass, R.; Kirkby, D.; Majewski, S.; Petersen, B.A.; /UC, Irvine /SLAC /Ohio State U.

    2008-02-13

    The BaBar experiment at the Stanford Linear Accelerator Center has been using two polycrystalline chemical vapor deposition (pCVD) diamonds and 12 silicon PIN diodes for radiation monitoring and protection of the Silicon Vertex Tracker (SVT). We have used the pCVD diamonds for more than 3 years, and the PIN diodes for 7 years. We will describe the SVT and SVT radiation monitoring system as well as the operational difficulties and radiation damage effects on the PIN diodes and pCVD diamonds in a high-energy physics environment.

  4. Carbon Nanotubes Growth by CVD on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Cochrane, J. C.; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Due to the superior electrical and mechanical properties of carbon nanotubes (CNT), synthesizing CNT on various substances for electronics devices and reinforced composites have been engaged in many efforts for applications. This presentation will illustrate CNT synthesized on graphite fibers by thermal CVD. On the fiber surface, iron nanoparticles as catalysts for CNT growth are coated. The growth temperature ranges from 600 to 1000 C and the pressure ranges from 100 Torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than or equal to 900 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in the rough fiber surface without any CNT grown on it. When the growth temperature is relative low (650-800 C), CNT with catalytic particles on the nanotube top ends are fabricated on the graphite surface. (Methane and hydrogen gases with methane content of 10% to 100% are used for the CNT synthesis.) (By measuring the samples) Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT (MWCNT), depending on growth concentrations, are found. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  5. Fabrication of graphene-based films using remote plasma CVD

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Mineo; Tsukada, Ryosuke; Kashima, Yohei; Naito, Masateru; Kondo, Hiroki; Hori, Masaru

    2012-10-01

    Plasma-enhanced CVD (PECVD) employing methane/hydrogen gases has been used to grow diamond, diamond-like carbon, and carbon nanotubes. In the case of microwave PECVD with methane/hydrogen system without catalyst nanoparticles at temperatures of 700--850 ^oC, where the substrate is exposed to the plasma, vertical nano-graphenes and carbon nanoflakes have been easily grown even on Cu substrate due to the ion bombardment and local electric field forces. In this work, we demonstrate the synthesis of planar few-layer graphene-based film using PECVD with remote plasma configuration. In the case using microwave plasma of cylindrical resonant cavity type, by simply installing grounded grid over the substrate plate for obtaining remote plasma configuration, we have successfully fabricated graphene-based films on Cu substrate, which was confirmed by the Raman spectrum and SEM image of deposit. Similar method will be applied to other plasmas such as low-pressure inductively coupled plasma, in order to verify the effectiveness of remote plasma configuration for the growth of planar graphene using PECVD technique. We will discuss the planar graphene growth mechanism in terms of precursors and their surface reaction.

  6. The evaluation of radiation damage parameter for CVD diamond

    NASA Astrophysics Data System (ADS)

    Grilj, V.; Skukan, N.; Jakšić, M.; Pomorski, M.; Kada, W.; Kamiya, T.; Ohshima, T.

    2016-04-01

    There are a few different phenomenological approaches that aim to track the dependence of signal height in irradiated solid state detectors on the fluence of damaging particles. However, none of them are capable to provide a unique radiation hardness parameter that would reflect solely the material capability to withstand high radiation environment. To extract such a parameter for chemical vapor deposited (CVD) diamond, two different diamond detectors were irradiated with proton beams in MeV energy range and subjected afterwards to ion beam induced charge (IBIC) analysis. The change in charge collection efficiency (CCE) due to defects produced was investigated in context of a theoretical model that was developed on the basis of the adjoint method for linearization of the continuity equations of electrons and holes. Detailed modeling of measured data resulted with the first known value of the kσ product for diamond, where k represents the number of charge carriers' traps created per one simulated primary lattice vacancy and σ represents the charge carriers' capture cross section. As discussed in the text, this product could be considered as a true radiation damage parameter.

  7. Carbon Nanotubes Grown By CVD in Various Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C.; Cochrane, J. C.; Lehoczky. S. L.; Muntele, I.; Ila, D.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT) could be used in numerous devices such as electronics and sensors, many efforts have been engaged in synthesizing particular structural or dimensional MWCNT. This presentation will illustrate MWCNT synthesized on silicon substrates by thermal CVD. On the substrate, an array of catalysts is coated using sputtering deposition. A thin Ti buffer layer is also coated on some Si substrates prior to depositing catalyst particles. Nickel, cobalt or iron transition metals are used as catalysts for the MWCNT growth. Since the diameter of MWCNT depends on the size of catalyst particles, the catalyst particle size is investigated after annealed at various temperatures. MWCNT are grown on the substrate in the temperature range of 700 to 1000 C and the pressure range of 100 torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the MWCNT synthesis. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  8. Carbon Nanotubes Growth by CVD in Various Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, S.; Su, C. H.; Cochrane, J. C.; Lehoczky, S. L.; Gorti, S.; Muntele, I.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT could be used in numerous devices such as electronics and sensors, many efforts have been engaged in synthesizing particular structural or dimensional MWCNT. This presentation will illustrate MWCNT synthesized on silicon substrates by thermal CVD. On the substrate, an array of catalysts is coated using sputtering deposition. A thin Ti buffer layer is also coated on some Si substrates prior to depositing catalyst particles. Nickel, cobalt or iron transition metals are used as catalysts for the MWCNT growth. Since the diameter of MWCNT depends on the size of catalyst particles, the catalyst particle size is investigated after annealed at various temperatures. MWCNT are grown on the substrate in the temperature range of 700 to 1000 C and the pressure range of 100 torr to one atmosphere. Methane and hydrogen gases with methane content of 10% to 100% are used for the MWCNT synthesis. Morphology, length and diameter of these MWCNT are determined by scanning electron microscopy and Raman spectroscopy. The detailed results of syntheses and characterizations will be discussed in the presentation.

  9. Common cold

    MedlinePlus

    ... been tried for colds, such as vitamin C, zinc supplements, and echinacea. Talk to your health care ... nih.gov/pubmed/22962927 . Singh M, Das RR. Zinc for the common cold. Cochrane Database of Systematic ...

  10. Cold Vacuum Drying (CVD) Facility General Service Helium System Design Description

    SciTech Connect

    SHAPLEY, B.J.

    2000-04-20

    The purpose of this System Design Description (SDD) is to describe the characteristics of the Cold Vacuum Drying (CVD) Facility general service helium system. The general service helium system is a general service facility process support system, but does include safety-class structures, systems and components (SSCs) providing protection to the offsite public. The general service helium system also performs safety-significant functions that provide protection to onsite workers. The general helium system essential function is to provide helium (He) to support process functions during all phases of facility operations. General service helium is used to purge the cask and the MCO in order to maintain their internal atmospheres below hydrogen flammability concentrations. The general service helium system also supplies helium to purge the process water conditioning (PWC) lines and components and the vacuum purge system (VPS) vacuum pump. The general service helium system, if available following an Safety Class Instrument and Control System (SCIC) Isolation and Purge (IS0 and PURGE) Trip, can provide an alternate general service helium system source to supply the Safety-Class Helium (SCHe) System.

  11. The High performance of nanocrystalline CVD diamond coated hip joints in wear simulator test.

    PubMed

    Maru, M M; Amaral, M; Rodrigues, S P; Santos, R; Gouvea, C P; Archanjo, B S; Trommer, R M; Oliveira, F J; Silva, R F; Achete, C A

    2015-09-01

    The superior biotribological performance of nanocrystalline diamond (NCD) coatings grown by a chemical vapor deposition (CVD) method was already shown to demonstrate high wear resistance in ball on plate experiments under physiological liquid lubrication. However, tests with a close-to-real approach were missing and this constitutes the aim of the present work. Hip joint wear simulator tests were performed with cups and heads made of silicon nitride coated with NCD of ~10 μm in thickness. Five million testing cycles (Mc) were run, which represent nearly five years of hip joint implant activity in a patient. For the wear analysis, gravimetry, profilometry, scanning electron microscopy and Raman spectroscopy techniques were used. After 0.5 Mc of wear test, truncation of the protruded regions of the NCD film happened as a result of a fine-scale abrasive wear mechanism, evolving to extensive plateau regions and highly polished surface condition (Ra<10nm). Such surface modification took place without any catastrophic features as cracking, grain pullouts or delamination of the coatings. A steady state volumetric wear rate of 0.02 mm(3)/Mc, equivalent to a linear wear of 0.27 μm/Mc favorably compares with the best performance reported in the literature for the fourth generation alumina ceramic (0.05 mm(3)/Mc). Also, squeaking, quite common phenomenon in hard-on-hard systems, was absent in the present all-NCD system.

  12. Is the risk and nature of CVD the same in type 1 and type 2 diabetes?

    PubMed

    Duca, Lindsey; Sippl, Rachel; Snell-Bergeon, Janet K

    2013-06-01

    The incidence of both type 1 and type 2 diabetes is increasing globally, most likely explained by environmental changes, such as changing exposures to foods, viruses, and toxins, and by increasing obesity. While cardiovascular disease (CVD) mortality has been declining recently, this global epidemic of diabetes threatens to stall this trend. CVD is the leading cause of death in both type 1 and type 2 diabetes, with at least a two- to fourfold increased risk in patients with diabetes. In this review, the risk factors for CVD are discussed in the context of type 1 and type 2 diabetes. While traditional risk factors such as dyslipidemia, hypertension, and obesity are greater in type 2 patients than in type 1 diabetes, they explain only about half of the increased CVD risk. The role for diabetes-specific risk factors, including hyperglycemia and kidney complications, is discussed in the context of new study findings. PMID:23519720

  13. Hand controller commonality evaluation process

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.

    1993-01-01

    Hand controller selection for NASA's Orbiter and Space Station Freedom is an important area of human-telerobot interface design and evaluation. These input devices will control remotely operated systems that include large crane-like manipulators (e.g., Remote Manipulator System or RMS), smaller, more dexterous manipulators (e.g., Flight Telerobotic Servicer or FTS), and free flyers (e.g., Orbital Maneuvering Vehicle or OMV). Candidate hand controller configurations for these systems vary in many ways: shape, size, number of degrees-of-freedom (DOF), operating modes, provision of force reflection, range of movement, and 'naturalness' of use. Unresolved design implementation issues remain, including such topics as how the current Orbiter RMS rotational and translational rate hand controllers compare with the proposed Space Station Freedom hand controllers, the advantages that position hand controllers offer for these applications, and whether separate hand controller configurations are required for each application. Since previous studies contain little empirical hand controller task performance data, a controlled study is needed that tests Space Station Freedom candidate hand controllers during representative tasks. This study also needs to include anthropometric and biomechanical considerations.

  14. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Miyake, Shojiro; Wu, Richard L. C.

    1998-01-01

    The main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) cubic MM /(N*m), respectively. Carbon- and nitrogen-ion-implanted, fine-grain, chemical-vapor-deposited (CVD) diamond and diamondlike carbon (DLC) ion beam deposited on fine-grain CVD diamond met the criteria regardless of environment (vacuum, nitrogen, and air).

  15. Simulation of a perfect CVD diamond Schottky diode steep forward current-voltage characteristic

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. A.

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current-voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  16. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).

  17. Tribological Characteristics and Applications of Superhard Coatings: CVD Diamond, DLC, and c-BN

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Wu, Richard L. C.

    1999-01-01

    Results of fundamental research on the tribological properties of chemical-vapor-deposited (CVD) diamond, diamondlike carbon, and cubic boron nitride films in sliding contact with CVD diamond in ultrahigh vacuum, dry nitrogen, humid air, and water are discussed. Furthermore, the actual and potential applications of the three different superhard coatings in the field of tribology technology, particularly for wear parts and tools, are reviewed.

  18. CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes

    NASA Astrophysics Data System (ADS)

    Ozaydin-Ince, Gozde; Coclite, Anna Maria; Gleason, Karen K.

    2012-01-01

    Polymers with their tunable functionalities offer the ability to rationally design micro- and nano-engineered materials. Their synthesis as thin films have significant advantages due to the reduced amounts of materials used, faster processing times and the ability to modify the surface while preserving the structural properties of the bulk. Furthermore, their low cost, ease of fabrication and the ability to be easily integrated into processing lines, make them attractive alternatives to their inorganic thin film counterparts. Chemical vapor deposition (CVD) as a polymer thin-film deposition technique offers a versatile platform for fabrication of a wide range of polymer thin films preserving all the functionalities. Solventless, vapor-phase deposition enable the integration of polymer thin films or nanostructures into micro- and nanodevices for improved performance. In this review, CVD of functional polymer thin films and the polymerization mechanisms are introduced. The properties of the polymer thin films that determine their behavior are discussed and their technological advances and applications are reviewed.

  19. Design of a compact ultrahigh vacuum-compatible setup for the analysis of chemical vapor deposition processes

    SciTech Connect

    Weiss, Theodor; Nowak, Martin; Zielasek, Volkmar Bäumer, Marcus; Mundloch, Udo; Kohse-Höinghaus, Katharina

    2014-10-15

    Optimizing thin film deposition techniques requires contamination-free transfer from the reactor into an ultrahigh vacuum (UHV) chamber for surface science analysis. A very compact, multifunctional Chemical Vapor Deposition (CVD) reactor for direct attachment to any typical UHV system for thin film analysis was designed and built. Besides compactness, fast, easy, and at the same time ultimately clean sample transfer between reactor and UHV was a major goal. It was achieved by a combination of sample manipulation parts, sample heater, and a shutter mechanism designed to fit all into a NW38 Conflat six-ways cross. The present reactor design is versatile to be employed for all commonly employed variants of CVD, including Atomic Layer Deposition. A demonstration of the functionality of the system is provided. First results of the setup (attached to an Omicron Multiprobe x-ray photoelectron spectroscopy system) on the temperature dependence of Pulsed Spray Evaporation-CVD of Ni films from Ni acetylacetonate as the precursor demonstrate the reactor performance and illustrate the importance of clean sample transfer without breaking vacuum in order to obtain unambiguous results on the quality of CVD-grown thin Ni films. The widely applicable design holds promise for future systematic studies of the fundamental processes during chemical vapor deposition or atomic layer deposition.

  20. Ion beam induced surface graphitization of CVD diamond for x-ray beam position monitor applications

    SciTech Connect

    Liu, Chian; Shu, D.; Kuzay, T.M.; Wen, L.; Melendres, C.A. |

    1996-12-31

    The Advanced Photon Source at ANL is a third-generation synchrotron facility that generates powerful x-ray beams on its undulator beamlines. It is important to know the position and angle of the x- ray beam during experiments. Due to very high heat flux levels, several patented x-ray beam position monitors (XBPM) exploiting chemical vapor deposition (CVD) diamond have been developed. These XBPMs have a thin layer of low-atomic-mass metallic coating so that photoemission from the x rays generate a minute but measurable current for position determination. Graphitization of the CVD diamond surface creates a very thin, intrinsic and conducting layer that can stand much higher temperatures and minimal x-ray transmission losses compared to the coated metallic layers. In this paper, a laboratory sputter ion source was used to transform selected surfaces of a CVD diamond substrate into graphite. The effect of 1-5 keV argon ion bombardment on CVD diamond surfaces at various target temperatures from 200 to 500 C was studied using Auger electron spectroscopy and in-situ electrical resistivity measurements. Graphitization after the ion bombardment has been confirmed and optimum conditions for graphitization studied. Raman spectroscopy was used to identify the overall diamond structure in the bulk of CVD diamond substrate after the ion bombardments. It was found that target temperature plays an important role in stability and electrical conductivity of the irradiated CVD diamonds.

  1. Defects in CVD Diamond Films from Their Response as Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Marinelli, Marco; Milani, Enrico; Tucciarone, Aldo; Rinati, Gianluca Verona

    CVD diamond films can be used to realize nuclear detectors with outstanding working capability in harsh environments. Since efficient particle detection requires high drift lengths of the carriers produced by the ionizing particle, the presence of defects severely limits the performance of these detectors. This is a major issue because the fabrication technology of CVD diamond is much less advanced than that of more conventional materials like silicon. The different kinds of defects in CVD diamond and their influence on the detector response are discussed. The connections between the microscopic structure of CVD diamond and the priming (or pumping) effect, which is widely used to increase CVD diamond detector performance, are elucidated. The analysis of the response of CVD diamond-based detectors is used to extract qualitative and quantitative information on the properties of defects limiting the free movement of charge carriers in the detector (e.g., carrier type for which the traps are active, activation energies, geometrical distribution in the film, etc.). Milani-begin

  2. Advanced Functional Thin Films Prepared by Plasma CVD

    NASA Astrophysics Data System (ADS)

    Takai, Osamu

    1998-10-01

    Recently water repellency has been required for many types of substrate (e.g. glass, plastics, fibers, ceramics and metals) in various industrial fields. This paper reports on the preparation of highly water-repellent thin films by plasma CVD (PCVD). We have prepared transparent water-repellent thin films at low substrate temperatures by two types of PCVD, rf PCVD and microwave PCVD, using fluoro-alkyl silanes (FASs) as source gases. Silicon oxide thin films contained fluoro-alkyl functions were deposited onto glass and plastics, and realized the excellent water repellency like polytetrafluoroetylene (PTFE) and the high transparency like glass. Increasing the deposition pressure we have formed ultra water-repellent (contact angle for a water drop of over about 150 degrees) thin films by microwave PCVD using a multiple gas mixture of tetramethylsilane (TMS), (heptadecafluoro-1,1,2,2-tetrahydro-decyl)-1-trimethoxysilane (FAS-17) and argon. Ultra water-repellency appears at higher total pressures over 40 Pa because the surface becomes rough due to the growth of large particles. The color of these ultra water-repellent films is slightly white because of the scattering of light by the large particles. Recently we have also deposited transparent ultra water-repellent thin films at low substrate temperatures by microwave PCVD using organosilicon compounds without fluorine as source gases. We evaluated water repellency, optical transmittance, surface morphology and chemical composition of the deposited films. At the suitable substrate position the deposited film gave the contact angle of about 150 degrees and the transmittance of over 80 visible region for a coated glass (thickness was about 1 micron). The control of the surface morphology of the deposited films is most important to obtain the transparent ultra water-repellent films.

  3. Deposition uniformity, particle nucleation and the optimum conditions for CVD in multi-wafer furnaces

    SciTech Connect

    Griffiths, S.K.; Nilson, R.H.

    1996-06-01

    A second-order perturbation solution describing the radial transport of a reactive species and concurrent deposition on wafer surfaces is derived for use in optimizing CVD process conditions. The result is applicable to a variety of deposition reactions and accounts for both diffusive and advective transport, as well as both ordinary and Knudsen diffusion. Based on the first-order approximation, the deposition rate is maximized subject to a constraint on the radial uniformity of the deposition rate. For a fixed reactant mole fraction, the optimum pressure and optimum temperature are obtained using the method of Lagrange multipliers. This yields a weak one-sided maximum; deposition rates fall as pressures are reduced but remain nearly constant at all pressures above the optimum value. The deposition rate is also maximized subject to dual constraints on the uniformity and particle nucleation rate. In this case, the optimum pressure, optimum temperature and optimum reactant fraction are similarly obtained, and the resulting maximum deposition rate is well defined. These results are also applicable to CVI processes used in composites manufacturing.

  4. Design of a CVD reactor for the deposition of diamond in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Languell, Michael L.; Davidson, J. L.; Strauss, A. M.

    1992-01-01

    There is a growing body of theoretical and experimental evidence suggesting that the uniformity, rate, adhesion, quality, and other key properties of Chemical Vapor Deposition (CVD) diamond coatings are influenced by the gas mixing kinetics in the thermal plasma environment of the reaction chamber. The implementation of, for example, Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) process in microgravity has, thus, been suggested. Such a diamond deposition system, which overcomes the limitations of present systems and which is distiguishable from them by the use of high pressure MPECVD and recirculation of the would be effluent hydrogen and carbon, is described. Given the key fact that there is nothing in the effluent of the MPECVD process that is truly a byproduct or 'waste', the system can, at least in principle, lend itself to being closed loop yet dynamic. The exhaust contains hydrogen and carbon species which can be recirculated to the plasma reactor, that is, since there are no unusable reaction byproducts, the effluent can be fed back to the reaction chamber with no detriment, thus allowing deployment in a microgravity environment.

  5. Continuous polyethylene pyrolysis for hybrid flame/CVD synthesis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Richardson, Nicholas Wilder

    2011-12-01

    A system was designed to integrate the continuous feeding of polyethylene for pyrolysis into the hybrid flame/CVD carbon nanotube (CNT) synthesis process previously developed in this laboratory. Following the completion of the stainless steel design and machining operations, the polyethylene dispenser, screw conveyor, pyrolysis chamber, venturi flame holder, particle filter, synthesis chamber and dual]zone heating system were successfully integrated for full operation. A water cooling unit was incorporated with the screw conveyor to ensure flawless delivery of polyethylene to the pyrolysis chamber, as well as a support system to suspend the CNT catalyst within the synthesis chamber. As with the previously developed process, the intended use of combustion effluent within the apparatus was to synthesize multi]walled CNTs using stainless steel wire mesh. This was facilitated by an extensive study of the effluent produced with this continuous feeding system at varying system settings and in comparison to the previous apparatus, followed by a determination of the system parameters, which result in conditions most favorable to multi walled CNT growth.

  6. Use of a remote plasma source for CVD chamber clean and exhaust gas abatement applications

    SciTech Connect

    Holber, W.; Chen, X.; Smith, D.; Besen, M.

    1999-07-01

    Remote plasma sources have traditionally been used in semiconductor processing applications such as dry removal of photoresist, where the capability of delivering a large flux of atomic oxygen into a semiconductor process chamber, with little of the associated plasma used to dissociate the oxygen, has made them attractive. With the development of fluorine-compatible remote plasma sources, a range of new application opportunities has opened up. In remote cleaning of CVD chambers, the remote plasma source is positioned before the process chamber, and a stream of atomic fluorine from the source is flowed into the chamber, where it can effectively clean a wide variety of materials such as SiO{sub 2}, Si{sub 3}N{sub 4}, and W. The cleaning process is purely chemical, with no associated in-situ plasma which can cause degradation of the process chamber. In exhaust gas abatement, the remote plasma source is located between the outlet of the etch or deposition process chamber and the mechanical pump. By adding appropriate gases, the exhaust stream from the chamber can be converted to form which can be managed more readily. Using a robust toroidal plasma source design, the ASTRON{trademark} remote plasma source has been used to address both of these areas. As an atomic fluorine source, over the typical operating range of 2--10 Torr several SLM of gases such as NF{sub 3} can be fully dissociated. As an exhaust gas abatement device, with operating pressure in the 0.1--1.0 Torr regime, abatement of perfluorocompounds (PFC's) at greater than 95% levels has been demonstrated. Using a variety of techniques--FTIR, RGA, and sample etching--the operation of this source technology and issues such as transport of atomic fluorine over substantial distances has been investigated.

