Sample records for common design elements

  1. Identifying Common Practice Elements to Improve Social, Emotional, and Behavioral Outcomes of Young Children in Early Childhood Classrooms.

    PubMed

    McLeod, Bryce D; Sutherland, Kevin S; Martinez, Ruben G; Conroy, Maureen A; Snyder, Patricia A; Southam-Gerow, Michael A

    2017-02-01

    Educators are increasingly being encouraged to implement evidence-based interventions and practices to address the social, emotional, and behavioral needs of young children who exhibit problem behavior in early childhood settings. Given the nature of social-emotional learning during the early childhood years and the lack of a common set of core evidence-based practices within the early childhood literature, selection of instructional practices that foster positive social, emotional, and behavioral outcomes for children in early childhood settings can be difficult. The purpose of this paper is to report findings from a study designed to identify common practice elements found in comprehensive intervention models (i.e., manualized interventions that include a number of components) or discrete practices (i.e., a specific behavior or action) designed to target social, emotional, and behavioral learning of young children who exhibit problem behavior. We conducted a systematic review of early childhood classroom interventions that had been evaluated in randomized group designs, quasi-experimental designs, and single-case experimental designs. A total of 49 published articles were identified, and an iterative process was used to identify common practice elements. The practice elements were subsequently reviewed by experts in social-emotional and behavioral interventions for young children. Twenty-four practice elements were identified and classified into content (the goal or general principle that guides a practice element) and delivery (the way in which a teacher provides instruction to the child) categories. We discuss implications that the identification of these practice elements found in the early childhood literature has for efforts to implement models and practices.

  2. Sports Fields: A Manual for Design Construction and Maintenance.

    ERIC Educational Resources Information Center

    Puhalla, Jim; Krans, Jeff; Goatley, Mike

    Comprehensive technical reference information is provided for those responsible for the design, construction, renovation, or maintenance of sports grounds. Chapters illustrate specific design elements of all popular sports facilities, and explain how those elements are integrated in a successful project; explore commonly encountered sports field…

  3. The Elements and Principles of Design: A Baseline Study

    ERIC Educational Resources Information Center

    Adams, Erin

    2013-01-01

    Critical to the discipline, both professionally and academically, are the fundamentals of interior design. These fundamentals include the elements and principles of interior design: the commonly accepted tools and vocabulary used to create and communicate successful interior environments. Research indicates a lack of consistency in both the…

  4. The study design elements employed by researchers in preclinical animal experiments from two research domains and implications for automation of systematic reviews.

    PubMed

    O'Connor, Annette M; Totton, Sarah C; Cullen, Jonah N; Ramezani, Mahmood; Kalivarapu, Vijay; Yuan, Chaohui; Gilbert, Stephen B

    2018-01-01

    Systematic reviews are increasingly using data from preclinical animal experiments in evidence networks. Further, there are ever-increasing efforts to automate aspects of the systematic review process. When assessing systematic bias and unit-of-analysis errors in preclinical experiments, it is critical to understand the study design elements employed by investigators. Such information can also inform prioritization of automation efforts that allow the identification of the most common issues. The aim of this study was to identify the design elements used by investigators in preclinical research in order to inform unique aspects of assessment of bias and error in preclinical research. Using 100 preclinical experiments each related to brain trauma and toxicology, we assessed design elements described by the investigators. We evaluated Methods and Materials sections of reports for descriptions of the following design elements: 1) use of comparison group, 2) unit of allocation of the interventions to study units, 3) arrangement of factors, 4) method of factor allocation to study units, 5) concealment of the factors during allocation and outcome assessment, 6) independence of study units, and 7) nature of factors. Many investigators reported using design elements that suggested the potential for unit-of-analysis errors, i.e., descriptions of repeated measurements of the outcome (94/200) and descriptions of potential for pseudo-replication (99/200). Use of complex factor arrangements was common, with 112 experiments using some form of factorial design (complete, incomplete or split-plot-like). In the toxicology dataset, 20 of the 100 experiments appeared to use a split-plot-like design, although no investigators used this term. The common use of repeated measures and factorial designs means understanding bias and error in preclinical experimental design might require greater expertise than simple parallel designs. Similarly, use of complex factor arrangements creates novel challenges for accurate automation of data extraction and bias and error assessment in preclinical experiments.

  5. Practical Considerations for Using Constant Force Springs in Space-Based Mechanisms

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Fisher, Charles D.; Gallon, John C.

    2013-01-01

    Mechanical springs are a common element in mechanism from all walks of life; cars, watches, appliances, and many others. These springs generally exhibit a linear relationship between force and deflection. In small mechanisms, deflections are small so the variation in spring force between one position and another are generally small and do not influence the design or functionality of the device. However, as the spacecraft industry drives towards larger, deployable satellites, the distances a spring or springs must function over can become considerable so much so that the structural integrity of the device may be impacted. As such, an increasingly common mechanism element is the constant force spring- one that provides a constant force regardless of deflection. These elements are commonly in the conceptual design phase to deal with system-level large deflections, but in the detailed design or integration test phase they can pose significant implementation issues. This article addresses some of the detailed issues in order for these constant force springs to be properly designed into space systems.

  6. Improving the value of clinical research through the use of Common Data Elements.

    PubMed

    Sheehan, Jerry; Hirschfeld, Steven; Foster, Erin; Ghitza, Udi; Goetz, Kerry; Karpinski, Joanna; Lang, Lisa; Moser, Richard P; Odenkirchen, Joanne; Reeves, Dianne; Rubinstein, Yaffa; Werner, Ellen; Huerta, Michael

    2016-12-01

    The use of Common Data Elements can facilitate cross-study comparisons, data aggregation, and meta-analyses; simplify training and operations; improve overall efficiency; promote interoperability between different systems; and improve the quality of data collection. A Common Data Element is a combination of a precisely defined question (variable) paired with a specified set of responses to the question that is common to multiple datasets or used across different studies. Common Data Elements, especially when they conform to accepted standards, are identified by research communities from variable sets currently in use or are newly developed to address a designated data need. There are no formal international specifications governing the construction or use of Common Data Elements. Consequently, Common Data Elements tend to be made available by research communities on an empiric basis. Some limitations of Common Data Elements are that there may still be differences across studies in the interpretation and implementation of the Common Data Elements, variable validity in different populations, and inhibition by some existing research practices and the use of legacy data systems. Current National Institutes of Health efforts to support Common Data Element use are linked to the strengthening of National Institutes of Health Data Sharing policies and the investments in data repositories. Initiatives include cross-domain and domain-specific resources, construction of a Common Data Element Portal, and establishment of trans-National Institutes of Health working groups to address technical and implementation topics. The National Institutes of Health is seeking to lower the barriers to Common Data Element use through greater awareness and encourage the culture change necessary for their uptake and use. As National Institutes of Health, other agencies, professional societies, patient registries, and advocacy groups continue efforts to develop and promote the responsible use of Common Data Elements, particularly if linked to accepted data standards and terminologies, continued engagement with and feedback from the research community will remain important. © The Author(s) 2016.

  7. Toward New Magnesium Alloy Design - Theoretical and Experimental Studies of the Influence of Alloying Elements on Deformation Twinning

    DTIC Science & Technology

    2013-03-27

    Research Office (W911NF-12-1-0023). Ab initio calculations have been performed to study the effects of solute atoms on the c/a ratio of magnesium alloys ... effects of alloying elements on the c/a ratio of magnesium were performed. The most commonly and extensively used alloying elements such as Al, Mn, and... Magnesium Alloy Design - Theoretical and Experimental Studies of the Influence of Alloying Elements on Deformation Twinning M.F. Horstemeyer

  8. Library Homepage Design at Smaller Bachelor of Arts Institutions

    ERIC Educational Resources Information Center

    Jones, Scott L.; Leonard, Kirsten

    2011-01-01

    This study examined the homepages of the libraries of 175 smaller bachelor of arts institutions, coding for the presence of 98 design elements. By reporting and examining the frequency of these features, the authors noted what is and is not common practice at these libraries. They found that only fourteen elements were present on at least half of…

  9. Cognitive Task Analysis of the Battalion Level Visualization Process

    DTIC Science & Technology

    2007-10-01

    of the visualization space are identified using commonly understood doctrinal language and mnemonic devices. a Degree to which the commander and staff...the elements of the visualization space are identified using commonly understood doctrinal language and mnemonic devices. Visualization elements are...11 skill areas were identified as potential focal points for future training development. The findings were used to design and develop exemplar

  10. Limits of Generalizing in Education Research: Why Criteria for Research Generalization Should Include Population Heterogeneity and Uses of Knowledge Claims

    ERIC Educational Resources Information Center

    Ercikan, Kadriye; Roth, Wolff-Michael

    2014-01-01

    Context: Generalization is a critical concept in all research designed to generate knowledge that applies to all elements of a unit (population) while studying only a subset of these elements (sample). Commonly applied criteria for generalizing focus on experimental design or representativeness of samples of the population of units. The criteria…

  11. How Many Words Does a Picture Really Tell? Cross-sectional Descriptive Study of Pictogram Evaluation by Youth.

    PubMed

    Korenevsky, Artyom; Vaillancourt, Régis; Pouliot, Annie; Revol, Marine; Steed, Evan; Besançon, Luc; Wahrendorf, Marit-Saskia; Patel, Jaimisha R

    2013-07-01

    Communicating health-related instructions with pictograms is useful, but such graphics can be interpreted in different ways. It is crucial to understand which pictogram components are best for accurate communication. To catalogue pictograms used to label drugs in clinical practice; to identify the common graphic elements for defined categories of pictograms, by performing a semiotic analysis (studying how signs are perceived and how they should be designed); to identify the key graphic elements common to pictograms preferred by users; and to develop suggestions for future pictogram design on the basis of users' input. Literature and Internet searches were performed to identify pictograms and pictogram categories. A call for pictograms was also circulated through the International Pharmaceutical Federation (FIP). Youth at a Canadian pediatric hospital were asked to rate pictograms (including storyboards and prescription labels generated by FIP pictogram software) in terms of how best they represented their intended meanings. Pictograms for which at least 80% of participants "somewhat agreed", "agreed", or "strongly agreed" that the graphic conveyed the intended meaning were designated as "preferred" and were selected for analysis. Elements appearing in at least 50% of these preferred pictograms were highlighted as key graphic elements for design of future pictograms. In total, 21 categories were identified for pictograms used in clinical practice, and a total of 204 pictograms were analyzed. Eighty-six participants took part in the survey. For each pictogram category, certain elements were identified as "preferred" and as "key graphic elements", whereas other elements met neither designation. For all 21 pictogram categories, at least 80% of survey respondents agreed that the FIP storyboard conveyed the intended meaning. Certain key, preferred graphic elements are required for pharmaceutical pictograms to convey their intended meaning. The overlap between preferred and key pictogram elements indicates that both must be considered in development of future pictograms. Redesign of existing pictograms with consideration of the best semiotic elements is in progress.

  12. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  13. NASA Ares 1 Crew Launch Vehicle Upper Stage Configuration Selection Process

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.

    2006-01-01

    The Upper Stage Element of NASA s Ares I Crew Launch Vehicle (CLV) is a "clean-sheet" approach that is being designed and developed in-house, with Element management at MSFC. The USE concept is a self-supporting cylindrical structure, approximately 115 long and 216" in diameter. While the Reusable Solid Rocket Booster (RSRB) design has changed since the CLV inception, the Upper Stage Element design has remained essentially a clean-sheet approach. Although a clean-sheet upper stage design inherently carries more risk than a modified design, it does offer many advantages: a design for increased reliability; built-in extensibility to allow for commonality/growth without major redesign; and incorporation of state-of-the-art materials, hardware, and design, fabrication, and test techniques and processes to facilitate a potentially better, more reliable system.

  14. The Data Gap in the EHR for Clinical Research Eligibility Screening.

    PubMed

    Butler, Alex; Wei, Wei; Yuan, Chi; Kang, Tian; Si, Yuqi; Weng, Chunhua

    2018-01-01

    Much effort has been devoted to leverage EHR data for matching patients into clinical trials. However, EHRs may not contain all important data elements for clinical research eligibility screening. To better design research-friendly EHRs, an important step is to identify data elements frequently used for eligibility screening but not yet available in EHRs. This study fills this knowledge gap. Using the Alzheimer's disease domain as an example, we performed text mining on the eligibility criteria text in Clinicaltrials.gov to identify frequently used eligibility criteria concepts. We compared them to the EHR data elements of a cohort of Alzheimer's Disease patients to assess the data gap by usingthe OMOP Common Data Model to standardize the representations for both criteria concepts and EHR data elements. We identified the most common SNOMED CT concepts used in Alzheimer 's Disease trials, andfound 40% of common eligibility criteria concepts were not even defined in the concept space in the EHR dataset for a cohort of Alzheimer 'sDisease patients, indicating a significant data gap may impede EHR-based eligibility screening. The results of this study can be useful for designing targeted research data collection forms to help fill the data gap in the EHR.

  15. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  16. Supporting Creative Responses in Design Education--The Development and Application of the Graphic Design Composition Method

    ERIC Educational Resources Information Center

    Lu, Hui-Ping; Chen, Jun-Hong; Lee, Chang-Franw

    2016-01-01

    Inspiration is the primary element of good design. Designers, however, also risk not being able to find inspiration. Novice designers commonly find themselves to be depressed during the conceptual design phase when they fail to find inspiration and the information to be creative. Accordingly, under the graphic design parameter, we have developed…

  17. NATAL-74; Towards a Common Programming Language for CAL.

    ERIC Educational Resources Information Center

    Brahan, J. W.; Colpitts, B. A.

    NATAL-74 is a programing language designed for Canadian computer aided learning (CAL) programs. The language has two fundamental elements: the UNIT provides the interface between the student and the subject matter, and the PROCEDURE element embodies teaching strategy. Desirable features of several programing languages have been adapted to cope…

  18. School Restructuring: What Works When? A Guide for Education Leaders

    ERIC Educational Resources Information Center

    Hassel, Emily Ayscue; Hassel, Bryan C.; Arkin, Matthew D.; Kowal, Julie M.; Steiner, Lucy M.

    2009-01-01

    Studies of high-performing schools, where all students learn more than similar students in other schools, show common design elements. These elements are comprehensive, affecting the whole school, and include: (1) Clear mission guiding daily activities; (2) High, unyielding expectations that all students will learn; (3) Frequent monitoring of…

  19. Forum Guide to Core Finance Data Elements. NFES 2007-801

    ERIC Educational Resources Information Center

    National Forum on Education Statistics, 2007

    2007-01-01

    This document provides an overview of key finance data terms and is designed to accompany the "Financial Accounting for Local and State School Systems: 2003 Edition" by identifying common reporting requirements and defining frequently used indicators and calculations using data elements from accounting and other data systems. It also…

  20. Finite Element Analysis and Optimization of Flexure Bearing for Linear Motor Compressor

    NASA Astrophysics Data System (ADS)

    Khot, Maruti; Gawali, Bajirao

    Nowadays linear motor compressors are commonly used in miniature cryocoolers instead of rotary compressors because rotary compressors apply large radial forces to the piston, which provide no useful work, cause large amount of wear and usually require lubrication. Recent trends favour flexure supported configurations for long life. The present work aims at designing and geometrical optimization of flexure bearings using finite element analysis and the development of design charts for selection purposes. The work also covers the manufacturing of flexures using different materials and the validation of the experimental finite element analysis results.

  1. Guidelines and Capabilities for Designing Human Missions

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  2. Guidelines and Capabilities for Designing Human Missions

    NASA Astrophysics Data System (ADS)

    2002-03-01

    The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.

  3. How Many Words Does a Picture Really Tell? Cross-sectional Descriptive Study of Pictogram Evaluation by Youth

    PubMed Central

    Korenevsky, Artyom; Vaillancourt, Régis; Pouliot, Annie; Revol, Marine; Steed, Evan; Besançon, Luc; Wahrendorf, Marit-Saskia; Patel, Jaimisha R

    2013-01-01

    Background Communicating health-related instructions with pictograms is useful, but such graphics can be interpreted in different ways. It is crucial to understand which pictogram components are best for accurate communication. Objectives: To catalogue pictograms used to label drugs in clinical practice; to identify the common graphic elements for defined categories of pictograms, by performing a semiotic analysis (studying how signs are perceived and how they should be designed); to identify the key graphic elements common to pictograms preferred by users; and to develop suggestions for future pictogram design on the basis of users’ input. Methods: Literature and Internet searches were performed to identify pictograms and pictogram categories. A call for pictograms was also circulated through the International Pharmaceutical Federation (FIP). Youth at a Canadian pediatric hospital were asked to rate pictograms (including storyboards and prescription labels generated by FIP pictogram software) in terms of how best they represented their intended meanings. Pictograms for which at least 80% of participants “somewhat agreed”, “agreed”, or “strongly agreed” that the graphic conveyed the intended meaning were designated as “preferred” and were selected for analysis. Elements appearing in at least 50% of these preferred pictograms were highlighted as key graphic elements for design of future pictograms. Results: In total, 21 categories were identified for pictograms used in clinical practice, and a total of 204 pictograms were analyzed. Eighty-six participants took part in the survey. For each pictogram category, certain elements were identified as “preferred” and as “key graphic elements”, whereas other elements met neither designation. For all 21 pictogram categories, at least 80% of survey respondents agreed that the FIP storyboard conveyed the intended meaning. Conclusions: Certain key, preferred graphic elements are required for pharmaceutical pictograms to convey their intended meaning. The overlap between preferred and key pictogram elements indicates that both must be considered in development of future pictograms. Redesign of existing pictograms with consideration of the best semiotic elements is in progress. PMID:23950605

  4. Specific coil design for SENSE: a six-element cardiac array.

    PubMed

    Weiger, M; Pruessmann, K P; Leussler, C; Röschmann, P; Boesiger, P

    2001-03-01

    In sensitivity encoding (SENSE), the effects of inhomogeneous spatial sensitivity of surface coils are utilized for signal localization in addition to common Fourier encoding using magnetic field gradients. Unlike standard Fourier MRI, SENSE images exhibit an inhomogeneous noise distribution, which crucially depends on the geometrical sensitivity relations of the coils used. Thus, for optimum signal-to-noise-ratio (SNR) and noise homogeneity, specialized coil configurations are called for. In this article we study the implications of SENSE imaging for coil layout by means of simulations and imaging experiments in a phantom and in vivo. New, specific design principles are identified. For SENSE imaging, the elements of a coil array should be smaller than for common phased-array imaging. Furthermore, adjacent coil elements should not overlap. Based on the findings of initial investigations, a configuration of six coils was designed and built specifically for cardiac applications. The in vivo evaluation of this array showed a considerable SNR increase in SENSE images, as compared with a conventional array. Magn Reson Med 45:495-504, 2001. Copyright 2001 Wiley-Liss, Inc.

  5. Discovery deep space optical communications (DSOC) transceiver

    NASA Astrophysics Data System (ADS)

    Roberts, W. Thomas

    2017-02-01

    NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.

  6. Lost by Design.

    PubMed

    Ciacci, Luca; Reck, Barbara K; Nassar, N T; Graedel, T E

    2015-08-18

    In some common uses metals are lost by intent-copper in brake pads, zinc in tires, and germanium in retained catalyst applications being examples. In other common uses, metals are incorporated into products in ways for which no viable recycling approaches exist, examples include selenium in colored glass and vanadium in pigments. To determine quantitatively the scope of these "losses by design", we have assessed the major uses of 56 metals and metalloids, assigning each use to one of three categories: in-use dissipation, currently unrecyclable when discarded, or potentially recyclable when discarded. In-use dissipation affects fewer than a dozen elements (including mercury and arsenic), but the spectrum of elements dissipated increases rapidly if applications from which they are currently unrecyclable are considered. In many cases the resulting dissipation rates are higher than 50%. Among others, specialty metals (e.g., gallium, indium, and thallium) and some heavy rare earth elements are representative of modern technology, and their loss provides a measure of the degree of unsustainability in the contemporary use of materials and products. Even where uses are currently compatible with recycling technologies and approaches, end of life recycling rates are in most cases well below those that are potentially achievable. The outcomes of this research provide guidance in identifying product design approaches for reducing material losses so as to increase element recovery at end-of-life.

  7. The Benefits of Nuclear Thermal Propulsion (NTP) in an Evolvable Mars Campaign

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Mccurdy, David R.

    2014-01-01

    NTR: High thrust high specific impulse (2 x LOXLH2chemical) engine uses high power density fission reactor with enriched uranium fuel as thermal power source. Reactor heat is removed using H2propellant which is then exhausted to produce thrust. Conventional chemical engine LH2tanks, turbopumps, regenerative nozzles and radiation-cooled shirt extensions used --NTR is next evolutionary step in high performance liquid rocket engines During the Rover program, a common fuel element tie tube design was developed and used in the design of the 50 klbf Kiwi-B4E (1964), 75 klbf Phoebus-1B (1967), 250 klbf Phoebus-2A (June 1968), then back down to the 25 klbf Pewee engine (Nov-Dec 1968) NASA and DOE are using this same approach: design, build, ground then flight test a small engine using a common fuel element that is scalable to a larger 25 klbf thrust engine needed for human missions

  8. Design of transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1978-01-01

    Formula considers flexure fatigue characteristics of shaft material under combined cyclic bending and static torsion stress. Formula permits selecting shaft sizes that meet common loading conditions without adding on excessive shaft material. Formula is applicable to design of rotary power or torque transmission shafting external to machine elements.

  9. Effect of Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Hulka, James R.; Moser, Marlow D.; Rhys, Noah O.

    2008-01-01

    A common propellant combination used for high thrust generation is GH2/LOX. Historical GH2/LOX injection elements have been of the shear-coaxial type. Element type has a large heritage of research work to aid in element design. The swirl-coaxial element, despite its many performance benefits, has a relatively small amount of historical, LRE-oriented work to draw from. Design features of interest are grounded in the fluid mechanics of the liquid swirl process itself, are based on data from low-pressure, low mass flow rate experiments. There is a need to investigate how high ambient pressures and mass flow rates influence internal and external swirl features. The objective of this research is to determine influence of varying liquid mass flow rate and ambient chamber pressure on the intact-length fluid mechanics of a liquid swirl element.

  10. Research on digital system design of nuclear power valve

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  11. Diffractive elements for generating microscale laser beam patterns: a Y2K problem

    NASA Astrophysics Data System (ADS)

    Teiwes, Stephan; Krueger, Sven; Wernicke, Guenther K.; Ferstl, Margit

    2000-03-01

    Lasers are widely used in industrial fabrication for engraving, cutting and many other purposes. However, material processing at very small scales is still a matter of concern. Advances in diffractive optics could provide for laser systems that could be used for engraving or cutting of micro-scale patterns at high speeds. In our paper we focus on the design of diffractive elements which can be used for this special application. It is a common desire in material processing to apply 'discrete' as well as 'continuous' beam patterns. Especially, the latter case is difficult to handle as typical micro-scale patterns are characterized by bad band-limitation properties, and as speckles can easily occur in beam patterns. It is shown in this paper that a standard iterative design method usually fails to obtain diffractive elements that generate diffraction patterns with acceptable quality. Insights gained from an analysis of the design problems are used to optimize the iterative design method. We demonstrate applicability and success of our approach by the design of diffractive phase elements that generate a discrete and a continuous 'Y2K' pattern.

  12. 40 CFR 1065.330 - Exhaust-flow calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065.330... use other reference meters such as laminar flow elements, which are not commonly designed to withstand...

  13. Boiler-turbine life extension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natzkov, S.; Nikolov, M.

    1995-12-01

    The design life of the main power equipment-boilers and turbines is about 105 working hours. The possibilities for life extension are after normatively regulated control tests. The diagnostics and methodology for Boilers and Turbines Elements Remaining Life Assessment using up to date computer programs, destructive and nondestructive control of metal of key elements of units equipment, metal creep and low cycle fatigue calculations. As well as data for most common damages and some technical decisions for elements life extension are presented.

  14. General Systems Theory and Instructional Systems Design.

    ERIC Educational Resources Information Center

    Salisbury, David F.

    1990-01-01

    Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)

  15. ISO 9000 Quality Systems: Application to Higher Education.

    ERIC Educational Resources Information Center

    Clery, Roger G.

    This paper describes and explains the 20 elements of the International Organization for Standards 9000 (ISO 9000) series, a model for quality assurance in the business processes of design/development, production, installation and servicing. The standards were designed in 1987 to provide a common denominator for business quality particularly to…

  16. Implications of intelligent, integrated microsystems for product design and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MYERS,DAVID R.; MCWHORTER,PAUL J.

    2000-04-19

    Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure.more » The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology.« less

  17. 49 CFR Appendix C to Part 236 - Safety Assurance Criteria and Processes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system (all its elements including hardware and software) must be designed to assure safe operation with... unsafe errors in the software due to human error in the software specification, design, or coding phases... (hardware or software, or both) are used in combination to ensure safety. If a common mode failure exists...

  18. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  19. Are there different requirements for trace elements in eumelanin- and pheomelanin-based color production? A case study of two passerine species.

    PubMed

    Zduniak, Piotr; Surmacki, Adrian; Erciyas-Yavuz, Kiraz; Chudzińska, Maria; Barałkiewicz, Danuta

    2014-09-01

    Melanin is the most common pigment in animal integuments including bird plumage. It has been shown that several trace elements may play roles in the production and signaling function of melanin-colored plumage. We investigated coloration and content of various metal elements in the rectrices of two insectivorous passerines, Common Redstarts (Phoenicurus phoenicurus) and Blackcaps (Sylvia atricapilla), which have eumelanin- and pheomelanin-based coloration, respectively. We hypothesized that 1) the two species would differ in concentrations of metals important in melanin synthesis (Ca, Fe, Cu, Zn), 2) differences in metal concentration levels would be related to feather coloration. Our study confirmed the first prediction and provides the first evidence that selected elements may play a greater role in pheomelanin than in eumelanin synthesis. Concentrations of three elements considered as important in melanin synthesis (Ca, Fe, Zn) were 52% to 93% higher in rusty colored Common Redstart feathers compared to the dark gray Blackcap feathers. However, element concentrations were not correlated with feather coloration or sex in either species. Our study suggests that, of the two melanin forms, pheomelanin synthesis may bear higher costs associated with the acquisition of specific elements or limited elements may create trade-offs between ornamentation and other physiological functions. Our findings warrant further investigations designed to better understand the roles of macro- and microelements in the synthesis of both forms of melanin. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Microfluidic Flame Barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  1. Monitoring post-fire vegetation rehabilitation projects: A common approach for non-forested ecosystems

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2007-01-01

    Emergency Stabilization and Rehabilitation (ES&R) and Burned Area Emergency Response (BAER) treatments are short-term, high-intensity treatments designed to mitigate the adverse effects of wildfire on public lands. The federal government expends significant resources implementing ES&R and BAER treatments after wildfires; however, recent reviews have found that existing data from monitoring and research are insufficient to evaluate the effects of these activities. The purpose of this report is to: (1) document what monitoring methods are generally used by personnel in the field; (2) describe approaches and methods for post-fire vegetation and soil monitoring documented in agency manuals; (3) determine the common elements of monitoring programs recommended in these manuals; and (4) describe a common monitoring approach to determine the effectiveness of future ES&R and BAER treatments in non-forested regions. Both qualitative and quantitative methods to measure effectiveness of ES&R treatments are used by federal land management agencies. Quantitative methods are used in the field depending on factors such as funding, personnel, and time constraints. There are seven vegetation monitoring manuals produced by the federal government that address monitoring methods for (primarily) vegetation and soil attributes. These methods vary in their objectivity and repeatability. The most repeatable methods are point-intercept, quadrat-based density measurements, gap intercepts, and direct measurement of soil erosion. Additionally, these manuals recommend approaches for designing monitoring programs for the state of ecosystems or the effect of management actions. The elements of a defensible monitoring program applicable to ES&R and BAER projects that most of these manuals have in common are objectives, stratification, control areas, random sampling, data quality, and statistical analysis. The effectiveness of treatments can be determined more accurately if data are gathered using an approach that incorporates these six monitoring program design elements and objectives, as well as repeatable procedures to measure cover, density, gap intercept, and soil erosion within each ecoregion and plant community. Additionally, using a common monitoring program design with comparable methods, consistently documenting results, and creating and maintaining a central database for query and reporting, will ultimately allow a determination of the effectiveness of post-fire rehabilitation activities region-wide.

  2. Atmospheric entry probes for outer planet exploration. Outer planet entry probe technical summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The use of unmanned space probes for investigating the conditions existing on and around the outer planets of the solar system is discussed. The subjects included in the report are: (1) the design of a common entry probe for outer planet missions, (2) the significant trades related to the development of a common probe design, (3) the impact of bus selection on probe design, (4) the impact of probe requirements on bus modifications, and (5) the key technology elements recommended for advanced development. Drawings and illustrations of typical probes are included to show the components and systems used in the space probes.

  3. Orbital operations study. Appendix A: Interactivity analysis

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Supplemental analyses conducted to verify that safe, feasible, design concepts exist for accomplishing the attendant interface activities of the orbital operations mission are presented. The data are primarily concerned with functions and concepts common to more than one of the interfacing activities or elements. Specific consideration is given to state vector update, payload deployment, communications links, jet plume impingement, attached element operations, docking and structural interface assessment, and propellant transfer.

  4. Adoption and Design of Emerging Dietary Policies to Improve Cardiometabolic Health in the US.

    PubMed

    Huang, Yue; Pomeranz, Jennifer; Wilde, Parke; Capewell, Simon; Gaziano, Tom; O'Flaherty, Martin; Kersh, Rogan; Whitsel, Laurie; Mozaffarian, Dariush; Micha, Renata

    2018-04-14

    Suboptimal diet is a leading cause of cardiometabolic disease and economic burdens. Evidence-based dietary policies within 5 domains-food prices, reformulation, marketing, labeling, and government food assistance programs-appear promising at improving cardiometabolic health. Yet, the extent of new dietary policy adoption in the US and key elements crucial to define in designing such policies are not well established. We created an inventory of recent US dietary policy cases aiming to improve cardiometabolic health and assessed the extent of their proposal and adoption at federal, state, local, and tribal levels; and categorized and characterized the key elements in their policy design. Recent federal dietary policies adopted to improve cardiometabolic health include reformulation (trans-fat elimination), marketing (mass-media campaigns to increase fruits and vegetables), labeling (Nutrition Facts Panel updates, menu calorie labeling), and food assistance programs (financial incentives for fruits and vegetables in the Supplemental Nutrition Assistance Program (SNAP) and Women, Infant and Children (WIC) program). Federal voluntary guidelines have been proposed for sodium reformulation and food marketing to children. Recent state proposals included sugar-sweetened beverage (SSB) taxes, marketing restrictions, and SNAP restrictions, but few were enacted. Local efforts varied significantly, with certain localities consistently leading in the proposal or adoption of relevant policies. Across all jurisdictions, most commonly selected dietary targets included fruits and vegetables, SSBs, trans-fat, added sugar, sodium, and calories; other healthy (e.g., nuts) or unhealthy (e.g., processed meats) factors were largely not addressed. Key policy elements to define in designing these policies included those common across domains (e.g., level of government, target population, dietary target, dietary definition, implementation mechanism), and domain-specific (e.g., media channels for food marketing domain) or policy-specific (e.g., earmarking for taxes) elements. Characteristics of certain elements were similarly defined (e.g., fruit and vegetable definition, warning language used in SSB warning labels), while others varied across cases within a policy (e.g., tax base for SSB taxes). Several key elements were not always sufficiently characterized in government documents, and dietary target selections and definitions did not consistently align with the evidence-base. These findings highlight recent action on dietary policies to improve cardiometabolic health in the US; and key elements necessary to design such policies.

  5. A design pathfinder with material correlation points for inflatable systems

    NASA Astrophysics Data System (ADS)

    Fulcher, Jared Terrell

    The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the inflatable pathfinder system has improved the efficiency of design and analysis techniques of future inflatable structures. KEYWORDS: Nonlinear Finite Element, Inflatable Structures, Gossamer Space Systems, Photogrammetry Measurements, Coated Woven Fabric.

  6. Geometrical specifications accuracy influence on the quality of electromechanical devices

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Lakeenko, M. N.; Dolzhikov, S. N.

    2017-06-01

    To improve the quality of electromechanical products is possible due to the geometrical specifications optimization of values and tolerances. Electromechanical products longevity designates the rolling-contact bearings of the armature shaft. Longevity of the rolling-contact bearings is less than designed one, since assembly and fitting alter gaps, sizes and geometric tolerances for the working parts of the basic rolling bearing details. Geometrical models of the rolling-contact bearing details for the armature shaft and the end shield are developed on the basis of an electric locomotive traction motor in the present work. The basic elements of the details conjugating with the adjacent details and materializing the generalized and auxiliary coordinate systems are determined. Function, informativeness and the number of geometrical specifications for the elements location are specified. The recommendations on amending the design documentation due to geometrical models to improve the accuracy and the quality of the products are developed: the replacement of the common axis of the shaft’s technological datums by the common axis of the basic design datums; coaxiality tolerances for these design datums with respect to their common axis; the modifiers for these auxiliary datums and these datums location tolerances according to the principles of datums uniformity, inversion and the shortest dimension chains. The investigation demonstrated that the problem of enhancing the durability, longevity, and efficiency coefficient for electromechanical products can be solved with the systematic normalizations of geometrical specifications accuracy on the basis of the coordinate systems introduced in the standards on geometrical product specifications (GPS).

  7. MANN: A program to transfer designs for diffractive optical elements to a MANN photolithographic mask generator

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1994-01-01

    There are two basic areas of interest for diffractive optics. In the first, the property of wavefront division is exploited for achieving optical fanout, analogous to the more familiar electrical fanout of electronic circuitry. The basic problem here is that when using a simple uniform diffraction grating the energy input is divided unevenly among the output beams. The other area of interest is the use of diffractive elements to replace or supplement standard refractive elements such as lenses. Again, local grating variations can be used to control the amount of bending imparted to optical rays, and the efficiency of the diffractive element will depend on how closely the element can be matched to the design requirements. In general, production restrictions limit how closely the element approaches the design, and for the common case of photolithographic production, a series of binary masks is required to achieve high efficiency. The actual design process is much more involved than in the case of elements for optical fanout, as the desired phase of the optical wavefront over some reference plane must be specified and the phase alteration to be introduced at each point by the diffraction element must be known. This generally requires the utilization of a standard optical design program. Two approaches are possible. In the first approach, the diffractive element is treated as a special type of lens and the ordinary optical design equations are used. Optical design programs tend to follow a second approach, namely, using the equations of optical interference derived from holographic theory and then allowing the introduction of phase front corrections in the form of polynomial equations. By using either of these two methods, diffractive elements can be used not only to compensate for distortions such as chromatic or spherical aberration, but also to perform the work of a variety of other optical elements such as null correctors, beam shapers, etc. The main focus of the project described in this report is how the design information from the lens design program is incorporated into the photolithographic process. It is shown that the MANN program, a photolithographic mask generator, fills the need for a link between lens design programs and mask generation controllers.The generated masks can be used to expose a resist-coated substrate which is etched and then must be re-coated, re-exposed, and re-etched for making copies, just as in the electronics industry.

  8. Natural environment design criteria for the space station program definition phase

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1984-01-01

    The natural environment design criteria requirements for use in the Space Station and its Elements (SSPE) definition phase studies are presented. The atmospheric dynamic and thermodynamic environments, meteoroids, radiation, physical constants are addressed. It is intended to enable all groups involved in the definition phase studies to proceed with a common and consistent set of natural environment criteria requirements.

  9. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance.

    PubMed

    Robinson, Lance W; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship-notably the "design principles" for effective governance of commons-do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  10. Rocket engine injectorhead with flashback barrier

    NASA Technical Reports Server (NTRS)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2012-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  11. Thermal mathematical modeling of a multicell common pressure vessel nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Kim, Junbom; Nguyen, T. V.; White, R. E.

    1992-01-01

    A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.

  12. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  13. Nondestructive evaluation of pavement structural condition for rehabilitation design : final report.

    DOT National Transportation Integrated Search

    2016-05-31

    Falling Weight Deflectometer (FWD) is the common non-destructive testing method for in-situ evaluation of pavement condition. : This study aims to develop finite element (FE) models that can simulate FWD loading on pavement system and capture the : c...

  14. Feasibility of Combining Common Data Elements Across Studies to Test a Hypothesis.

    PubMed

    Corwin, Elizabeth J; Moore, Shirley M; Plotsky, Andrea; Heitkemper, Margaret M; Dorsey, Susan G; Waldrop-Valverde, Drenna; Bailey, Donald E; Docherty, Sharron L; Whitney, Joanne D; Musil, Carol M; Dougherty, Cynthia M; McCloskey, Donna J; Austin, Joan K; Grady, Patricia A

    2017-05-01

    The purpose of this article is to describe the outcomes of a collaborative initiative to share data across five schools of nursing in order to evaluate the feasibility of collecting common data elements (CDEs) and developing a common data repository to test hypotheses of interest to nursing scientists. This initiative extended work already completed by the National Institute of Nursing Research CDE Working Group that successfully identified CDEs related to symptoms and self-management, with the goal of supporting more complex, reproducible, and patient-focused research. Two exemplars describing the group's efforts are presented. The first highlights a pilot study wherein data sets from various studies by the represented schools were collected retrospectively, and merging of the CDEs was attempted. The second exemplar describes the methods and results of an initiative at one school that utilized a prospective design for the collection and merging of CDEs. Methods for identifying a common symptom to be studied across schools and for collecting the data dictionaries for the related data elements are presented for the first exemplar. The processes for defining and comparing the concepts and acceptable values, and for evaluating the potential to combine and compare the data elements are also described. Presented next are the steps undertaken in the second exemplar to prospectively identify CDEs and establish the data dictionaries. Methods for common measurement and analysis strategies are included. Findings from the first exemplar indicated that without plans in place a priori to ensure the ability to combine and compare data from disparate sources, doing so retrospectively may not be possible, and as a result hypothesis testing across studies may be prohibited. Findings from the second exemplar, however, indicated that a plan developed prospectively to combine and compare data sets is feasible and conducive to merged hypothesis testing. Although challenges exist in combining CDEs across studies into a common data repository, a prospective, well-designed protocol for identifying, coding, and comparing CDEs is feasible and supports the development of a common data repository and the testing of important hypotheses to advance nursing science. Incorporating CDEs across studies will increase sample size and improve data validity, reliability, transparency, and reproducibility, all of which will increase the scientific rigor of the study and the likelihood of impacting clinical practice and patient care. © 2017 Sigma Theta Tau International.

  15. Designing websites for persons with cognitive deficits: Design and usability of a psychoeducational intervention for persons with severe mental illness.

    PubMed Central

    Rotondi, Armando J.; Sinkule, Jennifer; Haas, Gretchen L.; Spring, Michael B.; Litschge, Christine M.; Newhill, Christina E.; Ganguli, Rohan; Anderson, Carol M.

    2013-01-01

    The purpose of this study was to develop an understanding of the design elements that influence the ability of persons with severe mental illness (SMI) and cognitive deficits to use a website, and to use this knowledge to design a web-based telehealth application to deliver a psychoeducation program to persons with schizophrenia and their families. Usability testing was conducted with 98 persons with SMI. First, individual website design elements were tested. Based on these results, theoretical website design models were used to create several alternative websites. These designs were tested for their ability to facilitate use by persons with SMI. The final website design is presented. The results indicate that commonly prescribed design models and guidelines produce websites that are poorly suited and confusing to persons with SMI. Our findings suggest an alternative model that should be considered when designing websites and other telehealth interventions for this population. Implications for future studies addressing the characteristics of accessible designs for persons with SMI and cognitive deficits are discussed. PMID:26321884

  16. Objective measurement of complex multimodal and multidimensional display formats: a common metric for predicting format effectiveness

    NASA Astrophysics Data System (ADS)

    Marshak, William P.; Darkow, David J.; Wesler, Mary M.; Fix, Edward L.

    2000-08-01

    Computer-based display designers have more sensory modes and more dimensions within sensory modality with which to encode information in a user interface than ever before. This elaboration of information presentation has made measurement of display/format effectiveness and predicting display/format performance extremely difficult. A multivariate method has been devised which isolates critical information, physically measures its signal strength, and compares it with other elements of the display, which act like background noise. This common Metric relates signal-to-noise ratios (SNRs) within each stimulus dimension, then combines SNRs among display modes, dimensions and cognitive factors can predict display format effectiveness. Examples with their Common Metric assessment and validation in performance will be presented along with the derivation of the metric. Implications of the Common Metric in display design and evaluation will be discussed.

  17. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.

  18. Design and analysis of optical waveguide elements in planar geometry

    NASA Astrophysics Data System (ADS)

    Mirkov, Mirko Georgiev

    1998-10-01

    This dissertation presents the theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on the supermode theory combined with the resonance method for determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including the corrections due to the fields in the corner regions of the waveguides using perturbation theory. The following two classes of devices have been analyzed in detail. Curved rectangular waveguides are a common element in an integrated optics circuit. The theoretical analysis in this work shows that some commonly used approximations for determination of the propagation constants of the quasi-modes of the bent waveguides are not necessary. Specifically the imaginary part of the mode propagation constant, which determines the power loss, is calculated exactly using the resonance method, combined with a two- dimensional optimization routine for determination of the real and the imaginary parts of the propagation constants. Subsequently, the results are corrected for the effects of the fields in the corner regions. The latter corrections have not been previously computed and are shown to be significant. Power splitters are another common element of an integrated optical circuit. A new 'bend-free' splitter is suggested and analyzed. The new splitter design consists of only straight parallel channels, which considerably simplify both the analysis and the fabrication of the device. It is shown that a single design parameter determines the power splitting ratio, which can take any given value. The intrinsic power loss in the proposed splitter is minimal, which makes it an attractive alternative to the conventional Y-splitters. The accurate methods of analysis of planar optical waveguides developed in the present work can easily be applied to other integrated optic devices consisting of rectangular waveguides.

  19. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Astrophysics Data System (ADS)

    Vaughan, W. W.; Green, C. E.

    1985-03-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  20. Natural environment design criteria for the Space Station definition and preliminary design

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.; Green, C. E.

    1985-01-01

    The natural environment design criteria for the Space Station Program (SSP) definition and preliminary design are presented. Information on the atmospheric, dynamic and thermodynamic environments, meteoroids, radiation, magnetic fields, physical constants, etc. is provided with the intension of enabling all groups involved in the definition and preliminary design studies to proceed with a common and consistent set of natural environment criteria requirements. The space station program elements (SSPE) shall be designed with no operational sensitivity to natural environment conditions during assembly, checkout, stowage, launch, and orbital operations to the maximum degree practical.

  1. Design and development of high frequency matrix phased-array ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Spencer, Roger L.

    2012-05-01

    High frequency matrix phased-array (MPA) probes have been designed and developed for more accurate and repeatable assessment of weld conditions of thin sheet metals commonly used in the auto industry. Unlike the line focused ultrasonic beam generated by a linear phased-array (LPA) probe, a MPA probe can form a circular shaped focused beam in addition to the typical beam steering capabilities of phased-array probes. A CIVA based modeling and simulation method has been used to design the probes in terms of various probe parameters such as number of elements, element size, overall dimensions, frequency etc. Challenges associated with the thicknesses of thin sheet metals have been resolved by optimizing these probe design parameters. A further improvement made on the design of the MPA probe proved that a three-dimensionally shaped matrix element can provide a better performing probe at a much lower probe manufacturing cost by reducing the total number of elements and lowering the operational frequency. This three dimensional probe naturally matches to the indentation shape of the weld on the thin sheet metals and hence a wider inspection area with the same level of spatial resolution obtained by a twodimensional flat MPA probe operating at a higher frequency. The two aspects, a wider inspection area and a lower probe manufacturing cost, make this three-dimensional MPA sensor more attractive to auto manufacturers demanding a quantitative nondestructive inspection method.

  2. Theoretical and methodological elements for integrating ethics as a foundation into the education of professional and design disciplines.

    PubMed

    d'Anjou, Philippe

    2004-04-01

    The paper addresses the integration of ethics into professional education related to the disciplines responsible for the conception and creation of the artificial (artefactual or technology). The ontological-epistemological paradigm of those disciplines is understood within the frame of the sciences of the artificial as established by Herbert Simon (1969). According to that paradigm, those sciences include disciplines not only related to the production of artefacts (technology), such as engineering, architecture, industrial design, etc, but also disciplines related to devised courses of action aimed at changing existing situations into preferred ones, like medicine, law, education, etc. They are centered on intentional action and at their core is the activity of design, which is their common foundation and attitude, or their common culture. The science of design becomes the broader foundational discipline for any professions engaged in the intentional transformation of the world. The main distinction between design disciplines and scientific ones rests on the object-project dichotomy. Indeed, contrary to Science that sees the world as an object to be observed, Design sees the world as a project and acts upon the world through projects, which are grounded in intentions, ends, and values. Design disciplines are meant to transform the world, or part of it, and are teleological. Being so, they are embodied in an act that is ethical and their ontology-epistemology must be addressed also through practical reason to resituate all professional disciplines according to their involved nature. The paper introduces theoretical, methodological, and ethical elements to establish a model that integrates ethics into the education of the professional disciplines, design-based disciplines, responsible for the creation of the artificial, artefactual or technological, world. The model is articulated around the notions of ethical engagement and responsibility through the act of design understood as action with intention situated in a project, common in all professional disciplines.