  7. Making the Common Good Common

    ERIC Educational Resources Information Center

    Chase, Barbara

    2011-01-01

    How are independent schools to be useful to the wider world? Beyond their common commitment to educate their students for meaningful lives in service of the greater good, can they educate a broader constituency and, thus, share their resources and skills more broadly? Their answers to this question will be shaped by their independence. Any…

  8. Optimization of a Wcl6 CVD System to Coat UO2 Powder with Tungsten

    NASA Technical Reports Server (NTRS)

    Belancik, Grace A.; Barnes, Marvin W.; Mireles, Omar; Hickman, Robert

    2015-01-01

    In order to achieve deep space exploration via Nuclear Thermal Propulsion (NTP), Marshall Space Flight Center (MSFC) is developing W-UO2 CERMET fuel elements, with focus on fabrication, testing, and process optimization. A risk of fuel loss is present due to the CTE mismatch between tungsten and UO2 in the W-60vol%UO2 fuel element, leading to high thermal stresses. This fuel loss can be reduced by coating the spherical UO2 particles with tungsten via H2/WCl6 reduction in a fluidized bed CVD system. Since the latest incarnation of the inverted reactor was completed, various minor modifications to the system design were completed, including an inverted frit sublimer. In order to optimize the parameters to achieve the desired tungsten coating thickness, a number of trials using surrogate HfO2 powder were performed. The furnace temperature was varied between 930 C and 1000degC, and the sublimer temperature was varied between 140 C and 200 C. Each trial lasted 73-82 minutes, with one lasting 205 minutes. A total of 13 trials were performed over the course of three months, two of which were re-coatings of previous trials. The powder samples were weighed before and after coating to roughly determine mass gain, and Scanning Electron Microscope (SEM) data was also obtained. Initial mass results indicated that the rate of layer deposition was lower than desired in all of the trials. SEM confirmed that while a uniform coating was obtained, the average coating thickness was 9.1% of the goal. The two re-coating trials did increase the thickness of the tungsten layer, but only to an average 14.3% of the goal. Therefore, the number of CVD runs required to fully coat one batch of material with the current configuration is not feasible for high production rates. Therefore, the system will be modified to operate with a negative pressure environment. This will allow for better gas mixing and more efficient heating of the substrate material, yielding greater tungsten coating per trial.

  9. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    NASA Astrophysics Data System (ADS)

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-05-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 -3 g m -2 d -1 at 60℃ and 90% relative humidity could be observed.

  10. Wafer level package of Au-Ge system using a Ge chemical vapor deposition (CVD) thin film

    NASA Astrophysics Data System (ADS)

    Choi, Kyeong-Keun; Hosseini, Nazanin; Kee, Jong; Kim, Sung-Kyu; Park, Chan-Gyung

    2016-11-01

    A Ge thin film deposited by chemical vapor deposition (CVD) was used to obtain a uniform bonding between Au and Ge films for applications of wafer level packages (WLPs). This Ge CVD thin film showed selective growth on Au and Cu metals when the substrate has both metal and oxide. A one-step and two-step Ge deposition followed by eutectic bonding method was employed to bond the wafers. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy equipped with an energy dispersive spectroscopy (FESEM-EDS), atomic force microscopy, high resolution Field emission transmission electron microscopy, IR inspection tool and secondary ion mass spectroscopy (SIMS). According to the IR inspection results, the two-step Ge deposited sample showed more uniform film compared to one-step deposition after eutectic bonding. Moreover, an improved bonding quality was obtained from the two-step process. Based on FESEM observations, a uniform and crater-free interface was detected between the bonded 4-inch wafers, in which the presence of Ge beside Au and Si was confirmed by EDS. SIMS profiles proved the formation of a thin Au-Ge interlayer at the bonded interface, which enhanced the bonding conditions.

  11. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor.

    PubMed

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80â"ƒ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 (-3) gm (-2) d (-1) at 60â"ƒ and 90% relative humidity could be observed.

  12. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor

    PubMed Central

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80℃ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 −3 gm−2d−1 at 60℃ and 90% relative humidity could be observed. PMID:24936155

  13. Moisture barrier properties of thin organic-inorganic multilayers prepared by plasma-enhanced ALD and CVD in one reactor.

    PubMed

    Bülow, Tim; Gargouri, Hassan; Siebert, Mirko; Rudolph, Rolf; Johannes, Hans-Hermann; Kowalsky, Wolfgang

    2014-01-01

    A widely used application of the atomic layer deposition (ALD) and chemical vapour deposition (CVD) methods is the preparation of permeation barrier layers against water vapour. Especially in the field of organic electronics, these films are highly demanded as such devices are very sensitive to moisture and oxygen. In this work, multilayers of aluminium oxide (AlO x ) and plasma polymer (PP) were coated on polyethylene naphthalate substrates by plasma-enhanced ALD and plasma-enhanced CVD at 80â"ƒ in the same reactor, respectively. As precursor, trimethylaluminium was used together with oxygen radicals in order to prepare AlO x , and benzene served as precursor to deposit the PP. This hybrid structure allows the decoupling of defects between the single AlO x layers and extends the permeation path for water molecules towards the entire barrier film. Furthermore, the combination of two plasma techniques in a single reactor system enables short process times without vacuum breaks. Single aluminium oxide films by plasma-enhanced ALD were compared to thermally grown layers and showed a significantly better barrier performance. The water vapour transmission rate (WVTR) was determined by means of electrical calcium tests. For a multilayer with 3.5 dyads of 25-nm AlO x and 125-nm PP, a WVTR of 1.2 × 10 (-3) gm (-2) d (-1) at 60â"ƒ and 90% relative humidity could be observed. PMID:24936155

  14. Characterization of Ru thin films from a novel CVD/atomic layer deposition precursor “Rudense” for capping layer of Cu interconnects

    SciTech Connect

    Maniwa, Atsushi Chiba, Hirokazu; Kawano, Kazuhisa; Koiso, Naoyuki; Oike, Hiroyuki; Furukawa, Taishi; Tada, Ken-ichi

    2015-01-15

    The authors have succeeded in development of a novel Ru precursor, Ru(EtCp)(η{sup 5}-CH{sub 2}C(Me)CHC(Me)O) [Rudense], for CVD and atomic layer deposition (ALD) processes under nonoxidative condition. Rudense has sufficient vapor pressure and good thermal stability (decomposition temperature = ca. 230 °C). Ru thin films were grown on Pt, Ru, Si, and SiO{sub 2} substrates using Rudense and NH{sub 3} as Ru precursor and reactant, respectively. Rudense gave the conformal, low-impurity (<10{sup 21} atoms/cc), and low-resistivity (16 μΩ cm) Ru thin films. Moreover, Rudense showed substrate selectivity; therefore, Rudense will be a candidate for area-selective CVD and ALD precursor for Ru capping layers of Cu interconnects.

  15. Friction Properties of Polished Cvd Diamond Films Sliding against Different Metals

    NASA Astrophysics Data System (ADS)

    Lin, Zichao; Sun, Fanghong; Shen, Bin

    2016-11-01

    Owing to their excellent mechanical and tribological properties, like the well-known extreme hardness, low coefficient of friction and high chemical inertness, chemical vapor deposition (CVD) diamond films have found applications as a hard coating for drawing dies. The surface roughness of the diamond films is one of the most important attributes to the drawing dies. In this paper, the effects of different surface roughnesses on the friction properties of diamond films have been experimentally studied. Diamond films were fabricated using hot filament CVD. The WC-Co (Co 6wt.%) drawing dies were used as substrates. A gas mixture of acetone and hydrogen gas was used as the feedstock gas. The CVD diamond films were polished using mechanical polishing. Polished diamond films with three different surface roughnesses, as well as the unpolished diamond film, were fabricated in order to study the tribological performance between the CVD diamond films and different metals with oil lubrication. The unpolished and polished CVD diamond films are characterized with scanning electron microscope (SEM), atomic force microscope (AFM), surface profilometer, Raman spectrum and X-ray diffraction (XRD). The friction examinations were carried out by using a ball-on-plate type reciprocating friction tester. Low carbide steel, stainless steel, copper and aluminum materials were used as counterpart balls. Based on this study, the results presented the friction coefficients between the polished CVD films and different metals. The friction tests demonstrate that the smooth surface finish of CVD diamond films is beneficial for reducing their friction coefficients. The diamond films exhibit low friction coefficients when slid against the stainless steel balls and low carbide steel ball, lower than that slid against copper ball and aluminum ball, attributed to the higher ductility of copper and aluminum causing larger amount of wear debris adhering to the sliding interface and higher adhesive

  16. Synthesis and characterization of carbon-encapsulated magnetic nanoparticles via arc-plasma assisted CVD

    SciTech Connect

    Li, Z.T.; Hu, C.; Yu, C.; Qiu, J.S.

    2009-12-15

    Carbon-encapsulated magnetic nanoparticles (CEMNs) were fabricated on a large scale by arc-plasma assisted CVD in acetylene. The coal-derived metal-containing (Fe, Co and Ni) carbon rods were used as anodes, while a high-purity graphite rod was used as a cathode that remained unchanged during the arcing process. The CEMNs obtained were characterized by TEM, XRD, Raman spectroscopy, N{sub 2} adsorption isotherms and VSM. The diameter distribution of the obtained CEMNs varies from 10 to 70 nm, of which the metal cores are proximately 5-50 nm. The core phases in Fe ) nanoparticles are body-centered cubic Fe and orthorhombic Fe3C while Co ) nanoparticles and Ni ) nanoparticles show the characteristic of a face-centered cubic structure. The Fe ), Co ) and Ni ) nanoparticles with well-ordered graphitic shells have the surface area of 89 m{sup 2}/g, 72 m{sup 2}/g and 75 m{sup 2}/g, respectively. The CEMNs show ferromagnetic of which was characterized by a ratio of remnant magnetization (MR) to saturation magnetization (MS).

  17. New CVD-based method for the growth of high-quality crystalline zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Huber, Florian; Madel, Manfred; Reiser, Anton; Bauer, Sebastian; Thonke, Klaus

    2016-07-01

    High-quality zinc oxide (ZnO) layers were grown using a new chemical vapour deposition (CVD)-based low-cost growth method. The process is characterized by total simplicity, high growth rates, and cheap, less hazardous precursors. To produce elementary zinc vapour, methane (CH4) is used to reduce a ZnO powder. By re-oxidizing the zinc with pure oxygen, highly crystalline ZnO layers were grown on gallium nitride (GaN) layers and on sapphire substrates with an aluminum nitride (AlN) nucleation layer. Using simple CH4 as precursor has the big advantage of good controllability and the avoidance of highly toxic gases like nitrogen oxides. In photoluminescence (PL) measurements the samples show a strong near-band-edge emission and a sharp line width at 5 K. The good crystal quality has been confirmed in high resolution X-ray diffraction (HRXRD) measurements. This new growth method has great potential for industrial large-scale production of high-quality single crystal ZnO layers.

  18. Pulsed Laser CVD Investigations of Single-Wall Carbon Nanotube Growth Dynamics

    SciTech Connect

    Geohegan, David B; Liu, Zuqin; Styers-Barnett, David J; Puretzky, Alexander A; Rouleau, Christopher M; Yuan, Dongning; Ivanov, Ilia N; Xiao, Kai; Liu, Jie

    2008-01-01

    The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (> 0.5 ms) was implemented to rapidly heat (>30,000 C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of >0.10 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process, and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors.

  19. Thermal chemical vapor deposition (T-CVD) growth of carbon nanotubes on different metallic underlayers

    NASA Astrophysics Data System (ADS)

    Kim, S. M.; Gangloff, L.

    2011-06-01

    The synthesis of carbon nanotubes (CNTs) on various substrates by thermal chemical vapor deposition (T-CVD) (500-800 °C) is described. C 2H 2 (98% purity) is used as the carbon feedstock and the metallic underlayers, i.e., AlCu, Cu, Ag, Ta, and NiV are used. A crucial component is the insertion (or inclusion) of an Al layer between the metal and the catalyst, which then leads to the effective growth of CNTs. The types of CNTs (single or multi walled) could be dependent on the diameter of Al xO y nanoparticles that are formed during the annealing process. In situ mass spectroscopy reveals that the increase in CO 2 and H 2O with temperature, during the growth, could be correlated to the formation of longer CNTs (∼2 μm) on NiV and Ta due to their etching effects (i.e. C+CO 2→2CO and C+H 2O→CO+H 2).

  20. SY 04-1 CVD RISK PREDICTION IN HIGH-RISK VERSUS LOW-RISK POPULATIONS.

    PubMed

    Kim, Hyeon Chang

    2016-09-01

    Disease risk prediction models have been developed to assess the impact of multiple risk factors and to estimate an individual's absolute disease risk. Accurate disease prediction is essential for personalized prevention, because the benefits, risks, and costs of alternative strategies must be weighed to choose the best preventive strategy for individual patients. Cardiovascular disease (CVD) prediction is the earliest example of individual risk predictions. Since the Framingham study reported a CVD risk prediction method in 1976, an increasing number of risk assessment tools have been developed to CVD risk in various settings. The Framingham study results are fundamental evidence for the prediction of CVD risk. However, the clinical utility of a disease prediction model can be population-specific because the baseline disease risk, subtype distribution of the disease, and level of exposure to risk factors differ by region and ethnicity.It has been proved that CVD prediction models which were developed in high-risk populations, such as the Framingham Risk Score, overestimate an individual's disease risk when applied to a low-risk population without re-calibration. Thus countries of relatively low CVD risk are trying to re-calibrate the existing CVD prediction models or to develop a new prediction model analyzing their own population data. However, even the re-calibrated or newly-developed CVD prediction models are often of little clinical value in a low-risk population. A good example is the CVD prediction in the Korean population. Compared to Western populations, the Korean population has much lower incidence of coronary heart disease. Therefore, the vast majority of individuals fall into the low-risk group when their disease risk is assessed with a prediction model. Even a well-validated prediction model may not identify high-risk individuals who merit aggressive preventive treatment.A few alternative approaches have been suggested for CVD risk prediction in a low

  1. Movers and stayers: The geography of residential mobility and CVD hospitalisations in Auckland, New Zealand.

    PubMed

    Exeter, Daniel J; Sabel, Clive E; Hanham, Grant; Lee, Arier C; Wells, Susan

    2015-05-01

    The association between area-level disadvantage and health and social outcomes is unequivocal. However, less is known about the health impact of residential mobility, particularly at intra-urban scales. We used an encrypted National Health Index (eNHI) number to link individual-level data recorded in routine national health databases to construct a cohort of 641,532 participants aged 30+ years to investigate the association between moving and CVD hospitalisations in Auckland, New Zealand. Residential mobility was measured for participants according to changes in the census Meshblock of usual residence, obtained from the Primary Health Organisation (PHO) database for every calendar quarter between 1/1/2006 and 31/12/2012. The NZDep2006 area deprivation score at the start and end of a participant's inclusion in the study was used to measure deprivation mobility. We investigated the relative risk of movers being hospitalised for CVD relative to stayers using multi-variable binomial regression models, controlling for age, gender, deprivation and ethnicity. Considered together, movers were 1.22 (1.19-1.26) times more likely than stayers to be hospitalised for CVD. Using the 5×5 deprivation origin-destination matrix to model a patient's risk of CVD based on upward, downward or sideways deprivation mobility, movers within the least deprived (NZDep2006 Quintile 1) areas were 10% less likely than stayers to be hospitalised for CVD, while movers within the most deprived (NZDep2006 Q5) areas were 45% more likely than stayers to have had their first CVD hospitalisation in 2006-2012 (RR: 1.45 [1.35-1.55]). Participants who moved upward also had higher relative risks of having a CVD event, although their risk was less than those observed for participants experiencing downward deprivation mobility. This research suggests that residential mobility is an important determinant of CVD in Auckland. Further investigation is required to determine the impact moving has on the risk of

  2. A common mechanism for the enhancement of mRNA 3' processing by U3 sequences in two distantly related lentiviruses.

    PubMed

    Graveley, B R; Gilmartin, G M

    1996-03-01

    The protein coding regions of all retroviral pre-mRNAs are flanked by a direct repeat of R-U5 sequences. In many retroviruses, the R-U5 repeat contains a complete core poly(A) site-composed of a highly conserved AAUAAA hexamer and a GU-rich downstream element. A mechanism that allows for the bypass of the 5' core poly(A) site and the exclusive use of the 3' core poly(A) site must therefore exist. In human immunodeficiency virus type 1 (HIV-1), sequences within the U3 region appear to play a key role in poly(A) site selection. U3 sequences are required for efficient 3' processing at the HIV-1 poly(A) site both in vivo and in vitro. These sequences serve to promote the interaction of cleavage and polyadenylation specificity factor (CPSF) with the core poly(A) site. We have now demonstrated the presence of a functionally analogous 3' processing enhancer within the U3 region of a distantly related lentivirus, equine infectious anemia virus (EIAV). U3 sequences enhanced the processing of the EIAV core poly(A) site sevenfold in vitro. The U3 sequences also enhanced the stability of CPSF binding at the core poly(A) site. Optimal processing required the TAR RNA secondary structure that resides within the R region 28 nucleotides upstream of the AAUAAA hexamer. Disruption of TAR reduced processing, while compensatory changes that restored the RNA structure also restored processing to the wild-type level, suggesting a position dependence of the U3-encoded enhancer sequences. Finally, the reciprocal exchange of the EIAV and HIV U3 regions demonstrated the ability of each of these sequences to enhance both 3' processing and the binding of CPSF in the context of the heterologous core poly(A) site. The impact of U3 sequences upon the interaction of CPSF at the core poly(A) site may therefore represent a common strategy for retroviral poly(A) site selection. PMID:8627681

  3. Effect of irradiation with MeV protons and electrons on the conductivity compensation and photoluminescence of moderately doped p-4H-SiC (CVD)

    SciTech Connect

    Kozlovski, V. V.; Lebedev, A. A. Bogdanova, E. V.; Seredova, N. V.

    2015-09-15

    The compensation of moderately doped p-4H-SiC samples grown by the chemical vapor deposition (CVD) method under irradiation with 0.9-MeV electrons and 15-MeV protons is studied. The experimentally measured carrier removal rates are 1.2–1.6 cm{sup –1} for electrons and 240–260 cm{sup –1} for protons. The dependence of the concentration of uncompensated acceptors and donors, measured in the study, demonstrates a linear decrease with increasing irradiation dose to the point of complete compensation. This run of the dependence shows that compensation of the samples is due to the transition of carriers to deep centers formed by primary radiation-induced defects. It is demonstrated that, in contrast to n-SiC (CVD), primary defects in the carbon sublattice of moderately doped p-SiC (CVD) only cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice, or defects in both sublattices are responsible for conductivity compensation. Also, photoluminescence spectra are examined in relation to the irradiation dose.

  4. Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon

    NASA Astrophysics Data System (ADS)

    Boncel, Slawomir; Koziol, Krzysztof K. K.

    2014-05-01

    The effect of annealing on multi-walled carbon nanotube (MWCNT) arrays grown via catalytic Chemical Vapour Deposition (c-CVD) was studied. The treatment enabled to decrease number of defects/imperfections in the graphene walls of MWCNTs', which was reflected in Raman spectroscopy by reduction of the ID/IG ratio by 27%. Moreover, the vertical alignment from the as-synthesized nanotube arrays was found intact after annealing. Not only graphitization of the nanotube walls occurred under annealing, but the amount of metal iron-based catalyst residues (interfering with numerous physicochemical properties, and hence applications of MWCNTs) was reduced from 9.00 wt.% (for pristine MWCNTs) to 0.02 wt.% as detected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). This value, established by a new analytical protocol, is the lowest recorded by now for purified c-CVD MWCNTs and, due to operating under atmospheric pressure, medium temperature regime (as for annealing processes), reasonable time-scale and metal residue non-specificity, it could lay the foundation for commercial purification of c-CVD derived MWCNTs.

  5. Effects of the common cold on mood, psychomotor performance, the encoding of new information, speed of working memory and semantic processing.

    PubMed

    Smith, Andrew P

    2012-10-01

    Previous research has shown that people with the common cold report a more negative mood and psychomotor slowing. Recent research suggests that memory speed may also be impaired. This was examined in the study reported here. A prospective design was used and all participants (N=200; half male, half female; mean age 21 years, range 18-30 years) carried out a baseline session when healthy. The test battery involved mood rating, simple and choice reaction time, verbal reasoning and semantic processing. Volunteers returned when they developed an upper respiratory tract illness (URTI) and repeated the test battery. If they remained healthy they were recalled as a control. One hundred and eighty-nine participants completed the study and 48 developed URTIs and 141 were in the healthy control group. Symptoms and signs suggested that those who were ill had colds rather than influenza. The results showed that those with colds reported lower alertness, a more negative mood, and psychomotor slowing. They were also slower at encoding new information and slower on the verbal reasoning and semantic processing tasks. The magnitude of the mood changes associated with being ill were correlated with symptom severity. The performance changes were not correlated with symptom severity, sleep duration or mood changes. Further research is now needed to elucidate the underlying mechanisms of the behavioral malaise associated with URTIs.

  6. Onset conditions for gas phase reaction and nucleation in the CVD of transition metal oxides

    NASA Technical Reports Server (NTRS)

    Collins, J.; Rosner, D. E.; Castillo, J.

    1992-01-01

    A combined experimental/theoretical study is presented of the onset conditions for gas phase reaction and particle nucleation in hot substrate/cold gas CVD of transition metal oxides. Homogeneous reaction onset conditions are predicted using a simple high activation energy reacting gas film theory. Experimental tests of the basic theory are underway using an axisymmetric impinging jet CVD reactor. No vapor phase ignition has yet been observed in the TiCl4/O2 system under accessible operating conditions (below substrate temperature Tw = 1700 K). The goal of this research is to provide CVD reactor design and operation guidelines for achieving acceptable deposit microstructures at the maximum deposition rate while simultaneously avoiding homogeneous reaction/nucleation and diffusional limitations.

  7. A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Plechinger, G.; Mann, J.; Preciado, E.; Barroso, D.; Nguyen, A.; Eroms, J.; Schüller, C.; Bartels, L.; Korn, T.

    2014-06-01

    MoS2 is a highly interesting material, which exhibits a crossover from an indirect band gap in the bulk crystal to a direct gap for single layers. Here, we perform a direct comparison between large-area MoS2 films grown by chemical vapor deposition (CVD) and MoS2 flakes prepared by mechanical exfoliation from mineral bulk crystal. Raman spectroscopy measurements show differences between the in-plane and out-of-plane phonon mode positions in CVD-grown and exfoliated MoS2. Photoluminescence (PL) mapping reveals large regions in the CVD-grown films that emit strong PL at room-temperature, and low-temperature PL scans demonstrate a large spectral shift of the A exciton emission as a function of position. Polarization-resolved PL measurements under near-resonant excitation conditions show a strong circular polarization of the PL, corresponding to a valley polarization.