  3. Designing Inquiry Starters

    NASA Astrophysics Data System (ADS)

    Kluger-Bell, B.

    2010-12-01

    The term "Inquiry Starter" comes from the Institute for Inquiry's model for teaching and learning science through inquiry. It refers to the first phase of an inquiry activity where learners engage in actions that stimulate their curiosity and generate questions for further investigation. In the Professional Development Program, staff and participants have designed a wide variety of inquiry activities with a number of variations on the inquiry starter. This has provided a laboratory for examining inquiry starter design. In this paper, I describe and examine in detail the elements of this design and how the design of those elements is related to achieving learning objectives. There are a number of important common objectives in all inquiry starters. For example, all starters must define a domain for investigation and engage the learner's curiosity in that domain. There are also critical differences in learning objectives depending on the content area being studied, the learners' background knowledge and skills, and many other factors. In this paper I examine designs for both of these types of objectives.

  4. Orbital transfer vehicle launch operations study. Volume 2: Detailed summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of Operational Design Drivers were identified. Several of these could have significant impact(s) on program costs. These recommendations, for example, include such items as: complete factory assembly and checkout prior to shipment to the ground launch site to make significant reductions in time required at the launch site as well as overall manpower required to do this work; minimize use of nonstandard equipment when orbiter provided equipment is available; and require commonality (or interchangeability) of subsystem equipment elements that are common to the space station, Orbit Maneuvering Vehicles, and/or Orbit Transfer Vehicles. Several additional items were identified that will require a significant amount of management attention (and direction) to resolve. Key elements of the space based processing plans are discussed.

  5. Intelligent systems of the vehicles’ suspension

    NASA Astrophysics Data System (ADS)

    Yurlin, D.

    2018-02-01

    The article is devoted to the current condition of car’s active suspension system. It presents the tendencies in development of the active systems of suspension system, adjustable elements incorporated in them and the companies succeeded in designing such systems. It also mirrors the problem of impact of active systems on car’s safety and their importance for the driver. Advantages and disadvantages of the most common types of active elements are being described, analyzed and compared. The author concludes about the perspectives of these systems’ development.

  6. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  7. Clinical Physiologic Research Instrumentation: An Approach Using Modular Elements and Distributed Processing

    PubMed Central

    Hagen, R. W.; Ambos, H. D.; Browder, M. W.; Roloff, W. R.; Thomas, L. J.

    1979-01-01

    The Clinical Physiologic Research System (CPRS) developed from our experience in applying computers to medical instrumentation problems. This experience revealed a set of applications with a commonality in data acquisition, analysis, input/output, and control needs that could be met by a portable system. The CPRS demonstrates a practical methodology for integrating commercial instruments with distributed modular elements of local design in order to make facile responses to changing instrumentation needs in clinical environments. ImagesFigure 3

  8. Design of a Thermal Precipitator for the Characterization of Smoke Particles from Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit Elisabeth

    2015-01-01

    A thermal precipitator (TP) was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Modeling of the thermal precipitator throughout the design process was performed with the COMSOL Multiphysics finite element software package, including the Eulerian flow field and thermal gradients in the fluid. The COMSOL Particle Tracing Module was subsequently used to determine particle deposition. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. The thermal precipitator was built and testing verified the performance of the first iteration of the device. The thermal precipitator was successfully operated and provided quality particle samples for microscopic analysis, which furthered the body of knowledge on smoke particulates. This information is a key element of smoke characterization and will be useful for future spacecraft fire detection research.

  9. Superelastic Ball Bearings: Materials and Design to Avoid Mounting and Dismounting Brinell Damage in an Inaccessible Press-fit Application-. II; Detailed Analysis

    NASA Technical Reports Server (NTRS)

    Howard, S. Adam; Dellacorte, Christopher

    2015-01-01

    Rolling element bearings utilized in precision rotating machines require proper alignment, preload, and interference fits to ensure overall optimum performance. Hence, careful attention must be given to bearing installation and disassembly procedures to ensure the above conditions are met. Usually, machines are designed in such a way that bearings can be pressed into housings or onto shafts through the races without loading the rolling elements. However, in some instances, either due to limited size or access, a bearing must be installed or removed in such a way that the load path travels through the rolling elements. This can cause high contact stresses between the rolling elements and the races and introduces the potential for Brinell denting of the races. This paper is a companion to the Part I paper by the authors that discusses material selection and the general design philosophy for the bearing. Here, a more in-depth treatment is given to the design of a dent-resistant bearing utilizing a superelastic alloy, 60NiTi, for the races. A common bearing analysis tool based on rigid body dynamics is used in combination with finite element simulations to design the superelastic bearing. The primary design constraints are prevention of denting and avoiding the balls riding over the edge of the race groove during a blind disassembly process where the load passes through the rolling elements. Through an iterative process, the resulting bearing geometry is tailored to improve axial static load capability compared to a deep-groove ball bearing of the same size. The results suggest that careful selection of materials and bearing geometry can enable blind disassembly without damage to the raceways, which is necessary in the current application (a compressor in the International Space Station Environmental Control and Life Support System), and results in potential design flexibility for other applications, especially small machines with miniature bearings.

  10. Structured Analysis of the Logistics Support Analysis (LSA) Task, and Integrated Logistic Support (ILS) Element, ’Standardization and Interoperability (S and I)’.

    DTIC Science & Technology

    1988-11-01

    system, using graphic techniques which enable users, analysts, and designers to get a clear and common picture of the system and how its parts fit...boxes into hierarchies suitable for computer implementation. ŗ. Structured Design uses tools, especially graphic ones, to render systems readily...LSA, PROCESSES, DATA FLOWS, DATA STORES, EX"RNAL ENTITIES, OVERALL SYSTEMS DESIGN PROCESS, over 19, ABSTRACT (Continue on reverse if necessary and

  11. Ares V: Current Status and Future Capabilities

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2009-01-01

    This slide presentation reviews the progress made in the design and development of the Ares V launch vehicle. Included in the presentation are views of the elements of the Ares V, the commonality of the Ares I and V, a chart that shows the progress made in the design of the launcher, description of the current activities around the design and preparation for the Ares V, and a slide describing the prospect of large payload volume and the flexibility that this gives to new space sciences.

  12. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  13. Common Data Elements for Spinal Cord Injury Clinical Research: A National Institute for Neurological Disorders and Stroke Project

    PubMed Central

    Biering-Sørensen, Fin; Alai, Sherita; Anderson, Kim; Charlifue, Susan; Chen, Yuying; DeVivo, Michael; Flanders, Adam E.; Jones, Linda; Kleitman, Naomi; Lans, Aria; Noonan, Vanessa K.; Odenkirchen, Joanne; Steeves, John; Tansey, Keith; Widerström-Noga, Eva; Jakeman, Lyn B.

    2015-01-01

    Objective To develop a comprehensive set of common data elements (CDEs), data definitions, case report forms and guidelines for use in spinal cord injury (SCI) clinical research, as part of the CDE project at the National Institute of Neurological Disorders and Stroke (NINDS) of the USA National Institutes of Health. Setting International Working Groups Methods Nine working groups composed of international experts reviewed existing CDEs and instruments, created new elements when needed, and provided recommendations for SCI clinical research. The project was carried out in collaboration with and cross-referenced to development of the International Spinal Cord Society (ISCoS) International SCI Data Sets. The recommendations were compiled, subjected to internal review, and posted online for external public comment. The final version was reviewed by all working groups and the NINDS CDE team prior to release. Results The NINDS SCI CDEs and supporting documents are publically available on the NINDS CDE website and the ISCoS website. The CDEs span the continuum of SCI care and the full range of domains of the International Classification of Functioning, Disability and Health. Conclusions Widespread use of common data elements can facilitate SCI clinical research and trial design, data sharing, and retrospective analyses. Continued international collaboration will enable consistent data collection and reporting, and will help ensure that the data elements are updated, reviewed and broadcast as additional evidence is obtained. PMID:25665542

  14. Geochemical surveys in the United States in relation to health.

    USGS Publications Warehouse

    Tourtelot, H.A.

    1979-01-01

    Geochemical surveys in relation to health may be classified as having one, two or three dimensions. One-dimensional surveys examine relations between concentrations of elements such as Pb in soils and other media and burdens of the same elements in humans, at a given time. The spatial distributions of element concentrations are not investigated. The primary objective of two-dimensional surveys is to map the distributions of element concentrations, commonly according to stratified random sampling designs based on either conceptual landscape units or artificial sampling strata, but systematic sampling intervals have also been used. Political units have defined sample areas that coincide with the units used to accumulate epidemiological data. Element concentrations affected by point sources have also been mapped. Background values, location of natural or technological anomalies and the geographic scale of variation for several elements often are determined. Three-dimensional surveys result when two-dimensional surveys are repeated to detect environmental changes. -Author

  15. Innovative Orientation Leads to Improved Success in Online Courses

    ERIC Educational Resources Information Center

    Taylor, Jean M.; Dunn, Margie; Winn, Sandra K.

    2015-01-01

    A team of instructional designers, educators, and the School of Liberal Arts (SLA) academic program coordinator from a nonprofit online college, collaborated on producing short voice-over videos with interactive elements that address the most common technology frustrations of beginning students. These videos were inserted into the "Start…

  16. A Measurement Model of Microgenetic Transfer for Improving Instructional Outcomes

    ERIC Educational Resources Information Center

    Pavlik, Philip I., Jr.; Yudelson, Michael; Koedinger, Kenneth R.

    2015-01-01

    Efforts to improve instructional task design often make reference to the mental structures, such as "schemas" (e.g., Gick & Holyoak, 1983) or "identical elements" (Thorndike & Woodworth, 1901), that are common to both the instructional and target tasks. This component based (e.g., Singley & Anderson, 1989) approach…

  17. The principle of commonality and its application to the Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Hopson, George D.; Thomas, L. Dale; Daniel, Charles C.

    1989-01-01

    The principle of commonality has achieved wide application in the communication, automotive, and aircraft industries. By the use of commonality, component development costs are minimized, logistics are simplified, and the investment costs of spares inventory are reduced. With space systems, which must be maintained and repaired in orbit, the advantages of commonality are compounded. Transportation of spares is expensive, on-board storage volume for spares is limited, and crew training and special tools needed for maintenance and repair are significant considerations. This paper addresses the techniques being formulated to realize the benefits of commonality in the design of the systems and elements of the Space Station Freedom Program, and include the criteria for determining the extent of commonality to be implemented.

  18. 36 CFR 72.44 - Fundable elements: Rehabilitation and Innovation grant common elements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: Rehabilitation and Innovation grant common elements. 72.44 Section 72.44 Parks, Forests, and Public Property... Recovery Action Program Development, Rehabilitation and Innovation § 72.44 Fundable elements: Rehabilitation and Innovation grant common elements. (a) All Rehabilitation and Innovation proposals must be...

  19. 36 CFR 72.44 - Fundable elements: Rehabilitation and Innovation grant common elements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: Rehabilitation and Innovation grant common elements. 72.44 Section 72.44 Parks, Forests, and Public Property... Recovery Action Program Development, Rehabilitation and Innovation § 72.44 Fundable elements: Rehabilitation and Innovation grant common elements. (a) All Rehabilitation and Innovation proposals must be...

  20. 36 CFR 72.44 - Fundable elements: Rehabilitation and Innovation grant common elements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: Rehabilitation and Innovation grant common elements. 72.44 Section 72.44 Parks, Forests, and Public Property... Recovery Action Program Development, Rehabilitation and Innovation § 72.44 Fundable elements: Rehabilitation and Innovation grant common elements. (a) All Rehabilitation and Innovation proposals must be...

  1. 36 CFR 72.44 - Fundable elements: Rehabilitation and Innovation grant common elements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: Rehabilitation and Innovation grant common elements. 72.44 Section 72.44 Parks, Forests, and Public Property... Recovery Action Program Development, Rehabilitation and Innovation § 72.44 Fundable elements: Rehabilitation and Innovation grant common elements. (a) All Rehabilitation and Innovation proposals must be...

  2. 36 CFR 72.44 - Fundable elements: Rehabilitation and Innovation grant common elements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: Rehabilitation and Innovation grant common elements. 72.44 Section 72.44 Parks, Forests, and Public Property... Recovery Action Program Development, Rehabilitation and Innovation § 72.44 Fundable elements: Rehabilitation and Innovation grant common elements. (a) All Rehabilitation and Innovation proposals must be...

  3. Robust Tensioned Kevlar Suspension Design

    NASA Technical Reports Server (NTRS)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  4. Design and operations technologies - Integrating the pieces. [for future space systems design

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.

    1979-01-01

    As major elements of life-cycle costs (LCC) having critical impacts on the initiation and utilization of future space programs, the areas of vehicle design and operations are reviewed in order to identify technology requirements. Common to both areas is the requirement for efficient integration of broad, complex systems. Operations technologies focus on the extension of space-based capabilities and cost reduction through the combination of innovative design, low-maintenance hardware, and increased manpower productivity. Design technologies focus on computer-aided techniques which increase productivity while maintaining a high degree of flexibility which enhances creativity and permits graceful design changes.

  5. Gamification in Action: Theoretical and Practical Considerations for Medical Educators.

    PubMed

    Rutledge, Chrystal; Walsh, Catharine M; Swinger, Nathan; Auerbach, Marc; Castro, Danny; Dewan, Maya; Khattab, Mona; Rake, Alyssa; Harwayne-Gidansky, Ilana; Raymond, Tia T; Maa, Tensing; Chang, Todd P

    2018-02-20

    Gamification involves the application of game design elements to traditionally non-game contexts. It is increasingly being used as an adjunct to traditional teaching strategies in medical education to engage the millennial learner and enhance adult learning. The extant literature has focused on determining whether the implementation of gamification results in better learning outcomes, leading to a dearth of research examining its theoretical underpinnings within the medical education context. The authors define gamification, explore how gamification works within the medical education context using self-determination theory as an explanatory mechanism for enhanced engagement and motivation, and discuss common roadblocks and challenges to implementing gamification.While previous gamification research has largely focused on determining whether implementation of gamification in medical education leads to better learning outcomes, the authors recommend that future research should explore how and under what conditions gamification is likely to be effective. Selective, purposeful gamification that aligns with learning goals has the potential to increase learner motivation and engagement and, ultimately, learning. In line with self-determination theory, game design elements can be used to enhance learners' feelings of relatedness, autonomy, and competence to foster learners' intrinsic motivation. Poorly applied game design elements, however, may undermine these basic psychological needs by the overjustification effect or through negative effects of competition. Educators must, therefore, clearly understand the benefits and pitfalls of gamification in curricular design, take a thoughtful approach when integrating game design elements, and consider the types of learners and overarching learning objectives.

  6. Microfabrication of low-loss lumped-element Josephson circuits for non-reciprocal and parametric devices

    NASA Astrophysics Data System (ADS)

    Cicak, Katarina; Lecocq, Florent; Ranzani, Leonardo; Peterson, Gabriel A.; Kotler, Shlomi; Teufel, John D.; Simmonds, Raymond W.; Aumentado, Jose

    Recent developments in coupled mode theory have opened the doors to new nonreciprocal amplification techniques that can be directly leveraged to produce high quantum efficiency in current measurements in microwave quantum information. However, taking advantage of these techniques requires flexible multi-mode circuit designs comprised of low-loss materials that can be implemented using common fabrication techniques. In this talk we discuss the design and fabrication of a new class of multi-pole lumped-element superconducting parametric amplifiers based on Nb/Al-AlOx/Nb Josephson junctions on silicon or sapphire. To reduce intrinsic loss in these circuits we utilize PECVD amorphous silicon as a low-loss dielectric (tanδ 5 ×10-4), resulting in nearly quantum-limited directional amplification.

  7. Tools for Designing and Analyzing Structures

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Structural Design and Analysis Toolset is a collection of approximately 26 Microsoft Excel spreadsheet programs, each of which performs calculations within a different subdiscipline of structural design and analysis. These programs present input and output data in user-friendly, menu-driven formats. Although these programs cannot solve complex cases like those treated by larger finite element codes, these programs do yield quick solutions to numerous common problems more rapidly than the finite element codes, thereby making it possible to quickly perform multiple preliminary analyses - e.g., to establish approximate limits prior to detailed analyses by the larger finite element codes. These programs perform different types of calculations, as follows: 1. determination of geometric properties for a variety of standard structural components; 2. analysis of static, vibrational, and thermal- gradient loads and deflections in certain structures (mostly beams and, in the case of thermal-gradients, mirrors); 3. kinetic energies of fans; 4. detailed analysis of stress and buckling in beams, plates, columns, and a variety of shell structures; and 5. temperature dependent properties of materials, including figures of merit that characterize strength, stiffness, and deformation response to thermal gradients

  8. Application of electrically invisible antennas to the modulated scatterer technique

    NASA Astrophysics Data System (ADS)

    Crocker, Dylan Andrew

    The Modulated Scatterer Technique (MST) has shown promise for applications in microwave imaging, electric field mapping, and materials characterization. Traditionally, MST scatterers consist of dipole antennas centrally loaded with a lumped element capable of modulation (commonly a PIN diode). By modulating the load element, the signal scattered from the MST scatterer is also modulated. However, due to the small size of such scatterers, it can be difficult to reliably detect the modulated signal. Increasing the modulation depth (a parameter related to how well the scatterer modulates the scattered signal) may improve the detectability of the scattered signal. In an effort to improve the modulation depth of scatterers commonly used in MST, the concept of electrically invisible antennas is applied to the design of these scatterers and is the focus of this work. Electrical invisibility of linear antennas, such as loaded dipoles, can be achieved by loading a scatterer in such a way that, when illuminated by an electromagnetic wave, the integral of the current induced along the length of the scatterer (and hence the scattered field as well) approaches zero. By designing a scatterer to be capable of modulation between visible (scattering) and invisible (minimum scattering) states, the modulation depth may be improved. This thesis presents simulations and measurements of new MST scatterers that have been designed to be electrically invisible during the reverse bias state of the modulated element (i.e., a PIN diode). Further, the scattering during the forward bias state remains the same as that of a traditional MST scatterer, resulting in an increase in modulation depth. This new MST scatterer design technique may also have application in improving the performance of similar sensors such as radio frequency identification (RFID) tags.

  9. Transcending Landscapes: Working Across Scales and Levels in Pastoralist Rangeland Governance

    NASA Astrophysics Data System (ADS)

    Robinson, Lance W.; Ontiri, Enoch; Alemu, Tsegaye; Moiko, Stephen S.

    2017-08-01

    Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship—notably the "design principles" for effective governance of commons—do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.

  10. The Application of Design to Cost and Life Cycle to Aircraft Engines.

    DTIC Science & Technology

    1980-05-01

    appearing in both columns include AGE (common and peculiar), transportation, management, and training. These cost elements are not usually large in...Proc. of install engine X CIP x Spare engine X Spare parts (base/depot) X Depot labor X Base labor X ECPs-mod/retro X X AGE (peculiar/common) X X...introduits de maniere aleatoire dans le cadre j’hypotheses. En outre les moteurs ou les sous-ensembles, compte tenu du suivi de leur age et de leur

  11. Human Mars Ascent Vehicle Configuration and Performance Sensitivities

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Stephens, Walter; Collins, Tim; Rucker, Michelle; Gernhardt, Mike; Zwack, Matthew R.; Dees, Patrick D.

    2017-01-01

    The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing Mars Ascent Vehicle (MAV) mass is a priority and minimizing the crew cabin size and mass is one way to do that. Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. This paper explores the sensitivities to trajectory, propulsion, crew cabin size and the benefits and impacts of using a common crew cabin design for the MAV. Results of these trades will be presented along with mass and performance estimates for the selected design.

  12. Development of high-speed rolling-element bearings. A historical and technical perspective

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1982-01-01

    Research on large-bore ball and roller bearings for aircraft engines is described. Tapered roller bearings and small-bore bearings are discussed. Temperature capabilities of rolling element bearings for aircraft engines have moved from 450 to 589 K (350 to 600 F) with increased reliability. High bearing speeds to 3 million DN can be achieved with a reliability exceeding that which was common in commercial aircraft. Capabilities of available bearing steels and lubricants were defined and established. Computer programs for the analysis and design of rolling element bearings were developed and experimentally verified. The reported work is a summary of NASA contributions to high performance engine and transmission bearing capabilities.

  13. A Study on the Perceived Risk of Surface Sample Collection Systems in Proposal Formulation

    NASA Technical Reports Server (NTRS)

    Sunday, Cecily M.

    2012-01-01

    This project compares design and proposal elements from multiple proposals and presents conclusions and recommendations for sampling systems. Contributions from this project include a list of common evaluation themes, concept and proposal-related strengths and weaknesses and ways in which self-identified risks relate the evaluation of the mission.

  14. Industrial Electronics II for ICT. Instructor's Guide and Curriculum Guide.

    ERIC Educational Resources Information Center

    Snider, Bob; Notgrass, Troy

    This manual is designed to help instructors guide students through their manuals and laboratory training stations in the field of industrial electronics. The manual consists of the following nine sections: (1) suggestions for teaching the course; (2) an instructional delivery outline; (3) lists of essential elements common to all trade and…

  15. Geometry control of long-span continuous girder concrete bridge during construction through finite element model updating

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Yan, Quan-sheng; Li, Jian; Hu, Min-yi

    2016-04-01

    In bridge construction, geometry control is critical to ensure that the final constructed bridge has the consistent shape as design. A common method is by predicting the deflections of the bridge during each construction phase through the associated finite element models. Therefore, the cambers of the bridge during different construction phases can be determined beforehand. These finite element models are mostly based on the design drawings and nominal material properties. However, the accuracy of these bridge models can be large due to significant uncertainties of the actual properties of the materials used in construction. Therefore, the predicted cambers may not be accurate to ensure agreement of bridge geometry with design, especially for long-span bridges. In this paper, an improved geometry control method is described, which incorporates finite element (FE) model updating during the construction process based on measured bridge deflections. A method based on the Kriging model and Latin hypercube sampling is proposed to perform the FE model updating due to its simplicity and efficiency. The proposed method has been applied to a long-span continuous girder concrete bridge during its construction. Results show that the method is effective in reducing construction error and ensuring the accuracy of the geometry of the final constructed bridge.

  16. Endothelial responses of magnesium and other alloying elements in magnesium-based stent materials

    PubMed Central

    Zhao, Nan; Zhu, Donghui

    2016-01-01

    Biodegradable tailored magnesium (Mg) alloys are some of the most promising scaffolds for cardiovascular stents. During the course of degradation after implantation, all the alloying elements in the scaffold will be released to the surrounding vascular tissues. However, fundamental questions regarding the toxicity of alloying elements towards vascular cells, the maximum amount of each element that could be used in alloy design, or how each of the alloying elements affects vascular cellular activity and gene expression, are still not fully answered. This work systematically addressed these questions by revealing how application of different alloying elements commonly used in Mg stent materials influences several indices of human endothelial cell health, i.e., viability, proliferations, cytoskeletal reorganizations, migration, and the gene expression profile. The overall cell viability and proliferation showed a decreasing trend with increasing concentrations of the ions, and the half maximal effective concentrations (EC50) for each element were determined. When applied at a low concentration of around 10 mM, Mg had no adverse effects but improved cell proliferation and migration instead. Mg ions also altered endothelial gene expression significantly in a dose dependent manner. Most of the changed genes are related to angiogenesis and the cell adhesion signaling pathways. Findings from this work provide useful information on maximum safe doses of these ions for endothelial cells, endothelial responses towards these metal ions, and some guidance for future Mg stent design. PMID:25363018

  17. The Associative Structure of Memory for Multi-Element Events

    PubMed Central

    2013-01-01

    The hippocampus is thought to be an associative memory “convergence zone,” binding together the multimodal elements of an experienced event into a single engram. This predicts a degree of dependency between the retrieval of the different elements comprising an event. We present data from a series of studies designed to address this prediction. Participants vividly imagined a series of person–location–object events, and memory for these events was assessed across multiple trials of cued retrieval. Consistent with the prediction, a significant level of dependency was found between the retrieval of different elements from the same event. Furthermore, the level of dependency was sensitive both to retrieval task, with higher dependency during cued recall than cued recognition, and to subjective confidence. We propose a simple model, in which events are stored as multiple pairwise associations between individual event elements, and dependency is captured by a common factor that varies across events. This factor may relate to between-events modulation of the strength of encoding, or to a process of within-event “pattern completion” at retrieval. The model predicts the quantitative pattern of dependency in the data when changes in the level of guessing with retrieval task and confidence are taken into account. Thus, we find direct behavioral support for the idea that memory for complex multimodal events depends on the pairwise associations of their constituent elements and that retrieval of the various elements corresponding to the same event reflects a common factor that varies from event to event. PMID:23915127

  18. The application of hospitality elements in hospitals.

    PubMed

    Wu, Ziqi; Robson, Stephani; Hollis, Brooke

    2013-01-01

    In the last decade, many hospital designs have taken inspiration from hotels, spurred by factors such as increased patient and family expectations and regulatory or financial incentives. Increasingly, research evidence suggests the value of enhancing the physical environment to foster healing and drive consumer decisions and perceptions of service quality. Although interest is increasing in the broader applicability of numerous hospitality concepts to the healthcare field, the focus of this article is design innovations, and the services that such innovations support, from the hospitality industry. To identify physical hotel design elements and associated operational features that have been used in the healthcare arena, a series of interviews with hospital and hotel design experts were conducted. Current examples and suggestions for future hospitality elements were also sought from the experts, academic journals, and news articles. Hospitality elements applied in existing hospitals that are addressed in this article include hotel-like rooms and decor; actual hotels incorporated into medical centers; hotel-quality food, room service, and dining facilities for families; welcoming lobbies and common spaces; hospitality-oriented customer service training; enhanced service offerings, including concierges; spas or therapy centers; hotel-style signage and way-finding tools; and entertainment features. Selected elements that have potential for future incorporation include executive lounges and/or communal lobbies with complimentary wireless Internet and refreshments, centralized controls for patients, and flexible furniture. Although the findings from this study underscore the need for more hospitality-like environments in hospitals, the investment decisions made by healthcare executives must be balanced with cost-effectiveness and the assurance that clinical excellence remains the top priority.

  19. A phoswich detector design for improved spatial sampling in PET

    NASA Astrophysics Data System (ADS)

    Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.

    2018-02-01

    Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.

  20. Strike action electromagnetic machine for immersion of rod elements into ground

    NASA Astrophysics Data System (ADS)

    Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.

    2017-10-01

    During construction, survey work, and drilling shallow wells by striking, operations associated with dipping and removing the rod elements are the most common. At the same time relatively long, with small diameter, elements, in which the ratio of length to diameter l/d is 100 or more, constitute a significant proportion. At present, the application of power pulse linear electromagnetic motors to drive drum machines is recognized to be highly effective. However, the mechanical method of transmission of shocks does not allow dipping long longitudinally unstable core elements. In this case, mechanical energy must be transferred from the motor to the rod through its side surface. The design of the strike action electromagnetic machine with a through axial channel for non-mechanical end striking of the pile of long, longitudinally unstable metal rods is proposed. Electromagnetic striking machine for non-mechanical end striking rod elements provides operations characterized by ecological compatibility, safety and high quality.

  1. A novel monopartite dsRNA virus isolated from the entomopathogenic and nematophagous fungus Purpureocillium lilacinum.

    PubMed

    Herrero, Noemi

    2016-12-01

    Purpureocillium lilacinum is a ubiquitous saprophytic fungus commonly isolated from soils and widely known as a biological control agent against phytopathogenic nematodes and pest insects. Mycoviruses infect a wide number of fungal species, but the study of viruses infecting entomopathogenic fungi is still quite recent. In this study, a total of 86 P. lilacinum isolates collected from soil in natural and cultivated habitats throughout the Czech Republic were analyzed; 22 % of the isolates harbored double-stranded RNA (dsRNA) elements with viral characteristics. These results suggest that mycoviruses are common in P. lilacinum. One of the most common dsRNA elements detected in the survey was completely sequenced and corresponded to the 2,864-bp genome of a previously undescribed mycovirus, designated Purpureocillium lilacinum nonsegmented virus 1 (PlNV-1). Phylogenetic analysis of the RNA-dependent RNA polymerase of PlNV-1 indicated that this virus might belong to a new taxon related to the family Partitiviridae.

  2. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    NASA Astrophysics Data System (ADS)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  3. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  4. Common elements of adolescent prevention programs: minimizing burden while maximizing reach.

    PubMed

    Boustani, Maya M; Frazier, Stacy L; Becker, Kimberly D; Bechor, Michele; Dinizulu, Sonya M; Hedemann, Erin R; Ogle, Robert R; Pasalich, Dave S

    2015-03-01

    A growing number of evidence-based youth prevention programs are available, but challenges related to dissemination and implementation limit their reach and impact. The current review identifies common elements across evidence-based prevention programs focused on the promotion of health-related outcomes in adolescents. We reviewed and coded descriptions of the programs for common practice and instructional elements. Problem-solving emerged as the most common practice element, followed by communication skills, and insight building. Psychoeducation, modeling, and role play emerged as the most common instructional elements. In light of significant comorbidity in poor outcomes for youth, and corresponding overlap in their underlying skills deficits, we propose that synthesizing the prevention literature using a common elements approach has the potential to yield novel information and inform prevention programming to minimize burden and maximize reach and impact for youth.

  5. The role of chemometrics in single and sequential extraction assays: a review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques.

    PubMed

    Giacomino, Agnese; Abollino, Ornella; Malandrino, Mery; Mentasti, Edoardo

    2011-03-04

    Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. A Field Guide to Kentucky Lakes and Wetlands.

    ERIC Educational Resources Information Center

    Kentucky State Div. of Water, Frankfort. Kentucky Natural Resources and Environmental Protection Cabinet.

    Lakes and wetlands make up that part of Kentucky's water bodies commonly referred to as standing waters. These waters serve many purposes for the people of the state and are necessary and valued elements of its natural resources. This field guide was designed to provide useful background information and reference material for the study of these…

  7. Finite element analysis as a design tool for thermoplastic vulcanizate glazing seals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gase, K.M.; Hudacek, L.L.; Pesevski, G.T.

    1998-12-31

    There are three materials that are commonly used in commercial glazing seals: EPDM, silicone and thermoplastic vulcanizates (TPVs). TPVs are a high performance class of thermoplastic elastomers (TPEs), where TPEs have elastomeric properties with thermoplastic processability. TPVs have emerged as materials well suited for use in glazing seals due to ease of processing, economics and part design flexibility. The part design and development process is critical to ensure that the chosen TPV provides economics, quality and function in demanding environments. In the design and development process, there is great value in utilizing dual durometer systems to capitalize on the benefitsmore » of soft and rigid materials. Computer-aided design tools, such as Finite Element Analysis (FEA), are effective in minimizing development time and predicting system performance. Examples of TPV glazing seals will illustrate the benefits of utilizing FEA to take full advantage of the material characteristics, which results in functional performance and quality while reducing development iterations. FEA will be performed on two glazing seal profiles to confirm optimum geometry.« less

  8. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays.

    PubMed

    Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui

    2017-03-15

    Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.

  9. Design and Imaging of Ground-Based Multiple-Input Multiple-Output Synthetic Aperture Radar (MIMO SAR) with Non-Collinear Arrays

    PubMed Central

    Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui

    2017-01-01

    Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996

  10. Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass.

    PubMed

    Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L

    2017-01-01

    Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head-brain. Using the proposed model, we have calculated the responses of the head-brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis.

  11. Challenges to the Standardization of Burn Data Collection: A Call for Common Data Elements for Burn Care.

    PubMed

    Schneider, Jeffrey C; Chen, Liang; Simko, Laura C; Warren, Katherine N; Nguyen, Brian Phu; Thorpe, Catherine R; Jeng, James C; Hickerson, William L; Kazis, Lewis E; Ryan, Colleen M

    2018-02-20

    The use of common data elements (CDEs) is growing in medical research; CDEs have demonstrated benefit in maximizing the impact of existing research infrastructure and funding. However, the field of burn care does not have a standard set of CDEs. The objective of this study is to examine the extent of common data collected in current burn databases.This study examines the data dictionaries of six U.S. burn databases to ascertain the extent of common data. This was assessed from a quantitative and qualitative perspective. Thirty-two demographic and clinical data elements were examined. The number of databases that collect each data element was calculated. The data values for each data element were compared across the six databases for common terminology. Finally, the data prompts of the data elements were examined for common language and structure.Five (16%) of the 32 data elements are collected by all six burn databases; additionally, five data elements (16%) are present in only one database. Furthermore, there are considerable variations in data values and prompts used among the burn databases. Only one of the 32 data elements (age) contains the same data values across all databases.The burn databases examined show minimal evidence of common data. There is a need to develop CDEs and standardized coding to enhance interoperability of burn databases.

  12. A retrotransposable element from the mosquito Anopheles gambiae .

    PubMed Central

    Besansky, N J

    1990-01-01

    A family of middle repetitive elements from the African malaria vector Anopheles gambiae is described. Approximately 100 copies of the element, designated T1Ag, are dispersed in the genome. Full-length elements are 4.6 kilobase pairs in length, but truncation of the 5' end is common. Nucleotide sequences of one full-length, two 5'-truncated, and two 5' ends of T1Ag elements were determined and aligned to define a consensus sequence. Sequence analysis revealed two long, overlapping open reading frames followed by a polyadenylation signal, AATAAA, and a tail consisting of tandem repetitions of the motif TGAAA. No direct or inverted long terminal repeats (LTRs) were detected. The first open reading frame, 442 amino acids in length, includes a domain resembling that of nucleic acid-binding proteins. The second open reading frame, 975 amino acids long, resembles the reverse transcriptases of a category of retrotransposable elements without LTRs, variously termed class II retrotransposons, class III elements or non-LTR retrotransposons. Similarity at the sequence and structural levels places T1Ag in this category. Images PMID:1689457

  13. Programmable diffractive optical elements for extending the depth of focus in ophthalmic optics

    NASA Astrophysics Data System (ADS)

    Romero, Lenny A.; Millán, María. S.; Jaroszewicz, Zbigniew; Kołodziejczyk, Andrzej

    2015-01-01

    The depth of focus (DOF) defines the axial range of high lateral resolution in the image space for object position. Optical devices with a traditional lens system typically have a limited DOF. However, there are applications such as in ophthalmology, which require a large DOF in comparison to a traditional optical system, this is commonly known as extended DOF (EDOF). In this paper we explore Programmable Diffractive Optical Elements (PDOEs), with EDOF, as an alternative solution to visual impairments, especially presbyopia. These DOEs were written onto a reflective liquid cystal on silicon (LCoS) spatial light modulator (SLM). Several designs of the elements are analyzed: the Forward Logarithmic Axicon (FLAX), the Axilens (AXL), the Light sword Optical Element (LSOE), the Peacock Eye Optical Element (PE) and Double Peacock Eye Optical Element (DPE). These elements focus an incident plane wave into a segment of the optical axis. The performances of the PDOEs are compared with those of multifocal lenses. In all cases, we obtained the point spread function and the image of an extended object. The results are presented and discussed.

  14. Environmental Psychology Effects on Mental Health Job Satisfaction and Personal Well Being of Nurses.

    PubMed

    Tavakkoli, Sodeh; Asaadi, Mohammad Mahdy; Pakpour, Amir H; Hajiaghababaei, Marzieh

    2015-06-01

    Environmental psychology as a science could be useful in understanding the dissociation between the man and the environment. The aim of this study was to compare mental health, job satisfaction and well-being of nurses who work in hospital environments with different designs. This was a quasi-experimental study, in which 250 nurses filled out the mental health, well-being and job satisfaction questionnaires. They were categorized into 3 groups randomly. Group1 included 63 nurses who worked in an environment without any natural elements; group 2 included 100 nurses who worked in an environment with natural elements and group 3 included 87 nurses who worked in an environment without any psychological and ergonomic design. The last group was only stimulated by demonstrating visual stimulus. Data were analyzed using the ANOVA and Tukey's pursuit statistical method. The nurses who were working in an environment without any natural elements reported significantly lower scores on mental health, well-being and job satisfaction compared to those who were working in other groups, with the exception of social functioning. Moreover, depression and anxiety were more common in nurses who were working in environments without any natural elements compared to those in the other groups (p<0.05). We can increase job satisfaction, and mental health and well-being of the nurses through the use of natural design and environmental psychology indexes in hospital buildings.

  15. Performance of masonry enclosure walls: lessons learned from recent earthquakes

    NASA Astrophysics Data System (ADS)

    Vicente, Romeu Silva; Rodrigues, Hugo; Varum, Humberto; Costa, Aníbal; Mendes da Silva, José António Raimundo

    2012-03-01

    This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.

  16. 24 CFR 234.26 - Project requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... mortgagor obtains a title insurance policy that reflects the condominium regime. (2) The mortgagor has good...) Convert common elements into additional units or limited common elements; (3) Withdraw land from the condominium; (4) Use easements through the common elements for the purpose of making improvements within the...

  17. 24 CFR 234.26 - Project requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... mortgagor obtains a title insurance policy that reflects the condominium regime. (2) The mortgagor has good...) Convert common elements into additional units or limited common elements; (3) Withdraw land from the condominium; (4) Use easements through the common elements for the purpose of making improvements within the...

  18. 47 CFR 69.407 - Revenue accounting expenses in Account 6620.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....407 Section 69.407 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... billings shall be assigned to the Common Line element. (b) Revenue Accounting Expenses that are...'s carrier access elements except the Common Line element. Such expenses shall be apportioned in the...

  19. Engineering and Design: Structural Deformation Surveying

    DTIC Science & Technology

    2002-06-01

    loading deformations. Long-term measurements are far more common and somewhat more complex given their external nature . Long-term monitoring of a...fitting of structural elements, environmental protection, and development of mitigative measures in the case of natural disasters (land slides, earthquakes...of additional localized monitoring points (i.e., points not intended for routine observation) to determine the nature and extent of large displacements

  20. Identifying gaps in conservation networks: of indicators and uncertainty in geographic-based analyses

    Treesearch

    Curtis H. Flather; Kenneth R. Wilson; Denis J. Dean; William C. McComb

    1997-01-01

    Mapping of biodiversity elements to expose gaps in. conservation networks has become a common strategy in nature-reserve design. We review a set of critical assumptions and issues that influence the interpretation and implementation of gap analysis, including: (1) the assumption that a subset of taxa can be used to indicate overall diversity patterns, and (2) the...

  1. A Framework for Mathematics Graphical Tasks: The Influence of the Graphic Element on Student Sense Making

    ERIC Educational Resources Information Center

    Lowrie, Tom; Diezmann, Carmel M.; Logan, Tracy

    2012-01-01

    Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students' mathematics understandings. Through an iterative design, the investigation described the sense making of 11-12-year-olds as they…

  2. Study of advanced atmospheric entry systems for Mars

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Entry system designs are described for various advanced Mars missions including sample return, hard lander, and Mars airplane. The Mars exploration systems for sample return and the hard lander require decleration from direct approach entry velocities of about 6 km/s to terminal velocities consistent with surface landing requirements. The Mars airplane entry system is decelerated from orbit at 4.6 km/s to deployment near the surface. Mass performance characteristics of major elements of the Mass performance characteristics are estimated for the major elements of the required entry systems using Viking technology or logical extensions of technology in order to provide a common basis of comparison for the three entry modes mission mode approaches. The entry systems, although not optimized, are based on Viking designs and reflect current hardware performance capability and realistic mass relationships.

  3. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    PubMed

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  4. Common Elements in Rare Kidney Diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.

    PubMed

    Aymé, Ségolène; Bockenhauer, Detlef; Day, Simon; Devuyst, Olivier; Guay-Woodford, Lisa M; Ingelfinger, Julie R; Klein, Jon B; Knoers, Nine V A M; Perrone, Ronald D; Roberts, Julia; Schaefer, Franz; Torres, Vicente E; Cheung, Michael; Wheeler, David C; Winkelmayer, Wolfgang C

    2017-10-01

    Rare kidney diseases encompass at least 150 different conditions, most of which are inherited. Although individual rare kidney diseases raise specific issues, as a group these rare diseases can have overlapping challenges in diagnosis and treatment. These challenges include small numbers of affected patients, unidentified causes of disease, lack of biomarkers for monitoring disease progression, and need for complex care. To address common clinical and patient issues among rare kidney diseases, the KDIGO Controversies Conference entitled, Common Elements in Rare Kidney Diseases, brought together a panel of multidisciplinary clinical providers and patient advocates to address five central issues for rare kidney diseases. These issues encompassed diagnostic challenges, management of kidney functional decline and progression of chronic kidney disease, challenges in clinical study design, translation of advances in research to clinical care, and provision of practical and integrated patient support. Thus, by a process of consensus, guidance for addressing these challenges was developed and is presented here. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  5. Biomimetric sentinel reef structures for optical sensing and communications

    NASA Astrophysics Data System (ADS)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  6. Towards a standard design model for quad-rotors: A review of current models, their accuracy and a novel simplified model

    NASA Astrophysics Data System (ADS)

    Amezquita-Brooks, Luis; Liceaga-Castro, Eduardo; Gonzalez-Sanchez, Mario; Garcia-Salazar, Octavio; Martinez-Vazquez, Daniel

    2017-11-01

    Applications based on quad-rotor-vehicles (QRV) are becoming increasingly wide-spread. Many of these applications require accurate mathematical representations for control design, simulation and estimation. However, there is no consensus on a standardized model for these purposes. In this article a review of the most common elements included in QRV models reported in the literature is presented. This survey shows that some elements are recurrent for typical non-aerobatic QRV applications; in particular, for control design and high-performance simulation. By synthesising the common features of the reviewed models a standard generic model SGM is proposed. The SGM is cast as a typical state-space model without memory-less transformations, a structure which is useful for simulation and controller design. The survey also shows that many QRV applications use simplified representations, which may be considered simplifications of the SGM here proposed. In order to assess the effectiveness of the simplified models, a comprehensive comparison based on digital simulations is presented. With this comparison, it is possible to determine the accuracy of each model under particular operating ranges. Such information is useful for the selection of a model according to a particular application. In addition to the models found in the literature, in this article a novel simplified model is derived. The main characteristics of this model are that its inner dynamics are linear, it has low complexity and it has a high level of accuracy in all the studied operating ranges, a characteristic found only in more complex representations. To complement the article the main elements of the SGM are evaluated with the aid of experimental data and the computational complexity of all surveyed models is briefly analysed. Finally, the article presents a discussion on how the structural characteristics of the models are useful to suggest particular QRV control structures.

  7. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  8. Finite Element Analysis for the Web Offset of Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Wang, Xin; Zheng, Changwei; Cao, Jinxiang; Zou, Pingguo

    2017-05-01

    The web is an important part of wind turbine blade, which improves bending properties. Much of blade process is handmade, so web offset of wind turbine blade is one of common quality defects. In this paper, a 3D parametric finite element model of a blade for 2MW turbine was established by ANSYS. Stress distributions in different web offset values were studied. There were three kinds of web offset. The systematic study of web offset was done by orthogonal experiment. The most important factor of stress distributions was found. The analysis results have certain instructive significance to design and manufacture of wind turbine blade.

  9. New Cu-Free Ti-Based Composites with Residual Amorphous Matrix

    PubMed Central

    Nicoara, Mircea; Locovei, Cosmin; Șerban, Viorel Aurel; Parthiban, R.; Calin, Mariana; Stoica, Mihai

    2016-01-01

    Titanium-based bulk metallic glasses (BMGs) are considered to have potential for biomedical applications because they combine favorable mechanical properties and good biocompatibility. Copper represents the most common alloying element, which provides high amorphization capacity, but reports emphasizing cytotoxic effects of this element have risen concerns about possible effects on human health. A new copper-free alloy with atomic composition Ti42Zr10Pd14Ag26Sn8, in which Cu is completely replaced by Ag, was formulated based on Morinaga’s d-electron alloy design theory. Following this theory, the actual amount of alloying elements, which defines the values of covalent bond strength Bo and d-orbital energy Md, situates the newly designed alloy inside the BMG domain. By mean of centrifugal casting, cylindrical rods with diameters between 2 and 5 mm were fabricated from this new alloy. Differential scanning calorimetry (DSC) and X-rays diffraction (XRD), as well as microstructural analyses using optical and scanning electron microscopy (OM/SEM) revealed an interesting structure characterized by liquid phase-separated formation of crystalline Ag, as well as metastable intermetallic phases embedded in residual amorphous phases. PMID:28773455

  10. Common Elements for the Psychotherapeutic Management of Patients with Self Injurious Behavior

    ERIC Educational Resources Information Center

    Schiavone, Francesca L.; Links, Paul S.