  8. Epitaxial thin film GaAs solar cells using OM-CVD techniques. [Organometallics

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Wang, K. L.; Yeh, Y. C. M.

    1981-01-01

    A new approach has been initiated at JPL to fabricate thin-film, high efficiency GaAs solar cells on low-cost, single-crystal Si substrates having a thin CVD interlayer of Ge to minimize the lattice and thermal expansion mismatch. For initial experiments, n(+)/p GaAs cells were grown by OM-CVD on single-crystal GaAs and Ge wafers. Details of the growths and performance results will be presented. Subsequently, a combined epitaxial structure of OM-CVD GaAs on a strongly adherent Ge interlayer on (100) Si was grown. This is the first report of the successful growth of this composite structure. Low module costs projected by JPL SAMICS methodology calculations and the potential for 400-600W/kg space solar arrays will be discussed.

  9. Effect of current stress during thermal CVD of multilayer graphene on cobalt catalytic layer

    NASA Astrophysics Data System (ADS)

    Ueno, Kazuyoshi; Ichikawa, Hiroyasu; Uchida, Takaki

    2016-04-01

    To improve the crystallinity of multilayer graphene (MLG) by CVD at a low temperature, the effect of current stress during thermal CVD on a cobalt (Co) catalytic layer was investigated. The crystallinity of MLG obtained by CVD with current was higher than that without current at the same temperature. This indicates that current has effects besides the Joule heating effect. The current effects on the Co catalytic layer and the MLG growth reaction were investigated, and it was found that current had small effects on the grain size and crystal structure of the Co catalyst and large effects on the MLG growth reaction such as large grain growth and a low activation energy of 0.49 eV, which is close to the value reported for carbon surface diffusion on Co. It is considered that the enhancement of MLG growth reaction by current leads to the improved crystallinity of MLG at a relatively low temperature.

  10. Metal infiltration into biomaterials by ALD and CVD: a comparative study.

    PubMed

    Lee, Seung-Mo; Pippel, Eckhard; Knez, Mato

    2011-03-14

    Atomic layer deposition (ALD) is a subset of chemical vapor deposition (CVD) and both use very similar chemistry. Recently, it has been reported that ALD has the potential to realize a new design paradigm of bioinorganic materials through metal infiltration, which in nature has been employed as a hardening strategy for many tissues in diverse biological organisms. Herein, using a spider dragline silk and a collagen membrane as targets, we have performed a comparative study to elucidate the difference of the metal infiltration effect by ALD and CVD. From the comparison of mechanical properties, concentration of the infiltrated metal, and structural changes induced by the infiltrated metal, it has been proven that the metal can effectively infiltrate biomaterials by ALD and the infiltrated metal leads to highly improved mechanical properties accompanied by substantial changes in the protein structures, whereas CVD is less effective.

  11. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool.

  12. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.

    PubMed

    Zheng, Chao; Huang, Le; Zhang, Hong; Sun, Zhongyue; Zhang, Zhiyong; Zhang, Guo-Jun

    2015-08-12

    Most graphene field-effect transistor (G-FET) biosensors are fabricated through a routine process, in which graphene is transferred onto a Si/SiO2 substrate and then devices are subsequently produced by micromanufacture processes. However, such a fabrication approach can introduce contamination onto the graphene surface during the lithographic process, resulting in interference for the subsequent biosensing. In this work, we have developed a novel directional transfer technique to fabricate G-FET biosensors based on chemical-vapor-deposition- (CVD-) grown single-layer graphene (SLG) and applied this biosensor for the sensitive detection of DNA. A FET device with six individual array sensors was first fabricated, and SLG obtained by the CVD-growth method was transferred onto the sensor surface in a directional manner. Afterward, peptide nucleic acid (PNA) was covalently immobilized on the graphene surface, and DNA detection was realized by applying specific target DNA to the PNA-functionalized G-FET biosensor. The developed G-FET biosensor was able to detect target DNA at concentrations as low as 10 fM, which is 1 order of magnitude lower than those reported in a previous work. In addition, the biosensor was capable of distinguishing the complementary DNA from one-base-mismatched DNA and noncomplementary DNA. The directional transfer technique for the fabrication of G-FET biosensors is simple, and the as-constructed G-FET DNA biosensor shows ultrasensitivity and high specificity, indicating its potential application in disease diagnostics as a point-of-care tool. PMID:26203889

  13. The Rationale and Design of the Pharmacist Intervention for Low Literacy in Cardiovascular Disease (PILL-CVD) Study

    PubMed Central

    Schnipper, Jeffrey L.; Roumie, Christianne L.; Cawthon, Courtney; Businger, Alexandra; Dalal, Anuj K.; Mugalla, Ileko; Eden, Svetlana; Jacobson, Terry A.; Rask, Kimberly J.; Vaccarino, Viola; Gandhi, Tejal K.; Bates, David W.; Johnson, Daniel C.; Labonville, Stephanie; Gregory, David; Kripalani, Sunil

    2010-01-01

    Background Medication errors and adverse drug events are common after hospital discharge, due to changes in medication regimens, suboptimal discharge instructions, and prolonged time to follow-up. Pharmacist-based interventions may be effective in promoting the safe and effective use of medications, especially among high risk patients such as those with low health literacy. Methods and Results The Pharmacist Intervention for Low Literacy in Cardiovascular Disease (PILL-CVD) study is a randomized controlled trial conducted at 2 academic centers – Vanderbilt University Hospital and Brigham and Women’s Hospital. Patients admitted with acute coronary syndrome or acute decompensated heart failure were randomized to usual care or intervention. The intervention consisted of pharmacist-assisted medication reconciliation, inpatient pharmacist counseling, low-literacy adherence aids, and tailored telephone follow-up after discharge. The primary outcome is the occurrence of serious medication errors in the first 30 days after hospital discharge. Secondary outcomes are health care utilization, disease-specific quality of life, and cost effectiveness. Enrollment was completed September 2009. A total of 862 patients were enrolled, and 430 patients were randomized to receive the intervention. Analyses will determine whether the intervention was effective in reducing serious medication errors, particularly in patients with low health literacy. Conclusions The PILL-CVD study was designed to reduce serious medication errors after hospitalization through a pharmacist-based intervention. The intervention, if effective, will inform health care facilities on the use of pharmacist-assisted medication reconciliation, inpatient counseling, low-literacy adherence aids, and patient follow-up after discharge. Clinical Trial Registration http://clinicaltrials.gov/ct2/show/NCT00632021, NCT00632021 PMID:20233982

  14. Dietary flavonoid intakes and CVD incidence in the Framingham Offspring Cohort.

    PubMed

    Jacques, Paul F; Cassidy, Aedin; Rogers, Gail; Peterson, Julia J; Dwyer, Johanna T

    2015-11-14

    This study examines the relationship between long-term intake of six flavonoid classes and incidence of CVD and CHD, using a comprehensive flavonoid database and repeated measures of intake, while accounting for possible confounding by components of a healthy dietary pattern. Flavonoid intakes were assessed using a FFQ among the Framingham Offspring Cohort at baseline and three times during follow-up. Cox proportional hazards regression was used to characterise prospective associations between the natural logarithms of flavonoid intakes and CVD incidence using a time-dependent approach, in which intake data were updated at each examination to represent average intakes from previous examinations. Mean baseline age was 54 years, and 45 % of the population was male. Over an average 14·9 years of follow-up among 2880 participants, there were 518 CVD events and 261 CHD events. After multivariable adjustment, only flavonol intake was significantly associated with lower risk of CVD incidence (hazard ratios (HR) per 2·5-fold flavonol increase=0·86, P trend=0·05). Additional adjustment for total fruit and vegetable intake and overall diet quality attenuated this observation (HR=0·89, P trend=0·20 and HR=0·92, P trend=0·33, respectively). There were no significant associations between flavonoids and CHD incidence after multivariable adjustment. Our findings suggest that the observed association between flavonol intake and CVD risk may be a consequence of better overall diet. However, the strength of this non-significant association was also consistent with relative risks observed in previous meta-analyses, and therefore a modest benefit of flavonol intake on CVD risk cannot be ruled out.

  15. System for the growth of bulk SiC crystals by modified CVD techniques

    NASA Technical Reports Server (NTRS)

    Steckl, Andrew J.

    1994-01-01

    The goal of this program was the development of a SiC CVD growth of films thick enough to be useful as pseudo-substrates. The cold-walled CVD system was designed, assembled, and tested. Extrapolating from preliminary evaluation of SiC films grown in the system at relatively low temperatures indicates that the growth rate at the final temperatures will be high enough to make our approach practical. Modifications of the system to allow high temperature growth and cleaner growth conditions are in progress. This program was jointly funded by Wright Laboratory, Materials Directorate and NASA LeRC and monitored by NASA.

  16. AB006. Erectile dysfunction (ED) as a marker for cardiovascular diseases (CVD)

    PubMed Central

    Torres, Luiz Otavio

    2015-01-01

    In 1973 V. Michal, a vascular surgeon said “Erectile dysfunction (ED) is related to diseases of the vascular bed”. And this makes sense since ED and cardiovascular diseases (CVD) share many risk factors like aging, obesity, inactivity, smoking, depression, dyslipidemia, hypertension, diabetes/insuline resistance. These conditions may lead to an oxidative stress which ultimately can promote vasoconstriction, thrombosis, atherosclerosis and finally ED and CVD. One of the most accepted Idea is that small vessels plug earlier, it means, small arteries when have for example 50% of obstruction will probably have a clinical manifestation before bigger arteries!

  17. A numerical and experimental analysis of reactor performance and deposition rates for CVD on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M.; Veitch, L.; Tsui, P.; Chait, A.

    1990-01-01

    The computational fluid dynamics (CFD) code FLUENT is adopted to simulate a cylindrical upflow reactor designed for chemical vapor deposition (CVD) on monofilaments. Equilibrium temperature profiles along the fiber and quartz reactor wall are experimentally measured and used as boundary conditions in numerical simulations. Two-dimensional axisymmetric flow and temperature fields are calculated for hydrogen and argon; the effect of free convection is assessed. The gas and surface chemistry is included for predicting silicon deposition from silane. The model predictions are compared with experimentally measured silicon CVD rates. Inferences are made for optimum conditions to obtain uniformity.

  18. Hot-Wire CVD Amorphous Si Materials for Solar Cell Application

    SciTech Connect

    Wang, Q.

    2009-01-01

    Hydrogenated amorphous silicon (a-Si:H) thin films and their application to solar cells fabricated using the hot-wire chemical vapor deposition (HWCVD) or (CAT)-CVD will be reviewed. This review will focus on the comparison to the standard plasma enhance (PE) CVD in the terms of deposition technique, film properties, and solar cell performance. The advantages of using HWCVD for a-Si:H solar cell research as well as the criteria for industry's adaptation of this technique for mass production will be addressed.

  19. Direct growth of macroscopic fibers composed of large diameter SWNTs by CVD

    NASA Astrophysics Data System (ADS)

    Yang, Q. H.; Bai, S.; Fournier, T.; Li, F.; Wang, G.; Cheng, H. M.; Bai, J. B.

    2003-03-01

    Macroscopic nanotube fibers, composed of aligned large diameter single-walled carbon nanotubes (SWNTs), were prepared by a simple CVD method. These fibers, which constitute the nanotube ropes of loose structure like hemp cords, can be divided into the nanotube threads (mesoscopically) and subdivided into nanotube bundles (microscopically). The samples show good alignment at different scales. The fibers, several micrometers in diameter, have a relatively stable structure and only dissociated partially under ultrasonic dispersion. The obtained SWNTs have good crystalline structure and good purity. The influence of the CVD conditions on the fiber morphology was also investigated.

  20. [A case of malignant pheochromocytoma treated with 131I-metaiodobenzylguanidine and CVD regimen].

    PubMed

    Ukimura, O; Kojima, M; Hosoi, S; Itoh, H; Watanabe, H; Minamikawa, T

    1994-05-01

    A 44-year-old male had multiple metastasis to the lung, liver, kidney and paraaortic lymph node from primary adrenal malignant pheochromocytoma. Radiation therapy with 131I-metaiodobenzylguanidine (131I-MIBG), was first performed, which was followed by chemotherapy with cyclophosphamide, vincristine and dacarbazine (CVD). A total amount of 4810 MBq of 131I-MIBG was administered then 7 cycles of CVD regimen were added. He was survived for sixteen months with tumor response in primary tumor, paraaortic lymph node and liver metastasis tumors, in addition to hormonal response. It was considered that the survival was prolonged in spite of advanced case with inoperative primary tumor.

  1. A reaction mechanism for titanium nitride CVD from TiCl{sub 4} and NH{sub 3}

    SciTech Connect

    Larson, R.S.; Allendorf, M.D.

    1995-12-01

    A gas-phase and surface reaction mechanism for the CVD of TiN from TiCl{sub 4} and NH{sub 3} is proposed. The only gas-phase process is complex formation, which can compete with deposition. The surface mechanism postulates the stepwise elimination of Cl and H atoms from TiCl{sub 4} and NH{sub 3}, respectively, to form solid TiN and gaseous HCl. The mechanism also accounts for the change in oxidation state of Ti by allowing for liberation of N{sub 2}. Provided that the surface composition is at steady state, the stoichiometry of the overall reaction is reproduced exactly. In addition, the global kinetic law predicted by the mechanism is successfully fit to new deposition data from a rotating disk reactor and is shown to be consistent with literature results.

  2. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Huang, Yun; Deng, Hui-Xiong; Xu, Kai; Wang, Zhen-Xing; Wang, Qi-Sheng; Wang, Feng-Mei; Wang, Feng; Zhan, Xue-Ying; Li, Shu-Shen; Luo, Jun-Wei; He, Jun

    2015-08-01

    A facile and fruitful CVD method is reported for the first time, to synthesize high-quality hexagonal SnS2 nanosheets on carbon cloth via in situ sulfurization of SnO2. Moreover, highly sensitive phototransistors based on SnS2 with an on/off ratio surpassing 106 under ambient conditions and a rising time as short as 22 ms under vacuum are fabricated, which are superior than most phototransistors based on LMDs. Electrical transport measurements at varied temperatures together with theoretical calculations verify that sulfur vacancies generated by the growth process would induce a defect level near the bottom of the conduction band, which significantly affects the performance of the SnS2 device. These findings may open up a new pathway for the synthesis of LMDs, shed light on the effects of defects on devices and expand the building blocks for high performance optoelectronic devices.A facile and fruitful CVD method is reported for the first time, to synthesize high-quality hexagonal SnS2 nanosheets on carbon cloth via in situ sulfurization of SnO2. Moreover, highly sensitive phototransistors based on SnS2 with an on/off ratio surpassing 106 under ambient conditions and a rising time as short as 22 ms under vacuum are fabricated, which are superior than most phototransistors based on LMDs. Electrical transport measurements at varied temperatures together with theoretical calculations verify that sulfur vacancies generated by the growth process would induce a defect level near the bottom of the conduction band, which significantly affects the performance of the SnS2 device. These findings may open up a new pathway for the synthesis of LMDs, shed light on the effects of defects on devices and expand the building blocks for high performance optoelectronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04174k

  3. The role of NH3 and hydrocarbon mixtures in GaN pseudo-halide CVD: a quantum chemical study.

    PubMed

    Gadzhiev, Oleg B; Sennikov, Peter G; Petrov, Alexander I; Kachel, Krzysztof; Golka, Sebastian; Gogova, Daniela; Siche, Dietmar

    2014-11-01

    The prospects of a control for a novel gallium nitride pseudo-halide vapor phase epitaxy (PHVPE) with HCN were thoroughly analyzed for hydrocarbons-NH3-Ga gas phase on the basis of quantum chemical investigation with DFT (B3LYP, B3LYP with D3 empirical correction on dispersion interaction) and ab-initio (CASSCF, coupled clusters, and multireference configuration interaction including MRCI+Q) methods. The computational screening of reactions for different hydrocarbons (CH4, C2H6, C3H8, C2H4, and C2H2) as readily available carbon precursors for HCN formation, potential chemical transport agents, and for controlled carbon doping of deposited GaN was carried out with the B3LYP method in conjunction with basis sets up to aug-cc-pVTZ. The gas phase intermediates for the reactions in the Ga-hydrocarbon systems were predicted at different theory levels. The located π-complexes Ga…C2H2 and Ga…C2H4 were studied to determine a probable catalytic activity in reactions with NH3. A limited influence of the carbon-containing atmosphere was exhibited for the carbon doping of GaN crystal in the conventional GaN chemical vapor deposition (CVD) process with hydrocarbons injected in the gas phase. Our results provide a basis for experimental studies of GaN crystal growth with C2H4 and C2H2 as auxiliary carbon reagents for the Ga-NH3 and Ga-C-NH3 CVD systems and prerequisites for reactor design to enhance and control the PHVPE process through the HCN synthesis.

  4. Two CRISPR-Cas systems inMethanosarcina mazeistrain Gö1 display common processing features despite belonging to different types I and III

    PubMed Central

    Nickel, Lisa; Weidenbach, Katrin; Jäger, Dominik; Backofen, Rolf; Lange, Sita J.; Heidrich, Nadja; Schmitz, Ruth A.

    2013-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system represents a highly adaptive and heritable defense system against foreign nucleic acids in bacteria and archaea. We analyzed the two CRISPR-Cas systems in Methanosarcina mazei strain Gö1. Although belonging to different subtypes (I-B and III-B), the leaders and repeats of both loci are nearly identical. Also, despite many point mutations in each array, a common hairpin motif was identified in the repeats by a bioinformatics analysis and in vitro structural probing. The expression and maturation of CRISPR-derived RNAs (crRNAs) were studied in vitro and in vivo. Both respective potential Cas6b-type endonucleases were purified and their activity tested in vitro. Each protein showed significant activity and could cleave both repeats at the same processing site. Cas6b of subtype III-B, however, was significantly more efficient in its cleavage activity compared with Cas6b of subtype I-B. Northern blot and differential RNAseq analyses were performed to investigate in vivo transcription and maturation of crRNAs, revealing generally very low expression of both systems, whereas significant induction at high NaCl concentrations was observed. crRNAs derived proximal to the leader were generally more abundant than distal ones and in vivo processing sites were clarified for both loci, confirming the previously well-established 8 nt 5′ repeat tags. The 3′-ends were more diverse, but generally ended in a prefix of the following repeat sequence (3′-tag). The analysis further revealed a 5′-hydroxy and 3′-phosphate termini architecture of small crRNAs specific for cleavage products of Cas6 endonucleases from type I-E and I-F and type III-B. PMID:23619576

  5. Two CRISPR-Cas systems in Methanosarcina mazei strain Gö1 display common processing features despite belonging to different types I and III.

    PubMed

    Nickel, Lisa; Weidenbach, Katrin; Jäger, Dominik; Backofen, Rolf; Lange, Sita J; Heidrich, Nadja; Schmitz, Ruth A

    2013-05-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system represents a highly adaptive and heritable defense system against foreign nucleic acids in bacteria and archaea. We analyzed the two CRISPR-Cas systems in Methanosarcina mazei strain Gö1. Although belonging to different subtypes (I-B and III-B), the leaders and repeats of both loci are nearly identical. Also, despite many point mutations in each array, a common hairpin motif was identified in the repeats by a bioinformatics analysis and in vitro structural probing. The expression and maturation of CRISPR-derived RNAs (crRNAs) were studied in vitro and in vivo. Both respective potential Cas6b-type endonucleases were purified and their activity tested in vitro. Each protein showed significant activity and could cleave both repeats at the same processing site. Cas6b of subtype III-B, however, was significantly more efficient in its cleavage activity compared with Cas6b of subtype I-B. Northern blot and differential RNAseq analyses were performed to investigate in vivo transcription and maturation of crRNAs, revealing generally very low expression of both systems, whereas significant induction at high NaCl concentrations was observed. crRNAs derived proximal to the leader were generally more abundant than distal ones and in vivo processing sites were clarified for both loci, confirming the previously well-established 8 nt 5' repeat tags. The 3'-ends were more diverse, but generally ended in a prefix of the following repeat sequence (3'-tag). The analysis further revealed a 5'-hydroxy and 3'-phosphate termini architecture of small crRNAs specific for cleavage products of Cas6 endonucleases from type I-E and I-F and type III-B. PMID:23619576

  6. Effect of steaming, blanching, and high temperature/high pressure processing on the amino Acid contents of commonly consumed korean vegetables and pulses.

    PubMed

    Kim, Su-Yeon; Kim, Bo-Min; Kim, Jung-Bong; Shanmugavelan, Poovan; Kim, Heon-Woong; Kim, So-Young; Kim, Se-Na; Cho, Young-Sook; Choi, Han-Seok; Park, Ki-Moon

    2014-09-01

    In the present report, the effects of blanching, steaming, and high temperature/high pressure processing (HTHP) on the amino acid contents of commonly consumed Korean root vegetables, leaf vegetables, and pulses were evaluated using an Automatic Amino Acid Analyzer. The total amino acid content of the samples tested was between 3.38 g/100 g dry weight (DW) and 21.32 g/100 g DW in raw vegetables and between 29.36 g/100 g DW and 30.55 g/100 g DW in raw pulses. With HTHP, we observed significant decreases in the lysine and arginine contents of vegetables and the lysine, arginine, and cysteine contents of pulses. Moreover, the amino acid contents of blanched vegetables and steamed pulses were more similar than the amino acid contents of the HTHP vegetables and HTHP pulses. Interestingly, lysine, arginine, and cysteine were more sensitive to HTHP than the other amino acids. Partial Least Squares-Discriminate Analyses were also performed to discriminate the clusters and patterns of amino acids.

  7. Contact barrier application of selective CVD-tungsten in a bipolar device

    NASA Astrophysics Data System (ADS)

    Körner, H.; Bertagnolli, E.; Maier, I.

    1989-09-01

    A selective CVD-tungsten (SCVD-W) contact barrier of 200 nm thickness, deposited via hydrogen reduction of WF 6, has been integrated in a bipolar polysilicon self-aligned transistor instead of the proven PtSi/TiW barrier. In order to restrict the silicon consumption at the highly doped polysilicon electrodes as much as possible, a temperature-ramped deposition process has been evaluated which uses a thin tungsten layer, created at 25°C via silicon reduction, as in situ barrier for the further deposition. The integrity of the tungsten diffusion barrier in the poly Si/SCVD-W/AlSiCu metallization has been tested after different postannealing cycles at 450°C. SEM and TEM investigations reveal a relatively smooth tungsten/silicon interface with ≤ 30 nm vertical Si consumption. No clear evidence of wormhole formation could be detected. The input and transfer characteristics of the transistor employing the SCVD-W barrier show an almost ideal performance, evidencing the absence of any degradation effect. The forward current gain is found to be constant over nearly six decades of collector current variation. The emitter-base diode breakdown occurs at a reverse voltage of 6.5 V, which is in close agreement with the best values for the reference metallization. In addition, low contact resistances ( R c( n+)=0.78 Ω ; R c( p+)=3.85 Ω) to the highly doped 8 × 2 Ωm 2 poly-Si contacts are reported which are stable even after a 60 min post-annealing treatment.

  8. Evaluating electrically insulating films deposited on V-4% Cr-4% Ti by reactive CVD

    SciTech Connect

    Park, J.H.; Cho, W.D.

    1997-04-01

    Previous CaO coatings on V-4%Cr-4%Ti exhibited high-ohmic insulator behavior even though a small amount of vanadium from the alloy was incorporated in the coating. However, when the vanadium concentration in the coatings is > 15 wt%, the coating becomes conductive. When the vanadium concentration is high in localized areas, a calcium vanadate phase that exhibits semiconductor behavior can form. To explore this situation, CaO and Ca-V-O coatings were produced on vanadium alloys by chemical vapor deposition (CVD) and by a metallic-vapor process to investigate the electrical resistance of the coatings. Initially, the vanadium alloy specimens were either charged with oxygen in argon that contained trace levels of oxygen, or oxidized for 1.5-3 h in a 1% CO-CO{sub 2} gas mixture or in air to form vanadium oxide at 625-650{degrees}C. Most of the specimens were exposed to calcium vapor at 800-850{degrees}C. Initial and final weights were obtained to monitor each step, and surveillance samples were removed for examination by optical and scanning electron microscopy and electron-energy-dispersive and X-ray diffraction analysis; the electrical resistivity was also measured. The authors found that Ca-V-O films exhibited insulator behavior when the ratio of calcium concentration to vanadium concentration R in the film was > 0.9, and semiconductor or conductor behavior for R < 0.8. However, in some cases, semiconductor behavior was observed when CaO-coated samples with R > 0.98 were exposed in liquid lithium. Based on these studies, the authors conclude that semiconductor behavior occurs if a conductive calcium vanadate phase is present in localized regions in the CaO coating.

  9. Highly Crystalline CVD-grown Multilayer MoSe2 Thin Film Transistor for Fast Photodetector

    PubMed Central

    Jung, Chulseung; Kim, Seung Min; Moon, Hyunseong; Han, Gyuchull; Kwon, Junyeon; Hong, Young Ki; Omkaram, Inturu; Yoon, Youngki; Kim, Sunkook; Park, Jozeph

    2015-01-01

    Hexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min. Our MoSe2 TFT with a reasonably high field-effect mobility (10 cm2/V · s) exhibits a high photoresponsivity (93.7 A/W) and a fast photoresponse time (τrise ~ 0.4 s) under the illumination of light, which demonstrates the practical feasibility of multilayer MoSe2 TFTs for photodetector applications. PMID:26477744

  10. Evidence for CVD 103-HgR as an effective single-dose oral cholera vaccine.

    PubMed

    Jackson, Sarah S; Chen, Wilbur H

    2015-01-01

    We propose the ideal oral cholera vaccine (OCV) should be an inexpensive, single, oral dose that rapidly confers immunity for a long duration, and is well tolerated by individuals vulnerable to cholera. Vaccine trials in industrialized countries of a single oral dose of 5 × 10(8) colony forming units (CFU) of the live, attenuated cholera strain CVD 103-HgR have shown 88-97% serum vibriocidal antibody seroconversion rates, a correlate of protection and documented vaccine efficacy of ≥80% using volunteer challenge studies with wild-type cholera. For individuals of developing countries, a 5 × 10(9) CFU dose of CVD 103-HgR is necessary to elicit similar antibody responses. Presently, a reformulation of CVD 103-HgR is in late-stage clinical development for prospective US FDA licensure; making a cholera vaccine for US travelers potentially accessible in 2016. The availability of CVD 103-HgR should be a welcome addition to the currently available OCVs.

  11. Evidence for CVD 103-HgR as an effective single-dose oral cholera vaccine.

    PubMed

    Jackson, Sarah S; Chen, Wilbur H

    2015-01-01

    We propose the ideal oral cholera vaccine (OCV) should be an inexpensive, single, oral dose that rapidly confers immunity for a long duration, and is well tolerated by individuals vulnerable to cholera. Vaccine trials in industrialized countries of a single oral dose of 5 × 10(8) colony forming units (CFU) of the live, attenuated cholera strain CVD 103-HgR have shown 88-97% serum vibriocidal antibody seroconversion rates, a correlate of protection and documented vaccine efficacy of ≥80% using volunteer challenge studies with wild-type cholera. For individuals of developing countries, a 5 × 10(9) CFU dose of CVD 103-HgR is necessary to elicit similar antibody responses. Presently, a reformulation of CVD 103-HgR is in late-stage clinical development for prospective US FDA licensure; making a cholera vaccine for US travelers potentially accessible in 2016. The availability of CVD 103-HgR should be a welcome addition to the currently available OCVs. PMID:26228388

  12. CVD of SiC and AlN using cyclic organometallic precursors

    NASA Technical Reports Server (NTRS)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  13. Control of Reaction Surface in Low Temperature CVD to Enhance Nucleation and Conformal Coverage

    ERIC Educational Resources Information Center

    Kumar, Navneet

    2009-01-01

    The Holy Grail in CVD community is to find precursors that can afford the following: good nucleation on a desired substrate and conformal deposition in high AR features. Good nucleation is not only necessary for getting ultra-thin films at low thicknesses; it also offers films that are smooth at higher thickness values. On the other hand,…

  14. Economic efficiency of primary care for CVD prevention and treatment in Eastern European countries

    PubMed Central

    2013-01-01

    Background Cardiovascular disease (CVD) is the main cause of morbidity and mortality worldwide, but it also is highly preventable. The prevention rate mainly depends on the patients’ readiness to follow recommendations and the state’s capacity to support patients. Our study aims to show that proper primary care can decrease the CVD-related morbidity rate and increase the economic efficiency of the healthcare system. Since their admission to the European Union (EU), the Eastern European countries have been in a quest to achieve the Western European standards of living. As a representative Eastern European country, Romania implemented the same strategies as the rest of Eastern Europe, reflected in the health status and lifestyle of its inhabitants. Thus, a valid health policy implemented in Romania should be valid for the rest of the Eastern European countries. Methods Based on the data collected during the EUROASPIRE III Romania Follow Up study, the potential costs of healthcare were estimated for various cases over a 10-year time period. The total costs were split into patient-supported costs and state-supported costs. The state-supported costs were used to deduce the rate of patients with severe CVD that can be treated yearly. A statistical model for the evolution of this rate was computed based on the readiness of the patients to comply with proper primary care treatment. Results We demonstrate that for patients ignoring the risks, a severe CVD has disadvantageous economic consequences, leading to increased healthcare expenses and even poverty. In contrast, performing appropriate prevention activities result in a decrease of the expenses allocated to a (eventual) CVD. In the long-term, the number of patients with severe CVD that can be treated increases as the number of patients receiving proper primary care increases. Conclusions Proper primary care can not only decrease the risk of major CVD but also decrease the healthcare costs and increase the number of

  15. Challenges and Opportunities for the implementation of interventions to prevent and control CVD in low resource settings in Argentina

    PubMed Central

    Rubinstein, Adolfo; Irazola, Vilma E.; Poggio, Rosana; Gulayin, Pablo; Nejamis, Analía; Beratarrechea, Andrea

    2015-01-01

    In Argentina, Cardiovascular diseases are estimated to cause about 100,000 deaths and more than 250,000 coronary heart disease and stroke events annually, at a cost of more than one billion international dollars. Despite progress in the implementation of several programs to combat non-communicable diseases in Argentina over the last years, most health resources are still dedicated to infectious disease and maternal and child health. The Institute for Clinical Effectiveness and Health Policy, an independent academic institution affiliated to the University of Buenos Aires medical school, runs CESCAS (South American Centre of Excellence in Cardiovascular Health), a center devoted to epidemiological, implementation and policy research. At CESCAS there are three ongoing randomized clinical trials focused on implementation science: 1) A Mobile health intervention to prevent progression of pre-hypertension in poor urban settings in Argentina, Guatemala and Peru; 2) A Comprehensive Approach for Hypertension Prevention and Control in low-resource settings in Argentina; and 3) An Educational Approach to Improve Physician Effectiveness in the Detection, Treatment and Control for patients with Hypercholesterolemia and high Cardiovascular Disease (CVD) risk in low-resource settings in Argentina. All these studies involve the design and implementation of complex interventions to change behaviors of providers and patients. The rationale of each of the three studies, the design of the interventions and the evaluation of processes and outcomes are described in this article together with the barriers and enabling factors associated with implementation research studies. There is a strong need in Argentina and the region at large to build the health research capacity and infrastructure necessary to undertake implementation studies to translate evidence from research findings into improvements in health policy and practice to address CVD and their risk factors. PMID:25754563

  16. The Effect of Annealing at 1500 C on Migration and Release of Ion Implanted Silver in CVD Silicon Carbide

    SciTech Connect

    HJ MacLean; RG Ballinger; LE Kolaya; SA Simonson; N Lewis; M Hanson

    2004-10-07

    The transport of silver in CVD {beta}-SiC has been studied using ion implantation. Silver ions were implanted in {beta}-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations at depths of approximately 9 and 13 {micro}m, respectively. As-implanted samples were then annealed at 1500 C for 210 or 480 hours. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intragrannular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The irradiation damage from the implantation process resulted in a three-layer morphology in the as-implanted condition: (1) a layer of unaltered SiC, followed by (2) a layer of crystallized SiC, followed by (3) an amorphized layer which contained essentially all of the implanted silver. After annealing the layer structure changed. Layer 1 was unaltered. The grains in layer 2 recrystallized to form an epitaxial (columnar) layer. Layer 3 recrystallized to form a fine grain equiaxed layer. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion.

  17. New light on the evolutionary history of the common goby (Pomatoschistus microps) with an emphasis on colonization processes in the Mediterranean Sea.

    PubMed

    Tougard, Christelle; Folly, Joy; Berrebi, Patrick

    2014-01-01

    Through the study of the phylogeographic structure and demographic history of the common goby, Pomatoschistus microps, the influence of Quaternary climatic changes on the evolutionary history of coastal and marine fishes is investigated. Because of its sedentary life cycle in Mediterranean lagoons, it is also a good model to study more specifically if the formation of lagoons during the Holocene had an impact on population structure and demography. Mitochondrial sequences of Northeastern Atlantic and Western Mediterranean specimens were used for phylogenetic reconstructions as well as divergence time estimates, demographic history and population structure analyses. Pomatoschistus microps was a highly supported monophyletic clade including four lineages. It may have appeared 77,000 yr ago, and the divergence of its lineages likely occured shortly thereafter (between 61,000 and 54,000 yr). Most lineages had polytomic topologies, low nucleotide diversity and demographic analyses providing evidence of population expansion. Each lineage was characterized by a large number of private haplotypes. Most haplotypes found in Mediterranean localities were endemic, and one was dominant. Complex reticulated relationships connecting North European, Atlantic and Mediterranean haplotypes were observed. Moderate to high population structure was underlined. Contrary to previous published studies, no significant differentiation was observed between Atlantic and Mediterranean populations, indicating that the Gibraltar Strait is not a phylogeographic break for P. microps. Indeed, molecular dating combined with the tree topologies, phylogeographic and demographic analyses as well as high haplotype diversity underline a recent and rapid population divergence during the last glacial. However, population structure indicates that differentiation is an ongoing process. From an ancestral population trapped in the Atlantic, this goby colonized first northern Europe and later the Mediterranean

  18. New Light on the Evolutionary History of the Common Goby (Pomatoschistus microps) with an Emphasis on Colonization Processes in the Mediterranean Sea

    PubMed Central

    Tougard, Christelle; Folly, Joy; Berrebi, Patrick

    2014-01-01

    Through the study of the phylogeographic structure and demographic history of the common goby, Pomatoschistus microps, the influence of Quaternary climatic changes on the evolutionary history of coastal and marine fishes is investigated. Because of its sedentary life cycle in Mediterranean lagoons, it is also a good model to study more specifically if the formation of lagoons during the Holocene had an impact on population structure and demography. Mitochondrial sequences of Northeastern Atlantic and Western Mediterranean specimens were used for phylogenetic reconstructions as well as divergence time estimates, demographic history and population structure analyses. Pomatoschistus microps was a highly supported monophyletic clade including four lineages. It may have appeared 77,000 yr ago, and the divergence of its lineages likely occured shortly thereafter (between 61,000 and 54,000 yr). Most lineages had polytomic topologies, low nucleotide diversity and demographic analyses providing evidence of population expansion. Each lineage was characterized by a large number of private haplotypes. Most haplotypes found in Mediterranean localities were endemic, and one was dominant. Complex reticulated relationships connecting North European, Atlantic and Mediterranean haplotypes were observed. Moderate to high population structure was underlined. Contrary to previous published studies, no significant differentiation was observed between Atlantic and Mediterranean populations, indicating that the Gibraltar Strait is not a phylogeographic break for P. microps. Indeed, molecular dating combined with the tree topologies, phylogeographic and demographic analyses as well as high haplotype diversity underline a recent and rapid population divergence during the last glacial. However, population structure indicates that differentiation is an ongoing process. From an ancestral population trapped in the Atlantic, this goby colonized first northern Europe and later the Mediterranean

  19. Design and Operation of an Optically-Accessible Modular Reactor for Diagnostics of Thermal Thin Film Deposition Processes.

    PubMed

    Kimes, W A; Sperling, B A; Maslars, J E

    2015-01-01

    The design and operation of a simple, optically-accessible modular reactor for probing thermal thin film deposition processes, such as atomic layer deposition processes (ALD) and chemical vapor deposition (CVD), is described. This reactor has a nominal footprint of 225 cm(2) and a mass of approximately 6.6 kg, making it small enough to conveniently function as a modular component of an optical train. The design is simple, making fabrication straightforward and relatively inexpensive. Reactor operation is characterized using two infrared absorption measurements to determine exhaust times for tetrakis(dimethylamino)titanium and water, proto-typical ALD precursors, in a pressure and flow regime commonly used for ALD.

  20. Risk factors of CVD mortality among the elderly in Beijing, 1992 - 2009: an 18-year cohort study.

    PubMed

    Zhou, Tao; Li, Xia; Tang, Zhe; Xie, Changchun; Tao, Lixin; Pan, Lei; Huo, Da; Sun, Fei; Luo, Yanxia; Wang, Wei; Yan, Aoshuang; Guo, Xiuhua

    2014-02-01

    Few researchers have examined the effects of multiple risk factors of cardiovascular disease (CVD) mortality simultaneously. This study was to determine the associations of combined lifestyle and other factors with CVD mortality among the elderly (n = 3,257), in Beijing, China, through data mining of the Beijing Longitudinal Study of Aging (BLSA). BLSA is a representative cohort study from 1992 to 2009, hosted by Xuan Wu Hospital. Competing risk survival analysis was conducted to explore the association between risk factors and CVD mortality. The factors focused mainly on lifestyle, physical condition, and the model was adjusted for age and gender. There were 273 of the 1,068 recorded deaths caused by CVD among the 2010 participants. Living in a suburban area (HR = 0.614, 95% CI: 0.410-0.921) was associated with lower CVD mortality. Increasing age (66-75: HR = 1.511, 95% CI: 1.111-2.055; ≥ 76: HR = 1.847, 95% CI: 1.256-2.717), high blood pressure (HR = 1.407, 95% CI: 1.031-1.920), frequent consumption of meat (HR = 1.559, 95% CI: 1.079-2.254) and physical inactivity (p = 0.046) were associated with higher CVD mortality. The study provides an instructional foundation for the control and prevention of CVD in Beijing, China. PMID:24566047

  1. Risk factors of CVD mortality among the elderly in Beijing, 1992 - 2009: an 18-year cohort study.

    PubMed

    Zhou, Tao; Li, Xia; Tang, Zhe; Xie, Changchun; Tao, Lixin; Pan, Lei; Huo, Da; Sun, Fei; Luo, Yanxia; Wang, Wei; Yan, Aoshuang; Guo, Xiuhua

    2014-02-01

    Few researchers have examined the effects of multiple risk factors of cardiovascular disease (CVD) mortality simultaneously. This study was to determine the associations of combined lifestyle and other factors with CVD mortality among the elderly (n = 3,257), in Beijing, China, through data mining of the Beijing Longitudinal Study of Aging (BLSA). BLSA is a representative cohort study from 1992 to 2009, hosted by Xuan Wu Hospital. Competing risk survival analysis was conducted to explore the association between risk factors and CVD mortality. The factors focused mainly on lifestyle, physical condition, and the model was adjusted for age and gender. There were 273 of the 1,068 recorded deaths caused by CVD among the 2010 participants. Living in a suburban area (HR = 0.614, 95% CI: 0.410-0.921) was associated with lower CVD mortality. Increasing age (66-75: HR = 1.511, 95% CI: 1.111-2.055; ≥ 76: HR = 1.847, 95% CI: 1.256-2.717), high blood pressure (HR = 1.407, 95% CI: 1.031-1.920), frequent consumption of meat (HR = 1.559, 95% CI: 1.079-2.254) and physical inactivity (p = 0.046) were associated with higher CVD mortality. The study provides an instructional foundation for the control and prevention of CVD in Beijing, China.

  2. Sсandium(III) Beta-diketonate Derivatives as Precursors for Oxide Film Deposition by CVD

    NASA Astrophysics Data System (ADS)

    Zherikova, Kseniya V.; Zelenina, Ludmila N.; Chusova, Tamara P.; Morozova, Natalia B.; Trubin, Sergey V.; Vikulova, Eugeniia S.

    Complexes with acetylacetone Sc(acac)3, dipivaloylmethane Sc(thd)3, 2,2,6,6-tetramethyl-4-fluoro-3,5-heptanedione Sc(tfhd)3, pivaloyltrifluoroacetone Sc(ptac)3, trifluoroacetylacetone Sc(tfac)3, and hexafluoroacetylacetone Sc(hfac)3 were synthesized, purified and identified by elemental analysis, m.p., IR and NMR spectroscopy, and mass spectrometry. The thermal behaviour of the synthesized compounds in the solid state was investigated by the method of difference-scanning calorimetry in vacuum. As a result the thermodynamic characteristics of the melting processes were determined. The temperature dependences of saturated and unsaturated vapour pressure of complexes under study were measured by static method with membrane-gauge manometers. The average molecular weight of gas calculated from the experimental data on unsaturated vapours using ideal gas law was close to the molecular weight of monomer for all investigated compounds. Decomposition temperatures of compounds under study were defined as the temperature above that pressure changes became irreversible. The information about melting and decomposition processes were taken into account at measuring saturated vapour pressure of complexes. The row of volatility Sc(hfac)3 > Sc(ptac)3 > Sc(tfac)3 > Sc(thd)3 ≥ Sc(tfhd)3 > Sc(acac)3 was determined from the p-T dependences obtained. Above information about thermal behaviour of complexes enabled one to use it as a guide for CVD experiments aimed at achieving oxide films with high optical properties. Precursor chosen for film deposition was Sc(thd)3 The Sc2O3 film deposition conditions were following: the gas-carrier rate 1 l/h, He gas-reagent rate 10 l/h, total pressure 10 Torr, evaporator temperature 105-110̊С, substrate temperature 450- 650̊С, substrate Si(100). Ellipsometry was applied to characterize the film thickness and refractive index. The morphology and the composition of the films were determined with XPS and SEM.

  3. Single-crystal CVD diamonds as small-angle X-ray scattering windows for high-pressure research

    PubMed Central

    Wang, Suntao; Meng, Yu-fei; Ando, Nozomi; Tate, Mark; Krasnicki, Szczesny; Yan, Chih-shiue; Liang, Qi; Lai, Joseph; Mao, Ho-kwang; Gruner, Sol M.; Hemley, Russell J.

    2012-01-01

    Small-angle X-ray scattering (SAXS) was performed on single-crystal chemical vapor deposition (CVD) diamonds with low nitrogen concentrations, which were fabricated by microwave plasma-assisted chemical vapor deposition at high growth rates. High optical quality undoped 500 µm-thick single-crystal CVD diamonds grown without intentional nitrogen addition proved to be excellent as windows on SAXS cells, yielding parasitic scattering no more intense than a 7.5 µm-thick Kapton film. A single-crystal CVD diamond window was successfully used in a high-pressure SAXS cell. PMID:22675230

  4. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    SciTech Connect

    KRAHN, D.E.

    2000-08-08

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included.

  5. CVD diamond wafers as large-area thermoluminescence detectors for measuring the spatial distribution of dose

    NASA Astrophysics Data System (ADS)

    Marczewska, B.; Bilski, P.; Olko, P.; Olko, P.; Nesládek, M.; Bergonzo, P.; Rbisz, M.; Waligórski, M. P. R.

    2003-09-01

    The applicability of large-area CVD diamond wafers (diameter about 5 cm, thickness about 0.1 mm), read out as thermoluminescence (TL) detectors, for assessing two-dimensional (2-D) dose distribution over their area, was investigated. To obtain 2-D TL images, a special TL reader equipped with large-area planchet and a CCD camera instead of the usual PM tube was developed. Several 2-D TL images: of an alpha source (Am-241), a Ra-226 needle source and a Ru-106 ophthalmic applicator, were measured and high-resolution digital images obtained. Our preliminary results demonstrate the potential capability of large-area CVD diamond wafers, read out as TL detectors, in 2-D dosimetry for medical applications. (

  6. Tailored CVD graphene coating as a transparent and flexible gas barrier

    PubMed Central

    Seo, Tae Hoon; Lee, Seula; Cho, Hyunjin; Chandramohan, S.; Suh, Eun-Kyung; Lee, Heon Sang; Bae, Su Kang; Kim, Soo Min; Park, Min; Lee, Jae Kwan; Kim, Myung Jong

    2016-01-01

    The chemical vapor deposition (CVD) method to obtain tailored graphene as a transparent and flexible gas barrier has been developed. By separating nucleation step from growth, we could reduce early graphene nucleation density and thus induce better stitching between domain boundaries in the second growth step. Furthermore, two step growth in conjunction with electrochemical polishing of Cu foils achieved large graphene domains and improved graphene quality with minimized defects. The performance of resulting graphene as a gas barrier was superior to the graphene obtained by one-step growth on polished or unpolished Cu foils. The CVD graphene reported here could open up the possibility for exploring graphene-based gas barrier due to the minimized density of defect area. PMID:27063180

  7. Development of Health Parameter Model for Risk Prediction of CVD Using SVM.

    PubMed

    Unnikrishnan, P; Kumar, D K; Poosapadi Arjunan, S; Kumar, H; Mitchell, P; Kawasaki, R

    2016-01-01

    Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the local database. Support vector machine was used to determine the effectiveness of machine learning approach with the Framingham health parameters for risk assessment of cardiovascular disease (CVD). The result shows that while linear model trained using local database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of prediction of CVD. This indicates that using the health parameters identified using Framingham study, machine learning approach overcomes the low sensitivity and specificity of Framingham model. PMID:27594895

  8. Scalable ZnO nanotube arrays grown on CVD-graphene films

    NASA Astrophysics Data System (ADS)

    Park, J. B.; Oh, H.; Park, J.; Kim, N.-J.; Yoon, H.; Yi, G.-C.