    2013-01-01

    Objectives: Current research suggests that effective psychotherapies for Self Injurious Behavior (SIB) in the context of Borderline Personality Disorder (BPD) contain generic common elements which are responsible for their success. Because of the links between BPD, SIB, and child abuse, it is likely that these common elements can also be applied…

  11. Moving Our Can(n)ons: Toward an Appreciation of Multimodal Texts in the Classroom

    ERIC Educational Resources Information Center

    Jiménez, Laura M.; Roberts, Kathryn L.; Brugar, Kristy A.; Meyer, Carla K.; Waito, Kim

    2017-01-01

    The growing popularity of graphic novels for younger readers is hard to miss. This article provides specific ways to think about, recognize, and teach with multimodal texts that leverage student interest. In this English language arts unit, we taught a sixth-grade class how to read and comprehend the complex design elements common to the graphic…

  12. The Use of Feedback Systems to Improve Collaborative Text Writing: A Proposal for the Higher Education Context

    ERIC Educational Resources Information Center

    Mauri, Teresa; Ginesta, Anna; Rochera, Maria-José

    2016-01-01

    Collaborative writing is a task commonly used for learning and assessment in higher education. The complexity of this type of task requires special support for learning contents. Feedback can be used as a key element to improve students' learning and engagement. This paper presents and evaluates a teaching innovation that sought to design a model…

  13. Effects of Systematic and Strategic Analogy-Based Phonics on Grade 2 Students' Word Reading and Reading Comprehension

    ERIC Educational Resources Information Center

    White, Thomas G.

    2005-01-01

    Fifteen regular grade 2 teachers used a set of 150 written lessons that were designed to develop, over the course of a school year, low and normally achieving students' ability to decode by analogy (i.e., to read unknown words using known words). The lessons provided (1) a planned sequence for teaching phonic elements including common spelling…

  14. Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints

    NASA Astrophysics Data System (ADS)

    Alawdin, Piotr; Liepa, Liudas

    2017-06-01

    Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.

  15. Manual-guided psychosocial treatment. A new virtual requirement for pharmacotherapy trials?

    PubMed

    Carroll, K M

    1997-10-01

    The conduct of randomized clinical trials to evaluate the efficacy of pharmacotherapies for mental disorders is guided by research standards (at a high level of rigor) that govern most design elements, including randomization of subjects, use of placebo controls, formulation and dosage of the therapeutic agent, and monitoring of serum levels. In contrast, no such widely accepted guidelines are recognized for standardization of an essential, if unacknowledged, element of all such studies: the concomitant provision of at least a minimal form of psychosocial treatment. Standardized provision of psychosocial treatments in pharmacotherapy trials will foster replicability of findings and address several common problems (e.g., attrition, medication noncompliance, reduction of error variance, and ethical issues associated with placebo controls). Careful selection and standardization of the psychosocial context in which medications are delivered will improve the validity, precision, and power of pharmacotherapy efficacy research, and should be considered a virtual requirement in research design.

  16. Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.

  17. Government conceptual estimating for contracting and management

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1986-01-01

    The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.

  18. Quality Assurance of Cancer Study Common Data Elements Using A Post-Coordination Approach

    PubMed Central

    Jiang, Guoqian; Solbrig, Harold R.; Prud’hommeaux, Eric; Tao, Cui; Weng, Chunhua; Chute, Christopher G.

    2015-01-01

    Domain-specific common data elements (CDEs) are emerging as an effective approach to standards-based clinical research data storage and retrieval. A limiting factor, however, is the lack of robust automated quality assurance (QA) tools for the CDEs in clinical study domains. The objectives of the present study are to prototype and evaluate a QA tool for the study of cancer CDEs using a post-coordination approach. The study starts by integrating the NCI caDSR CDEs and The Cancer Genome Atlas (TCGA) data dictionaries in a single Resource Description Framework (RDF) data store. We designed a compositional expression pattern based on the Data Element Concept model structure informed by ISO/IEC 11179, and developed a transformation tool that converts the pattern-based compositional expressions into the Web Ontology Language (OWL) syntax. Invoking reasoning and explanation services, we tested the system utilizing the CDEs extracted from two TCGA clinical cancer study domains. The system could automatically identify duplicate CDEs, and detect CDE modeling errors. In conclusion, compositional expressions not only enable reuse of existing ontology codes to define new domain concepts, but also provide an automated mechanism for QA of terminological annotations for CDEs. PMID:26958201

  19. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 2 Core.

    PubMed

    Hucka, Michael; Bergmann, Frank T; Dräger, Andreas; Hoops, Stefan; Keating, Sarah M; Le Novère, Nicolas; Myers, Chris J; Olivier, Brett G; Sahle, Sven; Schaff, James C; Smith, Lucian P; Waltemath, Dagmar; Wilkinson, Darren J

    2018-03-09

    Computational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Version 2 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML, their encoding in XML (the eXtensible Markup Language), validation rules that determine the validity of an SBML document, and examples of models in SBML form. The design of Version 2 differs from Version 1 principally in allowing new MathML constructs, making more child elements optional, and adding identifiers to all SBML elements instead of only selected elements. Other materials and software are available from the SBML project website at http://sbml.org/.

  20. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM) transmission line method for 7T MR imaging.

    PubMed

    Li, Ye; Yu, Baiying; Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang

    2013-01-01

    The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR) in magnetic resonance (MR) imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM) technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM) and the differential mode (DM) of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.

  1. Persuasive system design does matter: a systematic review of adherence to web-based interventions.

    PubMed

    Kelders, Saskia M; Kok, Robin N; Ossebaard, Hans C; Van Gemert-Pijnen, Julia E W C

    2012-11-14

    Although web-based interventions for promoting health and health-related behavior can be effective, poor adherence is a common issue that needs to be addressed. Technology as a means to communicate the content in web-based interventions has been neglected in research. Indeed, technology is often seen as a black-box, a mere tool that has no effect or value and serves only as a vehicle to deliver intervention content. In this paper we examine technology from a holistic perspective. We see it as a vital and inseparable aspect of web-based interventions to help explain and understand adherence. This study aims to review the literature on web-based health interventions to investigate whether intervention characteristics and persuasive design affect adherence to a web-based intervention. We conducted a systematic review of studies into web-based health interventions. Per intervention, intervention characteristics, persuasive technology elements and adherence were coded. We performed a multiple regression analysis to investigate whether these variables could predict adherence. We included 101 articles on 83 interventions. The typical web-based intervention is meant to be used once a week, is modular in set-up, is updated once a week, lasts for 10 weeks, includes interaction with the system and a counselor and peers on the web, includes some persuasive technology elements, and about 50% of the participants adhere to the intervention. Regarding persuasive technology, we see that primary task support elements are most commonly employed (mean 2.9 out of a possible 7.0). Dialogue support and social support are less commonly employed (mean 1.5 and 1.2 out of a possible 7.0, respectively). When comparing the interventions of the different health care areas, we find significant differences in intended usage (p=.004), setup (p<.001), updates (p<.001), frequency of interaction with a counselor (p<.001), the system (p=.003) and peers (p=.017), duration (F=6.068, p=.004), adherence (F=4.833, p=.010) and the number of primary task support elements (F=5.631, p=.005). Our final regression model explained 55% of the variance in adherence. In this model, a RCT study as opposed to an observational study, increased interaction with a counselor, more frequent intended usage, more frequent updates and more extensive employment of dialogue support significantly predicted better adherence. Using intervention characteristics and persuasive technology elements, a substantial amount of variance in adherence can be explained. Although there are differences between health care areas on intervention characteristics, health care area per se does not predict adherence. Rather, the differences in technology and interaction predict adherence. The results of this study can be used to make an informed decision about how to design a web-based intervention to which patients are more likely to adhere.

  2. Common Data Elements for Clinical Research in Friedreich Ataxia

    PubMed Central

    Lynch, David R.; Pandolfo, Massimo; Schulz, Jorg B.; Perlman, Susan; Delatycki, Martin B.; Payne, R. Mark; Shaddy, Robert; Fischbeck, Kenneth H.; Farmer, Jennifer; Kantor, Paul; Raman, Subha V.; Hunegs, Lisa; Odenkirchen, Joanne; Miller, Kristy; Kaufmann, Petra

    2012-01-01

    Background To reduce study start-up time, increase data sharing, and assist investigators conducting clinical studies, the National Institute of Neurological Disorders and Stroke embarked on an initiative to create common data elements for neuroscience clinical research. The Common Data Element Team developed general common data elements which are commonly collected in clinical studies regardless of therapeutic area, such as demographics. In the present project, we applied such approaches to data collection in Friedreich ataxia, a neurological disorder that involves multiple organ systems. Methods To develop Friedreich’s ataxia common data elements, Friedreich’s ataxia experts formed a working group and subgroups to define elements in: Ataxia and Performance Measures; Biomarkers; Cardiac and Other Clinical Outcomes; and Demographics, Laboratory Tests and Medical History. The basic development process included: Identification of international experts in Friedreich’s ataxia clinical research; Meeting via teleconference to develop a draft of standardized common data elements recommendations; Vetting of recommendations across the subgroups; Dissemination of recommendations to the research community for public comment. Results The full recommendations were published online in September 2011 at http://www.commondataelements.ninds.nih.gov/FA.aspx. The Subgroups’ recommendations are classified as core, supplemental or exploratory. Template case report forms were created for many of the core tests. Conclusions The present set of data elements should ideally lead to decreased initiation time for clinical research studies and greater ability to compare and analyze data across studies. Their incorporation into new and ongoing studies will be assessed in an ongoing fashion to define their utility in Friedreich’s ataxia. PMID:23239403

  3. Designing berthing mechanisms for international compatibility

    NASA Technical Reports Server (NTRS)

    Winch, John; Gonzalez-Vallejo, Juan J.

    1991-01-01

    The paper examines the technological issues regarding common berthing interfaces for the Space Station Freedom and pressurized modules from U.S., European, and Japanese space programs. The development of the common berthing mechanism (CBM) is based on common requirements concerning specifications, launch environments, and the unique requirements of ESA's Man-Tended Free Flyer. The berthing mechanism is composed of an active and a passive half, a remote manipulator system, 4 capture-latch assemblies, 16 structural bolts, and a pressure gage to verify equalization. Extensive graphic and verbal descriptions of each element are presented emphasizing the capture-latch motion and powered-bolt operation. The support systems to complete the interface are listed, and the manufacturing requirements for consistent fabrication are discussed to ensure effective international development.

  4. Authentic Community as an Educational Strategy for Advancing Professionalism: A National Evaluation of the Healer’s Art Course

    PubMed Central

    Wrubel, Judith; Remen, Rachel Naomi

    2007-01-01

    Background Efforts to promote medical professionalism often focus on cognitive and technical competencies, rather than professional identity, commitment, and values. The Healer’s Art elective is designed to create a genuine community of inquiry into these foundational elements of professionalism. Objective Evaluations were obtained to characterize course impact and to understand students’ conceptions of professionalism. Design Qualitative analysis of narrative course evaluation responses. Participants Healer’s Art students from U.S. and Canadian medical schools. Approach Analysis of common themes identified in response to questions about course learning, insights, and utility. Results In 2003–2004, 25 schools offered the course. Evaluations were obtained from 467 of 582 students (80.2%) from 22 schools participating in the study. From a question about what students learned about the practice of medicine from the Healer’s Art, the most common themes were “definition of professionalism in medicine” and “legitimizing humanism in medicine.” The most common themes produced by a question about the most valuable insights gained in the course were “relationship between physicians and patients” and “creating authentic community.” The most common themes in response to a question about course utility were “creating authentic community” and “filling a curricular gap.” Conclusions In legitimizing humanistic elements of professionalism and creating a safe community, the Healer’s Art enabled students to uncover the underlying values and meaning of their work—an opportunity not typically present in required curricula. Attempts to teach professionalism should address issues of emotional safety and authentic community as prerequisites to learning and professional affiliation. PMID:17619932

  5. ANSYS UIDL-Based CAE Development of Axial Support System for Optical Mirror

    NASA Astrophysics Data System (ADS)

    Yang, De-Hua; Shao, Liang

    2008-09-01

    The Whiffle-tree type axial support mechanism is widely adopted by most relatively large optical mirrors. Based on the secondary developing tools offered by the commonly used Finite Element Anylysis (FEA) software ANSYS, ANSYS Parametric Design Language (APDL) is used for creating the mirror FEA model driven by parameters, and ANSYS User Interface Design Language (UIDL) for generating custom menu of interactive manner, whereby, the relatively independent dedicated Computer Aided Engineering (CAE) module is embedded in ANSYS for calculation and optimization of axial Whiffle-tree support of optical mirrors. An example is also described to illustrate the intuitive and effective usage of the dedicated module by boosting work efficiency and releasing related engineering knowledge of user. The philosophy of secondary-developed special module with commonly used software also suggests itself for product development in other industries.

  6. Field-based education and indigenous knowledge: Essential components of geoscience education for native American communities

    NASA Astrophysics Data System (ADS)

    Riggs, Eric M.

    2005-03-01

    The purpose of this study is to propose a framework drawing on theoretical and empirical science education research that explains the common prominent field-based components of the handful of persistent and successful Earth science education programs designed for indigenous communities in North America. These programs are primarily designed for adult learners, either in a postsecondary or in a technical education setting and all include active collaboration between local indigenous communities and geoscientists from nearby universities. Successful Earth science curricula for indigenous learners share in common an explicit emphasis on outdoor education, a place and problem-based structure, and the explicit inclusion of traditional indigenous knowledge in the instruction. Programs sharing this basic design have proven successful and popular for a wide range of indigenous cultures across North America. We present an analysis of common field-based elements to yield insight into indigenous Earth science education. We provide an explanation for the success of this design based in research on field-based learning, Native American learning styles research, and theoretical and empirical research into the nature and structure of indigenous knowledge. We also provide future research directions that can test and further refine our understanding of best practices in indigenous Earth science education.

  7. Computational design and engineering of polymeric orthodontic aligners.

    PubMed

    Barone, S; Paoli, A; Razionale, A V; Savignano, R

    2016-10-05

    Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner's effectiveness. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Earth Entry Vehicle Design for Sample Return Missions Using M-SAPE

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid

    2015-01-01

    Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle (EEV). The primary focus of this paper is the examination of EEV design space for relevant sample return missions. Mission requirements for EEV concepts can be divided into three major groups: entry conditions (e.g., velocity and flight path angle), payload (e.g., mass, volume, and g-load limit), and vehicle characteristics (e.g., thermal protection system, structural topology, and landing concepts). The impacts of these requirements on the EEV design have been studied with an integrated system analysis tool, and the results will be discussed in details. In addition, through sensitivities analyses, critical design drivers that have been identified will be reviewed.

  9. [Evaluative designs in public health: methodological considerations].

    PubMed

    López, Ma José; Marí-Dell'Olmo, Marc; Pérez-Giménez, Anna; Nebot, Manel

    2011-06-01

    Evaluation of public health interventions poses numerous methodological challenges. Randomization of individuals is not always feasible and interventions are usually composed of multiple factors. To face these challenges, certain elements, such as the selection of the most appropriate design and the use of a statistical analysis that includes potential confounders, are essential. The objective of this article was to describe the most frequently used designs in the evaluation of public health interventions (policies, programs or campaigns). The characteristics, strengths and weaknesses of each of these evaluative designs are described. Additionally, a brief explanation of the most commonly used statistical analysis in each of these designs is provided. Copyright © 2011 Sociedad Española de Salud Pública y Administración Sanitaria. Published by Elsevier Espana. All rights reserved.

  10. Engine System Loads Development for the Fastrac 60K Flight Engine

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph

    2000-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.

  11. If You've Got It, Use It (Simulation, That Is...)

    NASA Technical Reports Server (NTRS)

    Frost, Chad; Tucker, George

    2006-01-01

    This viewgraph presentation reviews the Rotorcraft Aircrew Systems Concept Airborne Laboratory (RASCAL) UH-60 in-flight simulator, the use of simulation in support of safety monitor design specification development, the development of a failure/recovery (F/R) rating scale, the use of F/R Rating Scale as a common element between simulation and flight evaluation, and the expansion of the flight envelope without benefit of simulation.

  12. Functional anatomy of the spine.

    PubMed

    Bogduk, Nikolai

    2016-01-01

    Among other important features of the functional anatomy of the spine, described in this chapter, is the remarkable difference between the design and function of the cervical spine and that of the lumbar spine. In the cervical spine, the atlas serves to transmit the load of the head to the typical cervical vertebrae. The axis adapts the suboccipital region to the typical cervical spine. In cervical intervertebrtal discs the anulus fibrosus is not circumferential but is crescentic, and serves as an interosseous ligament in the saddle joint between vertebral bodies. Cervical vertebrae rotate and translate in the sagittal plane, and rotate in the manner of an inverted cone, across an oblique coronal plane. The cervical zygapophysial joints are the most common source of chronic neck pain. By contrast, lumbar discs are well designed to sustain compression loads, but rely on posterior elements to limit axial rotation. Internal disc disruption is the most common basis for chronic low-back pain. Spinal muscles are arranged systematically in prevertebral and postvertebral groups. The intrinsic elements of the spine are innervated by the dorsal rami of the spinal nerves, and by the sinuvertebral nerves. Little modern research has been conducted into the structure of the thoracic spine, or the causes of thoracic spinal pain. © 2016 Elsevier B.V. All rights reserved.

  13. Experimental and finite element study of ultimate strength of continuous composite concrete slabs with steel decking

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2018-03-01

    Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.

  14. SBOL Visual: A Graphical Language for Genetic Designs.

    PubMed

    Quinn, Jacqueline Y; Cox, Robert Sidney; Adler, Aaron; Beal, Jacob; Bhatia, Swapnil; Cai, Yizhi; Chen, Joanna; Clancy, Kevin; Galdzicki, Michal; Hillson, Nathan J; Le Novère, Nicolas; Maheshwari, Akshay J; McLaughlin, James Alastair; Myers, Chris J; P, Umesh; Pocock, Matthew; Rodriguez, Cesar; Soldatova, Larisa; Stan, Guy-Bart V; Swainston, Neil; Wipat, Anil; Sauro, Herbert M

    2015-12-01

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.

  15. A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces

    NASA Astrophysics Data System (ADS)

    Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang

    2018-02-01

    Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.

  16. System and method for image registration of multiple video streams

    DOEpatents

    Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton

    2018-02-06

    Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.

  17. Impact of pharmacy benefit design on prescription drug utilization: a fixed effects analysis of plan sponsor data.

    PubMed

    Roebuck, M Christopher; Liberman, Joshua N

    2009-06-01

    To study the impact of various elements of pharmacy benefit design on both the absolute and relative utilization of generics, brands, retail pharmacy, and mail service. Panel data on 1,074 plan sponsors covering 21.6 million individuals over 12 calendar quarters (2005-2007). A retrospective analysis of pharmacy claims. To control for potential endogeneity, linear fixed effects models were estimated for each of six dependent variables: the generic utilization rate, the brand utilization rate, the generic dispensing rate (GDR), the retail pharmacy utilization rate, the mail service utilization rate, and the mail distribution rate. Most member cost-share variables were nonlinearly associated with changes in prescription drug utilization. Marginal effects were generally greater in magnitude for brand out-of-pocket costs than for generic out-of-pocket costs. Time dummies, as well as other pharmacy benefit design elements, also yielded significant results. Prior estimates of the effect of member cost sharing on prescription drug utilization may be biased if complex benefit designs, mail service fulfillment, and unmeasured factors such as pharmaceutical pipelines are not accounted for. Commonly cited relative utilization metrics, such as GDR, may be misleading if not examined alongside absolute prescription drug utilization.

  18. A curved ultrasonic actuator optimized for spherical motors: design and experiments.

    PubMed

    Leroy, Edouard; Lozada, José; Hafez, Moustapha

    2014-08-01

    Multi-degree-of-freedom angular actuators are commonly used in numerous mechatronic areas such as omnidirectional robots, robot articulations or inertially stabilized platforms. The conventional method to design these devices consists in placing multiple actuators in parallel or series using gimbals which are bulky and difficult to miniaturize. Motors using a spherical rotor are interesting for miniature multidegree-of-freedom actuators. In this paper, a new actuator is proposed. It is based on a curved piezoelectric element which has its inner contact surface adapted to the diameter of the rotor. This adaptation allows to build spherical motors with a fully constrained rotor and without a need for additional guiding system. The work presents a design methodology based on modal finite element analysis. A methodology for mode selection is proposed and a sensitivity analysis of the final geometry to uncertainties and added masses is discussed. Finally, experimental results that validate the actuator concept on a single degree-of-freedom ultrasonic motor set-up are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Trap Design and Construction for High-Power Multinuclear Magnetic Resonance Experiments

    PubMed Central

    Rispoli, Joseph V.; Dimitrov, Ivan E.; Cheshkov, Sergey; Malloy, Craig; Wright, Steven M.; McDougall, Mary P.

    2016-01-01

    Performing multinuclear experiments requires one or more radiofrequency (RF) coils operating at both the proton and second-nucleus frequencies; however, inductive coupling between coils must be mitigated to retain proton sensitivity and coil tuning stability. The inclusion of trap circuits simplifies placement of multinuclear RF coils while maintaining inter-element isolation. Of the commonly investigated non-proton nuclei, perhaps the most technically demanding is carbon-13, particularly when applying a proton decoupling scheme to improve the resulting spectra. This work presents experimental data for trap circuits withstanding high-power broadband proton decoupling of carbon-13 at 7 T. The advantages and challenges of building trap circuits with various inductor and capacitor components are discussed. Multiple trap designs are evaluated on the bench and utilized on an RF coil at 7 T to detect broadband proton-decoupled carbon-13 spectra from a lipid phantom. A particular trap design, built from a coaxial stub inductor and high-voltage ceramic chip capacitors, is highlighted owing to both its performance and adaptability for planar array coil elements with diverse spatial orientations. PMID:28529464

  20. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B.

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for themore » proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.« less

  1. The Use of UML for Software Requirements Expression and Management

    NASA Technical Reports Server (NTRS)

    Murray, Alex; Clark, Ken

    2015-01-01

    It is common practice to write English-language "shall" statements to embody detailed software requirements in aerospace software applications. This paper explores the use of the UML language as a replacement for the English language for this purpose. Among the advantages offered by the Unified Modeling Language (UML) is a high degree of clarity and precision in the expression of domain concepts as well as architecture and design. Can this quality of UML be exploited for the definition of software requirements? While expressing logical behavior, interface characteristics, timeliness constraints, and other constraints on software using UML is commonly done and relatively straight-forward, achieving the additional aspects of the expression and management of software requirements that stakeholders expect, especially traceability, is far less so. These other characteristics, concerned with auditing and quality control, include the ability to trace a requirement to a parent requirement (which may well be an English "shall" statement), to trace a requirement to verification activities or scenarios which verify that requirement, and to trace a requirement to elements of the software design which implement that requirement. UML Use Cases, designed for capturing requirements, have not always been satisfactory. Some applications of them simply use the Use Case model element as a repository for English requirement statements. Other applications of Use Cases, in which Use Cases are incorporated into behavioral diagrams that successfully communicate the behaviors and constraints required of the software, do indeed take advantage of UML's clarity, but not in ways that support the traceability features mentioned above. Our approach uses the Stereotype construct of UML to precisely identify elements of UML constructs, especially behaviors such as State Machines and Activities, as requirements, and also to achieve the necessary mapping capabilities. We describe this approach in the context of a space-based software application currently under development at the Jet Propulsion Laboratory.

  2. Microoptical System And Fabrication Method Therefor

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-03-15

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  3. Finite Element Analysis of Absorbable Sheath to Prevent Stress Shielding of Tibial Interlocking Intramedullary Nail

    NASA Astrophysics Data System (ADS)

    Dong, Yansheng; Wang, Yongqing; Dong, Limin; Jia, Peng; Lu, Fengcheng

    2017-07-01

    The nail with absorbable sheath (AS nail) is designed to reduce the stress shielding effect of internal fixation with interlocking intramedullary nail. In order to verify its feasibility, two types of the finite element models of internal fixation of tibia with the AS nail and the common metal nail (CM nail) are established using the Softwares of Mimics, Geomagic, SolidWorks and ANSYS according to the CT scanning data of tibia. The result of the finite element analysis shows that the AS nail has great advantages compared with the CM nail in reducing the stress shielding effect in different periods of fracture healing. The conclusion is that the AS nail can realize the static fixation to the dynamic fixation from the early to the later automatically to shorten the time of fracture healing, which also provides a new technique to the interlocking intramedullary nail.

  4. Performance Requirements for Emergency Responder Interoperable and Compatible Electronic Safety Equipment

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.

    2012-01-01

    Firefighters and other emergency response personnel are presented with an increasing array of technologies to improve their health and safety. This includes real-time bidirectional communication, navigation and positional information, data on physiological and metabolic functions, as well as data on their surrounding environment. The emerging challenge is to integrate these elements into a practical system, addressing such features as power, data transfer, and inter-element coordination and communication. In many respects, NASA has addressed these aspects in the context of Extra Vehicular Activity (EVA). The EVA environment shares many common attributes with that of emergency response scenarios. A similar situation exists in terms of the need for interoperability among the various system sub-elements. A brief overview is presented on the similarities and differences in these two applications, as well as the technical approach adopted by NASA in terms of system design philosophy.

  5. Altruistic functions for selfish DNA.

    PubMed

    Faulkner, Geoffrey J; Carninci, Piero

    2009-09-15

    Mammalian genomes are comprised of 30-50% transposed elements (TEs). The vast majority of these TEs are truncated and mutated fragments of retrotransposons that are no longer capable of transposition. Although initially regarded as important factors in the evolution of gene regulatory networks, TEs are now commonly perceived as neutrally evolving and non-functional genomic elements. In a major development, recent works have strongly contradicted this "selfish DNA" or "junk DNA" dogma by demonstrating that TEs use a host of novel promoters to generate RNA on a massive scale across most eukaryotic cells. This transcription frequently functions to control the expression of protein-coding genes via alternative promoters, cis regulatory non protein-coding RNAs and the formation of double stranded short RNAs. If considered in sum, these findings challenge the designation of TEs as selfish and neutrally evolving genomic elements. Here, we will expand upon these themes and discuss challenges in establishing novel TE functions in vivo.

  6. Hybrid electro-optical nanosystem for neurons investigation

    NASA Astrophysics Data System (ADS)

    Miu, Mihaela; Kleps, Irina; Craciunoiu, Florea; Simion, Monica; Bragaru, Adina; Ignat, Teodora

    2010-11-01

    The scope of this paper is development of a new laboratory-on-a-chip (LOC) device for biomedical studies consisting of a microfluidic system coupled to microelectronic/optical transducers with nanometric features, commonly called biosensors. The proposed device is a hybrid system with sensing element on silicon (Si) chip and microfluidic system on polydimethylsiloxane (PDMS) substrates, taking into accounts their particular advantages. Different types of nanoelectrode arrays, positioned in the reactor, have been investigated as sensitive elements for electrical detection and the recording of neuron extracellular electric activity has been monitorized in parallel with whole-cell patch-clamp membrane current. Moreover, using an additional porosification process the sensing element became efficient for optical detection also. The preliminary test results demonstrate the functionality of the proposed design and also the fabrication technology, the devices bringing advantages in terms enhancement of sensitivity in both optoelectronic detection schemes.

  7. Microoptical system and fabrication method therefor

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2003-07-08

    Microoptical systems with clear aperture of about one millimeter or less are fabricated from a layer of photoresist using a lithographic process to define the optical elements. A deep X-ray source is typically used to expose the photoresist. Exposure and development of the photoresist layer can produce planar, cylindrical, and radially symmetric micro-scale optical elements, comprising lenses, mirrors, apertures, diffractive elements, and prisms, monolithically formed on a common substrate with the mutual optical alignment required to provide the desired system functionality. Optical alignment can be controlled to better than one micron accuracy. Appropriate combinations of structure and materials enable optical designs that include corrections for chromatic and other optical aberrations. The developed photoresist can be used as the basis for a molding operation to produce microoptical systems made of a range of optical materials. Finally, very complex microoptical systems can be made with as few as three lithographic exposures.

  8. Viva La Diferencia! Segundo Modulo de una Serie para Maestros de Escuela Elemental (Long Live the Difference! Second Module of a Series for Elementary School Teachers).

    ERIC Educational Resources Information Center

    Molina, Carmen Eneida, Ed.; And Others

    This guide, in English and Spanish, is designed to provide teachers with a scientific basis for identifying myths and distortions about men and women. A pre-test and post-test are included to measure the user's awareness of stereotypes. Object lessons address the following areas: (1) common sexual stereotypes; (2) sexual functions; (3) the…

  9. Fade Mitigation Techniques at Ka-Band

    NASA Technical Reports Server (NTRS)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  10. Common Aperture Techniques for Imaging Electro-Optical Sensors (CATIES).

    DTIC Science & Technology

    1980-02-01

    milliradians ) at the 5.33:1 zoom point. The zoom optics contain five elements with two moveable air -spaced doublets for accomplishing the zoom function...included in the electrical and optical design but due to funding limitations, system safety requirements during the testing phase and lack of long-term...determined during the system testing phase to be conducted by the Air Force. Limited electronic signal processing (split screen and video mix) was

  11. Common data elements for secondary use of electronic health record data for clinical trial execution and serious adverse event reporting.

    PubMed

    Bruland, Philipp; McGilchrist, Mark; Zapletal, Eric; Acosta, Dionisio; Proeve, Johann; Askin, Scott; Ganslandt, Thomas; Doods, Justin; Dugas, Martin

    2016-11-22

    Data capture is one of the most expensive phases during the conduct of a clinical trial and the increasing use of electronic health records (EHR) offers significant savings to clinical research. To facilitate these secondary uses of routinely collected patient data, it is beneficial to know what data elements are captured in clinical trials. Therefore our aim here is to determine the most commonly used data elements in clinical trials and their availability in hospital EHR systems. Case report forms for 23 clinical trials in differing disease areas were analyzed. Through an iterative and consensus-based process of medical informatics professionals from academia and trial experts from the European pharmaceutical industry, data elements were compiled for all disease areas and with special focus on the reporting of adverse events. Afterwards, data elements were identified and statistics acquired from hospital sites providing data to the EHR4CR project. The analysis identified 133 unique data elements. Fifty elements were congruent with a published data inventory for patient recruitment and 83 new elements were identified for clinical trial execution, including adverse event reporting. Demographic and laboratory elements lead the list of available elements in hospitals EHR systems. For the reporting of serious adverse events only very few elements could be identified in the patient records. Common data elements in clinical trials have been identified and their availability in hospital systems elucidated. Several elements, often those related to reimbursement, are frequently available whereas more specialized elements are ranked at the bottom of the data inventory list. Hospitals that want to obtain the benefits of reusing data for research from their EHR are now able to prioritize their efforts based on this common data element list.

  12. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce G. Schnitzler; Stanley K. Borowski

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified asmore » the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.« less

  13. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Schnitzler, Bruce G.; Borowski, Stanley K.

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

  14. Development of concepts for low-cost energy storage assemblies for annual cycle energy system applications

    NASA Astrophysics Data System (ADS)

    Alexander, G. H.; Cooper, D. L.; Cummings, C. A.; Reiber, E. E.

    1981-10-01

    Low cost energy storage assemblies were developed. In the search for low overall cost assemblies, many diverse concepts and materials were postulated and briefly evaluated. Cost rankings, descriptions, and discussions of the concepts were presented from which ORNL selected the following three concepts for the Phase 2 development: (1) a site constructed tank with reinforced concrete walls formed with specialized modular blocks which eliminates most concrete form work and provides integral R-20 insulation designated ORNLFF; (2) a site constructed tank with earth supported walls that are formed from elements common to residential, in-ground swimming pools, designated SWPL; (3) and a site assembled tank used in underground utility vaults, designated UTLBX. Detailed designs of free standing versions of the three concepts are presented.

  15. A Thermal Precipitator for Fire Characterization Research

    NASA Technical Reports Server (NTRS)

    Meyer, Marit; Bryg, Vicky

    2008-01-01

    Characterization of the smoke from pyrolysis of common spacecraft materials provides insight for the design of future smoke detectors and post-fire clean-up equipment on the International Space Station. A thermal precipitator was designed to collect smoke aerosol particles for microscopic analysis in fire characterization research. Information on particle morphology, size and agglomerate structure obtained from these tests supplements additional aerosol data collected. Initial modeling for the thermal precipitator design was performed with the finite element software COMSOL Multiphysics, and includes the flow field and heat transfer in the device. The COMSOL Particle Tracing Module was used to determine particle deposition on SEM stubs which include TEM grids. Modeling provided optimized design parameters such as geometry, flow rate and temperatures. Microscopy results from fire characterization research using the thermal precipitator are presented.

  16. Postmarketing Safety Study Tool: A Web Based, Dynamic, and Interoperable System for Postmarketing Drug Surveillance Studies

    PubMed Central

    Sinaci, A. Anil; Laleci Erturkmen, Gokce B.; Gonul, Suat; Yuksel, Mustafa; Invernizzi, Paolo; Thakrar, Bharat; Pacaci, Anil; Cinar, H. Alper; Cicekli, Nihan Kesim

    2015-01-01

    Postmarketing drug surveillance is a crucial aspect of the clinical research activities in pharmacovigilance and pharmacoepidemiology. Successful utilization of available Electronic Health Record (EHR) data can complement and strengthen postmarketing safety studies. In terms of the secondary use of EHRs, access and analysis of patient data across different domains are a critical factor; we address this data interoperability problem between EHR systems and clinical research systems in this paper. We demonstrate that this problem can be solved in an upper level with the use of common data elements in a standardized fashion so that clinical researchers can work with different EHR systems independently of the underlying information model. Postmarketing Safety Study Tool lets the clinical researchers extract data from different EHR systems by designing data collection set schemas through common data elements. The tool interacts with a semantic metadata registry through IHE data element exchange profile. Postmarketing Safety Study Tool and its supporting components have been implemented and deployed on the central data warehouse of the Lombardy region, Italy, which contains anonymized records of about 16 million patients with over 10-year longitudinal data on average. Clinical researchers in Roche validate the tool with real life use cases. PMID:26543873

  17. Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry; hide

    2014-01-01

    This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.

  18. Assuring data transparency through design methodologies

    NASA Technical Reports Server (NTRS)

    Williams, Allen

    1990-01-01

    This paper addresses the role of design methodologies and practices in the assurance of technology transparency. The development of several subsystems on large, long life cycle government programs was analyzed to glean those characteristics in the design, development, test, and evaluation that precluded or enabled the insertion of new technology. The programs examined were Minuteman, DSP, B1-B, and space shuttle. All these were long life cycle, technology-intensive programs. The design methodologies (or lack thereof) and design practices for each were analyzed in terms of the success or failure in incorporating evolving technology. Common elements contributing to the success or failure were extracted and compared to current methodologies being proposed by the Department of Defense and NASA. The relevance of these practices to the design and deployment of Space Station Freedom were evaluated. In particular, appropriate methodologies now being used on the core development contract were examined.

  19. Common Data Elements for Muscle Biopsy Reporting

    PubMed Central

    Dastgir, Jahannaz; Rutkowski, Anne; Alvarez, Rachel; Cossette, Stacy A.; Yan, Ke; Hoffmann, Raymond G.; Sewry, Caroline; Hayashi, Yukiko K.; Goebel, Hans-Hilmar; Bonnemann, Carsten; Lawlor, Michael W.

    2016-01-01

    Context There is no current standard among myopathologists for reporting muscle biopsy findings. The National Institute of Neurological Disorders and Stroke has recently launched a common data element (CDE) project to standardize neuromuscular data collected in clinical reports and to facilitate their use in research. Objective To develop a more-uniform, prospective reporting tool for muscle biopsies, incorporating the elements identified by the CDE project, in an effort to improve reporting and educational resources. Design The variation in current biopsy reporting practice was evaluated through a study of 51 muscle biopsy reports from self-reported diagnoses of genetically confirmed or undiagnosed muscle disease from the Congenital Muscle Disease International Registry. Two reviewers independently extracted data from deidentified reports and entered them into the revised CDE format to identify what was missing and whether or not information provided on the revised CDE report (complete/incomplete) could be successfully interpreted by a neuropathologist. Results Analysis of the data highlighted showed (1) inconsistent reporting of key clinical features from referring physicians, and (2) considerable variability in the reporting of pertinent positive and negative histologic findings by pathologists. Conclusions We propose a format for muscle-biopsy reporting that includes the elements in the CDE checklist and a brief narrative comment that interprets the data in support of a final interpretation. Such a format standardizes cataloging of pathologic findings across the spectrum of muscle diseases and serves emerging clinical care and research needs with the expansion of genetic-testing therapeutic trials. PMID:26132600

  20. Double peacock eye optical element for extended focal depth imaging with ophthalmic applications.

    PubMed

    Romero, Lenny A; Millán, María S; Jaroszewicz, Zbigniew; Kolodziejczyk, Andrzej

    2012-04-01

    The aged human eye is commonly affected by presbyopia, and therefore, it gradually loses its capability to form images of objects placed at different distances. Extended depth of focus (EDOF) imaging elements can overcome this inability, despite the introduction of a certain amount of aberration. This paper evaluates the EDOF imaging performance of the so-called peacock eye phase diffractive element, which focuses an incident plane wave into a segment of the optical axis and explores the element's potential use for ophthalmic presbyopia compensation optics. Two designs of the element are analyzed: the single peacock eye, which produces one focal segment along the axis, and the double peacock eye, which is a spatially multiplexed element that produces two focal segments with partial overlapping along the axis. The performances of the peacock eye elements are compared with those of multifocal lenses through numerical simulations as well as optical experiments in the image space. The results demonstrate that the peacock eye elements form sharper images along the focal segment than the multifocal lenses and, therefore, are more suitable for presbyopia compensation. The extreme points of the depth of field in the object space, which represent the remote and the near object points, have been experimentally obtained for both the single and the double peacock eye optical elements. The double peacock eye element has better imaging quality for relatively short and intermediate distances than the single peacock eye, whereas the latter seems better for far distance vision.

  1. Incidence and mechanisms of longitudinal stent deformation associated with Biomatrix, Resolute, Element, and Xience stents: Angiographic and case-by-case review of 1,800 PCIs.

    PubMed

    Arnous, Samer; Shakhshir, Nizar; Wiper, Andrew; Ordoubadi, Farzin-Farth; Williams, Paul; Clarke, Bernard; Mahadavan, Vaikom; El-Omar, Magdi; Mamas, Mamas; Fraser, Douglas

    2015-11-15

    There is conflicting evidence regarding the incidence of longitudinal stent deformation (LSD) in contemporary practice. To assess the incidence and mechanism of LSD across commonly used DES platforms, we performed a case-by-case review of 1,800 PCI cases involving 450 consecutive procedures using Biomatrix Flex, Resolute Integrity, Promus Element, and Xience V stents, respectively, between January 2009 and December 2011. LSD was detected in a higher proportion with Promus Element [15 (3.1%)] compared with other platforms (Xience V [4 (0.9%)], Biomatrix [3 (0.7%)], Resolute [3 (0.7%)]; P = 0.002). LSD was characterized as guide catheter/guide extension induced, or as impact from secondary devices such as postdilatation balloons or IVUS catheters. The incidence of guide catheter/guide extension LSD was similar across platforms; (Promus Element [5 (1.1%)], Xience V [4 (0.9%)], Biomatrix [3 (0.7%)], Resolute [3 (0.7%)]; P = 0.85). Secondary device LSD occurred exclusively with Promus Element (9/450 cases [2%] (P < 0.0001). Re-entering the deformed stent was more difficult in cases of secondary device LSD (6/9 compared with 0/12 treated cases; P < 0.001). Univariate predictors of LSD were previous CABG, culprit vessel, ostial involvement, and lesion tortuosity. Multivariate predictors of LSD were the Promus Element stent (OR 5.53 CI[1.54-19.85]), Guideliner use (OR 22.09 CI[4.73-103]), postdilation balloons (OR 5.47 CI[1.31-22.81]) and number of stents deployed (OR 2.06 CI[1.45-2.9]. LSD is more common than previously reported. LSD by a guide catheter/guide extension occurred equally with all platforms, however, LSD associated with secondary devices only occurred with the Element stent. These findings have important implications regarding current and future stent designs. © 2015 Wiley Periodicals, Inc.

  2. Persuasive System Design Does Matter: A Systematic Review of Adherence to Web-Based Interventions

    PubMed Central

    Kok, Robin N; Ossebaard, Hans C; Van Gemert-Pijnen, Julia EWC

    2012-01-01

    Background Although web-based interventions for promoting health and health-related behavior can be effective, poor adherence is a common issue that needs to be addressed. Technology as a means to communicate the content in web-based interventions has been neglected in research. Indeed, technology is often seen as a black-box, a mere tool that has no effect or value and serves only as a vehicle to deliver intervention content. In this paper we examine technology from a holistic perspective. We see it as a vital and inseparable aspect of web-based interventions to help explain and understand adherence. Objective This study aims to review the literature on web-based health interventions to investigate whether intervention characteristics and persuasive design affect adherence to a web-based intervention. Methods We conducted a systematic review of studies into web-based health interventions. Per intervention, intervention characteristics, persuasive technology elements and adherence were coded. We performed a multiple regression analysis to investigate whether these variables could predict adherence. Results We included 101 articles on 83 interventions. The typical web-based intervention is meant to be used once a week, is modular in set-up, is updated once a week, lasts for 10 weeks, includes interaction with the system and a counselor and peers on the web, includes some persuasive technology elements, and about 50% of the participants adhere to the intervention. Regarding persuasive technology, we see that primary task support elements are most commonly employed (mean 2.9 out of a possible 7.0). Dialogue support and social support are less commonly employed (mean 1.5 and 1.2 out of a possible 7.0, respectively). When comparing the interventions of the different health care areas, we find significant differences in intended usage (p = .004), setup (p < .001), updates (p < .001), frequency of interaction with a counselor (p < .001), the system (p = .003) and peers (p = .017), duration (F = 6.068, p = .004), adherence (F = 4.833, p = .010) and the number of primary task support elements (F = 5.631, p = .005). Our final regression model explained 55% of the variance in adherence. In this model, a RCT study as opposed to an observational study, increased interaction with a counselor, more frequent intended usage, more frequent updates and more extensive employment of dialogue support significantly predicted better adherence. Conclusions Using intervention characteristics and persuasive technology elements, a substantial amount of variance in adherence can be explained. Although there are differences between health care areas on intervention characteristics, health care area per se does not predict adherence. Rather, the differences in technology and interaction predict adherence. The results of this study can be used to make an informed decision about how to design a web-based intervention to which patients are more likely to adhere. PMID:23151820

  3. Development of an innovative sandwich common bulkhead for cryogenic upper stage propellant tank

    NASA Astrophysics Data System (ADS)

    Szelinski, B.; Lange, H.; Röttger, C.; Sacher, H.; Weiland, S.; Zell, D.

    2012-12-01

    In the frame of the Future Launcher Preparatory Program (FLPP) investigating advancing technologies for the Next Generation of Launchers (NGL) a number of novel key technologies are presently under development for significantly improving vehicle performance in terms of payload capacity and mission versatility. As a respective ESA guided technology development program, Cryogenic Upper Stage Technologies (CUST) has been launched within FLPP that hosts among others the development of a common bulkhead to separate liquid hydrogen from the liquid oxygen compartment. In this context, MT Aerospace proposed an advanced sandwich design concept which is currently in the development phase reaching for TRL4 under MT Aerospace responsibility. Key components of this sandwich common bulkhead are a specific core material, situated in-between two thin aluminum face sheets, and an innovative thermal decoupling element at the equatorial region. The combination of these elements provides excellent thermal insulation capabilities and mechanical performance at a minimum weight, since mechanical and thermal functions are merged in the same component. This improvement is expressed by substantial performance figures of the proposed concept that include high resistance against reverse pressure, an optimized heat leak and minimized mass, involving the sandwich dome structure and the adjacent interface rings. The development of single sub-technologies, all contributing to maturate the sandwich common bulkhead towards the desired technology readiness level (TRL), is described in the context of the given design constraints as well as technical, functional and programmatic requirements, issued from the stage level. This includes the thermal and mechanical characterization of core materials, manufacturing issues as well as non-destructive testing and the thermal and structural analyses and dimensioning of the complete common bulkhead system. Dedicated TRL assessments in the Ariane 5 Mid-life Evolution (A5-ME) program track the progress of these technology developments and analyze their applicability in time for A5-ME. In order to approximate A5-ME concerned preconditions, activities are initiated aiming at harmonization of the available specifications. Hence, a look-out towards a further technology step approaching TRL6 in a subsequent phase is given, briefly addressing topics of full scale manufacture and appropriate thermo-mechanical testing of an entire sandwich common bulkhead.

  4. A methodology for the design and evaluation of user interfaces for interactive information systems. Ph.D. Thesis Final Report, 1 Jul. 1985 - 31 Dec. 1987

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Farooq, Mohammad U.

    1986-01-01

    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.

  5. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    PubMed

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  6. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers

    NASA Astrophysics Data System (ADS)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  7. Reducing mechanical cross-coupling in phased array transducers using stop band material as backing

    NASA Astrophysics Data System (ADS)

    Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.

    2018-06-01

    Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.