    2016-10-01

    We report the growth of wafer-scale arrays of individually position-controlled and vertically aligned ZnO nanotube arrays on graphene deposited by chemical vapor deposition (CVD-graphene). Introducing two-dimensional layered materials such as graphene as a growth buffer has recently been suggested for growing nanomaterials on traditionally incompatible substrates. However, their growth has been restricted to small areas or had limited controllability. Here, we study the distinct growth behavior of ZnO on CVD-graphene that makes the selective area growth of individual nanostructures on its surface difficult, and propose a set of methods to overcome this. The resulting nanotube arrays, as examined by scanning electron microscopy and transmission electron microscopy, exhibited uniform morphologies and high structural quality over a large area and could be prepared on a broad variety of substrates, including amorphous, metallic, or flexible substrates.

  9. Development of Health Parameter Model for Risk Prediction of CVD Using SVM

    PubMed Central

    Unnikrishnan, P.; Kumar, H.; Mitchell, P.; Kawasaki, R.

    2016-01-01

    Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the local database. Support vector machine was used to determine the effectiveness of machine learning approach with the Framingham health parameters for risk assessment of cardiovascular disease (CVD). The result shows that while linear model trained using local database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of prediction of CVD. This indicates that using the health parameters identified using Framingham study, machine learning approach overcomes the low sensitivity and specificity of Framingham model. PMID:27594895

  10. SY 04-4 HOW TO IMPROVE CVD RISK PREDICTION IN A LOW-RISK POPULATION.

    PubMed

    Chia, Yook Chin

    2016-09-01

    : Many cardiovascular disease (CVD) risk prediction tools have been developed in an attempt to identify those at highest risk in order for them to benefit from interventional treatment. The first CVD risk tool that was developed was the coronary heart disease risk tool by the Framingham Heart Study in 1998 (1). However the Framingham Risk Score could overestimate (or underestimate) risk in populations other than the US population. Hence several other risk engines have also been developed, primarily for a better fit in the communities in which the tools are to be used (2, 3). Having said that the Framingham Heart Study risk tool has been validated in several populations (4, 5) and found to work reasonably well after some recalibration.Most risk prediction tools predict short term risk ie over a period of 10 years but since more recently risk tools now attempt to predict life-time risk or at least risk over the next 30 years. (6-8). The practical use of these risk prediction tools is that it is able to separate those at high risk (ie > 20% risk of a CVD event fatal or non-fatal event in the next 10 years) from those with the lowest risk (< 10% risk over 10 years). It then helps practitioners to triage them to either receive preventive therapy (high risk group) or none at all (low risk group) respectively. However in those with medium risk ie between 10-20%, the decision to offer treatment or not is less clear. In such a situation, other CVD risk factors for example family history of premature coronary heart disease, other biomarkers like elevated hs-CRP, presence of chronic kidney disease or albuminuria can be employed to further stratify risk.It is known that risk prediction tools are very much age dependent and in a younger individual with mildly raised CVD risk factors, his global CVD risk may be grossly under-estimated. Here additional CVD risk factors beyond those traditionally used in risk engines should be sought in order to recalibrate that individual

  11. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    NASA Astrophysics Data System (ADS)

    Kavrigin, P.; Finocchiaro, P.; Griesmayer, E.; Jericha, E.; Pappalardo, A.; Weiss, C.

    2015-09-01

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a 6Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of 6Li(n,T)4He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in 6Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  12. Tailored CVD graphene coating as a transparent and flexible gas barrier

    NASA Astrophysics Data System (ADS)

    Seo, Tae Hoon; Lee, Seula; Cho, Hyunjin; Chandramohan, S.; Suh, Eun-Kyung; Lee, Heon Sang; Bae, Su Kang; Kim, Soo Min; Park, Min; Lee, Jae Kwan; Kim, Myung Jong

    2016-04-01

    The chemical vapor deposition (CVD) method to obtain tailored graphene as a transparent and flexible gas barrier has been developed. By separating nucleation step from growth, we could reduce early graphene nucleation density and thus induce better stitching between domain boundaries in the second growth step. Furthermore, two step growth in conjunction with electrochemical polishing of Cu foils achieved large graphene domains and improved graphene quality with minimized defects. The performance of resulting graphene as a gas barrier was superior to the graphene obtained by one-step growth on polished or unpolished Cu foils. The CVD graphene reported here could open up the possibility for exploring graphene-based gas barrier due to the minimized density of defect area.

  13. Electronic properties and strain sensitivity of CVD-grown graphene with acetylene

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Sasaki, Shinichirou; Ohnishi, Masato; Suzuki, Ken; Miura, Hideo

    2016-04-01

    Although many studies have shown that large-area monolayer graphene can be formed by chemical vapor deposition (CVD) using methane gas, the growth of monolayer graphene using highly reactive acetylene gas remains a big challenge. In this study, we synthesized a uniform monolayer graphene film by low-pressure CVD (LPCVD) with acetylene gas. On the base of Raman spectroscopy measurements, it was found that up to 95% of the as-grown graphene is monolayer. The electronic properties and strain sensitivity of the LPCVD-grown graphene with acetylene were also evaluated by testing the fabricated field-effect transistors (FETs) and strain sensors. The derived carrier mobility and gauge factor are 862-1150 cm2/(V·s) and 3.4, respectively, revealing the potential for high-speed FETs and strain sensor applications. We also investigated the relationship between the electronic properties and the graphene domain size.

  14. Synthesis of Few-Layer Graphene Using DC PE-CVD

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Hyuk; Castro, Edward Joseph D.; Hwang, Yong Gyoo; Lee, Choong Hun

    2011-12-01

    Few layer graphene (FLG) had been successfully grown on polycrystalline Ni films or foils on a large scale using DC Plasma Enhanced Chemical Vapor Deposition (DC PE-CVD) as a result of the Raman spectra drawn out of the sample. The size of graphene films is dependent on the area of the Ni film as well as the DC PE-CVD chamber size. Synthesis time has an effect on the quality of graphene produced. However, further analysis and experiments must be pursued to further identify the optimum settings and conditions of producing better quality graphene. Applied plasma voltage on the other hand, had an influence on the minimization of defects in the graphene grown. It has also presented a method of producing a free standing PMMA/graphene membrane on a FeCl3(aq) solution which could then be transferred to a desired substrate.

  15. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene.

    PubMed

    Zak, Audrey; Andersson, Michael A; Bauer, Maris; Matukas, Jonas; Lisauskas, Alvydas; Roskos, Hartmut G; Stake, Jan

    2014-10-01

    We present terahertz (THz) detectors based on top-gated graphene field effect transistors (GFETs) with integrated split bow-tie antennas. The GFETs were fabricated using graphene grown by chemical vapor deposition (CVD). The THz detectors are capable of room-temperature rectification of a 0.6 THz signal and achieve a maximum optical responsivity better than 14 V/W and minimum optical noise-equivalent power (NEP) of 515 pW/Hz(0.5). Our results are a significant improvement over previous work on graphene direct detectors and are comparable to other established direct detector technologies. This is the first time room-temperature direct detection has been demonstrated using CVD graphene, which introduces the potential for scalable, wafer-level production of graphene detectors. PMID:25203787

  16. Exploring the relative bending of a CVD graphene monolayer with gap-plasmons.

    PubMed

    Min, Young Hwan; Park, Won-Hwa

    2014-08-21

    We report a spectroscopic indicator showing the bending of a chemical vapor deposition (CVD) graphene monolayer on Cu foil or an arbitrary substrate after transfer. Using a Au nanoparticle (NP)-graphene monolayer-Au thin film (TF) junction system, the Radial Breathing-Like Mode (RBLM) Raman signal from the sandwiched graphene monolayer is evidently observed by employing a local z-polarized incident field formed at the Au NP-Au TF junction. We also utilized the RBLM intensity as a quantitative tool with a wide dynamic range (∼300%) compared to the 2D peak width (∼35%) for determining the relative degree of bending on the Au TF substrate. The RBLM signal from the CVD graphene monolayer is anticipated to be used as a valuable marker in exploring out-of-plane directional properties.

  17. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets

    NASA Astrophysics Data System (ADS)

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C.; Amama, Placidus B.

    2016-07-01

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability.Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst

  18. Low temperature CVD growth of ultrathin carbon films

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Peng; Gan, Wei; Habib, Muhammad; Xu, Weiyu; Fang, Qi; Song, Li

    2016-05-01

    We demonstrate the low temperature, large area growth of ultrathin carbon films by chemical vapor deposition under atmospheric pressure on various substrates. In particularly, uniform and continuous carbon films with the thickness of 2-5 nm were successfully grown at a temperature as low as 500 oC on copper foils, as well as glass substrates coated with a 100 nm thick copper layer. The characterizations revealed that the low-temperature-grown carbon films consist on few short, curved graphene layers and thin amorphous carbon films. Particularly, the low-temperature grown samples exhibited over 90% transmittance at a wavelength range of 400-750 nm and comparable sheet resistance in contrast with the 1000oC-grown one. This low-temperature growth method may offer a facile way to directly prepare visible ultrathin carbon films on various substrate surfaces that are compatible with temperatures (500-600oC) used in several device processing technologies.

  19. Greater flavonoid intake is associated with improved CVD risk factors in US adults.

    PubMed

    Kim, Kijoon; Vance, Terrence M; Chun, Ock K

    2016-04-01

    Epidemiological studies have reported that diets high in flavonoids are associated with a reduced risk of CVD. However, evidence on the association of dietary flavonoid intake with CVD risk factors is still scarce. The present study aimed to investigate the association of dietary flavonoid intake with CVD risk factors among US adults in the National Health and Nutrition Examination Survey (NHANES) 2007-2012. A total of 4042 US adults aged 19 years and older from the NHANES 2007-2012 participated in this cross-sectional, population-based study. Intakes of total and individual flavonoids were estimated from 2-d 24-h diet recall data by matching with the expanded US Department of Agriculture flavonoid, isoflavone and proanthocyanidin databases. After adjusting for covariates, increased HDL-cholesterol was associated with higher total flavonoid intake (0·54 % change). TAG and TAG:HDL-cholesterol ratio were inversely associated with anthocyanidin (-1·25 % change for TAG; -1·60 % change for TAG:HDL-cholesterol ratio) and total flavonoid intakes (-1·31 % change for TAG; -1·83 % change for TAG:HDL-cholesterol ratio), respectively. Insulin and homoeostasis model assessment for insulin resistance (HOMA-IR) were inversely associated with flavone (for insulin, -3·18 % change; 95 % CI -5·85, -0·44; for HOMA-IR, -3·10 % change; 95 % CI -5·93, -0·19) and isoflavone intakes (for insulin, -3·11 % change; 95 % CI -5·46, -0·70; for HOMA-IR, -4·01 % change; 95 % CI -6·67, -1·27). BMI was negatively associated with anthocyanidin intake (-0·60 % change). This study showed that higher flavonoid intake was associated with improved CVD risk factors. Further research is warranted to confirm the findings from this study as these associations were moderate in strength. PMID:26931451

  20. Dairy consumption and CVD: a systematic review and meta-analysis.

    PubMed

    Alexander, Dominik D; Bylsma, Lauren C; Vargas, Ashley J; Cohen, Sarah S; Doucette, Abigail; Mohamed, Muhima; Irvin, Sarah R; Miller, Paula E; Watson, Heather; Fryzek, Jon P

    2016-02-28

    Inverse associations between dairy consumption and CVD have been reported in several epidemiological studies. Our objective was to conduct a meta-analysis of prospective cohort studies of dairy intake and CVD. A comprehensive literature search was conducted to identify studies that reported risk estimates for total dairy intake, individual dairy products, low/full-fat dairy intake, Ca from dairy sources and CVD, CHD and stroke. Random-effects meta-analyses were used to generate summary relative risk estimates (SRRE) for high v. low intake and stratified intake dose-response analyses. Additional dose-response analyses were performed. Heterogeneity was examined in sub-group and sensitivity analyses. In total, thirty-one unique cohort studies were identified and included in the meta-analysis. Several statistically significant SRRE below 1.0 were observed, namely for total dairy intake and stroke (SRRE=0·91; 95% CI 0·83, 0·99), cheese intake and CHD (SRRE=0·82; 95% CI 0·72, 0·93) and stroke (SRRE=0·87; 95% CI 0·77, 0·99), and Ca from dairy sources and stroke (SRRE=0·69; 95% CI 0·60, 0·81). However, there was little evidence for inverse dose-response relationships between the dairy variables and CHD and stroke after adjusting for within-study covariance. The results of this meta-analysis of prospective cohort studies have shown that dairy consumption may be associated with reduced risks of CVD, although additional data are needed to more comprehensively examine potential dose-response patterns.

  1. Performance study of polycrystalline CVD diamond detectors for fast neutron monitoring

    SciTech Connect

    Singh, Arvind Kumar, Amit Topkar, Anita

    2014-04-24

    Diamond detectors using polycrystalline CVD diamond substrates of thickness 300μm and 100μm were fabricated for fast neutron monitoring application.. The characterization of detectors was carried out using various tests such as leakage current, capacitance and alpha particle response. The performance of detectors was evaluated for fast neutrons at different neutron yields. The results presented in this work demonstrate that the diamond detectors will be suitable for monitoring fast neutrons.

  2. Correlation of experimental performance data for a CVD tungsten-niobium, planar thermionic converter

    NASA Technical Reports Server (NTRS)

    Sockol, P. M.

    1973-01-01

    Approximate expressions are presented which correlate experimental performance data from a CVD tungsten-niobium, planar thermionic converter. The current voltage characteristics are given as functions of emitter and collector temperatures and cesium pressure for currents below the knee in the ignited mode. The correlation covers the temperature ranges of 1700 to 1950 K for the emitter, 900 to 1050 K for the collector, and 580 to 645 K for the cesium reservoir.

  3. Exploring the relative bending of a CVD graphene monolayer with gap-plasmons

    NASA Astrophysics Data System (ADS)

    Min, Young Hwan; Park, Won-Hwa

    2014-07-01

    We report a spectroscopic indicator showing the bending of a chemical vapor deposition (CVD) graphene monolayer on Cu foil or an arbitrary substrate after transfer. Using a Au nanoparticle (NP)-graphene monolayer-Au thin film (TF) junction system, the Radial Breathing-Like Mode (RBLM) Raman signal from the sandwiched graphene monolayer is evidently observed by employing a local z-polarized incident field formed at the Au NP-Au TF junction. We also utilized the RBLM intensity as a quantitative tool with a wide dynamic range (~300%) compared to the 2D peak width (~35%) for determining the relative degree of bending on the Au TF substrate. The RBLM signal from the CVD graphene monolayer is anticipated to be used as a valuable marker in exploring out-of-plane directional properties.We report a spectroscopic indicator showing the bending of a chemical vapor deposition (CVD) graphene monolayer on Cu foil or an arbitrary substrate after transfer. Using a Au nanoparticle (NP)-graphene monolayer-Au thin film (TF) junction system, the Radial Breathing-Like Mode (RBLM) Raman signal from the sandwiched graphene monolayer is evidently observed by employing a local z-polarized incident field formed at the Au NP-Au TF junction. We also utilized the RBLM intensity as a quantitative tool with a wide dynamic range (~300%) compared to the 2D peak width (~35%) for determining the relative degree of bending on the Au TF substrate. The RBLM signal from the CVD graphene monolayer is anticipated to be used as a valuable marker in exploring out-of-plane directional properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01586j

  4. One-step transfer and integration of multifunctionality in CVD graphene by TiO₂/graphene oxide hybrid layer.

    PubMed

    Jeong, Hee Jin; Kim, Ho Young; Jeong, Hyun; Han, Joong Tark; Jeong, Seung Yol; Baeg, Kang-Jun; Jeong, Mun Seok; Lee, Geon-Woong

    2014-05-28

    We present a straightforward method for simultaneously enhancing the electrical conductivity, environmental stability, and photocatalytic properties of graphene films through one-step transfer of CVD graphene and integration by introducing TiO2/graphene oxide layer. A highly durable and flexible TiO2 layer is successfully used as a supporting layer for graphene transfer instead of the commonly used PMMA. Transferred graphene/TiO2 film is directly used for measuring the carrier transport and optoelectronic properties without an extra TiO2 removal and following deposition steps for multifunctional integration into devices because the thin TiO2 layer is optically transparent and electrically semiconducting. Moreover, the TiO2 layer induces charge screening by electrostatically interacting with the residual oxygen moieties on graphene, which are charge scattering centers, resulting in a reduced current hysteresis. Adsorption of water and other chemical molecules onto the graphene surface is also prevented by the passivating TiO2 layer, resulting in the long term environmental stability of the graphene under high temperature and humidity. In addition, the graphene/TiO2 film shows effectively enhanced photocatalytic properties because of the increase in the transport efficiency of the photogenerated electrons due to the decrease in the injection barrier formed at the interface between the F-doped tin oxide and TiO2 layers. PMID:24578338

  5. Synthesis and Characterization of Large-Area Graphene Directly CVD-Grown on h-BN

    NASA Astrophysics Data System (ADS)

    Kim, Minwoo; Song, Young; Wang, Min; Jang, Seong-Kyu; Lee, Sungjoo; Jang, Won-Jun; Kahng, Se-Jong; Graphene synthesis Collaboration; Characterization Collaboration

    2013-03-01

    As an ideal substrate for graphene, hexagonal boron nitride (h-BN) has been utilized and studied extensively by transfer technique, which still has a high chance to have impurities at the graphene/h-BN interface. Here we report direct CVD growth of graphene on large area h-BN film. AFM and Raman spectroscopy measurements show that there is only one monolayer of graphene, and whose unperturbed electronic structures are also confirmed by electron transport measurements and scanning tunneling spectroscopy. High resolution TEM images for cross-section taken before and after transferring graphene/h-BN on to SiO2 indicate this CVD-grown hybrid structure is robust enough. Based on this new method, high quality and large area graphene on h-BN film with a clean interface can be synthesized for the application of electronic devices, and can fill the missing steps to grow fully CVD-grown super-structure of graphene and h-BN. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Numbers: 2009-0083540, 2012R1A1A2020089 and 2012R1A1A1041416).

  6. Low-temperature synthesis of carbon nitride by microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Tanaka, Ippei; Sakamoto, Yukihiro

    2016-01-01

    Investigation of the low temperature synthesis of carbon nitride was carried out by microwave plasma CVD. Carbon nitride was synthesized using an improved microwave plasma CVD apparatus. Si was used as the substrate. A mixture of CH4 and N2 gas was used as a reaction gas. Synthesis pressure was varied from 1.1 to 4.0 kPa, microwave power was varied from 400 to 800 W. Faceted particles were obtained at a microwave power of 800 W and a substrate temperature of 880 K. Faceted particles were obtained at various synthesis pressures and a substrate temperature of as low as 740 K. Also, β-Si3N4 and α-C3N4 peaks were observed in the X-ray diffraction (XRD) pattern. As a result of studies of the low-temperature synthesis of carbon nitride by microwave plasma CVD, the morphology of deposits was found to depend on substrate temperature, and faceted particles were obtained at a substrate temperature as low as 740 K.

  7. CVD graphene as interfacial layer to engineer the organic donor-acceptor heterojunction interface properties.

    PubMed

    Zhong, Shu; Zhong, Jian Qiang; Mao, Hong Ying; Wang, Rui; Wang, Yu; Qi, Dong Chen; Loh, Kian Ping; Wee, Andrew Thye Shen; Chen, Zhi Kuan; Chen, Wei

    2012-06-27

    We demonstrate the use of chemical-vapor-deposited (CVD) graphene as an effective indium-tin-oxide (ITO) electrode surface modifier to engineer the organic donor-acceptor heterojunction interface properties in an inverted organic solar cell device configuration. As revealed by in situ near-edge X-ray adsorption fine structure measurement, the organic donor-acceptor heterojunction, comprising copper-hexadecafluoro-phthalocyanine (F16CuPc) and copper phthalocyanine (CuPc), undergoes an obvious orientation transition from a standing configuration (molecular π-plane nearly perpendicular to the substrate surface) on the bare ITO electrode to a less standing configuration with the molecular π-plane stacking adopting a large projection along the direction perpendicular to the electrode surface on the CVD graphene-modified ITO electrode. Such templated less-standing configuration of the organic heterojunction could significantly enhance the efficiency of charge transport along the direction perpendicular to the electrode surface in the planar heterojunction-based devices. Compared with the typical standing organic-organic heterojunction on the bare ITO electrode, our in situ ultraviolet photoelectron spectroscopy experiments reveal that the heterojunction on the CVD graphene modified ITO electrode possesses better aligned energy levels with respective electrodes, hence facilitating effective charge collection. PMID:22662875

  8. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca i.; Kleider, Jean-Paul; Yao, Fei; Lee, Young Hee

    2016-10-01

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n- or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq-1 to 1260 Ω sq-1 for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm2 V-1 s-1 indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications.

  9. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.

    PubMed

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca I; Kleider, Jean-Paul; Yao, Fei; Hee Lee, Young

    2016-10-12

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n‑ or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq(-1) to 1260 Ω sq(-1) for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm(2) V(-1) s(-1) indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications. PMID:27506254

  10. Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.

    1989-01-01

    The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.

  11. Damage mechanism involved in the solid particle erosion of CVD diamond

    NASA Astrophysics Data System (ADS)

    Davies, Alun R.; Field, John E.

    2001-09-01

    Sophisticated electro-optic sensors are employed on aircraft and missiles, and it is essential to protect them from relatively high-speed impacts with airborne dust particles. A loss in transmission caused by such an event can impair guidance, and catastrophic failure may occur. Protection is afforded by the installation of a hard cover that is transparent in the relevant regime. Diamond is potentially by far the most attractive window material due to excellent optical and mechanical properties, but it is difficult to shape. Chemical vapor deposited (CVD) diamond is a polycrystalline synthetic with properties that approach those of single crystal diamond, and it can be more easily shaped. The aims of the present research were to quantify the erosion and transmission losses, and to understand the material removal mechanisms involved. Steady-state erosion rates were obtained for CVD diamond of different grain sizes, using 300-600 micrometers quartz erodent at velocities between 60 and 140 m/s. Images of CVD diamond at various stages of erosion, obtained using an optical microscope and an environmental scanning electron microscope (ESEM), reveal that erosion initially occurs at grain boundaries and that so-called micro-features also have some influence on erosion.

  12. Utilization of iron oxide film obtained by CVD process as catalyst to carbon nanotubes growth

    SciTech Connect

    Schnitzler, Mariane C.; Zarbin, Aldo J.G.

    2009-10-15

    Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air. These films were characterized by Raman spectroscopy and X-ray diffractometry (XRD), and subsequently used as catalyst on the growth of carbon nanotubes, using benzene or a benzene solution of [Fe{sub 3}(CO){sub 12}] as precursor. A great amount of a black powder was obtained as product, identified as multi-walled carbon nanotubes by XRD, Raman spectroscopy and transmission electron microscopy. The carbon nanotubes formed through the pyrolysis of the [Fe{sub 3}(CO){sub 12}] solution were identified as structurally better than the one obtained by the pyrolysis of pristine benzene. - Graphical abstract: Thin films of Fe{sub 2}O{sub 3} were obtained on silica glass substrates through the thermal decomposition of ferrocene in air, and subsequently used as catalyst on the growth of carbon nanotubes.

  13. CVD aluminiding process for producing a modified platinum aluminide bond coat for improved high temperature performance

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore A. (Inventor); Williams, Jeffrey L. (Inventor)

    2003-01-01

    A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.

  14. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.

    PubMed

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C; Amama, Placidus B

    2016-07-21

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability.

  15. Substrate temperature measurement and control during thermal plasma CVD

    SciTech Connect

    Zhuang, Q.D.; Guo, H.; Han, Q.Y.; Heberlein, J.V.R.; Pfender, E.

    1993-09-01

    A technique is proposed for substrate temperature control, with emphasis on temperature uniformity across substrate. The technique includes a substrate holder design employing non-uniform water cooling and a means of substrate attachment featured by controlled thermal contact resistance for a given heat flux distribution from the plasma. The technique was applied to deposit diamond films over a 5 cm diameter area in a DC thermal plasma reactor, and proved adequate. Performance of single-color (0.655 {mu}m) and two-color (2.1 and 2.4 {mu}m) pyrometers were evaluated against DC thermo.] plasma radiation. It was found that both line and continuum emission of plasma jets caused large errors in temperature measurement of the single-color pyrometer. The two-color pyrometer, however, is shown to be less sensitive to the plasma radiation. The way the substrate temperature was controlled and monitored in this study is in general applicable to other TPCVD processes where intense local heating and a bright plasma background exist.

  16. Comparisons of SiN Passivation Film Deposited by PE-CVD and T-CVD Method for AlGaN/GaN HEMTs on SiC Substrate

    NASA Astrophysics Data System (ADS)

    Okita, Hideyuki; Marui, Toshiharu; Hoshi, Shinichi; Itoh, Masanori; Toda, Fumihiko; Morino, Yoshiaki; Tamai, Isao; Sano, Yoshiaki; Seki, Shohei

    Current collapse phenomenon is a well known obstacle in the AlGaN/GaN HEMTs. In order to improve the surface stability of HEMTs, we have investigated the SiN passivation film deposited by T-CVD, and we found that it improves both gate leakage current and current collapse phenomenon [1]. Moreover, we compared the T-CVD and PE-CVD passivation films, on high electric field DC and RF characteristics. We found that T-CVD SiN passivation film improves BVds-off by 30% because of the reduction of gate leakage current. It also improved ηd in the output power characteristics by load-pull measurement, which indicates the decrease of the current collapse phenomenon. Also we fabricated a multi-fingered 50W-class AlGaN/GaN HEMT with T-CVD SiN passivation film and achieved 61.2% of high drain efficiency at frequency of 2.14GHz, which was 3.6 points higher than that with PE-CVD SiN passivation film.

  17. Structural and electrical properties of silicon epitaxial layers grown by LPE and CVD on identical polycrystalline substrates

    NASA Astrophysics Data System (ADS)

    Wagner, G.; Wawra, H.; Dorsch, W.; Albrecht, M.; Krome, R.; Strunk, H. P.; Riedel, S.; Möller, H. J.; Appel, W.

    1997-04-01

    We compare structural and electrical properties of polycrystalline Si layers grown by chemical vapour deposition (CVD) and liquid-phase epitaxy (LPE) on multicrystalline, cast silicon substrates with similar grain boundary structures. Time-resolved microwave conductivity shows a higher minority carrier lifetime in LPE than in CVD layers; the calculated diffusion lengths are up to three times the layer thickness for LPE-grown layers. After etching the samples in Secco or Sirtl solution, we measured in the p-type Si epitaxial LPE and CVD layers practically at the same dislocation density as in the same areas of the substrate. Electron-beam-induced current measurements reveal a low recombination strength of grain boundaries and dislocations in the LPE-grown layers compared to those of the CVD layers. Transmission electron microscope investigations indicate that the lower recombination strength at the grain boundaries of the LPE layers is due to a lower density of grain boundary dislocations.

  18. Variability in Chemical Vapor Deposited Zinc Sulfide: Assessment of Legacy and International CVD ZnS Materials

    SciTech Connect

    McCloy, John S.; Korenstein, Ralph

    2009-10-06

    Samples of CVD ZnS from the United States, Germany, Israel, and China were evaluated using transmission spectroscopy, x-ray diffraction, photoluminescence, and biaxial flexure testing. Visible and near-infrared scattering, 6 μm absorption, and ultraviolet cut-on edge varied substantially in tested materials. Crystallographic hexagonality and texture was determined and correlated with optical scattering. Transmission cut-on (ultraviolet edge) blue-shifts with annealing and corresponds to visible color but not the 6 μm absorption. Photoluminescence results suggest that CVD ZnS exhibits a complex suite of electronic bandgap defects. All CVD ZnS tested with biaxial flexure exhibit similar fracture strength values and Weibull moduli. This survey suggests that technical understanding of the structure and optical properties CVD ZnS is still in its infancy.

  19. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for CVD Prevention in Adults with Risk Factors

    MedlinePlus

    ... Task Force learned about the potential benefits and harms of behavioral counseling to prevent CVD in overweight ... the end of this document). Potential Benefits and Harms of Behavioral Counseling to Prevent Cardiovascular Disease The ...

  20. Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films.

    PubMed

    Paxson, Adam T; Yagüe, Jose L; Gleason, Karen K; Varanasi, Kripa K

    2014-01-22

    Ultra-thin copolymer films are deposited by initiated chemical deposition (iCVD) to investigate their performance under the condensation of water vapor. By forming a grafted interface between the coating and the substrate, the films exhibit stable dropwise condensation even when subjected to 100 °C steam. The applicability of the iCVD to complex substrate geometries is demonstrated on a copper condenser coil.

  1. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  2. Comprehending Text versus Reading Words in Young Readers with Varying Reading Ability: Distinct Patterns of Functional Connectivity from Common Processing Hubs

    ERIC Educational Resources Information Center

    Aboud, Katherine S.; Bailey, Stephen K.; Petrill, Stephen A.; Cutting, Laurie E.

    2016-01-01

    Skilled reading depends on recognizing words efficiently in isolation ("word-level processing"; "WL") and extracting meaning from text ("discourse-level processing"; "DL"); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as…

  3. Properties of TiN and TiN deposited by CVD on graphite for pyrochemical applications.

    SciTech Connect

    Maiya, P. S.; Moon, B. M.

    1997-12-17

    High-density TiN (>98% of theoretical) has been prepared by hot pressing TiN powder with 2-4 wt.% Li{sub 2}C0{sub 3} at temperatures between 1150-1550 C and pressures of {approx}40-50 MPa. The Li{sub 2}C0{sub 3} served as a fugitive sintering aid, enabling attainment of high density at low temperatures without adversely affecting the inherently good properties. Variation in processing variables and TiN powder characteristics resulted in material with various porosities. Measurement of mechanical properties such as flexural strength and fracture toughness showed that the high-density material has mechanical properties that are superior to those of several oxide ceramics. We have also quantified the effects of porosity on mechanical properties. In addition, adhesion and chemical stability tests were used to investigate graphite coated with TiN by chemical vapor deposition (CVD). Pin-pull tests were used to determine coating adhesion and failure stresses were analyzed by Weibull statistics. All pin-pull tests resulted in fracture of the graphite substrate, rather than separation at the TiN/graphite interface. The data showed a good fit to the two-parameter Weibull expression, with a failure strength of 16.4 MPa and Weibull modulus of 9.3. Both the high-density TiN and the TiN coating on the graphite were exposed to a corrosive molten salt CaCl{sub 2}-7 wt.% CaO and a liquid metal alloy (Zn-10 wt.% Mg) at 800 C for 168 h to determine chemical interactions. No reaction was detected by scanning electron microscopy (SEM) or energy-dispersive X-ray (EDX) analysis. Thus, graphite coated with TiN by CVD combines the thermodynamic stability of TiN when exposed to reactive molten metals and salts, with the excellent machinability of graphite, and hence is promising for use in container vessels for pyrochemical processing of certain rare-earth and nuclear metals, where chemical inertness and good matching of thermal expansion coefficients are required.

  4. Layer-controlled CVD growth of large-area two-dimensional MoS2 films

    NASA Astrophysics Data System (ADS)

    Jeon, Jaeho; Jang, Sung Kyu; Jeon, Su Min; Yoo, Gwangwe; Jang, Yun Hee; Park, Jin-Hong; Lee, Sungjoo

    2015-01-01

    In spite of the recent heightened interest in molybdenum disulfide (MoS2) as a two-dimensional material with substantial bandgaps and reasonably high carrier mobility, a method for the layer-controlled and large-scale synthesis of high quality MoS2 films has not previously been established. Here, we demonstrate that layer-controlled and large-area CVD MoS2 films can be achieved by treating the surfaces of their bottom SiO2 substrates with the oxygen plasma process. Raman mapping, UV-Vis, and PL mapping are performed to show that mono, bi, and trilayer MoS2 films grown on the plasma treated substrates fully cover the centimeter scale substrates with a uniform thickness. Our TEM images also present the single crystalline nature of the monolayer MoS2 film and the formation of the layer-controlled bi- and tri-layer MoS2 films. Back-gated transistors fabricated on these MoS2 films are found to exhibit the high current on/off ratio of ~106 and high mobility values of 3.6 cm2 V-1 s-1 (monolayer), 8.2 cm2 V-1 s-1 (bilayer), and 15.6 cm2 V-1 s-1 (trilayer). Our results are expected to have a significant impact on further studies of the MoS2 growth mechanism as well as on the scaled layer-controlled production of high quality MoS2 films for a wide range of applications.In spite of the recent heightened interest in molybdenum disulfide (MoS2) as a two-dimensional material with substantial bandgaps and reasonably high carrier mobility, a method for the layer-controlled and large-scale synthesis of high quality MoS2 films has not previously been established. Here, we demonstrate that layer-controlled and large-area CVD MoS2 films can be achieved by treating the surfaces of their bottom SiO2 substrates with the oxygen plasma process. Raman mapping, UV-Vis, and PL mapping are performed to show that mono, bi, and trilayer MoS2 films grown on the plasma treated substrates fully cover the centimeter scale substrates with a uniform thickness. Our TEM images also present the single

  5. Space station commonality analysis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This study was conducted on the basis of a modification to Contract NAS8-36413, Space Station Commonality Analysis, which was initiated in December, 1987 and completed in July, 1988. The objective was to investigate the commonality aspects of subsystems and mission support hardware while technology experiments are accommodated on board the Space Station in the mid-to-late 1990s. Two types of mission are considered: (1) Advanced solar arrays and their storage; and (2) Satellite servicing. The point of departure for definition of the technology development missions was a set of missions described in the Space Station Mission Requirements Data Base. (MRDB): TDMX 2151 Solar Array/Energy Storage Technology; TDMX 2561 Satellite Servicing and Refurbishment; TDMX 2562 Satellite Maintenance and Repair; TDMX 2563 Materials Resupply (to a free-flyer materials processing platform); TDMX 2564 Coatings Maintenance Technology; and TDMX 2565 Thermal Interface Technology. Issues to be addressed according to the Statement of Work included modularity of programs, data base analysis interactions, user interfaces, and commonality. The study was to consider State-of-the-art advances through the 1990s and to select an appropriate scale for the technology experiments, considering hardware commonality, user interfaces, and mission support requirements. The study was to develop evolutionary plans for the technology advancement missions.

  6. No Common Opinion on the Common Core

    ERIC Educational Resources Information Center

    Henderson, Michael B.; Peterson, Paul E.; West, Martin R.

    2015-01-01

    According to the three authors of this article, the 2014 "EdNext" poll yields four especially important new findings: (1) Opinion with respect to the Common Core has yet to coalesce. The idea of a common set of standards across the country has wide appeal, and the Common Core itself still commands the support of a majority of the public.…

  7. Comprehending text versus reading words in young readers with varying reading ability: distinct patterns of functional connectivity from common processing hubs.

    PubMed

    Aboud, Katherine S; Bailey, Stephen K; Petrill, Stephen A; Cutting, Laurie E

    2016-07-01

    Skilled reading depends on recognizing words efficiently in isolation (word-level processing; WL) and extracting meaning from text (discourse-level processing; DL); deficiencies in either result in poor reading. FMRI has revealed consistent overlapping networks in word and passage reading, as well as unique regions for DL processing; however, less is known about how WL and DL processes interact. Here we examined functional connectivity from seed regions derived from where BOLD signal overlapped during word and passage reading in 38 adolescents ranging in reading ability, hypothesizing that even though certain regions support word- and higher-level language, connectivity patterns from overlapping regions would be task modulated. Results indeed revealed that the left-lateralized semantic and working memory (WM) seed regions showed task-dependent functional connectivity patterns: during DL processes, semantic and WM nodes all correlated with the left angular gyrus, a region implicated in semantic memory/coherence building. In contrast, during WL, these nodes coordinated with a traditional WL area (left occipitotemporal region). In addition, these WL and DL findings were modulated by decoding and comprehension abilities, respectively, with poorer abilities correlating with decreased connectivity. Findings indicate that key regions may uniquely contribute to multiple levels of reading; we speculate that these connectivity patterns may be especially salient for reading outcomes and intervention response.

  8. Surface chemistry of boron-doped SiO{sub 2} CVD: Enhanced uptake of tetraethyl orthosilicate by hydroxyl groups bonded to boron

    SciTech Connect

    Bartram, M.E.; Moffat, H.K.

    1993-12-31

    Insight into how dopants can enhance deposition rates has been obtained by comparing reactivities of tetraethyl orthosilicate (TEOS, Si(OCH{sub 2}CH{sub 3}){sub 4}) with silanol and boranol groups on SiO{sub 2}. This comparison is relevant for boron-doped SiO{sub 2} film growth from TEOS and trimethyl borate (TMB, B(OCH{sub 3}){sub 3}) sources since boranols and silanols are expected to be present on surface during the (CVD). A silica substrate having coadsorbed deuterated silanols (SIOD) and boranols (BOD) was reacted with TEOS in a cold-wall reactor in the mTorr pressure regime at 1000K. Reactions were followed with Fourier transform infrared spectroscopy. Use of deuterated hydroxyls allowed consumption of hydroxyls by TEOS chemisorption to be distinguished from concurrent formation of SIOH and BOH that results from TEOS decomposition. It was found that TEOS reacts with BOD at twice the rate observed for SIOD demonstrating that hydroxyl groups bonded to boron increase the rate of TEOS chemisorption. Surface ethoxy groups produced by chemisorption of TEOS decompose at a slower rate in the presence of TMB decomposition products. Possible dependencies on reactor geometries and other deposition conditions may determine which of these two competing effects will control deposition rates. This may explain (in part) why the rate enhancement effect is not always observed in boron-doped SiO{sub 2} CVD processes.

  9. Chloride-based CVD of 3C-SiC Epitaxial Layers on On-axis 6H (0001) SiC Substrates

    NASA Astrophysics Data System (ADS)

    Leone, Stefano; Beyer, Franziska C.; Henry, Anne; Kordina, Olof; Janzén, Erik

    2010-11-01

    The growth of 3C-SiC epitaxial layers on nominally on-axis 6H-SiC Si-face substrates using the chloride-based CVD process is demonstrated. A hot-wall CVD reactor was used and HCl was added to the standard precursors (silane and ethylene). Several growth parameters were tested: temperature, in-situ surface preparation, C/Si ratio, Cl/Si ratio, and nitrogen addition. Each parameter had a very important effect on the polytype formation. In the case of 3C-SiC deposition the morphology and typology of defects could change significantly depending on the different combinations of growth conditions, including the addition of nitrogen. At a growth rate of 10 μm/h, a mirror-like surface with a single domain decorated by some parallel stripes and few epitaxial defects were obtained. The near-band gap luminescence of high quality 3C-SiC layers was characterized by very sharp lines. Microscope and AFM analysis showed a very smooth surface. A background doping in the low 1015 cm-3 range was achieved.

  10. Using the common sense model to design interventions for the prevention and management of chronic illness threats: from description to process.

    PubMed

    McAndrew, Lisa M; Musumeci-Szabó, Tamara J; Mora, Pablo A; Vileikyte, Loretta; Burns, Edith; Halm, Ethan A; Leventhal, Elaine A; Leventhal, Howard

    2008-05-01

    In this article, we discuss how one might use the common sense model of self-regulation (CSM) for developing interventions for improving chronic illness management. We argue that features of that CSM such as its dynamic, self-regulative (feedback) control feature and its system structure provide an important basis for patient-centered interventions. We describe two separate, ongoing interventions with patients with diabetes and asthma to demonstrate the adaptability of the CSM. Finally, we discuss three additional factors that need to be addressed before planning and implementing interventions: (1) the use of top-down versus bottom-up intervention strategies; (2) health care interventions involving multidisciplinary teams; and (3) fidelity of implementation for tailored interventions.

  11. A common-garden experiment to quantify evolutionary processes in copepods: the case of emamectin benzoate resistance in the parasitic sea louse Lepeophtheirus salmonis

    PubMed Central

    2014-01-01

    Background The development of pesticide resistance represents a global challenge to food production. Specifically for the Atlantic salmon aquaculture industry, parasitic sea lice and their developing resistance to delousing chemicals is challenging production. In this study, seventeen full sibling families, established from three strains of Lepeophtheirus salmonis displaying differing backgrounds in emamectin benzoate (EB) tolerance were produced and quantitatively compared under a common-garden experimental design. Lice surviving to the preadult stage were then exposed to EB and finally identified through the application of DNA parentage testing. Results With the exception of two families (19 and 29%), survival from the infectious copepod to preadult stage was very similar among families (40-50%). In contrast, very large differences in survival following EB exposure were observed among the families (7.9-74%). Family survival post EB exposure was consistent with the EB tolerance characteristics of the strains from which they were established and no negative effect on infection success were detected in association with increased EB tolerance. Two of the lice families that displayed reduced sensitivity to EB were established from a commercial farm that had previously used this chemical. This demonstrates that resistant alleles were present on this farm even though the farm had not reported treatment failure. Conclusions To our knowledge, this represents the first study where families of any multi-cellular parasite have been established and compared in performance under communal rearing conditions in a common-garden experiment. The system performed in a predictable manner and permitted, for the first time, elucidation of quantitative traits among sea lice families. While this experiment concentrated on, and provided a unique insight into EB sensitivity among lice families, the experimental design represents a novel methodology to experimentally address both resistance

  12. Remedies for Common Cold Symptoms

    PubMed Central

    Miller, Penny F.

    1991-01-01

    Individuals suffering from intolerable symptoms of the common cold can now be advised of safe and effective products for symptomatic relief. This article describes and discusses four categories of drugs used to treat the common cold. To simplify the product selection process for family physicians, suggestions are included for possible ingredients for treatments of specific cold symptoms. PMID:21234087

  13. Joint association of physical activity/screen time and diet on CVD risk factors in 10-year-old children.

    PubMed

    Drenowatz, Clemens; Carlson, Joseph J; Pfeiffer, Karin A; Eisenmann, Joey C

    2012-12-01

    The increasing prevalence of childhood overweight and obesity has been associated with an increased risk for cardiovascular disease (CVD). While several studies examined the effect of single behaviors such as physical activity (PA), sedentary behavior or diet on CVD risk, there is a lack of research on combined associations, specifically in children. Therefore, the purpose of this study was to examine the joint association of PA or screen time (ST) and diet on CVD risk factors in children. PA, STand diet were assessed via questionnaire in 210 fifth grade students (age: 10.6 ± 0.4 years). The healthy eating index (HEI) was subsequently calculated as indicator for diet quality. Height, weight, % body fat, and resting blood pressure were measured according to standard procedures and blood samples obtained via fingerprick were assayed for blood lipids. Total cholesterol HDL ratio (TC:HDL), mean arterial pressure (MAP), and % body fat were used as indicators of CVD risk. 55% of children did not meet current PA recommendations on at least 5 days/week and 70% exceeded current recommendations for ST. Further, only 2.5% possessed a "good" diet (HEI> 80). There was no significant association of PA or STand diet on CVD risk score. Neither TC:HDL, MAP, and % body fat nor the total CVD risk score was significantly correlated with diet, PA, or ST. Children in the high PA group, however, had significantly better diet scores. Despite the fact that self-reported PA, ST, or dietary intake were not directly related to CVD risk in this sample, higher activity levels were associated with a healthier diet and lower ST indicating an overall healthier lifestyle of this subgroup.

  14. Joint association of physical activity/screen time and diet on CVD risk factors in 10-year-old children.

    PubMed

    Drenowatz, Clemens; Carlson, Joseph J; Pfeiffer, Karin A; Eisenmann, Joey C

    2012-12-01

    The increasing prevalence of childhood overweight and obesity has been associated with an increased risk for cardiovascular disease (CVD). While several studies examined the effect of single behaviors such as physical activity (PA), sedentary behavior or diet on CVD risk, there is a lack of research on combined associations, specifically in children. Therefore, the purpose of this study was to examine the joint association of PA or screen time (ST) and diet on CVD risk factors in children. PA, STand diet were assessed via questionnaire in 210 fifth grade students (age: 10.6 ± 0.4 years). The healthy eating index (HEI) was subsequently calculated as indicator for diet quality. Height, weight, % body fat, and resting blood pressure were measured according to standard procedures and blood samples obtained via fingerprick were assayed for blood lipids. Total cholesterol HDL ratio (TC:HDL), mean arterial pressure (MAP), and % body fat were used as indicators of CVD risk. 55% of children did not meet current PA recommendations on at least 5 days/week and 70% exceeded current recommendations for ST. Further, only 2.5% possessed a "good" diet (HEI> 80). There was no significant association of PA or STand diet on CVD risk score. Neither TC:HDL, MAP, and % body fat nor the total CVD risk score was significantly correlated with diet, PA, or ST. Children in the high PA group, however, had significantly better diet scores. Despite the fact that self-reported PA, ST, or dietary intake were not directly related to CVD risk in this sample, higher activity levels were associated with a healthier diet and lower ST indicating an overall healthier lifestyle of this subgroup. PMID:23224418

  15. Thermal plasma processing of materials

    SciTech Connect

    Pfender, E.; Heberlein, J.