  8. Demonstration on Areca Catechu Tree Reuse with Supporting of Information Technology

    NASA Astrophysics Data System (ADS)

    Chao, F. L.; Wu, C. K.; Chao, A. K.

    2018-04-01

    Areca catechu can be commonly found in Taiwan and Asia. By the restriction of agriculture policy, often the tree is chopped down and left in the wild and became an extra burden on the local environment. In this study, reuse design cases and opportunities were collected as Blog, so that people can access more easily. To enhance the user’s awareness and information access it included the facets of its biology, culture history and reuse cases. Furthermore, we proposed demonstration supported with information technology. A blog can collect facts and examples with capabilities of multiple tags. This ability makes information search more accessible. The proposed approach combines both physical samples and visual elements in Blog which can be view by mobile phone. From the survey, Blog performs better than a regular internet search. Most people feel interesting, and some people were able to have own idea. Demonstration designs gather both elements will help to form a positive communication to the society with sustainable thinking.

  9. 47 CFR 69.4 - Charges to be filed.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES... shall include charges for the End User Common Line element, and for line port costs in excess of basic... each of the following elements: (1) [Reserved] (2) Carrier common line, provided that after June 30...

  10. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  11. FDA: Evidentiary Standards for Drug Development and Approval

    PubMed Central

    Katz, Russell

    2004-01-01

    Summary: The United States Food and Drug Administration is charged with approving drug treatments that have been shown to be safe and effective. Relevant statutes and regulations provide a legal framework for establishing safety and effectiveness that is sufficiently flexible to ensure that appropriate scientific data are collected for specific treatments targeted to particular diseases. Nonetheless, all clinical trials proposed to establish effectiveness must incorporate common elements in order for the appropriate legal and scientific standards of drug approval to be met. This article will discuss the relevant laws and regulations pertaining to the current effectiveness standard and will discuss the most important clinical trial design elements currently considered acceptable for applications for treatments of neurologic and psychiatric illness. PMID:15717032

  12. Posterior Cord Syndrome and Trace Elements Deficiency as an Uncommon Presentation of Common Variable Immunodeficiency

    PubMed Central

    dos Santos Mota, Ananda; Morais Monteiro, Priscila; Carvalho, Angela Cristina Gouvêa; Fernandes Diniz, Barbara; Gemal Lanzieri, Pedro; Carneiro Ramos, Ricardo; Mocarzel, Luis Otavio

    2017-01-01

    Diarrhea is one of the most common symptoms in common variable immunodeficiency, but neurologic manifestations are rare. We presented a 50-year-old woman with recurrent diarrhea and severe weight loss that developed a posterior cord syndrome. Endoscopy found a duodenal villous blunting, intraepithelial lymphocytosis, and lack of plasma cells and magnetic resonance imaging of the spine was normal. Laboratory assays confirmed common variable immunodeficiency syndrome and showed low levels of trace elements (copper and zinc). Treatment was initiated with parenteral replacement of trace elements and intravenous human immunoglobulin and the patient improved clinically. In conclusion, physicians must be aware that gastrointestinal and neurologic disorders may be related to each other and remember to request trace elements laboratory assessment. PMID:28356913

  13. Rationale, development and implementation of the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest.

    PubMed

    Morrison, Laurie J; Nichol, Graham; Rea, Thomas D; Christenson, Jim; Callaway, Clifton W; Stephens, Shannon; Pirrallo, Ronald G; Atkins, Dianne L; Davis, Daniel P; Idris, Ahamed H; Newgard, Craig

    2008-08-01

    To describe the development, design and consequent scientific implications of the Resuscitation Outcomes Consortium (ROC) population-based registry; ROC Epistry-Cardiac Arrest. The ROC Epistry--Cardiac Arrest is designed as a prospective population-based registry of all Emergency Medical Services (EMSs)-attended 9-1-1 calls for patients with out-of-hospital cardiac arrest occurring in the geographical area described by the eight US and three Canadian regions. The dataset was derived by an North American interdisciplinary steering committee. Enrolled cases include individuals of all ages who experience cardiac arrest outside the hospital, with evaluation by organized EMS personnel and: (a) attempts at external defibrillation (by lay responders or emergency personnel), or chest compressions by organized EMS personnel; (b) were pulseless but did not receive attempts to defibrillate or CPR by EMS personnel. Selected data items are categorized as mandatory or optional and undergo revisions approximately every 12 months. Where possible all definitions are referenced to existing literature. Where a common definition did not exist one was developed. Optional items include standardized CPR process data elements. It is anticipated the ROC Epistry--Cardiac Arrest will enroll between approximately 9000 and 13,500 treated all rhythm arrests and 4000 and 5000 ventricular fibrillation arrests annually and approximately 8000 EMS-attended but untreated arrests. We describe the rationale, development, design and future implications of the ROC Epistry--Cardiac Arrest. This paper will serve as the reference for subsequent ROC manuscripts and for the common data elements captured in both ROC Epistry--Cardiac Arrest and the ROC trials.

  14. SBOL Visual: A Graphical Language for Genetic Designs

    DOE PAGES

    Quinn, Jacqueline Y.; Cox, Robert Sidney; Adler, Aaron; ...

    2015-12-03

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. We report that it consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.

  15. SBOL Visual: A Graphical Language for Genetic Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Jacqueline Y.; Cox, Robert Sidney; Adler, Aaron

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. We report that it consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.

  16. Cycling transport safety quantification

    NASA Astrophysics Data System (ADS)

    Drbohlav, Jiri; Kocourek, Josef

    2018-05-01

    Dynamic interest in cycling transport brings the necessity to design safety cycling infrastructure. In las few years, couple of norms with safety elements have been designed and suggested for the cycling infrastructure. But these were not fully examined. The main parameter of suitable and fully functional transport infrastructure is the evaluation of its safety. Common evaluation of transport infrastructure safety is based on accident statistics. These statistics are suitable for motor vehicle transport but unsuitable for the cycling transport. Cycling infrastructure evaluation of safety is suitable for the traffic conflicts monitoring. The results of this method are fast, based on real traffic situations and can be applied on any traffic situations.

  17. SBOL Visual: A Graphical Language for Genetic Designs

    PubMed Central

    Adler, Aaron; Beal, Jacob; Bhatia, Swapnil; Cai, Yizhi; Chen, Joanna; Clancy, Kevin; Galdzicki, Michal; Hillson, Nathan J.; Le Novère, Nicolas; Maheshwari, Akshay J.; McLaughlin, James Alastair; Myers, Chris J.; P, Umesh; Pocock, Matthew; Rodriguez, Cesar; Soldatova, Larisa; Stan, Guy-Bart V.; Swainston, Neil; Wipat, Anil; Sauro, Herbert M.

    2015-01-01

    Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual. PMID:26633141

  18. A Literature Review: Website Design and User Engagement.

    PubMed

    Garett, Renee; Chiu, Jason; Zhang, Ly; Young, Sean D

    2016-07-01

    Proper design has become a critical element needed to engage website and mobile application users. However, little research has been conducted to define the specific elements used in effective website and mobile application design. We attempt to review and consolidate research on effective design and to define a short list of elements frequently used in research. The design elements mentioned most frequently in the reviewed literature were navigation, graphical representation, organization, content utility, purpose, simplicity, and readability. We discuss how previous studies define and evaluate these seven elements. This review and the resulting short list of design elements may be used to help designers and researchers to operationalize best practices for facilitating and predicting user engagement.

  19. A Literature Review: Website Design and User Engagement

    PubMed Central

    Garett, Renee; Chiu, Jason; Zhang, Ly; Young, Sean D.

    2015-01-01

    Proper design has become a critical element needed to engage website and mobile application users. However, little research has been conducted to define the specific elements used in effective website and mobile application design. We attempt to review and consolidate research on effective design and to define a short list of elements frequently used in research. The design elements mentioned most frequently in the reviewed literature were navigation, graphical representation, organization, content utility, purpose, simplicity, and readability. We discuss how previous studies define and evaluate these seven elements. This review and the resulting short list of design elements may be used to help designers and researchers to operationalize best practices for facilitating and predicting user engagement. PMID:27499833

  20. Design and optimization of membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  1. A common sense approach to sprinklers.

    PubMed

    Passingham, Andy

    2010-03-01

    As debate continues over the importance of incorporating automatic sprinkler systems into healthcare facilities, Andy Passingham, associate director at Arup Fire, considers how Arup, the multi-disciplinary engineers for two high profile new Welsh hospitals under construction in Ebbw Vale and Caerphilly, addressed fire safety on both projects. He highlights how the installation of sprinklers should not only improve fire safety, but has also contributed to a number of wider design elements which should enhance the patient, staff, and visitor experience.

  2. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamison, Ryan Dale; Buchheit, Thomas E.; Emery, John M

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element modelmore » of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.« less

  3. Ultrasonic Method for Deployment Mechanism Bolt Element Preload Verification

    NASA Technical Reports Server (NTRS)

    Johnson, Eric C.; Kim, Yong M.; Morris, Fred A.; Mitchell, Joel; Pan, Robert B.

    2014-01-01

    Deployment mechanisms play a pivotal role in mission success. These mechanisms often incorporate bolt elements for which a preload within a specified range is essential for proper operation. A common practice is to torque these bolt elements to a specified value during installation. The resulting preload, however, can vary significantly with applied torque for a number of reasons. The goal of this effort was to investigate ultrasonic methods as an alternative for bolt preload verification in such deployment mechanisms. A family of non-explosive release mechanisms widely used by satellite manufacturers was chosen for the work. A willing contractor permitted measurements on a sampling of bolt elements for these release mechanisms that were installed by a technician following a standard practice. A variation of approximately 50% (+/- 25%) in the resultant preloads was observed. An alternative ultrasonic method to set the preloads was then developed and calibration data was accumulated. The method was demonstrated on bolt elements installed in a fixture instrumented with a calibrated load cell and designed to mimic production practice. The ultrasonic method yielded results within +/- 3% of the load cell reading. The contractor has since adopted the alternative method for its future production. Introduction

  4. Characteristics and Core Curricular Elements of Medical Simulation Fellowships in North America.

    PubMed

    Ahmed, Rami A; Frey, Jennifer; Gardner, Aimee K; Gordon, James A; Yudkowsky, Rachel; Tekian, Ara

    2016-05-01

    Background In the past few years, there has been rapid growth in the number of simulation fellowships for physicians in the United States and Canada, with the objective of producing faculty with expertise and leadership training in medical simulation. Relatively little is known about the collective content and structure of these new fellowship opportunities. Objective We sought to identify a common set of core curricular elements among existing simulation fellowships and to obtain demographic background information on participants and leadership. Methods We designed a web-based survey and circulated it to simulation fellowship directors in the United States and Canada. The questions explored aspects of the fellowship curriculum. A grounded theory approach was used to qualitatively analyze fellowship goals and objectives. Results Of the 29 program directors surveyed, 23 responded (79%). The most commonly listed goals and objectives were to increase skills in simulation curriculum development, simulation operations and training environment setup, research, educational theory, administration, and debriefing. The majority of the responding fellowship directors (17 of 22, 77%) indicated that a set of consensus national guidelines would benefit their fellowship program. Conclusions Simulation fellowships are experiencing a period of rapid growth. Development of a common set of program guidelines is a widely shared objective among fellowship directors.

  5. Characteristics and Core Curricular Elements of Medical Simulation Fellowships in North America

    PubMed Central

    Ahmed, Rami A.; Frey, Jennifer; Gardner, Aimee K.; Gordon, James A.; Yudkowsky, Rachel; Tekian, Ara

    2016-01-01

    Background In the past few years, there has been rapid growth in the number of simulation fellowships for physicians in the United States and Canada, with the objective of producing faculty with expertise and leadership training in medical simulation. Relatively little is known about the collective content and structure of these new fellowship opportunities. Objective We sought to identify a common set of core curricular elements among existing simulation fellowships and to obtain demographic background information on participants and leadership. Methods We designed a web-based survey and circulated it to simulation fellowship directors in the United States and Canada. The questions explored aspects of the fellowship curriculum. A grounded theory approach was used to qualitatively analyze fellowship goals and objectives. Results Of the 29 program directors surveyed, 23 responded (79%). The most commonly listed goals and objectives were to increase skills in simulation curriculum development, simulation operations and training environment setup, research, educational theory, administration, and debriefing. The majority of the responding fellowship directors (17 of 22, 77%) indicated that a set of consensus national guidelines would benefit their fellowship program. Conclusions Simulation fellowships are experiencing a period of rapid growth. Development of a common set of program guidelines is a widely shared objective among fellowship directors. PMID:27168898

  6. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm

    NASA Astrophysics Data System (ADS)

    Papagiannis, P.; Azariadis, P.; Papanikos, P.

    2017-10-01

    Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.

  7. An intelligent system and a relational data base for codifying helmet-mounted display symbology design requirements

    NASA Astrophysics Data System (ADS)

    Rogers, Steven P.; Hamilton, David B.

    1994-06-01

    To employ the most readily comprehensible presentation methods and symbology with helmet-mounted displays (HMDs), it is critical to identify the information elements needed to perform each pilot function and to analytically determine the attributes of these elements. The extensive analyses of mission requirements currently performed for pilot-vehicle interface design can be aided and improved by the new capabilities of intelligent systems and relational databases. An intelligent system, named ACIDTEST, has been developed specifically for organizing and applying rules to identify the best display modalities, locations, and formats. The primary objectives of the ACIDTEST system are to provide rapid accessibility to pertinent display research data, to integrate guidelines from many disciplines and identify conflicts among these guidelines, to force a consistent display approach among the design team members, and to serve as an 'audit trail' of design decisions and justifications. A powerful relational database called TAWL ORDIR has been developed to document information requirements and attributes for use by ACIDTEST as well as to greatly augment the applicability of mission analysis data. TAWL ORDIR can be used to rapidly reorganize mission analysis data components for study, perform commonality analyses for groups of tasks, determine the information content requirement for tailored display modes, and identify symbology integration opportunities.

  8. Space Radiation Transport Methods Development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  9. Design of a novel instrument for active neutron interrogation of artillery shells.

    PubMed

    Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  10. Design of a novel instrument for active neutron interrogation of artillery shells

    PubMed Central

    Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter

    2017-01-01

    The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from 53-7+7% to 74-10+8% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s. PMID:29211773

  11. Mechanical design of a low concentration ratio solar array for a space station application

    NASA Technical Reports Server (NTRS)

    Biss, M. S.; Hsu, L.

    1983-01-01

    This paper describes a preliminary study and conceptual design of a low concentration ratio solar array for a space station application with approximately a 100 kW power requirement. The baseline design calls for a multiple series of inverted, truncated, pyramidal optical elements with a geometric concentration ratio (GCR) of 6. It also calls for low life cycle cost, simple on-orbit maintainability, 1984 technology readiness date, and gallium arsenide (GaAs) of silicon (Si) solar cell interchangeability. Due to the large area needed to produce the amount of power required for the baseline space station, a symmetrical wing design, making maximum use of the commonality of parts approach, was taken. This paper will describe the mechanical and structural design of a mass-producible solar array that is very easy to tailor to the needs of the individual user requirement.

  12. Applying projective techniques to formative research in health communication development.

    PubMed

    Wiehagen, Theresa; Caito, Nicole M; Thompson, Vetta Sanders; Casey, Christopher M; Weaver, Nancy L; Jupka, Keri; Kreuter, Matthew W

    2007-04-01

    This article describes a new approach to formative research in which projective techniques commonly used in psychological assessment were adapted for use in focus groups to help design colorectal-cancer screening materials for African American men and women. Participants (N = 20) were divided into six "design teams." Each team was given a selection of design supplies and asked to create and discuss a visual layout for screening materials. Participants chose design elements that reflected visual preferences that they felt would connect meaningfully with other African Americans. The dynamics within the design teams were different than in traditional focus groups, with participants having more control over the group's direction. Using projective techniques helped draw out unique information from participants by allowing them to "project" their opinions onto objects. This approach may be a valuable tool for health-promotion and health-communication practitioners seeking insight on the implicit values of a priority population.

  13. 47 CFR 69.413 - Universal service fund expenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 69.413 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Common Line Element until March 31, 1989. Beginning April 1, 1989, such expenses shall be assigned to the Universal Service Fund Element. ...

  14. Principles and Practices Fostering Inclusive Excellence: Lessons from the Howard Hughes Medical Institute’s Capstone Institutions

    PubMed Central

    DiBartolo, Patricia Marten; Gregg-Jolly, Leslie; Gross, Deborah; Manduca, Cathryn A.; Iverson, Ellen; Cooke, David B.; Davis, Gregory K.; Davidson, Cameron; Hertz, Paul E.; Hibbard, Lisa; Ireland, Shubha K.; Mader, Catherine; Pai, Aditi; Raps, Shirley; Siwicki, Kathleen; Swartz, Jim E.

    2016-01-01

    Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute’s (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others’ efforts to increase access to and persistence in STEM in higher education. PMID:27562960

  15. Impact of Electromagnetic Field upon Temperature Measurement of Induction Heated Charges

    NASA Astrophysics Data System (ADS)

    Smalcerz, A.; Przylucki, R.

    2013-04-01

    The use of thermoelements is a commonly applied method in industry and engineering. It provides a wide measurement range of temperature, a direct voltage signal from the transducer, low cost of the thermoelement, and its resistance to many unfavorable factors which occur in an industrial environment. Unfortunately, thermoelements may not be resistant to interferences of a strong electromagnetic field because of the nature and design of a transducer. Induction heating is the most commonly used type of heating, at present, for metals. In order to guarantee the correctness of the carried out heating process, it is essential to control the temperature of the heated element. The impact of a strong electromagnetic field upon the thermocouple temperature measurement of the inductively heated elements has been analyzed in this paper. The experiment includes dozens of measurements where the following parameters have been varied: frequency of the current which feeds the heating inductor, power supplied to the heating system, geometry of heat inductor, and the charge material and its geometrical dimensions. Interferences of the power-line frequency have been eliminated in part of the carried out measurements.

  16. Conceptions of Height and Verticality in the History of Skyscrapers and Skylines

    NASA Astrophysics Data System (ADS)

    Maslovskaya, Oksana; Ignatov, Grigoriy

    2018-03-01

    The main goal of this article is to reveal the significance of height and verticality history of skyscrapers and skylines. The objectives are as follows: 1. trace the origin of design concepts related to skyscraper; 2. discuss the perceived experience of the cultural aspects of skyscrapers and skylines; 3. describe the differences and similarities of the profiles of with comparable skylines. The methodology of study is designed to explore the perceived theory and principals of skyscraper and skyline development phenomenon and its key features. The skyscraper reveals an assertive creative form of vertical design. Skyscraper construction also relates to the origin of ancient cultural symbolism as the dominant vertical element as the main features of an ordered space. The historical idea of height reaches back to the earliest civilization such as the Tower of Babel. Philosophical approaches of elements of such post-structuralism have been included in studying of skyscraper phenomenon. The analysis of skyscraper and their resulting skyline are examined to show the connection to their origins with their concepts of height and verticality. From the historical perspective, cities with skyscrapers and a skyline turn out to be an assertive manifestation of common ideas of height and verticality.

  17. The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering

    PubMed Central

    Hendrikson, Wim. J.; van Blitterswijk, Clemens. A.; Rouwkema, Jeroen; Moroni, Lorenzo

    2017-01-01

    Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration. PMID:28567371

  18. Design approach of an aquaculture cage system for deployment in the constructed channel flow environments of a power plant

    PubMed Central

    Lee, Jihoon; Fredriksson, David W.; DeCew, Judson; Drach, Andrew; Yim, Solomon C.

    2018-01-01

    This study provides an engineering approach for designing an aquaculture cage system for use in constructed channel flow environments. As sustainable aquaculture has grown globally, many novel techniques have been introduced such as those implemented in the global Atlantic salmon industry. The advent of several highly sophisticated analysis software systems enables the development of such novel engineering techniques. These software systems commonly include three-dimensional (3D) drafting, computational fluid dynamics, and finite element analysis. In this study, a combination of these analysis tools is applied to evaluate a conceptual aquaculture system for potential deployment in a power plant effluent channel. The channel is supposedly clean; however, it includes elevated water temperatures and strong currents. The first portion of the analysis includes the design of a fish cage system with specific net solidities using 3D drafting techniques. Computational fluid dynamics is then applied to evaluate the flow reduction through the system from the previously generated solid models. Implementing the same solid models, a finite element analysis is performed on the critical components to assess the material stresses produced by the drag force loads that are calculated from the fluid velocities. PMID:29897954

  19. Holographic elements and curved slit used to enlarge field of view in rocket detection system

    NASA Astrophysics Data System (ADS)

    Breton, Mélanie; Fortin, Jean; Lessard, Roger A.; Châteauneuf, Marc

    2006-09-01

    Rocket detection over a wide field of view is an important issue in the protection of light armored vehicle. Traditionally, the detection occurs in UV band, but recent studies have shown the existence of significant emission peaks in the visible and near infrared at rocket launch time. The use of the visible region is interesting in order to reduce the weight and cost of systems. Current methods to detect those specific peaks involve use of interferometric filters. However, they fail to combine wide angle with wavelength selectivity. A linear array of volume holographic elements combined with a curved exit slit is proposed for the development of a wide field of view sensor for the detection of solid propellant motor launch flash. The sensor is envisaged to trigger an active protection system. On the basis of geometric theory, a system has been designed. It consists of a collector, a linear array of holographic elements, a curved slit and a detector. The collector is an off-axis parabolic mirror. Holographic elements are recorded subdividing a hologram film in regions, each individually exposed with a different incidence angle. All regions have a common diffraction angle. The incident angle determines the instantaneous field of view of the elements. The volume hologram performs the function of separating and focusing the diffracted beam on an image plane to achieve wavelength filtering. Conical diffraction property is used to enlarge the field of view in elevation. A curved slit was designed to correspond to oblique incidence of the holographic linear array. It is situated at the image plane and filters the diffracted spectrum toward the sensor. The field of view of the design was calculated to be 34 degrees. This was validated by a prototype tested during a field trial. Results are presented and analyzed. The system succeeded in detecting the rocket launch flash at desired fields of view.

  20. Increasing the efficiency of designing hemming processes by using an element-based metamodel approach

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Roll, K.; Volk, W.

    2017-09-01

    In the automotive industry, the manufacturing of automotive outer panels requires hemming processes in which two sheet metal parts are joined together by bending the flange of the outer part over the inner part. Because of decreasing development times and the steadily growing number of vehicle derivatives, an efficient digital product and process validation is necessary. Commonly used simulations, which are based on the finite element method, demand significant modelling effort, which results in disadvantages especially in the early product development phase. To increase the efficiency of designing hemming processes this paper presents a hemming-specific metamodel approach. The approach includes a part analysis in which the outline of the automotive outer panels is initially split into individual segments. By doing a para-metrization of each of the segments and assigning basic geometric shapes, the outline of the part is approximated. Based on this, the hemming parameters such as flange length, roll-in, wrinkling and plastic strains are calculated for each of the geometric basic shapes by performing a meta-model-based segmental product validation. The metamodel is based on an element similar formulation that includes a reference dataset of various geometric basic shapes. A random automotive outer panel can now be analysed and optimized based on the hemming-specific database. By implementing this approach into a planning system, an efficient optimization of designing hemming processes will be enabled. Furthermore, valuable time and cost benefits can be realized in a vehicle’s development process.

  1. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.

    PubMed

    Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F

    2016-11-29

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  2. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  3. Magnetic field of longitudinal gradient bend

    NASA Astrophysics Data System (ADS)

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  4. Shock-Absorbent Ball-Screw Mechanism

    NASA Technical Reports Server (NTRS)

    Hirr, Otto A., Jr.; Meneely, R. W.

    1986-01-01

    Actuator containing two ball screws in series employs Belleville springs to reduce impact loads, thereby increasing life expectancy. New application of springs increases reliability of equipment in which ball screws commonly used. Set of three springs within lower screw of ball-screw mechanism absorbs impacts that result when parts reach their upper and lower limits of movement. Mechanism designed with Belleville springs as shock-absorbing elements because springs have good energy-to-volume ratio and easily stacked to attain any stiffness and travel.

  5. Use of synthesized data to support complex ad-hoc queries in an enterprise information warehouse: a diabetes use case.

    PubMed

    Rogers, Patrick; Erdal, Selnur; Santangelo, Jennifer; Liu, Jianhua; Schuster, Dara; Kamal, Jyoti

    2008-11-06

    The Ohio State University Medical Center (OSUMC) Information Warehouse (IW) is a comprehensive data warehousing facility incorporating operational, clinical, and biological data sets from multiple enterprise system. It is common for users of the IW to request complex ad-hoc queries that often require significant intervention by data analyst. In response to this challenge, we have designed a workflow that leverages synthesized data elements to support such queries in an more timely, efficient manner.

  6. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  7. Improved design of special boundary elements for T-shaped reinforced concrete walls

    NASA Astrophysics Data System (ADS)

    Ji, Xiaodong; Liu, Dan; Qian, Jiaru

    2017-01-01

    This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.

  8. Development of Row of Vibration Insulators and its Mathematical Models on a Base of Common Multi-parameter Scheme of Element Axial Line

    NASA Astrophysics Data System (ADS)

    Ponomarev, Yury K.

    2018-01-01

    The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.

  9. Critical early mission design considerations for lunar data systems architecture

    NASA Technical Reports Server (NTRS)

    Hei, Donald J., Jr.; Stephens, Elaine

    1992-01-01

    This paper outlines recent early mission design activites for a lunar data systems architecture. Each major functional element is shown to be strikingly similar when viewed in a common reference system. While this similarity probably deviates with lower levels of decomposition, the sub-functions can always be arranged into similar and dissimilar categories. Similar functions can be implemented as objects - implemented once and reused several times like today's advanced integrated circuits. This approach to mission data systems, applied to other NASA programs, may result in substantial agency implementation and maintenance savings. In today's zero-sum-game budgetary environment, this approach could help to enable a lunar exploration program in the next decade. Several early mission studies leading to such an object-oriented data systems design are recommended.

  10. Optimization of a high-pressure pore water extraction device.

    PubMed

    Cyr, Martin; Daidié, Alain

    2007-02-01

    High-pressure squeezing is a technique used for the extraction of the pore water of porous materials such as sediments, soils, rocks, and concrete. The efficiency of extraction depends on the maximum pressures on the materials. This article presents the design of a high-pressure device reaching an axial pressure of 1000 MPa which has been developed to improve the efficiency of extraction. The increase in squeezing pressure implies high stresses inside the chamber, so specialized expertise was required to design a safe, functional device that could withstand pressures significantly higher than common laboratory equipment. The design includes finite element calculations, selection of appropriate materials, and descriptive construction details for the apparatus. It also includes an experimental study of the performance of the apparatus in terms of extraction efficiency.

  11. A Methodology for Quantifying Certain Design Requirements During the Design Phase

    NASA Technical Reports Server (NTRS)

    Adams, Timothy; Rhodes, Russel

    2005-01-01

    A methodology for developing and balancing quantitative design requirements for safety, reliability, and maintainability has been proposed. Conceived as the basis of a more rational approach to the design of spacecraft, the methodology would also be applicable to the design of automobiles, washing machines, television receivers, or almost any other commercial product. Heretofore, it has been common practice to start by determining the requirements for reliability of elements of a spacecraft or other system to ensure a given design life for the system. Next, safety requirements are determined by assessing the total reliability of the system and adding redundant components and subsystems necessary to attain safety goals. As thus described, common practice leaves the maintainability burden to fall to chance; therefore, there is no control of recurring costs or of the responsiveness of the system. The means that have been used in assessing maintainability have been oriented toward determining the logistical sparing of components so that the components are available when needed. The process established for developing and balancing quantitative requirements for safety (S), reliability (R), and maintainability (M) derives and integrates NASA s top-level safety requirements and the controls needed to obtain program key objectives for safety and recurring cost (see figure). Being quantitative, the process conveniently uses common mathematical models. Even though the process is shown as being worked from the top down, it can also be worked from the bottom up. This process uses three math models: (1) the binomial distribution (greaterthan- or-equal-to case), (2) reliability for a series system, and (3) the Poisson distribution (less-than-or-equal-to case). The zero-fail case for the binomial distribution approximates the commonly known exponential distribution or "constant failure rate" distribution. Either model can be used. The binomial distribution was selected for modeling flexibility because it conveniently addresses both the zero-fail and failure cases. The failure case is typically used for unmanned spacecraft as with missiles.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; Kekatpure, Rohan Deodatta; Zortman, William A.

    A photonic resonator system is designed to use thermal tuning to adjust the resonant wavelength of each resonator in the system, with a separate tuning circuit associated with each resonator so that individual adjustments may be made. The common electrical ground connection between the tuning circuits is particularly formed to provide thermal isolation between adjacent resonators by including a capacitor along each return path to ground, where the presence of the capacitor's dielectric material provides the thermal isolation. The use of capacitively coupling necessarily requires the use of an AC current as an input to the heater element (conductor/resistor) ofmore » each resonator, where the RMS value of the AC signal is indicative of the amount of heat that is generated along the element and the degree of wavelength tuning that is obtained.« less

  13. Design of neurophysiologically motivated structures of time-pulse coded neurons

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lobodzinska, Raisa F.

    2009-04-01

    The common methodology of biologically motivated concept of building of processing sensors systems with parallel input and picture operands processing and time-pulse coding are described in paper. Advantages of such coding for creation of parallel programmed 2D-array structures for the next generation digital computers which require untraditional numerical systems for processing of analog, digital, hybrid and neuro-fuzzy operands are shown. The optoelectronic time-pulse coded intelligent neural elements (OETPCINE) simulation results and implementation results of a wide set of neuro-fuzzy logic operations are considered. The simulation results confirm engineering advantages, intellectuality, circuit flexibility of OETPCINE for creation of advanced 2D-structures. The developed equivalentor-nonequivalentor neural element has power consumption of 10mW and processing time about 10...100us.

  14. Design and development of a high-speed bearing test rig

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.

    1995-01-01

    The development of a high-speed test rig, to be used for compiling an experimental data base of bearing signatures for bearings with known faults, is described. This bearing test rig can be adapted to test oil-film bearings as well as rolling element bearings. This is achieved by mounting the test bearing in one of two special test housings, either of which can be mounted onto a common test shaft which can be driven up to 30,000 rpm. The test bearing housing for rolling element bearings can accommodate proximity displacement transducers, accelerometers, thermocouples, and acoustic emission sensors. The test bearing housing for the fluid-film bearings can accommodate the same instrumentation as well as Bourdon tube-type transducers for measuring oil film pressures around the bearing circumference.

  15. Using narrative text and coded data to develop hazard scenarios for occupational injury interventions

    PubMed Central

    Lincoln, A; Sorock, G; Courtney, T; Wellman, H; Smith, G; Amoroso, P

    2004-01-01

    Objective: To determine whether narrative text in safety reports contains sufficient information regarding contributing factors and precipitating mechanisms to prioritize occupational back injury prevention strategies. Design, setting, subjects, and main outcome measures: Nine essential data elements were identified in narratives and coded sections of safety reports for each of 94 cases of back injuries to United States Army truck drivers reported to the United States Army Safety Center between 1987 and 1997. The essential elements of each case were used to reconstruct standardized event sequences. A taxonomy of the event sequences was then developed to identify common hazard scenarios and opportunities for primary interventions. Results: Coded data typically only identified five data elements (broad activity, task, event/exposure, nature of injury, and outcomes) while narratives provided additional elements (contributing factor, precipitating mechanism, primary source) essential for developing our taxonomy. Three hazard scenarios were associated with back injuries among Army truck drivers accounting for 83% of cases: struck by/against events during motor vehicle crashes; falls resulting from slips/trips or loss of balance; and overexertion from lifting activities. Conclusions: Coded data from safety investigations lacked sufficient information to thoroughly characterize the injury event. However, the combination of existing narrative text (similar to that collected by many injury surveillance systems) and coded data enabled us to develop a more complete taxonomy of injury event characteristics and identify common hazard scenarios. This study demonstrates that narrative text can provide the additional information on contributing factors and precipitating mechanisms needed to target prevention strategies. PMID:15314055

  16. Semantic Segmentation of Building Elements Using Point Cloud Hashing

    NASA Astrophysics Data System (ADS)

    Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.

    2018-05-01

    For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).

  17. Simplified and refined structural modeling for economical flutter analysis and design

    NASA Technical Reports Server (NTRS)

    Ricketts, R. H.; Sobieszczanski, J.

    1977-01-01

    A coordinated use of two finite-element models of different levels of refinement is presented to reduce the computer cost of the repetitive flutter analysis commonly encountered in structural resizing to meet flutter requirements. One model, termed a refined model (RM), represents a high degree of detail needed for strength-sizing and flutter analysis of an airframe. The other model, called a simplified model (SM), has a relatively much smaller number of elements and degrees-of-freedom. A systematic method of deriving an SM from a given RM is described. The method consists of judgmental and numerical operations to make the stiffness and mass of the SM elements equivalent to the corresponding substructures of RM. The structural data are automatically transferred between the two models. The bulk of analysis is performed on the SM with periodical verifications carried out by analysis of the RM. In a numerical example of a supersonic cruise aircraft with an arrow wing, this approach permitted substantial savings in computer costs and acceleration of the job turn-around.

  18. All-semiconductor metamaterial-based optical circuit board at the microscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Li; Huang, Lirong, E-mail: lrhuang@hust.edu.cn

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arrangingmore » anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.« less

  19. The Basic Structure of Community Early Intervention Programs for Children with Autism: Provider Descriptions

    PubMed Central

    Stahmer, Aubyn C.

    2007-01-01

    Autism researchers have identified a set of common effective practice elements for early intervention (EI) (e.g., intensive programming). The current study examined the reported about use of common elements of effective interventions in community EI settings. Eighty EI providers reported about their programs. The majority of participants reported using common effective elements, however, the depth and quality of the use of these elements was highly variable. Taking community program structure into account in future research will facilitate the development of methodologies, which immediately fit into the context of community programming rather than requiring program adaptation for use in the real world. Recommendations for using current community program structure to improve use of evidence-based practices are discussed. PMID:17086438

  20. Universality of accelerating change

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  1. Theory-based and evidence-based design of audit and feedback programmes: examples from two clinical intervention studies.

    PubMed

    Hysong, Sylvia J; Kell, Harrison J; Petersen, Laura A; Campbell, Bryan A; Trautner, Barbara W

    2017-04-01

    Audit and feedback (A&F) is a common intervention used to change healthcare provider behaviour and, thus, improve healthcare quality. Although A&F can be effective its effectiveness varies, often due to the details of how A&F interventions are implemented. Some have suggested that a suitable conceptual framework is needed to organise the elements of A&F and also explain any observed differences in effectiveness. Through two examples from applied research studies, this article demonstrates how a suitable explanatory theory (in this case Kluger & DeNisi's Feedback Intervention Theory (FIT)) can be systematically applied to design better feedback interventions in healthcare settings. Case 1: this study's objective was to reduce inappropriate diagnosis of catheter-associated urinary tract infections (CAUTI) in inpatient wards. Learning to identify the correct clinical course of action from the case details was central to this study; consequently, the feedback intervention featured feedback elements that FIT predicts would best activate learning processes (framing feedback in terms of group performance and providing of correct solution information). We designed a highly personalised, interactive, one-on-one intervention with healthcare providers to improve their capacity to distinguish between CAUTI and asymptomatic bacteruria (ASB) and treat ASB appropriately. Case 2: Simplicity and scalability drove this study's intervention design, employing elements that FIT predicted positively impacted effectiveness yet still facilitated deployment and scalability (eg, delivered via computer, delivered in writing). We designed a web-based, report-style feedback intervention to help primary care physicians improve their care of patients with hypertension. Both studies exhibited significant improvements in their desired outcome and in both cases interventions were received positively by feedback recipients. A&F has been a popular, yet inconsistently implemented and variably effective tool for changing healthcare provider behaviour and, improving healthcare quality. Through the systematic use of theory such as FIT, robust feedback interventions can be designed that yield greater effectiveness. Future work should look to comparative effectiveness of specific design elements and contextual factors that identify A&F as the optimal intervention to effectuate healthcare provider behaviour change. NCT01052545, NCT00302718; post-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Modularity of a leaf moth-wing pattern and a versatile characteristic of the wing-pattern ground plan

    PubMed Central

    2013-01-01

    Background One of the most intriguing questions in evolutionary developmental biology is how an insect acquires a mimicry pattern within its body parts. A striking example of pattern mimicry is found in the pattern diversity of moth and butterfly wings, which is thought to evolve from preexisting elements illustrated by the nymphalid ground plan (NGP). Previous studies demonstrated that individuality of the NGP facilitates the decoupling of associated common elements, leading to divergence. In contrast, recent studies on the concept of modularity have argued the importance of a combination of coupling and decoupling of the constituent elements. Here, we examine the modularity of a mimicry wing pattern in a moth and explore an evolvable characteristic of the NGP. Results This study examined the wings of the noctuid moth Oraesia excavata, which closely resemble leaves with a leaf venation pattern. Based on a comparative morphological procedure, we found that this leaf pattern was formed by the NGP common elements. Using geometric morphometrics combined with network analysis, we found that each of the modules in the leaf pattern integrates the constituent components of the leaf venation pattern (i.e., the main and lateral veins). Moreover, the detected modules were established by coupling different common elements and decoupling even a single element into different modules. The modules of the O. excavata wing pattern were associated with leaf mimicry, not with the individuality of the NGP common elements. For comparison, we also investigated the modularity of a nonmimetic pattern in the noctuid moth Thyas juno. Quantitative analysis demonstrated that the modules of the T. juno wing pattern regularly corresponded to the individuality of the NGP common elements, unlike those in the O. excavata wing pattern. Conclusions This study provides the first evidence for modularity in a leaf mimicry pattern. The results suggest that the evolution of this pattern involves coupling and decoupling processes to originate these modules, free from the individuality of the NGP system. We propose that this evolution has been facilitated by a versatile characteristic of the NGP, allowing the association of freely modifiable subordinate common elements to make modules. PMID:23890367

  3. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    PubMed Central

    Saleh, Khaldon Y; Smith, Nadine Barrie

    2005-01-01

    Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements. PMID:15963237

  4. The Effectiveness of TAG or Guard-Gates in SET Suppression Using Delay and Dual-Rail Configurations at 0.35 microns

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L.; Balasubramanian, Anupama; Narasimham, Balaji; Bhuva, Bharat; O'Neill, Patrick M.; Kouba, Coy

    2006-01-01

    Design options for decreasing the susceptibility of integrated circuits to Single Event Upset (SEU) fall into two categories: (1) increasing the critical charge to cause an upset at a particular node, and (2) employing redundancy to mask or correct errors. With decreasing device sizes on an Integrated Circuit (IC), the amount of charge required to represent a logic state has steadily reduced. Critical charge methods such as increasing drive strength or increasing the time required to change state as in capacitive or resistive hardening or delay based approaches extract a steadily increasing penalty as a percentage of device resources and performance. Dual redundancy is commonly assumed only to provide error detection with Triple Modular Redundancy (TMR) required for correction, but less well known methods employ dual redundancy to achieve full error correction by voting two inputs with a prior state to resolve ambiguity. This requires special circuits such as the Whitaker latch [1], or the guard-gate [2] which some of us have called a Transition AND Gate (TAG) [3]. A 2-input guard gate is shown in Figure 1. It is similar to a Muller Completion Element [4] and relies on capacitance at node "out" to retain the prior state when inputs disagree, while eliminating any output buffer which would be susceptible to radiation strikes. This paper experimentally compares delay based and dual rail flip-flop designs wherein both types of circuits employ guard-gates to optimize layout and performance, and draws conclusions about design criteria and suitability of each option. In both cases a design goal is protection against Single Event Transients (SET) in combinational logic as well as SEU in the storage elements. For the delay based design, it is also a goal to allow asynchronous clear or preset inputs on the storage elements, which are often not available in radiation tolerant designs.

  5. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Design and fabrication of microstrip antenna arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.

  7. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, WIlliam

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  8. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Snoddy, Jim

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  9. Addressing the Irreducible Needs of Interprofessional Education: Creating and Sustaining an Institutional Commons for Health Professions Training.

    PubMed

    Earnest, Mark A; Pfeifle, Andrea L

    2016-06-01

    Leaders in health professions education schools and programs are under pressure to respond to new accreditation requirements for interprofessional education (IPE). The work of creating and sustaining an IPE program at an academic health center is in many ways analogous to the challenge of creating and sustaining a "commons"-a set of resources shared by many, but owned by none. In this Commentary, the authors borrow from the work of Nobel Laureate Elinor Ostrum to describe the "design principles" necessary to build and maintain the set of common resources needed to successfully implement and sustain an IPE program. They interpret these principles in the context of their own experiences implementing IPE programs and recommend three institutional structural elements necessary to build and sustain an IPE program: (1) a representative governance body, (2) an accountable director or leader, and (3) a structure supporting vertical and horizontal communication and authority.

  10. Transient Seepage for Levee Engineering Analyses

    NASA Astrophysics Data System (ADS)

    Tracy, F. T.

    2017-12-01

    Historically, steady-state seepage analyses have been a key tool for designing levees by practicing engineers. However, with the advances in computer modeling, transient seepage analysis has become a potentially viable tool. A complication is that the levees usually have partially saturated flow, and this is significantly more complicated in transient flow. This poster illustrates four elements of our research in partially saturated flow relating to the use of transient seepage for levee design: (1) a comparison of results from SEEP2D, SEEP/W, and SLIDE for a generic levee cross section common to the southeastern United States; (2) the results of a sensitivity study of varying saturated hydraulic conductivity, the volumetric water content function (as represented by van Genuchten), and volumetric compressibility; (3) a comparison of when soils do and do not exhibit hysteresis, and (4) a description of proper and improper use of transient seepage in levee design. The variables considered for the sensitivity and hysteresis studies are pore pressure beneath the confining layer at the toe, the flow rate through the levee system, and a levee saturation coefficient varying between 0 and 1. Getting results for SEEP2D, SEEP/W, and SLIDE to match proved more difficult than expected. After some effort, the results matched reasonably well. Differences in results were caused by various factors, including bugs, different finite element meshes, different numerical formulations of the system of nonlinear equations to be solved, and differences in convergence criteria. Varying volumetric compressibility affected the above test variables the most. The levee saturation coefficient was most affected by the use of hysteresis. The improper use of pore pressures from a transient finite element seepage solution imported into a slope stability computation was found to be the most grievous mistake in using transient seepage in the design of levees.

  11. Modular System to Enable Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2011-01-01

    The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.

  12. Screen Layout Design: Research into the Overall Appearance of the Screen.

    ERIC Educational Resources Information Center

    Grabinger, R. Scott

    1989-01-01

    Examines the current state of research into the visual effects of screen designs used in computer-assisted instruction and suggests areas for future efforts. Topics discussed include technical elements and comprehensibility elements in layout design; single element and multiple element research methodologies; dependent variables; and learning…

  13. Fuel element concept for long life high power nuclear reactors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Rom, F. E.

    1969-01-01

    Nuclear reactor fuel elements have burnups that are an order of magnitude higher than can currently be achieved by conventional design practice. Elements have greater time integrated power producing capacity per unit volume. Element design concept capitalizes on known design principles and observed behavior of nuclear fuel.

  14. Small Habitat Commonality Reduces Cost for Human Mars Missions

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Lepsch, Roger; Martin, John; Howard, Robert; Rucker, Michelle; Zapata, Edgar; McCleskey, Carey; Howe, Scott; Mary, Natalie; Nerren, Philip (Inventor)

    2015-01-01

    Most view the Apollo Program as expensive. It was. But, a human mission to Mars will be orders of magnitude more difficult and costly. Recently, NASA's Evolvable Mars Campaign (EMC) mapped out a step-wise approach for exploring Mars and the Mars-moon system. It is early in the planning process but because approximately 80% of the total life cycle cost is committed during preliminary design, there is an effort to emphasize cost reduction methods up front. Amongst the options, commonality across small habitat elements shows promise for consolidating the high bow-wave costs of Design, Development, Test and Evaluation (DDT&E) while still accommodating each end-item's functionality. In addition to DDT&E, there are other cost and operations benefits to commonality such as reduced logistics, simplified infrastructure integration and with inter-operability, improved safety and simplified training. These benefits are not without a cost. Some habitats are sub-optimized giving up unique attributes for the benefit of the overall architecture and because the first item sets the course for those to follow, rapidly developing technology may be excluded. The small habitats within the EMC include the pressurized crew cabins for the ascent vehicle,

  15. Improving the cost effectiveness of financial incentives in managing travel demand management (TDM).

    DOT National Transportation Integrated Search

    2013-10-01

    Providing financial incentives to commuters to use alternative modes is a common element of managing transportation demand. Although these incentives have become common during the past two decades as elements of transportation demand management (TDM)...

  16. Spatial and ontogenetic variability in the chemical composition of juvenile common sole ( Solea solea) otoliths

    NASA Astrophysics Data System (ADS)

    Tanner, S. E.; Vasconcelos, R. P.; Reis-Santos, P.; Cabral, H. N.; Thorrold, S. R.

    2011-01-01

    A description of variations in the chemical composition of fish otoliths at different spatial scales and life history stages is a prerequisite for their use as natural tags in fish population connectivity and migration studies. Otolith geochemistry of juvenile common sole ( Solea solea), a marine migrant species collected in six Portuguese estuaries was examined. Elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca, Pb:Ca) were analysed in two zones of the right otolith (corresponding to late larval and juvenile stages) using laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Stable carbon and oxygen isotopes (δ 13C and δ 18O) were determined in left otoliths using isotopic ratio monitoring mass spectrometry (irm-MS). Significant differences in otolith geochemical signatures were found among estuaries, among sites within estuaries and between otolith zones. Several elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca and Sr:Ca) showed consistent patterns between otolith zones and were likely influenced by environmental factors and ontogenetic effects associated with physiological changes during metamorphosis. Assignment of individuals to their collection estuary based on the otolith geochemical signatures was more accurate at the site level (81%) than among estuaries (69%). Site temperature was not correlated with any of the elemental or isotope ratios, but salinity was significantly correlated with Ba:Ca, δ 13C and δ 18O. Observed spatial variations among estuaries and sites within estuaries indicate that geochemical signatures in otoliths are accurate natural tags of estuarine habitat in common sole. Nevertheless, the significant variations observed between otolith zones should be taken into account in the design of population connectivity studies.

  17. Small Deletion Variants Have Stable Breakpoints Commonly Associated with Alu Elements

    PubMed Central

    Coin, Lachlan J. M.; Steinfeld, Israel; Yakhini, Zohar; Sladek, Rob; Froguel, Philippe; Blakemore, Alexandra I. F.

    2008-01-01

    Copy number variants (CNVs) contribute significantly to human genomic variation, with over 5000 loci reported, covering more than 18% of the euchromatic human genome. Little is known, however, about the origin and stability of variants of different size and complexity. We investigated the breakpoints of 20 small, common deletions, representing a subset of those originally identified by array CGH, using Agilent microarrays, in 50 healthy French Caucasian subjects. By sequencing PCR products amplified using primers designed to span the deleted regions, we determined the exact size and genomic position of the deletions in all affected samples. For each deletion studied, all individuals carrying the deletion share identical upstream and downstream breakpoints at the sequence level, suggesting that the deletion event occurred just once and later became common in the population. This is supported by linkage disequilibrium (LD) analysis, which has revealed that most of the deletions studied are in moderate to strong LD with surrounding SNPs, and have conserved long-range haplotypes. Analysis of the sequences flanking the deletion breakpoints revealed an enrichment of microhomology at the breakpoint junctions. More significantly, we found an enrichment of Alu repeat elements, the overwhelming majority of which intersected deletion breakpoints at their poly-A tails. We found no enrichment of LINE elements or segmental duplications, in contrast to other reports. Sequence analysis revealed enrichment of a conserved motif in the sequences surrounding the deletion breakpoints, although whether this motif has any mechanistic role in the formation of some deletions has yet to be determined. Considered together with existing information on more complex inherited variant regions, and reports of de novo variants associated with autism, these data support the presence of different subgroups of CNV in the genome which may have originated through different mechanisms. PMID:18769679

  18. Toward Mentoring in Palliative Social Work: A Narrative Review of Mentoring Programs in Social Work.

    PubMed

    Toh, Ying Pin; Karthik, R; Teo, Chia Chia; Suppiah, Sarasvathy; Cheung, Siew Li; Krishna, Lalit

    2018-03-01

    Mentoring by an experienced practitioner enhances professional well-being, promotes resilience, and provides a means of addressing poor job satisfaction and high burnout rates among medical social workers. This is a crucial source of support for social workers working in fields with high risk of compassion fatigue and burnout like palliative care. Implementing such a program, however, is hindered by differences in understanding and application of mentoring practice. This narrative review of mentoring practice in social work seeks to identify key elements and common approaches within successful mentoring programs in social work that could be adapted to guide the design of new mentoring programs in medical social work. Methodology and Data Sources: A literature search of mentoring programs in social work between January 1, 2000, and December 31, 2015, using Pubmed, CINAHL, OVID, ERIC, Scopus, Cochrane and ScienceDirect databases, involving a senior experienced mentor and undergraduate and/or junior postgraduates, was carried out. A total of 1302 abstracts were retrieved, 22 full-text articles were analyzed, and 8 articles were included. Thematic analysis of the included articles revealed 7 themes pertaining to the mentoring process, outcomes and barriers, and the characteristics of mentoring relationships, mentors, mentees, and host organizations. Common themes in prevailing mentoring practices help identify key elements for the design of an effective mentoring program in medical social work. We conclude with a discussion of the implications of these findings upon clinical practice in palliative care and on sustaining such a program.

  19. Experimental evaluation of tool wear throughout a continuous stroke blanking process of quenched 22MnB5 ultra-high-strength steel

    NASA Astrophysics Data System (ADS)

    Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.

    2017-09-01

    Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.

  20. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jim

    2006-01-01

    The United States (U.S.) Vision for Space Exploration directs NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. This decision was reached after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by building on the Apollo Program and other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  1. The effects of computer game elements in physics instruction software for middle schools: A study of cognitive and affective gains

    NASA Astrophysics Data System (ADS)

    Vasquez, David Alan

    Can the educational effectiveness of physics instruction software for middle schoolers be improved by employing "game elements" commonly found in recreational computer games? This study utilized a selected set of game elements to contextualize and embellish physics word problems with the aim of making such problems more engaging. Game elements used included: (1) a fantasy-story context with developed characters; and (2) high-end graphics and visual effects. The primary purpose of the study was to find out if the added production cost of using such game elements was justified by proportionate gains in physics learning. The theoretical framework for the study was a modified version of Lepper and Malone's "intrinsically-motivating game elements" model. A key design issue in this model is the concept of "endogeneity", or the degree to which the game elements used in educational software are integrated with its learning content. Two competing courseware treatments were custom-designed and produced for the study; both dealt with Newton's first law. The first treatment (T1) was a 45 minute interactive tutorial that featured cartoon characters, color animations, hypertext, audio narration, and realistic motion simulations using the Interactive PhysicsspTM software. The second treatment (T2) was similar to the first except for the addition of approximately three minutes of cinema-like sequences where characters, game objectives, and a science-fiction story premise were described and portrayed with high-end graphics and visual effects. The sample of 47 middle school students was evenly divided between eighth and ninth graders and between boys and girls. Using a pretest/posttest experimental design, the independent variables for the study were: (1) two levels of treatment; (2) gender; and (3) two schools. The dependent variables were scores on a written posttest for both: (1) physics learning, and (2) attitude toward physics learning. Findings indicated that, although substantial physics learning took place within both treatments (learning-gain effect sizes exceeded 1.5 sigma), there were no statistically significant differences between the two treatments. The primary conclusion drawn from this finding was that the ratio of "story" to physics-learning content (3 minutes/45 minutes) in T2 was too small to make an educational difference and should be experimentally increased.

  2. Gas phase chemical studies of superheavy elements using the Dubna gas-filled recoil separator - Stopping range determination

    NASA Astrophysics Data System (ADS)

    Wittwer, D.; Abdullin, F. Sh.; Aksenov, N. V.; Albin, Yu. V.; Bozhikov, G. A.; Dmitriev, S. N.; Dressler, R.; Eichler, R.; Gäggeler, H. W.; Henderson, R. A.; Hübener, S.; Kenneally, J. M.; Lebedev, V. Ya.; Lobanov, Yu. V.; Moody, K. J.; Oganessian, Yu. Ts.; Petrushkin, O. V.; Polyakov, A. N.; Piguet, D.; Rasmussen, P.; Sagaidak, R. N.; Serov, A.; Shirokovsky, I. V.; Shaughnessy, D. A.; Shishkin, S. V.; Sukhov, A. M.; Stoyer, M. A.; Stoyer, N. J.; Tereshatov, E. E.; Tsyganov, Yu. S.; Utyonkov, V. K.; Vostokin, G. K.; Wegrzecki, M.; Wilk, P. A.

    2010-01-01

    Currently, gas phase chemistry experiments with heaviest elements are usually performed with the gas-jet technique with the disadvantage that all reaction products are collected in a gas-filled thermalisation chamber adjacent to the target. The incorporation of a physical preseparation device between target and collection chamber opens up the perspective to perform new chemical studies. But this approach requires detailed knowledge of the stopping force (STF) of the heaviest elements in various materials. Measurements of the energy loss of mercury (Hg), radon (Rn), and nobelium (No) in Mylar and argon (Ar) were performed at low kinetic energies of around (40-270) keV per nucleon. The experimentally obtained values were compared with STF calculations of the commonly used program for calculating stopping and ranges of ions in matter (SRIM). Using the obtained data points an extrapolation of the STF up to element 114, eka-lead, in the same stopping media was carried out. These estimations were applied to design and to perform a first chemical experiment with a superheavy element behind a physical preseparator using the nuclear fusion reaction 244Pu( 48Ca; 3n) 289114. One decay chain assigned to an atom of 285112, the α-decay product of 289114, was observed.

  3. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    NASA Astrophysics Data System (ADS)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  4. Elements of Effective E-Learning Design

    ERIC Educational Resources Information Center

    Brown, Andrew R.; Voltz, Bradley D.

    2005-01-01

    Preparing and developing e-learning materials is a costly and time consuming enterprise. This paper highlights the elements of effective design that we consider assist in the development of high quality materials in a cost efficient way. We introduce six elements of design and discuss each in some detail. These elements focus on paying attention…

  5. 47 CFR 69.414 - Lifeline assistance expenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....414 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED... interstate jurisdiction pursuant to § 36.741 shall be assigned to the Carrier Common Line element until March 31, 1989. Beginning April 1, 1989, such expenses shall be assigned to the Lifeline Assistance element. ...

  6. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  7. Simulative design in macroscale for prospective application to micro-catheters.

    PubMed

    Ha, Cheol Woo

    2018-02-09

    In this paper, a motion-transforming element is applied to the development of a new catheter device. The motion-transforming element structure allows a reduction of linear movement and converts linear movement to rotational movement. The simulative design of micro-catheters is based on a proposed structure called the Operating Mini Station (OMS). OMS is operated by movement of a motion-transforming element. A new motion-transforming element is designed using multiple links that are connected by hinged joints based on an elastic design. The design of the links and the hinges are optimized for precise and reliable movement of the motion-transforming element. Because of the elastic design, it is possible to realize a catheter that allows various movements in small spaces like capillaries.

  8. Common Elements for Success: What Makes the Deal Work at Contaminated Sites

    EPA Pesticide Factsheets

    This page contains the presentations from the Brown to Green: Make the Connection to Renewable Energy workshop held in Santa Fe, New Mexico, during December 10-11, 2008 regarding Common Elements for Success - What makes the Deal Work at Contaminated Sites.

  9. Designed Natural Spaces: Informal Gardens Are Perceived to Be More Restorative than Formal Gardens

    PubMed Central

    Twedt, Elyssa; Rainey, Reuben M.; Proffitt, Dennis R.

    2016-01-01

    Experimental research shows that there are perceived and actual benefits to spending time in natural spaces compared to urban spaces, such as reduced cognitive fatigue, improved mood, and reduced stress. Whereas past research has focused primarily on distinguishing between distinct categories of spaces (i.e., nature vs. urban), less is known about variability in perceived restorative potential of environments within a particular category of outdoor spaces, such as gardens. Conceptually, gardens are often considered to be restorative spaces and to contain an abundance of natural elements, though there is great variability in how gardens are designed that might impact their restorative potential. One common practice for classifying gardens is along a spectrum ranging from “formal or geometric” to “informal or naturalistic,” which often corresponds to the degree to which built or natural elements are present, respectively. In the current study, we tested whether participants use design informality as a cue to predict perceived restorative potential of different gardens. Participants viewed a set of gardens and rated each on design informality, perceived restorative potential, naturalness, and visual appeal. Participants perceived informal gardens to have greater restorative potential than formal gardens. In addition, gardens that were more visually appealing and more natural-looking were perceived to have greater restorative potential than less visually appealing and less natural gardens. These perceptions and precedents are highly relevant for the design of gardens and other similar green spaces intended to provide relief from stress and to foster cognitive restoration. PMID:26903899

  10. High-performance image processing architecture

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick C.

    1992-04-01

    The proposed architecture is a logical design specifically for image processing and other related computations. The design is a hybrid electro-optical concept consisting of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined by an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how elegantly it handles the natural decomposition of algebraic functions into spatially distributed, point-wise operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The logical architecture may take any number of physical forms. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control all the arithmetic and logic operations of the image algebra's generalized matrix product. This is the most powerful fundamental formulation in the algebra, thus allowing a wide range of applications.

  11. Designed Natural Spaces: Informal Gardens Are Perceived to Be More Restorative than Formal Gardens.

    PubMed

    Twedt, Elyssa; Rainey, Reuben M; Proffitt, Dennis R

    2016-01-01

    Experimental research shows that there are perceived and actual benefits to spending time in natural spaces compared to urban spaces, such as reduced cognitive fatigue, improved mood, and reduced stress. Whereas past research has focused primarily on distinguishing between distinct categories of spaces (i.e., nature vs. urban), less is known about variability in perceived restorative potential of environments within a particular category of outdoor spaces, such as gardens. Conceptually, gardens are often considered to be restorative spaces and to contain an abundance of natural elements, though there is great variability in how gardens are designed that might impact their restorative potential. One common practice for classifying gardens is along a spectrum ranging from "formal or geometric" to "informal or naturalistic," which often corresponds to the degree to which built or natural elements are present, respectively. In the current study, we tested whether participants use design informality as a cue to predict perceived restorative potential of different gardens. Participants viewed a set of gardens and rated each on design informality, perceived restorative potential, naturalness, and visual appeal. Participants perceived informal gardens to have greater restorative potential than formal gardens. In addition, gardens that were more visually appealing and more natural-looking were perceived to have greater restorative potential than less visually appealing and less natural gardens. These perceptions and precedents are highly relevant for the design of gardens and other similar green spaces intended to provide relief from stress and to foster cognitive restoration.

  12. A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications

    NASA Astrophysics Data System (ADS)

    Rangarajan, Ramsharan; Gao, Huajian

    2015-09-01

    We introduce a finite element method to compute equilibrium configurations of fluid membranes, identified as stationary points of a curvature-dependent bending energy functional under certain geometric constraints. The reparameterization symmetries in the problem pose a challenge in designing parametric finite element methods, and existing methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we exploit these symmetries by representing solution surfaces as normal offsets of given reference surfaces and entirely bypass the need for artificial constraints. We then resort to a Galerkin finite element method to compute discrete C1 approximations of the normal offset coordinate. The variational framework presented is suitable for computing deformations of three-dimensional membranes subject to a broad range of external interactions. We provide a systematic algorithm for computing large deformations, wherein solutions at subsequent load steps are identified as perturbations of previously computed ones. We discuss the numerical implementation of the method in detail and demonstrate its optimal convergence properties using examples. We discuss applications of the method to studying adhesive interactions of fluid membranes with rigid substrates and to investigate the influence of membrane tension in tether formation.

  13. Capacitively readout multi-element sensor array with common-mode cancellation

    DOEpatents

    Britton, Jr., Charles L.; Warmack, Robert J.; Bryan, William L.; Jones, Robert L.; Oden, Patrick Ian; Thundat, Thomas

    2001-01-01

    An improved multi-element apparatus for detecting the presence of at least one chemical, biological or physical component in a monitored area comprising an array or single set of the following elements: a capacitive transducer having at least one cantilever spring element secured thereto, the cantilever element having an area thereof coated with a chemical having an affinity for the component to be detected; a pick-up plate positioned adjacent to the cantilever element at a distance such that a capacitance between the cantilever element and the pick-up plate changes as the distance between the cantilever element and the pick-up plate varies, the change in capacitance being a measurable variation; a detection means for measuring the measurable variation in the capacitance between the cantilever element and the pick-up plate that forms a measurement channel signal; and at least one feedback cantilever spring element positioned apart from the coated cantilever element, the cantilever element substantially unaffected by the component being monitored and providing a reference channel signal to the detection means that achieves a common mode cancellation between the measurement channel signal and reference channel signal.

  14. Human Mars Ascent Configuration and Design Sensitivities

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Gernhardt, Mike; Collins, Tim; Martin, John

    2017-01-01

    Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. At the end of a Mars surface mission the Mars Ascent Vehicle (MAV) crew cabin would carry the crew to their destination in orbit in a matter of hours or days. Other small cabins in support of a Mars mission would include pressurized rovers that allow crew members to travel great distances from their primary habitat on Mars while unconstrained by time limits of typical EVAs. An orbital crew taxi could allow for exploration of the moons of Mars with minimum impact to the primary Earth-Mars transportation systems. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing MAV mass is a priority and minimizing the crew cabin size and mass is one way to do that. This paper explores the benefits and impacts of using a common crew cabin design for the MAV. Results of a MAV configuration trade study will be presented along with mass and performance estimates for the selected design.

  15. Degrees of connectivity: Systems model for upstream risk assessment and mitigation.

    PubMed

    Gambatese, John; AlOmari, Kasim

    2016-08-01

    There is growing recognition that in order to further improve safety performance, attention needs to be given beyond the immediate working conditions and worker actions. A systems approach to construction safety enables considering: multiple project elements simultaneously; connections between different elements; and all system elements affected by safety risk. This paper describes recent and current research to conceptualize a typical building project in terms of connections between workers, activities, and design elements, and to verify and analyze impacts of the design and worker interactions on worker safety. Prior research provides the basis for a network tying the design elements, construction activities, and work crews on a typical building project together along with the extent of interaction between each of the system elements in terms of safety. In conjunction with this systems approach, the researchers propose a concept for viewing and managing construction safety through four different types of connections, or "degrees of connectivity," between the different workers, activities, and design elements in the system. The degrees of connectivity are defined as: interacting with the design element during its construction (DoC #1); interacting with the design element in its final form to attach another component to it (DoC #2) or by working in the vicinity of it (DoC #3); and indirectly interacting with the design element through another worker (DoC #4). To support and verify the presence of the concept in practice, the researchers conducted a survey of construction personnel. The survey results confirm that the four different degrees of connectivity are present and felt during construction operations, and indicate that attention should be given to all design elements, activities, and workers to which a worker is "connected". According to the survey respondents, DoC's #1 and #2 are recognized as the most widely present on construction sites. Eighty percent of the respondents believe that the design element has a moderate or greater impact on worker safety while it is being constructed. These initial research steps provide the starting point for continuing study that aims to develop and demonstrate the degrees of connectivity concept linking workers and design elements, with the goal of understanding how to design a project and work operations in order to improve safety during construction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Technology and politics: The regional airport experience

    NASA Technical Reports Server (NTRS)

    Starling, J. D.; Brown, J.; Gerhardt, J. M.; Dominus, M. I.

    1976-01-01

    The findings of a comparative study of the following six regional airports were presented: Dallas/Fort Worth, Kansas City, Washington, D.C., Montreal, Tampa, and St. Louis. Each case was approached as a unique historical entity, in order to investigate common elements such as: the use of predictive models in planning, the role of symbolism to heighten dramatic effects, the roles of community and professional elites, and design flexibility. Some of the factors considered were: site selection, consolidation of airline service, accessibility, land availability and cost, safety, nuisance, and pollution constraints, economic growth, expectation of regional growth, the demand forecasting conundrum, and design decisions. The hypotheses developed include the following: the effect of political, social, and economic conflicts, the stress on large capacity and dramatic, high-technology design, projections of rapid growth to explain the need for large capital outlays.

  17. Surgical mesh for ventral incisional hernia repairs: Understanding mesh design

    PubMed Central

    Rastegarpour, Ali; Cheung, Michael; Vardhan, Madhurima; Ibrahim, Mohamed M; Butler, Charles E; Levinson, Howard

    2016-01-01

    Surgical mesh has become an indispensable tool in hernia repair to improve outcomes and reduce costs; however, efforts are constantly being undertaken in mesh development to overcome postoperative complications. Common complications include infection, pain, adhesions, mesh extrusion and hernia recurrence. Reducing the complications of mesh implantation is of utmost importance given that hernias occur in hundreds of thousands of patients per year in the United States. In the present review, the authors present the different types of hernia meshes, discuss the key properties of mesh design, and demonstrate how each design element affects performance and complications. The present article will provide a basis for surgeons to understand which mesh to choose for patient care and why, and will explain the important technological aspects that will continue to evolve over the ensuing years. PMID:27054138

  18. A space radiation transport method development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2004-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. Published by Elsevier Ltd on behalf of COSPAR.

  19. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an incumbent...

  20. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an incumbent...

  1. 47 CFR 51.311 - Nondiscriminatory access to unbundled network elements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... elements. 51.311 Section 51.311 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON... § 51.311 Nondiscriminatory access to unbundled network elements. (a) The quality of an unbundled network element, as well as the quality of the access to the unbundled network element, that an incumbent...

  2. Anatomy of the Volar Retinacular Elements of the Hand: A Unified Nomenclature.

    PubMed

    Godfrey, Jenna; Rayan, Ghazi M

    2018-03-01

    Many investigators have described the anatomy of the volar retinacular structures of the hand over the last 60 years. As a result, multiple terms have been assigned to 1 anatomical structure and 1 name designated to more than 1 structure. Our purpose is to review the detailed anatomy and key components of the volar retinacular elements of the hand, their etymology, and their most recent descriptions. The objective also is to organize these structures into systems, which can be helpful for learners to assimilate into a practical anatomical guide. Lastly, the goal is to create a common nomenclature for identifying the volar retinacular structures of the hand in order to facilitate clear communication about them across languages. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Capturing structured, pulmonary disease-specific data elements in electronic health records.

    PubMed

    Gronkiewicz, Cynthia; Diamond, Edward J; French, Kim D; Christodouleas, John; Gabriel, Peter E

    2015-04-01

    Electronic health records (EHRs) have the potential to improve health-care quality by allowing providers to make better decisions at the point of care based on electronically aggregated data and by facilitating clinical research. These goals are easier to achieve when key, disease-specific clinical information is documented as structured data elements (SDEs) that computers can understand and process, rather than as free-text/natural-language narrative. This article reviews the benefits of capturing disease-specific SDEs. It highlights several design and implementation considerations, including the impact on efficiency and expressivity of clinical documentation and the importance of adhering to data standards when available. Pulmonary disease-specific examples of collection instruments are provided from two commonly used commercial EHRs. Future developments that can leverage SDEs to improve clinical quality and research are discussed.

  4. A Electro-Optical Image Algebra Processing System for Automatic Target Recognition

    NASA Astrophysics Data System (ADS)

    Coffield, Patrick Cyrus

    The proposed electro-optical image algebra processing system is designed specifically for image processing and other related computations. The design is a hybridization of an optical correlator and a massively paralleled, single instruction multiple data processor. The architecture of the design consists of three tightly coupled components: a spatial configuration processor (the optical analog portion), a weighting processor (digital), and an accumulation processor (digital). The systolic flow of data and image processing operations are directed by a control buffer and pipelined to each of the three processing components. The image processing operations are defined in terms of basic operations of an image algebra developed by the University of Florida. The algebra is capable of describing all common image-to-image transformations. The merit of this architectural design is how it implements the natural decomposition of algebraic functions into spatially distributed, point use operations. The effect of this particular decomposition allows convolution type operations to be computed strictly as a function of the number of elements in the template (mask, filter, etc.) instead of the number of picture elements in the image. Thus, a substantial increase in throughput is realized. The implementation of the proposed design may be accomplished in many ways. While a hybrid electro-optical implementation is of primary interest, the benefits and design issues of an all digital implementation are also discussed. The potential utility of this architectural design lies in its ability to control a large variety of the arithmetic and logic operations of the image algebra's generalized matrix product. The generalized matrix product is the most powerful fundamental operation in the algebra, thus allowing a wide range of applications. No other known device or design has made this claim of processing speed and general implementation of a heterogeneous image algebra.

  5. Grooved Fuel Rings for Nuclear Thermal Rocket Engines

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2009-01-01

    An alternative design concept for nuclear thermal rocket engines for interplanetary spacecraft calls for the use of grooved-ring fuel elements. Beyond spacecraft rocket engines, this concept also has potential for the design of terrestrial and spacecraft nuclear electric-power plants. The grooved ring fuel design attempts to retain the best features of the particle bed fuel element while eliminating most of its design deficiencies. In the grooved ring design, the hydrogen propellant enters the fuel element in a manner similar to that of the Particle Bed Reactor (PBR) fuel element.

  6. Transforming Research and Clinical Knowledge in Traumatic Brain Injury

    DTIC Science & Technology

    2016-12-01

    Szuflita, N., Orman, J., and Schwab, K. (2010). Advancing integrated research in psychological health and traumatic brain injury: common data ele- ments...Szuflita N, Orman J, et al. Advancing Integrated Research in Psychological Health and Traumatic Brain Injury: Common Data Elements. Arch Phys Med Rehabil...R, Gleason T, et al. Advancing integrated research in psychological health and traumatic brain injury: common data elements. Arch Phys Med Rehabil

  7. Design of a Double Anode Magnetron Injection Gun for Q-band Gyro-TWT Using Boundary Element Method

    NASA Astrophysics Data System (ADS)

    Li, Zhiliang; Feng, Jinjun; Liu, Bentian

    2018-04-01

    This paper presents a novel design code for double anode magnetron injection guns (MIGs) in gyro-devices based on boundary element method (BEM). The physical and mathematical models were constructed, and then the code using BEM for MIG's calculation was developed. Using the code, a double anode MIG for a Q-band gyrotron traveling-wave tube (gyro-TWT) amplifier operating in the circular TE01 mode at the fundamental cyclotron harmonic was designed. In order to verify the reliability of this code, velocity spread and guiding center radius of the MIG simulated by the BEM code were compared with these from the commonly used EGUN code, showing a reasonable agreement. Then, a Q-band gyro-TWT was fabricated and tested. The testing results show that the device has achieved an average power of 5kW and peak power ≥ 150 kW at a 3% duty cycle within bandwidth of 2 GHz, and maximum output peak power of 220 kW, with a corresponding saturated gain of 50.9 dB and efficiency of 39.8%. This paper demonstrates that the BEM code can be used as an effective approach for analysis of electron optics system in gyro-devices.

  8. CEDS Addresses: Rubric Elements

    ERIC Educational Resources Information Center

    US Department of Education, 2015

    2015-01-01

    Common Education Data Standards (CEDS) Version 4 introduced a common data vocabulary for defining rubrics in a data system. The CEDS elements support digital representations of both holistic and analytic rubrics. This document shares examples of holistic and analytic project rubrics, available CEDS Connections, and a logical model showing the…

  9. Exploring Design Elements for Online STEM Courses: Active Learning, Engagement & Assessment Design

    ERIC Educational Resources Information Center

    Chen, Baiyun; Bastedo, Kathleen; Howard, Wendy

    2018-01-01

    The purpose of this study was to examine effective design elements for online courses in the science, technology, engineering, and mathematics (STEM) fields at a large four-year public university in southeastern United States. Our research questions addressed the influence of online design elements on students' perception of learning and learning…

  10. Is E-health Progressing Faster Than E-health Researchers?

    PubMed Central

    2006-01-01

    Formal Internet interventions exist in a broad context of diverse online health resources, which share elements in common like information, advice and peer support. However, most online health resources are not created by healthcare professionals. Internet interventions need to be designed to “compete” in that wider context. The democratization of production and distribution is central to the transformative effect of the Internet on society, yet potentially conflicts with healthcare’s need for an evidence base and safe practice. This is a core challenge for healthcare on the Internet. PMID:17032640

  11. Measuring worker turnover in long-term care: lessons from the better jobs better care demonstration.

    PubMed

    Barry, Theresa Teta; Kemper, Peter; Brannon, S Diane

    2008-06-01

    Turnover among direct-care workers (DCWs) continues to be a challenge in long-term care. Both policy makers and provider organizations recognize this issue as a major concern and are designing efforts to reduce turnover among these workers. However, there is currently no standardized method of measuring turnover to define the scope of the problem or to assess the effectiveness of interventions. This article draws on our experience of the Better Jobs Better Care Demonstration (BJBC) to explicate some important issues in measuring and interpreting turnover related to interventions designed to improve DCW jobs. We used turnover data from a selected group of BJBC providers (N = 9) to demonstrate some of the measurement issues we uncovered in developing a turnover tracking system for BJBC. We also illustrate how the data elements collected in the tracking system make it possible to construct measures that are useful at both policy and practice levels. Differences in definitions of turnover and the data elements used to construct the measure can have large effects on turn over rates, how they are used, and what they mean. Policy makers, researchers, and managers who need comparative turnover information to address the impending demand for DCWs should be aware that turnover measures differ, and they should take steps to ensure that measures they use have common definitions and data elements.

  12. An Embedded 4-Channel Receive-Only RF Coil Array for fMRI Experiments of the Somatosensory Pathway in Conscious Awake Marmosets at 7T

    PubMed Central

    Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B.; Merkle, Hellmut; Silva, Afonso C.

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non-human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a 4-channel receive-only surface RF coil array with excellent signal-to-noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet-based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home-built low input impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. PMID:23696219

  13. Design Considerations and Performance of MEMS Acoustoelectric Ultrasound Detectors

    PubMed Central

    Wang, Zhaohui; Ingram, Pier; Greenlee, Charles L.; Olafsson, Ragnar; Norwood, Robert A.; Witte, Russell S.

    2014-01-01

    Most single-element hydrophones depend on a piezoelectric material that converts pressure changes to electricity. These devices, however, can be expensive, susceptible to damage at high pressure, and/or have limited bandwidth and sensitivity. We have previously described the acoustoelectric (AE) hydrophone as an inexpensive alternative for mapping an ultrasound beam and monitoring acoustic exposure. The device exploits the AE effect, an interaction between electrical current flowing through a material and a propagating pressure wave. Previous designs required imprecise fabrication methods using common laboratory supplies, making it difficult to control basic features such as shape and size. This study describes a different approach based on microelectromechanical systems (MEMS) processing that allows for much finer control of several design features. In an effort to improve the performance of the AE hydrophone, we combine simulations with bench-top testing to evaluate key design features, such as thickness, shape, and conductivity of the active and passive elements. The devices were evaluated in terms of sensitivity, frequency response, and accuracy for reproducing the beam pattern. Our simulations and experimental results both indicated that designs using a combination of indium tin oxide (ITO) for the active element and gold for the passive electrodes (conductivity ratio = ~20) produced the best result for mapping the beam of a 2.25-MHz ultrasound transducer. Also, the AE hydrophone with a rectangular dumbbell configuration achieved a better beam pattern than other shape configurations. Lateral and axial resolutions were consistent with images generated from a commercial capsule hydrophone. Sensitivity of the best-performing device was 1.52 nV/Pa at 500 kPa using a bias voltage of 20 V. We expect a thicker AE hydrophone closer to half the acoustic wavelength to produce even better sensitivity, while maintaining high spectral bandwidth for characterizing medical ultrasound transducers. AE ultrasound detectors may also be useful for monitoring acoustic exposure during therapy or as receivers for photoacoustic imaging. PMID:24658721

  14. Analysis and design of planar waveguide elements for use in filters and sensors

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhou

    In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.

  15. Developing a framework for implementing intensive care unit diaries: a focused review of the literature.

    PubMed

    Beg, Muna; Scruth, Elizabeth; Liu, Vincent

    2016-11-01

    Intensive care unit diaries have been shown to improve post-critical illness recovery, however, prior reports of diary implementation are heterogeneous. We sought to construct a common framework for designing and implementing Intensive Care Unit diaries based on prior studies. We conducted a focused review of the literature regarding intensive care diaries based on a systematic search of several databases. Two reviewers assessed 56 studies and data were abstracted from a total of 25 eligible studies conducted between 1990 and 2014. We identified key information regarding the development, design, and implementation of the journals. We then grouped elements that appeared consistently across these studies within three main categories: (1) diary target populations; (2) diary format and content; and (3) the manner of diary return and follow-up. Most studies were conducted in European countries in adult intensive care units and targeted patients in both medical and surgical units. The timing of diary initiation was based on the elapsed length of stay or duration of mechanical ventilation. We categorised diary format and content as: entry content, authors, use of standardised headings, type of language, initiation, frequency of entries, and physical location of diaries. Diaries were hand written and many studies found that photographs were an essential element in ICU diaries. We categorised the manner of diary return and follow-up. The context in which intensive care unit diaries were returned were felt to be important factors in improving the use of diaries in recovery. In conclusion, we describe a common framework for the future development of intensive care unit diaries that revolves around the target population for the diaries, their format and content, and the timing of their use. Future studies should address how these elements impact the mechanisms by which intensive are diaries exert beneficial effects. Copyright © 2016 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Laser figuring for the generation of analog micro-optics and kineform surfaces

    NASA Technical Reports Server (NTRS)

    Gratrix, Edward J.

    1993-01-01

    To date, there have been many techniques used to generate micro-optic structures in glass or other materials. Using methods common to the lithographic industry, the manufacturing technique known as 'binary optics,' has demonstrated the use of diffractive optics in a variety of micro-optic applications. It is well established that diffractive structures have limited capability when applied in a design more suited for a refractive element. For applications that demand fast, highly efficient, broadband designs, we have developed a technique which uses laser figuring to generate the refractive micro-optical surface. This paper describes the technique used to fabricate refractive micro-optics. Recent results of micro-optics in CdZnTe focal planes are shown.

  17. Enhancing Induction Coil Reliability

    NASA Astrophysics Data System (ADS)

    Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.

    2014-12-01

    In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.

  18. Analysis of Parallelogram Mechanism used to Preserve Remote Center of Motion for Surgical Telemanipulator

    NASA Astrophysics Data System (ADS)

    Trochimczuk, R.

    2017-02-01

    This paper presents an analysis of a parallelogram mechanism commonly used to provide a kinematic remote center of motion in surgical telemanipulators. Selected types of parallel manipulator designs, encountered in commercial and laboratory-made designs described in the medical robotics literature, will serve as the research material. Among other things, computer simulations in the ANSYS 13.0 CAD/CAE software environment, employing the finite element method, will be used. The kinematics of the solution of manipulator with the parallelogram mechanism will be determined in order to provide a more complete description. These results will form the basis for the decision regarding the possibility of applying a parallelogram mechanism in an original prototype of a telemanipulator arm.

  19. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  20. An Introduction to Medical Malpractice in the United States

    PubMed Central

    2008-01-01

    Medical malpractice law in the United States is derived from English common law, and was developed by rulings in various state courts. Medical malpractice lawsuits are a relatively common occurrence in the United States. The legal system is designed to encourage extensive discovery and negotiations between adversarial parties with the goal of resolving the dispute without going to jury trial. The injured patient must show that the physician acted negligently in rendering care, and that such negligence resulted in injury. To do so, four legal elements must be proven: (1) a professional duty owed to the patient; (2) breach of such duty; (3) injury caused by the breach; and (4) resulting damages. Money damages, if awarded, typically take into account both actual economic loss and noneconomic loss, such as pain and suffering. PMID:19034593

  1. An introduction to medical malpractice in the United States.

    PubMed

    Bal, B Sonny

    2009-02-01

    Medical malpractice law in the United States is derived from English common law, and was developed by rulings in various state courts. Medical malpractice lawsuits are a relatively common occurrence in the United States. The legal system is designed to encourage extensive discovery and negotiations between adversarial parties with the goal of resolving the dispute without going to jury trial. The injured patient must show that the physician acted negligently in rendering care, and that such negligence resulted in injury. To do so, four legal elements must be proven: (1) a professional duty owed to the patient; (2) breach of such duty; (3) injury caused by the breach; and (4) resulting damages. Money damages, if awarded, typically take into account both actual economic loss and noneconomic loss, such as pain and suffering.

  2. Evaluating the Existing School Plant. Educational Facilities Digest 2.

    ERIC Educational Resources Information Center

    Piele, Philip; Wright, Darrell

    In general, the guides for evaluating existing school buildings list the various elements of the building and its properties. The elements commonly listed include site, which embraces the adequacy of size, location, and natural environment; internal environment, which is commonly divided into space, visual qualities, thermal qualities, and sonic…

  3. The Management of Conflict.

    ERIC Educational Resources Information Center

    Williams, M. J., Jr.

    1985-01-01

    While educational institutions and industry share some common elements of the administrative decision-making process, a major point of divergence is the treatment of conflict. In higher education, conflict is seen as destructive and should be avoided, but it can be handled positively. Types, common elements, and styles of conflict are reviewed.…

  4. CEDS Addresses: Virtual and Blended Learning

    ERIC Educational Resources Information Center

    US Department of Education, 2015

    2015-01-01

    The Common Education Data Standards (CEDS) common data vocabulary supports the collection and use of information about virtual and blended learning. The data element "Virtual Indicator", introduced in version 3 of CEDS, supports a range of virtual learning-related use cases. The Virtual Indicator element may be related to a Course…

  5. Design of photonic phased array switches using nano electromechanical systems on silicon-on-insulator integration platform

    NASA Astrophysics Data System (ADS)

    Hussein, Ali Abdulsattar

    This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased array switch elements is demonstrated in this chapter. An executive summary and conclusions sections are also included in the thesis.

  6. Making products available among community health workers: Evidence for improving community health supply chains from Ethiopia, Malawi, and Rwanda

    PubMed Central

    Chandani, Yasmin; Andersson, Sarah; Heaton, Alexis; Noel, Megan; Shieshia, Mildred; Mwirotsi, Amanda; Krudwig, Kirstin; Nsona, Humphreys; Felling, Barbara

    2014-01-01

    Background A UNICEF review of the challenges to scaling up integrated community case management (iCCM) found that drug shortages were a common bottleneck. In many settings, little thought has gone into the design of supply chains to the community level and limited evidence exists for how to address these unique challenges. SC4CCM’s purpose was to conduct intervention research to identify proven, simple, affordable solutions that address the unique supply chain challenges faced by CHWs and to demonstrate that supply chain constraints at the community level can be overcome. Methods SC4CCM selected three countries to implement supply chain innovations and developed a theory of change (TOC) framework for the learning phase, which identified the main drivers of product availability and was used for baseline assessments, design, implementation and evaluation of interventions in Ethiopia, Malawi, and Rwanda. Interventions were developed in each country and tested over 12–24 months. Mixed–method follow up assessments were conducted in each country in 2012–2013. The Supply Chain for Community Case Management (SC4CCM) Project then simplified the TOC into a Community Health Supply Chain (CHSC) framework to enable cross country analysis Results The findings from interventions in the three countries suggest that the greatest supply chain benefits are realized when all three CHSC framework elements (data flow, product flow, and effective people) are in place and working together. The synergistic effect of these three elements on supply chain performance was most effectively demonstrated by results from the Enhanced Management and Quality Collaborative interventions in Malawi and Rwanda, respectively, which were characterized by lower mean stockout rates and higher in stock rates on day of visit, when compared to other interventions. Conclusions Many conditions are necessary to ensure continuous product availability at the community level, however a supply chain works best when three key elements (product flow, data flow, and effective people) are deliberately included as an integral part of the system design. Although these elements may be designed differently in different settings, streamlining and synchronizing them while ensuring inclusion of all components for each element improves supply chain performance and promotes product availability at the community level. PMID:25520795

  7. Common data elements for clinical research in mitochondrial disease: a National Institute for Neurological Disorders and Stroke project.

    PubMed

    Karaa, Amel; Rahman, Shamima; Lombès, Anne; Yu-Wai-Man, Patrick; Sheikh, Muniza K; Alai-Hansen, Sherita; Cohen, Bruce H; Dimmock, David; Emrick, Lisa; Falk, Marni J; McCormack, Shana; Mirsky, David; Moore, Tony; Parikh, Sumit; Shoffner, John; Taivassalo, Tanja; Tarnopolsky, Mark; Tein, Ingrid; Odenkirchen, Joanne C; Goldstein, Amy

    2017-05-01

    The common data elements (CDE) project was developed by the National Institute of Neurological Disorders and Stroke (NINDS) to provide clinical researchers with tools to improve data quality and allow for harmonization of data collected in different research studies. CDEs have been created for several neurological diseases; the aim of this project was to develop CDEs specifically curated for mitochondrial disease (Mito) to enhance clinical research. Nine working groups (WGs), composed of international mitochondrial disease experts, provided recommendations for Mito clinical research. They initially reviewed existing NINDS CDEs and instruments, and developed new data elements or instruments when needed. Recommendations were organized, internally reviewed by the Mito WGs, and posted online for external public comment for a period of eight weeks. The final version was again reviewed by all WGs and the NINDS CDE team prior to posting for public use. The NINDS Mito CDEs and supporting documents are publicly available on the NINDS CDE website ( https://commondataelements.ninds.nih.gov/ ), organized into domain categories such as Participant/Subject Characteristics, Assessments, and Examinations. We developed a comprehensive set of CDE recommendations, data definitions, case report forms (CRFs), and guidelines for use in Mito clinical research. The widespread use of CDEs is intended to enhance Mito clinical research endeavors, including natural history studies, clinical trial design, and data sharing. Ongoing international collaboration will facilitate regular review, updates and online publication of Mito CDEs, and support improved consistency of data collection and reporting.

  8. Gamification: using elements of video games to improve engagement in an undergraduate physics class

    NASA Astrophysics Data System (ADS)

    Rose, J. A.; O'Meara, J. M.; Gerhardt, T. C.; Williams, M.

    2016-09-01

    Gamification has been extensively implemented and studied in corporate settings and has proven to be more effective than traditional employee-training programs, however, few classroom studies of gamification have been reported in the literature. Our study explored the potential of gamified on-line undergraduate physics content as a mechanism to enhance student learning and motivation. Specifically, the main objective of this work was to determine whether extrinsic motivation indicators commonly used in video games could increase student engagement with course content outside of the classroom. Life Science students taking an introductory physics course were provided access to gamified multiple choice quizzes as part of their course assessment. The quizzes incorporated common gaming elements such as points, streaks, leaderboards and achievements, as well as some gamified graphical enhancements and feedback. Student attitudes and performance among those using the gamified quizzes were examined and compared to non-gamified control groups within the same course. Student engagement was quantified through examining student participation above and beyond the minimum course requirements. The results showed that gaming techniques are significantly correlated with increased engagement with course material outside of the classroom. These results may assist instructors in engaging and motivating students outside the classroom through carefully designed online and distance-delivered undergraduate physics content. Furthermore, the gaming elements incorporated in this study were not specifically tied to the physics content and can be easily translated to any educational setting.

  9. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  10. An Optimization-Based Approach to Injector Element Design

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Shyy, Wei; Vaidyanathan, Rajkumar; Turner, Jim (Technical Monitor)

    2000-01-01

    An injector optimization methodology, method i, is used to investigate optimal design points for gaseous oxygen/gaseous hydrogen (GO2/GH2) injector elements. A swirl coaxial element and an unlike impinging element (a fuel-oxidizer-fuel triplet) are used to facilitate the study. The elements are optimized in terms of design variables such as fuel pressure drop, APf, oxidizer pressure drop, deltaP(sub f), combustor length, L(sub comb), and full cone swirl angle, theta, (for the swirl element) or impingement half-angle, alpha, (for the impinging element) at a given mixture ratio and chamber pressure. Dependent variables such as energy release efficiency, ERE, wall heat flux, Q(sub w), injector heat flux, Q(sub inj), relative combustor weight, W(sub rel), and relative injector cost, C(sub rel), are calculated and then correlated with the design variables. An empirical design methodology is used to generate these responses for both element types. Method i is then used to generate response surfaces for each dependent variable for both types of elements. Desirability functions based on dependent variable constraints are created and used to facilitate development of composite response surfaces representing the five dependent variables in terms of the input variables. Three examples illustrating the utility and flexibility of method i are discussed in detail for each element type. First, joint response surfaces are constructed by sequentially adding dependent variables. Optimum designs are identified after addition of each variable and the effect each variable has on the element design is illustrated. This stepwise demonstration also highlights the importance of including variables such as weight and cost early in the design process. Secondly, using the composite response surface that includes all five dependent variables, unequal weights are assigned to emphasize certain variables relative to others. Here, method i is used to enable objective trade studies on design issues such as component life and thrust to weight ratio. Finally, combining results from both elements to simulate a trade study, thrust-to-weight trends are illustrated and examined in detail.

  11. A Multi-Purpose Modular Electronics Integration Node for Exploration Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Wichowski, Robert; Rosenbush, David; Hawes, Kevin; Stankiewicz, Tom

    2013-01-01

    As NASA works to develop an effective integrated portable life support system design for exploration Extravehicular activity (EVA), alternatives to the current system s electrical power and control architecture are needed to support new requirements for flexibility, maintainability, reliability, and reduced mass and volume. Experience with the current Extravehicular Mobility Unit (EMU) has demonstrated that the current architecture, based in a central power supply, monitoring and control unit, with dedicated analog wiring harness connections to active components in the system has a significant impact on system packaging and seriously constrains design flexibility in adapting to component obsolescence and changing system needs over time. An alternative architecture based in the use of a digital data bus offers possible wiring harness and system power savings, but risks significant penalties in component complexity and cost. A hybrid architecture that relies on a set of electronic and power interface nodes serving functional models within the Portable Life Support System (PLSS) is proposed to minimize both packaging and component level penalties. A common interface node hardware design can further reduce penalties by reducing the nonrecurring development costs, making miniaturization more practical, maximizing opportunities for maturation and reliability growth, providing enhanced fault tolerance, and providing stable design interfaces for system components and a central control. Adaptation to varying specific module requirements can be achieved with modest changes in firmware code within the module. A preliminary design effort has developed a common set of hardware interface requirements and functional capabilities for such a node based on anticipated modules comprising an exploration PLSS, and a prototype node has been designed assembled, programmed, and tested. One instance of such a node has been adapted to support testing the swingbed carbon dioxide and humidity control element in NASA s advanced PLSS 2.0 test article. This paper will describe the common interface node design concept, results of the prototype development and test effort, and plans for use in NASA PLSS 2.0 integrated tests.

  12. Implications of recent new concepts on the future of mainstream laser processing

    NASA Astrophysics Data System (ADS)

    La Rocca, Aldo V.

    2000-07-01

    According to one of today's most accepted visualizations of the first viable realizations of The Computer Integrated Manufacturing Plant, C.I.M.P., the manufacturing systems herein discussed tend to be multiprocessing, and tend to incorporate the lasers to take advantage of the unique capacities of the laser as a processing tool. Finally also the present laser sources, while having been for a long time more than sufficient, inevitably tend also to new generations. Said visualizations stand in the belief that the first realizations of the C I M P most likely will use flexible multiprocessing machines, which, for flexibility requirements, grow in multi-station cells, in their aggregation in isles and finally in complete manufacturing centers. To constitute the CIMP all partaking elements must be the most easily amenable to Computer Aided Design, CAD, and Computer Aided Manufacturing, CAM. Another basic requirement is that all elements constituting the CIMP must possess the highest System Efficiency and Energy Efficiency at the level of the single element and of its aggregations throughout the various combinations at each and every operating level of said aggregations, up to that of the CIMP. The mastering of the CIMP design constitute a New Discipline that presents very formidable but necessary tasks. Of these the first examples were those related to the early flexible manufacturing system Design Programs. For what concerns the laser processing machines and their integration in manufacturing systems, attention must be given to not repeat the events that hindered their diffusion in the production field keeping it at a level much lower than the expectations and their true potential. Said events stemmed from the confusion between System Efficiency and Energy Efficiency, which persisted for too long and is still common. This has taken place at the levels of introduction of a single element into the combination of the several elements constituting a linear arrangement such as a Transfer Production Line. It because greater and with graver consequences in the case of arrangements possessing more than one degree of product routings, arrangements, as previously mentioned, which evolved in the Flexible Manufacturing Centers.

  13. Precipitation Behavior of Magnesium Alloys Containing Neodymium and Yttrium

    NASA Astrophysics Data System (ADS)

    Solomon, Ellen L. S.

    Magnesium is the lightest of the structural metals and has great potential for reducing the weight of transportation systems, which in turn reduces harmful emissions and improves fuel economy. Due to the inherent softness of Mg, other elements are typically added in order to form a fine distribution of precipitates during aging, which improves the strength by acting as barriers to moving dislocations. Mg-RE alloys are unique among other Mg alloys because they form precipitates that lie parallel to the prismatic planes of the Mg matrix, which is an ideal orientation to hinder dislocation slip. However, RE elements are expensive and impractical for many commercial applications, motivating the rapid design of alternative alloy compositions with comparable mechanical properties. Yet in order to design new alloys reproducing some of the beneficial properties of Mg-RE alloys, we must first fully understand precipitation in these systems. Therefore, the main objectives of this thesis are to identify the roles of specific RE elements (Nd and Y) on precipitation and to relate the precipitate microstructure to the alloy strength. The alloys investigated in this thesis are the Mg-Nd, Mg-Y, and Mg-Y-Nd systems, which contain the main alloying elements of commercial WE series alloys (Y and Nd). In all three alloy systems, a sequence of metastable phases forms upon aging. Precipitate composition, atomic structure, morphology, and spatial distribution are strongly controlled by the elastic strain energy originating from the misfitting coherent precipitates. The dominating role that strain energy plays in these alloy systems gives rise to very unique microstructures. The evolution of the hardness and precipitate microstructure with aging revealed that metastable phases are the primary strengthening phases of these alloys, and interact with dislocations by shearing. Our understanding of precipitation mechanisms and commonalities among the Mg-RE alloys provide future avenues to apply more efficient and targeted alloy design.

  14. Designing the optimal semi-warm NIR spectrograph for SALT via detailed thermal analysis

    NASA Astrophysics Data System (ADS)

    Wolf, Marsha J.; Sheinis, Andrew I.; Mulligan, Mark P.; Wong, Jeffrey P.; Rogers, Allen

    2008-07-01

    The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the optical spectrograph. The RSS/NIR is a low to medium resolution spectrograph with broadband, spectropolarimetric, and Fabry-Perot imaging capabilities. The optical and NIR arms can be used simultaneously to extend spectral coverage from 3200 Å to approximately 1.6 μm. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera incorporates a HAWAII-2RG detector with an Epps optical design consisting of 6 spherical elements and providing subpixel rms image sizes of 7.5 +/- 1.0 μm over all wavelengths and field angles. The NIR spectrograph is semi-warm, sharing a common slit plane and partial collimator with the optical arm. A pre-dewar, cooled to below ambient temperature, houses the final NIR collimator optic, the grating/Fabry-Perot etalon, the polarizing beam splitter, and the first three camera optics. The last three camera elements, blocking filters, and detector are housed in a cryogenically cooled dewar. The semi-warm design concept has long been proposed as an economical way to extend optical instruments into the NIR, however, success has been very limited. A major portion of our design effort entails a detailed thermal analysis using non-sequential ray tracing to interactively guide the mechanical design and determine a truly realizable long wavelength cutoff over which astronomical observations will be sky-limited. In this paper we describe our thermal analysis, design concepts for the staged cooling scheme, and results to be incorporated into the overall mechanical design and baffling.

  15. Design of a Hydro-Turbine Blade for Acoustic and Performance Validation Studies

    NASA Astrophysics Data System (ADS)

    Johnson, E.; Barone, M.

    2011-12-01

    To meet the growing, global energy demands governments and industry have recently begun to focus on marine hydrokinetic (MHK) devices as an additional form of power generation. Water turbines have become a popular design choice since they are able to leverage experience from the decades-old wind industry in the hope of decreasing time-to-market. However, the difference in environments poses challenges that need to be addressed. In particular, little research has addressed the acoustic effects of common aerofoils in a marine setting. This has both a potential impact on marine life and may cause early fatigue by exciting new structural modes. An initial blade design is presented, which has been used to begin characterization of any structural and acoustic issues that may arise from a direct one-to-one swap of wind technologies into MHK devices. The blade was optimized for performance using blade-element momentum theory while requiring that it not exceed the allowable stress under a specified extreme operating design condition. This limited the maximum power generated, while ensuring a realizable blade. A stress analysis within ANSYS was performed to validate the structural integrity of the design. Additionally, predictions of the radiated noise from the MHK rotor will be made using boundary element modeling based on flow results from ANSYS CFX, a computational fluid dynamics (CFD) code. The FEA and CFD results demonstrate good comparison to the expected design. Determining a range for the anticipated noise produced from a MHK turbine provides a look at the environmental impact these devices will have. Future efforts will focus on the design constraints noise generation places on MHK devices.

  16. Trace elements and common ions in southeastern Idaho snow: Regional air pollutant tracers for source area emissions

    USGS Publications Warehouse

    Abbott, M.; Einerson, J.; Schuster, P.; Susong, D.; Taylor, Howard E.; ,

    2004-01-01

    Snow sampling and analysis methods which produce accurate and ultra-low measurements of trace elements and common ion concentration in southeastern Idaho snow, were developed. Snow samples were collected over two winters to assess trace elements and common ion concentrations in air pollutant fallout across the southeastern Idaho. The area apportionment of apportionment of fallout concentrations measured at downwind location were investigated using pattern recognition and multivariate statistical technical techniques. Results show a high level of contribution from phosphates processing facilities located outside Pocatello in the southern portion of the Eastern Snake River Plain, and no obvious source area profiles other than at Pocatello.

  17. ANSYS duplicate finite-element checker routine

    NASA Technical Reports Server (NTRS)

    Ortega, R.

    1995-01-01

    An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.

  18. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  19. Bioaccumulation of trace element concentrations in common dolphins (Delphinus delphis) from Portugal.

    PubMed

    Monteiro, Sílvia S; Pereira, Andreia T; Costa, Élia; Torres, Jordi; Oliveira, Isabel; Bastos-Santos, Jorge; Araújo, Helder; Ferreira, Marisa; Vingada, José; Eira, Catarina

    2016-12-15

    The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72μg·g -1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26μg·g -1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Design of a HIFU array for the treatment of deep venous thrombosis: a simulation study

    NASA Astrophysics Data System (ADS)

    Smirnov, Petr; Hynynen, Kullervo

    2017-08-01

    Deep venous thrombosis of the iliofemoral veins is a common and morbid disease, with the recommended interventional treatment carrying a high risk of hemorrhaging and complications. High intensity focused ultrasound delivered with a single element transducer has been shown to successfully precipitate thrombolysis non-invasively in vitro and in vivo. However, in all previous studies damage to the veins or surrounding tissue has been observed. Using a simulation model of the human thigh, this study investigated whether a phased array device could overcome the large focal region limitations faced by single transducer treatment devices. Effects of the size, shape and frequency of the array on its focal region were considered. It was found that a λ/2 spaced array of 7680 elements operating at 500 kHz could consistently focus to a region fully contained within the femoral vein. Furthermore, it is possible to reduce the number of elements required by building arrays operating at lower frequencies. The results suggest that phased transducer arrays hold potential for developing a safe, non-invasive treatment of thrombolysis.

  1. The Heart of School

    ERIC Educational Resources Information Center

    DiMartino, Joseph; Clarke, John H.

    2008-01-01

    Successful advisory programs have a number of things in common across a wide variety of schools. They all divide the student body into small groups, usually of 20 or fewer students, that meet regularly with an adult in the school community. In addition to this basic element, successful advisory programs have five other elements in common: (1) They…

  2. Perceptual Organization Based on Common Region in Infancy

    ERIC Educational Resources Information Center

    Bhatt, Ramesh S.; Hayden, Angela; Quinn, Paul C.

    2007-01-01

    We examined whether infants organize information according to the newly proposed principle of common region, which states that elements within a region are grouped together and separated from those of other regions. In Experiment 1, 6- to 7-month-olds exhibited sensitivity to regions by discriminating between the displacement of an element within…

  3. Generalized Philosophy of Alerting with Applications for Parallel Approach Collision Prevention

    NASA Technical Reports Server (NTRS)

    Winder, Lee F.; Kuchar, James K.

    2000-01-01

    The goal of the research was to develop formal guidelines for the design of hazard avoidance systems. An alerting system is automation designed to reduce the likelihood of undesirable outcomes that are due to rare failures in a human-controlled system. It accomplishes this by monitoring the system, and issuing warning messages to the human operators when thought necessary to head off a problem. On examination of existing and recently proposed logics for alerting it appears that few commonly accepted principles guide the design process. Different logics intended to address the same hazards may take disparate forms and emphasize different aspects of performance, because each reflects the intuitive priorities of a different designer. Because performance must be satisfactory to all users of an alerting system (implying a universal meaning of acceptable performance) and not just one designer, a proposed logic often undergoes significant piecemeal modification before gamma general acceptance. This report is an initial attempt to clarify the common performance goals by which an alerting system is ultimately judged. A better understanding of these goals will hopefully allow designers to reach the final logic in a quicker, more direct and repeatable manner. As a case study, this report compares three alerting logics for collision prevention during independent approaches to parallel runways, and outlines a fourth alternative incorporating elements of the first three, but satisfying stated requirements. Three existing logics for parallel approach alerting are described. Each follows from different intuitive principles. The logics are presented as examples of three "philosophies" of alerting system design.

  4. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    PubMed

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Criticality safety evaluation for the Advanced Test Reactor enhanced low enriched uranium fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montierth, Leland M.

    2016-07-19

    The Global Threat Reduction Initiative (GTRI) convert program is developing a high uranium density fuel based on a low enriched uranium (LEU) uranium-molybdenum alloy. Testing of prototypic GTRI fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. GTRI Enhanced LEU Fuel (ELF) elements based on the ATR-Standard Size elements (all plates fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). While a specific ELF element design will eventually be provided for detailed analyses and in-core testing, this criticality safety evaluation (CSE) is intended to evaluate a hypothetical ELF element designmore » for criticality safety purposes. Existing criticality analyses have analyzed Standard (HEU) ATR elements from which controls have been derived. This CSE documents analysis that determines the reactivity of the hypothetical ELF fuel elements relative to HEU ATR elements and whether the existing HEU ATR element controls bound the ELF element. The initial calculations presented in this CSE analyzed the original ELF design, now referred to as Mod 0.1. In addition, as part of a fuel meat thickness optimization effort for reactor performance, other designs have been evaluated. As of early 2014 the most current conceptual designs are Mk1A and Mk1B, that were previously referred to as conceptual designs Mod 0.10 and Mod 0.11, respectively. Revision 1 evaluates the reactivity of the ATR HEU Mark IV elements for a comparison with the Mark VII elements.« less

  6. Multielemental composition of suet oil based on quantification by ultrawave/ICP-MS coupled with chemometric analysis.

    PubMed

    Jiang, Jun; Feng, Liang; Li, Jie; Sun, E; Ding, Shu-Min; Jia, Xiao-Bin

    2014-04-10

    Suet oil (SO) has been used commonly for food and medicine preparation. The determination of its elemental composition has became an important challenge for human safety and health owing to its possible contents of heavy metals or other elements. In this study, ultrawave single reaction chamber microwave digestion (Ultrawave) and inductively coupled plasma-mass spectrometry (ICP-MS) analysis was performed to determine 14 elements (Pb, As, Hg, Cd, Fe, Cu, Mn, Ti, Ni, V, Sr, Na, Ka and Ca) in SO samples. Furthermore, the multielemental content of 18 SO samples, which represented three different sources in China: Qinghai, Anhui and Jiangsu, were evaluated and compared. The optimal ultrawave digestion conditions, namely, the optimal time (35 min), temperature (210 °C) and pressure (90 bar), were screened by Box-Behnken design (BBD). Eighteen samples were successfully classified into three groups by principal component analysis (PCA) according to the contents of 14 elements. The results showed that all SO samples were rich in elements, but with significant differences corresponding to different origins. The outliers and majority of SO could be discriminated by PCA according to the multielemental content profile. The results highlighted that the element distribution was associated with the origins of SO samples. The proposed ultrawave digestion system was quite efficient and convenient, which could be mainly attributed to its high pressure and special high-throughput for the sample digestion procedure. Our established method could be useful for the quality control and standardization of elements in SO samples and products.

  7. Analysis of on-line clinical laboratory manuals and practical recommendations.

    PubMed

    Beckwith, Bruce; Schwartz, Robert; Pantanowitz, Liron

    2004-04-01

    On-line clinical laboratory manuals are a valuable resource for medical professionals. To our knowledge, no recommendations currently exist for their content or design. To analyze publicly accessible on-line clinical laboratory manuals and to propose guidelines for their content. We conducted an Internet search for clinical laboratory manuals written in English with individual test listings. Four individual test listings in each manual were evaluated for 16 data elements, including sample requirements, test methodology, units of measure, reference range, and critical values. Web sites were also evaluated for supplementary information and search functions. We identified 48 on-line laboratory manuals, including 24 academic or community hospital laboratories and 24 commercial or reference laboratories. All manuals had search engines and/or test indices. No single manual contained all 16 data elements evaluated. An average of 8.9 (56%) elements were present (range, 4-14). Basic sample requirements (specimen and volume needed) were the elements most commonly present (98% of manuals). The frequency of the remaining data elements varied from 10% to 90%. On-line clinical laboratory manuals originate from both hospital and commercial laboratories. While most manuals were user-friendly and contained adequate specimen-collection information, other important elements, such as reference ranges, were frequently absent. To ensure that clinical laboratory manuals are of maximal utility, we propose the following 13 data elements be included in individual test listings: test name, synonyms, test description, test methodology, sample requirements, volume requirements, collection guidelines, transport guidelines, units of measure, reference range, critical values, test availability, and date of latest revision.

  8. Modeling guided wave excitation in plates with surface mounted piezoelectric elements: coupled physics and normal mode expansion

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2018-04-01

    Guided waves have been extensively studied and widely used for structural health monitoring because of their large volumetric coverage and good sensitivity to defects. Effectively and preferentially exciting a desired wave mode having good sensitivity to a certain defect is of great practical importance. Piezoelectric discs and plates are the most common types of surface-mounted transducers for guided wave excitation and reception. Their geometry strongly influences the proportioning between excited modes as well as the total power of the excited modes. It is highly desirable to predominantly excite the selected mode while the total transduction power is maximized. In this work, a fully coupled multi-physics finite element analysis, which incorporates the driving circuit, the piezoelectric element and the wave guide, is combined with the normal mode expansion method to study both the mode tuning and total wave power. The excitation of circular crested waves in an aluminum plate with circular piezoelectric discs is numerically studied for different disc and adhesive thicknesses. Additionally, the excitation of plane waves in an aluminum plate, using a stripe piezoelectric element is studied both numerically and experimentally. It is difficult to achieve predominant single mode excitation as well as maximum power transmission simultaneously, especially for higher order modes. However, guidelines for designing the geometry of piezoelectric elements for optimal mode excitation are recommended.

  9. Differential autoshaping to common and distinctive elements of positive and negative discriminative stimuli1

    PubMed Central

    Wasserman, Edward A.; Anderson, Patricia A.

    1974-01-01

    The learning by hungry pigeons of a discrimination between two successively presented compound visual stimuli was investigated using a two-key autoshaping procedure. Common and distinctive stimulus elements were simultaneously presented on separate keys and either followed by food delivery, S+, or not, S−. The subjects acquired both between-trial and within-trial discriminations. On S+ trials, pigeons pecked the distinctive stimulus more than the common stimulus; before responding ceased on S− trials, they pecked the common stimulus more than the distinctive one. Mastery of the within-display discrimination during S+ trials preceded mastery of the between-trials discrimination. These findings extend the Jenkins-Sainsbury analysis of discriminations based upon a single distinguishing feature to discriminations in which common and distinctive elements are associated with both the positive and negative discriminative stimuli. The similarity of these findings to other effects found in autoshaping—approach to signals that forecast reinforcement and withdrawal from signals that forecast nonreinforcement—is also discussed. PMID:16811812

  10. Differential autoshaping to common and distinctive elements of positive and negative discriminative stimuli.

    PubMed

    Wasserman, E A; Anderson, P A

    1974-11-01

    The learning by hungry pigeons of a discrimination between two successively presented compound visual stimuli was investigated using a two-key autoshaping procedure. Common and distinctive stimulus elements were simultaneously presented on separate keys and either followed by food delivery, S+, or not, S-. The subjects acquired both between-trial and within-trial discriminations. On S+ trials, pigeons pecked the distinctive stimulus more than the common stimulus; before responding ceased on S- trials, they pecked the common stimulus more than the distinctive one. Mastery of the within-display discrimination during S+ trials preceded mastery of the between-trials discrimination. These findings extend the Jenkins-Sainsbury analysis of discriminations based upon a single distinguishing feature to discriminations in which common and distinctive elements are associated with both the positive and negative discriminative stimuli. The similarity of these findings to other effects found in autoshaping-approach to signals that forecast reinforcement and withdrawal from signals that forecast nonreinforcement-is also discussed.

  11. Single element injector cold flow testing for STME swirl coaxial injector element design

    NASA Technical Reports Server (NTRS)

    Hulka, J.; Schneider, J. A.

    1993-01-01

    An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.

  12. System design of the Pioneer Venus spacecraft. Volume 9: Attitude control/mechanisms subsystems studies

    NASA Technical Reports Server (NTRS)

    Neil, A. L.

    1973-01-01

    The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.

  13. Structural modeling for multicell composite rotor blades

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  14. Invited article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures.

    PubMed

    Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E

    2014-03-01

    Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.

  15. Historical Allotment Gardens in Wrocław - The Need to Protection

    NASA Astrophysics Data System (ADS)

    Kononowicz, Wanda; Gryniewicz-Balińska, Katarzyna

    2016-06-01

    Since about the mid-nineteenth century, together with the changing socio-economic situation, different types of allotments appeared in Wrocław. Initially, they were rented gardens, gardens for the poor or for factory workers. At the beginning of the twentieth century, school gardens and the so called Schreber gardens with a large common square were set up as part of Dr. Schreber's educational health program. In 1914-1918, "war" vegetable gardens were commonly cultivated. In the 1920s allotment gardens began to be systematically introduced to the city plan as permanent, purposefully designed elements of urban greenery. They were often designed together with urban parks, or so called "Folk Parks" of a recreational and sport character. In the 1930s, during the economic crisis, allotments with garden houses were adapted for the unemployed and the homeless to live in. Wrocław allotment gardens have undeniable historical, social, recreational, economic and compositional value. These gardens are a cultural heritage that should be protected. In Western Europe we are witnessing a renaissance of the idea of allotments, while in Poland - a tendency to eliminate them from urban landscapes.

  16. Solid-perforated panel layout optimization by topology optimization based on unified transfer matrix.

    PubMed

    Kim, Yoon Jae; Kim, Yoon Young

    2010-10-01

    This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.

  17. Digitally controlled sonars

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1983-01-01

    Sonars are usually designed and constructed as stand alone instruments. That is, all elements or subsystems of the sonar are provided: power conditioning, displays, intercommunications, control, receiver, transmitter, and transducer. The sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP) represent a departure from this manner of implementation and are configured more like an instrumentation system. Only the transducer, transmitter, and receiver which are unique to a particular sonar function; Up, Down, Side Scan, exist as separable subsystems. The remaining functions are reserved to the AOTDP and serve all sonars and other instrumentation in a shared manner. The organization and functions of the common AOTDP elements were described and then the interface with the sonars discussed. The techniques for software control of the sonar parameters were explained followed by the details of the realization of the sonar functions and some discussion of the performance of the side scan sonars.

  18. Design and Operation of a Fast, Thin-Film Thermocouple Probe on a Turbine Engine

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Wrbanek, John D.; Fralick, Gustave C.; Greer, Lawrence C., III; Hunter, Gary W.; Chen, Liang-Yu

    2014-01-01

    As a demonstration of technology maturation, a thin-film temperature sensor probe was fabricated and installed on a F117 turbofan engine via a borescope access port to monitor the temperature experienced in the bleed air passage of the compressor area during an engine checkout test run. To withstand the harsh conditions experienced in this environment, the sensor probe was built from high temperature materials. The thin-film thermocouple sensing elements were deposited by physical vapor deposition using pure metal elements, thus avoiding the inconsistencies of sputter-depositing particular percentages of materials to form standardized alloys commonly found in thermocouples. The sensor probe and assembly were subjected to a strict protocol of multi-axis vibrational testing as well as elevated temperature pressure testing to be qualified for this application. The thin-film thermocouple probe demonstrated a faster response than a traditional embedded thermocouple during the engine checkout run.

  19. Countermarketing Alcohol and Unhealthy Food: An Effective Strategy for Preventing Noncommunicable Diseases? Lessons from Tobacco.

    PubMed

    Palmedo, P Christopher; Dorfman, Lori; Garza, Sarah; Murphy, Eleni; Freudenberg, Nicholas

    2017-03-20

    Countermarketing campaigns use health communications to reduce the demand for unhealthy products by exposing motives and undermining marketing practices of producers. These campaigns can contribute to the prevention of noncommunicable diseases by denormalizing the marketing of tobacco, alcohol, and unhealthy food. By portraying these activities as outside the boundaries of civilized corporate behavior, countermarketing can reduce the demand for unhealthy products and lead to changes in industry marketing practices. Countermarketing blends consumer protection, media advocacy, and health education with the demand for corporate accountability. Countermarketing campaigns have been demonstrated to be an effective component of comprehensive tobacco control. This review describes common elements of tobacco countermarketing such as describing adverse health consequences, appealing to negative emotions, highlighting industry manipulation of consumers, and engaging users in the design or implementation of campaigns. It then assesses the potential for using these elements to reduce consumption of alcohol and unhealthy foods.

  20. Discovery of a conjugative megaplasmid in Bifidobacterium breve.

    PubMed

    Bottacini, Francesca; O'Connell Motherway, Mary; Casey, Eoghan; McDonnell, Brian; Mahony, Jennifer; Ventura, Marco; van Sinderen, Douwe

    2015-01-01

    Bifidobacterium breve is a common and sometimes very abundant inhabitant of the human gut. Genome sequencing of B. breve JCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid. In silico characterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains of B. breve and B. longum subsp. longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in three B. longum subsp. longum strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Discovery of a Conjugative Megaplasmid in Bifidobacterium breve

    PubMed Central

    Bottacini, Francesca; O'Connell Motherway, Mary; Casey, Eoghan; McDonnell, Brian; Mahony, Jennifer; Ventura, Marco

    2014-01-01

    Bifidobacterium breve is a common and sometimes very abundant inhabitant of the human gut. Genome sequencing of B. breve JCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid. In silico characterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains of B. breve and B. longum subsp. longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in three B. longum subsp. longum strains. PMID:25326305

  2. Convenience of Statistical Approach in Studies of Architectural Ornament and Other Decorative Elements Specific Application

    NASA Astrophysics Data System (ADS)

    Priemetz, O.; Samoilov, K.; Mukasheva, M.

    2017-11-01

    An ornament is an actual phenomenon of the architecture modern theory, a common element in the practice of design and construction. It has been an important aspect of shaping for millennia. The description of the methods of its application occupies a large place in the studies on the theory and practice of architecture. However, the problem of the saturation of compositions with ornamentation, the specificity of its themes and forms have not been sufficiently studied yet. This aspect requires accumulation of additional knowledge. The application of quantitative methods for the plastic solutions types and a thematic diversity of facade compositions of buildings constructed in different periods creates another tool for an objective analysis of ornament development. It demonstrates the application of this approach for studying the features of the architectural development in Kazakhstan at the end of the XIX - XXI centuries.

  3. Comparative study of two approaches to model the offshore fish cages

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei

    2015-06-01

    The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.

  4. Static and fatigue testing of full-scale fuselage panels fabricated using a Therm-X(R) process

    NASA Technical Reports Server (NTRS)

    Dinicola, Albert J.; Kassapoglou, Christos; Chou, Jack C.

    1992-01-01

    Large, curved, integrally stiffened composite panels representative of an aircraft fuselage structure were fabricated using a Therm-X process, an alternative concept to conventional two-sided hard tooling and contour vacuum bagging. Panels subsequently were tested under pure shear loading in both static and fatigue regimes to assess the adequacy of the manufacturing process, the effectiveness of damage tolerant design features co-cured with the structure, and the accuracy of finite element and closed-form predictions of postbuckling capability and failure load. Test results indicated the process yielded panels of high quality and increased damage tolerance through suppression of common failure modes such as skin-stiffener separation and frame-stiffener corner failure. Finite element analyses generally produced good predictions of postbuckled shape, and a global-local modelling technique yielded failure load predictions that were within 7% of the experimental mean.

  5. Modeling and Design Analysis Methodology for Tailoring of Aircraft Structures with Composites

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.

    2004-01-01

    Composite materials provide design flexibility in that fiber placement and orientation can be specified and a variety of material forms and manufacturing processes are available. It is possible, therefore, to 'tailor' the structure to a high degree in order to meet specific design requirements in an optimum manner. Common industrial practices, however, have limited the choices designers make. One of the reasons for this is that there is a dearth of conceptual/preliminary design analysis tools specifically devoted to identifying structural concepts for composite airframe structures. Large scale finite element simulations are not suitable for such purposes. The present project has been devoted to creating modeling and design analysis methodology for use in the tailoring process of aircraft structures. Emphasis has been given to creating bend-twist elastic coupling in high aspect ratio wings or other lifting surfaces. The direction of our work was in concert with the overall NASA effort Twenty- First Century Aircraft Technology (TCAT). A multi-disciplinary team was assembled by Dr. Damodar Ambur to work on wing technology, which included our project.

  6. Safety envelope for load tolerance of structural element design based on multi-stage testing

    DOE PAGES

    Park, Chanyoung; Kim, Nam H.

    2016-09-06

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  7. Database Design for Structural Analysis and Design Optimization.

    DTIC Science & Technology

    1984-10-01

    2) . Element number of nodes IELT NPAR(2) " Stress printing flag IPST NPAR(2) Element material angle BETA NPAR(2) Element thickness THICK NPAR(2...number LM 3*NPAR(17)*NPAR(2) Element nodal coordinates XYZ 3*NPAR(17)*NPAR(2) Element number of nodes IELT NPAR(2) Element geometry number of nodes IELTX...D.O.F. number LM 6*NPAR(7)*NPAR(2) Element number of nodes IELT NPAR(2) Material property set number MATP NPAR(2) Material constants PROP NPAR(17

  8. Damage imaging using Lamb waves for SHM applications

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Ambroziński, Łukasz; Uhl, Tadeusz

    2015-03-01

    2-D ultrasonic arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for the inspection of plate-like structures using Lamb waves (LW). Contrary to the classical linear phased arrays (PAs) the 2D arrays enable unequivocal defect localization and they are even capable of mode selectivity of the received LWs . Recently, it has been shown that multistatic synthetic focusing (SF) algorithms applied for 2D arrays are much more effective than the classical phase array mode commonly used in NDT. The multistatic SF assumes multiple transmissions of elements in a transmitting aperture and off-line processing of the data acquired by a receiving aperture. In the simplest implementation of the technique, only a single multiplexed input and a number of output channels are required, which results in significant hardware simplification compared with the PA systems. On the one hand implementation of the multistatic SF to 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process. On the other hand, it enables designing sparse arrays with performance similar to that of the fully populated dense arrays. In this paper we present a general systematic approach to the design and optimization of imaging systems based on the 2D array operating in the multistatic mode. We start from presenting principles of the SF schemes applied to LW imaging. Then, we outline the coarray concept and demonstrate how it can be used for reducing number of elements of the 2D arrays. Finally, efficient tools for the investigation and experimental verification of the designed 2D array prototypes are presented. The first step in the investigation is theoretical evaluation performed using frequency-dependent structure transfer function (STF), which enables approximate simulation of an array excited with a tone-burst in a dispersive medium. Finally, we show how scanning laser vibrometer, sensing waves in multiple points corresponding to the locations of the 2D receiving array elements, can be used as a tool for rapid experimental verification of the developed topologies. The presented methods are discussed in terms of the beampatterns and sparse versions of the fully populated array topologies are be presented. The effect of apodization applied to the array elements is also investigated. Both simulated and experimental results are included.

  9. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    NASA Astrophysics Data System (ADS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Miller, Mark; Fedder, Gary K.

    2009-08-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa.

  10. Common Board Design for the OBC I/O Unit and The OBC CCSDS Unit of The Stuttgart University Satellite "Flying Laptop"

    NASA Astrophysics Data System (ADS)

    Eickhoff, Jens; Cook, Barry; Walker, Paul; Habinc, Sadi; Witt, Rouven; Roser, Hans-Peter

    2011-08-01

    As already published in another paper at DASIA 2010 in Budapest [1] the University of Stuttgart, Germany, is developing an advanced 3-axis stabilized small satellite applying industry standards for command/control techniques, onboard software design and onboard computer components.The satellite has a launch mass of approx. 120kg and is foreseen to be launched end 2013 as piggy back payload on an Indian PSLV launcher.During phase C the main challenge was the conceptual design for an ultra compact and performant onboard computer (OBC), which is able to support an industry standard operating system, a PUS standard based onboard software (OBSW) and CCSDS standard based ground/space communication. The developed architecture is based on 4 main elements (see [1] and Figure 4):• the OBC core board (single board computer based on LEON3 FT architecture),• an I/O Board for all OBC digital interfaces to S/C equipment,• a CCSDS TC/TM pre-processor board,• CPDU being embedded in the PCDU.The EM for the OBC core meanwhile has been shipped to the University by the supplier Aeroflex Colorado Springs, USA and is in use in Stuttgart since January 2011. Figure 2 and Figure 3 provide brief impressions. This paper concentrates on the common design of the I/O board and the CCSDS processor boards.

  11. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  12. RARE EARTH ELEMENTS: A REVIEW OF PRODUCTION, PROCESSING, RECYCLING, AND ASSOCIATED ENVIRONMENTAL ISSUES

    EPA Science Inventory

    Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...

  13. Common path endoscopic probes for optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.

    2017-02-01

    Background: Dispersion imbalance and polarization mismatch between the reference and sample arm signals can lead to image quality degradation in optical coherence tomography (OCT). One approach to reduce these image artifacts is to employ a common-path geometry in fiber-based probes. In this work, we report an 800 um diameter all-fiber common-path monolithic probe for coronary artery imaging where the reference signal is generated using an inline fiber partial reflector. Methods: Our common-path probe was designed for swept-source based Fourier domain OCT at 1310 nm wavelength. A face of a coreless fiber was coated with gold and spliced to a standard SMF-28 single mode fiber creating an inline partial reflector, which acted as a reference surface. The other face of the coreless fiber was shaped into a ball lens for focusing. The optical elements were assembled within a 560 µm diameter drive shaft, which was attached to a rotary junction. The drive shaft was placed inside a transparent sheath having an outer diameter of 800 µm. Results: With a source input power of 30mW, the inline common-path probe achieved a sensitivity of 104 dB. Images of human finger skin showed the characteristic layers of skin as well as features such as sweat ducts. Images of coronary arteries ex vivo obtained with this probe enabled visualization of the characteristic architectural morphology of the normal artery wall and known features of atherosclerotic plaque. Conclusion: In this work, we have demonstrated a common path OCT probe for cardiovascular imaging. The probe is easy to fabricate, will reduce system complexity and overall cost. We believe that this design will be helpful in endoscopic applications that require high resolution and a compact form factor.

  14. Analysis of Flexible Anchored Hollow WPC Quay Walls of the New Berth in Tur, Egypt

    NASA Astrophysics Data System (ADS)

    Elsayed, Ayman

    2017-10-01

    A seawall, also known as a bulkhead or retaining wall, is a structure built to reduce the effects of strong waves and to defend costal land from erosion. Traditionally, seawalls are made of steel, timber or concrete construction. Composite materials, however, have been recently introduced for their ease of installation/maintenance in dry processing, low cost, and environmentally friendly materials. A wood plastic composite (WPC) seawall system has been developed and patented for its unique hollow structure that can give greater stiffness and stability under various external stresses. This paper describes the development of design method used in the analysis of the WPC walls. The main challenge during the physical excavation works is to limit the deformations involved in order to minimize damage on adjacent structures. The deformations depend largely on the excavation and strutting procedures, but also on the properties of the structural elements like the soil, the sheet pile and strutting members. The detailed design procedure involves numerical analyses, national regulations and common practice considerations. The contribution of finite element method in this field was used herein to determine the lateral movements, the bending moments of the wall, the passive earth pressure of the soil and the tensile force exerted by the anchor rods. The overall objectives of this research can be divided into two categories, First calibration of the finite element model for the new Tur quay walls (the case study) and reviewing the results of the steel cross section that chosen and the suggested one. Second, analysis and comparing the results of WPC cross-sections with the designed Steel sheet pile wall (SPW).

  15. Synthetic river valleys: Creating prescribed topography for form-process inquiry and river rehabilitation design

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.; Wallender, W. W.

    2014-06-01

    The synthesis of artificial landforms is complementary to geomorphic analysis because it affords a reflection on both the characteristics and intrinsic formative processes of real world conditions. Moreover, the applied terminus of geomorphic theory is commonly manifested in the engineering and rehabilitation of riverine landforms where the goal is to create specific processes associated with specific morphology. To date, the synthesis of river topography has been explored outside of geomorphology through artistic renderings, computer science applications, and river rehabilitation design; while within geomorphology it has been explored using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, two-dimensional simulation of river networks, and three-dimensional simulation of subreach scale river morphology. To date, no approach allows geomorphologists, engineers, or river rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method for creating topography of synthetic river valleys is introduced that utilizes a theoretical framework that draws from fluvial geomorphology, computer science, and geometric modeling. Such a method would be valuable to geomorphologists in understanding form-process linkages as well as to engineers and river rehabilitation practitioners in developing design surfaces that can be rapidly iterated. The method introduced herein relies on the discretization of river valley topography into geometric elements associated with overlapping and orthogonal two-dimensional planes such as the planform, profile, and cross section that are represented by mathematical functions, termed geometric element equations. Topographic surfaces can be parameterized independently or dependently using a geomorphic covariance structure between the spatial series of geometric element equations. To illustrate the approach and overall model flexibility examples are provided that are associated with mountain, lowland, and hybrid synthetic river valleys. To conclude, recommended advances such as multithread channels are discussed along with potential applications.

  16. Multiscale modeling of interwoven Kevlar fibers based on random walk to predict yarn structural response

    NASA Astrophysics Data System (ADS)

    Recchia, Stephen

    Kevlar is the most common high-end plastic filament yarn used in body armor, tire reinforcement, and wear resistant applications. Kevlar is a trade name for an aramid fiber. These are fibers in which the chain molecules are highly oriented along the fiber axis, so the strength of the chemical bond can be exploited. The bulk material is extruded into filaments that are bound together into yarn, which may be chorded with other materials as in car tires, woven into a fabric, or layered in an epoxy to make composite panels. The high tensile strength to low weight ratio makes this material ideal for designs that decrease weight and inertia, such as automobile tires, body panels, and body armor. For designs that use Kevlar, increasing the strength, or tenacity, to weight ratio would improve performance or reduce cost of all products that are based on this material. This thesis computationally and experimentally investigates the tenacity and stiffness of Kevlar yarns with varying twist ratios. The test boundary conditions were replicated with a geometrically accurate finite element model, resulting in a customized code that can reproduce tortuous filaments in a yarn was developed. The solid model geometry capturing filament tortuosity was implemented through a random walk method of axial geometry creation. A finite element analysis successfully recreated the yarn strength and stiffness dependency observed during the tests. The physics applied in the finite element model was reproduced in an analytical equation that was able to predict the failure strength and strain dependency of twist ratio. The analytical solution can be employed to optimize yarn design for high strength applications.

  17. Programmable logic construction kits for hyper-real-time neuronal modeling.

    PubMed

    Guerrero-Rivera, Ruben; Morrison, Abigail; Diesmann, Markus; Pearce, Tim C

    2006-11-01

    Programmable logic designs are presented that achieve exact integration of leaky integrate-and-fire soma and dynamical synapse neuronal models and incorporate spike-time dependent plasticity and axonal delays. Highly accurate numerical performance has been achieved by modifying simpler forward-Euler-based circuitry requiring minimal circuit allocation, which, as we show, behaves equivalently to exact integration. These designs have been implemented and simulated at the behavioral and physical device levels, demonstrating close agreement with both numerical and analytical results. By exploiting finely grained parallelism and single clock cycle numerical iteration, these designs achieve simulation speeds at least five orders of magnitude faster than the nervous system, termed here hyper-real-time operation, when deployed on commercially available field-programmable gate array (FPGA) devices. Taken together, our designs form a programmable logic construction kit of commonly used neuronal model elements that supports the building of large and complex architectures of spiking neuron networks for real-time neuromorphic implementation, neurophysiological interfacing, or efficient parameter space investigations.

  18. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  19. Applying Symmetries of Common Objects to Help Students Understand Stereoselectivity for Apparently Symmetric Substrates

    ERIC Educational Resources Information Center

    Jittam, Piyachat; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2008-01-01

    We have found it an effective way of teaching symmetry in the context of stereoselectivity, to use common everyday objects with the same point groups as the substrates involved. This has helped students to distinguish between those symmetry elements which allow for stereospecificity and those which preclude it. Two symmetry elements, the simple…

  20. Understanding the Common Elements of Evidence-Based Practice: Misconceptions and Clinical Examples

    ERIC Educational Resources Information Center

    Chorpita, Bruce F.; Becker, Kimberly D.; Daleiden, Eric L.

    2007-01-01

    In this article, the authors proposed a distillation and matching model (DMM) that describes how evidence-based treatment operations can be conceptualized at a lower order level of analysis than simply by their manuals. Also referred to as the "common elements" approach, this model demonstrates the feasibility of coding and identifying the…

  1. Investigation of gaseous propellant combustion and associated injector/chamber design guidelines

    NASA Technical Reports Server (NTRS)

    Calhoon, D. F.; Ito, J. I.; Kors, D. L.

    1973-01-01

    Injector design criteria are provided for gaseous hydrogen-gaseous oxygen propellants. Design equations and procedures are presented which will allow an injector-chamber designer to a priori estimate of the performance, compatibility and stability characteristics of prototype injectors. The effects of chamber length, element geometry, thrust per element, mixture ratio, impingement angle, and element spacing were evaluated for four element concepts and their derivatives. The data from this series of tests were reduced to a single valued mixing function that describes the mixing potential of the various elements. Performance, heat transfer and stability data were generated for various mixture ratios, propellant temperatures, chamber pressures, contraction ratios, and chamber lengths. Applications of the models resulted in the design of procedures, whereby the performance and chamber heat flux can be calculated directly, and the injector stability estimated in conjunction with existing models.

  2. A standard protocol for describing individual-based and agent-based models

    USGS Publications Warehouse

    Grimm, Volker; Berger, Uta; Bastiansen, Finn; Eliassen, Sigrunn; Ginot, Vincent; Giske, Jarl; Goss-Custard, John; Grand, Tamara; Heinz, Simone K.; Huse, Geir; Huth, Andreas; Jepsen, Jane U.; Jorgensen, Christian; Mooij, Wolf M.; Muller, Birgit; Pe'er, Guy; Piou, Cyril; Railsback, Steven F.; Robbins, Andrew M.; Robbins, Martha M.; Rossmanith, Eva; Ruger, Nadja; Strand, Espen; Souissi, Sami; Stillman, Richard A.; Vabo, Rune; Visser, Ute; DeAngelis, Donald L.

    2006-01-01

    Simulation models that describe autonomous individual organisms (individual based models, IBM) or agents (agent-based models, ABM) have become a widely used tool, not only in ecology, but also in many other disciplines dealing with complex systems made up of autonomous entities. However, there is no standard protocol for describing such simulation models, which can make them difficult to understand and to duplicate. This paper presents a proposed standard protocol, ODD, for describing IBMs and ABMs, developed and tested by 28 modellers who cover a wide range of fields within ecology. This protocol consists of three blocks (Overview, Design concepts, and Details), which are subdivided into seven elements: Purpose, State variables and scales, Process overview and scheduling, Design concepts, Initialization, Input, and Submodels. We explain which aspects of a model should be described in each element, and we present an example to illustrate the protocol in use. In addition, 19 examples are available in an Online Appendix. We consider ODD as a first step for establishing a more detailed common format of the description of IBMs and ABMs. Once initiated, the protocol will hopefully evolve as it becomes used by a sufficiently large proportion of modellers.

  3. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  4. Rectenna thermal model development

    NASA Technical Reports Server (NTRS)

    Kadiramangalam, Murall; Alden, Adrian; Speyer, Daniel

    1992-01-01

    Deploying rectennas in space requires adapting existing designs developed for terrestrial applications to the space environment. One of the major issues in doing so is to understand the thermal performance of existing designs in the space environment. Toward that end, a 3D rectenna thermal model has been developed, which involves analyzing shorted rectenna elements and finite size rectenna element arrays. A shorted rectenna element is a single element whose ends are connected together by a material of negligible thermal resistance. A shorted element is a good approximation to a central element of a large array. This model has been applied to Brown's 2.45 GHz rectenna design. Results indicate that Brown's rectenna requires redesign or some means of enhancing the heat dissipation in order for the diode temperature to be maintained below 200 C above an output power density of 620 W/sq.m. The model developed in this paper is very general and can be used for the analysis and design of any type of rectenna design of any frequency.

  5. Gamification and Adherence to Web-Based Mental Health Interventions: A Systematic Review.

    PubMed

    Brown, Menna; O'Neill, Noelle; van Woerden, Hugo; Eslambolchilar, Parisa; Jones, Matt; John, Ann

    2016-08-24

    Adherence to effective Web-based interventions for common mental disorders (CMDs) and well-being remains a critical issue, with clear potential to increase effectiveness. Continued identification and examination of "active" technological components within Web-based interventions has been called for. Gamification is the use of game design elements and features in nongame contexts. Health and lifestyle interventions have implemented a variety of game features in their design in an effort to encourage engagement and increase program adherence. The potential influence of gamification on program adherence has not been examined in the context of Web-based interventions designed to manage CMDs and well-being. This study seeks to review the literature to examine whether gaming features predict or influence reported rates of program adherence in Web-based interventions designed to manage CMDs and well-being. A systematic review was conducted of peer-reviewed randomized controlled trials (RCTs) designed to manage CMDs or well-being and incorporated gamification features. Seven electronic databases were searched. A total of 61 RCTs met the inclusion criteria and 47 different intervention programs were identified. The majority were designed to manage depression using cognitive behavioral therapy. Eight of 10 popular gamification features reviewed were in use. The majority of studies utilized only one gamification feature (n=58) with a maximum of three features. The most commonly used feature was story/theme. Levels and game leaders were not used in this context. No studies explicitly examined the role of gamification features on program adherence. Usage data were not commonly reported. Interventions intended to be 10 weeks in duration had higher mean adherence than those intended to be 6 or 8 weeks in duration. Gamification features have been incorporated into the design of interventions designed to treat CMD and well-being. Further research is needed to improve understanding of gamification features on adherence and engagement in order to inform the design of future Web-based health interventions in which adherence to treatment is of concern. Conclusions were limited by varied reporting of adherence and usage data.

  6. Gamification and Adherence to Web-Based Mental Health Interventions: A Systematic Review

    PubMed Central

    O'Neill, Noelle; van Woerden, Hugo; Eslambolchilar, Parisa; Jones, Matt; John, Ann

    2016-01-01

    Background Adherence to effective Web-based interventions for common mental disorders (CMDs) and well-being remains a critical issue, with clear potential to increase effectiveness. Continued identification and examination of “active” technological components within Web-based interventions has been called for. Gamification is the use of game design elements and features in nongame contexts. Health and lifestyle interventions have implemented a variety of game features in their design in an effort to encourage engagement and increase program adherence. The potential influence of gamification on program adherence has not been examined in the context of Web-based interventions designed to manage CMDs and well-being. Objective This study seeks to review the literature to examine whether gaming features predict or influence reported rates of program adherence in Web-based interventions designed to manage CMDs and well-being. Methods A systematic review was conducted of peer-reviewed randomized controlled trials (RCTs) designed to manage CMDs or well-being and incorporated gamification features. Seven electronic databases were searched. Results A total of 61 RCTs met the inclusion criteria and 47 different intervention programs were identified. The majority were designed to manage depression using cognitive behavioral therapy. Eight of 10 popular gamification features reviewed were in use. The majority of studies utilized only one gamification feature (n=58) with a maximum of three features. The most commonly used feature was story/theme. Levels and game leaders were not used in this context. No studies explicitly examined the role of gamification features on program adherence. Usage data were not commonly reported. Interventions intended to be 10 weeks in duration had higher mean adherence than those intended to be 6 or 8 weeks in duration. Conclusions Gamification features have been incorporated into the design of interventions designed to treat CMD and well-being. Further research is needed to improve understanding of gamification features on adherence and engagement in order to inform the design of future Web-based health interventions in which adherence to treatment is of concern. Conclusions were limited by varied reporting of adherence and usage data. PMID:27558893

  7. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation.

    PubMed

    Cukrowska, Ewa M; Govender, Koovila; Viljoen, Morris

    2004-07-01

    New column leaching experiments were designed and used as an alternative rapid screening approach to element mobility assessment. In these experiments, field-moist material was treated with an extracting solution to assess the effects of acidification on element mobility in mine tailings. The main advantage of this version of column leaching experiments with partitioned segments is that they give quick information on current element mobility in conditions closely simulating field conditions to compare with common unrepresentative air-dried, sieved samples used for column leaching experiments. Layers from the tailings dump material were sampled and packed into columns. The design of columns allows extracting leachates from each layer. The extracting solutions used were natural (pH 6.8) and acidified (pH 4.2) rainwater. Metals and anions were determined in the leachates. The concentrations of metals (Ca, Mg, Fe, Mn, Al, Cr, Ni, Co, Zn, and Cu) in sample leachates were determined using ICP OES. The most important anions (NO3-, Cl-, and SO4(2)-) were determined using the closed system izotacophoresis ITP analyser. The chemical analytical data from tailings leaching and physico-chemical data from field measurements (including pH, conductivity, redox potential, temperature) were used for chemometric evaluation of element mobility. Principal factor analysis (PFA) was used to evaluate ions mobility from different layers of tailings dump arising from varied pH and redox conditions. It was found that the results from the partitioned column leaching illustrate much better complex processes of metals mobility from tailings dump than the total column. The chemometric data analysis (PFA) proofed the differences in the various layers leachability that are arising from physico-chemical processes due to chemical composition of tailings dump deposit. Copyright 2004 Elsevier Ltd.

  8. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    NASA Astrophysics Data System (ADS)

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  9. Optimization of an Offset Receiver Optics for Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Yeap, Kim Ho; Tham, Choy Yoong

    2018-01-01

    The latest generation of Cassegrain radio astronomy antennas is designed for multiple frequency bands with receivers for individual bands offset from the antenna axis. The offset feed arrangement typically has two focusing elements in the form of ellipsoidal mirrors in the optical path between the feed horn and the antenna focus. This arrangement aligns the beam from the offset feed horn to illuminate the subreflector. The additional focusing elements increase the number of design variables, namely the distances between the horn aperture and the first mirror and that between the two mirrors, and their focal lengths. There are a huge number of possible combinations of these four variables in which the optics system can take on. The design aim is to seek the combination that will give the optimum antenna efficiency, not only at the centre frequency of the particular band but also across its bandwidth. To pick the optimum combination of the variables, it requires working through, by computational mean, a continuum range of variable values at different frequencies which will fit the optics system within the allocated physical space. Physical optics (PO) is a common technique used in optics design. However, due to the repeated iteration of the huge number of computation involved, the use of PO is not feasible. We present a procedure based on using multimode Gaussian optics to pick the optimum design and using PO for final verification of the system performance. The best antenna efficiency is achieved when the beam illuminating the subreflector is truncated with the optimum edge taper. The optimization procedure uses the beam's edge taper at the subreflector as the iteration target. The band 6 receiver optics design for the Atacama Large Millimetre Array (ALMA) antenna is used to illustrate the optimization procedure.

  10. An application of object-oriented knowledge representation to engineering expert systems

    NASA Technical Reports Server (NTRS)

    Logie, D. S.; Kamil, H.; Umaretiya, J. R.

    1990-01-01

    The paper describes an object-oriented knowledge representation and its application to engineering expert systems. The object-oriented approach promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects and organized by defining relationships between the objects. An Object Representation Language (ORL) was implemented as a tool for building and manipulating the object base. Rule-based knowledge representation is then used to simulate engineering design reasoning. Using a common object base, very large expert systems can be developed, comprised of small, individually processed, rule sets. The integration of these two schemes makes it easier to develop practical engineering expert systems. The general approach to applying this technology to the domain of the finite element analysis, design, and optimization of aerospace structures is discussed.

  11. Composite material bend-twist coupling for wind turbine blade applications

    NASA Astrophysics Data System (ADS)

    Walsh, Justin M.

    Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.

  12. Witchcraft illness in the Evuzok nosological system.

    PubMed

    Guimera, L M

    1978-12-01

    The Evuzok nosological system is structured with respect to two frames of reference, one designating illness as an empirical reality (descriptive subsystem), the other designating it according to its religious, magical and social significance (etiological subsystem). The articulation of these two subsystems is brought about in the process of diagnosis. Having examined this system as a whole, the author devotes his attention to a particular set of etiological categories, those which associate illness with witchcraft (nocturnal illnesses). He attempts to define their distinctive traits and, from this, to determine their common elemental structure. This study, based on a number of years of fieldwork, is part of an ongoing research program on African folk-medicine pursued by the Laboratoire d'Ethnologie et de Sociologie Comparative of the Université de Paris X.

  13. Image Navigation and Registration Performance Assessment Evaluation Tools for GOES-R ABI and GLM

    NASA Technical Reports Server (NTRS)

    Houchin, Scott; Porter, Brian; Graybill, Justin; Slingerland, Philip

    2017-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. This paper describes the software design and implementation of IPATS and provides preliminary test results.

  14. A chip-scale, telecommunications-band frequency conversion interface for quantum emitters.

    PubMed

    Agha, Imad; Ates, Serkan; Davanço, Marcelo; Srinivasan, Kartik

    2013-09-09

    We describe a chip-scale, telecommunications-band frequency conversion interface designed for low-noise operation at wavelengths desirable for common single photon emitters. Four-wave-mixing Bragg scattering in silicon nitride waveguides is used to demonstrate frequency upconversion and downconversion between the 980 nm and 1550 nm wavelength regions, with signal-to-background levels > 10 and conversion efficiency of ≈ -60 dB at low continuous wave input pump powers (< 50 mW). Finite element simulations and the split-step Fourier method indicate that increased input powers of ≈ 10 W (produced by amplified nanosecond pulses, for example) will result in a conversion efficiency > 25 % in existing geometries. Finally, we present waveguide designs that can be used to connect shorter wavelength (637 nm to 852 nm) quantum emitters with 1550 nm.

  15. Finite Element Analysis (FEA) in Design and Production.

    ERIC Educational Resources Information Center

    Waggoner, Todd C.; And Others

    1995-01-01

    Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)

  16. Development library of finite elements for computer-aided design system of reed sensors

    NASA Astrophysics Data System (ADS)

    Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.

    2018-05-01

    The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.

  17. Geosynchronous Orbit Determination Using Space Surveillance Network Observations and Improved Radiative Force Modeling

    DTIC Science & Technology

    2004-06-01

    equinoctial elements , because both sets of orbital elements reference the equinoctial coordinate system. In fact, to...spacecraft position and velocity vectors, or an element set , which represents the orbit using scalar quantities and angle measurements called orbital ...common element sets used to describe elliptical orbits (including circular orbits ) are Keplerian elements , also called classical orbital

  18. REACTOR CONTROL DEVICE

    DOEpatents

    Kaufman, H.B.; Weiss, A.A.

    1959-08-18

    A shadow control device for controlling a nuclear reactor is described. The device comprises a series of hollow neutron-absorbing elements arranged in groups, each element having a cavity for substantially housing an adjoining element and a longitudinal member for commonly supporting the groups of elements. Longitudinal actuation of the longitudinal member distributes the elements along its entire length in which position maximum worth is achieved.

  19. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1991-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.

  20. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  1. Nature Elements and Fundamental Motor Skill Development Opportunities at Five Elementary School Districts in British Columbia

    PubMed Central

    Lim, Christopher; Donovan, Andrew M.; Naylor, Patti-Jean

    2017-01-01

    The majority of Canadian children are not physically active enough for healthy development. School playgrounds are a primary location to promote physical activity and motor skill practice. The benefits of children’s play in nature have also been highlighted, but few studies have evaluated children’s access and exposure to nature for play on school grounds. This study examined children’s access to nature on school grounds and the opportunities afforded by those natural elements for motor skill practice. Results: Extensive naturescapes (multiple nature elements in one setting) were not common, and natural elements were limited, ranging from 1.97 to 5.71 elements/school. The most common element was a forested area (26.5% of all natural elements identified). In comparison to built structures, the number of natural elements was low. Some elements differed between school districts and appeared to be related to local geography and terrain (hilly, rocky terrain, tidal flats, etc.). Our assessment showed that naturescape elements afforded opportunities for the development of some key fundamental motor skills (FMS), specifically, locomotor and stability skills, but opportunities to develop manipulative skills were limited. To maximize potential FMS development, physical literacy, and psycho-social benefits, additional elements or more comprehensive multi-element naturescapes and facilitation (social or environmental) are recommended. PMID:29064430

  2. Nature Elements and Fundamental Motor Skill Development Opportunities at Five Elementary School Districts in British Columbia.

    PubMed

    Lim, Christopher; Donovan, Andrew M; Harper, Nevin J; Naylor, Patti-Jean

    2017-10-24

    The majority of Canadian children are not physically active enough for healthy development. School playgrounds are a primary location to promote physical activity and motor skill practice. The benefits of children's play in nature have also been highlighted, but few studies have evaluated children's access and exposure to nature for play on school grounds. This study examined children's access to nature on school grounds and the opportunities afforded by those natural elements for motor skill practice. Extensive naturescapes (multiple nature elements in one setting) were not common, and natural elements were limited, ranging from 1.97 to 5.71 elements/school. The most common element was a forested area (26.5% of all natural elements identified). In comparison to built structures, the number of natural elements was low. Some elements differed between school districts and appeared to be related to local geography and terrain (hilly, rocky terrain, tidal flats, etc.). Our assessment showed that naturescape elements afforded opportunities for the development of some key fundamental motor skills (FMS), specifically, locomotor and stability skills, but opportunities to develop manipulative skills were limited. To maximize potential FMS development, physical literacy, and psycho-social benefits, additional elements or more comprehensive multi-element naturescapes and facilitation (social or environmental) are recommended.

  3. Social research design: framework for integrating philosophical and practical elements.

    PubMed

    Cunningham, Kathryn Burns

    2014-09-01

    To provide and elucidate a comprehensible framework for the design of social research. An abundance of information exists concerning the process of designing social research. The overall message that can be gleaned is that numerable elements - both philosophical (ontological and epistemological assumptions and theoretical perspective) and practical (issue to be addressed, purpose, aims and research questions) - are influential in the process of selecting a research methodology and methods, and that these elements and their inter-relationships must be considered and explicated to ensure a coherent research design that enables well-founded and meaningful conclusions. There is a lack of guidance concerning the integration of practical and philosophical elements, hindering their consideration and explication. The author's PhD research into loneliness and cancer. This is a methodology paper. A guiding framework that incorporates all of the philosophical and practical elements influential in social research design is presented. The chronological and informative relationships between the elements are discussed. The framework presented can be used by social researchers to consider and explicate the practical and philosophical elements influential in the selection of a methodology and methods. It is hoped that the framework presented will aid social researchers with the design and the explication of the design of their research, thereby enhancing the credibility of their projects and enabling their research to establish well-founded and meaningful conclusions.

  4. A combinatorial approach to the design of vaccines.

    PubMed

    Martínez, Luis; Milanič, Martin; Legarreta, Leire; Medvedev, Paul; Malaina, Iker; de la Fuente, Ildefonso M

    2015-05-01

    We present two new problems of combinatorial optimization and discuss their applications to the computational design of vaccines. In the shortest λ-superstring problem, given a family S1,...,S(k) of strings over a finite alphabet, a set Τ of "target" strings over that alphabet, and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ target strings as substrings of S(i). In the shortest λ-cover superstring problem, given a collection X1,...,X(n) of finite sets of strings over a finite alphabet and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ elements of X(i) as substrings. The two problems are polynomially equivalent, and the shortest λ-cover superstring problem is a common generalization of two well known combinatorial optimization problems, the shortest common superstring problem and the set cover problem. We present two approaches to obtain exact or approximate solutions to the shortest λ-superstring and λ-cover superstring problems: one based on integer programming, and a hill-climbing algorithm. An application is given to the computational design of vaccines and the algorithms are applied to experimental data taken from patients infected by H5N1 and HIV-1.

  5. Failure Assessment of Brazed Structures

    NASA Technical Reports Server (NTRS)

    Flom, Yuri

    2012-01-01

    Despite the great advances in analytical methods available to structural engineers, designers of brazed structures have great difficulties in addressing fundamental questions related to the loadcarrying capabilities of brazed assemblies. In this chapter we will review why such common engineering tools as Finite Element Analysis (FEA) as well as many well-established theories (Tresca, von Mises, Highest Principal Stress, etc) don't work well for the brazed joints. This chapter will show how the classic approach of using interaction equations and the less known Coulomb-Mohr failure criterion can be employed to estimate Margins of Safety (MS) in brazed joints.

  6. Tolerancing aspheres based on manufacturing knowledge

    NASA Astrophysics Data System (ADS)

    Wickenhagen, S.; Kokot, S.; Fuchs, U.

    2017-10-01

    A standard way of tolerancing optical elements or systems is to perform a Monte Carlo based analysis within a common optical design software package. Although, different weightings and distributions are assumed they are all counting on statistics, which usually means several hundreds or thousands of systems for reliable results. Thus, employing these methods for small batch sizes is unreliable, especially when aspheric surfaces are involved. The huge database of asphericon was used to investigate the correlation between the given tolerance values and measured data sets. The resulting probability distributions of these measured data were analyzed aiming for a robust optical tolerancing process.

  7. Tolerancing aspheres based on manufacturing statistics

    NASA Astrophysics Data System (ADS)

    Wickenhagen, S.; Möhl, A.; Fuchs, U.

    2017-11-01

    A standard way of tolerancing optical elements or systems is to perform a Monte Carlo based analysis within a common optical design software package. Although, different weightings and distributions are assumed they are all counting on statistics, which usually means several hundreds or thousands of systems for reliable results. Thus, employing these methods for small batch sizes is unreliable, especially when aspheric surfaces are involved. The huge database of asphericon was used to investigate the correlation between the given tolerance values and measured data sets. The resulting probability distributions of these measured data were analyzed aiming for a robust optical tolerancing process.

  8. MIP sensors--the electrochemical approach.

    PubMed

    Malitesta, Cosimino; Mazzotta, Elisabetta; Picca, Rosaria A; Poma, Alessandro; Chianella, Iva; Piletsky, Sergey A

    2012-02-01

    This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.

  9. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 5: Catalog of IPAD technical program elements

    NASA Technical Reports Server (NTRS)

    Gillette, W. B. (Editor); Southall, J. W. (Editor)

    1973-01-01

    The catalog is presented of technical program elements which are required to support the design activities for a subsonic and supersonic commercial transport. Information for each element consists of usage and storage information, ownership, status and an abstract describing the purpose of the element.

  10. 25 CFR 301.5 - Applique elements in design.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false Applique elements in design. 301.5 Section 301.5 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.5 Applique elements in design. All such parts of the ornament are to be hand-made...

  11. 25 CFR 301.5 - Applique elements in design.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false Applique elements in design. 301.5 Section 301.5 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.5 Applique elements in design. All such parts of the ornament are to be hand-made...

  12. 25 CFR 301.5 - Applique elements in design.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false Applique elements in design. 301.5 Section 301.5 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.5 Applique elements in design. All such parts of the ornament are to be hand-made...

  13. 25 CFR 301.5 - Applique elements in design.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Applique elements in design. 301.5 Section 301.5 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.5 Applique elements in design. All such parts of the ornament are to be hand-made...

  14. 25 CFR 301.5 - Applique elements in design.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Applique elements in design. 301.5 Section 301.5 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.5 Applique elements in design. All such parts of the ornament are to be hand-made...

  15. Designing from minimum to optimum functionality

    NASA Astrophysics Data System (ADS)

    Bannova, Olga; Bell, Larry

    2011-04-01

    This paper discusses a multifaceted strategy to link NASA Minimal Functionality Habitable Element (MFHE) requirements to a compatible growth plan; leading forward to evolutionary, deployable habitats including outpost development stages. The discussion begins by reviewing fundamental geometric features inherent in small scale, vertical and horizontal, pressurized module configuration options to characterize applicability to meet stringent MFHE constraints. A proposed scenario to incorporate a vertical core MFHE concept into an expanded architecture to provide continuity of structural form and a logical path from "minimum" to "optimum" design of a habitable module. The paper describes how habitation and logistics accommodations could be pre-integrated into a common Hab/Log Module that serves both habitation and logistics functions. This is offered as a means to reduce unnecessary redundant development costs and to avoid EVA-intensive on-site adaptation and retrofitting requirements for augmented crew capacity. An evolutionary version of the hard shell Hab/Log design would have an expandable middle section to afford larger living and working accommodations. In conclusion, the paper illustrates that a number of cargo missions referenced for NASA's 4.0.0 Lunar Campaign Scenario could be eliminated altogether to expedite progress and reduce budgets. The plan concludes with a vertical growth geometry that provides versatile and efficient site development opportunities using a combination of hard Hab/Log modules and a hybrid expandable "CLAM" (Crew Lunar Accommodations Module) element.

  16. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 6: Lunar systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's two Office of Space Flight (Code M) Space Transfer Vehicle (STV) contractors supported development of Space Exploration Initiative (SEI) lunar transportation concepts. This work treated lunar SEI missions as the far end of a more near-term STV program, most of whose missions were satellite delivery and servicing requirements derived from Civil Needs Data Base (CNDB) projections. Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) began to address the complete design of a lunar transportation system. The following challenges were addressed: (1) the geometry of aerobraking; (2) accommodation of mixed payloads; (3) cryogenic propellant transfer in Low Lunar Orbit (LLO); (4) fully re-usable design; and (5) growth capability. The leveled requirements, derived requirements, and assumptions applied to the lunar transportation system design are discussed. The mission operations section includes data on mission analysis studies and performance parametrics as well as the operating modes and performance evaluations which include the STCAEM recommendations. Element descriptions for the lunar transportation family included are a listing of the lunar transfer vehicle/lunar excursion vehicle (LTV/LEV) components; trade studies and mass analyses of the transfer and excursion modules; advanced crew recovery vehicle (ACRV) (modified crew recovery vehicle (MCRV)) modifications required to fulfill lunar operations; the aerobrake shape and L/D to be used; and some costing methods and results. Commonality and evolution issues are also discussed.

  17. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less

  18. Views of People With High and Low Levels of Health Literacy About a Digital Intervention to Promote Physical Activity for Diabetes: A Qualitative Study in Five Countries.

    PubMed

    Rowsell, Alison; Muller, Ingrid; Murray, Elizabeth; Little, Paul; Byrne, Christopher D; Ganahl, Kristin; Müller, Gabriele; Gibney, Sarah; Lyles, Courtney R; Lucas, Antonia; Nutbeam, Don; Yardley, Lucy

    2015-10-12

    Low health literacy is associated with poor health-related knowledge, illness self-management, health service use, health, and survival, and thus addressing issues related to low health literacy has been highlighted as a pressing international priority. To explore views of a digital health promotion intervention designed to be accessible to people with lower levels of health literacy, in particular examining reactions to the interactive and audiovisual elements of the intervention. Qualitative think-aloud interviews were carried out with 65 adults with type 2 diabetes in the UK, Ireland, USA, Germany, and Austria, with purposive sampling to ensure representation of people with lower levels of health literacy. Inductive thematic analysis was used to identify common themes. We then systematically compared views in subgroups based on country, health literacy level, age, gender, and time since diagnosis. Most participants from the chosen countries expressed positive views of most elements and features of the intervention. Some interactive and audiovisual elements required modification to increase their usability and perceived credibility and relevance. There were some differences in views based on age and gender, but very few differences relating to health literacy level or time since diagnosis. In general, participants found the intervention content and format accessible, appropriate, engaging, and motivating. Digital interventions can and should be designed to be accessible and engaging for people with a wide range of health literacy levels.

  19. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.; Sadagov, Yuri M.

    2011-06-01

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.

  20. Modular System to Enable Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suit port technologies.

  1. Design and Performance Improvement of AC Machines Sharing a Common Stator

    NASA Astrophysics Data System (ADS)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm. Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.

  2. Modeling and design optimization of adhesion between surfaces at the microscale.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylves, Kevin T.

    2008-08-01

    This research applies design optimization techniques to structures in adhesive contact where the dominant adhesive mechanism is the van der Waals force. Interface finite elements are developed for domains discretized by beam elements, quadrilateral elements or triangular shell elements. Example analysis problems comparing finite element results to analytical solutions are presented. These examples are then optimized, where the objective is matching a force-displacement relationship and the optimization variables are the interface element energy of adhesion or the width of beam elements in the structure. Several parameter studies are conducted and discussed.

  3. Finite element analysis of a composite wheelchair wheel design

    NASA Technical Reports Server (NTRS)

    Ortega, Rene

    1994-01-01

    The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.

  4. A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive.

    PubMed

    Silva, Ryan; Bhatia, Swapnil; Densmore, Douglas

    2016-07-05

    Microfluidic devices, by definition, are required to move liquids from one physical location to another. Given a finite and frequently fixed set of physical channels to route fluids, a primitive design element that allows reconfigurable routing of that fluid from any of n input ports to any n output ports will dramatically change the paradigms by which these chips are designed and applied. Furthermore, if these elements are "regular" regarding their design, the programming and fabrication of these elements becomes scalable. This paper presents such a design element called a transposer. We illustrate the design, fabrication and operation of a single transposer. We then scale this design to create a programmable fabric towards a general-purpose, reconfigurable microfluidic platform analogous to the Field Programmable Gate Array (FPGA) found in digital electronics.

  5. A SINE in the genome of the cephalochordate amphioxus is an Alu element

    PubMed Central

    Holland, Linda Z.

    2006-01-01

    Transposable elements of about 300 bp, termed “short interspersed nucleotide elements or SINEs are common in eukaryotes. However, Alu elements, SINEs containing restriction sites for the AluI enzyme, have been known only from primates. Here I report the first SINE found in the genome of the cephalochordate, amphioxus. It is an Alu element of 375 bp that does not share substantial identity with any genomic sequences in vertebrates. It was identified because it was located in the FoxD regulatory region in a cosmid derived from one individual, but absent from the two FoxD alleles of BACs from a second individual. However, searches of sequences of BACs and genomic traces from this second individual gave an estimate of 50-100 copies in the amphioxus genome. The finding of an Alu element in amphioxus raises the question of whether Alu elements in amphioxus and primates arose by convergent evolution or by inheritance from a common ancestor. Genome-wide analyses of transposable elements in amphioxus and other chordates such as tunicates, agnathans and cartilaginous fishes could well provide the answer. PMID:16733535

  6. Challenges for Planning and Maintaining of Urban Rain Harvesting Systems- the case of Hammarby Sjöstad and Årstafältet in Stockholm

    NASA Astrophysics Data System (ADS)

    Suleiman, Lina

    2017-04-01

    Planners and policymakers' concern escalates over conventional systems dealing with rains in cities based on domination and control of nature rather than harmony and design with nature. A new spatial planning paradigm is needed to put in place systems which mimic natural water systems and promise multiple values instead of systems consider rain as a source of problem. However, such approach embodies significant planning challenges. Urban rain harvesting systems (URHs) are inherently viewed as 'sociotechnical' systems. As such, planning processes should consider the interdependence of 'social' and 'technical' aspects as essential elements if a transition towards sustainable urban water systems is to be realised. Drawing on a common understanding for what urban rain harvesting systems should deliver in terms of 'functions' and 'added values', a generic planning framework is developed to inform practitioners on how the 'socio' and 'technical' elements should be assimilated in a long-term and integrated planning processes of URHs. Using the developed framework, the paper examines the planning and maintenance processes of urban rain harvesting systems in Årstafältet and Hammarby Sjöstad respectively. Results show that planners lack a common operational understanding on how these systems should be designed holistically in a long term and integrated planning processes creating working gabs or positional conflicts. In practice, urban planners and water engineers look at these systems as either urban design component or water drainage system to deal with technical functions hindering a smooth transition path towards urban rain harvesting systems. The paper concludes on the urgency for reordering roles and relations within a new set-up organisation to incubate these systems in long-term planning and maintenance processes. Key words: 'Sociotechnical' system, Water, Planning, Urban Rain Harvesting systems (URHs), Hammarby Sjostad and Årstafältet

  7. Cigarette stick as valuable communicative real estate: a content analysis of cigarettes from 14 low-income and middle-income countries

    PubMed Central

    C Smith, Katherine; Washington, Carmen; Welding, Kevin; Kroart, Laura; Osho, Adami; Cohen, Joanna E

    2017-01-01

    Background The current cigarette market is heavily focused on low-income and middle-income countries. Branding of tobacco products is key to establishing and maintaining a customer base. Greater restrictions on marketing and advertising of tobacco products create an incentive for companies to focus more on branding via the product itself. We consider how tobacco sticks are used for communicative purposes in 14 low-income and middle-income countries with extensive tobacco markets. Methods In 2013, we collected and coded 3232 cigarette and kretek packs that were purchased from vendors in diverse neighbourhoods in 44 cities across the 14 low-income and middle-income countries with the greatest number of smokers. A single stick from each pack was assessed for branding, decorative and communicative elements using a common coding framework. Stick communication variables included brand name, brand image/logo, brand descriptor, colour and design carried through from pack, ‘capsule cigarette’ symbol, and embellishment of filter end. Results Communication and branding on the stick is essentially ubiquitous (99.75%); 97% of sticks include explicit branding (brand name or logo present). Colour is commonly carried through from the pack (95%), and some sticks (13%) include decorative elements matching the pack. Decorative elements can be found anywhere on the stick, including the filter tip (8%), and ‘convertible’ cigarettes include a symbol to show where to push. Conclusions Cigarette sticks are clearly valuable ‘real estate’ that tobacco companies are using for communicative purposes. Across all countries and brands, the stick communicates branding via text, colour and imagery. PMID:27534777

  8. Growth stimulation of Bacillus cereus and Pseudomonas putida using nanostructured ZnO thin film as transducer element

    NASA Astrophysics Data System (ADS)

    Loukanov, Alexandre; Filipov, Chavdar; Valcheva, Violeta; Lecheva, Marta; Emin, Saim

    2015-04-01

    The semiconductor zinc oxide nanomaterial (ZnO or ZnO:H) is widely used in advanced biosensor technology for the design of highly-sensitive detector elements for various applications. In the attempt to evaluate its effect on common microorganisms, two types of nanostructured transducer films have been used (average diameter 600-1000 nm). They have been prepared by using both wet sol-gel method and magnetron sputtering. Their polycrystalline structure and specific surface features have been analyzed by X-ray diffraction (XRD), scanning electron microscope, and atomic force microscope. The assessment of growth stimulation of bacteria was determined using epifluorescent microscope by cell staining with Live/Dead BacLight kit. In our experiments, the growth stimulation of Gram-positive and Gram-negative bacteria on nanostructured ZnO film is demonstrated by Bacillus cereus and Pseudomonas putida. These two bacterial species have been selected, because they are well known and studied in biosensor technologies, with structural difference of their cell walls. These pathogens are easy for with common source in the liquid food or some commercial products. Our data has revealed that the method of transducer film preparation influences strongly bacterial inhibition and division. These results present the transforming signal precisely, when ZnO is used in biosensor applications.

  9. 47 CFR 69.114 - Special access.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES... of equipment or facilities that are assigned to the Special Access element for purposes of... requirement for the Special Access element. (c) Charges for an individual element shall be assessed upon all...

  10. 47 CFR 51.501 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Pricing of Elements § 51.501 Scope. (a) The rules in this subpart apply to the pricing of network elements, interconnection, and methods of obtaining access to unbundled elements, including physical collocation and virtual...

  11. How Common is Common Use Facilities at Airports

    NASA Astrophysics Data System (ADS)

    Barbeau, Addison D.

    This study looked at common use airports across the country and at the implementation of common use facailities at airports. Common use consists of several elements that maybe installed at an airport. One of the elements is the self-service kiosks that allow passengers to have a faster check-in process, therefore moving them more quickly within the airport. Another element is signage and the incorporation of each airline's logo. Another aspect of common useis an airport regaining control of terminal gates by reducing the number of gates that are exclusively leased to a specific air carrier. This research focused on the current state of the common use facilities across the United States and examines the advantages and disadvantages of this approach. The research entailed interviews with personnel at a wide range of airports and found that each airport is in a different stage of implementation; some have fully implemented the common use concept while others are in the beginning stages of implementation. The questions were tailored to determine what the advantages and disadvantages are of a common use facility. The most common advantages reported included flexibility and cost. In the commom use system the airport reserves the right to move any airline to a different gate at any time for any reason. In turn, this helps reduce gates delays at that facility. For the airports that were interviewed no major disadvantages were reported. One down side of common use facilities for the airport involved is the major capital cost that is required to move to a common use system.

  12. A scanning proton microprobe study of stinging emergences from the leaf of the common stinging nettle urtica dioica l.

    NASA Astrophysics Data System (ADS)

    Hughes, N. P.; Perry, C. C.; Williams, R. J. P.; Watt, F.; Grime, G. W.

    1988-03-01

    Proton-induced X-ray emission (PIXE) combined with the Oxford scanning proton microprobe (SPM) was used to investigate the abundance and spatial distribution of inorganic elements in mineralising stinging emergences from the leaf of the Common Stinging Nettle, Urtica dioica L. Elemental maps and point analytical data were collected for emergences at two stages of maturity. In all emergences calcium and silicon were spatially organised and present at high concentration. The inorganic elements K, P, S and Mn were also spatially organised during mineralisation, but at maturity these elements were present only at background levels and then showed no specific localisation. The observed changes in the inorganic content of the emergences are obviously related to the mineralisation processes. The possible biochemical significance of the distribution of the elements is discussed.

  13. Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U

    NASA Technical Reports Server (NTRS)

    Righter, K.; Yang, S.; Humayun, M.

    2016-01-01

    Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.

  14. Recent Developments In High Speed Lens Design At The NPRL

    NASA Astrophysics Data System (ADS)

    Mcdowell, M. W.; Klee, H. W.

    1987-09-01

    Although the lens provides the link between the high speed camera and the outside world, there has over the years been little evidence of co-operation between the optical design and high speed photography communities. It is still only too common for a manufacturer to develop a camera of improved performance and resolution and then to combine this with a standard camera lens. These lenses were often designed for a completely different recording medium and, more often than not, their use results in avoidable degradation of the overall system performance. There is a tendency to assume that a specialized lens would be too expensive and that pushing the aperture automatically implies more complex optical systems. In the present paper some recent South African developments in the design of large aperture lenses are described. The application of a new design principle, based on the work earlier this century of Bernhard Schmidt, shows that ultra-fast lenses need not be overly complex and a basic four-element lens configuration can be adapted to a wide variety of applications.

  15. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  16. Lumped element filters for electronic warfare systems

    NASA Astrophysics Data System (ADS)

    Morgan, D.; Ragland, R.

    1986-02-01

    Increasing demands which future generations of electronic warfare (EW) systems are to satisfy include a reduction in the size of the equipment. The present paper is concerned with lumped element filters which can make a significant contribution to the downsizing of advanced EW systems. Lumped element filter design makes it possible to obtain very small package sizes by utilizing classical low frequency inductive and capacitive components which are small compared to the size of a wavelength. Cost-effective, temperature-stable devices can be obtained on the basis of new design techniques. Attention is given to aspects of design flexibility, an interdigital filter equivalent circuit diagram, conditions for which the use of lumped element filters can be recommended, construction techniques, a design example, and questions regarding the application of lumped element filters to EW processing systems.

  17. Towards the identification of the common features of bacterial biofilm development.

    PubMed

    Lasa, Iñigo

    2006-03-01

    Microorganisms can live and proliferate as individual cells swimming freely in the environment, or they can grow as highly organized, multicellular communities encased in a self-produced polymeric matrix in close association with surfaces and interfaces. This microbial lifestyle is referred to as biofilms. The intense search over the last few years for factors involved in biofilm development has revealed that distantly related bacterial species recurrently make use of the same elements to produce biofilms. These common elements include a group of proteins containing GGDEF/EAL domains, surface proteins homologous to Bap of Staphylococcus aureus, and some types of exopolysaccharides, such as cellulose and the poly-beta-1,6-N-acetylglucosamine. This review summarizes current knowledge about these three common elements and their role in biofilm development.

  18. Identifying Effective Treatments from a Brief Experimental Analysis: Using a Single-Case Design Elements To Aid Decision Making.

    ERIC Educational Resources Information Center

    Martens, Brian K.; Eckert, Tanya L.; Bradley, Tracy A.; Ardoin, Scott P.

    1999-01-01

    Discusses the benefits of using brief experimental analysis to aid in treatment selection, identifies the forms of treatment that are most appropriate for this type of analysis, and describes key design elements for comparing treatments. Presents a study demonstrating the use of these design elements to identify an effective intervention for two…

  19. Stiffness Parameter Design of Suspension Element of Under-Chassis-Equipment for A Rail Vehicle

    NASA Astrophysics Data System (ADS)

    Ma, Menglin; Wang, Chengqiang; Deng, Hai

    2017-06-01

    According to the frequency configuration requirements of the vibration of railway under-chassis-equipment, the three- dimension stiffness of the suspension elements of under-chassis-equipment is designed based on the static principle and dynamics principle. The design results of the concrete engineering case show that, compared with the design method based on the static principle, the three- dimension stiffness of the suspension elements designed by the dynamic principle design method is more uniform. The frequency and decoupling degree analysis show that the calculation frequency of under-chassis-equipment under the two design methods is basically the same as the predetermined frequency. Compared with the design method based on the static principle, the design method based on the dynamic principle is adopted. The decoupling degree can be kept high, and the coupling vibration of the corresponding vibration mode can be reduced effectively, which can effectively reduce the fatigue damage of the key parts of the hanging element.

  20. Periodical Microstructures Based on Novel Piezoelectric Material for Biomedical Applications.

    PubMed

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Prosycevas, Igoris; Vilkauskas, Andrius; Palevicius, Arvydas

    2015-12-15

    A novel cantilever type piezoelectric sensing element was developed. Cost-effective and simple fabrication design allows the use of this element for various applications in the areas of biomedicine, pharmacy, environmental analysis and biosensing. This paper proposes a novel piezoelectric composite material whose basic element is PZT and a sensing platform where this material was integrated. Results showed that a designed novel cantilever-type element is able to generate a voltage of up to 80 µV at 50 Hz frequency. To use this element for sensing purposes, a four micron periodical microstructure was imprinted. Silver nanoparticles were precipitated on the grating to increase the sensitivity of the designed element, i.e., Surface Plasmon Resonance (SPR) effect appears in the element. To tackle some issues (a lack of sensitivity, signal delays) the element must have certain electronic and optical properties. One possible solution, proposed in this paper, is a combination of piezoelectricity and SPR in a single element.

  1. Engine System Loads Analysis Compared to Hot-Fire Data

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Jennings, John M.; Mims, Katherine; Brunty, Joseph; Christensen, Eric R.; McConnaughey, Paul R. (Technical Monitor)

    2002-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the NASA MC-1 engine program, the focus was to reduce the cost-to-weight ratio. The techniques for structural dynamics analysis practices, were tailored in this program to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of MC-1 load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are important during the design and integration of a new engine system. During the final stages of development, it is important to verify the results of an engine system model to determine the validity of the results. During the final stages of the MC-1 program, hot-fire test results were obtained and compared to the structural design loads calculated by the engine system model. These comparisons are presented in this paper.

  2. Design and Analysis of AN Static Aeroelastic Experiment

    NASA Astrophysics Data System (ADS)

    Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang

    2016-06-01

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.

  3. Optimizing the Design of Preprinted Orders for Ambulatory Chemotherapy: Combining Oncology, Human Factors, and Graphic Design

    PubMed Central

    Jeon, Jennifer; White, Rachel E.; Hunt, Richard G.; Cassano-Piché, Andrea L.; Easty, Anthony C.

    2012-01-01

    Purpose: To establish a set of guidelines for developing ambulatory chemotherapy preprinted orders. Methods: Multiple methods were used to develop the preprinted order guidelines. These included (A) a comprehensive literature review and an environmental scan; (B) analyses of field study observations and incident reports; (C) critical review of evidence from the literature and the field study observation analyses; (D) review of the draft guidelines by a clinical advisory group; and (E) collaboration with graphic designers to develop sample preprinted orders, refine the design guidelines, and format the resulting content. Results: The Guidelines for Developing Ambulatory Chemotherapy Preprinted Orders, which consist of guidance on the design process, content, and graphic design elements of ambulatory chemotherapy preprinted orders, have been established. Conclusion: Health care is a safety critical, dynamic, and complex sociotechnical system. Identifying safety risks in such a system and effectively addressing them often require the expertise of multiple disciplines. This study illustrates how human factors professionals, clinicians, and designers can leverage each other's expertise to uncover commonly overlooked patient safety hazards and to provide health care professionals with innovative, practical, and user-centered tools to minimize those hazards. PMID:23077436

  4. Optimizing the design of preprinted orders for ambulatory chemotherapy: combining oncology, human factors, and graphic design.

    PubMed

    Jeon, Jennifer; White, Rachel E; Hunt, Richard G; Cassano-Piché, Andrea L; Easty, Anthony C

    2012-03-01

    To establish a set of guidelines for developing ambulatory chemotherapy preprinted orders. Multiple methods were used to develop the preprinted order guidelines. These included (A) a comprehensive literature review and an environmental scan; (B) analyses of field study observations and incident reports; (C) critical review of evidence from the literature and the field study observation analyses; (D) review of the draft guidelines by a clinical advisory group; and (E) collaboration with graphic designers to develop sample preprinted orders, refine the design guidelines, and format the resulting content. The Guidelines for Developing Ambulatory Chemotherapy Preprinted Orders, which consist of guidance on the design process, content, and graphic design elements of ambulatory chemotherapy preprinted orders, have been established. Health care is a safety critical, dynamic, and complex sociotechnical system. Identifying safety risks in such a system and effectively addressing them often require the expertise of multiple disciplines. This study illustrates how human factors professionals, clinicians, and designers can leverage each other's expertise to uncover commonly overlooked patient safety hazards and to provide health care professionals with innovative, practical, and user-centered tools to minimize those hazards.

  5. Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, H.; Keller, J.; Guo, Y.

    2013-04-01

    Gearboxes in wind turbines have not been achieving their expected design life even though they commonly meet or exceed the design criteria specified in current design standards. One of the basic premises of the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is that the low gearbox reliability results from the absence of critical elements in the design process or insufficient design tools. Key goals of the GRC are to improve design approaches and analysis tools and to recommend practices and test methods resulting in improved design standards for wind turbine gearboxes that lower the cost of energy (COE)more » through improved reliability. The GRC uses a combined gearbox testing, modeling and analysis approach, along with a database of information from gearbox failures collected from overhauls and investigation of gearbox condition monitoring techniques to improve wind turbine operations and maintenance practices. Testing of Gearbox 2 (GB2) using the two-speed turbine controller that has been used in prior testing. This test series will investigate non-torque loads, high-speed shaft misalignment, and reproduction of field conditions in the dynamometer. This test series will also include vibration testing using an eddy-current brake on the gearbox's high speed shaft.« less

  6. 47 CFR 69.119 - Basic service element expedited approval process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Basic service element expedited approval process. 69.119 Section 69.119 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.119 Basic service element...

  7. Gender Imputation

    ERIC Educational Resources Information Center

    National Student Clearinghouse, 2013

    2013-01-01

    In late 2007, the National Student Clearinghouse (NSC) expanded its Enrollment Reporting service to include several additional data elements (commonly referred to as the "A2" or "expanded" data elements). One of these expanded data elements is student gender. Although gender is potentially important to a number of research…

  8. Design sensitivity analysis with Applicon IFAD using the adjoint variable method

    NASA Technical Reports Server (NTRS)

    Frederick, Marjorie C.; Choi, Kyung K.

    1984-01-01

    A numerical method is presented to implement structural design sensitivity analysis using the versatility and convenience of existing finite element structural analysis program and the theoretical foundation in structural design sensitivity analysis. Conventional design variables, such as thickness and cross-sectional areas, are considered. Structural performance functionals considered include compliance, displacement, and stress. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. That is, design sensitivity analysis software does not have to be imbedded in an existing finite element code. The finite element structural analysis program used in the implementation presented is IFAD. Feasibility of the method is shown through analysis of several problems, including built-up structures. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of a finite difference perturbation.

  9. Stiffness of reinforced concrete walls resisting in-place shear -- Tier 2: Aging and durability of concrete used in nuclear power plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, P.J.M.; Moehle, J.P.

    1995-12-01

    Reinforced concrete walls are commonly used in power-plant construction to resist earthquake effects. Determination of wall stiffness is of particular importance for establishing design forces on attached equipment. Available experimental data indicate differences between the measured and calculated stiffness of walls in cases where concrete mechanical properties are well defined. Additional data indicate that in-situ concrete mechanical properties may differ significantly from those specified in design. The work summarized in this report was undertaken to investigate the mechanical properties of concrete considering aging and deterioration. Existing data on mechanical properties of concrete are evaluated, and new tests are carried outmore » on concrete cylinders batched for nuclear power plants and stored under controlled conditions for up to twenty years. It is concluded that concretes batched for nuclear power plants commonly have 28-day strength that exceeds the design value by at least 1000 psi. Under curing conditions representative of those in the interior of thick concrete elements, strength gain with time can be estimated conservatively using the expression proposed by ACI Committee 209, with strengths at 25 years being approximately 1.3 times the 28-day strength. Young`s modulus can be estimated using the expression given by ACI Committee 318. Variabilities in mechanical properties are identified. A review of concrete durability identified the main causes and results of concrete deterioration that are relevant for the class of concretes and structures commonly used in nuclear power plants. Prospects for identifying the occurrence and predicting the extent of deterioration are discussed.« less

  10. Liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. [design techniques and practices

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development of and operational programs for effective use in design are presented for liquid rocket pressure regulators, relief valves, check valves, burst disks, and explosive valves. A review of the total design problem is presented, and design elements are identified which are involved in successful design. Current technology pertaining to these elements is also described. Design criteria are presented which state what rule or standard must be imposed on each essential design element to assure successful design. These criteria serve as a checklist of rules for a project manager to use in guiding a design or in assessing its adequacy. Recommended practices are included which state how to satisfy each of the criteria.

  11. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.

    1993-01-01

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.

  12. Broadband diffractive lens or imaging element

    DOEpatents

    Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.

    1993-10-26

    A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.

  13. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  14. Financing of Schools as a Function of State Departments of Education. Bulletin, 1940, No. 6. Monograph No. 3

    ERIC Educational Resources Information Center

    Covert, Timon

    1941-01-01

    Because of the individual authority of each State for its own educational program, practices and policies differ widely among them in many respects. Yet in the midst of differences there are also common elements of development. The U. S. Office of Education, in presenting this series of monographs, has attempted to point out those common elements,…

  15. The Zero-Degree Detector System

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Howell, Leonard W.; Kouznetsov, Evgueni

    2006-01-01

    We will report on a detector system used for accelerator measurement of nuclear fragmentation cross sections. This system consists of two detector planes, each carrying a ring of 8 detectors. Each detector has 64 pads. These two detector planes are arranged facing each other so that the matching detector pads on each plane form a two element charged particle telescope. Each of these telescopes is capable of determining the elemental identity of nuclear fragments passing through it. The system is used to measure light fragment production in the presence of heavier fragments. We will present a detailed discussion of the 64-pad detector design, the substrate design. The front-end electronics used to read out the signals is based on a custom VLSI chip developed for the Advanced Thin Ionization Calorimeter experiment which has been flown successfully twice in Antarctica. Each of these chips has 16 channels and each channel consists of a charge-sensitive preamplifier followed by a shaping amplifier and a track-and-hold circuit. The track-and-hold circuits are connected via a multiplexer to an output line driver. This allows the held signals to be presented, one-by-one via a common data line to a analog-to-digital converter. Because the output line driver can be placed in a high input impedance state when not in use, it is possible to daisy-change many chips on the same common data line. The front-end electronics and data readout scheme will be discussed in detail. The Zero Degree Detector has been used in several accelerator experiments conducted at the NASA Space Radiation Laboratory and the Alternating Gradient Synchrotron at Brookhaven National Laboratory as well as at the HIMAC accelerator in Japan. We will show examples of data taken at these accelerator runs to demonstrate how the system works.

  16. 77 FR 37471 - National Automotive Sampling System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... a comprehensive review of the National Automotive Sampling System (NASS) research design and data... comment on the current data elements, propose new data elements, make suggestions on the research design... should consider to improve crash data. Current NASS data elements, coding instructions, and descriptive...

  17. Space-Based Space Surveillance Logistics Case Study: A Qualitative Product Support Element Analysis

    DTIC Science & Technology

    2017-12-01

    Facilities and Infrastructure. Product Support Management and Design Interface are also covered, but only in a general manner. Conclusions from the study...core analysis, with the overarching two elements ( Design Interface and Product Support Management) mentioned briefly. G. THESIS STATEMENT This...were implemented. The two overarching elements of Product Support Management and Design Interface will be discussed briefly in the findings section

  18. Research on the relationship between the elements and pharmacological activities in velvet antler using factor analysis and cluster analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Libing

    2017-04-01

    Velvet antler has certain effect on improving the body's immune cells and the regulation of immune system function, nervous system, anti-stress, anti-aging and osteoporosis. It has medicinal applications to treat a wide range of diseases such as tissue wound healing, anti-tumor, cardiovascular disease, et al. Therefore, the research on the relationship between pharmacological activities and elements in velvet antler is of great significance. The objective of this study was to comprehensively evaluate 15 kinds of elements in different varieties of velvet antlers and study on the relationship between the elements and traditional Chinese medicine efficacy for the human. The factor analysis and the factor cluster analysis methods were used to analyze the data of elements in the sika velvet antler, cervus elaphus linnaeus, flower horse hybrid velvet antler, apiti (elk) velvet antler, male reindeer velvet antler and find out the relationship between 15 kinds of elements including Ca, P, Mg, Na, K, Fe, Cu, Mn, Al, Ba, Co, Sr, Cr, Zn and Ni. Combining with MATLAB2010 and SPSS software, the chemometrics methods were made on the relationship between the elements in velvet antler and the pharmacological activities. The first commonality factor F1 had greater load on the indexes of Ca, P, Mg, Co, Sr and Ni, and the second commonality factor F2 had greater load on the indexes of K, Mn, Zn and Cr, and the third commonality factor F3 had greater load on the indexes of Na, Cu and Ba, and the fourth commonality factor F4 had greater load on the indexes of Fe and Al. 15 kinds of elements in velvet antler in the order were elk velvet antler>flower horse hybrid velvet antler>cervus elaphus linnaeus>sika velvet antler>male reindeer velvet antler. Based on the factor analysis and the factor cluster analysis, a model for evaluating traditional Chinese medicine quality was constructed. These studies provide the scientific base and theoretical foundation for the future large-scale rational relation development of velvet antler resources as well as the relationship between the elements and traditional Chinese medicine efficacy for the human.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chanyoung; Kim, Nam H.

    Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less

  20. Space Station Freedom power management and distribution design status

    NASA Technical Reports Server (NTRS)

    Javidi, S.; Gholdston, E.; Stroh, P.

    1989-01-01

    The design status of the power management and distribution electric power system for the Space Station Freedom is presented. The current design is a star architecture, which has been found to be the best approach for meeting the requirement to deliver 120 V dc to the user interface. The architecture minimizes mass and power losses while improving element-to-element isolation and system flexibility. The design is partitioned into three elements: energy collection, storage and conversion, system protection and distribution, and management and control.

  1. Habitability design elements for a space station

    NASA Technical Reports Server (NTRS)

    Dalton, M. C.

    1983-01-01

    Habitability in space refers to the components, characteristics, conditions, and design parameters that go beyond but include the basic life sustaining requirements. Elements of habitability covered include internal environment, architecture, mobility and restraint, food, clothing, personal hygiene, housekeeping, communications, and crew activities. All elements are interrelated and need to be treated as an overall discipline. Designing for a space station is similar to designing on earth but with 'space rules' instead of ground rules. It is concluded that some habitability problems require behavioral science solutions.

  2. The time course of perceptual grouping: the role of segregation and shape formation.

    PubMed

    Razpurker-Apfeld, Irene; Kimchi, Ruth

    2007-07-01

    The time course of perceptual grouping was examined in two experiments, using a primed matching task. In different conditions, elements were grouped into columns/rows by common lightness, into a shape (triangle/ arrow or square/cross) by common lightness, and into a shape without segregation of elements. The results showed an early and rapid grouping into columns/rows by common lightness and into a shape when no segregation from other elements was involved. Goodness of shape (i.e., triangle/arrow vs. square/cross) had no influence on how early grouping was evident, but the relatively poorer shapes appeared to consolidate with time. In contrast, grouping into a shape that involved segregation and required resolving figure-ground relations between segregated units, as grouping into a shape by common lightness, consumed time, regardless of shape goodness. These results suggest that the time course of grouping varies as a function of the processes involved in it (e.g., segregation and shape formation) and the conditions prevailing for each process.

  3. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  4. Common trends in elements? Within- and between-tree variations of wood-chemistry measured by X-ray fluorescence - A dendrochemical study.

    PubMed

    Scharnweber, Tobias; Hevia, Andrea; Buras, Allan; van der Maaten, Ernst; Wilmking, Martin

    2016-10-01

    Element composition of annually resolved tree-rings constitutes a promising biological proxy for reconstructions of environmental conditions and pollution history. However, several methodological and physiological issues have to be addressed before sound conclusions can be drawn from dendrochemical time series. For example, radial and vertical translocation processes of elements in the wood might blur or obscure any dendrochemical signal. In this study, we tested the degree of synchronism of elemental time series within and between trees of one coniferous (Pinus sylvestris L.) and one broadleaf (Castanea sativa Mill.) species growing in conventionally managed forests without direct pollution sources in their surroundings. Micro X-ray fluorescence (μXRF) analysis was used to establish time series of relative concentrations of multiple elements (Mg, Al, P, Cl, K, Ca, Cr, Mn, Fe and Ni) for different stem heights and stem exposures. We found a common long-term (decadal) trend for most elements in both species, but only little coherence in the high frequency domain (inter-annual variations). Aligning the element curves by cambial age instead of year of ring formation reduced the standard deviations between the single measurements. This points at an influence of age on longer term trends and would require a detrending in order to extract any environmental signal from dendrochemical time series. The common signal was stronger for pine than for chestnut. In pine, many elements show a concentration gradient with higher values towards the tree crown. Mobility of elements in the stem leading to high within- and between-tree variability, as well as a potential age-trend apparently complicate the establishment of reliable dendrochemical chronologies. For future wood-chemical studies, we recommend to work with element ratios instead of single element time series, to consider potential age trends and to analyze more than one sample per tree to account for internal variability. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The NASA/Industry Design Analysis Methods for Vibrations (DAMVIBS) Program - A government overview. [of rotorcraft technology development using finite element method

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    1992-01-01

    An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.

  6. Design of horizontal-axis wind turbine using blade element momentum method

    NASA Astrophysics Data System (ADS)

    Bobonea, Andreea; Pricop, Mihai Victor

    2013-10-01

    The study of mathematical models applied to wind turbine design in recent years, principally in electrical energy generation, has become significant due to the increasing use of renewable energy sources with low environmental impact. Thus, this paper shows an alternative mathematical scheme for the wind turbine design, based on the Blade Element Momentum (BEM) Theory. The results from the BEM method are greatly dependent on the precision of the lift and drag coefficients. The basic of BEM method assumes the blade can be analyzed as a number of independent element in spanwise direction. The induced velocity at each element is determined by performing the momentum balance for a control volume containing the blade element. The aerodynamic forces on the element are calculated using the lift and drag coefficient from the empirical two-dimensional wind tunnel test data at the geometric angle of attack (AOA) of the blade element relative to the local flow velocity.

  7. Contaminants in molting long-tailed ducks and nesting common eiders in the Beaufort Sea

    USGS Publications Warehouse

    Franson, J.C.; Hollmén, Tuula E.; Flint, Paul L.; Grand, J.B.; Lanctot, Richard B.

    2004-01-01

    In 2000, we collected blood from long-tailed ducks (Clangula hyemalis) and blood and eggs from common eiders (Somateria mollissima) at near-shore islands in the vicinity of Prudhoe Bay, Alaska, and at a reference area east of Prudhoe Bay. Blood was analyzed for trace elements and egg contents were analyzed for trace elements, organochlorine pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Except for Se (mean=36.1 ??g/g dry weight (dw) in common eiders and 48.8 ??g/g dw in long-tailed ducks), concentrations of trace elements in blood were low and, although several trace elements differed between areas, they were not consistently higher at one location. In long-tailed ducks, Se in blood was positively correlated with activities of two serum enzymes, suggestive of an adverse effect of increasing Se levels on the liver. Although common eiders had high Se concentrations in their blood, Se residues in eggs were low (mean=2.28 ??g/g dw). Strontium and Ni were higher in eggs near Prudhoe Bay than at the reference area, but none of the other trace elements or organic contaminants in eggs differed between locations. Concentrations of Ca, Sr, Mg, and Ni differed among eggs having no visible development, early-stage embryos, or late-stage embryos. Residues of 4,4???-DDE, cis-nonachlor, dieldrin, hexachlorobenzene, oxychlordane, and trans-nonachlor were found in 100% of the common eider eggs, but at low concentrations (means of 2.35-7.45 ??g/kg wet weight (ww)). The mean total PCB concentration in eggs was 15.12 ??g/kg ww. Of PAHs tested for, residues of 1- and 2-methylnaphthalene and naphthalene were found in 100% of the eggs, at mean concentrations of 0.36-0.89 ??g/kg ww.

  8. Trace elements in magnetite as petrogenetic indicators

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges; Méric, Julien; Boutroy, Emilie; Potvin-Doucet, Christophe

    2014-10-01

    We have characterized the distribution of 25 trace elements in magnetite (Mg, Al, Si, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Sn, Hf, Ta, W, and Pb), using laser ablation ICP-MS and electron microprobe, from a variety of magmatic and hydrothermal ore-forming environments and compared them with data from the literature. We propose a new multielement diagram, normalized to bulk continental crust, designed to emphasize the partitioning behavior of trace elements between magnetite, the melt/fluid, and co-crystallizing phases. The normalized pattern of magnetite reflects the composition of the melt/fluid, which in both magmatic and hydrothermal systems varies with temperature. Thus, it is possible to distinguish magnetite formed at different degrees of crystal fractionation in both silicate and sulfide melts. The crystallization of ilmenite or sulfide before magnetite is recorded as a marked depletion in Ti or Cu, respectively. The chemical signature of hydrothermal magnetite is distinct being depleted in elements that are relatively immobile during alteration and commonly enriched in elements that are highly incompatible into magnetite (e.g., Si and Ca). Magnetite formed from low-temperature fluids has the lowest overall abundance of trace elements due to their lower solubility. Chemical zonation of magnetite is rare but occurs in some hydrothermal deposits where laser mapping reveals oscillatory zoning, which records the changing conditions and composition of the fluid during magnetite growth. This new way of plotting all 25 trace elements on 1 diagram, normalized to bulk continental crust and elements in order of compatibility into magnetite, provides a tool to help understand the processes that control partitioning of a full suit of trace elements in magnetite and aid discrimination of magnetite formed in different environments. It has applications in both petrogenetic and provenance studies, such as in the exploration of ore deposits and in sedimentology.

  9. The Overshoot Phenomenon in Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.

  10. Bearing design - Historical aspects, present technology and future problems; Proceedings of the International Conference, San Francisco, CA, August 18-21, 1980

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1980-01-01

    The considered investigations deal with some of the more important present day and future bearing requirements, and design methodologies available for coping with them. Solutions to many forthcoming bearing problems lie in the utilization of the most advanced materials, design methods, and lubrication techniques. Attention is given to materials for rolling element bearings, numerical analysis techniques and design methodology for rolling element bearing load support systems, lubrication of rolling element bearings, journal bearing design for high speed turbomachinery, design and energy losses in the case of turbulent flow bearings, and fluid film bearing response to dynamic loading.

  11. 77 FR 66483 - Public Comment on the Draft Federal Urban Design Element and the Draft Update to the Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... NCPC review required by law. The new Federal Urban Design Element provides policies that will guide the... Historic Features Element will be available online at http://www.ncpc.gov/compplan not later than November...

  12. [Systemic therapies--a contribution to psychotherapy integration].

    PubMed

    Schiepek, Günter

    2012-06-01

    Some converging lines from neuroscience, neurobiological psychotherapy research, process-outcome-research, internet-based change monitoring and the systems and complexity sciences actually allow for an open and generic definition of systemic therapies. The "family" of systemic therapies as designed here is not restricted to the field of psychotherapy. It is a scientifically founded and engaged, bio-psycho-social multi-level approach to a common or integrative psychotherapy, not restricted to a psychotherapeutic confession or exclusively to family or couples therapy. A core element of systemic therapy is the support of self-organizing processes and the use of data-driven feedback tools. The conclusion goes to a modified concept of evidence-based practice and, vice versa, practice-based evidence, to an integration of the medical model and the common factors model into a self-organization theory of human change processes, and to a list of criteria for scientifically based practice in psychotherapy. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Enhanced Low-Enriched Uranium Fuel Element for the Advanced Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, M. A.; DeHart, M. D.; Morrell, S. R.

    2015-03-01

    Under the current US Department of Energy (DOE) policy and planning scenario, the Advanced Test Reactor (ATR) and its associated critical facility (ATRC) will be reconfigured to operate on low-enriched uranium (LEU) fuel. This effort has produced a conceptual design for an Enhanced LEU Fuel (ELF) element. This fuel features monolithic U-10Mo fuel foils and aluminum cladding separated by a thin zirconium barrier. As with previous iterations of the ELF design, radial power peaking is managed using different U-10Mo foil thicknesses in different plates of the element. The lead fuel element design, ELF Mk1A, features only three fuel meat thicknesses,more » a reduction from the previous iterations meant to simplify manufacturing. Evaluation of the ELF Mk1A fuel design against reactor performance requirements is ongoing, as are investigations of the impact of manufacturing uncertainty on safety margins. The element design has been evaluated in what are expected to be the most demanding design basis accident scenarios and has met all initial thermal-hydraulic criteria.« less

  14. Magnetic quench antenna for MQXF quadrupoles

    DOE PAGES

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...

    2016-12-21

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  15. Magnetic quench antenna for MQXF quadrupoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren

    High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less

  16. Affordable Development and Demonstration of a Small NTR engine and Stage: A Preliminary NASA, DOE, and Industry Assessment

    NASA Technical Reports Server (NTRS)

    Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G; Werner, J.; Weitzberg, A.; Joyner, C. R.

    2015-01-01

    In FY'11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program A strategy was outlined by GRC and NASA HQ that included 2 key elements -"Foundational Technology Development" followed by specific "Technology Demonstration" projects. The "Technology Demonstration "element proposed ground technology demonstration (GTD) testing in the early 2020's, followed by a flight technology demonstration (FTD) mission by approx. 2025. In order to reduce development costs, the demonstration projects would focus on developing a small, low thrust (approx. 7.5 -16.5 klb(f)) engine that utilizes a "common" fuel element design scalable to the higher thrust (approx. 25 klb(f)) engines used in NASA's Mars DRA 5.0 study(NASA-SP-2009-566). Besides reducing development costs and allowing utilization of existing, flight proven engine hard-ware (e.g., hydrogen pumps and nozzles), small, lower thrust ground and flight demonstration engines can validate the technology and offer improved capability -increased payloads and decreased transit times -valued for robotic science missions identified in NASA's Decadal Study.

  17. Design and integration of ethnography within an international behavior change HIV/sexually transmitted disease prevention trial

    PubMed Central

    2008-01-01

    Objective To use a common ethnographic study protocol across five countries to provide data to confirm social and risk settings and risk behaviors, develop the assessment instruments, tailor the intervention, design a process evaluation of the intervention, and design an understandable informed consent process. Design Methods determined best for capturing the core data elements were selected. Standards for data collection methods were established to enable comparable implementation of the ethnographic study across the five countries. Methods The methods selected were participant observation, focus groups, open-ended interviews, and social mapping. Standards included adhering to core data elements, number of participants, mode of data collection, type of data collection instrument, number of data collectors at each type of activity, duration of each type of activity, and type of informed consent administered. Sites had discretion in selecting which methods to use to obtain specific data. Results The ethnographic studies provided input to the Trial’s methods for data collection, described social groups in the target communities, depicted sexual practices, and determined core opinion leader characteristics; thus providing information that drove the adaptation of the intervention and facilitated the selection of venues, behavioral outcomes, and community popular opinion leaders (C-POLs). Conclusion The described rapid ethnographic approach worked well across the five countries, where findings allowed local adaptation of the intervention. When introducing the C-POL intervention in new areas, local non-governmental and governmental community and health workers can use this rapid ethnographic approach to identify the communities, social groups, messages, and C-POLs best suited for local implementation. PMID:17413263

  18. Ka-Band Multibeam Aperture Phased Array Being Developed

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements fail. The arrays can be constructed to conform to a mounting surface, and multibeam capability is integral to the design. However, there are challenges for mission designers using monolithic-microwave-integrated-circuit- (MMIC-) based arrays because of reduced power efficiency, higher costs, and certain system effects that result in link degradations. The multibeam aperture phased-array antenna development is attempting to address some of these issues, particularly manufacturing, costs, and system performance.

  19. Health Behavior Theory in Physical Activity Game Apps: A Content Analysis

    PubMed Central

    Moxley, Victor BA; MacDonald, Elizabeth

    2015-01-01

    Background Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). Objective The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. Methods We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. Results The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. Conclusions There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend themselves well to inclusion of theory and any constructs found in significant levels are coincidental. Health games developed for mobile phones could be potentially used in health interventions, but collaboration between app designers and behavioral specialists is crucial. Additionally, further research is needed to better characterize mobile phone health games and the relative importance of educational elements versus gamification elements in long-term behavior change. PMID:26168926

  20. Health Behavior Theory in Physical Activity Game Apps: A Content Analysis.

    PubMed

    Payne, Hannah E; Moxley, Victor Ba; MacDonald, Elizabeth

    2015-07-13

    Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend themselves well to inclusion of theory and any constructs found in significant levels are coincidental. Health games developed for mobile phones could be potentially used in health interventions, but collaboration between app designers and behavioral specialists is crucial. Additionally, further research is needed to better characterize mobile phone health games and the relative importance of educational elements versus gamification elements in long-term behavior change.

  1. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed

    Rothwell, Patrick E

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction.

  2. Autism Spectrum Disorders and Drug Addiction: Common Pathways, Common Molecules, Distinct Disorders?

    PubMed Central

    Rothwell, Patrick E.

    2016-01-01

    Autism spectrum disorders (ASDs) and drug addiction do not share substantial comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising that a number of recent studies implicate overlapping neural circuits and molecular signaling pathways in both disorders. The purpose of this review is to highlight this emerging intersection and consider implications for understanding the pathophysiology of these seemingly distinct disorders. One area of overlap involves neural circuits and neuromodulatory systems in the striatum and basal ganglia, which play an established role in addiction and reward but are increasingly implicated in clinical and preclinical studies of ASDs. A second area of overlap relates to molecules like Fragile X mental retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are best known for their contribution to the pathogenesis of syndromic ASDs, but have recently been shown to regulate behavioral and neurobiological responses to addictive drug exposure. These shared pathways and molecules point to common dimensions of behavioral dysfunction, including the repetition of behavioral patterns and aberrant reward processing. The synthesis of knowledge gained through parallel investigations of ASDs and addiction may inspire the design of new therapeutic interventions to correct common elements of striatal dysfunction. PMID:26903789

  3. Space shuttle low cost/risk avionics study

    NASA Technical Reports Server (NTRS)

    1971-01-01

    All work breakdown structure elements containing any avionics related effort were examined for pricing the life cycle costs. The analytical, testing, and integration efforts are included for the basic onboard avionics and electrical power systems. The design and procurement of special test equipment and maintenance and repair equipment are considered. Program management associated with these efforts is described. Flight test spares and labor and materials associated with the operations and maintenance of the avionics systems throughout the horizontal flight test are examined. It was determined that cost savings can be achieved by using existing hardware, maximizing orbiter-booster commonality, specifying new equipments to MIL quality standards, basing redundancy on cost effective analysis, minimizing software complexity and reducing cross strapping and computer-managed functions, utilizing compilers and floating point computers, and evolving the design as dictated by the horizontal flight test schedules.

  4. A pilot data collecting exercise on stress and nursing students.

    PubMed

    Por, Jitna

    This article discusses the lessons learned from a small pilot study exploring the link between the working environment and occupational stress among groups of nursing students. A comparative descriptive design was adopted to examine, describe and compare the two variables (sources and frequency) in three groups of nursing students. The sample comprised 90 students from one large inner-city school of nursing in London. The Expanded Nursing Stress Scale questionnaires were used to collect the data. The main findings suggest that the adult, child and mental health branch students were similar with respect to overall frequency of occupational stress. Areas of commonality and variability in the sources of stress perceived by the three groups of students were identified. A pilot study is a crucial element of a good study design. Areas of concern, lessons learned and suggested refinements were identified.

  5. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  6. Robotic vision. [process control applications

    NASA Technical Reports Server (NTRS)

    Williams, D. S.; Wilf, J. M.; Cunningham, R. T.; Eskenazi, R.

    1979-01-01

    Robotic vision, involving the use of a vision system to control a process, is discussed. Design and selection of active sensors employing radiation of radio waves, sound waves, and laser light, respectively, to light up unobservable features in the scene are considered, as are design and selection of passive sensors, which rely on external sources of illumination. The segmentation technique by which an image is separated into different collections of contiguous picture elements having such common characteristics as color, brightness, or texture is examined, with emphasis on the edge detection technique. The IMFEX (image feature extractor) system performing edge detection and thresholding at 30 frames/sec television frame rates is described. The template matching and discrimination approach to recognize objects are noted. Applications of robotic vision in industry for tasks too monotonous or too dangerous for the workers are mentioned.

  7. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  8. Modeling the Mousetrap Car

    NASA Astrophysics Data System (ADS)

    Jumper, William D.

    2012-03-01

    Many high school and introductory college physics courses make use of mousetrap car projects and competitions as a way of providing an engaging hands-on learning experience incorporating Newton's laws, conversion of potential to kinetic energy, dissipative forces, and rotational mechanics. Presented here is a simple analytical and finite element spreadsheet model for a typical mousetrap car, as shown in Fig. 1. It is hoped that the model will provide students with a tool for designing or modifying the designs of their cars, provide instructors with a means to insure students close the loop between physical principles and an understanding of their car's speed and distance performance, and, third, stimulate in students at an early stage an appreciation for the merits of computer modeling as an aid in understanding and tackling otherwise analytically intractable problems so common in today's professional world.

  9. Common path in-line holography using enhanced joint object reference digital interferometers

    PubMed Central

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    Joint object reference digital interferometer (JORDI) is a recently developed system capable of recording holograms of various types [Opt. Lett. 38(22), 4719 (2013)24322115]. Presented here is a new enhanced system design that is based on the previous JORDI. While the previous JORDI has been based purely on diffractive optical elements, displayed on spatial light modulators, the present design incorporates an additional refractive objective lens, thus enabling hologram recording with improved resolution and increased system applicability. Experimental results demonstrate successful hologram recording for various types of objects, including transmissive, reflective, three-dimensional, phase and highly scattering objects. The resolution limit of the system is analyzed and experimentally validated. Finally, the suitability of JORDI for microscopic applications is verified as a microscope objective based configuration of the system is demonstrated. PMID:24663838

  10. Design of a high-speed digital processing element for parallel simulation

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Cwynar, D. S.

    1983-01-01

    A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.

  11. The National Institute of Neurological Disorders and Stroke and Department of Defense Sport-Related Concussion Common Data Elements Version 1.0 Recommendations.

    PubMed

    Broglio, Steven P; Kontos, Anthony P; Levin, Harvey; Schneider, Kathryn; Wilde, Elisabeth A; Cantu, Robert C; Feddermann-Demont, Nina; Fuller, Gordon; Gagnon, Isabelle; Gioia, Gerry; Giza, Christopher C; Griesbach, Grace Sophia; Leddy, John J; Lipton, Michael L; Mayer, Andrew; McAllister, Thomas; McCrea, Michael; McKenzie, Lara; Putukian, Margot; Signoretti, Stefano; Suskauer, Stacy J; Tamburro, Robert; Turner, Michael; Yeates, Keith Owen; Zemek, Roger; Ala'i, Sherita; Esterlitz, Joy; Gay, Katelyn; Bellgowan, Patrick S F; Joseph, Kristen

    2018-05-02

    Through a partnership with the National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), and Department of Defense (DoD), the development of Sport-Related Concussion (SRC) Common Data Elements (CDEs) was initiated. The aim of this collaboration was to increase the efficiency and effectiveness of clinical research studies and clinical treatment outcomes, increase data quality, facilitate data sharing across studies, reduce study start-up time, more effectively aggregate information into metadata results, and educate new clinical investigators. The SRC CDE Working Group consisted of 34 worldwide experts in concussion from varied fields of related expertise, divided into three Subgroups: Acute (<72 hours post-concussion), Subacute (3 days-3 months post-concussion) and Persistent/Chronic (>3 months post-concussion). To develop CDEs, the Subgroups reviewed various domains, and then selected from, refined, and added to existing CDEs, case report forms and field-tested data elements from national registries and funded research studies. Recommendations were posted to the NINDS CDE Website for Public Review from February 2017 to April 2017. Following an internal Working Group review of recommendations, along with consideration of comments received from the Public Review period, the first iteration (Version 1.0) of the NINDS SRC CDEs was completed in June 2017. The recommendations include Core and Supplemental - Highly Recommended CDEs for cognitive data elements and symptom checklists, as well as other outcomes and endpoints (e.g., vestibular, oculomotor, balance, anxiety, depression) and sample case report forms (e.g., injury reporting, demographics, concussion history) for domains typically included in clinical research studies. The NINDS SRC CDEs and supporting documents are publicly available on the NINDS CDE website https://www.commondataelements.ninds.nih.gov/. Widespread use of CDEs by researchers and clinicians will facilitate consistent SRC clinical research and trial design, data sharing, and metadata retrospective analysis.

  12. Geophagy practices and the content of chemical elements in the soil eaten by pregnant women in artisanal and small scale gold mining communities in Tanzania.

    PubMed

    Nyanza, Elias C; Joseph, Mary; Premji, Shahirose S; Thomas, Deborah Sk; Mannion, Cynthia

    2014-04-15

    Geophagy, a form of pica, is the deliberate consumption of soil and is relatively common across Sub-Saharan Africa. In Tanzania, pregnant women commonly eat soil sticks sold in the market (pemba), soil from walls of houses, termite mounds, and ground soil (kichuguu). The present study examined geophagy practices of pregnant women in a gold mining area of Geita District in northwestern Tanzania, and also examined the potential for exposure to chemical elements by testing soil samples. We conducted a cross sectional study using a convenience sample of 340 pregnant women, ranging in age from 15-49 years, who attended six government antenatal clinics in the Geita District, Tanzania. Structured interviews were conducted in June-August, 2012, to understand geophagy practices. In addition, soil samples taken from sources identified by pregnant women practicing geophagy were analysed for mineral element content. Geophagy was reported by 155 (45.6%) pregnant women with 85 (54.8%) initiating the practice in the first trimester. A total of 101 (65%) pregnant women reported eating soil 2 to 3 times per day while 20 (13%) ate soil more than 3 times per day. Of 155 pregnant women 107 (69%) bought pemba from local shops, while 48 (31%) consumed ground soil kichuguu. The estimated mean quantity of soil consumed from pemba was 62.5 grams/day. Arsenic, chromium, copper, iron, manganese, nickel and zinc levels were found in both pemba and kichuguu samples. Cadmium and mercury were found only in the kichuguu samples. Based on daily intake estimates, arsenic, copper and manganese for kichuguu and copper and manganese for pemba samples exceed the oral Minimum Risk Levels designated by the U.S. Agency for Toxic Substance and Disease Registry. Almost 50% of participants practiced geophagy in Geita District consistent with other reports from Africa. Both pemba and kichuguu contained chemical elements at varying concentration, mostly above MRLs. As such, pregnant women who eat soil in Geita District are exposed to potentially high levels of chemical elements, depending upon frequency of consumption, daily amount consumed and the source location of soil eaten.

  13. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study

    PubMed Central

    Harrysson, Ola LA; Hosni, Yasser A; Nayfeh, Jamal F

    2007-01-01

    Background Conventional knee and hip implant systems have been in use for many years with good success. However, the custom design of implant components based on patient-specific anatomy has been attempted to overcome existing shortcomings of current designs. The longevity of cementless implant components is highly dependent on the initial fit between the bone surface and the implant. The bone-implant interface design has historically been limited by the surgical tools and cutting guides available; and the cost of fabricating custom-designed implant components has been prohibitive. Methods This paper describes an approach where the custom design is based on a Computed Tomography scan of the patient's joint. The proposed design will customize both the articulating surface and the bone-implant interface to address the most common problems found with conventional knee-implant components. Finite Element Analysis is used to evaluate and compare the proposed design of a custom femoral component with a conventional design. Results The proposed design shows a more even stress distribution on the bone-implant interface surface, which will reduce the uneven bone remodeling that can lead to premature loosening. Conclusion The proposed custom femoral component design has the following advantages compared with a conventional femoral component. (i) Since the articulating surface closely mimics the shape of the distal femur, there is no need for resurfacing of the patella or gait change. (ii) Owing to the resulting stress distribution, bone remodeling is even and the risk of premature loosening might be reduced. (iii) Because the bone-implant interface can accommodate anatomical abnormalities at the distal femur, the need for surgical interventions and fitting of filler components is reduced. (iv) Given that the bone-implant interface is customized, about 40% less bone must be removed. The primary disadvantages are the time and cost required for the design and the possible need for a surgical robot to perform the bone resection. Some of these disadvantages may be eliminated by the use of rapid prototyping technologies, especially the use of Electron Beam Melting technology for quick and economical fabrication of custom implant components. PMID:17854508

  14. Principles and Practices Fostering Inclusive Excellence: Lessons from the Howard Hughes Medical Institute's Capstone Institutions.

    PubMed

    DiBartolo, Patricia Marten; Gregg-Jolly, Leslie; Gross, Deborah; Manduca, Cathryn A; Iverson, Ellen; Cooke, David B; Davis, Gregory K; Davidson, Cameron; Hertz, Paul E; Hibbard, Lisa; Ireland, Shubha K; Mader, Catherine; Pai, Aditi; Raps, Shirley; Siwicki, Kathleen; Swartz, Jim E

    Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute's (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others' efforts to increase access to and persistence in STEM in higher education. © 2016 P. M. DiBartolo, L. Gregg-Jolly, D. Gross, C. A. Manduca, E. Iverson, et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Optimal slot dimension for skirt support structure of coke drums

    NASA Astrophysics Data System (ADS)

    Wang, Edward; Xia, Zihui

    2018-03-01

    The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducing the local stiffness close to the weld. The most common skirt slot design is thin relative to its circumferential spacing. A new slot design, which is significantly wider, is proposed. In this study, thermal-mechanical elastoplastic 3-D finite element models of coke drums are created to analyze the effect of different skirt designs on the stress/strain field near the shell-to-skirt junction weld, as well as any other critical stress locations in the overall skirt design. The results confirm that the inclusion of the conventional slot design effectively reduces stress in the junction weld. However, it has also been found that the critical stress location migrates from the shell-to-skirt junction weld to the slot ends. A method is used to estimate the fatigue life near the critical areas of each skirt slot design. It is found that wider skirt slots provide a significant improvement on fatigue life in the weld and slot area.

  16. Universal Design for Learning: Curriculum, Technology, and Accessibility.

    ERIC Educational Resources Information Center

    Erlandson, Robert F.

    This paper examines how teachers, as educational designers, can utilize universal design for learning (UDL) concepts. UDL is a comprehensive approach to the design of educational systems that addresses elements necessary for the achievement of desired educational goals and objectives: elements such as equity among the participants, environmental…

  17. Towards the development of active compression bandages using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pourazadi, S.; Ahmadi, S.; Menon, C.

    2014-06-01

    Disorders associated with the lower extremity venous system are common and significantly affect the quality of life of a large number of individuals. These disorders include orthostatic hypotension, oedema, deep vein thrombosis and a number of other conditions related to insufficient venous blood return. The common recommended treatment for these disorders is the use of hosiery compression stockings. In this research, an active compression bandage (ACB) based on the technology of dielectric elastomeric actuators (DEA) was designed, prototyped and tested. A customized calf prototype (CP) was developed to measure the pressure applied by the ACB. Experimental results performed with the CP showed that the pressure applied by the ACB could be electrically controlled to be either below or above the pressure exerted by commercially available compression stockings. An analytical model was used to provide the design criteria. A finite element model (FEM) was also developed to simulate the electromechanical behaviour of the DEA. Comparison of the experimental results with the FEM and analytical models showed that the modelling could accurately predict the behaviour of the ACB. The FEM was subsequently used to study how to improve the ACB performance by varying geometrical parameters such as the ACB thickness.

  18. Tn5401, a new class II transposable element from Bacillus thuringiensis.

    PubMed Central

    Baum, J A

    1994-01-01

    A new class II (Tn3-like) transposable element, designated Tn5401, was recovered from a sporulation-deficient variant of Bacillus thuringiensis subsp. morrisoni EG2158 following its insertion into a recombinant plasmid. Sequence analysis of the insert revealed a 4,837-bp transposon with two large open reading frames, in the same orientation, encoding proteins of 36 kDa (306 residues) and 116 kDa (1,005 residues) and 53-bp terminal inverted repeats. The deduced amino acid sequence for the 36-kDa protein shows 24% sequence identity with the TnpI recombinase of the B. thuringiensis transposon Tn4430, a member of the phage integrase family of site-specific recombinases. The deduced amino acid sequence for the 116-kDa protein shows 42% sequence identity with the transposase of Tn3 but only 28% identity with the TnpA transposase of Tn4430. Two small open reading frames of unknown function, designated orf1 (85 residues) and orf2 (74 residues), were also identified. Southern blot analysis indicated that Tn5401, in contrast to Tn4430, is not commonly found among different subspecies of B. thuringiensis and is not typically associated with known insecticidal crystal protein genes. Transposition was studied with B. thuringiensis by using plasmid pEG922, a temperature-sensitive shuttle vector containing Tn5401. Tn5401 transposed to both chromosomal and plasmid target sites but displayed an apparent preference for plasmid sites. Transposition was replicative and resulted in the generation of a 5-bp duplication at the target site. Transcriptional start sites within Tn5401 were mapped by primer extension analysis. Two promoters, designated PL and PR, direct the transcription of orf1-orf2 and tnpI-tnpA, respectively, and are negatively regulated by TnpI. Sequence comparison of the promoter regions of Tn5401 and Tn4430 suggests that the conserved sequence element ATGTCCRCTAAY mediates TnpI binding and cointegrate resolution. The same element is contained within the 53-bp terminal inverted repeats, thus accounting for their unusual lengths and suggesting an additional role for TnpI in regulating Tn5401 transposition. Images PMID:7514590

  19. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2018-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  20. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2016-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  1. Locomotion of Amorphous Surface Robots

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T. (Inventor)

    2014-01-01

    An amorphous robot includes a compartmented bladder containing fluid, a valve assembly, and an outer layer encapsulating the bladder and valve assembly. The valve assembly draws fluid from a compartment(s) and discharges the drawn fluid into a designated compartment to displace the designated compartment with respect to the surface. Another embodiment includes elements each having a variable property, an outer layer that encapsulates the elements, and a control unit. The control unit energizes a designated element to change its variable property, thereby moving the designated element. The elements may be electromagnetic spheres with a variable polarity or shape memory polymers with changing shape and/or size. Yet another embodiment includes an elongated flexible tube filled with ferrofluid, a moveable electromagnet, an actuator, and a control unit. The control unit energizes the electromagnet and moves the electromagnet via the actuator to magnetize the ferrofluid and lengthen the flexible tube.

  2. Finite element analysis on the bending condition of truck frame before and after opening

    NASA Astrophysics Data System (ADS)

    Cai, Kaiwu; Cheng, Wei; Lu, Jifu

    2018-05-01

    Based on the design parameters of a truck frame, the structure design and model of the truck frame are built. Based on the finite element theory, the load, the type of fatigue and the material parameters of the frame are combined with the semi-trailer. Using finite element analysis software, after a truck frame hole in bending condition for the finite element analysis of comparison, through the analysis found that the truck frame hole under bending condition can meet the strength requirements are very helpful for improving the design of the truck frame.

  3. 10 CFR 73.59 - Relief from fingerprinting, identification and criminal history records checks and other elements...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... history records checks and other elements of background checks for designated categories of individuals..., identification and criminal history records checks and other elements of background checks for designated categories of individuals. Fingerprinting, and the identification and criminal history records checks...

  4. 40 CFR 1045.801 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means any device, system, or element of design that someone can adjust (including those which are... emission control device means any element of design that senses temperature, motive speed, engine RPM... on a continuous mixture of those fuels. Emission control system means any device, system, or element...

  5. 10 CFR 73.59 - Relief from fingerprinting, identification and criminal history records checks and other elements...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... history records checks and other elements of background checks for designated categories of individuals..., identification and criminal history records checks and other elements of background checks for designated categories of individuals. Fingerprinting, and the identification and criminal history records checks...

  6. The Elements Drawing.

    ERIC Educational Resources Information Center

    Dkeidek, Iyad M.

    2003-01-01

    Presents an educational game designed for first- or second-year high school students who have already studied themes related to the periodic table elements, such as their symbols, electronic configurations, properties, and uses. The game is designed to help students learn the symbols of the elements and their properties or uses in a fun, engaging…

  7. Elemental Food for Thought

    ERIC Educational Resources Information Center

    Cady, Susan

    2005-01-01

    One of the first tasks students learn in chemistry is to pronounce and spell the names of elements and learn their corresponding chemical symbols. Repetitive oral recitation is commonly used to learn this information, but games and puzzles can make this task creative, variable, and fun. Elemental Food for Thought is a puzzlelike activity that…

  8. Eight Elements of High School Improvement: An Annotated Bibliography

    ERIC Educational Resources Information Center

    Jones, Wehmah

    2009-01-01

    This paper provides a table that contains a summary of resources available that support the National High School Center's "Eight Elements of High School Improvement: A Mapping Framework". This framework is based on eight common elements of systemic school reform and provides a structure for understanding, aligning, and prioritizing…

  9. An out-of-core thermionic-converter system for nuclear space power

    NASA Technical Reports Server (NTRS)

    Breitwieser, R.

    1972-01-01

    Design of the nuclear thermionic space power system, 40 50 70 Kw(e) power range, are given. The design configuration (1) meets the constraints of readily available launch vehicles; (2) allows for off-design operation including startup, shutdown, and possible emergency conditions; (3) provides tolerance of failure by extensive use of modular, redundant elements; (4) incorporates and uses heat pipes in a fashion that reduces the need for extensive in-pile testing of system components; and (5) uses thermionic converters, nuclear fuel elements, and heat transfer devices in a geometrical form adapted from existing incore thermionic system designs. Designs and in some cases performance data for elements and groups of the elements of the system are included. Benefits of the highly modular system approach to reliability, safety, economy of development, and flexibility are discussed.

  10. Conceptual design study of a visual system for a rotorcraft simulator and some advances in platform motion utilization

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1980-01-01

    A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.

  11. Next Generation NASA GA Advanced Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2006-01-01

    Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.

  12. Advanced space program studies. Overall executive summary

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1977-01-01

    NASA and DoD requirements and planning data were used in multidiscipline advanced planning investigations of space operations and associated elements (including man), identification of potential low cost approaches, vehicle design, cost synthesis techniques, technology forecasting and opportunities for DoD technology transfer, and the development near-, mid-, and far-term space initiatives and development plans with emphasis on domestic and military commonality. An overview of objectives and results are presented for the following studies: advanced space planning and conceptual analysis, shuttle users, technology assessment and new opportunities, standardization and program practice, integrated STS operations planning, solid spinning upper stage, and integrated planning support functions.

  13. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  14. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document. Volume 1: Major trades. Book 1: Draft final

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.

  15. Synthesis and biological activity of some 1,3-dihydro-2H-3-benzazepin-2-ones with a piperazine moiety as bradycardic agents.

    PubMed

    Liang, Hong-Yu; Zhang, Deng-Qing; Yue, Yun; Shi, Zhe; Zhao, Sheng-Yin

    2010-02-01

    A series of 1,3-dihydro-2H-3-benzazepin-2-ones with a piperazine moiety were designed and synthesized by treating the common intermediate of 1,3-dihydro-7,8-dimethoxy-3-[3-(1-piperazinyl)propyl]-2H-3-benzazepin-2-ones with a variety of N-aryl-2-chloroacetamides and acyl chlorides. Their structures have been characterized by (1)H-NMR, MS, and elemental analysis. The title compounds were evaluated for their bradycardic activity in vitro. Most of the synthesized compounds exhibited some vasorelaxant activity and heart-rate-reducing activity with bradycardic potency.

  16. Building pit dewatering: application of transient analytic elements.

    PubMed

    Zaadnoordijk, Willem J

    2006-01-01

    Analytic elements are well suited for the design of building pit dewatering. Wells and drains can be modeled accurately by analytic elements, both nearby to determine the pumping level and at some distance to verify the targeted drawdown at the building site and to estimate the consequences in the vicinity. The ability to shift locations of wells or drains easily makes the design process very flexible. The temporary pumping has transient effects, for which transient analytic elements may be used. This is illustrated using the free, open-source, object-oriented analytic element simulator Tim(SL) for the design of a building pit dewatering near a canal. Steady calculations are complemented with transient calculations. Finally, the bandwidths of the results are estimated using linear variance analysis.

  17. Combining Solar Electric Propulsion and Chemical Propulsion for Crewed Missions to Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Robotic Mission (ARRM), including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARRM mission.

  18. Combining Solar Electric and Chemical Propulsion for Crewed Missions to Mars

    NASA Technical Reports Server (NTRS)

    Percy, Tom; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    This paper documents the results of an investigation of human Mars mission architectures that leverage near-term technology investments and infrastructures resulting from the planned Asteroid Redirect Mission, including high-power Solar Electric Propulsion (SEP) and a human presence in Lunar Distant Retrograde Orbit (LDRO). The architectures investigated use a combination of SEP and chemical propulsion elements. Through this combination of propulsion technologies, these architectures take advantage of the high efficiency SEP propulsion system to deliver cargo, while maintaining the faster trip times afforded by chemical propulsion for crew transport. Evolved configurations of the Asteroid Redirect Vehicle (ARV) are considered for cargo delivery. Sensitivities to SEP system design parameters, including power level and propellant quantity, are presented. For the crew delivery, liquid oxygen and methane stages were designed using engines common to future human Mars landers. Impacts of various Earth departure orbits, Mars loiter orbits, and Earth return strategies are presented. The use of the Space Launch System for delivery of the various architecture elements was also investigated and launch vehicle manifesting, launch scheduling and mission timelines are also discussed. The study results show that viable Mars architecture can be constructed using LDRO and SEP in order to take advantage of investments made in the ARM mission.

  19. Using an optimization approach to design an insole for lowering plantar fascia stress--a finite element study.

    PubMed

    Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng

    2008-08-01

    Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.

  20. Modular Approach to Launch Vehicle Design Based on a Common Core Element

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike

    2010-01-01

    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

Top