    1992-02-01

    Emphasis has been on plasma synthesis of fine powders, plasma Chemical Vapor Deposition (CVD), on related diagnostics, and on modeling work. Since plasma synthesis as well as plasma CVD make frequent use of plasma jets, the beginning has been devoted of plasma jets and behavior of particulates injected into such plasma jets. Although most of the construction of the Triple-Torch Plasma Reactor (TTPR) has already been done, modifications have been made in particular modifications required for plasma CVD of diamond. A new reactor designed for Counter-Flow Liquid Injection Plasma Synthesis (CFLIPS) proved to be an excellent tool for synthesis of fine powders as well as for plasma CVD. An attempt was made to model flow and temperature fields in this reactor. Substantial efforts were made to single out those parameters which govern particle size, size distribution, and powder quality in our plasma synthesis experiments. This knowledge is crucial for controlling the process and for meaningful diagnostics and modeling work. Plasma CVD of diamond films using both reactors has been very successful and we have been approached by a number of companies interested in using this technology for coating of tools.

  16. Epitaxial Growth of beta-Silicon Carbide (SiC) on a Compliant Substrate via Chemical Vapor Deposition (CVD)

    NASA Technical Reports Server (NTRS)

    Mitchell, Sharanda L.

    1996-01-01

    Many lattice defects have been attributed to the lattice mismatch and the difference in the thermal coefficient of expansion between SiC and silicon (Si). Stacking faults, twins and antiphase boundaries are some of the lattice defects found in these SiC films. These defects may be a partial cause of the disappointing performance reported for the prototype devices fabricated from beta-SiC films. The objective of this research is to relieve some of the thermal stress due to lattice mismatch when SiC is epitaxially grown on Si. The compliant substrate is a silicon membrane 2-4 microns thick. The CVD process includes the buffer layer which is grown at 1360 C followed by a very thin epitaxial growth of SiC. Then the temperature is raised to 1500 C for the subsequent growth of SiC. Since silicon melts at 1415 C, the SiC will be grown on molten Silicon which is absorbed by a porous graphite susceptor eliminating the SiC/Si interface. We suspect that this buffer layer will yield less stressed material to help in the epitaxial growth of SiC.

  17. Prediction and personalised treatment of atrial fibrillation-stroke prevention: consolidated position paper of CVD professionals.

    PubMed

    Helms, Thomas M; Duong, Giang; Zippel-Schultz, Bettina; Tilz, Roland Richard; Kuck, Karl-Heinz; Karle, Christoph A

    2014-01-01

    Atrial fibrillation (AF) is one of the major morbidity and health economic factors in Europe and often associated with several co-morbidities. This paper (1) underlines the importance of highly professional AF management utilising a multi-disciplinary expertise, especially considering the role of AF regarding the stroke risk and prevention, (2) demonstrates the consolidated position of CVD professionals and (3) emphasises those research aspects that could deepen the understanding of the emergence and the treatment of AF and therefore helps to provide a personalised preventive and more effective management of AF. Specialised calls are considered for that within the new European Programme 'Horizon 2020'.

  18. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  19. Ballistic Transport Exceeding 28 μm in CVD Grown Graphene

    NASA Astrophysics Data System (ADS)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Goldsche, Matthias; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2016-02-01

    We report on ballistic transport over more than 28 \\mu m in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm$^2$/(Vs). The ballistic nature of charge transport is probed by measuring the bend resistance in cross- and square-shaped devices. Temperature dependent measurements furthermore prove that ballistic transport is maintained exceeding 1 \\mu m up to 200 K.

  20. Synthesis and characterization of TiO2 nanostructure thin films grown by thermal CVD

    NASA Astrophysics Data System (ADS)

    Rizal, Umesh; Das, Soham; Kumar, Dhruva; Swain, Bhabani S.; Swain, Bibhu P.

    2016-04-01

    Thermal Chemical Vapor Deposition (CVD) deposited Titanium dioxide nanostructures (TiO2-NSs) were grown by using Ti powder and O2 precursors on Si/SiO2 (100) substrate. The microstructure and vibration properties of TiO2-NSs were characterized by Fourier transform infrared (FTIR), SEM, and photoluminescence (PL) spectroscopy. The role of O2 flow rate on TiO2-NSs revealed decreased deposition rate, however, surface roughness has been increased resulted into formation of nanostructure thin films.

  1. Field emission from carbon nanotubes produced using microwave plasma assisted CVD

    SciTech Connect

    Zhang, Q.; Yoon, S.F.; Ahn, J.; Gan, B.; Rusli; Yu, M.B.; Cheah, L.K.; Shi, X.

    2000-01-30

    Electron field emission from carbon nanotubes prepared using microwave plasma assisted CVD has been investigated. The nanotubes, ranging from 50 to 120 nm in diameter and a few tens of microns in length, were formed under methane and hydrogen plasma at 720 C with the aid of iron-oxide particles. The morphology and growth direction of the nanotubes are found to be strongly influenced by the flow ratio of methane to hydrogen. However, the electron field emission from these massive nanotubes show similar characteristics, i.e., high emission current at low electric fields.

  2. Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells

    PubMed Central

    Jolly, Caroline; Lakhotia, Subhash C.

    2006-01-01

    Exposure of cells to stressful conditions elicits a highly conserved defense mechanism termed the heat shock response, resulting in the production of specialized proteins which protect the cells against the deleterious effects of stress. The heat shock response involves not only a widespread inhibition of the ongoing transcription and activation of heat shock genes, but also important changes in post-transcriptional processing. In particular, a blockade in splicing and other post-transcriptional processing has been described following stress in different organisms, together with an altered spatial distribution of the proteins involved in these activities. However, the specific mechanisms that regulate these activities under conditions of stress are little understood. Non-coding RNA molecules are increasingly known to be involved in the regulation of various activities in the cell, ranging from chromatin structure to splicing and RNA degradation. In this review, we consider two non-coding RNAs, the hsrω transcripts in Drosophila and the sat III transcripts in human cells, that seem to be involved in the dynamics of RNA-processing factors in normal and/or stressed cells, and thus provide new paradigms for understanding transcriptional and post-transcriptional regulations in normal and stressed cells. PMID:17020918

  3. Geometric modeling of homoepitaxial CVD diamond growth: I. The {1 0 0}{1 1 1}{1 1 0}{1 1 3} system

    NASA Astrophysics Data System (ADS)

    Silva, F.; Bonnin, X.; Achard, J.; Brinza, O.; Michau, A.; Gicquel, A.

    2008-01-01

    Plasma-assisted CVD homoepitaxial diamond growth is a process that must satisfy many stringent requirements to meet industrial applications, particularly in high-power electronics. Purity control and crystalline quality of the obtained samples are of paramount importance and their optimization is a subject of active research. In the process of such studies, we have obtained high purity CVD diamond monocrystals with unusual morphologies, namely with apparent {1 1 3} stable faces. This phenomenon has led us to examine the process of CVD diamond growth and build up a 3D geometrical model, presented here, describing the film growth as a function of time. The model has been able to successfully describe the morphology of our obtained crystals and can be used as a predictive tool to predetermine the shape and size of a diamond crystal grown in a given process configuration. This renders accessible control of desirable properties such as largest usable diamond surface area and/or film thickness, before the cutting and polishing manufacture steps take place. The two latter steps are more sensitive to the geometry of the growth sectors, which will be addressed in a companion paper. Our model, applicable to the growth of any cubic lattice material, establishes a complete mapping of the final morphology state of growing diamond, as a function of the growth rates of the crystalline planes considered, namely {1 0 0}, {1 1 1}, {1 1 0}, and {1 1 3} planes, all of which have been observed experimentally in diamond films. The model makes no claim as to the stability of the obtained faces, such as the occurrence of non-epitaxial crystallites or twinning. It is also possible to deduce transient behavior of the crystal morphology as growth time is increased. The model conclusions are presented in the form of a series of diagrams, which trace the existence (and dominance) boundaries of each face type, in presence of the others, and where each boundary crossing represent a topology

  4. Effects of Time Parameter in Pulse Plasma CVD on Narrow-Chirality Distributed growth of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Kato, Toshiaki; Kaneko, Toshiro

    2015-09-01

    Single-walled carbon nanotubes (SWNTs) are promising materials in industry application, since they have many brilliant characteristics However, since the electronic and optical properties of SWNTs strongly depend on chirality, the selective synthesis of SWNTs with desired chiralities is one of the major challenges in nanotubes science and applications. In this study, time-controlled pulse plasma CVD has been developed aiming for the mass production of narrow chirality distributed SWNTs. Through the comparison of continuous plasma CVD and pulse plasma CVD, it is found that the amount of SWNTs can be increased in keeping with the initial narrow chirality distribution by repeating pulse plasma CVD. The effects of pulse time parameter, plasma off time, on the chirality distribution of SWNTs are also investigated. The chirality distribution becomes narrow with an increase in the plasma off time up to 60 sec, then it becomes broad with an increase in the off time. These indicate, adjustment of plasma time parameter in pulse plasma CVD can improve the uniformity of chirality distribution, resulting in the mass production of very narrow chirality distributed SWNTs. This work was supported by a Grant-in-Aid for JSPS Fellows Grant Number 15J01481.

  5. An overview of the Guangzhou biobank cohort study-cardiovascular disease subcohort (GBCS-CVD): a platform for multidisciplinary collaboration.

    PubMed

    Jiang, C Q; Lam, T H; Lin, J M; Liu, B; Yue, X J; Cheng, K K; Tomlinson, B; Wong, K S; Cheung, B M Y; Thomas, G N

    2010-02-01

    The Guangzhou Biobank Cohort Study (GBCS, n=30 519, age >or=50 years) was established to examine the effects of genetic and environmental influences on health problems and chronic disease development. Guangzhou is undergoing massive economic development, but from a baseline that had remained unchanged for millennia. The Cardiovascular Disease Subcohort (GBCS-CVD) consists of 2000 participants who have been intensively phenotyped including a range of surrogate markers of vascular disease, including carotid artery intima-media thickness, cerebral artery stenoses, arterial stiffness, ankle-to-brachial blood pressure index and albuminuria, as well as coagulatory and inflammatory markers. Plasma and leukocytes are stored in liquid nitrogen for future studies. Preliminary demographic data show the female volunteers are younger than the male ones, but present with greater levels of adiposity including central obesity (31 vs 16%). Women had more body fat (33 vs 24%) and associated levels of adipokines. Despite this, body mass index and hip circumferences were similar, which contrasts with Caucasian populations. Men had more physician-diagnosed vascular disease (6.1 vs 2.5%), hypertension (42 vs 34%) and hyperglycaemia (36.6 vs 29.6%) than the women, but were less insulin resistant. In men, smoking (40 vs 2%) and drinking alcohol (67 vs 50%) was more common and they also had lower energy expenditures. The genotype distributions of the 15 typed single nucleotide polymorphisms were all in Hardy-Weinberg equilibrium. This article describes the rationale and methodology for the study. Given the comprehensive characterization of demographic and psychosocial determinants and biochemistry, the study provides a unique platform for multidisciplinary collaboration in a highly dynamic setting. PMID:19587700

  6. Electronic Transport and Spatial/Temporal Photocurrent in Monolayer Molybdenum Disulfide Grown by CVD

    NASA Astrophysics Data System (ADS)

    Yang, Zhengfeng; Grassi, Roberto; Freitag, Marcus; Lee, Yi-Hsien; Low, Tony; Zhu, Wenjuan

    We systematically investigate the electronic transport in transistors/Hall-bar devices and spatial/temporal photocurrent in photodetectors based on monolayer MoS2 grown by CVD. We found that the maximum photocurrent occurs when laser spot is close to the metal/MoS2 contact and is tunable by the applied drain voltage, which can be explained by the modulation of the local electric field at the Schottky barrier, consistent with predictions from our quantum transport simulation. We observed that the maximum photocurrent at drain contact is much larger than the one at source contact, and the DC currents show rectifying behavior. These phenomena can be explained by the different Schottky barrier heights at the two contacts. By measuring Hall-bar device at various temperatures from 100K to 400K, the extracted barrier height at drain contact is about 50mV larger than the one at source contact, consistent with the photocurrent and DC current observations. Photocurrent was measured at various powers and a photoresponsivity of 3.07 mA/W was extracted at low powers. When the power increases above 20uW, the photocurrent starts to saturate. Temporal response of the photocurrent is also dependent on the laser power. These studies of photocurrents and electronic transport in CVD MoS2 highlight the importance of the contacts in the electronic/optoelectronic devices and reveal the physical mechanism of the photocurrent/electronic transport in these devices.

  7. Experimental characterization of the role of hydrogen in CVD synthesis of CNTs

    SciTech Connect

    Wasel, Wahed; Kuwana, Kazunori; Reilly, Pete; Saito, Kozo

    2006-01-01

    An experimental study was conducted to examine the role of hydrogen in the chemical vapor deposition (CVD) synthesis of multiwalled carbon nanotubes (MWCNTs) in a flow tube reactor using xylene as a carbon source and ferrocene as a catalyst. Ferrocene was introduced into the reactor by two methods. In a single step method, the catalyst was dissolved in xylene and the mixture was introduced using a syringe pump. A two step method was also used where the ferrocene powder was placed in the preheated zone for a certain time to deposit iron catalyst particles on the reactor wall prior to introducing the pure xylene into the reactor. CVD synthesis of carbon products was performed as a function of hydrogen input under constant flow conditions using both methods. SEM and TEM images of the carbon products were examined. The results revealed a competition between the formations of the different carbon products (soot, carbon fibers and CNTs) that altered by the addition of hydrogen. The role of hydrogen is suggested to reduce the rate of carbon production by dehydrogenation so that the more ordered and thermodynamically stable MWCNTs can be produced rather than less ordered and thermodynamically stable soot and carbon fibers.

  8. TEOS surface chemistry on SiO{sub 2} at CVD temperatures and pressures

    SciTech Connect

    Bartrarm, M.E.; Moffat, H.K.

    1995-12-31

    We have developed a significantly improved understanding of thermal TEOS (tetraethylorthosilicate, Si(OCH{sub 2}CH{sub 3}){sub 4}) surface chemistry at CVD (chemical vapor deposition) temperatures and pressures. This was accomplished using GCMS (gas chromatography-mass spectroscopy) and FTIR (Fourier transform infrared spectroscopy) to examine how TEOS reaction rates are influenced by factors critical to the heterogeneous reaction. This included determining the TEOS pressure dependence, testing if reaction by-products inhibit TEOS decomposition, evaluating functional groups on the SiO{sub 2} surface as potential reaction sites, and establishing the functional group coverage dependencies. Our results show that TEOS decomposition rates are first-order in TEOS pressure and independent of the surface reaction by-products and the relative coverages of siloxane bridges (Si-O-Si) and hydroxyls on SiO{sub 2}. These conclusions suggest that a precise knowledge of functional group coverages on SiO{sub 2} is not essential for modeling thermal TEOS decomposition rates at 1000K. In the absence of gas-phase reactions, growth rates should be directly proportional to TEOS pressure. Therefore, it is likely that non-uniform SiO{sub 2} depositions observed in thermal TEOS CVD are due to depletion of TEOS in the gas-phase and/or thermal gradients on the surface.

  9. Does productivity influence priority setting? A case study from the field of CVD prevention.

    PubMed

    Lindholm, Lars; Löfroth, Emil; Rosén, Måns

    2008-01-01

    In this case study, different measures aimed at preventing cardiovascular diseases (CVD) in different target groups have been ranked based on cost per QALY from a health care sector perspective and from a societal perspective, respectively. The innovation in this study is to introduce a budget constraint and thereby show exactly which groups would be included or excluded in treatment or intervention programs based on the two perspectives. Approximately 90% of the groups are included in both perspectives. Mainly elderly women are excluded when the societal perspective is used and mainly middle-aged men are excluded when the health care sector perspective is used. Elderly women have a higher risk of CVD and generally lower income than middle-aged men. Thus the exclusion of older women in the societal perspective is not a trivial consequence since it is in conflict with the general interpretation of the "treatment according to need" rule, as well as societal goals regarding gender equality and fairness. On the other hand, the exclusion of working individuals in the health care perspective undermines a growth of public resources for future health care for the elderly. The extent and consequences of this conflict are unclear and empirical studies of this problem are rare.

  10. Influence of Substrate Microstructure on the Transport Properties of CVD-Graphene.

    PubMed

    Babichev, Andrey V; Rykov, Sergey A; Tchernycheva, Maria; Smirnov, Alexander N; Davydov, Valery Yu; Kumzerov, Yurii A; Butko, Vladimir Y

    2016-01-13

    We report the study of electrical transport in few-layered CVD-graphene located on nanostructured surfaces in view of its potential application as a transparent contact to optoelectronic devices. Two specific surfaces with a different characteristic feature scale are analyzed: semiconductor micropyramids covered with SiO2 layer and opal structures composed of SiO2 nanospheres. Scanning tunneling microscopy (STM) and scanning electron microscopy (SEM), as well as Raman spectroscopy, have been used to determine graphene/substrate surface profile. The graphene transfer on the opal face centered cubic arrangement of spheres with a diameter of 230 nm leads to graphene corrugation (graphene partially reproduces the opal surface profile). This structure results in a reduction by more than 3 times of the graphene sheet conductivity compared to the conductivity of reference graphene located on a planar SiO2 surface but does not affect the contact resistance to graphene. The graphene transfer onto an organized array of micropyramids results in a graphene suspension. Unlike opal, the graphene suspension on pyramids leads to a reduction of both the contact resistance and the sheet resistance of graphene compared to resistance of the reference graphene/flat SiO2 sample. The sample annealing is favorable to improve the contact resistance to CVD-graphene; however, it leads to the increase of its sheet resistance. PMID:26652757

  11. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains.

    PubMed

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-08-28

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS2 single crystals. The thickness of triangle and polygon shape MoS2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS2-based devices.

  12. CVD of pure copper films from novel iso-ureate complexes.

    PubMed

    Willcocks, Alexander M; Pugh, Thomas; Hamilton, Jeff A; Johnson, Andrew L; Richards, Stephen P; Kingsley, Andrew J

    2013-04-21

    We report the synthesis and characterisation of a new family of copper(i) metal precursors based around alkoxy-N,N'-di-alkyl-ureate ligands, and their subsequent application in the production of pure copper thin films. The molecular structure of the complexes bis-copper(i)(methoxy-N,N'-di-isopropylureate) (1) and bis-copper(i)(methoxy-N,N'-di-cyclohexylureate)(5) are described, as determined by single crystal X-ray diffraction analysis. Thermogravimetric analysis of the complexes highlighted complex 1 as a possible copper CVD precursor. Low pressure chemical vapour deposition (LP-CVD) was employed using precursor 1, to synthesise thin films of metallic copper on ruthenium substrates under an atmosphere of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 225 °C, 250 °C and 300 °C, respectively, by SEM and AFM reveal the films to be continuous and pin hole free, and show the presence of temperature dependent growth features on the surface of the thin films. Energy dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (PXRD) and X-ray photoelectron spectroscopy (XPS) all show the films to be high purity metallic copper.

  13. Miniature CVD-diamond corning drills for robotic sample collection and analysis.

    SciTech Connect

    Vaniman, D. T.; Trava-Airoldi, V.J.; Bish, D. L.; Chipera, S. J.

    2003-01-01

    Coring tools have been used etlectivelv on the Moon, but to date no such tools have been used on any other extraterrestrial surface. The lunar experience includes both manual (Apollo) and robotic (Luna) systems . These coring systems were concerned primarily with acquiring samples from depth for return to Earth or for the creation of instrument emplacement holes (e .g ., heat probes). Current designs for planetary drills differ from the lunar tools primarily in that they are integrated with robotic instrumentation for remote analysis, but the role of the drilling or coring system remains one of acquiring samples that must be extracted from the core barrel for analysis . Missing from current sample collection systems is a tool that can double as both a conng device and a sample holder. This dual utility can minimize the number of motions, the mass, and the power required for several classes of instruments in planetary surface exploration. To be effective, such a system must be durable and simple in operation. Hollow CVD diamond drills possess the hardness, excellent cutting properties, and heat resistance required for drilling into a wide variety of rocks and minerals. Because CVD diamond is also unreactive and transparent to infrared radiation and to X-rays of moderate to high energry, it can be used as a sample holder in various instruments for X-ray diffraction (XRD), Xray fluorescence (XRF), infrared spectroscopy, Raman spectroscopy, and thermal analysis.

  14. Morphology, functionality and molecular conformation study of CVD diamond surfaces functionalised with organic linkers and DNA

    NASA Astrophysics Data System (ADS)

    Wenmackers, Sylvia

    This PhD thesis fits within a joint-venture of physicists and biomedical researchers, aimed at the development of diamond-based DNA sensors. CVD diamond was chosen as the substrate material, because a strong covalent carbon-carbon bond can be created in this case, creating a highly stable platform for reusable biosensors or even for continuous monitoring. Moreover, diamond has favourable properties for sensing based on optical (transparency for a large spectral range) as well as electrical signals (semiconductor, stable in aqueous solutions with a wide potential window). The first specific goal for this thesis within the project was to establish the initial functionalisation of CVD diamond surfaces that would allow for the covalent linking of biomolecules, in casu DNA. This was obtained by UV attachement of omega-unsaturated fatty acid molecules (10-undecenoic acid) followed by the use of the zero-length crosslinker EDC to attach amino-modified DNA. The second goal was to characterise the diamond surfaces extensively with physical and (bio-)chemical methods to check the effectiveness of various surface treatments, and to elucidate the molecular organisation of the obtained linker layers and DNA brushes. Point mutation-sensitivity was achieved with end-point fluorescence as well as a real-time label-free electrical sensor prototype. The conformation of the end-tethered DNA molecules was investigated with spectroscopic ellipsometry.

  15. Uniform and selective CVD growth of carbon nanotubes and nanofibres on arbitrarily microstructured silicon surfaces

    NASA Astrophysics Data System (ADS)

    Hart, A. J.; Boskovic, B. O.; Chuang, A. T. H.; Golovko, V. B.; Robertson, J.; Johnson, B. F. G.; Slocum, A. H.

    2006-03-01

    Carbon nanotubes (CNTs) and nanofibres (CNFs) are grown on bulk-micromachined silicon surfaces by thermal and plasma-enhanced chemical vapour deposition (PECVD), with catalyst deposition by electron beam evaporation or from a colloidal solution of cobalt nanoparticles. Growth on the peaked topography of plasma-etched silicon 'micrograss' supports, as well as on sidewalls of vertical structures fabricated by deep-reactive ion etching demonstrates the performance of thermal CVD and PECVD in limiting cases of surface topography. In thermal CVD, uniform films of tangled single-walled CNTs (SWNTs) coat the structures despite oblique-angle effects on the thickness of the catalyst layers deposited by e-beam evaporation. In PECVD, forests of aligned CNFs protrude from areas which are favourably wet by the colloidal catalyst, demonstrating selective growth based on surface texture. These surface preparation principles can be used to grow a wide variety of nanostructures on microstructured surfaces having arbitrary topography, giving substrates with hierarchical microscale and nanoscale surface textures. Such substrates could be used to study cell and neuronal growth, influence liquid-solid wetting behaviour, and as functional elements in microelectronic and micromechanical devices.

  16. Correlation of p-doping in CVD Graphene with Substrate Surface Charges

    PubMed Central

    Goniszewski, S.; Adabi, M.; Shaforost, O.; Hanham, S. M.; Hao, L.; Klein, N.

    2016-01-01

    Correlations between the level of p-doping exhibited in large area chemical vapour deposition (CVD) graphene field effect transistor structures (gFETs) and residual charges created by a variety of surface treatments to the silicon dioxide (SiO2) substrates prior to CVD graphene transfer are measured. Beginning with graphene on untreated thermal oxidised silicon, a minimum conductivity (σmin) occurring at gate voltage Vg = 15 V (Dirac Point) is measured. It was found that more aggressive treatments (O2 plasma and UV Ozone treatments) further increase the gate voltage of the Dirac point up to 65 V, corresponding to a significant increase of the level of p-doping displayed in the graphene. An electrowetting model describing the measured relationship between the contact angle (θ) of a water droplet applied to the treated substrate/graphene surface and an effective gate voltage from a surface charge density is proposed to describe biasing of Vg at σmin and was found to fit the measurements with multiplication of a correction factor, allowing effective non-destructive approximation of substrate added charge carrier density using contact angle measurements. PMID:26956096

  17. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains

    NASA Astrophysics Data System (ADS)

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-08-01

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS2 single crystals. The thickness of triangle and polygon shape MoS2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS2-based devices.

  18. High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide

    NASA Astrophysics Data System (ADS)

    Gong, Yiyang; Carozo, Victor; Li, Haoyu; Terrones, Mauricio; Jackson, Thomas N.

    2016-06-01

    Two-dimensional transition metal dichalcogenides are potential candidates for high-performance flexible electronics. In this paper, we report thin film transistors (TFTs) fabricated on ˜5 μm thick solution-cast polyimide substrates using chemical vapor deposition (CVD) synthesized single layer WS2 as the active layer. The linear region field effect mobility ranges from 2 to 10 cm2 V-1 s-1, with current on-off ratio exceeding 106. By using a thin polyimide substrate, the bending induced tensile stress on our TFTs is relatively small when compared to devices fabricated on thicker flexible substrates. Static bending and up to 50 000 bending/flattening cycles were employed to investigate the reliability of these TFTs for potential flexible electronic applications. Our results demonstrate that CVD grown WS2 TFTs fabricated on thin polyimide have good performance stability for up to 2 mm radius bending and 50 000 bending cycles. It is therefore clear that thin polymeric substrates provide a simple approach for reliable, scalable, and high-performance 2D-TMD-based flexible electronics.

  19. Correlation of p-doping in CVD Graphene with Substrate Surface Charges

    NASA Astrophysics Data System (ADS)

    Goniszewski, S.; Adabi, M.; Shaforost, O.; Hanham, S. M.; Hao, L.; Klein, N.

    2016-03-01

    Correlations between the level of p-doping exhibited in large area chemical vapour deposition (CVD) graphene field effect transistor structures (gFETs) and residual charges created by a variety of surface treatments to the silicon dioxide (SiO2) substrates prior to CVD graphene transfer are measured. Beginning with graphene on untreated thermal oxidised silicon, a minimum conductivity (σmin) occurring at gate voltage Vg = 15 V (Dirac Point) is measured. It was found that more aggressive treatments (O2 plasma and UV Ozone treatments) further increase the gate voltage of the Dirac point up to 65 V, corresponding to a significant increase of the level of p-doping displayed in the graphene. An electrowetting model describing the measured relationship between the contact angle (θ) of a water droplet applied to the treated substrate/graphene surface and an effective gate voltage from a surface charge density is proposed to describe biasing of Vg at σmin and was found to fit the measurements with multiplication of a correction factor, allowing effective non-destructive approximation of substrate added charge carrier density using contact angle measurements.

  20. Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains.

    PubMed

    Hao, Song; Yang, Bingchu; Gao, Yongli

    2016-08-28

    The presence of grain boundaries is inevitable for chemical vapor deposition (CVD)-grown MoS2 domains owing to various merging behaviors, which greatly limits its potential applications in novel electronic and optoelectronic devices. It is therefore of great significance to unravel the merging behaviors of the synthesized polygon shape MoS2 domains. Here we provide systematic investigations of merging behaviors and electrostatic properties of CVD-grown polycrystalline MoS2 crystals by multiple means. Morphological results exhibit various polygon shape features, ascribed to polycrystalline crystals merged with triangle shape MoS2 single crystals. The thickness of triangle and polygon shape MoS2 crystals is identical manifested by Raman intensity and peak position mappings. Three merging behaviors are proposed to illustrate the formation mechanisms of observed various polygon shaped MoS2 crystals. The combined photoemission electron microscopy and kelvin probe force microscopy results reveal that the surface potential of perfect merged crystals is identical, which has an important implication for fabricating MoS2-based devices. PMID:27586938

  1. Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder

    NASA Astrophysics Data System (ADS)

    Vlassiouk, Ivan; Smirnov, Sergei; Ivanov, Ilia; Fulvio, Pasquale F.; Dai, Sheng; Meyer, Harry; Chi, Miaofang; Hensley, Dale; Datskos, Panos; Lavrik, Nickolay V.

    2011-07-01

    In this paper we present a study of graphene produced by chemical vapor deposition (CVD) under different conditions with the main emphasis on correlating the thermal and electrical properties with the degree of disorder. Graphene grown by CVD on Cu and Ni catalysts demonstrates the increasing extent of disorder at low deposition temperatures as revealed by the Raman peak ratio, IG/ID. We relate this ratio to the characteristic domain size, La, and investigate the electrical and thermal conductivity of graphene as a function of La. The electrical resistivity, ρ, measured on graphene samples transferred onto SiO2/Si substrates shows linear correlation with La - 1. The thermal conductivity, K, measured on the same graphene samples suspended on silicon pillars, on the other hand, appears to have a much weaker dependence on La, close to K ~ La1/3. It results in an apparent ρ ~ K3 correlation between them. Despite the progressively increasing structural disorder in graphene grown at lower temperatures, it shows remarkably high thermal conductivity (102-103 W K - 1 m - 1) and low electrical (103-3 × 105 Ω) resistivities suitable for various applications.

  2. Wafer-scalable high-performance CVD graphene devices and analog circuits

    NASA Astrophysics Data System (ADS)

    Tao, Li; Lee, Jongho; Li, Huifeng; Piner, Richard; Ruoff, Rodney; Akinwande, Deji

    2013-03-01

    Graphene field effect transistors (GFETs) will serve as an essential component for functional modules like amplifier and frequency doublers in analog circuits. The performance of these modules is directly related to the mobility of charge carriers in GFETs, which per this study has been greatly improved. Low-field electrostatic measurements show field mobility values up to 12k cm2/Vs at ambient conditions with our newly developed scalable CVD graphene. For both hole and electron transport, fabricated GFETs offer substantial amplification for small and large signals at quasi-static frequencies limited only by external capacitances at high-frequencies. GFETs biased at the peak transconductance point featured high small-signal gain with eventual output power compression similar to conventional transistor amplifiers. GFETs operating around the Dirac voltage afforded positive conversion gain for the first time, to our knowledge, in experimental graphene frequency doublers. This work suggests a realistic prospect for high performance linear and non-linear analog circuits based on the unique electron-hole symmetry and fast transport now accessible in wafer-scalable CVD graphene. *Support from NSF CAREER award (ECCS-1150034) and the W. M. Keck Foundation are appreicated.

  3. Far Ultraviolet and Visible Light Scatter Measurements for CVD Silicon Carbide Mirrors for SOHO

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Gardner, Larry D.

    1998-01-01

    Chemically-vapor-deposited (CVD) silicon carbide (SiC) has become a popular mirror material for spaceborne solar instrumentation for the vacuum ultraviolet wavelength range due to its appreciable broadband reflectance and favorable thermal and opto-mechanical properties. Scatter from surfaces of mirrors operating in this wavelength range can destroy otherwise good image contrast especially for extended targets such as the sun. While visible light scatter measurements are relatively easy to conduct, far ultraviolet (FUV) scatter measurements are not so easy. Visible light (633 nm) scatter measurements were performed on CVD SiC telescope mirrors (from the same vendor) for two instruments on the Solar and Heliospheric Observatory (SOHO) -- Ultraviolet Coronagraph Spectrometer (UVCS) and Solar Ultraviolet Measurement of Emitted Radiation (SUMER). Additionally, extensive FUV scatter measurements were made for SUMER telescope mirrors. We attempt to correlate the results for those visible light scatter measurements and to explore the usefulness of visible scatter measurements to predictions of FUV scatter for this important material.

  4. Faraday effect of bismuth iron garnet thin film prepared by mist CVD method

    NASA Astrophysics Data System (ADS)

    Yao, Situ; Sato, Takafumi; Kaneko, Kentaro; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa

    2015-06-01

    Metastable bismuth iron garnet (BIG, an abbreviation of Bi3Fe5O12), one kind of garnet-type ferrites, is known to manifest very large Faraday rotation as well as low optical absorption in the visible to infrared region. We report on successful synthesis of thin film composed of single-phase BIG epitaxially grown on single-crystalline gadolinium gallium garnet (Gd3Ga5O12, GGG) substrate by using mist chemical vapor deposition (CVD) method, which is an emerging technique for preparation of thin films. The crystal structure, surface morphology, and magnetic, optical and magneto-optical properties of the resultant thin films have been explored. The BIG thin film has a relatively flat surface free from roughness compared to those prepared by other vapor deposition methods. Saturation magnetization is about 1620 G at room temperature, which is close to that expected from the ideal magnetic structure of BIG. The maximum value of Faraday rotation angle reaches 54.3 deg/µm at a wavelength of 424 nm. This value is rather large when compared with those reported for BIG thin films prepared by other techniques. The wavelength dependence of Faraday rotation angle is analyzed well in terms of the crystal electric field (CEF) level schema. Our result suggests that the mist CVD method is a simple and effective technique to synthesize BIG thin film with excellent magneto-optical properties.

  5. High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide

    NASA Astrophysics Data System (ADS)

    Gong, Yiyang; Carozo, Victor; Li, Haoyu; Terrones, Mauricio; Jackson, Thomas N.

    2016-06-01

    Two-dimensional transition metal dichalcogenides are potential candidates for high-performance flexible electronics. In this paper, we report thin film transistors (TFTs) fabricated on ∼5 μm thick solution-cast polyimide substrates using chemical vapor deposition (CVD) synthesized single layer WS2 as the active layer. The linear region field effect mobility ranges from 2 to 10 cm2 V‑1 s‑1, with current on–off ratio exceeding 106. By using a thin polyimide substrate, the bending induced tensile stress on our TFTs is relatively small when compared to devices fabricated on thicker flexible substrates. Static bending and up to 50 000 bending/flattening cycles were employed to investigate the reliability of these TFTs for potential flexible electronic applications. Our results demonstrate that CVD grown WS2 TFTs fabricated on thin polyimide have good performance stability for up to 2 mm radius bending and 50 000 bending cycles. It is therefore clear that thin polymeric substrates provide a simple approach for reliable, scalable, and high-performance 2D-TMD-based flexible electronics.

  6. Common Cause Failure Modeling

    NASA Technical Reports Server (NTRS)

    Hark, Frank; Britton, Paul; Ring, Robert; Novack, Steven

    2015-01-01

    Space Launch System (SLS) Agenda: Objective; Key Definitions; Calculating Common Cause; Examples; Defense against Common Cause; Impact of varied Common Cause Failure (CCF) and abortability; Response Surface for various CCF Beta; Takeaways.

  7. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  8. Level of incongruence during cardiac rehabilitation and prediction of future CVD-related hospitalizations plus all-cause mortality.

    PubMed

    Meyer, Fiorenza A; Stauber, Stefanie; Wilhelm, Matthias; Znoj, Hansjörg; von Känel, Roland

    2015-01-01

    Independent of traditional risk factors, psychosocial risk factors increase the risk of cardiovascular disease (CVD). Studies in the field of psychotherapy have shown that the construct of incongruence (meaning a discrepancy between desired and achieved goals) affects the outcome of therapy. We prospectively measured the impact of incongruence in patients after undergoing a cardiac rehabilitation program. We examined 198 CVD patients enrolled in a 8-12 week comprehensive cardiac rehabilitation program. Patients completed the German short version of the Incongruence Questionnaire and the SF-36 Health Questionnaire to measure quality of life (QoL) at discharge of rehabilitation. Endpoints at follow-up were CVD-related hospitalizations plus all-cause mortality. During a mean follow-up period of 54.3 months, 29 patients experienced a CVD-related hospitalization and 3 patients died. Incongruence at discharge of rehabilitation was independent of traditional risk factors a significant predictor for CVD-related hospitalizations plus all-cause mortality (HR 2.03, 95% CI 1.29-3.20, p = .002). We also found a significant interaction of incongruence with mental QoL (HR .96, 95% CI .92-.99, p = .027), i.e. incongruence predicted poor prognosis if QoL was low (p = .017), but not if QoL was high (p = .74). Incongruence at discharge predicted future CVD-related hospitalizations plus all-cause mortality and mental QoL moderated this relationship. Therefore, incongruence should be considered for effective treatment planning and outcome measurement.

  9. Common Career Technical Core: Common Standards, Common Vision for CTE

    ERIC Educational Resources Information Center

    Green, Kimberly

    2012-01-01

    This article provides an overview of the National Association of State Directors of Career Technical Education Consortium's (NASDCTEc) Common Career Technical Core (CCTC), a state-led initiative that was created to ensure that career and technical education (CTE) programs are consistent and high quality across the United States. Forty-two states,…

  10. CVD growth of carbon nanotubes on thin-film Ni20Ti35N45 alloy catalyst

    NASA Astrophysics Data System (ADS)

    Gromov, D. G.; Pavlov, A. A.; Skorik, S. N.; Trifonov, A. Yu.; Shulyat'ev, A. S.

    2015-12-01

    The possibility of forming carbon nanotube (CNT) arrays on a Ni-Ti-N catalytic alloy with low nickel content by chemical vapor deposition (CVD) is demonstrated. Adding nitrogen to the Ni-Ti alloy composition favors the formation of TiN compound and segregation of Ni on the surface, where it produces a catalytic effect on the CNT growth. It is found that, using CVD from acetylene gas phase at a substrate temperature of 650°C, a CNT array of 9-µm height can be grown for 2 min.

  11. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality.

    PubMed

    Mayhew, Alexandra J; de Souza, Russell J; Meyre, David; Anand, Sonia S; Mente, Andrew

    2016-01-28

    Dietary patterns containing nuts are associated with a lower risk of CVD mortality, and increased nut consumption has been shown to have beneficial effects on CVD risk factors including serum lipid levels. Recent studies have reported on the relationship between nut intake and CVD outcomes and mortality. Our objective was to systematically review the literature and quantify associations between nut consumption and CVD outcomes and all-cause mortality. Five electronic databases (through July 2015), previous reviews and bibliographies of qualifying articles were searched. In the twenty included prospective cohort studies (n 467 389), nut consumption was significantly associated with a lower risk of all-cause mortality (ten studies; risk ratio (RR) 0·81; 95 % CI 0·77, 0·85 for highest v. lowest quantile of intake, P het=0·04, I 2=43 %), CVD mortality (five studies; RR 0·73; 95 % CI 0·68, 0·78; P het=0·31, I 2=16 %), all CHD (three studies; RR 0·66; 95 % CI 0·48, 0·91; P het=0·0002, I 2=88 %) and CHD mortality (seven studies; RR 0·70; 95 % CI 0·64, 0·76; P het=0·65, I 2=0 %), as well as a statistically non-significant reduction in the risk of non-fatal CHD (three studies; RR 0·71; 95 % CI 0·49, 1·03; P het=0·03, I 2=72 %) and stroke mortality (three studies; RR 0·83; 95 % CI 0·69, 1·00; P het=0·54, I 2=0 %). No evidence of association was found for total stroke (two studies; RR 1·05; 95 % CI 0·69, 1·61; P het=0·04, I 2=77 %). Data on total CVD and sudden cardiac death were available from one cohort study, and they were significantly inversely associated with nut consumption. In conclusion, we found that higher nut consumption is associated with a lower risk of all-cause mortality, total CVD, CVD mortality, total CHD, CHD mortality and sudden cardiac death.

  12. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  13. Effect of microstructure on the corrosion of CVD-SiC exposed to supercritical water

    NASA Astrophysics Data System (ADS)

    Tan, L.; Allen, T. R.; Barringer, E.

    2009-10-01

    Silicon carbide (SiC) is an important engineering material being studied for potential use in multiple nuclear energy systems including high-temperature gas-cooled reactors and water-cooled reactors. The corrosion behavior of SiC exposed to supercritical water (SCW) is critical for examining its applications in nuclear reactors. Although the hydrothermal corrosion of SiC has been the subject of many investigations, the study on the microstructural effects on the corrosion is limited. This paper presents the effect of residual strain, grain size, grain boundary types, and surface orientations on the corrosion of chemical vapor deposited (CVD) β-SiC exposed to SCW at 500 °C and 25 MPa. Weight loss occurred on all the samples due to localized corrosion. Residual strains associated with small grains showed the most significant effect on the corrosion compared to the other factors.

  14. Design and application of CVD diamond windows for x-rays at the Advanced Photon Source.

    SciTech Connect

    Jaski, Y.; Cookson, D.; Experimental Facilities Division; Univ. of Chicago

    2007-01-01

    Two types of directly cooled, 0.2-mm-thick, 8-mm-diameter clear aperture CVD diamond windows have been designed and successfully fabricated by two different vendors for use at the Advanced Photon Source (APS). Both windows contain a direct braze joint between the diamond and the cooled OFHC copper. These windows can be used to replace the front-end beryllium windows in high-heat-load applications and can be used as white beam windows in the beamlines. This paper presents the detailed design of the diamond windows, the thermal analysis of the diamond window under different thermal load configurations, as well as a complete list of the existing APS front-end beryllium window configurations and replacement scenarios. Small-angle scattering experiments have been conducted on both diamond windows and a polished beryllium window, and the results are presented.

  15. Giant blue shifted photoluminescence peak from the edges of CVD grown monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yore, Alexander; Crumrine, Wendy; Smithe, Kirby; Pop, Eric; Wang, Bin; Newaz, Akm

    To probe the electronic and optical properties of direct band-gap monolayer transition metal dichalcogenides, such as band structure and excitons, micro-photoluminescence spectroscopy has become an attractive and standard tool. Here, we present our experimental work on spatial scanning of photoluminescence of monolayer MoS2 grown by chemical vapor deposition (CVD) using an ultrasmall blue laser (wavelength 405 nm) beam spot with beam diameter as small as ~ 200 nm. We have observed a giant blue shift, as large as ~ 40 nm or ~ 100 meV, of the A-excitonic peak in the photoluminescence spectra from the edges when compared to luminescence from the inside. This giant blue shift may result from the following: (i) compressive strain at the edges; (ii) the enhanced dielectric screening caused by the increased electron density at the metallic Mo-edges; and (iii) chemical impurities.

  16. Fabrication of Fe nanowires on yittrium-stabilized zirconia single crystal substrates by thermal CVD methods

    SciTech Connect

    Kawahito, A.; Yanase, T.; Endo, T.; Nagahama, T.; Shimada, T.

    2015-05-07

    Magnetic nanowires (NWs) are promising as material for use in spintronics and as the precursor of permanent magnets because they have unique properties due to their high aspect ratio. The growth of magnetic Fe whiskers was reported in the 1960s, but the diameter was not on a nanoscale level and the growth mechanism was not fully elucidated. In the present paper, we report the almost vertical growth of Fe NWs on a single crystal yttrium-stabilized zirconia (Y{sub 0.15}Zr{sub 0.85}O{sub 2}) by a thermal CVD method. The NWs show a characteristic taper part on the bottom growing from a trigonal pyramidal nucleus. The taper angle and length can be controlled by changing the growth condition in two steps, which will lead to obtaining uniformly distributed thin Fe NWs for applications.

  17. Ultrasonic cavity preparation using CVD coated diamond bur: A case report

    PubMed Central

    de Vasconcellos, Beatriz Tholt; Thompson, Jeffrey Y.; de Paula Macedo, Manoel Roberto; de Oliveira Maia, Janaína Monalisa; Oda, Margareth; Garone-Netto, Narciso

    2013-01-01

    Before any restorative procedure can be undertaken a proper cavity preparation is required. This clinical step is the mechanical alteration of the tooth to receive a restorative material with which a satisfactory form, function and the esthetics of the tooth will be established. In recent years improvements in materials and techniques have been devised and new technologies are now available for this purpose. The aim of the present study is to report two clinical cases in which a CVD coated diamond bur coupled to an ultrasonic handpiece is used in dental preparation. This technique provides an accurate and conservative tooth preparation with ideal access and visibility and because of enhanced efficiency can also play a role in eliminating some of the patient discomfort of the dental treatment. PMID:23408140

  18. Morphological Engineering of CVD-Grown Transition Metal Dichalcogenides for Efficient Electrochemical Hydrogen Evolution.

    PubMed

    Ji, Qingqing; Zhang, Yu; Shi, Jianping; Sun, Jingyu; Zhang, Yanfeng; Liu, Zhongfan

    2016-08-01

    2D layered transition metal dichalcogenides (TMDCs) have emerged as new possibilites beyond conventional particulate catalysts in facilitating efficient electrochemical hydrogen evolution. This is mainly mediated by the ultrahigh surface-to-volume ratio and the effective coupling of all active sites with supporting electrodes. Especially, the facile chemical vapor deposition (CVD) method has enabled morphological engineering of monolayer TMDC catalysts toward development of abundant active edge sites within the 2D plane. Here, two pathways to achieve such purpose are highlighted, either by non-equilibrium growth of MoS2 dendrites or throughout high-density nucleation of MoS2 nanoflakes directly on the electrode materials. Furthermore, future research directions have also been proposed and discussed to further enhance the efficiency of such unique catalysts.

  19. Ultrasonic cavity preparation using CVD coated diamond bur: A case report.

    PubMed

    de Vasconcellos, Beatriz Tholt; Thompson, Jeffrey Y; de Paula Macedo, Manoel Roberto; de Oliveira Maia, Janaína Monalisa; Oda, Margareth; Garone-Netto, Narciso

    2013-01-01

    Before any restorative procedure can be undertaken a proper cavity preparation is required. This clinical step is the mechanical alteration of the tooth to receive a restorative material with which a satisfactory form, function and the esthetics of the tooth will be established. In recent years improvements in materials and techniques have been devised and new technologies are now available for this purpose. The aim of the present study is to report two clinical cases in which a CVD coated diamond bur coupled to an ultrasonic handpiece is used in dental preparation. This technique provides an accurate and conservative tooth preparation with ideal access and visibility and because of enhanced efficiency can also play a role in eliminating some of the patient discomfort of the dental treatment.

  20. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    SciTech Connect

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas; Gagnon-Moisan, Francis

    2015-01-13

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E{sub n} ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics.