Sample records for common downstream target

  1. The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis.

    PubMed

    Mao, Yimin; Kuo, Su-Wei; Chen, Le; Heckman, C J; Jiang, M C

    2017-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastative neurodegenerative disease characterized by selective loss of motoneurons. While several breakthroughs have been made in identifying ALS genetic defects, the detailed molecular mechanisms are still unclear. These genetic defects involve in numerous biological processes, which converge to a common destiny: motoneuron degeneration. In addition, the common comorbid Frontotemporal Dementia (FTD) further complicates the investigation of ALS etiology. In this study, we aimed to explore the protein-protein interaction network built on known ALS-causative genes to identify essential proteins and common downstream proteins between classical ALS and ALS+FTD (classical ALS + ALS/FTD) groups. The results suggest that classical ALS and ALS+FTD share similar essential protein set (VCP, FUS, TDP-43 and hnRNPA1) but have distinctive functional enrichment profiles. Thus, disruptions to these essential proteins might cause motoneuron susceptible to cellular stresses and eventually vulnerable to proteinopathies. Moreover, we identified a common downstream protein, ubiquitin-C, extensively interconnected with ALS-causative proteins (22 out of 24) which was not linked to ALS previously. Our in silico approach provides the computational background for identifying ALS therapeutic targets, and points out the potential downstream common ground of ALS-causative mutations.

  2. Synchronous detection of miRNAs, their targets and downstream proteins in transferred FFPE sections: applications in clinical and basic research.

    PubMed

    Zhao, Jin-yao; Liu, Chun-qing; Zhao, He-nan; Ding, Yan-Fang; Bi, Tie; Wang, Bo; Lin, Xing-chi; Guo, Gordon; Cui, Shi-ying

    2012-10-01

    After discovering new miRNAs, it is often difficult to determine their targets and effects on downstream protein expression. In situ hybridization (ISH) and immunohistochemistry (IHC) are two commonly used methods for clinical diagnosis and basic research. We used an optimized technique that simultaneously detects miRNAs, their binding targets and corresponding proteins on transferred serial formalin fixed paraffin embedded (FFPE) sections from patients. Combined with bioinformatics, this method was used to validate the reciprocal expression of specific miRNAs and targets that were detected by ISH, as well as the expression of downstream proteins that were detected by IHC. A complete analysis was performed using a limited number of transferred serial FFPE sections that had been stored for 1-4 years at room temperature. Some sections had even been previously stained with H&E. We identified a miRNA that regulates epithelial ovarian cancer, along with its candidate target and related downstream protein. These findings were directly validated using sub-cellular components obtained from the same patient sample. In addition, the expression of Nephrin (a podocyte marker) and Stmn1 (a recently identified marker related to glomerular development) were confirmed in transferred FFPE sections of mouse kidney. This procedure may be adapted for clinical diagnosis and basic research, providing a qualitative and efficient method to dissect the detailed spatial expression patterns of miRNA pathways in FFPE tissue, especially in cases where only a small biopsy sample can be obtained. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer

    PubMed Central

    Rebello, Richard J.; Pearson, Richard B.; Hannan, Ross D.; Furic, Luc

    2017-01-01

    The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential. PMID:28212321

  4. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    PubMed

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ Health Perspect 124:1034-1041; http://dx.doi.org/10.1289/ehp.1510308.

  5. Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles.

    PubMed

    Kennedy, Patrick J; Perreira, Ines; Ferreira, Daniel; Nestor, Marika; Oliveira, Carla; Granja, Pedro L; Sarmento, Bruno

    2018-06-01

    Targeted drug delivery with nanoparticles (NPs) requires proper surface ligand presentation and availability. Surfactants are often used as stabilizers in the production of targeted NPs. Here, we evaluated the impact of surfactants on ligand functionalization and downstream molecular recognition. Our model system consisted of fluorescent poly(lactic-co-glycolic acid) (PLGA) NPs that were nanoprecipitated in one of a small panel of commonly-used surfactants followed by equivalent washes and conjugation of an engineered Fab antibody fragment. Size, polydispersity index and zeta potential were determined by dynamic light scattering and laser Doppler anemometry, and Fab presence on the NPs was assessed by enzyme-linked immunosorbent assay. Most importantly, Fab-decorated NP binding to the cell surface receptor was monitored by fluorescence-activated cell sorting. 2% polyvinyl alcohol, 1% sodium cholate, 0.5% Pluronic F127 (F127) and 2% Tween-80 were initially tested. Of the four surfactants tested, PLGA NPs in 0.5% F127 and 2% Tween-80 had the highest cell binding. These two surfactants were then retested in two different concentrations, 0.5% and 2%. The Fab-decorated PLGA NPs in 2% F127 had the highest cell binding. This study highlights the impact of common surfactants and their concentrations on the downstream targeting of ligand-decorated NPs. Similar principles should be applied in the development of future targeted nanosystems where surfactants are employed. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Upstream water resource management to address downstream pollution concerns: A policy framework with application to the Nakdong River basin in South Korea

    NASA Astrophysics Data System (ADS)

    Yoon, Taeyeon; Rhodes, Charles; Shah, Farhed A.

    2015-02-01

    An empirical framework for assisting with water quality management is proposed that relies on open-source hydrologic data. Such data are measured periodically at fixed water stations and commonly available in time-series form. To fully exploit the data, we suggest that observations from multiple stations should be combined into a single long-panel data set, and an econometric model developed to estimate upstream management effects on downstream water quality. Selection of the model's functional form and explanatory variables would be informed by rating curves, and idiosyncrasies across and within stations handled in an error term by testing contemporary correlation, serial correlation, and heteroskedasticity. Our proposed approach is illustrated with an application to the Nakdong River basin in South Korea. Three alternative policies to achieve downstream BOD level targets are evaluated: upstream water treatment, greater dam discharge, and development of a new water source. Upstream water treatment directly cuts off incoming pollutants, thereby presenting the smallest variation in its downstream effects on BOD levels. Treatment is advantageous when reliability of water quality is a primary concern. Dam discharge is a flexible tool, and may be used strategically during a low-flow season. We consider development of a new water corridor from an extant dam as our third policy option. This turns out to be the most cost-effective way for securing lower BOD levels in the downstream target city. Even though we consider a relatively simple watershed to illustrate the usefulness of our approach, it can be adapted easily to analyze more complex upstream-downstream issues.

  7. Small Heat Shock Proteins Are Novel Common Determinants of Alcohol and Nicotine Sensitivity in Caenorhabditis elegans

    PubMed Central

    Johnson, James R.; Rajamanoharan, Dayani; McCue, Hannah V.; Rankin, Kim

    2016-01-01

    Addiction to drugs is strongly determined by multiple genetic factors. Alcohol and nicotine produce distinct pharmacological effects within the nervous system through discrete molecular targets; yet, data from family and twin analyses support the existence of common genetic factors for addiction in general. The mechanisms underlying addiction, however, are poorly described and common genetic factors for alcohol and nicotine remain unidentified. We investigated the role that the heat shock transcription factor, HSF-1, and its downstream effectors played as common genetic modulators of sensitivity to addictive substances. Using Caenorhabditis elegans, an exemplary model organism with substance dose-dependent responses similar to mammals, we demonstrate that HSF-1 altered sensitivity to both alcohol and nicotine. Using a combination of a targeted RNAi screen of downstream factors and transgenic approaches we identified that these effects were contingent upon the constitutive neuronal expression of HSP-16.48, a small heat shock protein (HSP) homolog of human α-crystallin. Furthermore we demonstrated that the function of HSP-16.48 in drug sensitivity surprisingly was independent of chaperone activity during the heat shock stress response. Instead we identified a distinct domain within the N-terminal region of the HSP-16.48 protein that specified its function in comparison to related small HSPs. Our findings establish and characterize a novel genetic determinant underlying sensitivity to diverse addictive substances. PMID:26773049

  8. Load-induced modulation of signal transduction networks.

    PubMed

    Jiang, Peng; Ventura, Alejandra C; Sontag, Eduardo D; Merajver, Sofia D; Ninfa, Alexander J; Del Vecchio, Domitilla

    2011-10-11

    Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.

  9. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma.

    PubMed

    Ge, Xuecai; Milenkovic, Ljiljana; Suyama, Kaye; Hartl, Tom; Purzner, Teresa; Winans, Amy; Meyer, Tobias; Scott, Matthew P

    2015-09-15

    Alterations in Hedgehog (Hh) signaling lead to birth defects and cancers including medulloblastoma, the most common pediatric brain tumor. Although inhibitors targeting the membrane protein Smoothened suppress Hh signaling, acquired drug resistance and tumor relapse call for additional therapeutic targets. Here we show that phosphodiesterase 4D (PDE4D) acts downstream of Neuropilins to control Hh transduction and medulloblastoma growth. PDE4D interacts directly with Neuropilins, positive regulators of Hh pathway. The Neuropilin ligand Semaphorin3 enhances this interaction, promoting PDE4D translocation to the plasma membrane and cAMP degradation. The consequent inhibition of protein kinase A (PKA) enhances Hh transduction. In the developing cerebellum, genetic removal of Neuropilins reduces Hh signaling activity and suppresses proliferation of granule neuron precursors. In mouse medulloblastoma allografts, PDE4D inhibitors suppress Hh transduction and inhibit tumor growth. Our findings reveal a new regulatory mechanism of Hh transduction, and highlight PDE4D as a promising target to treat Hh-related tumors.

  10. AKT in cancer: new molecular insights and advances in drug development

    PubMed Central

    Mundi, Prabhjot S.; Sachdev, Jasgit; McCourt, Carolyn

    2016-01-01

    The phosphatidylinositol‐3 kinase (PI3K)–AKT pathway is one of the most commonly dysregulated pathways in all of cancer, with somatic mutations, copy number alterations, aberrant epigenetic regulation and increased expression in a number of cancers. The carefully maintained homeostatic balance of cell division and growth on one hand, and programmed cell death on the other, is universally disturbed in tumorigenesis, and downstream effectors of the PI3K–AKT pathway play an important role in this disturbance. With a wide array of downstream effectors involved in cell survival and proliferation, the well‐characterized direct interactions of AKT make it a highly attractive yet elusive target for cancer therapy. Here, we review the salient features of this pathway, evidence of its role in promoting tumorigenesis and recent progress in the development of therapeutic agents that target AKT. PMID:27232857

  11. Activator protein 1 promotes gemcitabine-induced apoptosis in pancreatic cancer by upregulating its downstream target Bim.

    PubMed

    Ren, Xiaoxia; Zhao, Wenjing; Du, Yongxing; Zhang, Taiping; You, Lei; Zhao, Yupei

    2016-12-01

    Gemcitabine is a commonly used chemotherapy drug in pancreatic cancer. The function of activator protein 1 (AP-1) is cell-specific, and its function depends on the expression of other complex members. In the present study, we added gemcitabine to the media of Panc-1 and SW1990 cells at clinically achieved concentrations (10 µM). Compared with constitutive c-Fos expression, c-Jun expression increased in a dose-dependent manner upon gemcitabine treatment. c-Jun overexpression increased gemcitabine-induced apoptosis through Bim activation, while cell apoptosis and Bim expression decreased following c-Jun knockdown. Furthermore, gemcitabine-induced apoptosis and Bim levels decreased when c-Jun phosphorylation was blocked by SP600125. Our findings suggest that c-Jun, which is a member of the AP-1 complex, functions in gemcitabine-induced apoptosis by regulating its downstream target Bim in pancreatic cancer cells.

  12. Determination of in vivo regulation kinetics of small non-coding RNA in bacteria

    NASA Astrophysics Data System (ADS)

    Fei, Jingyi

    Small RNAs (sRNAs) play important roles in regulating gene expression through a variety of mechanisms. As one of the most common strategies, sRNA induced target messenger RNA (mRNA) includes two major steps: target search by base-pairing interactions with the and downstream execution by modulating translation or the stability of the mRNA. Here we describe a new imaging and analysis platform based on super-resolution fluorescence microscopy, which enabled the first in vivo kinetic measurement of sRNA-mediated gene regulation. Specifically, this platform was used to investigate a sugar-phosphate stress-induced bacterial sRNA that induces the degradation of target mRNAs. The data reveal that the sRNA binds to a primary target mRNA in a reversible and dynamic fashion, and that formation of the sRNA-mRNA complexes is the rate-limiting step, dictating the overall efficiency of regulation in vivo; whereas the downstream co-degradation of sRNA-mRNA complex can kinetically compete with the fast complex disassembly. Examination of a secondary target of this sRNA indicated that differences in the target search kinetics contribute to setting the regulation priority among different target mRNAs. This super-resolution imaging and analysis approach provides a conceptual framework that can be generalized to other sRNA systems and other target search processes.

  13. Computational Systems Biology Approach Predicts Regulators and Targets of microRNAs and Their Genomic Hotspots in Apoptosis Process.

    PubMed

    Alanazi, Ibrahim O; Ebrahimie, Esmaeil

    2016-07-01

    Novel computational systems biology tools such as common targets analysis, common regulators analysis, pathway discovery, and transcriptomic-based hotspot discovery provide new opportunities in understanding of apoptosis molecular mechanisms. In this study, after measuring the global contribution of microRNAs in the course of apoptosis by Affymetrix platform, systems biology tools were utilized to obtain a comprehensive view on the role of microRNAs in apoptosis process. Network analysis and pathway discovery highlighted the crosstalk between transcription factors and microRNAs in apoptosis. Within the transcription factors, PRDM1 showed the highest upregulation during the course of apoptosis, with more than 9-fold expression increase compared to non-apoptotic condition. Within the microRNAs, MIR1208 showed the highest expression in non-apoptotic condition and downregulated by more than 6 fold during apoptosis. Common regulators algorithm showed that TNF receptor is the key upstream regulator with a high number of regulatory interactions with the differentially expressed microRNAs. BCL2 and AKT1 were the key downstream targets of differentially expressed microRNAs. Enrichment analysis of the genomic locations of differentially expressed microRNAs led us to the discovery of chromosome bands which were highly enriched (p < 0.01) with the apoptosis-related microRNAs, such as 13q31.3, 19p13.13, and Xq27.3 This study opens a new avenue in understanding regulatory mechanisms and downstream functions in the course of apoptosis as well as distinguishing genomic-enriched hotspots for apoptosis process.

  14. Drug targeting of oncogenic pathways in melanoma.

    PubMed

    Fecher, Leslie A; Amaravadi, Ravi K; Schuchter, Lynn M; Flaherty, Keith T

    2009-06-01

    Melanoma continues to be one of the most aggressive and morbid malignancies once metastatic. Overall survival for advanced unresectable melanoma has not changed over the past several decades. However, the presence of some long-term survivors of metastatic melanoma highlights the heterogeneity of this disease and the potential for improved outcomes. Current research is uncovering the molecular and genetic scaffolding of normal and aberrant cell function. The known oncogenic pathways in melanoma and the attempts to develop therapy for them are discussed. The targeting of certain cellular processes, downstream of the common genetic alterations, for which the issues of target and drug validation are somewhat distinct, are also highlighted.

  15. Toxicity of Pseudomonas fluorescens strain Pf-5 to Drosophila larvae is due to downstream gene targets of the GacA/GacS signal transduction system

    USDA-ARS?s Scientific Manuscript database

    Given the vast number of microorganisms in the environment, surprisingly, only a few are lethal or cause morbidity to host organisms. Pseudomonas spp are a diverse genus of Gram-negative bacteria commonly found in soil, water, or in association with plants and animals. Pseudomonas fluorescens has be...

  16. Identification of the Downstream Promoter Targets of Smad Tumor Suppressors in Human Breast Cancer Cells

    DTIC Science & Technology

    2004-10-01

    signaling mediator Smad2, Smad3 and Smad4 which form oligomeric complexes and migrate into nucleus to function as transcription factors to modulate... Smad3 and Smad4. 2. Identification of the downstream promoter targets of Smad3 or Smad4 in breast cancer cells. 3. Identify Smad4 regulated downstream...Development of a novel chromatin immunoprecipitation assay (CHIPS) using a TAP-TAG system to isolate in vivo binding targets of Smad3 and Smad4

  17. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.

    PubMed

    Zhang, Yi-Xiang; van Oosterwijk, Jolieke G; Sicinska, Ewa; Moss, Samuel; Remillard, Stephen P; van Wezel, Tom; Bühnemann, Claudia; Hassan, Andrew B; Demetri, George D; Bovée, Judith V M G; Wagner, Andrew J

    2013-07-15

    Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors.

  18. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods.

    PubMed

    Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang

    2017-12-01

    The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .

  19. Inhibiting 4EBP1 in Glioblastoma. | Office of Cancer Genomics

    Cancer.gov

    Glioblastoma is the most common and aggressive adult brain cancer. Tumors show frequent dysregulation of the PI3K-mTOR pathway. Although a number of small molecules target the PI3K-AKT-mTOR axis, their preclinical and clinical efficacy has been limited. Reasons for treatment failure include poor penetration of agents into the brain and observations that blockade of PI3K or AKT minimally affects downstream mTOR activity in glioma.

  20. Searching for Dark Photons with the SeaQuest Spectrometer

    NASA Astrophysics Data System (ADS)

    Uemura, Sho; SeaQuest Collaboration

    2017-09-01

    The existence of a dark sector, containing families of particles that do not couple directly to the Standard Model, is motivated as a possible model for dark matter. A ``dark photon'' - a massive vector boson that couples weakly to electric charge - is a common component of dark sector models. The SeaQuest spectrometer at Fermilab is designed to detect dimuon pairs produced by the interaction of a 120 GeV proton beam with a rotating set of thin fixed targets. An iron-filled magnet downstream of the target, 5 meters in length, serves as a beam dump. The SeaQuest spectrometer is sensitive to dark photons that are mostly produced in the beam dump and decay to dimuons, and a SeaQuest search for dark sector particles was approved as Fermilab experiment E1067. As part of E1067, a displaced-vertex trigger was built, installed and commissioned this year. This trigger uses two planes of extruded scintillators to identify dimuons originating far downstream of the target, and is sensitive to dark photons that travel deep inside the beam dump before decaying to dimuons. This trigger will be used to take data parasitically with the primary SeaQuest physics program. In this talk I will present the displaced-vertex trigger and its performance, and projected sensitivity from future running.

  1. All for one and FOSL1 for all: FOSL1 at the crossroads of lung and pancreatic cancer driven by mutant KRAS.

    PubMed

    Vallejo, Adrian; Valencia, Karmele; Vicent, Silvestre

    2017-01-01

    KRAS proto-oncogene, GTPase ( KRAS ) remains refractory to current therapies. We devised an integrative cross-tumor approach to expose common core elements up-regulated in mutant KRAS cancers that could provide new treatment opportunities. This approach identified FOSL1 ( Fos-like antigen 1 ) as a clinically and functionally relevant gene in mutant KRAS -driven lung and pancreatic cancers, and unveiled downstream transcriptional targets amenable to pharmacological inhibition.

  2. Advances in the diagnosis and treatment of cystic fibrosis.

    PubMed

    Martiniano, Stacey L; Hoppe, Jordana E; Sagel, Scott D; Zemanick, Edith T

    2014-08-01

    CF is a genetic, life-shortening, multisystem disease that is most commonly diagnosed through newborn screen performed in all 50 states in the United States. In the past, therapies for CF lung disease have primarily targeted the downstream effects of a dysfunctional CFTR protein. Newer CFTR modulator therapies, targeting the basic defect in CF, are available for a limited group of people with CF, and offer the hope of improved treatment options for many more people with CF in the near future. Best practice is directed by consensus clinical care guidelines from the CFF and is provided with a multidisciplinary approach by the team at the CF care center and the primary care office.

  3. Synergistic Effects of Targeted PI3K Signaling Inhibition and Chemotherapy in Liposarcoma

    PubMed Central

    Guo, Shang; Lopez-Marquez, Hector; Fan, Kenneth C.; Choy, Edwin; Cote, Gregory; Harmon, David; Nielsen, G. Petur; Yang, Cao; Zhang, Changqing; Mankin, Henry; Hornicek, Francis J.; Borger, Darrell R.; Duan, Zhenfeng

    2014-01-01

    While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma. PMID:24695632

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milostan, Catharina; Levin, Todd; Muehleisen, Ralph T.

    Many electric utilities operate energy efficiency incentive programs that encourage increased dissemination and use of energy-efficient (EE) products in their service territories. The programs can be segmented into three broad categories—downstream incentive programs target product end users, midstream programs target product distributors, and upstream programs target product manufacturers. Traditional downstream programs have had difficulty engaging Small Business/Small Portfolio (SBSP) audiences, and an opportunity exists to expand Commercial Midstream Incentive Programs (CMIPs) to reach this market segment instead.

  5. The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fan; Li, Pengcheng; Gong, Jianhua

    Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer)more » augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.« less

  6. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation

    PubMed Central

    Gong, Yuanying; Ma, Yufang; Sinyuk, Maksim; Loganathan, Sudan; Thompson, Reid C.; Sarkaria, Jann N.; Chen, Wenbiao; Lathia, Justin D.; Mobley, Bret C.; Clark, Stephen W.; Wang, Jialiang

    2016-01-01

    Background Metabolic complications such as obesity, hyperglycemia, and type 2 diabetes are associated with poor outcomes in patients with glioblastoma. To control peritumoral edema, use of chronic high-dose steroids in glioblastoma patients is common, which can result in de novo diabetic symptoms. These metabolic complications may affect tumors via profound mechanisms, including activation of insulin receptor (InsR) and the related insulin-like growth factor 1 receptor (IGF1R) in malignant cells. Methods In the present study, we assessed expression of InsR in glioblastoma surgical specimens and glioblastoma response to insulin at physiologically relevant concentrations. We further determined whether genetic or pharmacological targeting of InsR affected oncogenic functions of glioblastoma in vitro and in vivo. Results We showed that InsR was commonly expressed in glioblastoma surgical specimens and xenograft tumor lines, with mitogenic isoform-A predominating. Insulin at physiologically relevant concentrations promoted glioblastoma cell growth and survival, potentially via Akt activation. Depletion of InsR impaired cellular functions and repressed orthotopic tumor growth. The absence of InsR compromised downstream Akt activity, but yet stimulated IGF1R expression. Targeting both InsR and IGF1R with dual kinase inhibitors resulted in effective blockade of downstream signaling, loss of cell viability, and repression of xenograft tumor growth. Conclusions Taken together, our work suggests that glioblastoma is sensitive to the mitogenic functions of insulin, thus significant insulin exposure imposes risks to glioblastoma patients. Additionally, dual inhibition of InsR and IGF1R exhibits promise for treating glioblastoma. PMID:26136493

  7. Applications of pathology-assisted image analysis of immunohistochemistry-based biomarkers in oncology.

    PubMed

    Shinde, V; Burke, K E; Chakravarty, A; Fleming, M; McDonald, A A; Berger, A; Ecsedy, J; Blakemore, S J; Tirrell, S M; Bowman, D

    2014-01-01

    Immunohistochemistry-based biomarkers are commonly used to understand target inhibition in key cancer pathways in preclinical models and clinical studies. Automated slide-scanning and advanced high-throughput image analysis software technologies have evolved into a routine methodology for quantitative analysis of immunohistochemistry-based biomarkers. Alongside the traditional pathology H-score based on physical slides, the pathology world is welcoming digital pathology and advanced quantitative image analysis, which have enabled tissue- and cellular-level analysis. An automated workflow was implemented that includes automated staining, slide-scanning, and image analysis methodologies to explore biomarkers involved in 2 cancer targets: Aurora A and NEDD8-activating enzyme (NAE). The 2 workflows highlight the evolution of our immunohistochemistry laboratory and the different needs and requirements of each biological assay. Skin biopsies obtained from MLN8237 (Aurora A inhibitor) phase 1 clinical trials were evaluated for mitotic and apoptotic index, while mitotic index and defects in chromosome alignment and spindles were assessed in tumor biopsies to demonstrate Aurora A inhibition. Additionally, in both preclinical xenograft models and an acute myeloid leukemia phase 1 trial of the NAE inhibitor MLN4924, development of a novel image algorithm enabled measurement of downstream pathway modulation upon NAE inhibition. In the highlighted studies, developing a biomarker strategy based on automated image analysis solutions enabled project teams to confirm target and pathway inhibition and understand downstream outcomes of target inhibition with increased throughput and quantitative accuracy. These case studies demonstrate a strategy that combines a pathologist's expertise with automated image analysis to support oncology drug discovery and development programs.

  8. Geomorphic responses to dam removal in the United States – a two-decade perspective

    USGS Publications Warehouse

    Major, Jon J.; East, Amy; O'Connor, Jim E.; Grant, Gordon E.; Wilcox, Andrew C.; Magirl, Christopher S.; Collins, Matthias J.; Tullos, Desiree D.; Tsutsumi, Daizo; Laronne, Jonathan B.

    2017-01-01

    Recent decades have seen a marked increase in the number of dams removed in the United States. Investigations following a number of removals are beginning to inform how, and how fast, rivers and their ecosystems respond to released sediment. Though only a few tens of studies detail physical responses to removals, common findings have begun to emerge. They include: (1) Rivers are resilient and respond quickly to dam removals, especially when removals are sudden rather than prolonged. Rivers can swiftly evacuate large fractions of reservoir sediment (≥50% within one year), especially when sediment is coarse grained (sand and gravel). The channel downstream typically takes months to years—not decades—to achieve a degree of stability within its range of natural variability. (2) Modest streamflows (<2-year return interval flows) can erode and transport large amounts of reservoir sediment. Greater streamflows commonly are needed to access remnant reservoir sediment and transport it downstream. (3) Dam height, sediment volume, and sediment caliber strongly influence downstream response to dam removal. Removals of large dams (≥10 m tall) have had longer-lasting and more widespread downstream effects than more common removals of small dams. (4) Downstream valley morphology and position of a dam within a watershed influence the distribution of released sediment. Valley confinement, downstream channel gradient, locations and depths of channel pools, locations and geometries of extant channel bars, and locations of other reservoirs all influence the downstream fate of released sediment.

  9. Sestrins are differentially expressed with age in the skeletal muscle of men: A cross-sectional analysis.

    PubMed

    Zeng, Nina; D'Souza, Randall F; Mitchell, Cameron J; Cameron-Smith, David

    2018-05-08

    A gradual loss of skeletal muscle mass is a common feature of aging, leading to impaired insulin sensitivity and mobility. Sestrin1, 2, 3 are multifunctional proteins that regulate the mammalian target of rapamycin complex (mTORC1), autophagy and redox homeostasis. It is unclear how aging affects Sestrins and their downstream targets in human, therefore this study examined the basal expression of Sestrins in three age groups, young, middle-aged and older men and explored the mTORC1 pathway, autophagy markers and antioxidant regulation. Older men had less Sestrin1 and 3 protein and a different pattern of Sestrin2 electrophoretic mobility. The mRNA expression of SESN1 was highly upregulated in older men, but the discrepancy was not by microRNA expression. Although protein expressions of Sestrins were downregulated with aging, phosphorylation of AMP-dependent protein kinase (AMPKα Thr172 ) and read-outs of mTORC1 activation, ribosomal protein S6 kinase 1 (p70S6K1 Thr421/Ser424 ) and 4E-binding protein 1 (4E-BP1) mobility shift were unaltered. However, total p70S6K1 and 4E-BP1 were reduced in middle-age and older men. The mRNA expressions of autophagic markers including microtubule-associated protein 1 light chain 3 (LC3) and BCL2 interacting protein 3 (BNIP3) were upregulated in middle-age and older men. Although nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was upregulated in older men, the protein and mRNA expressions of its downstream antioxidants were either increased, decreased or unaltered. No clear relationship was observed between Sestrins and their downstream targets, yet it can be concluded that Sestrins proteins are clearly downregulated with aging. Copyright © 2017. Published by Elsevier Inc.

  10. Convergent, not serial, striatal and pallidal circuits regulate opioid-induced food intake

    PubMed Central

    Taha, Sharif A.; Katsuura, Yoshihiro; Noorvash, David; Seroussi, Ariel; Fields, Howard L.

    2009-01-01

    Mu opioid receptor (MOR) signaling in the nucleus accumbens (NAcc) elicits marked increases in the consumption of palatable tastants. However, the mechanism and circuitry underlying this effect are not fully understood. Multiple downstream target regions have been implicated in mediating this effect but the role of the ventral pallidum (VP), a primary target of NAcc efferents, has not been well defined. To probe the mechanisms underlying increased consumption, we identified behavioral changes in licking patterns following NAcc MOR stimulation. Because the temporal structure of licking reflects the physiological substrates modulating consumption, these measures provide a useful tool in dissecting the cause of increased consumption following NAcc MOR stimulation. Next, we used a combination of pharmacological inactivation and lesions to define the role of the VP in hyperphagia following infusion of the MOR-specific agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAcc. In agreement with previous studies, results from lick microstructure analysis suggest that NAcc MOR stimulation augments intake through a palatability-driven mechanism. Our results also demonstrate an important role for the VP in normal feeding behavior: pharmacological inactivation of the VP suppresses baseline and NAcc DAMGO-induced consumption. However, this interaction does not occur through a serial circuit requiring direct projections from the NAcc to the VP. Rather, our results indicate that NAcc and VP circuits converge on a common downstream target that regulates food intake. PMID:19336249

  11. AR on the move; boarding the microtubule expressway to the nucleus

    PubMed Central

    Thadani-Mulero, Maria; Nanus, David M.; Giannakakou, Paraskevi

    2012-01-01

    Recent studies have shown that the microtubule-stabilizing drug, paclitaxel, which is commonly used for the treatment of prostate cancer inhibits signaling from the androgen receptor (AR) by inhibiting its nuclear accumulation downstream of microtubule stabilization. This mechanism is independent of paclitaxel-induced mitotic arrest and could provide an alternative mechanism of drug action that can explain its clinical activity. In this review, we highlight the importance of signaling and trafficking pathways that depend on intact and dynamic microtubules and as such they represent downstream targets of microtubule inhibitors. We showcase prostate cancer, which is driven by the activity of the androgen receptor (AR), as recent reports have revealed a connection between the microtubule-dependent trafficking of AR and the clinical efficacy of taxanes. Identification and further elucidation of microtubule-dependent tumor-specific pathways will help us better understand the molecular basis of clinical taxane resistance as well as identify individual patients more likely to respond to treatment. PMID:22987486

  12. Method of Simulating Flow-Through Area of a Pressure Regulator

    NASA Technical Reports Server (NTRS)

    Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)

    2011-01-01

    The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.

  13. ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells

    PubMed Central

    Pan, Ling; Deng, Min; Xie, Xiaoling; Gan, Lin

    2009-01-01

    SUMMARY LIM-homeodomain (HD) and POU-HD transcription factors play critical roles in neurogenesis. However, it remains largely unknown how they cooperate in this process and what downstream target genes they regulate. Here we show that ISL1, a LIM-HD protein, is co-expressed with BRN3B, a POU-HD factor, in nascent, post-mitotic retinal ganglion cells (RGCs). Similar to the Brn3b-null retinas, retina-specific deletion of Isl1 results in the apoptosis of a majority of RGCs and in RGC axon guidance defects. The Isl1 and Brn3b double null mice display more severe retinal abnormalities with a near complete loss of RGCs, indicating the synergistic functions of these two factors. Furthermore, we show that both Isl1 and Brn3b function downstream of Math5 to regulate the expression of a common set of RGC-specific genes. Whole retina chromatin immunoprecipitation and in vitro transactivation assays reveal that ISL1 and BRN3B concurrently bind to and synergistically regulate the expression of a common set of RGC-specific genes. Thus, our results uncover a novel regulatory mechanism of BRN3B and ISL1 in RGC differentiation. PMID:18434421

  14. JAK2V617F influences epigenomic changes in myeloproliferative neoplasms.

    PubMed

    Chen, Chih-Cheng; Chiu, Chia-Chen; Lee, Kuan-Der; Hsu, Chia-Chen; Chen, Hong-Chi; Huang, Tim H-M; Hsiao, Shu-Huei; Leu, Yu-Wei

    2017-12-16

    Negative valine (V) to phenylalanine (F) switch at the Janus kinase (JAK2) 617 codon (V617F) is the dominant driver mutation in patients with myeloproliferative neoplasms (MPNs). JAK2V617F was proved to be sufficient for cell transformation; however, independent mutations might influence the following epigenomic modifications. To assess the JAK2V617F-induced downstream epigenomic changes without interferences, we profiled the epigenomic changes in ectopically expressed JAK2V617F in Ba/F3 cells. Antibodies against phosphorylated signal transducer and activator of transcription 3 (pSTAT3) and enhancer of zeste homolog 2 (EZH2) were used for chromatin-immunoprecipitation sequencing (ChIP-seq) to detect the downstream epigenomic targets in the JAK2-STAT3 signaling pathway. To confirm the JAK2V617F-induced epigenetic changes in vivo, DNA methylation changes in the target loci in patients with MPNs were detected through methylation-specific polymerase chain reaction and were clustered against the changes within controls. We found that ectopically expressed JAK2V617F in Ba/F3 cells reduced the binding specificity; it was associated with cis-regulatory elements and recognized DNA motifs in both pSTAT3-downstream and EZH2-associated targets. Overlapping target loci between the control and JAK2V617F were <3% and 0.4%, respectively, as identified through pSTAT3 and EZH2 ChIP-seq. Furthermore, the methylation changes in the direct target loci (FOXH1, HOXC9, and SRF) were clustered independently from the control locus (L1TD1) and other mutation genes (HMGA2 and Lin28A) in the analyzed MPN samples. Therefore, JAK2V617F influences target binding in both pSTAT3 and EZH2. Without mutations in epigenetic regulators, JAK2V617F can induce downstream epigenomic modifications. Thus, epigenetic changes in JAK2 downstream targets might be trackable in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Novel Paradigms for Dialysis Vascular Access: Downstream Vascular Biology–Is There a Final Common Pathway?

    PubMed Central

    2013-01-01

    Summary Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development. PMID:23990166

  16. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice.

    PubMed

    Sawicka, Kirsty; Pyronneau, Alexander; Chao, Miranda; Bennett, Michael V L; Zukin, R Suzanne

    2016-10-11

    Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and a leading genetic form of autism. The Fmr1 KO mouse, a model of FXS, exhibits elevated translation in the hippocampus and the cortex. ERK (extracellular signal-regulated kinase) and mTOR (mechanistic target of rapamycin) signaling regulate protein synthesis by activating downstream targets critical to translation initiation and elongation and are known to contribute to hippocampal defects in fragile X. Here we show that the effect of loss of fragile X mental retardation protein (FMRP) on these pathways is brain region specific. In contrast to the hippocampus, ERK (but not mTOR) signaling is elevated in the neocortex of fragile X mice. Phosphorylation of ribosomal protein S6, typically a downstream target of mTOR, is elevated in the neocortex, despite normal mTOR activity. This is significant in that S6 phosphorylation facilitates translation, correlates with neuronal activation, and is altered in neurodevelopmental disorders. We show that in fragile X mice, S6 is regulated by ERK via the "alternative" S6 kinase p90-ribosomal S6 kinase (RSK), as evidenced by the site of elevated phosphorylation and the finding that ERK inhibition corrects elevated RSK and S6 activity. These findings indicate that signaling networks are altered in the neocortex of fragile X mice such that S6 phosphorylation receives aberrant input from ERK/RSK. Importantly, an RSK inhibitor reduces susceptibility to audiogenic seizures in fragile X mice. Our findings identify RSK as a therapeutic target for fragile X and suggest the therapeutic potential of drugs for the treatment of FXS may vary in a brain-region-specific manner.

  17. Targeting G protein-coupled receptor kinases (GRKs) in Heart Failure

    PubMed Central

    Brinks, Henriette; Koch, Walter J

    2010-01-01

    In the human body, over 1000 different G protein-coupled receptors (GPCRs) mediate a broad spectrum of extracellular signals at the plasma membrane, transmitting vital physiological features such as pain, sight, smell, inflammation, heart rate and contractility of muscle cells. Signaling through these receptors is primarily controlled and regulated by a group of kinases, the GPCR kinases (GRKs), of which only seven are known and thus, interference with these common downstream GPCR regulators suggests a powerful therapeutic strategy. Molecular modulation of the kinases that are ubiquitously expressed in the heart has proven GRK2, and also GRK5, to be promising targets for prevention and reversal of one of the most severe pathologies in man, chronic heart failure (HF). In this article we will focus on the structural aspects of these GRKs important for their physiological and pathological regulation as well as well known and novel therapeutic approaches that target these GRKs in order to overcome the development of cardiac injury and progression of HF. PMID:21218155

  18. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    USGS Publications Warehouse

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and structural options were explored with the model scenarios. Multiple downstream temperature targets were used along with three sets of environmental forcing conditions representing cool/wet, normal, and hot/dry conditions. Five structural options at Detroit Dam were modeled, including the use of existing outlets, one hypothetical variable-elevation outlet such as a sliding gate, a hypothetical combination of a floating outlet and a fixed-elevation outlet, and a hypothetical combination of a floating outlet and a sliding gate. Finally, 14 sets of operational guidelines for Detroit Dam were explored to gain an understanding of the effects of imposing different downstream minimum streamflows, imposing minimum outflow rules to specific outlets, and managing the level of the lake with different timelines through the year. Selected subsets of these combinations of operational and structural scenarios were run through the downstream models of Big Cliff Reservoir and the North Santiam and Santiam Rivers to explore how hypothetical changes at Detroit Dam might provide improved temperatures for endangered salmonids downstream of the Detroit-Big Cliff Dam complex. Conclusions that can be drawn from these model scenarios include: *The water-temperature targets set by the U.S. Army Corps of Engineers for releases from Detroit Dam can be met through a combination of new dam outlets or a delayed drawdown of the lake in autumn. *Spring and summer dam operations greatly affect the available release temperatures and operational flexibility later in the autumn. Releasing warm water during midsummer tends to keep more cool water available for release in autumn. *The ability to meet downstream temperature targets during spring depends on the characteristics of the available outlets. Under existing conditions, although warm water sometimes is present at the lake surface in spring and early summer, such water may not be available for release if the lake level is either well below or well above the spillway crest. *Managing lake releases to meet downstream temperature targets depends on having outlet structures that can access both (warm) lake surface water and (cold) deeper lake water throughout the year. The existing outlets at Detroit Dam do not allow near-surface waters to be released during times when the lake surface level is below the spillway (spring and autumn). *Using the existing outlets at Detroit Dam, lake level management is important to the water temperature of releases because it controls the availability and depth of water at the spillway. When lake level is lowered below the spillway crest in late summer, the loss of access to warm water at the lake surface can result in abrupt changes to release temperatures. *Because the power-generation intakes (penstocks) are 166 feet below the full-pool lake level, imposing minimum power production requirements at Detroit Dam limits the amount of warm surface water that can be expelled from the lake in midsummer, thereby postponing and amplifying warm outflows from Detroit Lake into the autumn spawning season. *Likewise, imposing minimum power production requirements at Detroit Dam in autumn can limit the amount of cool hypolimnetic water that is released from the lake, thereby limiting cool outflows from Detroit Lake during the autumn spawning season. *Model simulations indicate that a delayed drawdown of Detroit Lake in autumn would result in better control over release temperatures in the immediate downstream vicinity of Big Cliff Dam, but the reduced outflows necessary to retain more water in the lake in late summer are more susceptible to rapid heating downstream. *Compared to the existing outlets at Detroit Dam, floating or sliding-gate outlet structures can provide greater control over release temperatures because they provide better access to warm water at the lake surface and cooler water at depth. These conclusions can be grouped into several common themes. First, optimal and flexible management and achievement of downstream temperature goals requires that releases of warm water near the surface of the lake and cold water below the thermocline are both possible with the available dam outlets during spring, summer, and autumn. This constraint can be met to some extent with existing outlets, but only if access to the spillway is extended into autumn by keeping the lake level higher than called for by the current rule curve (the typical target water-surface elevation throughout the year). If new outlets are considered, a variable-elevation outlet such as a sliding gate structure, or a floating outlet in combination with a fixed-elevation outlet at sufficient depth to access cold water, is likely to work well in terms of accessing a range of water temperatures and achieving downstream temperature targets. Furthermore, model results indicate that it is important to release warm water from near the lake surface during midsummer. If not released downstream, the warm water will build up at the top of the lake as a result of solar energy inputs and the thermocline will deepen, potentially causing warm water to reach the depth of deeper fixed-elevation outlets in autumn, particularly when the lake level is drawn down to make room for flood storage. Delaying the drawdown in autumn can help to keep the thermocline above such outlets and preserve access to cold water. Although it is important to generate hydropower at Detroit Dam, minimum power-production requirements limit the ability of dam operators to meet downstream temperature targets with existing outlet structures. The location of the power penstocks below the thermocline in spring and most of summer causes the release of more cool water during summer than is optimal. Reducing the power-production constraint allows the temperature target to be met more frequently, but at the cost of less power generation. Finally, running the Detroit Dam, Big Cliff Dam, and North Santiam and Santiam River models in series allows dam operators to evaluate how different operational strategies or combinations of new dam outlets might affect downstream temperatures for many miles of critical endangered salmonid habitat. Temperatures can change quickly in these downstream reaches as the river exchanges heat with its surroundings, and heating or cooling of 6 degrees Celsius is not unusual in the 40–50 miles downstream of Big Cliff Dam. The results published in this report supersede preliminary results published in U.S. Geological Survey Open-File Report 2011-1268 (Buccola and Rounds, 2011). Those preliminary results are still valid, but the results in this report are more current and comprehensive.

  19. miR-100 Induces Epithelial-Mesenchymal Transition but Suppresses Tumorigenesis, Migration and Invasion

    PubMed Central

    Chen, Dahu; Sun, Yutong; Yuan, Yuan; Han, Zhenbo; Zhang, Peijing; Zhang, Jinsong; You, M. James; Teruya-Feldstein, Julie; Wang, Min; Gupta, Sumeet; Hung, Mien-Chie; Liang, Han; Ma, Li

    2014-01-01

    Whether epithelial-mesenchymal transition (EMT) is always linked to increased tumorigenicity is controversial. Through microRNA (miRNA) expression profiling of mammary epithelial cells overexpressing Twist, Snail or ZEB1, we identified miR-100 as a novel EMT inducer. Surprisingly, miR-100 inhibits the tumorigenicity, motility and invasiveness of mammary tumor cells, and is commonly downregulated in human breast cancer due to hypermethylation of its host gene MIR100HG. The EMT-inducing and tumor-suppressing effects of miR-100 are mediated by distinct targets. While miR-100 downregulates E-cadherin by targeting SMARCA5, a regulator of CDH1 promoter methylation, this miRNA suppresses tumorigenesis, cell movement and invasion in vitro and in vivo through direct targeting of HOXA1, a gene that is both oncogenic and pro-invasive, leading to repression of multiple HOXA1 downstream targets involved in oncogenesis and invasiveness. These findings provide a proof-of-principle that EMT and tumorigenicity are not always associated and that certain EMT inducers can inhibit tumorigenesis, migration and invasion. PMID:24586203

  20. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer

    PubMed Central

    Ren, Zhipeng; Zhang, Guoliang

    2017-01-01

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer. PMID:28388588

  1. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer.

    PubMed

    Hou, Xiaobin; Wen, Jiaxin; Ren, Zhipeng; Zhang, Guoliang

    2017-06-27

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.

  2. A Notch-dependent transcriptional hierarchy promotes mesenchymal transdifferentiation in the cardiac cushion.

    PubMed

    Chang, Alex C Y; Garside, Victoria C; Fournier, Michele; Smrz, Justin; Vrljicak, Pavle; Umlandt, Patricia; Fuller, Megan; Robertson, Gordon; Zhao, Yongjun; Tam, Angela; Jones, Steven J M; Marra, Marco A; Hoodless, Pamela A; Karsan, Aly

    2014-07-01

    Valvuloseptal defects are the most common congenital heart defects. Notch signaling-induced endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) cushions at murine embryonic day (E)9.5 is a required step during early valve development. Insights to the transcriptional network that is activated in endocardial cells (EC) during EMT and how these pathways direct valve maturation are lacking. We show that at E11.5, AVC-EC retain the ability to undergo Notch-dependent EMT when explanted on collagen. EC-Notch inhibition at E10.5 blocks expression of known mesenchymal genes in E11.5 AVC-EC. To understand the genetic network and AVC development downstream of Notch signaling beyond E9.5, we constructed Tag-Seq libraries corresponding to different cell types of the E11.5 AVC and atrium in wild-type mice and in EC-Notch inhibited mice. We identified 1,400 potential Notch targets in the AVC-EC, of which 124 are transcription factors (TF). From the 124 TFs, we constructed a transcriptional hierarchy and identify 10 upstream TFs within the network. We validated 4 of the upstream TFs as Notch targets that are enriched in AVC-EC. Functionally, we show these 4 TFs regulate EMT in AVC explant assays. These novel signaling pathways downstream of Notch are potentially relevant to valve development. © 2014 Wiley Periodicals, Inc.

  3. PI3K Activation in Neural Stem Cells Drives Tumorigenesis which can be Ameliorated by Targeting the cAMP Response Element Binding (CREB) Protein.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Brown, Daniel V; Christie, Michael; Waring, Paul M; Zhang, Yi; Haynes, John M; Pouton, Colin; Flanagan, Dustin; Vincan, Elizabeth; Johns, Terrance G; Montgomery, Karen; Phillips, Wayne A; Mantamadiotis, Theo

    2018-04-30

    Hyperactivation of PI3K signaling is common in cancers but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells, where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. To investigate the role for the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, PTEN, to neural stem/progenitor cells (NSPCs). Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased WNT signaling, while loss of CREB in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.

  4. Neural cell adhesion molecule potentiates invasion and metastasis of melanoma cells through CAMP-dependent protein kinase and phosphatidylinositol 3-kinase pathways.

    PubMed

    Shi, Yu; Liu, Rui; Zhang, Si; Xia, Yin-Yan; Yang, Hai-Jie; Guo, Ke; Zeng, Qi; Feng, Zhi-Wei

    2011-04-01

    Neural cell adhesion molecule (NCAM) has been implicated in tumor metastasis yet its function in melanoma progression remains unclear. Here, we demonstrate that stably silencing NCAM expression in mouse melanoma B16F0 cells perturbs their cellular invasion and metastatic dissemination in vivo. The pro-invasive function of NCAM is exerted via dual mechanisms involving both cAMP-dependent protein kinase (PKA) and phosphatidylinositol 3-kinase (PI3K) pathways. Pharmacologic inhibition of PKA and PI3K leads to impaired cellular invasion. In contrast, forced expression of constitutively activated Akt, the major downstream target of PI3K, restores the defective cellular invasiveness of NCAM knock-down (KD) B16F0 cells. Furthermore, attenuation of either PKA or Akt activity in NCAM KD cells is shown to affect their common downstream target, transcription factor cAMP response element binding protein (CREB), which in turn down-regulates mRNA expression of matrix metalloproteinase-2 (MMP-2), thus contributes to impaired cellular invasion and metastasis of melanoma cells. Together, these findings indicate that NCAM potentiates cellular invasion and metastasis of melanoma cells through stimulation of PKA and PI3K signaling pathways thus suggesting the potential implication of anti-NCAM strategy in melanoma treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The developing oligodendrocyte: key cellular target in brain injury in the premature infant

    PubMed Central

    Volpe, Joseph J.; Kinney, Hannah C.; Jensen, Frances, E.; Rosenberg, Paul A.

    2011-01-01

    Brain injury in the premature infant, a problem of enormous importance, is associated with a high risk of neurodevelopmental disability. The major type of injury involves cerebral white matter and the principal cellular target is the developing oligodendrocyte. The specific phase of the oligodendroglial lineage affected has been defined from study of both human brain and experimental models. This premyelinating cell (pre-OL) is vulnerable because of a series of maturation-dependent events. The pathogenesis of pre-OL injury relates to operation of two upstream mechanisms, hypoxia-ischemia and systemic infection/inflammation, both of which are common occurrences in premature infants. The focus of this review and of our research over the past 15-20 years has been the cellular and molecular bases for the maturation-dependent vulnerability of the pre-OL to the action of the two upstream mechanisms. Three downstream mechanisms have been identified, i.e., microglial activation, excitotoxicity and free radical attack. The work in both experimental models and human brain has identified a remarkable confluence of maturation-dependent factors that render the pre-OL so exquisitely vulnerable to these downstream mechanisms. Most importantly, elucidation of these factors has led to delineation of a series of potential therapeutic interventions, which in experimental models show marked protective properties. The critical next step, i.e., clinical trials in the living infant, is now on the horizon. PMID:21382469

  6. Combustion mode switching with a turbocharged/supercharged engine

    DOEpatents

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  7. Coupling systematic planning and expert judgement enhances the efficiency of river restoration.

    PubMed

    Langhans, Simone D; Gessner, Jörn; Hermoso, Virgilio; Wolter, Christian

    2016-08-01

    Ineffectiveness of current river restoration practices hinders the achievement of ecological quality targets set by country-specific regulations. Recent advances in river restoration help planning efforts more systematically to reach ecological targets at the least costs. However, such approaches are often desktop-based and overlook real-world constraints. We argue that combining two techniques commonly used in the conservation arena - expert judgement and systematic planning - will deliver cost-effective restoration plans with a high potential for implementation. We tested this idea targeting the restoration of spawning habitat, i.e. gravel bars, for 11 rheophilic fish species along a river system in Germany (Havel-Spree rivers). With a group of local fish experts, we identified the location and extent of potential gravel bars along the rivers and necessary improvements to migration barriers to ensure fish passage. Restoration cost of each gravel bar included the cost of the action itself plus a fraction of the cost necessary to ensure longitudinal connectivity by upgrading or building fish passages located downstream. We set restoration targets according to the EU Water Framework Directive, i.e. relative abundance of 11 fish species in the reference community and optimised a restoration plan by prioritising a subset of restoration sites from the full set of identified sites, using the conservation planning software Marxan. Out of the 66 potential gravel bars, 36 sites which were mainly located in the downstream section of the system were selected, reflecting their cost-effectiveness given that fewer barriers needed intervention. Due to the limited overall number of sites that experts identified as being suitable for restoring spawning habitat, reaching abundance-targets was challenged. We conclude that coupling systematic river restoration planning with expert judgement produces optimised restoration plans that account for on-the-ground implementation constraints. If applied, this approach has a high potential to enhance overall efficiency of future restoration efforts. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer.

    PubMed

    Jyotsana, Nidhi; Heuser, Michael

    2018-02-01

    Mutations in genes associated with splicing have been found in hematologic malignancies, but also in solid cancers. Aberrant cancer specific RNA splicing either results from mutations or misexpression of the spliceosome genes directly, or from mutations in splice sites of oncogenes or tumor suppressors. Areas covered: In this review, we present molecular targets of aberrant splicing in various malignancies, information on existing and emerging therapeutics against such targets, and strategies for future drug development. Expert opinion: Alternative splicing is an important mechanism that controls gene expression, and hence pharmacologic and genetic control of aberrant alternative RNA splicing has been proposed as a potential therapy in cancer. To identify and validate aberrant RNA splicing patterns as therapeutic targets we need to (1) characterize the most common genetic aberrations of the spliceosome and of splice sites, (2) understand the dysregulated downstream pathways and (3) exploit in-vivo disease models of aberrant splicing. Antisense oligonucleotides show promising activity, but will benefit from improved delivery tools. Inhibitors of mutated splicing factors require improved specificity, as alternative and aberrant splicing are often intertwined like two sides of the same coin. In summary, targeting aberrant splicing is an early but emerging field in cancer treatment.

  9. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  10. Circular RNAs play an important role in late-stage gastric cancer: Circular RNA expression profiles and bioinformatics analyses.

    PubMed

    Fang, Yantian; Ma, Minzhe; Wang, Jiangli; Liu, Xiaowen; Wang, Yanong

    2017-06-01

    Gastric cancer is one of the most common tumors of the digestive system. Here, analysis of the expression profiles of circular RNAs in advanced gastric adenocarcinoma and adjacent normal mucosa tissues revealed differential expression of 306 circular RNAs, among which 273 were predicted to exert regulatory effects on target microRNAs. The downstream pathway networks of circular RNA-microRNA were mapped and the node genes were identified. In particular, we found that the expression of hsa_circ_0058246 was elevated in tumor specimens of patients with poor clinical outcomes. Our collective findings indicate that circular RNAs play a critical role in gastric cancer tumorigenesis. Data from this study provide a new perspective on the molecular pathways underlying metastasis and recurrence of gastric cancer and highlight potential therapeutic targets that may contribute to more effective diagnosis and treatment of the disease.

  11. Targeting Wnts at the source--new mechanisms, new biomarkers, new drugs.

    PubMed

    Madan, Babita; Virshup, David M

    2015-05-01

    Wnt signaling is dysregulated in many cancers and is therefore an attractive therapeutic target. The focus of drug development has recently shifted away from downstream inhibitors of β-catenin. Active inhibitors of Wnt secretion and Wnt/receptor interactions have been developed that are now entering clinical trials. Such agents include inhibitors of Wnt secretion, as well as recombinant proteins that minimize Wnt-Frizzled interactions. These new therapies arrive together with the recent insight that cancer-specific upregulation of Wnt receptors at the cell surface regulates cellular sensitivity to Wnts. Loss-of-function mutations in RNF43 or ZNRF3 and gain-of-function chromosome translocations involving RSPO2 and RSPO3 are surprisingly common and markedly increase Wnt/β-catenin signaling in response to secreted Wnts. These mutations may be predictive biomarkers to select patients responsive to newly developed upstream Wnt inhibitors. ©2015 American Association for Cancer Research.

  12. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal.

    PubMed

    Ye, Shoudong; Zhang, Dongming; Cheng, Fei; Wilson, Daniel; Mackay, Jeffrey; He, Kan; Ban, Qian; Lv, Feng; Huang, Saifei; Liu, Dahai; Ying, Qi-Long

    2016-01-15

    Activation of leukemia inhibitor factor (LIF)-Stat3 or Wnt/β-catenin signaling promotes mouse embryonic stem cell (mESC) self-renewal. A myriad of downstream targets have been identified in the individual signal pathways, but their common targets remain largely elusive. In this study, we found that the LIF-Stat3 and Wnt/β-catenin signaling pathways converge on Sp5 to promote mESC self-renewal. Forced Sp5 expression can reproduce partial effects of Wnt/β-catenin signaling but mimics most features of LIF-Stat3 signaling to maintain undifferentiated mESCs. Moreover, Sp5 is able to convert mouse epiblast stem cells into a naïve pluripotent state. Thus, Sp5 is an important component of the regulatory network governing mESC naïve pluripotency. © 2016. Published by The Company of Biologists Ltd.

  13. Regulation of Ubiquitination-Mediated Protein Degradation by Survival Kinases in Cancer

    PubMed Central

    Yamaguchi, Hirohito; Hsu, Jennifer L.; Hung, Mien-Chie

    2011-01-01

    The ubiquitin–proteasome system is essential for multiple physiological processes via selective degradation of target proteins and has been shown to plays a critical role in human cancer. Activation of oncogenic factors and inhibition of tumor suppressors have been shown to be essential for cancer development, and protein ubiquitination has been linked to the regulation of oncogenic factors and tumor suppressors. Three kinases, AKT, extracellular signal-regulated kinase, and IκB kinase, we refer to as oncokinases, are activated in multiple human cancers. We and others have identified several key downstream targets that are commonly regulated by these oncokinases, some of which are regulated directly or indirectly via ubiquitin-mediated proteasome degradation, including FOXO3, β-catenin, myeloid cell leukemia-1, and Snail. In this review, we summarize these findings from our and other groups and discuss potential future studies and applications in the clinic. PMID:22649777

  14. The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways*

    PubMed Central

    Kovacevic, Zaklina; Menezes, Sharleen V.; Sahni, Sumit; Kalinowski, Danuta S.; Bae, Dong-Hun; Lane, Darius J. R.; Richardson, Des R.

    2016-01-01

    N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors. PMID:26534963

  15. FUNCTIONAL DEREGULATION OF KIT: LINK TO MAST CELL PROLIFERATIVE DISEASES AND OTHER NEOPLASMS

    PubMed Central

    Cruse, Glenn; Metcalfe, Dean D.; Olivera, Ana

    2014-01-01

    SYNOPSIS Signaling through the receptor tyrosine kinase KIT mediates differentiation, proliferation and survival of hematopoietic precursor cells and mast cells. Constitutive KIT signaling due to somatic point mutations in c-Kit is an important occurrence in the development of mast cell proliferation disorders and other hematological malignancies. In this review, we discuss the common gain-of-function mutations found in these malignancies, particularly in mast cell proliferation disorders, and summarize the current understanding of the molecular mechanisms by which transforming point mutations in KIT may affect KIT structure and function and lead to altered downstream signaling and cellular transformation. Drugs targeting KIT have shown mixed success in the treatment of these diseases. A brief overview of the most common KIT inhibitors currently used, the reasons for the varied clinical results of such inhibitors and a discussion of potential new strategies are provided. PMID:24745671

  16. Dynamic Target Match Signals in Perirhinal Cortex Can Be Explained by Instantaneous Computations That Act on Dynamic Input from Inferotemporal Cortex

    PubMed Central

    Pagan, Marino

    2014-01-01

    Finding sought objects requires the brain to combine visual and target signals to determine when a target is in view. To investigate how the brain implements these computations, we recorded neural responses in inferotemporal cortex (IT) and perirhinal cortex (PRH) as macaque monkeys performed a delayed-match-to-sample target search task. Our data suggest that visual and target signals were combined within or before IT in the ventral visual pathway and then passed onto PRH, where they were reformatted into a more explicit target match signal over ∼10–15 ms. Accounting for these dynamics in PRH did not require proposing dynamic computations within PRH itself but, rather, could be attributed to instantaneous PRH computations performed upon an input representation from IT that changed with time. We found that the dynamics of the IT representation arose from two commonly observed features: individual IT neurons whose response preferences were not simply rescaled with time and variable response latencies across the population. Our results demonstrate that these types of time-varying responses have important consequences for downstream computation and suggest that dynamic representations can arise within a feedforward framework as a consequence of instantaneous computations performed upon time-varying inputs. PMID:25122904

  17. Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.

    PubMed

    Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2017-07-05

    Neural circuits must transform new inputs into outputs without prematurely affecting downstream circuits while still maintaining other ongoing communication with these targets. We investigated how this isolation is achieved in the motor cortex when macaques received visual feedback signaling a movement perturbation. To overcome limitations in estimating the mapping from cortex to arm movements, we also conducted brain-machine interface (BMI) experiments where we could definitively identify neural firing patterns as output-null or output-potent. This revealed that perturbation-evoked responses were initially restricted to output-null patterns that cancelled out at the neural population code readout and only later entered output-potent neural dimensions. This mechanism was facilitated by the circuit's large null space and its ability to strongly modulate output-potent dimensions when generating corrective movements. These results show that the nervous system can temporarily isolate portions of a circuit's activity from its downstream targets by restricting this activity to the circuit's output-null neural dimensions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    PubMed

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  19. Genetic analysis of hyperemesis gravidarum reveals association with intracellular calcium release channel (RYR2).

    PubMed

    Fejzo, Marlena Schoenberg; Myhre, Ronny; Colodro-Conde, Lucía; MacGibbon, Kimber W; Sinsheimer, Janet S; Reddy, M V Prasad Linga; Pajukanta, Päivi; Nyholt, Dale R; Wright, Margaret J; Martin, Nicholas G; Engel, Stephanie M; Medland, Sarah E; Magnus, Per; Mullin, Patrick M

    2017-01-05

    Hyperemesis Gravidarum (HG), severe nausea/vomiting in pregnancy (NVP), can cause poor maternal/fetal outcomes. Genetic predisposition suggests the genetic component is essential in discovering an etiology. We performed whole-exome sequencing of 5 families followed by analysis of variants in 584 cases/431 controls. Variants in RYR2 segregated with disease in 2 families. The novel variant L3277R was not found in any case/control. The rare variant, G1886S was more common in cases (p = 0.046) and extreme cases (p = 0.023). Replication of G1886S using Norwegian/Australian data was supportive. Common variants rs790899 and rs1891246 were significantly associated with HG and weight loss. Copy-number analysis revealed a deletion in a patient. RYR2 encodes an intracellular calcium release channel involved in vomiting, cyclic-vomiting syndrome, and is a thyroid hormone target gene. Additionally, RYR2 is a downstream drug target of Inderal, used to treat HG and CVS. Thus, herein we provide genetic evidence for a pathway and therapy for HG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Advances in treatment of achondroplasia and osteoarthritis.

    PubMed

    Klag, Kendra A; Horton, William A

    2016-04-15

    Achondroplasia (ACH) is the prototype and most common of the human chondrodysplasias. It results from gain-of-function mutations that exaggerate the signal output of the fibroblast growth factor receptor 3 (FGFR3), a receptor tyrosine kinase that negatively regulates growth plate activity and linear bone growth. Several approaches to reduce FGFR3 signaling by blocking receptor activation or inhibiting downstream signals have been proposed. Five show promise in preclinical mouse studies. Two candidate therapies target the extracellular domain of FGFR3. The first is a decoy receptor that competes for activating ligands. The second is a synthetic blocking peptide that prevents ligands from binding and activating FGFR3. Two established drugs, statins and meclozine, improve growth of ACH mice. The strongest candidate therapy employs an analog of C-type natriuretic peptide (CNP), which antagonizes the mitogen-activated-protein (MAP) kinase pathway downstream of the FGFR3 receptor and may also act independently in the growth plate. Only the CNP analog has reached clinical trials. Preliminary results of Phase 2 studies show a substantial increase in growth rate of ACH children after six months of therapy with no serious adverse effects. A challenge for drug therapy in ACH is targeting agents to the avascular growth plate. The application of gene therapy in osteoarthritis offers insights because it faces similar technical obstacles. Major advances in gene therapy include the emergence of recombinant adeno-associated virus as the vector of choice, capsid engineering to target vectors to specific tissues, and development of methods to direct vectors to articular chondrocytes. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells.

    PubMed

    Chen, Z; Chen, J; Gu, Y; Hu, C; Li, J-L; Lin, S; Shen, H; Cao, C; Gao, R; Li, J; Ha, P K; Kaye, F J; Griffin, J D; Wu, L

    2014-07-17

    Salivary gland tumors (SGT) are a group of highly heterogeneous head and neck malignancies with widely varied clinical outcomes and no standard effective treatments. The CRTC1-MAML2 fusion oncogene, encoded by a recurring chromosomal translocation t(11;19)(q14-21;p12-13), is a frequent genetic alteration found in >50% of mucoepidermoid carcinomas (MEC), the most common malignant SGT. In this study, we aimed to define the role of the CRTC1-MAML2 oncogene in the maintenance of MEC tumor growth and to investigate critical downstream target genes and pathways for therapeutic targeting of MEC. By performing gene expression analyses and functional studies via RNA interference and pharmacological modulation, we determined the importance of the CRTC1-MAML2 fusion gene and its downstream AREG-EGFR signaling in human MEC cancer cell growth and survival in vitro and in vivo using human MEC xenograft models. We found that CRTC1-MAML2 fusion oncogene was required for the growth and survival of fusion-positive human MEC cancer cells in vitro and in vivo. The CRTC1-MAML2 oncoprotein induced the upregulation of the epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) by co-activating the transcription factor CREB, and AREG subsequently activated EGFR signaling in an autocrine manner that promoted MEC cell growth and survival. Importantly, CRTC1-MAML2-positive MEC cells were highly sensitive to EGFR signaling inhibition. Therefore, our study revealed that aberrantly activated AREG-EGFR signaling is required for CRTC1-MAML2-positive MEC cell growth and survival, suggesting that EGFR-targeted therapies will benefit patients with advanced, unresectable CRTC1-MAML2-positive MEC.

  2. BLISTER Regulates Polycomb-Target Genes, Represses Stress-Regulated Genes and Promotes Stress Responses in Arabidopsis thaliana.

    PubMed

    Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel

    2017-01-01

    HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.

  3. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy

    PubMed Central

    Spinazzola, Janelle M.; Kunkel, Louis M.

    2016-01-01

    Introduction Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. Areas covered In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. Expert opinion For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation. PMID:28670506

  4. Novel targets for prostate cancer chemoprevention

    PubMed Central

    Sarkar, Fazlul H; Li, Yiwei; Wang, Zhiwei; Kong, Dejuan

    2010-01-01

    Among many endocrine-related cancers, prostate cancer (PCa) is the most frequent male malignancy, and it is the second most common cause of cancer-related death in men in the United States. Therefore, this review focuses on summarizing the knowledge of molecular signaling pathways in PCa because, in order to better design new preventive strategies for the fight against PCa, documentation of the knowledge on the pathogenesis of PCa at the molecular level is very important. Cancer cells are known to have alterations in multiple cellular signaling pathways; indeed, the development and the progression of PCa are known to be caused by the deregulation of several selective signaling pathways such as the androgen receptor, Akt, nuclear factor-κB, Wnt, Hedgehog, and Notch. Therefore, strategies targeting these important pathways and their upstream and downstream signaling could be promising for the prevention of PCa progression. In this review, we summarize the current knowledge regarding the alterations in cell signaling pathways during the development and progression of PCa, and document compelling evidence showing that these are the targets of several natural agents against PCa progression and its metastases. PMID:20576802

  5. Functional role of a long non-coding RNA LIFR-AS1/miR-29a/TNFAIP3 axis in colorectal cancer resistance to pohotodynamic therapy.

    PubMed

    Liu, Kuijie; Yao, Hongliang; Wen, Yu; Zhao, Hua; Zhou, Nanjiang; Lei, Sanlin; Xiong, Li

    2018-05-25

    Colorectal Cancer (CRC) is one of the most common digestive system malignant tumors. Recently, PDT has been used as a first-line treatment for colon cancer; however, limited curative effect was obtained due to resistance of CRC to PDT. During the past decades, accumulating CRC-related long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and mRNAs have been reported to exert diverse functions through various biological processes; their dysregulation might trigger and/or promote the pathological changes. Herein, we performed microarrays analysis to identify dysregulated lncRNAs, miRNAs and mRNAs in PDT-treated HCT116 cells to figure out the lncRNA-miRNA interactions related to the resistance of CRC to PDT treatment, and the downstream mRNA target, as well as the molecular mechanism. We found a total of 1096 lncRNAs dysregulated in PDT-treated CRC HCT116 cells; among them, LIFR-AS1 negatively interacted with miR-29a, one of the dysregulated miRNAs in PDT-treated CRC cells, to affect the resistance of CRC to PDT. LIFR-AS1 knockdown attenuated, whereas miR-29a inhibition enhanced the cellular effect of PDT on HCT116 cell proliferation and apoptosis. Furthermore, among the dysregulated mRNAs, TNFAIP3 was confirmed to be a direct target of miR-29a and exerted a similar effect to LIFR-AS1 on the cellular effects of PDT. In summary, LIFR-AS1 serves as a competitive endogenous RNA (ceRNA) for miR-29a to inhibit its expression and up-regulate downstream target TNFAIP3 expression, finally modulating the resistance of CRC to PDT. We provide an experimental basis for this lncRNA/miRNA/mRNA network being a promising target in CRC resistance to PDT treatment. Copyright © 2018. Published by Elsevier B.V.

  6. Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system.

    PubMed

    McEachran, Andrew D; Hedgespeth, Melanie L; Newton, Seth R; McMahen, Rebecca; Strynar, Mark; Shea, Damian; Nichols, Elizabeth Guthrie

    2018-05-01

    Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contaminants of emerging concern (CECs) before release of treated wastewater. To better characterize CECs and potential for increased implementation of FWR systems, FWR systems need to be directly compared to conventional WWTPs. In this study, both a quantitative, targeted analysis and a nontargeted analysis were utilized to better understand how CECs release to waterways from an FWR system compared to a conventional treatment system. Quantitatively, greater concentrations and total mass load of CECs was exhibited downstream of the conventional WWTP compared to the FWR. Average summed concentrations of 33 targeted CECs downstream of the conventional system were ~ 1000 ng/L and downstream of the FWR were ~ 30 ng/L. From a nontargeted chemical standpoint, more tentatively identified chemicals were present, and at a greater relative abundance, downstream of the conventional system as well. Frequently occurring contaminants included phthalates, pharmaceuticals, and industrial chemicals. These data indicate that FWR systems represent a sustainable wastewater treatment alternative and that emerging contaminant release to waterways was lower at a FWR system than a conventional WWTP.

  7. Lateral and vertical distribution of downstream migrating juvenile sea lamprey

    USGS Publications Warehouse

    Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen

    2018-01-01

    Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.

  8. M$^3$: A New Muon Missing Momentum Experiment to Probe $$(g-2)_{\\mu}$$ and Dark Matter at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Yonatan; Krnjaic, Gordan; Tran, Nhan

    New light, weakly-coupled particles are commonly invoked to address the persistentmore » $$\\sim 4\\sigma$$ anomaly in $$(g-2)_\\mu$$ and serve as mediators between dark and visible matter. If such particles couple predominantly to heavier generations and decay invisibly, much of their best-motivated parameter space is inaccessible with existing experimental techniques. In this paper, we present a new fixed-target, missing-momentum search strategy to probe invisibly decaying particles that couple preferentially to muons. In our setup, a relativistic muon beam impinges on a thick active target. The signal consists of events in which a muon loses a large fraction of its incident momentum inside the target without initiating any detectable electromagnetic or hadronic activity in downstream veto systems. We propose a two-phase experiment, M$^3$ (Muon Missing Momentum), based at Fermilab. Phase 1 with $$\\sim 10^{10}$$ muons on target can test the remaining parameter space for which light invisibly-decaying particles can resolve the $$(g-2)_\\mu$$ anomaly, while Phase 2 with $$\\sim 10^{13}$$ muons on target can test much of the predictive parameter space over which sub-GeV dark matter achieves freeze-out via muon-philic forces, including gauged $$U(1)_{L_\\mu - L_\\tau}$$.« less

  9. Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells

    PubMed Central

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-01-01

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: http://dx.doi.org/10.7554/eLife.04640.001 PMID:26284497

  10. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  11. Downscaling catchment scale flood risk to contributing sub-catchments to determine the optimum location for flood management.

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Lane, Stuart; Hardy, Richard; Reaney, Sim

    2010-05-01

    The recent increase in flood frequency and magnitude has been hypothesised to have been caused by either climate change or land management. Field scale studies have found that changing land management practices does affect local runoff and streamflow, but upscaling these effects to the catchment scale continues to be problematic, both conceptually and more importantly methodologically. The impact on downstream flood risk is highly dependent upon where the changes are in the catchment, indicating that some areas of the catchment are more important in determining downstream flood risk than others. This is a major flaw in the traditional approach to studying the effect of land use on downstream flood risk: catchment scale hydrological models, which treat every cell in the model equally. We are proposing an alternative ideological approach for doing flood management research, which is underpinned by downscaling the downstream effect (problem i.e. flooding) to the upstream causes (contributing sub-catchments). It is hoped that this approach could have several benefits over the traditional upscaling approach. Firstly, it provides an efficient method to prioritise areas for land use management changes to be implemented to reduce downstream flood risk. Secondly, targets for sub-catchment hydrograph change can be determined which will deliver the required downstream effect. Thirdly, it may be possible to detect the effect of land use changes in upstream areas on downstream flood risk, by weighting the areas of most importance in hydrological models. Two methods for doing this downscaling are proposed; 1) data-based statistical analysis; and 2) hydraulic modelling-based downscaling. These will be outlined using the case study of the River Eden, Cumbria, NW England. The data-based methodology uses the timing and magnitude of floods for each sub-catchment. Principal components analysis (PCA) is used to simplify sub-catchment interactions and optimising stepwise regression is used to predict downstream flood magnitude from the significant principal components. Two particular sub-catchments, the Eamont and the Upper Eden were highlighted as explaining the highest proportion of downstream flood risk, with 21.0% and 19.6% respectively. This approach uses the concept of data mining, whereby commonly available discharge data is used in an innovative way to learn about catchment behaviour. An alternative downscaling approach is hydraulic modelling whereby the input hydrographs from each tributary are changed in turn, both in terms of the magnitudes and the timing of the flows. This basic scenario testing approach can be used to assess the sensitivity of downstream flood risk to upstream contributing tributaries. This approach also highlighted the Upper Eden and Eamont as the most sensitive sub-catchments. A 25% reduction in the flows from these sub-catchments resulted in a 33.1cm and 21.9cm stage reduction downstream respectively, while an 8 hour delay of the peak flow caused a 32.3cm and 27.4cm decrease in downstream stage respectively. This alternative flood management approach is not a replacement to traditional hydrological modelling (upscaling), but a pre-step which allows for more focussed and informed investigation of land management scenarios, in the area where they are most likely to have beneficial impacts on downstream flooding.

  12. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2

    PubMed Central

    2010-01-01

    Background Neuroblastoma is a paediatric cancer of the sympathetic nervous system. The single most important genetic indicator of poor clinical outcome is amplification of the MYCN transcription factor. One of many down-stream MYCN targets is miR-184, which is either directly or indirectly repressed by this transcription factor, possibly due to its pro-apoptotic effects when ectopically over-expressed in neuroblastoma cells. The purpose of this study was to elucidate the molecular mechanism by which miR-184 conveys pro-apoptotic effects. Results We demonstrate that the knock-down of endogenous miR-184 has the opposite effect of ectopic up-regulation, leading to enhanced neuroblastoma cell numbers. As a mechanism of how miR-184 causes apoptosis when over-expressed, and increased cell numbers when inhibited, we demonstrate direct targeting and degradation of AKT2, a major downstream effector of the phosphatidylinositol 3-kinase (PI3K) pathway, one of the most potent pro-survival pathways in cancer. The pro-apoptotic effects of miR-184 ectopic over-expression in neuroblastoma cell lines is reproduced by siRNA inhibition of AKT2, while a positive effect on cell numbers similar to that obtained by the knock-down of endogenous miR-184 can be achieved by ectopic up-regulation of AKT2. Moreover, co-transfection of miR-184 with an AKT2 expression vector lacking the miR-184 target site in the 3'UTR rescues cells from the pro-apoptotic effects of miR-184. Conclusions MYCN contributes to tumorigenesis, in part, by repressing miR-184, leading to increased levels of AKT2, a direct target of miR-184. Thus, two important genes with positive effects on cell growth and survival, MYCN and AKT2, can be linked into a common genetic pathway through the actions of miR-184. As an inhibitor of AKT2, miR-184 could be of potential benefit in miRNA mediated therapeutics of MYCN amplified neuroblastoma and other forms of cancer. PMID:20409325

  13. Water quality and the composition of fish and macroinvertebrate communities in the Devils and Pecos Rivers within and upstream from the Amistad National Recreation Area, Texas, 2005-7

    USGS Publications Warehouse

    Moring, J. Bruce

    2012-01-01

    The total number of fish species collected was the same in the Devils River and Pecos River, but the species found in the two rivers varied slightly. The number of fish species generally increased from the site farthest upstream to the site farthest downstream in the Devils River, and decreased between the site farthest upstream and site farthest downstream in the Pecos River. The redbreast sunfish was the most abundant species collected in the Devils River, and the blacktail shiner was the most abundant species collected in the Pecos River. Comparing the species from each river, the percentage of omnivorous fish species was larger at the more downstream sites closer to Amistad Reservoir, and the percentage of species tolerant of environmental stressors was larger in the Pecos River. The fish community, assessed on the basis of the number of shared species among the sites sampled, was more similar to the fish community at the other sites on the same river than it was to the fish community from any other site in the other river. More macroinvertebrate taxa were collected in the Devils River than in the Pecos River. The largest number of macroinvertebrate taxa were from the site second farthest downstream on the Devils River, and the smallest numbers of macroinvertebrate taxa were from the farthest downstream site on the Pecos River. Mayflies were more common in the Devils River, and caddisflies were less common than mayflies at most sites. Net-spinning caddisflies were more common at the Devils River sites. The combined percent of mayfly, caddisfly, and stonefly taxa was generally larger at the Pecos River sites. Riffle beetles were the most commonly collected beetle taxon among all sites, and water-penny beetles were only collected at the Pecos River sites. A greater number of true midge taxa were collected more than any other taxa at the genus and species taxonomic level. Non-insect macroinvertebrate taxa were more common at the Devils River sites. Corbicula sp. (presumably the introduced Asian clam) was found at sites in both rivers, and amphipods were more abundant in the Devils River. The Margalef species richness index, based on aquatic insect taxa only, was larger at the Devils River sites than at the Pecos River sites. The Hilsenhoff's biotic index was largest at the site farthest downstream in the Devils River and smallest at the site second farthest downstream in the Pecos River. Overall similarity among sites based on the number of shared macroinvertebrate taxa indicated that each site is more similar to other sites on the same river than to sites on the other river.

  14. Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break.

    PubMed

    Anderson, Carol M; Korkin, Dmitry; Smith, Dana L; Makovets, Svetlana; Seidel, Jeffrey J; Sali, Andrej; Blackburn, Elizabeth H

    2008-04-01

    The kinases ATM and ATR (Tel1 and Mec1 in the yeast Saccharomyces cerevisiae) control the response to DNA damage. We report that S. cerevisiae Tel2 acts at an early step of the TEL1/ATM pathway of DNA damage signaling. We show that Tel1 and Tel2 interact, and that even when Tel1 protein levels are high, this interaction is specifically required for Tel1 localization to a DNA break and its activation of downstream targets. Computational analysis revealed structural homology between Tel2 and Ddc2 (ATRIP in vertebrates), a partner of Mec1, suggesting a common structural principle used by partners of phoshoinositide 3-kinase-like kinases.

  15. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation.

    PubMed

    Watanabe, Daisuke; Takagi, Hiroshi

    2017-06-01

    Rim15p, a Greatwall-family protein kinase in yeast Saccharomyces cerevisiae, is required for cellular nutrient responses, such as the entry into quiescence and the induction of meiosis and sporulation. In higher eukaryotes, the orthologous gene products are commonly involved in the cell cycle G 2 /M transition. How are these pleiotropic functions generated from a single family of protein kinases? Recent advances in both research fields have identified the conserved Greatwall-mediated signaling pathway and a variety of downstream target molecules. In addition, our studies of S. cerevisiae sake yeast strains revealed that Rim15p also plays a significant role in the control of alcoholic fermentation. Despite an extensive history of research on glycolysis and alcoholic fermentation, there has been no critical clue to artificial modification of fermentation performance of yeast cells. Our finding of an in vivo metabolic regulatory mechanism is expected to provide a major breakthrough in yeast breeding technologies for fermentation applications.

  16. Small Molecule Targeting of a MicroRNA Associated with Hepatocellular Carcinoma.

    PubMed

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-02-19

    Development of precision therapeutics is of immense interest, particularly as applied to the treatment of cancer. By analyzing the preferred cellular RNA targets of small molecules, we discovered that 5"-azido neomycin B binds the Drosha processing site in the microRNA (miR)-525 precursor. MiR-525 confers invasive properties to hepatocellular carcinoma (HCC) cells. Although HCC is one of the most common cancers, treatment options are limited, making the disease often fatal. Herein, we find that addition of 5"-azido neomycin B and its FDA-approved precursor, neomycin B, to an HCC cell line selectively inhibits production of the mature miRNA, boosts a downstream protein, and inhibits invasion. Interestingly, neomycin B is a second-line agent for hepatic encephalopathy (HE) and bacterial infections due to cirrhosis. Our results provocatively suggest that neomycin B, or second-generation derivatives, may be dual functioning molecules to treat both HE and HCC. Collectively, these studies show that rational design approaches can be tailored to disease-associated RNAs to afford potential lead therapeutics.

  17. Rational Methods for the Selection of Diverse Screening Compounds

    PubMed Central

    Huggins, David J.; Venkitaraman, Ashok R.; Spring, David R.

    2016-01-01

    Traditionally a pursuit of large pharmaceutical companies, high-throughput screening assays are becoming increasingly common within academic and government laboratories. This shift has been instrumental in enabling projects that have not been commercially viable, such as chemical probe discovery and screening against high risk targets. Once an assay has been prepared and validated, it must be fed with screening compounds. Crafting a successful collection of small molecules for screening poses a significant challenge. An optimized collection will minimize false positives whilst maximizing hit rates of compounds that are amenable to lead generation and optimization. Without due consideration of the relevant protein targets and the downstream screening assays, compound filtering and selection can fail to explore the great extent of chemical diversity and eschew valuable novelty. Herein, we discuss the different factors to be considered and methods that may be employed when assembling a structurally diverse compound screening collection. Rational methods for selecting diverse chemical libraries are essential for their effective use in high-throughput screens. PMID:21261294

  18. The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals.

    PubMed

    Tan, Heng Kean; Moad, Ahmed Ismail Hassan; Tan, Mei Lan

    2014-01-01

    The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.

  19. Adenoid cystic carcinoma: current therapy and potential therapeutic advances based on genomic profiling

    PubMed Central

    Chae, Young Kwang; Chung, Su Yun; Davis, Andrew A.; Carneiro, Benedito A.; Chandra, Sunandana; Kaplan, Jason; Kalyan, Aparna; Giles, Francis J.

    2015-01-01

    Adenoid cystic carcinoma (ACC) is a rare cancer with high potential for recurrence and metastasis. Efficacy of current treatment options, particularly for advanced disease, is very limited. Recent whole genome and exome sequencing has dramatically improved our understanding of ACC pathogenesis. A balanced translocation resulting in the MYB-NFIB fusion gene appears to be a fundamental signature of ACC. In addition, sequencing has identified a number of other driver genes mutated in downstream pathways common to other well-studied cancers. Overexpression of oncogenic proteins involved in cell growth, adhesion, cell cycle regulation, and angiogenesis are also present in ACC. Collectively, studies have identified genes and proteins for targeted, mechanism-based, therapies based on tumor phenotypes, as opposed to nonspecific cytotoxic agents. In addition, although few studies in ACC currently exist, immunotherapy may also hold promise. Better genetic understanding will enable treatment with novel targeted agents and initial exploration of immune-based therapies with the goal of improving outcomes for patients with ACC. PMID:26359351

  20. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide.

    PubMed

    Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing

    2016-01-01

    With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Coastal watershed management across an international border in the Tijuana River watershed

    NASA Astrophysics Data System (ADS)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  2. A recurrent endometrial stromal sarcoma harbors the novel fusion JAZF1-BCORL1.

    PubMed

    Allen, Allison J; Ali, Siraj M; Gowen, Kyle; Elvin, Julia A; Pejovic, Tanja

    2017-05-01

    •Genomic alterations may improve diagnostic certainty and subsequent treatment of endometrial stromal sarcoma.•Novel JAZF1-BCORL1 mutation was identified.•Targeted therapeutics to down-stream targets may improve survival benefit in these patients.

  3. A theoretical framework for understanding neuromuscular response to lower extremity joint injury.

    PubMed

    Pietrosimone, Brian G; McLeod, Michelle M; Lepley, Adam S

    2012-01-01

    Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes.

  4. A Theoretical Framework for Understanding Neuromuscular Response to Lower Extremity Joint Injury

    PubMed Central

    Pietrosimone, Brian G.; McLeod, Michelle M.; Lepley, Adam S.

    2012-01-01

    Background: Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Methods: Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Results: Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Conclusions: Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes. PMID:23016066

  5. Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies

    PubMed Central

    Armfield, Brooke A.; Cohn, Martin J.

    2015-01-01

    Congenital penile anomalies (CPAs) are among the most common human birth defects. Reports of CPAs, which include hypospadias, chordee, micropenis, and ambiguous genitalia, have risen sharply in recent decades, but the causes of these malformations are rarely identified. Both genetic anomalies and environmental factors, such as antiandrogenic and estrogenic endocrine disrupting chemicals (EDCs), are suspected to cause CPAs; however, little is known about the temporal window(s) of sensitivity to EDCs, or the tissue-specific roles and downstream targets of the androgen receptor (AR) in external genitalia. Here, we show that the full spectrum of CPAs can be produced by disrupting AR at different developmental stages and in specific cell types in the mouse genital tubercle. Inactivation of AR during a narrow window of prenatal development results in hypospadias and chordee, whereas earlier disruptions cause ambiguous genitalia and later disruptions cause micropenis. The neonatal phase of penile development is controlled by the balance of AR to estrogen receptor α (ERα) activity; either inhibition of androgen or augmentation of estrogen signaling can induce micropenis. AR and ERα have opposite effects on cell division, apoptosis, and regulation of Hedgehog, fibroblast growth factor, bone morphogenetic protein, and Wnt signaling in the genital tubercle. We identify Indian hedgehog (Ihh) as a novel downstream target of AR in external genitalia and show that conditional deletion of Ihh inhibits penile masculinization. These studies reveal previously unidentified cellular and molecular mechanisms by which antiandrogenic and estrogenic signals induce penile malformations and demonstrate that the timing of endocrine disruption can determine the type of CPA. PMID:26598695

  6. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Jin, Xiaoling; Zhang, Zongxiu; Zhan, Rui; Puzis, Leopold; Koniaris, Leonidas G; Zimmers, Teresa A

    2012-08-01

    Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.

  7. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia

    PubMed Central

    Bonetto, Andrea; Aydogdu, Tufan; Jin, Xiaoling; Zhang, Zongxiu; Zhan, Rui; Puzis, Leopold; Koniaris, Leonidas G.

    2012-01-01

    Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C2C12 myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia. PMID:22669242

  8. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411.

    PubMed

    Geneste, Clara C; Massey, Andrew J

    2018-02-01

    Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC 50 values were 43- and 19-fold greater than the autophosphorylation IC 50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC 50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC 50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.

  9. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    PubMed

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon carcinogenesis.

  10. Properties of targeted preamplification in DNA and cDNA quantification.

    PubMed

    Andersson, Daniel; Akrap, Nina; Svec, David; Godfrey, Tony E; Kubista, Mikael; Landberg, Göran; Ståhlberg, Anders

    2015-01-01

    Quantification of small molecule numbers often requires preamplification to generate enough copies for accurate downstream enumerations. Here, we studied experimental parameters in targeted preamplification and their effects on downstream quantitative real-time PCR (qPCR). To evaluate different strategies, we monitored the preamplification reaction in real-time using SYBR Green detection chemistry followed by melting curve analysis. Furthermore, individual targets were evaluated by qPCR. The preamplification reaction performed best when a large number of primer pairs was included in the primer pool. In addition, preamplification efficiency, reproducibility and specificity were found to depend on the number of template molecules present, primer concentration, annealing time and annealing temperature. The amount of nonspecific PCR products could also be reduced about 1000-fold using bovine serum albumin, glycerol and formamide in the preamplification. On the basis of our findings, we provide recommendations how to perform robust and highly accurate targeted preamplification in combination with qPCR or next-generation sequencing.

  11. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin.

    PubMed

    Chen, Jia; Xue, Jin; Ruan, Jingsong; Zhao, Juan; Tang, Beisha; Duan, Ranhui

    2017-12-01

    Mitochondrial kinase PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin function in a common pathway to regulate mitochondrial homeostasis contributing to the pathogenesis of Parkinson disease. The carboxyl terminus of Hsc70-interacting protein (CHIP) acts as a heat shock protein 70/heat shock protein 90 cochaperone to mediate protein folding or as an E3 ubiquitin ligase to target proteins for degradation. In this study, overexpression of Drosophila CHIP suppressed a range of Pink1 mutant phenotypes in flies, including abnormal wing posture, thoracic indentation, locomotion defects, muscle degeneration, and loss of dopaminergic neurons. Mitochondrial defects of Pink1 mutant, such as excessive fusion, reduced ATP content, and crista disorganization, were rescued by CHIP but not its ligase-dead mutants. Similar phenotypes and mitochondrial impairment were ameliorated in Parkin mutant flies by wild-type CHIP. Inactivation of CHIP with null fly mutants resulted in mitochondrial defects, such as reduced thoracic ATP content at 3 d old, decreased thoracic mitochondrial DNA content, and defective mitochondrial morphology at 60 d old. CHIP mutants did not exacerbate the phenotypes of Pink1 mutant flies but markedly shortened the life span of Parkin mutant flies. These results indicate that CHIP is involved in mitochondrial integrity and may act downstream of Pink1 in parallel with Parkin.-Chen, J., Xue, J., Ruan, J., Zhao, J., Tang, B., Duan, R. Drosophila CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. © FASEB.

  12. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy.

    PubMed

    Ehrhardt, Michael; Craveiro, Rogerio B; Holst, Martin I; Pietsch, Torsten; Dilloo, Dagmar

    2015-01-20

    Deregulation of the Phosphoinositide 3-kinase (PI3K)/AKT signalling network is a hallmark of oncogenesis. Also medulloblastoma, the most common malignant brain tumor in children, is characterized by high levels of AKT phosphorylation and activated PI3K signalling in medulloblastoma is associated with enhanced cellular motility, survival and chemoresistency underscoring its role of as a potential therapeutic target. Here we demonstrate that GDC-0941, a highly specific PI3K inhibitor with good clinical tolerability and promising anti-neoplastic activity in adult cancer, also displays anti-proliferative and pro-apoptotic effects in pediatric human medulloblastoma cell lines. Loss in cell viability is accompanied by reduced phosphorylation of AKT, a downstream target of PI3K. Furthermore, we show that GDC-0941 attenuates the migratory capacity of medulloblastoma cells and targets subpopulations expressing the stem cell marker CD133. GDC-0941 also synergizes with the standard medulloblastoma chemotherapeutic etoposide. In an orthotopic xenograft model of the most aggressive human medulloblastoma variant we document that oral adminstration of GDC-0941 impairs tumor growth and significantly prolongs survival. These findings provide a rational to further investigate GDC-0941 alone and in combination with standard chemotherapeutics for medulloblastoma treatment.

  13. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy

    PubMed Central

    Holst, Martin I.; Pietsch, Torsten; Dilloo, Dagmar

    2015-01-01

    Deregulation of the Phosphoinositide 3-kinase (PI3K)/AKT signalling network is a hallmark of oncogenesis. Also medulloblastoma, the most common malignant brain tumor in children, is characterized by high levels of AKT phosphorylation and activated PI3K signalling in medulloblastoma is associated with enhanced cellular motility, survival and chemoresistency underscoring its role of as a potential therapeutic target. Here we demonstrate that GDC-0941, a highly specific PI3K inhibitor with good clinical tolerability and promising anti-neoplastic activity in adult cancer, also displays anti-proliferative and pro-apoptotic effects in pediatric human medulloblastoma cell lines. Loss in cell viability is accompanied by reduced phosphorylation of AKT, a downstream target of PI3K. Furthermore, we show that GDC-0941 attenuates the migratory capacity of medulloblastoma cells and targets subpopulations expressing the stem cell marker CD133. GDC-0941 also synergizes with the standard medulloblastoma chemotherapeutic etoposide. In an orthotopic xenograft model of the most aggressive human medulloblastoma variant we document that oral adminstration of GDC-0941 impairs tumor growth and significantly prolongs survival. These findings provide a rational to further investigate GDC-0941 alone and in combination with standard chemotherapeutics for medulloblastoma treatment. PMID:25596739

  14. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    PubMed

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  15. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    PubMed Central

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  16. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  17. Overexpression of miRNA-497 inhibits tumor angiogenesis by targeting VEGFR2

    DOE PAGES

    Tu, Yingfeng; Liu, Li; Zhao, Dongliang; ...

    2015-09-08

    Recent studies reported miR-497 exhibited inhibitory effects in various cancers. However, whether miR-497 is involved in inhibiting angiogenesis, which is critical for tumor growth and metastasis, is still unknown. The purpose of this study was to investigate the potential role of miR-497 in tumor angiogenesis. In this work, cell proliferation and apoptosis analyses were conducted to explore the potential function of miR-497 in HUVECs by using MTT and TUNEL assays. Western blotting (WB) was employed to validate the downstream targets of miR-497. Furthermore, in order to disclose the role of miR-497 on angiogenesis, VEGFR2-luc transgenic mice were treated with miR-497more » mimic and applied to monitor tumor angiogenesis and growth by in vivo bioluminescent imaging (BLI). The results demonstrated that overexpression of miR-497 showed inhibitory effects on VEGFR2 activation and downstream Raf/MEK/ERK signal pathways in vitro and in vivo. Moreover, overexpression of miR-497 effectively induced HUVECs apoptosis by targeting VEGFR2 and downstream PI3K/AKT signaling pathway. Furthermore, miR-497 exhibited anti-angiogenesis and anti-tumor effects in the VEGFR2-luc breast tumor model proven by BLI, WB and immunohistochemistry analysis. In summary, miR-497 inhibits tumor angiogenesis and growth via targeting VEGFR2, indicating miR-497 can be explored as a potential drug candidate for cancer therapy.« less

  18. Targeting Prolyl Peptidases in Triple-Negative Breast Cancer

    DTIC Science & Technology

    2017-02-01

    cell survival. We identified a protein called PRCP (prolylcarboxypeptidase) that promotes metastasis and survival in breast cancer cells. We found...PRCP/PREP inhibition reduces IRS1 and IRS2 protein levels, blocks proliferation, and induces death in multiple TNBC cell lines of different sub-types...2 are adaptor proteins that mediate signaling downstream of both IGF-1R and EGFR/ErbB3 [6-8]. Pathways activated downstream of IRS-1/2 include the

  19. Phage display discovery of novel molecular targets in glioblastoma-initiating cells.

    PubMed

    Liu, J K; Lubelski, D; Schonberg, D L; Wu, Q; Hale, J S; Flavahan, W A; Mulkearns-Hubert, E E; Man, J; Hjelmeland, A B; Yu, J; Lathia, J D; Rich, J N

    2014-08-01

    Glioblastoma is the most common primary intrinsic brain tumor and remains incurable despite maximal therapy. Glioblastomas display cellular hierarchies with self-renewing glioma-initiating cells (GICs) at the apex. To discover new GIC targets, we used in vivo delivery of phage display technology to screen for molecules selectively binding GICs that may be amenable for targeting. Phage display leverages large, diverse peptide libraries to identify interactions with molecules in their native conformation. We delivered a bacteriophage peptide library intravenously to a glioblastoma xenograft in vivo then derived GICs. Phage peptides bound to GICs were analyzed for their corresponding proteins and ranked based on prognostic value, identifying VAV3, a Rho guanine exchange factor involved tumor invasion, and CD97 (cluster of differentiation marker 97), an adhesion G-protein-coupled-receptor upstream of Rho, as potentially enriched in GICs. We confirmed that both VAV3 and CD97 were preferentially expressed by tumor cells expressing GIC markers. VAV3 expression correlated with increased activity of its downstream mediator, Rac1 (ras-related C3 botulinum toxin substrate 1), in GICs. Furthermore, targeting VAV3 by ribonucleic acid interference decreased GIC growth, migration, invasion and in vivo tumorigenesis. As CD97 is a cell surface protein, CD97 selection enriched for sphere formation, a surrogate of self-renewal. In silico analysis demonstrated VAV3 and CD97 are highly expressed in tumors and inform poor survival and tumor grade, and more common with epidermal growth factor receptor mutations. Finally, a VAV3 peptide sequence identified on phage display specifically internalized into GICs. These results show a novel screening method for identifying oncogenic pathways preferentially activated within the tumor hierarchy, offering a new strategy for developing glioblastoma therapies.

  20. Phage display discovery of novel molecular targets in glioblastoma-initiating cells

    PubMed Central

    Liu, J K; Lubelski, D; Schonberg, D L; Wu, Q; Hale, J S; Flavahan, W A; Mulkearns-Hubert, E E; Man, J; Hjelmeland, A B; Yu, J; Lathia, J D; Rich, J N

    2014-01-01

    Glioblastoma is the most common primary intrinsic brain tumor and remains incurable despite maximal therapy. Glioblastomas display cellular hierarchies with self-renewing glioma-initiating cells (GICs) at the apex. To discover new GIC targets, we used in vivo delivery of phage display technology to screen for molecules selectively binding GICs that may be amenable for targeting. Phage display leverages large, diverse peptide libraries to identify interactions with molecules in their native conformation. We delivered a bacteriophage peptide library intravenously to a glioblastoma xenograft in vivo then derived GICs. Phage peptides bound to GICs were analyzed for their corresponding proteins and ranked based on prognostic value, identifying VAV3, a Rho guanine exchange factor involved tumor invasion, and CD97 (cluster of differentiation marker 97), an adhesion G-protein-coupled-receptor upstream of Rho, as potentially enriched in GICs. We confirmed that both VAV3 and CD97 were preferentially expressed by tumor cells expressing GIC markers. VAV3 expression correlated with increased activity of its downstream mediator, Rac1 (ras-related C3 botulinum toxin substrate 1), in GICs. Furthermore, targeting VAV3 by ribonucleic acid interference decreased GIC growth, migration, invasion and in vivo tumorigenesis. As CD97 is a cell surface protein, CD97 selection enriched for sphere formation, a surrogate of self-renewal. In silico analysis demonstrated VAV3 and CD97 are highly expressed in tumors and inform poor survival and tumor grade, and more common with epidermal growth factor receptor mutations. Finally, a VAV3 peptide sequence identified on phage display specifically internalized into GICs. These results show a novel screening method for identifying oncogenic pathways preferentially activated within the tumor hierarchy, offering a new strategy for developing glioblastoma therapies. PMID:24832468

  1. Genetic and cellular mechanisms of the formation of Esophageal Atresia and Tracheoesophageal Fistula

    PubMed Central

    Jacobs, Ian J.; Que, Jianwen

    2015-01-01

    Foregut separation involves dynamic changes in the activities of signaling pathways and transcription factors. Recent mouse genetic studies demonstrate that some of these pathways interact with each other to form a complex network, leading to a unique dorsal-ventral patterning in the early foregut. In this review we will discuss how this unique dorsal-ventral patterning is set prior to the foregut separation and how disruption of this patterning affects the separation process. We will further discuss the roles of downstream targets of these pathways in regulating separation at cellular and molecular levels. Understanding the mechanism of normal separation process will provide us insights into the pathobiology of a relatively common birth defect Esophageal Atresia (EA) with/without Tracheo-esophageal Fistula (TEF). PMID:23679023

  2. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals.

    PubMed

    Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter

    2016-10-01

    We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse

    PubMed Central

    Vrljicak, Pavle; Cullum, Rebecca; Xu, Eric; Chang, Alex C. Y.; Wederell, Elizabeth D.; Bilenky, Mikhail; Jones, Steven J. M.; Marra, Marco A.; Karsan, Aly; Hoodless, Pamela A.

    2012-01-01

    Malformations of the cardiovascular system are the most common type of birth defect in humans, frequently affecting the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of TWIST1, we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 939 genes, including 123 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings support a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 can exert its function by direct DNA binding to activate valve specific gene expression. PMID:22815831

  4. CaMKII in the Cardiovascular System: Sensing Redox States

    PubMed Central

    Erickson, Jeffrey R.; He, B. Julie; Grumbach, Isabella M.; Anderson, Mark E

    2013-01-01

    The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is now recognized to play a central role in pathological events in the cardiovascular system. CaMKII has diverse downstream targets that promote vascular disease, heart failure and arrhythmias, so improved understanding of CaMKII signaling has the potential to lead to new therapies for cardiovascular disease. CaMKII is a multimeric serine-threonine kinase that is initially activated by binding calcified calmodulin (Ca2+/CaM). Under conditions of sustained exposure to elevated Ca2+/CaM CaMKII transitions into a Ca2+/CaM-autonomous enzyme by two distinct but parallel processes. Autophosphorylation of threonine 287 in the CaMKII regulatory domain ‘traps’ CaMKII into an open configuration even after Ca2+/CaM unbinding. More recently, our group identified a pair of methionines (281/282) in the CaMKII regulatory domain that undergo a partially reversible oxidation which, like autophosphorylation, prevents CaMKII from inactivating after Ca2+/CaM unbinding. Here we review roles of CaMKII in cardiovascular disease with an eye to understanding how CaMKII may act as a transduction signal to connect pro-oxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of cardiovascular disease. PMID:21742790

  5. Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1

    PubMed Central

    Beigh, Mushtaq Ahmad; Showkat, Mehvish; Bashir, Basharat; Bashir, Asma; Hussain, Mahboob ul; Andrabi, Khurshid Iqbal

    2014-01-01

    Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation. PMID:24605337

  6. Activation of SRY accounts for male-specific hepatocarcinogenesis: Implication in gender disparity of hepatocellular carcinoma.

    PubMed

    Liu, Chang; Ren, Yi-Fan; Dong, Jian; Ke, Meng-Yun; Ma, Feng; Monga, Satdarshan P S; Wu, Rongqian; Lv, Yi; Zhang, Xu-Feng

    2017-12-01

    Sex affects the risk, treatment responses and outcome of many types of cancers. The mechanism of gender disparity in development of hepatocellular carcinoma (HCC) remains obscure. Sex-determining region on Y chromosome (SRY) was overexpressed in approximate 84% male patient HCC. Moreover, we are the first to generate a liver-specific transgenic (TG) murine model with overexpression of the male specific gene SRY. Subject to a single intraperitoneal injection N-nitrosodiethylamine (DEN) at day 14, TG and wildtype (WT) mice of both genders were sacrificed at different time points (6-13.5 months). Overexpression of SRY in male TG and ectopic expression of SRY in female TG livers promoted DEN-induced hepatocarcinogenesis compared to age- and sex-matched WT. This accelerated tumorigenesis in TG of both genders was a consequence of increased injury and inflammation, fibrosis, and compensatory enhancement in hepatocytes proliferation secondary to activation of downstream targets Sox9 and platelet-derived growth factor receptor α (PDGFRα)/phosphoinositide 3-kinase (PI3K)/Akt and c-myc/CyclinD1. In conclusion, activation of SRY and its downstream Sox9 and PDGFRα pathways are commonly involved in male hepatocarcinogenesis, which provides novel insights into gender disparity and sex-specific therapeutic strategies of HCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer.

    PubMed

    Sewell, Andrew; Brown, Brandee; Biktasova, Asel; Mills, Gordon B; Lu, Yiling; Tyson, Darren R; Issaeva, Natalia; Yarbrough, Wendell G

    2014-05-01

    Human papilloma virus (HPV)-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCC) have different molecular and biologic characteristics and clinical behavior compared with HPV-negative (HPV-) OPSCC. PIK3CA mutations are more common in HPV(+) OPSCC. To define molecular differences and tumor subsets, protein expression and phosphorylation were compared between HPV(+) and HPV(-) OPSCC and between tumors with and without PIK3CA mutations. Expression of 137 total and phosphorylated proteins was evaluated by reverse-phase protein array in 29 HPV(+) and 13 HPV(-) prospectively collected OPSCCs. Forty-seven OPSCCs were tested for hotspot-activating mutations in PIK3CA and AKT. Activation of PIK3CA downstream targets and sensitivity to pathway inhibitors were determined in HPV(+) head and neck cancer cells overexpressing wild-type or mutant PIK3CA. Analyses revealed 41 differentially expressed proteins between HPV(+) and HPV(-) OPSCC categorized into functional groups: DNA repair, cell cycle, apoptosis, phosphoinositide 3-kinase (PI3K)/AKT/mTOR, and receptor kinase pathways. All queried DNA repair proteins were significantly upregulated in HPV(+) samples. A total of 8 of 33 HPV(+) and 0 of 14 HPV(-) tumors contained activating PIK3CA mutations. Despite all activating PIK3CA mutations occurring in HPV(+) samples, HPV(+) tumors had lower mean levels of activated AKT and downstream AKT target phosphorylation. Ectopic expression of mutant PIK3CA in HPV(+) cells increased mTOR, but not AKT activity. HPV E6/E7 overexpression inhibited AKT phosphorylation in HPV-negative cells. Mutant PIK3CA overexpressing cells were more sensitive to a dual PI3K/mTOR inhibitor compared with an AKT inhibitor. Protein expression analyses suggest that HPV(+) and HPV(-) OPSCC differentially activate DNA repair, cell cycle, apoptosis, PI3K/AKT/mTOR, and receptor kinase pathways. PIK3CA mutations are more common in HPV(+) OPSCC and are associated with activation of mTOR, but not AKT. These data suggest that inhibitors for mTOR may have activity against HPV(+) PIK3CA mutant oropharyngeal cancers. ©2014 AACR.

  8. Analysis of homeobox gene action may reveal novel angiogenic pathways in normal placental vasculature and in clinical pregnancy disorders associated with abnormal placental angiogenesis.

    PubMed Central

    Murthi, Padma; Abumaree, Mohamed; Kalionis, Bill

    2014-01-01

    Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are characterized by a well conserved DNA binding motif; the homeodomain. The specificity of the homeodomain allows the transcription factor to bind to the promoter regions of batteries of target genes and thereby regulates their expression. Target genes identified for homeodomain proteins have been shown to control fundamental cell processes such as proliferation, differentiation, and apoptosis. We and others have reported that homeobox genes are expressed in the placental vasculature, but our knowledge of their downstream target genes is limited. This review highlights the importance of studying the cellular and molecular mechanisms by which homeobox genes and their downstream targets may regulate important vascular cellular processes such as proliferation, migration, and endothelial tube formation, which are essential for placental vasculogenesis and angiogenesis. A better understanding of the molecular targets of homeobox genes may lead to new therapies for aberrant angiogenesis associated with clinically important pregnancy pathologies, including fetal growth restriction and preeclampsia. PMID:24926269

  9. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    PubMed

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comprehensive analysis of aberrantly expressed lncRNAs and construction of ceRNA network in gastric cancer

    PubMed Central

    Bennet, Duraisamy; Chandramohan, Servarayan Murugesan; Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan

    2018-01-01

    Gastric cancer remains fifth most common cancer often diagnosed at an advanced stage and is the second leading cause of cancer-related death worldwide. Long non-coding RNAs (lncRNAs) involved in various cellular pathways are essential for tumor occurrence and progression and they have high potential to promote or suppress the expression of many genes. In this study, we profiled 19 selected cancer-associated lncRNAs in thirty gastric adenocarcinomas and matching normal tissues by qRT-PCR. Our results showed that most of the lncRNAs were significantly upregulated (12/19). Further, we performed bioinformatic screening of miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets. The prediction identified three microRNAs (miR-21, miR-145 and miR-148a) and five gastric cancer-specific target genes (EGFR, KLF4, DNMT1 and AGO4) which also showed strong correlation with lncRNAs in regression analysis. Finally, we constructed an integrated lncRNA-miRNA-mRNA interaction network of the candidate genes to understand the post-transcriptional gene regulation. The ceRNA network analysis revealed that the differentially regulated miR-21 and miR-148a were playing as central candidates coordinating sponging activity of the lncRNAs analyzed (H19, TUG1 and MALAT1) in this study and the overexpression of H19 and miR-21 could be a signature event of gastric tumorigenesis that could serve as prognostic indicators and therapeutic targets. PMID:29719612

  11. Downregulation of N‑Myc inhibits neuroblastoma cell growth via the Wnt/β‑catenin signaling pathway.

    PubMed

    Wang, Yingge; Gao, Shan; Wang, Weiguang; Xia, Yuting; Liang, Jingyan

    2018-05-03

    Neuroblastoma, one of the most common types of cancer in childhood, is commonly treated with surgery, radiation and chemotherapy. However, prognosis and survival remain poor for children with high‑risk neuroblastoma. Therefore, the identification of novel, effective therapeutic targets is necessary. N‑Myc, a proto‑oncogene protein encoded by the v‑myc avial myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) gene, is associated with tumorigenesis. In the present study, the effect of N‑Myc silencing on MYCN‑amplified CHP134 and BE‑2C neuroblastoma cells was evaluated, and the underlying molecular mechanism was investigated. N‑Myc was successfully knocked down using an N‑Myc‑specific small interfering RNA, the efficacy of interference efficiency confirmed by reverse transcription‑quantitative polymerase chain reaction and western blotting. Cell viability was evaluated by MTT assay and apoptosis was measured by ELISA assay. The results indicated that MYCN silencing significantly decreased cell viability and promoted apoptosis. Subsequently, the expression levels of key Wnt/β‑catenin signaling pathway proteins were detected by western blotting, and MYCN silencing was demonstrated to inhibit Wnt/β‑catenin signaling, decreasing the expression ofanti‑apoptosis proteins and increasing the expression of pro‑apoptosis protein. This suggested that N‑Myc regulated survival and growth of CHP134 and BE‑2C neuroblastoma cells, potentially through Wnt/β‑catenin signaling. Furthermore, associated proteins, N‑Myc and STAT interactor and dickkopf Wnt signaling pathway inhibitor 1, were demonstrated to be involved in this regulation. Therefore, N‑Myc and its downstream targets may provide novel therapeutic targets for the treatment of neuroblastoma.

  12. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis.

    PubMed

    Li, Meng-Jun; Qiao, Yu; Li, Ya-Qing; Shi, Zhan-Liang; Zhang, Nan; Bi, Cai-Li; Guo, Jin-Kao

    2016-11-01

    We isolated the TaMYBsm1 genes, encoding R2R3-type MYB proteins in common wheat, aimed to uncover the possible molecular mechanisms related to drought response. The TaMYBsm1 genes, TaMYBsm1-A, TaMYBsm1-B and TaMYBsm1-D, were isolated and analyzed from the common wheat cultivar Shimai 15. Their expression patterns under PEG 6000 and mannitol were monitored by semi-quantitative RT-PCR and β-glucuronidase (Gus) assay. The function of TaMYBsm1-D under drought stress in transgenic Arabidopsis plants was investigated, and the germination rate, water loss rate, as well as the proline and malondialdehyde (MDA) content were compared with that in wild type (WT) plants. The expression of three downstream genes (DREB2A, P5CS1 and RD29A) in TaMYBsm1-D transgenic plants was analyzed. The R2R3-MYB domains of the MYBsm1 proteins were highly conserved in plants. In addition, the TaMYBsm1 proteins were targeted to the nucleus and contained transcriptional activation domains (TADs). Gus assay and semi-quantitative RT-PCR analysis demonstrated that the TaMYBsm1 genes were up-regulated when the wheat was treated by PEG and mannitol. Compared with WT plants, the germination rates were much higher, but the water loss rates were much lower in TaMYBsm1-D overexpression plants. TaMYBsm1-D transgenic plants showed distinct higher proline contents but a lower MDA content than the WT plants. The three downstream genes were highly expressed in TaMYBsm1-D transgenic plants. We concluded from these results that TaMYBsm1 genes play an important role in plant drought stress tolerance through up-regulation of DREB2A, P5CS1 and RD29A. The increase of proline content and decrease of MDA content may also be involved in the drought response.

  13. PAC exhibits potent anti-colon cancer properties through targeting cyclin D1 and suppressing epithelial-to-mesenchymal transition.

    PubMed

    Al-Qasem, Abeer; Al-Howail, Huda A; Al-Swailem, Mashael; Al-Mazrou, Amer; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Khalaf, Huda H; Aboussekhra, Abdelilah

    2016-03-01

    Colorectal cancer (CRC) is a major cause of cancer morbidity and mortality worldwide. Although response rates and overall survival have been improved in recent years, resistance to multiple drug combinations is inevitable. Therefore, the development of more efficient drugs, with fewer side effects is urgently needed. To this end, we have investigated in the present report the effect of PAC, a novel cucumin analogue, on CRC cells both in vitro and in vivo. We have shown that PAC induces apoptosis, mainly via the internal mitochondrial route, and inhibits cell proliferation through delaying the cell cycle at G2/M phase. Interestingly, the pro-apoptotic effect was mediated through STAT3-dependent down-regulation of cyclin D1 and its downstream target survivin. Indeed, change in the expression level of cyclin D1 modulated the expression of survivin and the response of CRC cells to PAC. Furthermore, using the ChIP assay, we have shown PAC-dependent reduction in the binding of STAT3 to the cyclin D1 promoter in vivo. Additionally, PAC suppressed the epithelial-to-mesenchymal process through down-regulating the mesenchymal markers (N-cadherin, vimentin and Twist1) and inhibiting the invasion/migration abilities of the CRC cells via repressing the pro-migration/invasion protein kinases AKT and ERK1/2. In addition, PAC inhibited tumor growth and repressed the JAK2/STAT3, AKT/mTOR and MEK/ERK pathways as well as their common downstream effectors cyclin D1 and survivin in humanized CRC xenografts. Collectively, these results indicate that PAC has potent anti-CRC effects, and therefore could constitute an effective alternative chemotherapeutic agent, which may consolidate the adjuvant treatment of colon cancer. © 2015 Wiley Periodicals, Inc.

  14. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma

    PubMed Central

    von Bueren, André O.; Ćwiek, Paulina; Rehrauer, Hubert; Djonov, Valentin; Anderle, Pascale; Arcaro, Alexandre

    2015-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation. PMID:25915540

  15. NEU3 sialidase role in activating HIF-1α in response to chronic hypoxia in cyanotic congenital heart patients.

    PubMed

    Piccoli, Marco; Conforti, Erika; Varrica, Alessandro; Ghiroldi, Andrea; Cirillo, Federica; Resmini, Giulia; Pluchinotta, Francesca; Tettamanti, Guido; Giamberti, Alessandro; Frigiola, Alessandro; Anastasia, Luigi

    2017-03-01

    Hypoxia is a common feature of many congenital heart defects (CHDs) and significantly contributes to their pathophysiology. Thus, understanding the mechanism underlying cell response to hypoxia is vital for the development of novel therapeutic strategies. Certainly, the hypoxia inducible factor (HIF) has been extensively investigated and it is now recognized as the master regulator of cell defense machinery counteracting hypoxic stress. Along this line, we recently discovered and reported a novel mechanism of HIF activation, which is mediated by sialidase NEU3. Thus, aim of this study was to test whether NEU3 played any role in the cardiac cell response to chronic hypoxia in congenital cyanotic patients. Right atrial appendage biopsies were obtained from pediatric patients with cyanotic/non-cyanotic CHDs and processed to obtain mRNA and proteins. Real-Time PCR and Western Blot were performed to analyze HIF-1α and its downstream targets expression, NEU3 expression, and the NEU3 mediated effects on the EGFR signaling cascade. Cyanotic patients showed increased levels of HIF-1α, NEU3, EGFR and their downstream targets, as compared to acyanotic controls. The same patients were also characterized by increased phosphorylation of the EGFR signaling cascade proteins. Moreover, we found that HIF-1α expression levels positively correlated with those recorded for NEU3 in both cyanotic and control patients. Sialidase NEU3 plays a central role in activating cell response to chronic hypoxia inducing the up-regulation of HIF-1α, and this represent a possible novel tool to treat several CHD pathologies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Dual HER2 targeting impedes growth of HER2 gene-amplified uterine serous carcinoma xenografts.

    PubMed

    Groeneweg, Jolijn W; Hernandez, Silvia F; Byron, Virginia F; DiGloria, Celeste M; Lopez, Hector; Scialabba, Vanessa; Kim, Minji; Zhang, Ling; Borger, Darrell R; Tambouret, Rosemary; Foster, Rosemary; Rueda, Bo R; Growdon, Whitfield B

    2014-12-15

    Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer that commonly harbors HER2 gene amplification. We investigated the effectiveness of HER2 inhibition using lapatinib and trastuzumab in vitro and in xenografts derived from USC cell lines and USC patient-derived xenografts. Immunohistochemistry and FISH were performed to assess HER2 expression in 42 primary USC specimens. ARK1, ARK2, and SPEC2 cell lines were treated with trastuzumab or lapatinib. Cohorts of mice harboring xenografts derived from ARK2 and SPEC2 cell lines and EnCa1 and EnCa2 primary human USC samples were treated with either vehicle, trastuzumab, lapatinib, or the combination of trastuzumab and lapatinib. Acute and chronic posttreatment tumor samples were assessed for downstream signaling alterations and examined for apoptosis and proliferation. HER2 gene amplification (24%) correlated significantly with HER2 protein overexpression (55%). All models were impervious to single-agent trastuzumab treatment. Lapatinib decreased in vitro proliferation of all cell lines and in vivo growth of HER2-amplified xenografts (ARK2, EnCa1). In addition, dual therapy with trastuzumab and lapatinib resulted in significant antitumor activity only in ARK2 and EnCa1 tumors. Dual HER2 therapy induced on target alteration of downstream MAPK and PI3K pathway mediators only in HER2-amplified models, and was associated with increased apoptosis and decreased proliferation. Although trastuzumab alone did not impact USC growth, dual anti-HER2 therapy with lapatinib led to improved inhibition of tumor growth in HER2-amplified USC and may be a promising avenue for future investigation. ©2014 American Association for Cancer Research.

  17. Affinity purification mass spectrometry analysis of PD-1 uncovers SAP as a new checkpoint inhibitor.

    PubMed

    Peled, Michael; Tocheva, Anna S; Sandigursky, Sabina; Nayak, Shruti; Philips, Elliot A; Nichols, Kim E; Strazza, Marianne; Azoulay-Alfaguter, Inbar; Askenazi, Manor; Neel, Benjamin G; Pelzek, Adam J; Ueberheide, Beatrix; Mor, Adam

    2018-01-16

    Programmed cell death-1 (PD-1) is an essential inhibitory receptor in T cells. Antibodies targeting PD-1 elicit durable clinical responses in patients with multiple tumor indications. Nevertheless, a significant proportion of patients do not respond to anti-PD-1 treatment, and a better understanding of the signaling pathways downstream of PD-1 could provide biomarkers for those whose tumors respond and new therapeutic approaches for those whose tumors do not. We used affinity purification mass spectrometry to uncover multiple proteins associated with PD-1. Among these proteins, signaling lymphocytic activation molecule-associated protein (SAP) was functionally and mechanistically analyzed for its contribution to PD-1 inhibitory responses. Silencing of SAP augmented and overexpression blocked PD-1 function. T cells from patients with X-linked lymphoproliferative disease (XLP), who lack functional SAP, were hyperresponsive to PD-1 signaling, confirming its inhibitory role downstream of PD-1. Strikingly, signaling downstream of PD-1 in purified T cell subsets did not correlate with PD-1 surface expression but was inversely correlated with intracellular SAP levels. Mechanistically, SAP opposed PD-1 function by acting as a molecular shield of key tyrosine residues that are targets for the tyrosine phosphatase SHP2, which mediates PD-1 inhibitory properties. Our results identify SAP as an inhibitor of PD-1 function and SHP2 as a potential therapeutic target in patients with XLP.

  18. RNA from the 5' end of the R2 retrotransposon controls R2 protein binding to and cleavage of its DNA target site.

    PubMed

    Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H

    2006-11-21

    Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.

  19. PTTG1, A novel androgen responsive gene is required for androgen-induced prostate cancer cell growth and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zheng; Jin, Bo; Jin, Yaqiong

    Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that themore » PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.« less

  20. Targeting FOXM1 Improves Cytotoxicity of Paclitaxel and Cisplatinum in Platinum-Resistant Ovarian Cancer.

    PubMed

    Westhoff, Gina L; Chen, Yi; Teng, Nelson N H

    2017-10-01

    Aberrantly activated FOXM1 (forkhead box protein M1) leading to uncontrolled cell proliferation and dysregulation of FOXM1 transcription network occurs in 84% of ovarian cancer cases. It was demonstrated that thiostrepton, a thiazole antibiotic, decreases FOXM1 expression. We aimed to determine if targeting the FOXM1 pathway with thiostrepton could improve the efficacy of paclitaxel and cisplatin in human ovarian cancer ascites cells ex vivo. Human ovarian cancer cell lines and patients' ascites cells were treated with paclitaxel, cisplatin, and thiostrepton or a combination for 48 hours, and cytotoxicity was assessed. Drug combination effects were determined by calculating the combination index values using the Chou and Talalay method. Quantitative reverse transcriptase-polymerase chain reaction was performed to determine changes in FOXM1 expression and its downstream targets. Ovarian cancer cell lines and the patients' ascites cancer cells had an overexpression of FOXM1 expression levels. Targeting FOXM1 with thiostrepton decreased FOXM1 mRNA expression and its downstream targets such as CCNB1 and CDC25B, leading to cell death in both cell lines and patients' ascites cancer cells. Furthermore, addition of thiostrepton to paclitaxel and cisplatin showed synergistic effects in chemoresistant ovarian cancer patients' ascites cells ex vivo. Targeting FOXM1 may lead to novel therapeutics for chemoresistant epithelial ovarian cancer.

  1. PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling

    PubMed Central

    Xu, Suowen; Ha, Chang Hoon; Wang, Weiye; Xu, Xiangbin; Yin, Meimei; Jin, Felix Q.; Mastrangelo, Michael; Koroleva, Marina; Fujiwara, Keigi; Jin, Zheng Gen

    2016-01-01

    Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs. PMID:26706435

  2. Fish passage in a western Iowa stream modified by grade control structures

    USGS Publications Warehouse

    Litvan, M.E.; Pierce, C.L.; Stewart, T.W.; Larson, C.J.

    2008-01-01

    Grade control structures (GCSs) are commonly used in streams of western Iowa to control bank erosion and channel headcutting but may be barriers to fish passage. From May 2002 to May 2006, we used mark-recapture methods to evaluate fish passage over a total of five GCSs, ranging in slope (run : rise) from 13:1 to 18:1 in Turkey Creek, Cass County, Iowa. Three structures, over which limited fish movement was documented from 2002 to 2004, were modified in the winter of 2004-2005 to facilitate fish passage. Before modification, the majority of recaptured fish were recaptured at the station where they were originally marked; only 1% displayed movement between sites and either upstream or downstream over a GCS. After modification fish passage improved, 14% of recaptured fish displayed movement either upstream or downstream over a GCS. Individuals of four target species - channel catfish Ictalurus punctatus, yellow bullhead Ameiurus natalis, black bullhead A. melas, and creek chub Semotilus atromaculatus - passed over at least one modified structure. The majority of documented movements over GCSs were in the upstream direction and occurred in late spring and early summer, when streamflow was relatively high. Although we documented low numbers of fish passing both upstream and downstream over GCSs, these structures are probably barriers to fish movement during periods of low flow and when there is a structural failure, such as in-channel movement of riprap. Grade control structures are pervasive in western Iowa streams; nearly every low-order stream contains at least one instream structure. To sustain fish populations, management efforts should focus on constructing or modifying GCSs to allow fish passage. ?? Copyright by the American Fisheries Society 2008.

  3. Downstream effects of ROCK signaling in cultured human corneal stromal cells: microarray analysis of gene expression.

    PubMed

    Harvey, Stephen A K; Anderson, Susan C; SundarRaj, Nirmala

    2004-07-01

    Rho-associated coiled-coil-containing protein kinase (ROCK) is a downstream target of Rho GTPase signaling and regulates the assembly of stress fibers. Previous reports indicate that Rho/ROCK signaling is involved in the regulation of several cellular processes, some of which may be cell-type specific and are probably critical to corneal stromal cell activation. The present study identified ROCK-regulated gene expression in corneal stromal cells. Corneal stromal cells derived from eyes of three different donors were cultured to yield the following designated phenotypes: baseline fibroblasts (DMEM with 10% serum), activated fibroblasts (10% serum+bFGF+heparin), and myofibroblasts (1% serum+TGF-beta 1). Cells were exposed to the ROCK inhibitor Y-27632 or vehicle for 12 hours, and transcript levels altered by ROCK inhibition were identified with oligonucleotide microarrays (GeneChips; Affymetrix, Santa Clara, CA). In these phenotypes, Y-27632 caused marked (twofold or more) increases or decreases in 14/4, 12/3, and 15/10 transcripts. In both fibroblast groups Y-27632-treatment increased expression of endothelin receptors and of parathyroid hormone-like hormone. The upregulation of alpha-smooth muscle actin in myofibroblasts was attenuated by Y-27632. Combining data from all groups identified ROCK-supported (Y-27632 inhibitable) expression of 10 transcripts, including ribonucleotide reductase M2, the cyclin B1-CDC2-CKS2 system, and four mitotic spindle-associated proteins. ROCK inhibition causes broad inhibition of DNA synthesis and mitosis and causes changes that are different between (bFGF-activated) fibroblasts and (TGF-beta 1-induced) myofibroblasts. Thus, Rho/ROCK signaling regulates both common and distinct downstream events in corneal stromal cells activated (differentiated) to fibroblast or myofibroblast phenotype.

  4. Oxidized Base Damage and Single-Strand Break Repair in Mammalian Genomes: Role of Disordered Regions and Posttranslational Modifications in Early Enzymes

    PubMed Central

    Hegde, Muralidhar L.; Izumi, Tadahide; Mitra, Sankar

    2012-01-01

    Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/ SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed. PMID:22749145

  5. Rapamycin and the transcription factor C/EBPbeta as a switch in osteoclast differentiation: implications for lytic bone diseases.

    PubMed

    Smink, Jeske J; Leutz, Achim

    2010-03-01

    Lytic bone diseases and in particular osteoporosis are common age-related diseases characterized by enhanced bone fragility due to loss of bone density. Increasingly, osteoporosis poses a major global health-care problem due to the growth of the elderly population. Recently, it was found that the gene regulatory transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) is involved in bone metabolism. C/EBPbeta occurs as different protein isoforms of variable amino terminal length, and regulation of the C/EBPbeta isoform ratio balance was found to represent an important factor in osteoclast differentiation and bone homeostasis. Interestingly, adjustment of the C/EBPbeta isoform ratio by the process of translational control is downstream of the mammalian target of rapamycin kinase (mTOR), a sensor of the nutritional status and a target of immunosuppressive and anticancer drugs. The findings imply that modulating the process of translational control of C/EBPbeta isoform expression could represent a novel therapeutic approach in osteolytic bone diseases, including cancer and infection-induced bone loss.

  6. Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature.

    PubMed

    Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James

    2009-12-28

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC.

  7. Temsirolimus in the treatment of renal cell carcinoma associated with Xp11.2 translocation/TFE gene fusion proteins: a case report and review of literature

    PubMed Central

    Parikh, Jigarkumar; Coleman, Teresa; Messias, Nidia; Brown, James

    2009-01-01

    Xp11.2 translocation renal cell carcinomas (TRCCs) are a rare family of tumors newly recognized by the World Health Organization (WHO) in 2004. These tumors result in the fusion of partner genes to the TFE3 gene located on Xp11.2. They are most common in the pediatric population, but have been recently implicated in adult renal cell carcinoma (RCC) presenting at an early age. TFE3-mediated direct transcriptional upregulation of the Met tyrosine kinase receptor triggers dramatic activation of downstream signaling pathways including the protein kinase B (Akt)/phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. Temsirolimus is an inhibitor of mammalian target of rapamycin (mTOR) kinase, a component of intracellular signaling pathways involved in the growth and proliferation of malignant cells. Here we present a case of a 22-year old female who has been treated with temsirolimus for her Xp11.2/TFE3 gene fusion RCC. PMID:21139932

  8. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212.

    PubMed

    Kim, Ju Young; Duan, Xin; Liu, Cindy Y; Jang, Mi-Hyeon; Guo, Junjie U; Pow-anpongkul, Nattapol; Kang, Eunchai; Song, Hongjun; Ming, Guo-li

    2009-09-24

    Disrupted-in-schizophrenia 1 (DISC1), a susceptibility gene for major mental illnesses, regulates multiple aspects of embryonic and adult neurogenesis. Here, we show that DISC1 suppression in newborn neurons of the adult hippocampus leads to overactivated signaling of AKT, another schizophrenia susceptibility gene. Mechanistically, DISC1 directly interacts with KIAA1212, an AKT binding partner that enhances AKT signaling in the absence of DISC1, and DISC1 binding to KIAA1212 prevents AKT activation in vitro. Functionally, multiple genetic manipulations to enhance AKT signaling in adult-born neurons in vivo exhibit similar defects as DISC1 suppression in neuronal development that can be rescued by pharmacological inhibition of mammalian target of rapamycin (mTOR), an AKT downstream effector. Our study identifies the AKT-mTOR signaling pathway as a critical DISC1 target in regulating neuronal development and provides a framework for understanding how multiple susceptibility genes may functionally converge onto a common pathway in contributing to the etiology of certain psychiatric disorders.

  9. Rett syndrome treatment in mouse models: searching for effective targets and strategies.

    PubMed

    Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni

    2013-05-01

    Rett syndrome (RTT) is a pervasive developmental disorder, primarily affecting girls with a prevalence of 1 in every 10,000 births; it represents the second most common cause of intellectual disability in females. Mutations in the gene encoding methyl-CpG-binding protein 2 (MECP2) have been identified as clear etiological factors in more than 90% of classical RTT cases. Whereas the mechanisms leading to the severe, progressive and specific neurological dysfunctions when this gene is mutated still remain to be elucidated, a series of different mouse models have been generated, bearing different Mecp2 mutation. Neurobehavioural analysis in these mouse lines have been carried out and phenotyping analysis can be now utilised to preclinically evaluate the effects of potential RTT treatments. This review summarizes the different results achieved in this research field taking into account different key targets identified to ameliorate RTT phenotype in mouse models, including those not directly downstream of MeCP2 and those limited to the early phases of postnatal development. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Modulation of the GABAergic pathway for the treatment of fragile X syndrome.

    PubMed

    Lozano, Reymundo; Hare, Emma B; Hagerman, Randi J

    2014-01-01

    Fragile X syndrome (FXS) is the most common genetic cause of intellectual disability and the most common single-gene cause of autism. It is caused by mutations on the fragile X mental retardation gene (FMR1) and lack of fragile X mental retardation protein, which in turn, leads to decreased inhibition of translation of many synaptic proteins. The metabotropic glutamate receptor (mGluR) hypothesis states that the neurological deficits in individuals with FXS are due mainly to downstream consequences of overstimulation of the mGluR pathway. The main efforts have focused on mGluR5 targeted treatments; however, investigation on the gamma-aminobutyric acid (GABA) system and its potential as a targeted treatment is less emphasized. The fragile X mouse models (Fmr1-knock out) show decreased GABA subunit receptors, decreased synthesis of GABA, increased catabolism of GABA, and overall decreased GABAergic input in many regions of the brain. Consequences of the reduced GABAergic input in FXS include oversensitivity to sensory stimuli, seizures, and anxiety. Deficits in the GABA receptors in different regions of the brain are associated with behavioral and attentional processing deficits linked to anxiety and autistic behaviors. The understanding of the neurobiology of FXS has led to the development of targeted treatments for the core behavioral features of FXS, which include social deficits, inattention, and anxiety. These symptoms are also observed in individuals with autism and other neurodevelopmental disorders, therefore the targeted treatments for FXS are leading the way in the treatment of other neurodevelopmental syndromes and autism. The GABAergic system in FXS represents a target for new treatments. Herein, we discuss the animal and human trials of GABAergic treatment in FXS. Arbaclofen and ganaxolone have been used in individuals with FXS. Other potential GABAergic treatments, such as riluzole, gaboxadol, tiagabine, and vigabatrin, will be also discussed. Further studies are needed to determine the safety and efficacy of GABAergic treatments for FXS.

  11. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma

    PubMed Central

    Carpenter, EL; Haglund, EA; Mace, EM; Deng, D; Martinez, D; Wood, AC; Chow, AK; Weiser, DA; Belcastro, LT; Winter, C; Bresler, SC; Asgharzadeh, S; Seeger, RC; Zhao, H; Guo, R; Christensen, JG; Orange, JS; Pawel, BR; Lemmon, MA; Mossé, YP

    2013-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies–as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK. PMID:22266870

  12. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  13. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer.

    PubMed

    Oran, Amanda R; Adams, Clare M; Zhang, Xiao-Yong; Gennaro, Victoria J; Pfeiffer, Harla K; Mellert, Hestia S; Seidel, Hans E; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R; Shen, Chen; Rigoutsos, Isidore; King, Michael P; Cotney, Justin L; Arnold, Jamie J; Sharma, Suresh D; Martinez-Outschoorn, Ubaldo E; Vakoc, Christopher R; Chodosh, Lewis A; Thompson, James E; Bradner, James E; Cameron, Craig E; Shadel, Gerald S; Eischen, Christine M; McMahon, Steven B

    2016-11-08

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.

  14. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

    PubMed Central

    Tang, Yujie; Gholamin, Sharareh; Schubert, Simone; Willardson, Minde I.; Lee, Alex; Bandopadhayay, Pratiti; Bergthold, Guillame; Masoud, Sabran; Nguyen, Brian; Vue, Nujsaubnusi; Balansay, Brianna; Yu, Furong; Oh, Sekyung; Woo, Pamelyn; Chen, Spenser; Ponnuswami, Anitha; Monje, Michelle; Atwood, Scott X.; Whitson, Ramon J.; Mitra, Siddhartha; Cheshier, Samuel H.; Qi, Jun; Beroukhim, Rameen; Tang, Jean Y.; Wechsler-Reya, Rob; Oro, Anthony E.; Link, Brian A.; Bradner, James E.; Cho, Yoon-Jae

    2014-01-01

    Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists. PMID:24973920

  15. Mutant glucocerebrosidase in Gaucher disease recruits Hsp27 to the Hsp90 chaperone complex for proteasomal degradation

    PubMed Central

    Yang, Chunzhang; Wang, Herui; Zhu, Dongwang; Hong, Christopher S.; Dmitriev, Pauline; Zhang, Chao; Li, Yan; Ikejiri, Barbara; Brady, Roscoe O.; Zhuang, Zhengping

    2015-01-01

    Gaucher disease is caused by mutations of the GBA1 gene, which encodes the lysosomal anchored gluococerebrosidase (GCase). GBA1 mutations commonly result in protein misfolding, abnormal chaperone recognition, and premature degradation, but are less likely to affect catalytic activity. In the present study, we demonstrate that the Hsp90/HOP/Cdc37 complex recruits Hsp27 after recognition of GCase mutants with subsequent targeting of GCase mutant peptides to degradation mechanisms such as VCP and the 26S proteasome. Inhibition of Hsp27 not only increased the quantity of enzyme but also enhanced GCase activity in fibroblasts derived from patients with Gaucher disease. These findings provide insight into a possible therapeutic strategy for protein misfolding diseases by correcting chaperone binding and altering subsequent downstream patterns of protein degradation. PMID:25583479

  16. Mutant glucocerebrosidase in Gaucher disease recruits Hsp27 to the Hsp90 chaperone complex for proteasomal degradation.

    PubMed

    Yang, Chunzhang; Wang, Herui; Zhu, Dongwang; Hong, Christopher S; Dmitriev, Pauline; Zhang, Chao; Li, Yan; Ikejiri, Barbara; Brady, Roscoe O; Zhuang, Zhengping

    2015-01-27

    Gaucher disease is caused by mutations of the GBA1 gene, which encodes the lysosomal anchored gluococerebrosidase (GCase). GBA1 mutations commonly result in protein misfolding, abnormal chaperone recognition, and premature degradation, but are less likely to affect catalytic activity. In the present study, we demonstrate that the Hsp90/HOP/Cdc37 complex recruits Hsp27 after recognition of GCase mutants with subsequent targeting of GCase mutant peptides to degradation mechanisms such as VCP and the 26S proteasome. Inhibition of Hsp27 not only increased the quantity of enzyme but also enhanced GCase activity in fibroblasts derived from patients with Gaucher disease. These findings provide insight into a possible therapeutic strategy for protein misfolding diseases by correcting chaperone binding and altering subsequent downstream patterns of protein degradation.

  17. A screening strategy for heterologous protein expression in Escherichia coli with the highest return of investment.

    PubMed

    Pacheco, Benny; Crombet, Lissete; Loppnau, Peter; Cossar, Doug

    2012-01-01

    Heterologous protein expression in Escherichia coli is commonly used to obtain recombinant proteins for a variety of downstream applications. However, many proteins are not, or are only poorly, expressed in soluble form. High level expression often leads to the formation of inclusion bodies and an inactive product that needs to be refolded. By screening the solubility pattern for a set of 71 target proteins in different host-strains and varying parameters such as location of purification tag, promoter and induction temperature we propose a protocol with a success rate of 77% of clones returning a soluble protein. This protocol is particularly suitable for high-throughput screening with the goal to obtain soluble protein product for e.g. structure determination. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1

    PubMed Central

    Ye, Shoudong; Li, Ping; Tong, Chang; Ying, Qi-Long

    2013-01-01

    Mouse embryonic stem cell (mESC) self-renewal can be maintained by activation of the leukaemia inhibitory factor (LIF)/signal transducer and activator of transcription 3 (Stat3) signalling pathway or dual inhibition (2i) of glycogen synthase kinase 3 (Gsk3) and mitogen-activated protein kinase kinase (MEK). Several downstream targets of the pathways involved have been identified that when individually overexpressed can partially support self-renewal. However, none of these targets is shared among the involved pathways. Here, we show that the CP2 family transcription factor Tfcp2l1 is a common target in LIF/Stat3- and 2i-mediated self-renewal, and forced expression of Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF or either of the 2i components. In addition, Tfcp2l1 can reprogram post-implantation epiblast stem cells to naïve pluripotent ESCs. Tfcp2l1 upregulates Nanog expression and promotes self-renewal in a Nanog-dependent manner. We conclude that Tfcp2l1 is at the intersection of LIF- and 2i-mediated self-renewal pathways and plays a critical role in maintaining ESC identity. Our study provides an expanded understanding of the current model of ground-state pluripotency. PMID:23942238

  19. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  20. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy

    PubMed Central

    Smucker, Kelly; Smith, Lisa L.; Lozanski, Arletta; Zhong, Yiming; Ruppert, Amy S.; Lucas, David; Williams, Katie; Zhao, Weiqiang; Rassenti, Laura; Ghia, Emanuela; Kipps, Thomas J.; Mantel, Rose; Jones, Jeffrey; Flynn, Joseph; Maddocks, Kami; O’Brien, Susan; Furman, Richard R.; James, Danelle F.; Clow, Fong; Lozanski, Gerard; Johnson, Amy J.; Byrd, John C.

    2014-01-01

    The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has outstanding activity in patients with chronic lymphocytic leukemia. Most patients experience lymphocytosis, representing lymphocyte egress from nodal compartments. This resolves within 8 months in the majority of patients, but a subgroup has lymphocytosis lasting >12 months. Here we report a detailed characterization of patients with persistent lymphocytosis during ibrutinib therapy. Signaling evaluation showed that while BTK is inhibited, downstream mediators of B-cell receptor (BCR) signaling are activated in persistent lymphocytes. These cells cannot be stimulated through the BCR and do not show evidence of target gene activation. Flow cytometry for κ and λ expression, IGHV sequencing, Zap-70 methylation, and targeted gene sequencing in these patients are identical at baseline and later time points, suggesting that persistent lymphocytes do not represent clonal evolution. In vitro treatment with targeted kinase inhibitors shows that they are not addicted to a single survival pathway. Finally, progression-free survival is not inferior for patients with prolonged lymphocytosis vs those with traditional responses. Thus, prolonged lymphocytosis is common following ibrutinib treatment, likely represents the persistence of a quiescent clone, and does not predict a subgroup of patients likely to relapse early. PMID:24415539

  1. Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice.

    PubMed

    Shen, Jie; Li, Jia; Wang, Baoli; Jin, Hongting; Wang, Meina; Zhang, Yejia; Yang, Yunzhi; Im, Hee-Jeong; O'Keefe, Regis; Chen, Di

    2013-12-01

    While transforming growth factor β (TGFβ) signaling plays a critical role in chondrocyte metabolism, the TGFβ signaling pathways and target genes involved in cartilage homeostasis and the development of osteoarthritis (OA) remain unclear. Using an in vitro cell culture method and an in vivo mouse genetic approach, we undertook this study to investigate TGFβ signaling in chondrocytes and to determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling. TGFβ receptor type II (TGFβRII)-conditional knockout (KO) (TGFβRII(Col2ER)) mice were generated by breeding TGFβRII(flox/flox) mice with Col2-CreER-transgenic mice. Histologic, histomorphometric, and gene expression analyses were performed. In vitro TGFβ signaling studies were performed using chondrogenic rat chondrosarcoma cells. To determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling, TGFβRII/matrix metalloproteinase 13 (MMP-13)- and TGFβRII/ADAMTS-5-double-KO mice were generated and analyzed. Inhibition of TGFβ signaling (deletion of the Tgfbr2 gene in chondrocytes) resulted in up-regulation of Runx2, Mmp13, and Adamts5 expression in articular cartilage tissue and progressive OA development in TGFβRII(Col2ER) mice. Deletion of the Mmp13 or Adamts5 gene significantly ameliorated the OA-like phenotype induced by the loss of TGFβ signaling. Treatment of TGFβRII(Col2ER) mice with an MMP-13 inhibitor also slowed OA progression. Mmp13 and Adamts5 are critical downstream target genes involved in the TGFβ signaling pathway during the development of OA. Copyright © 2013 by the American College of Rheumatology.

  2. Targeting the RAS oncogene

    PubMed Central

    Takashima, Asami

    2013-01-01

    Introduction The Ras proteins (K-Ras, N-Ras, H-Ras) are GTPases that function as molecular switches for a variety of critical cellular activities and their function is tightly and temporally regulated in normal cells. Oncogenic mutations in the RAS genes, which create constitutively-active Ras proteins, can result in uncontrolled proliferation or survival in tumor cells. Areas covered The paper discusses three therapeutic approaches targeting the Ras pathway in cancer: 1) Ras itself, 2) Ras downstream pathways, and 3) synthetic lethality. The most adopted approach is targeting Ras downstream signaling, and specifically the PI3K-AKT-mTOR and Raf-MEK pathways, as they are frequently major oncogenic drivers in cancers with high Ras signaling. Although direct targeting of Ras has not been successful clinically, newer approaches being investigated in preclinical studies, such as RNA interference-based and synthetic lethal approaches, promise great potential for clinical application. Expert opinion The challenges of current and emerging therapeutics include the lack of “tumor specificity” and their limitation to those cancers which are “dependent” upon aberrant Ras signaling for survival. While the newer approaches have the potential to overcome these limitations, they also highlight the importance of robust preclinical studies and bidirectional translational research for successful clinical development of Ras-related targeted therapies. PMID:23360111

  3. Antidepressive effects of targeting ELK-1 signal transduction.

    PubMed

    Apazoglou, Kallia; Farley, Séverine; Gorgievski, Victor; Belzeaux, Raoul; Lopez, Juan Pablo; Grenier, Julien; Ibrahim, El Chérif; El Khoury, Marie-Anne; Tse, Yiu C; Mongredien, Raphaele; Barbé, Alexandre; de Macedo, Carlos E A; Jaworski, Wojciech; Bochereau, Ariane; Orrico, Alejandro; Isingrini, Elsa; Guinaudie, Chloé; Mikasova, Lenka; Louis, Franck; Gautron, Sophie; Groc, Laurent; Massaad, Charbel; Yildirim, Ferah; Vialou, Vincent; Dumas, Sylvie; Marti, Fabio; Mechawar, Naguib; Morice, Elise; Wong, Tak P; Caboche, Jocelyne; Turecki, Gustavo; Giros, Bruno; Tzavara, Eleni T

    2018-05-07

    Depression, a devastating psychiatric disorder, is a leading cause of disability worldwide. Current antidepressants address specific symptoms of the disease, but there is vast room for improvement 1 . In this respect, new compounds that act beyond classical antidepressants to target signal transduction pathways governing synaptic plasticity and cellular resilience are highly warranted 2-4 . The extracellular signal-regulated kinase (ERK) pathway is implicated in mood regulation 5-7 , but its pleiotropic functions and lack of target specificity prohibit optimal drug development. Here, we identified the transcription factor ELK-1, an ERK downstream partner 8 , as a specific signaling module in the pathophysiology and treatment of depression that can be targeted independently of ERK. ELK1 mRNA was upregulated in postmortem hippocampal tissues from depressed suicides; in blood samples from depressed individuals, failure to reduce ELK1 expression was associated with resistance to treatment. In mice, hippocampal ELK-1 overexpression per se produced depressive behaviors; conversely, the selective inhibition of ELK-1 activation prevented depression-like molecular, plasticity and behavioral states induced by stress. Our work stresses the importance of target selectivity for a successful approach for signal-transduction-based antidepressants, singles out ELK-1 as a depression-relevant transducer downstream of ERK and brings proof-of-concept evidence for the druggability of ELK-1.

  4. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models.

    PubMed

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-11-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC.

  5. Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models1

    PubMed Central

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC. PMID:23226094

  6. MicroRNA as therapeutic targets for treatment of depression

    PubMed Central

    Hansen, Katelin F; Obrietan, Karl

    2013-01-01

    Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment. PMID:23935365

  7. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59.

    PubMed

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C M; Pieterse, Corné M J

    2013-02-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCF(COI1), which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCF(COI1)-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59.

  8. Akt3 is a privileged first responder in isozyme-specific electrophile response.

    PubMed

    Long, Marcus J C; Parvez, Saba; Zhao, Yi; Surya, Sanjna L; Wang, Yiran; Zhang, Sheng; Aye, Yimon

    2017-03-01

    Isozyme-specific post-translational regulation fine tunes signaling events. However, redundancy in sequence or activity renders links between isozyme-specific modifications and downstream functions uncertain. Methods to study this phenomenon are underdeveloped. Here we use a redox-targeting screen to reveal that Akt3 is a first-responding isozyme sensing native electrophilic lipids. Electrophile modification of Akt3 modulated downstream pathway responses in cells and Danio rerio (zebrafish) and markedly differed from Akt2-specific oxidative regulation. Digest MS sequencing identified Akt3 C119 as the privileged cysteine that senses 4-hydroxynonenal. A C119S Akt3 mutant was hypomorphic for all downstream phenotypes shown by wild-type Akt3. This study documents isozyme-specific and chemical redox signal-personalized physiological responses.

  9. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    PubMed

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  10. Strigolactone regulates shoot development through a core signalling pathway

    PubMed Central

    Müller, Dörte

    2016-01-01

    ABSTRACT Strigolactones are a recently identified class of hormone that regulate multiple aspects of plant development. The DWARF14 (D14) α/β fold protein has been identified as a strigolactone receptor, which can act through the SCFMAX2 ubiquitin ligase, but the universality of this mechanism is not clear. Multiple proteins have been suggested as targets for strigolactone signalling, including both direct proteolytic targets of SCFMAX2, and downstream targets. However, the relevance and importance of these proteins to strigolactone signalling in many cases has not been fully established. Here we assess the contribution of these targets to strigolactone signalling in adult shoot developmental responses. We find that all examined strigolactone responses are regulated by SCFMAX2 and D14, and not by other D14-like proteins. We further show that all examined strigolactone responses likely depend on degradation of SMXL proteins in the SMXL6 clade, and not on the other proposed proteolytic targets BES1 or DELLAs. Taken together, our results suggest that in the adult shoot, the dominant mode of strigolactone signalling is D14-initiated, MAX2-mediated degradation of SMXL6-related proteins. We confirm that the BRANCHED1 transcription factor and the PIN-FORMED1 auxin efflux carrier are plausible downstream targets of this pathway in the regulation of shoot branching, and show that BRC1 likely acts in parallel to PIN1. PMID:27793831

  11. Retention of ferrofluid aggregates at the target site during magnetic drug targeting

    NASA Astrophysics Data System (ADS)

    Asfer, Mohammed; Saroj, Sunil Kumar; Panigrahi, Pradipta Kumar

    2017-08-01

    The present study reports the retention dynamics of a ferrofluid aggregate localized at the target site inside a glass capillary (500 × 500 μm2 square cross section) against a bulk flow of DI water (Re = 0.16 and 0.016) during the process of magnetic drug targeting (MDT). The dispersion dynamics of iron oxide nanoparticles (IONPs) into bulk flow for different initial size of aggregate at the target site is reported using the brightfield visualization technique. The flow field around the aggregate during the retention is evaluated using the μPIV technique. IONPs at the outer boundary experience a higher shear force as compared to the magnetic force, resulting in dispersion of IONPs into the bulk flow downstream to the aggregate. The blockage effect and the roughness of the outer boundary of the aggregate resulting from chain like clustering of IONPs contribute to the flow recirculation at the downstream region of the aggregate. The entrapment of seeding particles inside the chain like clusters of IONPs at the outer boundary of the aggregate reduces the degree of roughness resulting in a streamlined aggregate at the target site at later time. The effect of blockage, structure of the aggregate, and disturbed flow such as recirculation around the aggregate are the primary factors, which must be investigated for the effectiveness of the MDT process for in vivo applications.

  12. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  13. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  14. Shrinkage regression-based methods for microarray missing value imputation.

    PubMed

    Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng

    2013-01-01

    Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.

  15. Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways.

    PubMed

    Neubrand, Veronika E; Cesca, Fabrizia; Benfenati, Fabio; Schiavo, Giampietro

    2012-04-15

    An increasing body of evidence suggests that several membrane receptors--in addition to activating distinct signalling cascades--also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease.

  16. Global Phosphoproteomic Analysis of Insulin/Akt/mTORC1/S6K Signaling in Rat Hepatocytes.

    PubMed

    Zhang, Yuanyuan; Zhang, Yajie; Yu, Yonghao

    2017-08-04

    Insulin resistance is a hallmark of type 2 diabetes. Although multiple genetic and physiological factors interact to cause insulin resistance, deregulated signaling by phosphorylation is a common underlying mechanism. In particular, the specific phosphorylation-dependent regulatory mechanisms and signaling outputs of insulin are poorly understood in hepatocytes, which represents one of the most important insulin-responsive cell types. Using primary rat hepatocytes as a model system, we performed reductive dimethylation (ReDi)-based quantitative mass spectrometric analysis and characterized the phosphoproteome that is regulated by insulin as well as its key downstream kinases including Akt, mTORC1, and S6K. We identified a total of 12 294 unique, confidently localized phosphorylation sites and 3805 phosphorylated proteins in this single cell type. Detailed bioinformatic analysis on each individual data set identified both known and previously unrecognized targets of this key insulin downstream effector pathway. Furthermore, integrated analysis of the hepatic Akt/mTORC1/S6K signaling axis allowed the delineation of the substrate specificity of several close-related kinases within the insulin signaling pathway. We expect that the data sets will serve as an invaluable resource, providing the foundation for future hypothesis-driven research that helps delineate the molecular mechanisms that underlie the pathogenesis of type 2 diabetes and related metabolic syndrome.

  17. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors.

    PubMed

    Orgeur, Mickael; Martens, Marvin; Leonte, Georgeta; Nassari, Sonya; Bonnin, Marie-Ange; Börno, Stefan T; Timmermann, Bernd; Hecht, Jochen; Duprez, Delphine; Stricker, Sigmar

    2018-03-29

    Connective tissues support organs and play crucial roles in development, homeostasis and fibrosis, yet our understanding of their formation is still limited. To gain insight into the molecular mechanisms of connective tissue specification, we selected five zinc-finger transcription factors - OSR1, OSR2, EGR1, KLF2 and KLF4 - based on their expression patterns and/or known involvement in connective tissue subtype differentiation. RNA-seq and ChIP-seq profiling of chick limb micromass cultures revealed a set of common genes regulated by all five transcription factors, which we describe as a connective tissue core expression set. This common core was enriched with genes associated with axon guidance and myofibroblast signature, including fibrosis-related genes. In addition, each transcription factor regulated a specific set of signalling molecules and extracellular matrix components. This suggests a concept whereby local molecular niches can be created by the expression of specific transcription factors impinging on the specification of local microenvironments. The regulatory network established here identifies common and distinct molecular signatures of limb connective tissue subtypes, provides novel insight into the signalling pathways governing connective tissue specification, and serves as a resource for connective tissue development. © 2018. Published by The Company of Biologists Ltd.

  18. Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams

    DTIC Science & Technology

    1996-05-01

    flotation of emergent and riparian trees (Howan, 1987), (Figure 2.1). 0 Fetherston et al. (1995) suggest that debris inputs are either "’chronic or episodic...the channel. Jams are therefore commonly located in bend apices or in unstable reaches downstream of knickpoints. Figure 4.2 demonstrates this...observation, showing debris jam locations just downstream of bend apices on a planform plot of Abiaca Creek. Jams do not, however, appear to have a regular

  19. Quorum Sensing Gene Regulation by LuxR/HapR Master Regulators in Vibrios

    PubMed Central

    Ball, Alyssa S.; Chaparian, Ryan R.

    2017-01-01

    ABSTRACT The coordination of group behaviors in bacteria is accomplished via the cell-cell signaling process called quorum sensing. Vibrios have historically been models for studying bacterial communication due to the diverse and remarkable behaviors controlled by quorum sensing in these bacteria, including bioluminescence, type III and type VI secretion, biofilm formation, and motility. Here, we discuss the Vibrio LuxR/HapR family of proteins, the master global transcription factors that direct downstream gene expression in response to changes in cell density. These proteins are structurally similar to TetR transcription factors but exhibit distinct biochemical and genetic features from TetR that determine their regulatory influence on the quorum sensing gene network. We review here the gene groups regulated by LuxR/HapR and quorum sensing and explore the targets that are common and unique among Vibrio species. PMID:28484045

  20. Mapping protein-protein interactions using yeast two-hybrid assays.

    PubMed

    Mehla, Jitender; Caufield, J Harry; Uetz, Peter

    2015-05-01

    Yeast two-hybrid (Y2H) screens are an efficient system for mapping protein-protein interactions and whole interactomes. The screens can be performed using random libraries or collections of defined open reading frames (ORFs) called ORFeomes. This protocol describes both library and array-based Y2H screening, with an emphasis on array-based assays. Array-based Y2H is commonly used to test a number of "prey" proteins for interactions with a single "bait" (target) protein or pool of proteins. The advantage of this approach is the direct identification of interacting protein pairs without further downstream experiments: The identity of the preys is known and does not require further confirmation. In contrast, constructing and screening a random prey library requires identification of individual prey clones and systematic retesting. Retesting is typically performed in an array format. © 2015 Cold Spring Harbor Laboratory Press.

  1. Phosphorylation of caspase-9 at Thr125 directs paclitaxel resistance in ovarian cancer.

    PubMed

    Byun, Mi Ran; Choi, Jin Woo

    2018-01-02

    Although paclitaxel is routinely prescribed for the treatment of epithelial ovarian cancer (EOC), paclitaxel resistance is common in EOC and correlates with short survival of patients. A previous pharmacogenomic study revealed the importance of cyclin-dependent kinase 1 (CDK1) activity in a response on paclitaxel. However, a subsequent research showed that the expression level of CDK1 failed to show significant correlation with delayed apoptosis and patient survival. Rather, the expression and phosphorylation of capase-9, the downstream target molecule of CDK1, appeared to determine drug resistance. Our results suggest that treatment with the CDK1 inhibitor alsterpaullone reduces phosphorylation of caspase-9. Its phosphorylation level was dependent on CDK1 activity and it directs paclitaxel resistance. This observation was reproducible in xenografted tumors. Thus, the regulation of caspase-9 may be a novel therapeutic strategy to reverse paclitaxel-induced resistance in ovarian cancer cells.

  2. Identification of three signaling molecules required for calcineurin-dependent monopolar growth induced by the DNA replication checkpoint in fission yeast.

    PubMed

    Kume, Kazunori; Hashimoto, Tomoyo; Suzuki, Masashi; Mizunuma, Masaki; Toda, Takashi; Hirata, Dai

    2017-09-30

    Cell polarity is coordinately regulated with the cell cycle. Growth polarity of the fission yeast Schizosaccharomyces pombe transits from monopolar to bipolar during G2 phase, termed NETO (new end take off). Upon perturbation of DNA replication, the checkpoint kinase Cds1/CHK2 induces NETO delay through activation of Ca 2+ /calmodulin-dependent protein phosphatase calcineurin (CN). CN in turn regulates its downstream targets including the microtubule (MT) plus-end tracking CLIP170 homologue Tip1 and the Casein kinase 1γ Cki3. However, whether and which Ca 2+ signaling molecules are involved in the NETO delay remains elusive. Here we show that 3 genes (trp1322, vcx1 and SPAC6c3.06c encoding TRP channel, antiporter and P-type ATPase, respectively) play vital roles in the NETO delay. Upon perturbation of DNA replication, these 3 genes are required for not only the NETO delay but also for the maintenance of cell viability. Trp1322 and Vcx1 act downstream of Cds1 and upstream of CN for the NETO delay, whereas SPAC6c3.06c acts downstream of CN. Consistently, Trp1322 and Vcx1, but not SPAC6c3.06c, are essential for activation of CN. Interestingly, we have found that elevated extracellular Ca 2+ per se induces a NETO delay, which depends on CN and its downstream target genes. These findings imply that Ca 2+ -CN signaling plays a central role in cell polarity control by checkpoint activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma.

    PubMed

    Battistello, Elena; Katanayeva, Natalya; Dheilly, Elie; Tavernari, Daniele; Donaldson, Maria C; Bonsignore, Luca; Thome, Margot; Christie, Amanda L; Murakami, Mark A; Michielin, Olivier; Ciriello, Giovanni; Zoete, Vincent; Oricchio, Elisa

    2018-05-24

    In diffuse large B-cell lymphoma (DLBCL), activation of the B-cell receptor (BCR) promotes multiple oncogenic signals, which are essential for tumor proliferation. Inhibition of the Bruton's tyrosine kinase (BTK), a BCR downstream target, is therapeutically effective only in a subgroup of patients with DLBCL. Here, we used lymphoma cells isolated from patients with DLBCL to measure the effects of targeted therapies on BCR signaling and to anticipate response. In lymphomas resistant to BTK inhibition, we show that blocking BTK activity enhanced tumor dependencies from alternative oncogenic signals downstream of the BCR, converging on MYC upregulation. To completely ablate the activity of the BCR, we genetically and pharmacologically repressed the activity of the SRC kinases LYN, FYN, and BLK, which are responsible for the propagation of the BCR signal. Inhibition of these kinases strongly reduced tumor growth in xenografts and cell lines derived from patients with DLBCL independent of their molecular subtype, advancing the possibility to be relevant therapeutic targets in broad and diverse groups of DLBCL patients. © 2018 by The American Society of Hematology.

  4. Do insect repellents induce drift behaviour in aquatic non-target organisms?

    PubMed

    Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric

    2017-01-01

    Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. STAT3 Target Genes Relevant to Human Cancers

    PubMed Central

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers. PMID:24743777

  6. Thermo-chemotherapy Induced miR-218 upregulation inhibits the invasion of gastric cancer via targeting Gli2 and E-cadherin.

    PubMed

    Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan

    2015-08-01

    Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.

  7. Modulators of Stomatal Lineage Signal Transduction Alter Membrane Contact Sites and Reveal Specialization among ERECTA Kinases.

    PubMed

    Ho, Chin-Min Kimmy; Paciorek, Tomasz; Abrash, Emily; Bergmann, Dominique C

    2016-08-22

    Signal transduction from a cell's surface to its interior requires dedicated signaling elements and a cellular environment conducive to signal propagation. Plant development, defense, and homeostasis rely on plasma membrane receptor-like kinases to perceive endogenous and environmental signals, but little is known about their immediate downstream targets and signaling modifiers. Using genetics, biochemistry, and live-cell imaging, we show that the VAP-RELATED SUPPRESSOR OF TMM (VST) family is required for ERECTA-mediated signaling in growth and cell-fate determination and reveal a role for ERECTA-LIKE2 in modulating signaling by its sister kinases. We show that VSTs are peripheral plasma membrane proteins that can form complexes with integral ER-membrane proteins, thereby potentially influencing the organization of the membrane milieu to promote efficient and differential signaling from the ERECTA-family members to their downstream intracellular targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation.

    PubMed

    Webhofer, C; Gormanns, P; Tolstikov, V; Zieglgänsberger, W; Sillaber, I; Holsboer, F; Turck, C W

    2011-12-13

    Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment effects in the periphery.

  9. Projection-specific visual feature encoding by layer 5 cortical subnetworks

    PubMed Central

    Lur, Gyorgy; Vinck, Martin A.; Tang, Lan; Cardin, Jessica A.; Higley, Michael J.

    2016-01-01

    Summary Primary neocortical sensory areas act as central hubs, distributing afferent information to numerous cortical and subcortical structures. However, it remains unclear whether each downstream target receives distinct versions of sensory information. We used in vivo calcium imaging combined with retrograde tracing to monitor visual response properties of three distinct subpopulations of projection neurons in primary visual cortex. While there is overlap across the groups, on average corticotectal (CT) cells exhibit lower contrast thresholds and broader tuning for orientation and spatial frequency in comparison to corticostriatal (CS) cells, while corticocortical (CC) cells have intermediate properties. Noise correlational analyses support the hypothesis that CT cells integrate information across diverse layer 5 populations, whereas CS and CC cells form more selectively interconnected groups. Overall, our findings demonstrate the existence of functional subnetworks within layer 5 that may differentially route visual information to behaviorally relevant downstream targets. PMID:26972011

  10. Differential IKK/NF-κB Activity is Mediated by TSC2 through mTORC1 in PTEN-null Prostate Cancer and Tuberous Sclerosis Complex Tumor Cells

    PubMed Central

    Gao, Yu; Gartenhaus, Ronald B.; Lapidus, Rena G.; Hussain, Arif; Zhang, Yanting; Wang, Xinghuan; Dan, Han C.

    2015-01-01

    The serine/threonine protein kinase Akt plays a critical role in regulating proliferation, growth and survival through phosphorylation of different downstream substrates. The mammalian target of rapamycin (mTOR) is a key target for Akt to promote tumorigenesis. It has been reported that Akt activates mTOR through phosphorylation and inhibition of the tuberous sclerosis complex (TSC) protein TSC2. Previously it was demonstrated that mTOR activates IKK/NF-κB signaling by promoting IKK activity downstream of Akt in conditions deficient of PTEN. In the current study, the mechanistic role of the tumor suppressor TSC2 was investigated in the regulation of IKK/NF-κB activity in PTEN-null prostate cancer and in TSC2 mutated tumor cells. The results demonstrate that TSC2 inhibits IKK/NF-κB activity downstream of Akt and upstream of mTORC1 in a PTEN deficient environment. However, TSC2 promotes IKK/NF-κB activity upstream of Akt and mTORC1 in TSC2 mutated tumor cells. These data indicate that TSC2 negatively or positively regulates IKK/NF-κB activity in a context-dependent manner depending on the genetic background. PMID:26374334

  11. Anti-tumor effect of AZD8055 against neuroblastoma cells in vitro and in vivo.

    PubMed

    Xu, Dong-Qing; Toyoda, Hidemi; Yuan, Xiao-Jun; Qi, Lei; Chelakkot, Vipin Shankar; Morimoto, Mari; Hanaki, Ryo; Kihira, Kentarou; Hori, Hiroki; Komada, Yoshihiro; Hirayama, Masahiro

    2018-04-15

    Neuroblastoma (NB) is one of the most common solid tumors in children. High-risk NB remains lethal in about 50% of patients despite comprehensive and intensive treatments. Activation of PI3K/Akt/mTOR signaling pathway correlates with oncogenesis, poor prognosis and chemotherapy resistance in NB. Due to its central role in growth and metabolism, mTOR seems to be an important factor in NB, making it a possible target for NB. In this study, we investigated the effect of AZD8055, a potent dual mTORC1-mTORC2 inhibitor, in NB cell lines. Our data showed that mTOR signaling was extensively activated in NB cells. The activity of mTOR and downstream molecules were down-regulated in AZD8055-treated NB cells. Significantly, AZD8055 effectively inhibited cell growth and induced cell cycle arrest, autophagy and apoptosis in NB cells. Moreover, AZD8055 significantly reduced tumor growth in mice xenograft model without apparent toxicity. Taken together, our results highlight the potential of mTOR as a promising target for NB treatment. Therefore, AZD8055 may be further investigated for treatment in clinical trials for high risk NB. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Magnetic molecularly imprinted polymer for the isolation and detection of biotin and biotinylated biomolecules.

    PubMed

    Ben Aissa, A; Herrera-Chacon, A; Pupin, R R; Sotomayor, M D P T; Pividori, M I

    2017-02-15

    Magnetic separation based on biologically-modified magnetic particles is a preconcentration procedure commonly integrated in magneto actuated platforms for the detection of a huge range of targets. However, the main drawback of this material is the low stability and high cost. In this work, a novel hybrid molecularly-imprinted polymer with magnetic properties is presented with affinity towards biotin and biotinylated biomolecules. During the synthesis of the magneto core-shell particles, biotin was used as a template. The characterization of this material by microscopy techniques including SEM, TEM and confocal microscopy is presented. The application of the magnetic-MIPs for the detection of biotin and biotinylated DNA in magneto-actuated platforms is also described for the first time. The magnetic-MIP showed a significant immobilization capacity of biotinylated molecules, giving rise to a cheaper and a robust method (it is not required to be stored at 4°C) with high binding capacity for the separation and purification under magnetic actuation of a wide range of biotinylated molecules, and their downstream application including determination of their specific targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses

    PubMed Central

    2017-01-01

    Introduction Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. Aim The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. Methods A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. Results The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Conclusion Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk factors. PMID:29077727

  14. Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses.

    PubMed

    Sultana, Janet; Calabró, Marco; Garcia-Serna, Ricard; Ferrajolo, Carmen; Crisafulli, Concetta; Mestres, Jordi; Trifirò', Gianluca

    2017-01-01

    Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk factors.

  15. Ground-water-quality assessment of the Carson River basin, Nevada and California; analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Welch, A.H.; Plume, R.W.; Frick, E.A.; Hughes, J.L.

    1989-01-01

    Data on groundwater quality, hydrogeology, and land and water use for the Carson River basin, Nevada and California were analyzed as part of the U. S. Geological Survey National Water-Quality Assessment program. The basin consists of six hydrographic areas--a mountainous headwaters area and five downstream areas interconnected by the Carson River. Each valley contains one or more basin-fill aquifers. The data on groundwater quality came from several agencies and were screened to verify site location and to avoid analyses of treated water. The screened data are stored in the U. S. Geological Survey National Water Information System data base. Differences in sample-collection and preservation procedures among some of the data-collection agencies restrict use of the data to a descriptive analysis. Drinking water standards were employed as the basis for evaluating reported concentrations. Frequencies with which primary or secondary standards are exceeded increase from upstream parts of the basin to downstream parts. Primary standards commonly exceeded are fluoride in upstream areas and arsenic and fluoride in downstream areas. Secondary standards commonly exceeded are iron and manganese in upstream areas and chloride, dissolved solids, iron, manganese, and sulfate in downstream areas. The poorer-quality groundwater generally is a result of natural geochemical reactions, rather than the introduction of chemicals by man. Limited data indicate, however , that manmade organic compounds are present, mostly at or near urban land. (USGS)

  16. (Pro)renin Receptor Is an Amplifier of Wnt/β-Catenin Signaling in Kidney Injury and Fibrosis.

    PubMed

    Li, Zhen; Zhou, Lili; Wang, Yongping; Miao, Jinhua; Hong, Xue; Hou, Fan Fan; Liu, Youhua

    2017-08-01

    The (pro)renin receptor (PRR) is a transmembrane protein with multiple functions. However, its regulation and role in the pathogenesis of CKD remain poorly defined. Here, we report that PRR is a downstream target and an essential component of Wnt/ β -catenin signaling. In mouse models, induction of CKD by ischemia-reperfusion injury (IRI), adriamycin, or angiotensin II infusion upregulated PRR expression in kidney tubular epithelium. Immunohistochemical staining of kidney biopsy specimens also revealed induction of renal PRR in human CKD. Overexpression of either Wnt1 or β -catenin induced PRR mRNA and protein expression in vitro Notably, forced expression of PRR potentiated Wnt1-mediated β -catenin activation and augmented the expression of downstream targets such as fibronectin, plasminogen activator inhibitor 1, and α -smooth muscle actin ( α -SMA). Conversely, knockdown of PRR by siRNA abolished β -catenin activation. PRR potentiation of Wnt/ β -catenin signaling did not require renin, but required vacuolar H + ATPase activity. In the mouse model of IRI, transfection with PRR or Wnt1 expression vectors promoted β -catenin activation, aggravated kidney dysfunction, and worsened renal inflammation and fibrotic lesions. Coexpression of PRR and Wnt1 had a synergistic effect. In contrast, knockdown of PRR expression ameliorated kidney injury and fibrosis after IRI. These results indicate that PRR is both a downstream target and a crucial element in Wnt signal transmission. We conclude that PRR can promote kidney injury and fibrosis by amplifying Wnt/ β -catenin signaling. Copyright © 2017 by the American Society of Nephrology.

  17. Burn Injury Alters Epidermal Cholinergic Mediators and Increases HMGB1 and Caspase 3 in Autologous Donor Skin and Burn Margin

    PubMed Central

    Holmes, Casey J.; Plichta, Jennifer K.; Gamelli, Richard L.; Radek, Katherine A.

    2016-01-01

    Burn wound healing complications, such as graft failure or infection, are a major source of morbidity and mortality in burn patients. The mechanisms by which local burn injury alters epidermal barrier function in autologous donor skin and surrounding burn margin are largely undefined. We hypothesized that defects in the epidermal cholinergic system may impair epidermal barrier function and innate immune responses. The objective was to identify alterations in the epidermal cholinergic pathway, and their downstream targets, associated with inflammation and cell death. We established that protein levels, but not gene expression, of the α7 nicotinic acetylcholine receptor (CHRNA7) were significantly reduced in both donor and burn margin skin. Furthermore, the gene and protein levels of an endogenous allosteric modulator of CHRNA7, secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related protein-1 (SLURP1) and acetylcholine were significantly elevated in donor and burn margin skin. As downstream proteins of inflammatory and cell death targets of nAChR activation, we found significant elevations in epidermal High Mobility Group Box Protein 1 (HMGB1) and caspase 3 in donor and burn margin skin. Lastly, we employed a novel in vitro keratinocyte burn model to establish that burn injury influences the gene expression of these cholinergic mediators and their downstream targets. These results indicate that defects in cholinergic mediators and inflammatory/apoptotic molecules in donor and burn margin skin may directly contribute to graft failure or infection in burn patients. PMID:27648692

  18. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    PubMed Central

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  19. Cross Talk between Two Antioxidant Systems, Thioredoxin and DJ-1: Consequences for Cancer

    PubMed Central

    Raninga, Prahlad V.; Trapani, Giovanna Di; Tonissen, Kathryn F.

    2014-01-01

    Oxidative stress, which is associated with an increased concentration of reactive oxygen species (ROS), is involved in the pathogenesis of numerous diseases including cancer. In response to increased ROS levels, cellular antioxidant molecules such as thioredoxin, peroxiredoxins, glutaredoxins, DJ-1, and superoxide dismutases are upregulated to counteract the detrimental effect of ROS. However, cancer cells take advantage of upregulated antioxidant molecules for protection against ROS-induced cell damage. This review focuses on two antioxidant systems, Thioredoxin and DJ-1, which are upregulated in many human cancer types, correlating with tumour proliferation, survival, and chemo-resistance. Thus, both of these antioxidant molecules serve as potential molecular targets to treat cancer. However, targeting one of these antioxidants alone may not be an effective anti-cancer therapy. Both of these antioxidant molecules are interlinked and act on similar downstream targets such as NF-κβ, PTEN, and Nrf2 to exert cytoprotection. Inhibiting either thioredoxin or DJ-1 alone may allow the other antioxidant to activate downstream signalling cascades leading to tumour cell survival and proliferation. Targeting both thioredoxin and DJ-1 in conjunction may completely shut down the antioxidant defence system regulated by these molecules. This review focuses on the cross-talk between thioredoxin and DJ-1 and highlights the importance and consequences of targeting thioredoxin and DJ-1 together to develop an effective anti-cancer therapeutic strategy. PMID:25593990

  20. An evaluation of silver-stage American Eel conspecific chemical cueing during outmigration

    USGS Publications Warehouse

    Schmucker, Andrew K.; Johnson, Nicholas S.; Galbraith, Heather S.; Li, Weiming

    2017-01-01

    American Eel Anguilla rostrata abundance has declined in recent decades, in part because sexually maturing, silver-stage adults, outmigrating from freshwater to oceanic spawning grounds, encounter migratory blockades or perish when passing through active hydroelectric turbines. To help improve downstream passage effectiveness and increase survival rates, the role of silver-stage American Eel conspecific chemical cueing during outmigration was investigated using a new type of bioassay. Inside a laboratory flume, downstream-swimming eels were exposed to both live (putative attractant) and dead (putative repellent) conspecific washings to determine whether their trajectory of downstream movement, level of activity, or time spent inside targeted areas of the arena changed after exposure. Silver eels were not attracted to or repulsed by either odor, as none of five scoring metrics indicated a behavioral response. Results did not support the hypothesis that conspecific chemical cueing is a mechanism for downstream migration coordination or danger avoidance; however responses may not have been readily apparent in this type of assay. Fisheries managers may opt to focus future research on more feasible restoration efforts using alternate experimental designs to remedy this ecological issue.

  1. Subsequent to suppression: Downstream comprehension consequences of noun/verb ambiguity in natural reading

    PubMed Central

    Stites, Mallory C.; Federmeier, Kara D.

    2015-01-01

    We used eye-tracking to investigate the downstream processing consequences of encountering noun/verb (NV) homographs (i.e., park) in semantically neutral but syntactically constraining contexts. Target words were followed by a prepositional phrase containing a noun that was plausible for only one meaning of the homograph. Replicating previous work, we found increased first fixation durations on NV homographs compared to unambiguous words, which persisted into the next sentence region. At the downstream noun, we found plausibility effects following ambiguous words that were correlated with the size of a reader's first fixation effect, suggesting that this effect reflects the recruitment of processing resources necessary to suppress the homograph's context-inappropriate meaning. Using these same stimuli, Lee and Federmeier (2012) found a sustained frontal negativity to the NV homographs, and, on the downstream noun, found a plausibility effect that was also positively correlated with the size of a reader's ambiguity effect. Together, these findings suggest that when only syntactic constraints are available, meaning selection recruits inhibitory mechanisms that can be measured in both first fixation slowdown and ERP ambiguity effects. PMID:25961358

  2. Src-dependent EGFR transactivation regulates lung inflammation via downstream signaling involving ERK1/2, PI3Kδ/Akt and NFκB induction in a murine asthma model.

    PubMed

    El-Hashim, Ahmed Z; Khajah, Maitham A; Renno, Waleed M; Babyson, Rhema S; Uddin, Mohib; Benter, Ibrahim F; Ezeamuzie, Charles; Akhtar, Saghir

    2017-08-30

    The molecular mechanisms underlying asthma pathogenesis are poorly characterized. In this study, we investigated (1) whether Src mediates epidermal growth factor receptor (EGFR) transactivation; (2) if ERK1/2, PI3Kδ/Akt and NF-κB are signaling effectors downstream of Src/EGFR activation; and (3) if upstream inhibition of Src/EGFR is more effective in downregulating the allergic inflammation than selective inhibition of downstream signaling pathways. Allergic inflammation resulted in increased phosphorylation of EGFR, Akt, ERK1/2 and IκB in the lung tissues from ovalbumin (OVA)-challenged BALB/c mice. Treatment with inhibitors of Src (SU6656) or EGFR (AG1478) reduced EGFR phosphorylation and downstream signaling which resulted in the inhibition of the OVA-induced inflammatory cell influx in bronchoalveolar lavage fluid (BALF), perivascular and peribronchial inflammation, fibrosis, goblet cell hyper/metaplasia and airway hyper-responsiveness. Treatment with pathway-selective inhibitors for ERK1/2 (PD89059) and PI3Kδ/Akt (IC-87114) respectively, or an inhibitor of NF-κB (BAY11-7085) also reduced the OVA-induced asthmatic phenotype but to a lesser extent compared to Src/EGFR inhibition. Thus, Src via EGFR transactivation and subsequent downstream activation of multiple pathways regulates the allergic airway inflammatory response. Furthermore, a broader upstream inhibition of Src/EGFR offers an attractive therapeutic alternative in the treatment of asthma relative to selectively targeting the individual downstream signaling effectors.

  3. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna wasmore » similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.« less

  4. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  5. Elastic and inelastic scattering of 134Xe beams on C2D4 targets measured with GODDESS

    NASA Astrophysics Data System (ADS)

    Sims, Harrison; Cizewski, Jolie; Lapailleur, Alex; Garland, Heather; Xination, Dai; Pain, Steven; Hall, Matthew; Goddess Collaboration

    2017-09-01

    The GODDESS (Gammasphere-ORRUBA: Dual Detector for Experimental Structure Studies) coupling of the ORRUBA charged-particle array with Gammasphere is designed to enable high-resolution particle-gamma measurements in inverse kinematics with radioactive beams. The high resolution and coverage of GODDESS allows for multiple reaction channels to be studied simultaneously. For the stable-beam commissioning of GODDESS, the 134Xe(d,p γ)135Xe reaction was measured using a beam of 134Xe at 8 MeV/A, delivered by the ATLAS facility at Argonne National Laboratory. The beam impinged on an 800 μg/cm2 C2D4 target, and charged particles were detected in the GODDESS silicon array between 15 and 165 degrees. Coincident gamma rays were measured with Gammasphere, with 10 % efficiency at 1.3 MeV. In the detectors downstream of the target, elastically- and inelastically-scattered target ions (deuterium and carbon) were detected, populating the ground and low-lying excited states in 134Xe. An overview of GODDESS will be presented, along with the analysis of the downstream data, including the differential scattering cross sections and population of collective states in 134Xe. Work supported in part by the U.S. D.O.E. and National Science Foundation.

  6. Neuroblastoma treatment in the post-genomic era.

    PubMed

    Esposito, Maria Rosaria; Aveic, Sanja; Seydel, Anke; Tonini, Gian Paolo

    2017-02-08

    Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients.High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib.We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.

  7. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury

    PubMed Central

    Yasuda, Hideo; Leelahavanichkul, Asada; Tsunoda, Shinichiro; Dear, James W.; Takahashi, Yoshiyuki; Ito, Shuichi; Hu, Xuzhen; Zhou, Hua; Doi, Kent; Childs, Richard; Klinman, Dennis M.; Yuen, Peter S.T.; Star, Robert A.

    2008-01-01

    Mortality from sepsis has remained high despite recent advances in supportive and targeted therapies. Toll-like receptors (TLRs) sense bacterial products and stimulate pathogenic innate immune responses. Mice deficient in the common adapter protein MyD88, downstream from most TLRs, have reduced mortality and acute kidney injury (AKI) from polymicrobial sepsis. However, the identity of the TLR(s) responsible for the host response to polymicrobial sepsis is unknown. Here, we show that chloroquine, an inhibitor of endocytic TLRs (TLR3, 7, 8, 9), improves sepsis-induced mortality and acute kidney injury in a clinically relevant polymicrobial sepsis mouse model, even when administered 6h after the septic insult. Chloroquine administration attenuated the decline in renal function, splenic apoptosis, serum markers of damage to other organs, and prototypical serum pro- and anti-inflammatory cytokines TNF-alpha and IL-10. An oligodeoxynucleotide inhibitor (H154) of TLR9 and TLR9-deficient mice mirror the actions of chloroquine in all functional parameters that we tested. In addition, chloroquine decreased TLR9 protein abundance in spleen, further suggesting that TLR9 signaling may be a major target for the protective actions of chloroquine. Our findings indicate that chloroquine improves survival by inhibiting multiple pathways leading to polymicrobial sepsis, and that chloroquine and TLR9 inhibitors represent viable broad-spectrum and targeted therapeutic strategies, respectively, that are promising candidates for further clinical development. PMID:18305095

  8. miR-24 and miR-122 Negatively Regulate the Transforming Growth Factor-β/Smad Signaling Pathway in Skeletal Muscle Fibrosis.

    PubMed

    Sun, Yaying; Wang, Hui; Li, Yan; Liu, Shaohua; Chen, Jiwu; Ying, Hao

    2018-06-01

    Fibrosis is common after skeletal muscle injury, undermining tissue regeneration and function. The mechanism underlying skeletal muscle fibrosis remains unveiled. Transforming growth factor-β/Smad signaling pathway is supposed to play a pivotal role. However, how microRNAs interact with transforming growth factor-β/Smad-related muscle fibrosis remains unclear. We showed that microRNA (miR)-24-3p and miR-122-5p declined in skeletal muscle fibrosis, which was a consequence of transforming growth factor-β. Upregulating Smad4 suppressed two microRNAs, whereas inhibiting Smad4 elevated microRNAs. Luciferase reporter assay and chromatin immunoprecipitation confirmed that Smad4 directly inhibited two microRNAs. On the other hand, overexpression of these two miRs retarded fibrotic process. We further identified that Smad2 was a direct target of miR-24-3p, whereas miR-122-5p targeted transforming growth factor-β receptor-II. Both targets were important participants in transforming growth factor-β/Smad signaling. Taken together, a positive feedback loop in transforming growth factor-β/Smad4 signaling pathway in skeletal muscle fibrosis was identified. Transforming growth factor-β/Smad axis could be downregulated by microRNAs. This effect, however, was suppressed by Smad4, the downstream of transforming growth factor-β. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase.

    PubMed

    McBrayer, Samuel K; Olenchock, Benjamin A; DiNatale, Gabriel J; Shi, Diana D; Khanal, Januka; Jennings, Rebecca B; Novak, Jesse S; Oser, Matthew G; Robbins, Alissa K; Modiste, Rebecca; Bonal, Dennis; Moslehi, Javid; Bronson, Roderick T; Neuberg, Donna; Nguyen, Quang-De; Signoretti, Sabina; Losman, Julie-Aurore; Kaelin, William G

    2018-04-17

    Inactivation of the retinoblastoma gene ( RB1 ) product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function RB1 mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline Rbp2 deletion significantly impedes tumorigenesis in Rb1 +/- mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing Rb1 +/- mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established Rb1 -null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by RB1 inactivation.

  10. Elevated Src family kinase activity stabilizes E-cadherin-based junctions and collective movement of head and neck squamous cell carcinomas

    PubMed Central

    Veracini, Laurence; Grall, Dominique; Schaub, Sébastien; Divonne, Stéphanie Beghelli-de la Forest; Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Bozec, Alexandre; Babin, Emmanuel; Sudaka, Anne; Thariat, Juliette; Van Obberghen-Schilling, Ellen

    2015-01-01

    EGF receptor (EGFR) overexpression is thought to drive head and neck carcinogenesis however clinical responses to EGFR-targeting agents have been modest and alternate targets are actively sought to improve results. Src family kinases (SFKs), reported to act downstream of EGFR are among the alternative targets for which increased expression or activity in epithelial tumors is commonly associated to the dissolution of E-cadherin-based junctions and acquisition of a mesenchymal-like phenotype. Robust expression of total and activated Src was observed in advanced stage head and neck tumors (N=60) and in head and neck squamous cell carcinoma lines. In cultured cancer cells Src co-localized with E-cadherin in cell-cell junctions and its phosphorylation on Y419 was both constitutive and independent of EGFR activation. Selective inhibition of SFKs with SU6656 delocalized E-cadherin and disrupted cellular junctions without affecting E-cadherin expression and this effect was phenocopied by knockdown of Src or Yes. These findings reveal an EGFR-independent role for SFKs in the maintenance of intercellular junctions, which likely contributes to the cohesive invasion E-cadherin-positive cells in advanced tumors. Further, they highlight the need for a deeper comprehension of molecular pathways that drive collective cell invasion, in absence of mesenchymal transition, in order to combat tumor spread. PMID:25779657

  11. Establishment of a universal and rational gene detection strategy through three-way junction-based remote transduction.

    PubMed

    Tang, Yidan; Lu, Baiyang; Zhu, Zhentong; Li, Bingling

    2018-01-21

    The polymerase chain reaction and many isothermal amplifications are able to achieve super gene amplification. Unfortunately, most commonly-used transduction methods, such as dye staining and Taqman-like probing, still suffer from shortcomings including false signals or difficult probe design, or are incompatible with multi-analysis. Here a universal and rational gene detection strategy has been established by translating isothermal amplicons to enzyme-free strand displacement circuits via three-way junction-based remote transduction. An assistant transduction probe was imported to form a partial hybrid with the target single-stranded nucleic acid. After systematic optimization the hybrid could serve as an associative trigger to activate a downstream circuit detector via a strand displacement reaction across the three-way junction. By doing so, the detection selectivity can be double-guaranteed through both amplicon-transducer recognition and the amplicon-circuit reaction. A well-optimized circuit can be immediately applied to a new target detection through simply displacing only 10-12 nt on only one component, according to the target. More importantly, this property for the first time enables multi-analysis and logic-analysis in a single reaction, sharing a single fluorescence reporter. In an applicable model, trace amounts of Cronobacter and Enterobacteria genes have been clearly distinguished from samples with no bacteria or one bacterium, with ultra-high sensitivity and selectivity.

  12. Coordinated neuronal activity enhances corticocortical communication

    PubMed Central

    Zandvakili, Amin; Kohn, Adam

    2015-01-01

    Summary Relaying neural signals between cortical areas is central to cognition and sensory processing. The temporal coordination of activity in a source population has been suggested to determine corticocortical signaling efficacy, but others have argued that coordination is functionally irrelevant. We reasoned that if coordination significantly influenced signaling, spiking in downstream networks should be preceded by transiently elevated coordination in a source population. We developed a metric to quantify network coordination in brief epochs, and applied it to simultaneous recordings of neuronal populations in cortical areas V1 and V2 of the macaque monkey. Spiking in the input layers of V2 was preceded by brief epochs of elevated V1 coordination, but this was not the case in other layers of V2. Our results indicate that V1 coordination influences its signaling to direct downstream targets, but that coordinated V1 epochs do not propagate through multiple downstream networks as in some corticocortical signaling schemes. PMID:26291164

  13. Characterization and Placement of Wetlands for Integrated Conservation Practice Planning

    EPA Science Inventory

    Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strateg...

  14. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  15. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  16. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  17. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  18. 40 CFR 60.692-2 - Standards: Individual drain systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-2 Standards: Individual drain systems. (a)(1... section. (e) Refinery wastewater routed through new process drains and a new first common downstream...

  19. Effects of acidic precipitation on waterbirds in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Stromborg, K.L.; Hensler, G.L.

    1985-01-01

    During 1982-84 waterbird use and numbers of waterbird broods were recorded for 29 wetlands on two study areas (25 and 77 km2) in east-central Maine underlain with bedrock having low, acid-neutralizing capacity (ANC). Twenty-nine wetlands over bedrock with high ANC (Class 3) and 31 wetlands over bedrock of low ANC (Class 1) were evaluated as predictors of wetland pH and alkalinity. Using the alkalinity value of 25 times was greater (P< ..0001) for downstream (84%) versus headwater (16%) wetlands during 1982-84. Avian use was similar when wetlands were classified either as beaver-created or glacial in origin. Headwater wetlands, which are most vulnerable to acidification within the low ANC areas, are used mostly by common goldeneye (Bucephala clangula), and common loon (Gavia immer). Common merganser (Mergus merganser), spotted sandpiper (Actitis macularia), and chimney swift (Chaetura pelagica) were associated with headwater wetlands about equally. The majority of species (16), including dabbling ducks, used, almost exclusively, wetlands classified as downstream or beaver-created. For all years, 87% of the 246 broods observed was on wetlands classified as either downstream or beaver-created. Our data suggest that avian use of wetlands is influenced more by the morphometric and vegetative characteristics of the wetland basin rather than by the wetland water chemistry. Nevertheless, large numbers of a variety of avian species are associated with wetlands underlain with bedrock that has little or no capacity to neutralize acidic depositions.

  20. Role of the Phosphoinositide 3-Kinase-Akt-Mammalian Target of the Rapamycin Signaling Pathway in Long-Term Potentiation and Trace Fear Conditioning Memory in Rat Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Sui, Li; Wang, Jing; Li, Bao-Ming

    2008-01-01

    Phosphatidylinositol 3-kinase (PI3K) and its downstream targets, including Akt (also known as protein kinase B, PKB), mammalian target of rapamycin (mTOR), the 70-kDa ribosomal S6 kinase (p70S6k), and the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), may play important roles in long-term synaptic plasticity and memory in many…

  1. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer.

    PubMed

    De Marco, Carmela; Laudanna, Carmelo; Rinaldo, Nicola; Oliveira, Duarte Mendes; Ravo, Maria; Weisz, Alessandro; Ceccarelli, Michele; Caira, Elvira; Rizzuto, Antonia; Zoppoli, Pietro; Malanga, Donatella; Viglietto, Giuseppe

    2017-01-01

    Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.

  2. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder.

    PubMed

    Lombardo, M V; Moon, H M; Su, J; Palmer, T D; Courchesne, E; Pramparo, T

    2018-04-01

    Maternal immune activation (MIA) via infection during pregnancy is known to increase risk for autism spectrum disorder (ASD). However, it is unclear how MIA disrupts fetal brain gene expression in ways that may explain this increased risk. Here we examine how MIA dysregulates rat fetal brain gene expression (at a time point analogous to the end of the first trimester of human gestation) in ways relevant to ASD-associated pathophysiology. MIA downregulates expression of ASD-associated genes, with the largest enrichments in genes known to harbor rare highly penetrant mutations. MIA also downregulates expression of many genes also known to be persistently downregulated in the ASD cortex later in life and which are canonically known for roles in affecting prenatally late developmental processes at the synapse. Transcriptional and translational programs that are downstream targets of highly ASD-penetrant FMR1 and CHD8 genes are also heavily affected by MIA. MIA strongly upregulates expression of a large number of genes involved in translation initiation, cell cycle, DNA damage and proteolysis processes that affect multiple key neural developmental functions. Upregulation of translation initiation is common to and preserved in gene network structure with the ASD cortical transcriptome throughout life and has downstream impact on cell cycle processes. The cap-dependent translation initiation gene, EIF4E, is one of the most MIA-dysregulated of all ASD-associated genes and targeted network analyses demonstrate prominent MIA-induced transcriptional dysregulation of mTOR and EIF4E-dependent signaling. This dysregulation of translation initiation via alteration of the Tsc2-mTor-Eif4e axis was further validated across MIA rodent models. MIA may confer increased risk for ASD by dysregulating key aspects of fetal brain gene expression that are highly relevant to pathophysiology affecting ASD.

  3. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum.

    PubMed

    Wei, Qinglv; Du, Yanru; Jin, Kai; Xia, Yuxian

    2017-12-01

    Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.

  4. Role of cyclooxygenase isoforms in prostacyclin biosynthesis and murine prehepatic portal hypertension

    PubMed Central

    Skill, N. J.; Theodorakis, N. G.; Wang, Y. N.; Wu, J. M.; Redmond, E. M.; Sitzmann, J. V.

    2008-01-01

    Portal hypertension (PHT) is a common complication of liver cirrhosis and significantly increases morbidity and mortality. Abrogation of PHT using NSAIDs has demonstrated that prostacyclin (PGI2), a direct downstream metabolic product of cyclooxygenase (COX) activity, is an important mediator in the development of experimental and clinical PHT. However, the role of COX isoforms in PGI2 biosynthesis and PHT is not fully understood. Prehepatic PHT was induced by portal vein ligation (PVL) in wild-type, COX-1−/−, and COX-2−/− mice treated with and without COX-2 (NS398) or COX-1 (SC560) inhibitors. Hemodynamic measurements and PGI2 biosynthesis were determined 1–7 days after PVL or sham surgery. Gene deletion or pharmacological inhibition of COX-1 or COX-2 attenuated but did not ameliorate PGI2 biosynthesis after PVL or prevent PHT. In contrast, treatment of COX-1−/− mice with NS398 or COX-2−/− mice with SC560 restricted PGI2 biosynthesis and abrogated the development of PHT following PVL. In conclusion, either COX-1 or COX-2 can mediate elevated PGI2 biosynthesis and the development of experimental prehepatic PHT. Consequently, PGI2 rather then COX-selective drugs are indicated in the treatment of PHT. Identification of additional target sites downstream of COX may benefit the >27,000 patients whom die annually from cirrhosis in the United States alone. PMID:18772366

  5. Simultaneous automatic scoring and co-registration of hormone receptors in tumor areas in whole slide images of breast cancer tissue slides.

    PubMed

    Trahearn, Nicholas; Tsang, Yee Wah; Cree, Ian A; Snead, David; Epstein, David; Rajpoot, Nasir

    2017-06-01

    Automation of downstream analysis may offer many potential benefits to routine histopathology. One area of interest for automation is in the scoring of multiple immunohistochemical markers to predict the patient's response to targeted therapies. Automated serial slide analysis of this kind requires robust registration to identify common tissue regions across sections. We present an automated method for co-localized scoring of Estrogen Receptor and Progesterone Receptor (ER/PR) in breast cancer core biopsies using whole slide images. Regions of tumor in a series of fifty consecutive breast core biopsies were identified by annotation on H&E whole slide images. Sequentially cut immunohistochemical stained sections were scored manually, before being digitally scanned and then exported into JPEG 2000 format. A two-stage registration process was performed to identify the annotated regions of interest in the immunohistochemistry sections, which were then scored using the Allred system. Overall correlation between manual and automated scoring for ER and PR was 0.944 and 0.883, respectively, with 90% of ER and 80% of PR scores within in one point or less of agreement. This proof of principle study indicates slide registration can be used as a basis for automation of the downstream analysis for clinically relevant biomarkers in the majority of cases. The approach is likely to be improved by implantation of safeguarding analysis steps post registration. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  6. XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits.

    PubMed

    Fang, Hai; Knezevic, Bogdan; Burnham, Katie L; Knight, Julian C

    2016-12-13

    Biological interpretation of genomic summary data such as those resulting from genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) studies is one of the major bottlenecks in medical genomics research, calling for efficient and integrative tools to resolve this problem. We introduce eXploring Genomic Relations (XGR), an open source tool designed for enhanced interpretation of genomic summary data enabling downstream knowledge discovery. Targeting users of varying computational skills, XGR utilises prior biological knowledge and relationships in a highly integrated but easily accessible way to make user-input genomic summary datasets more interpretable. We show how by incorporating ontology, annotation, and systems biology network-driven approaches, XGR generates more informative results than conventional analyses. We apply XGR to GWAS and eQTL summary data to explore the genomic landscape of the activated innate immune response and common immunological diseases. We provide genomic evidence for a disease taxonomy supporting the concept of a disease spectrum from autoimmune to autoinflammatory disorders. We also show how XGR can define SNP-modulated gene networks and pathways that are shared and distinct between diseases, how it achieves functional, phenotypic and epigenomic annotations of genes and variants, and how it enables exploring annotation-based relationships between genetic variants. XGR provides a single integrated solution to enhance interpretation of genomic summary data for downstream biological discovery. XGR is released as both an R package and a web-app, freely available at http://galahad.well.ox.ac.uk/XGR .

  7. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    PubMed

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Influences of body size and environmental factors on autumn downstream migration of bull trout in the Boise River, Idaho

    USGS Publications Warehouse

    Monnot, L.; Dunham, J.B.; Hoem, T.; Koetsier, P.

    2008-01-01

    Many fishes migrate extensively through stream networks, yet patterns are commonly described only in terms of the origin and destination of migration (e.g., between natal and feeding habitats). To better understand patterns of migration in bull trout,Salvelinus confluentus we studied the influences of body size (total length [TL]) and environmental factors (stream temperature and discharge) on migrations in the Boise River basin, Idaho. During the autumns of 2001-2003, we tracked the downstream migrations of 174 radio-tagged bull trout ranging in size from 21 to 73 cm TL. The results indicated that large bull trout (>30 cm) were more likely than small fish to migrate rapidly downstream after spawning in headwater streams in early autumn. Large bull trout also had a higher probability of arriving at the current terminus of migration in the system, Arrowrock Reservoir. The rate of migration by small bull trout was more variable and individuals were less likely to move into Arrowrock Reservoir. The rate of downstream migration by all fish was slower when stream discharge was greater. Temperature was not associated with the rate of migration. These findings indicate that fish size and environmentally related changes in behavior have important influences on patterns of migration. In a broader context, these results and other recent work suggest, at least in some cases, that commonly used classifications of migratory behavior may not accurately reflect the full range of behaviors and variability among individuals (or life stages) and environmental conditions. ?? Copyright by the American Fisheries Society 2008.

  9. Armored long non-coding RNA MEG3 targeting EGFR based on recombinant MS2 bacteriophage virus-like particles against hepatocellular carcinoma.

    PubMed

    Chang, Le; Wang, Guojing; Jia, Tingting; Zhang, Lei; Li, Yulong; Han, Yanxi; Zhang, Kuo; Lin, Guigao; Zhang, Rui; Li, Jinming; Wang, Lunan

    2016-04-26

    Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers worldwide. However, the treatment of patients with HCC is particularly challenging. Long non-coding RNA maternally expressed gene 3 (MEG3) has been identified as a potential suppressor of several types of tumors, but the delivery of long RNA remains problematic, limiting its applications. In the present study, we designed a novel delivery system based on MS2 virus-like particles (VLPs) crosslinked with GE11 polypeptide. This vector was found to be fast, effective and safe for the targeted delivery of lncRNA MEG3 RNA to the epidermal growth factor receptor (EGFR)-positive HCC cell lines without the activation of EGFR downstream pathways, and significantly attenuated both in vitro and in vivo tumor cell growth. Our study also revealed that the targeted delivery was mainly dependent on clathrin-mediated endocytosis and MEG3 RNA suppresses tumor growth mainly via increasing the expression of p53 and its downstream gene GDF15, but decreasing the expression of MDM2. Thus, this vector is promising as a novel delivery system and may facilitate a new approach to lncRNA based cancer therapy.

  10. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies - potential role of ER stress pathways.

    PubMed

    Lightfoot, Adam P; Nagaraju, Kanneboyina; McArdle, Anne; Cooper, Robert G

    2015-11-01

    Discussion of endoplasmic reticulum (ER) stress pathway activation in idiopathic inflammatory myopathies (IIM), and downstream mechanisms causative of muscle weakness. In IIM, ER stress is an important pathogenic process, but how it causes muscle dysfunction is unknown. We discuss relevant pathways modified in response to ER stress in IIM: reactive oxygen species (ROS) generation and mitochondrial dysfunction, and muscle cytokine (myokine) generation. First, ER stress pathway activation can induce changes in mitochondrial bioenergetics and ROS production. ROS can oxidize cellular components, causing muscle contractile dysfunction and energy deficits. Novel compounds targeting ROS generation and/or mitochondrial dysfunction can improve muscle function in several myopathologies. Second, recent research has demonstrated that skeletal muscle produces multiple myokines. It is suggested that these play a role in causing muscle weakness. Myokines are capable of immune cell recruitment, thus contributing to perturbed muscle function. A characterization of myokines in IIM would clarify their pathogenic role, and so identify new therapeutic targets. ER stress pathway activation is clearly of etiological relevance in IIM. Research to better understand mechanisms of weakness downstream of ER stress is now required, and which may discover new therapeutic targets for nonimmune cell-mediated weakness.

  11. The role of calcium signalling in the chondrogenic response of mesenchymal stem cells to hydrostatic pressure.

    PubMed

    Steward, A J; Kelly, D J; Wagner, D R

    2014-10-28

    The object of this study was to elucidate the role of Ca++ signalling in the chondrogenic response of mesenchymal stem cells (MSCs) to hydrostatic pressure (HP). MSCs were seeded into agarose hydrogels, subjected to HP or kept in free swelling conditions, and were cultured either with or without pharmacological inhibitors of Ca++ mobility and downstream targets. Chelating free Ca++, inhibiting voltage-gated calcium channels, and depleting intracellular calcium storessuppressed the beneficial effect of HP on chondrogenesis, indicating that Ca++ mobility may play an important role in the mechanotransduction of HP. However, inhibition of stretch-activated calcium channels in the current experiment yielded similar results to the control group, suggesting that mechanotransduction of HP is distinct from loads that generate cell deformations. Inhibition of the downstream targets calmodulin, calmodulin kinase II, and calcineurin all knocked down the effect of HP on chondrogenesis, implicating these targets in MSCs response to HP. All of the pharmacological inhibitors that abolished the chondrogenic response to HP also maintained a punctate vimentin organisation in the presence of HP, as opposed to the mechanoresponsive groups where the vimentin structure became more diffuse. These results suggest that Ca++ signalling may transduce HP via vimentin adaptation to loading.

  12. Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma.

    PubMed

    Chen, Kai; Lv, Fan; Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-11-15

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500-and quantitatively analyzed approximately 10,000-phosphorylation sites from each cell line, ultimately detecting 450-790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma.

  13. New separators at the ATLAS facility

    NASA Astrophysics Data System (ADS)

    Back, Birger; Agfa Collaboration; Airis Team

    2015-10-01

    Two new separators are being built for the ATLAS facility. The Argonne Gas-Filled Analyzer (AGFA) is a novel design consisting of a single quadrupole and a multipole magnet that has both dipole and quadrupole field components. The design allows for placing Gammasphere at the target position while providing a solid angle of ~ 22 msr for capturing recoil products emitted at zero degrees. This arrangement enables studies of prompt gamma ray emission from weakly populated trans-fermium nuclei and those near the doubly-magic N = Z = 50 shell closure measured in coincidence with the recoils registered by AGFA. The Argonne In-flight Radioactive Ion Separator (AIRIS) is a magnetic chicane that will be installed immediately downstream of the last ATLAS cryostat and serve to separate radioactive ion beams generated in flight at an upstream high intensity production target. These beams will be further purified by a downstream RF sweeper and transported into a number of target stations including HELIOS, the Enge spectrograph, the FMA and Gammasphere. This talk will present the status of these two projects. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  14. A comprehensive review of heregulins, HER3, and HER4 as potential therapeutic targets in cancer

    PubMed Central

    Mota, Jose Mauricio; Collier, Katharine Ann; Barros Costa, Ricardo Lima; Taxter, Timothy; Kalyan, Aparna; Leite, Caio A.; Chae, Young Kwang; Giles, Francis J.; Carneiro, Benedito A.

    2017-01-01

    Heregulins (HRGs) bind to the receptors HER3 or HER4, induce receptor dimerization, and trigger downstream signaling that leads to tumor progression and resistance to targeted therapies. Increased expression of HRGs has been associated with worse clinical prognosis; therefore, attempts to block HRG-dependent tumor growth have been pursued. This manuscript summarizes the function and signaling of HRGs and review the preclinical evidence of its involvement in carcinogenesis, prognosis, and treatment resistance in several malignancies such as colorectal cancer, non-small cell lung cancer, ovarian cancer, and breast cancer. Agents in preclinical development and clinical trials of novel therapeutics targeting HRG-dependent signaling are also discussed, including anti-HER3 and -HER4 antibodies, anti-metalloproteinase agents, and HRG fusion proteins. Although several trials have indicated an acceptable safety profile, translating preclinical findings into clinical practice remains a challenge in this field, possibly due to the complexity of downstream signaling and patterns of HRG, HER3 and HER4 expression in different cancer subtypes. Improving patient selection through biomarkers and understanding the resistance mechanisms may translate into significant clinical benefits in the near future. PMID:29179520

  15. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1).

    PubMed

    Fonseca, Bruno D; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M; Diao, Ilo T; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L; Hernández, Greco; Alain, Tommy; Damgaard, Christian K

    2015-06-26

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Takeyoshi; Asahi, Toru; Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as amore » thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.« less

  17. Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events.

    PubMed

    Tidball, James G; Wehling-Henricks, Michelle

    2004-12-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal, muscle wasting disease that affects 1 of 3500 boys born worldwide. The disease results from mutation of the dystrophin gene that encodes a cytoskeletal protein associated with the muscle cell membrane. Although gene therapy will likely provide the cure for DMD, it remains on the distant horizon, emphasizing the need for more rapid development of palliative treatments that build on improved understanding of the complex pathology of dystrophin deficiency. In this review, we have focused on therapeutic strategies that target downstream events in the pathologic progression of DMD. Much of this work has been developed initially using the dystrophin-deficient mdx mouse to explore basic features of the pathophysiology of dystrophin deficiency and to test potential therapeutic interventions to slow, reverse, or compensate for functional losses that occur in muscular dystrophy. In some cases, the initial findings in the mdx model have led to clinical treatments for DMD boys that have produced improvements in muscle function and quality of life. Many of these investigations have concerned interventions that can affect protein balance in muscle, by inhibiting specific proteases implicated in the DMD pathology, or by providing anabolic factors or depleting catabolic factors that can contribute to muscle wasting. Other investigations have exploited the use of anti-inflammatory agents that can reduce the contribution of leukocytes to promoting secondary damage to dystrophic muscle. A third general strategy is designed to increase the regenerative capacity of dystrophic muscle and thereby help retain functional muscle mass. Each of these general approaches to slowing the pathology of dystrophin deficiency has yielded encouragement and suggests that targeting downstream events in dystrophinopathy can yield worthwhile, functional improvements in DMD.

  18. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1)*

    PubMed Central

    Fonseca, Bruno D.; Zakaria, Chadi; Jia, Jian-Jun; Graber, Tyson E.; Svitkin, Yuri; Tahmasebi, Soroush; Healy, Danielle; Hoang, Huy-Dung; Jensen, Jacob M.; Diao, Ilo T.; Lussier, Alexandre; Dajadian, Christopher; Padmanabhan, Niranjan; Wang, Walter; Matta-Camacho, Edna; Hearnden, Jaclyn; Smith, Ewan M.; Tsukumo, Yoshinori; Yanagiya, Akiko; Morita, Masahiro; Petroulakis, Emmanuel; González, Jose L.; Hernández, Greco; Alain, Tommy; Damgaard, Christian K.

    2015-01-01

    The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5′TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1. PMID:25940091

  19. MicroRNA-29 regulates myocardial microvascular endothelial cells proliferation and migration in association with IGF1 in type 2 diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenjie; Jiang, Runxia; Yue, Qingcai

    Background: In our study, we investigated the expression and function of microRNA-29 in myocardial microvascular endothelial cells (MMEVC) in type 2 diabetic Goto-Kakizaki (GK) rats. Methods: MiR-29 gene expression was compared, by qRT-PCR between diabetic GK rat MMEVC and non-diabetic Wistar rat MMEVC. MiR-29 was downregulated in GK MMEVC and its effect on angiogenic properties of proliferation and migration was examined. Potential downstream target gene of miR-29, insulin growth factor 1 (IGF1), was assessed by dual-luciferase reporter assay, qRT-PCR and western blot in GK MMEVC. IGF1 was also downregulated by siRNA in miR-29-downregulated GK MMEVC. Its effect on miR-29-associated angiogenicmore » regulation on MMEVC proliferation and migration was further investigated. Results: MiR-29 was substantially upregulated in GK MMEVC than in Wistar MMEVC. Transfection of synthetic miR-29 inhibitor successfully downregulate endogenous miR-29 in GK MMEVC, and subsequently promoted angiogenesis by increasing cell proliferation and migration. IGF1 was confirmed to be downstream target gene of miR-29 in GK MMEVC, with its gene and protein expressions both upregulated in miR-29-downregualted GK MMEVC. Conversely, siRNA-mediated IGF1 downregulation reversed the pro-angiogenic effect of miR-29 downregulation in GK MMEVC, as it decreased cell proliferation and migration. Conclusion: Our study suggests that miR-29 downregulation, through its inverse regulation on downstream target of IGF1 gene, is a pro-angiogenic factor in MMEVC in type 2 diabetic rats.« less

  20. Spatio-temporal changes in river bank mass failures in the Lockyer Valley, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky; Grove, James; Khanal, Giri

    2013-06-01

    Wet-flow river bank failure processes are poorly understood relative to the more commonly studied processes of fluvial entrainment and gravity-induced mass failures. Using high resolution topographic data (LiDAR) and near coincident aerial photography, this study documents the downstream distribution of river bank mass failures which occurred as a result of a catastrophic flood in the Lockyer Valley in January 2011. In addition, this distribution is compared with wet flow mass failure features from previous large floods. The downstream analysis of these two temporal data sets indicated that they occur across a range of river lengths, catchment areas, bank heights and angles and do not appear to be scale-dependent or spatially restricted to certain downstream zones. The downstream trends of each bank failure distribution show limited spatial overlap with only 17% of wet flows common to both distributions. The modification of these features during the catastrophic flood of January 2011 also indicated that such features tend to form at some 'optimum' shape and show limited evidence of subsequent enlargement even when flow and energy conditions within the banks and channel were high. Elevation changes indicate that such features show evidence for infilling during subsequent floods. The preservation of these features in the landscape for a period of at least 150 years suggests that the seepage processes dominant in their initial formation appear to have limited role in their continuing enlargement over time. No evidence of gully extension or headwall retreat is evident. It is estimated that at least 12 inundation events would be required to fill these failures based on the average net elevation change recorded for the 2011 event. Existing conceptual models of downstream bank erosion process zones may need to consider a wider array of mass failure processes to accommodate for wet flow failures.

  1. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction?

    PubMed

    Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M

    2014-08-01

    Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing.

    PubMed

    Aono, Jun; Ruiz-Rodriguez, Ernesto; Qing, Hua; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-01-01

    The present study sought to investigate the mechanisms underlying the mitogenic function of telomerase and to test the hypothesis that everolimus, commonly used on drug-eluting stents, suppresses smooth muscle cells (SMC) proliferation by targeting telomerase. Proliferation of SMC during neointima formation is prevented by drug-eluting stents. Although the replicative capacity of mammalian cells is enhanced by telomerase expression, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target remain to be investigated. We first employed constitutive expression of telomerase reverse transcriptase (TERT) in cell systems to study transcriptional mechanisms by which telomerase activates a mitogenic program. Second, overexpression of telomerase in mice provided a model to study the role of telomerase as a drug target for the antiproliferative efficacy of everolimus. Inhibition of neointima formation by everolimus is lost in mice overexpressing TERT, indicating that repression of telomerase confers the antiproliferative efficacy of everolimus. Everolimus reduces TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Using chromatin immunoprecipitation assays, we finally demonstrate that TERT induces E2F binding to S-phase gene promoters and supports histone acetylation, effects that are inhibited by everolimus and mediate its antiproliferative activity. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus. Our studies further identify a novel mitogenic pathway in SMC, which depends on the epigenetic activation of S-phase gene promoters by TERT.

  3. Targeted therapy in advanced gastric carcinoma: the future is beginning.

    PubMed

    Schinzari, G; Cassano, A; Orlandi, A; Basso, M; Barone, C

    2014-01-01

    Gastric cancer represents one of the most common cancer worldwide. Unfortunately, the majority of patients present in advanced stage and outcome still remains poor with high mortality rate despite decreasing incidence and new diagnostic and therapeutic strategies. Although utility of classical chemotherapy agents has been widely explored, advances have been slow and the efficacy of these agents has reached a plateau of median overall survival not higher than 12 months. Therefore, researchers focused their attention on better understanding molecular biology of carcinogenesis and deeper knowledge of the cancer cell phenotype, as well on development of rationally designed drugs that would target specific molecular aberrancies in signal transduction pathways. These targets include cell surface receptors, circulating growth and angiogenic factors and other molecules involved in downstream intracellular signaling pathways, including receptor tyrosine kinases. However, therapeutic advances in gastric cancer are not so encouraging when compared to other solid organ malignancies such as breast and colorectal cancer. This article reviews the role of targeted agents in gastric cancer as single-agent therapy or in combination regimens, including their rational and emerging mechanism of action, current and emerging data. We focused our attention mainly on published phase III studies, therefore cornerstone clinical trials with trastuzumab and bevacizumab have been largely discussed. Phase III studies presented in important international meetings are also reviewed as well phase II published studies and promising new therapies investigated in preclinical or phase I studies. Today, in first-line treatment only trastuzumab has shown significantly increased survival in combination with chemotherapy, whereas ramucirumab as single agent resulted effective in progressing patients, but - despite several disappointing results - these are the proof of principle that targeting the proper molecular aberration is the best way for implementing outcome of therapy.

  4. Upregulation of microRNA-137 expression by Slug promotes tumor invasion and metastasis of non-small cell lung cancer cells through suppression of TFAP2C.

    PubMed

    Chang, Tzu-Hua; Tsai, Meng-Feng; Gow, Chien-Hung; Wu, Shang-Gin; Liu, Yi-Nan; Chang, Yih-Leong; Yu, Sung-Liang; Tsai, Hsing-Chen; Lin, Shih-Wen; Chen, Yen-Wei; Kuo, Po-Yen; Yang, Pan-Chyr; Shih, Jin-Yuan

    2017-08-28

    The epithelial-mesenchymal transition (EMT) regulator, Slug, plays multifaceted roles in controlling lung cancer progression, but its downstream targets and mechanisms in promoting lung cancer progression have not been well defined. In particular, the miRNAs downstream of Slug in non-small cell lung cancer (NSCLC) remain undetermined. Here, we report that miR-137 is downstream of the EMT regulator, Slug, in lung cancer cells. Slug binds directly to the E-box of the miR-137 promoter and up-regulates its expression in lung cancer cells. Knockdown of miR-137 abolished Slug-induced cancer invasion and migration, whereas upregulation of miR-137 was found to trigger lung cancer cell invasion and progression by direct suppressing TFAP2C (transcription factor AP-2 gamma). Clinical data showed that lung adenocarcinoma patients with low-level expression of Slug and miR-137 but high-level expression of TFAP2C experienced significantly better survival. miR-137 is a Slug-induced miRNA that relays the pro-metastatic effects of Slug by targeting TFAP2C. Our findings add new components to the Slug-mediated regulatory network in lung cancer, and suggest that Slug, miR-137, and TFAP2C may be useful prognostic markers in lung adenocarcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Brachyury downstream notochord differentiation in the ascidian embryo

    PubMed Central

    Takahashi, Hiroki; Hotta, Kohji; Erives, Albert; Di Gregorio, Anna; Zeller, Robert W.; Levine, Michael; Satoh, Nori

    1999-01-01

    The ascidian tadpole represents the most simplified chordate body plan. It contains a notochord composed of just 40 cells, but as in vertebrates Brachyury is essential for notochord differentiation. Here, we show that the misexpression of the Brachyury gene (Ci-Bra) of Ciona intestinalis is sufficient to transform endoderm into notochord. Subtractive hybridization screens were conducted to identify potential Brachyury target genes that are induced upon Ci-Bra misexpression. Of 501 independent cDNA clones that were surveyed, 38 were specifically expressed in notochord cells. These potential Ci-Bra downstream genes appear to encode a broad spectrum of divergent proteins associated with notochord formation. PMID:10385620

  6. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo

    PubMed Central

    Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua

    2015-01-01

    In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK−1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3′UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates. PMID:26223836

  7. miRNA-133 augments coelomocyte phagocytosis in bacteria-challenged Apostichopus japonicus via targeting the TLR component of IRAK-1 in vitro and in vivo.

    PubMed

    Lu, Meng; Zhang, Peng-Juan; Li, Cheng-Hua; Lv, Zhi-Meng; Zhang, Wei-Wei; Jin, Chun-Hua

    2015-07-30

    In this study, we explored the potential roles of miRNA-133 in regulating TLR pathways in the sea cucumber Apostichopus japonicus. Target screening of RNA-Seq data successfully identified interleukin-1 receptor-associated kinase (AjIRAK-1) as a putative target of miR-133. This result was further validated by negative expression profiles in Vibrio splendidus-challenged coelomocytes and lipopolysaccharide (LPS)-exposed cell cultures. HEK-293T cells transfected with a dual-luciferase reporter fused to the 3'UTR of wild-type or mutant AjIRAK-1 exhibited a 52.9% reduction in luciferase activity (p < 0.01) compared to controls. Co-infection with a miR-133 mimics or a specific siRNA targeting AjIRAK-1 significantly repressed the mRNA and protein expression levels of AjIRAK-1 and its downstream molecules, such as AjTRAF6 and Ajp105, in primary coelomocytes. In contrast, a miR-133 inhibitor significantly increased the expression of these TLR pathway members. The injection of miR-133 agomir or AjIRAK-1 siRNA into sea cucumbers not only decreased the expression of AjIRAK-1 and its downstream molecules but also significantly increased V. splendidus coelomocyte phagocytosis. All of the present data provide direct evidence that miR-133 is involved in TLR cascade modulation through AjIRAK-1 targeting to promote V. splendidus coelomocyte phagocytosis in these non-model invertebrates.

  8. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030

    PubMed Central

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-01-01

    Background: Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Methods: Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH+/CD133+). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Results: Our results observed that ALDH+/CD133+ colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Conclusion: Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer. PMID:21694723

  9. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030.

    PubMed

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-07-12

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH(+)/CD133(+)). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Our results observed that ALDH(+)/CD133(+) colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer.

  10. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier

    PubMed Central

    Wang, Xiangru; Maruvada, Ravi; Morris, Andrew J.; Liu, Jun O.; Baek, Dong Jae; Kim, Kwang Sik

    2016-01-01

    Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood–brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics. PMID:27711202

  11. Transcriptomic-based effects monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    EPA Science Inventory

    The present study investigated whether combining of targeted analytical chemistry methods with unsupervised, data-rich methodologies (i.e. transcriptomics) can be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The...

  12. Characterization and placement of wetlands for integrated watershed conservation practice planning

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands have been recognized as an efficient and cost-effective conservation practice to protect water quality through reducing the transport of sediments and nutrients from upstream croplands to downstream water bodies. The challenge resides in targeting the strategic location of wetla...

  13. Rous Sarcoma Virus RNA Stability Element Inhibits Deadenylation of mRNAs with Long 3′UTRs

    PubMed Central

    Balagopal, Vidya; Beemon, Karen L.

    2017-01-01

    All retroviruses use their full-length primary transcript as the major mRNA for Group-specific antigen (Gag) capsid proteins. This results in a long 3′ untranslated region (UTR) downstream of the termination codon. In the case of Rous sarcoma virus (RSV), there is a 7 kb 3′UTR downstream of the gag terminator, containing the pol, env, and src genes. mRNAs containing long 3′UTRs, like those with premature termination codons, are frequently recognized by the cellular nonsense-mediated mRNA decay (NMD) machinery and targeted for degradation. To prevent this, RSV has evolved an RNA stability element (RSE) in the RNA immediately downstream of the gag termination codon. This 400-nt RNA sequence stabilizes premature termination codons (PTCs) in gag. It also stabilizes globin mRNAs with long 3′UTRs, when placed downstream of the termination codon. It is not clear how the RSE stabilizes the mRNA and prevents decay. We show here that the presence of RSE inhibits deadenylation severely. In addition, the RSE also impairs decapping (DCP2) and 5′-3′ exonucleolytic (XRN1) function in knockdown experiments in human cells. PMID:28763028

  14. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits.

    PubMed

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-04-21

    Alzheimer's disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.

  15. Atox1 Contains Positive Residues That Mediate Membrane Association and Aid Subsequent Copper Loading

    PubMed Central

    Flores, Adrian G.; Unger, Vinzenz M.

    2013-01-01

    Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution. PMID:24036897

  16. Atox1 contains positive residues that mediate membrane association and aid subsequent copper loading.

    PubMed

    Flores, Adrian G; Unger, Vinzenz M

    2013-12-01

    Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.

  17. TEAD1 mediates the oncogenic activities of Hippo-YAP1 signaling in osteosarcoma.

    PubMed

    Chai, Jiwei; Xu, Shijie; Guo, Fengbo

    2017-06-24

    Hippo signaling pathway is an evolutionarily conserved developmental network that governs the downstream transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs that responsible for cell proliferation, apoptosis, and stem cell self renewal. Emerging evidence has shown the tumor suppressor properties of Hippo signaling. However, limited knowledge is available concerning the downstream transcription factors of Hippo pathway in osteosarcoma (OS). In this study, we demonstrated that TEAD1 was the major transcription factor of Hippo signaling pathway in OS. Genetic silencing of TEAD1 suppressed multiple malignant phenotypes of OS cells including cell proliferation, apoptosis resistance, and invasive potential. Mechanistically, we showed that TEAD1 largely exerted its transcriptional control of its functional targets, PTGS2 and CYR61. Collectively, this work identifies the YAP1/TEAD1 complex as the representative dysregulated profile of Hippo signaling in OS and provides proof-of-principle that targeting TEAD1 may be a therapeutic strategy of osteosarcoma. Copyright © 2017. Published by Elsevier Inc.

  18. Peptide amphiphile nanofiber hydrogel delivery of sonic hedgehog protein to the cavernous nerve to promote regeneration and prevent erectile dysfunction.

    PubMed

    Choe, Shawn; Bond, Christopher W; Harrington, Daniel A; Stupp, Samuel I; McVary, Kevin T; Podlasek, Carol A

    2017-01-01

    Erectile dysfunction (ED) has high impact on quality of life in prostatectomy, diabetic and aging patients. An underlying mechanism is cavernous nerve (CN) injury, which causes ED in up to 80% of prostatectomy patients. We examine how sonic hedgehog (SHH) treatment with innovative peptide amphiphile nanofiber hydrogels (PA), promotes CN regeneration after injury. SHH and its receptors patched (PTCH1) and smoothened (SMO) are localized in PG neurons and glia. SMO undergoes anterograde transport to signal to downstream targets. With crush injury, PG neurons degenerate and undergo apoptosis. SHH protein decreases, SMO localization changes to the neuronal cell surface, and anterograde transport stops. With SHH treatment SHH is taken up at the injury site and undergoes retrograde transport to PG neurons, allowing SMO transport to occur, and neurons remain intact. SHH treatment prevents neuronal degeneration, maintains neuronal, glial and downstream target signaling, and is significant as a regenerative therapy. Published by Elsevier Inc.

  19. HAND2 Targets Define a Network of Transcriptional Regulators that Compartmentalize the Early Limb Bud Mesenchyme

    DOE PAGES

    Osterwalder, Marco; Speziale, Dario; Shoukry, Malak; ...

    2014-11-10

    The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb, heart, and branchial arch development. Here, we identify the genomic regions enriched in HAND2 chromatin complexes from mouse embryos and limb buds. Then we analyze the HAND2 target CRMs in the genomic landscapes encoding transcriptional regulators required in early limb buds. HAND2 controls the expression of genes functioning in the proximal limb bud and orchestrates the establishment of anterior andmore » posterior polarity of the nascent limb bud mesenchyme by impacting Gli3 and Tbx3 expression. TBX3 is required downstream of HAND2 to refine the posterior Gli3 expression boundary. In conclusion, our analysis uncovers the transcriptional circuits that function in establishing distinct mesenchymal compartments downstream of HAND2 and upstream of SHH signaling.« less

  20. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    PubMed

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  1. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells

    PubMed Central

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-01-01

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment. PMID:27827420

  2. Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs

    PubMed Central

    Yarch, Jeff; Federer, Frederick

    2017-01-01

    Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical to understanding how local processing in V1 relates to downstream processing. We have identified the local circuits of a population of cells in V1 layer (L)4B that project to area V2. These cells' local circuits differ from classical descriptions of L4B circuits in both the laminar and functional compartments targeted by their axons, and identify two neuron classes. Our results demonstrate that both local intra-V1 and extrinsic V1-to-V2 connections of L4B neurons preserve CO-stream segregation, suggesting that across-stream integration occurs downstream of V1, and that output targets dictate local V1 circuitry. PMID:28077720

  3. Analysis of water use strategies of the desert riparian forest plant community in inland rivers of two arid regions in northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.

    2014-10-01

    Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited no significant difference, but the water use and consumption of Populus euphratica in the downstream of the Tarim River in the day was significantly higher than that in the downstream of the Heihe River, and the essential reason for this is the groundwater depth. The ecology in the downstream of the Heihe River has been in balance in the maintenance and development stage, while desert riparian forest plants in the downstream of the Tarim River are still in severe arid stress.

  4. Transient response in granular bounded heap flows

    NASA Astrophysics Data System (ADS)

    Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.

    2017-11-01

    Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.

  5. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles.

    PubMed

    Hammer, Tobin J; Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-05-25

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. © 2016 The Author(s).

  6. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles

    PubMed Central

    Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-01-01

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. PMID:27226475

  7. Optimization of cerebellar purkinje neuron cultures and development of a plasmid-based method for purkinje neuron-specific, miRNA-mediated protein knockdown.

    PubMed

    Alexander, C J; Hammer, J A

    2016-01-01

    We present a simple and efficient method to knock down proteins specifically in Purkinje neurons (PN) present in mixed mouse primary cerebellar cultures. This method utilizes the introduction via nucleofection of a plasmid encoding a specific miRNA downstream of the L7/Pcp2 promoter, which drives PN-specific expression. As proof-of-principle, we used this plasmid to knock down the motor protein myosin Va, which is required for the targeting of smooth endoplasmic reticulum (ER) into PN spines. Consistent with effective knockdown, transfected PNs robustly phenocopied PNs from dilute-lethal (myosin Va-null) mice with regard to the ER targeting defect. Importantly, our plasmid-based approach is less challenging technically and more specific to PNs than several alternative methods (e.g., biolistic- and lentiviral-based introduction of siRNAs). We also present a number of improvements for generating mixed cerebellar cultures that shorten the procedure and improve the total yield of PNs, and of transfected PNs, considerably. Finally, we present a method to rescue cerebellar cultures that develop large cell aggregates, a common problem that otherwise precludes the further use of the culture. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Regulation of the metastasis suppressor Nm23-H1 by tumor viruses

    PubMed Central

    Banerjee, Shuvomoy; Jha, Hem Chandra

    2018-01-01

    Metastasis is the most common cause of cancer mortality. To increase the survival of patients, it is necessary to develop more effective methods for treating as well as preventing metastatic diseases. Recent advancement of knowledge in cancer metastasis provides the basis for development of targeted molecular therapeutics aimed at the tumor cell or its interaction with the host microenvironment. Metastasis suppressor genes (MSGs) are promising targets for inhibition of the metastasis process. During the past decade, functional significance of these genes, their regulatory pathways, and related downstream effector molecules have become a major focus of cancer research. Nm23-H1, first in the family of Nm23 human homologues, is a well-characterized, anti-metastatic factor linked with a large number of human malignancies. Mounting evidence to date suggests an important role for Nm23-H1 in reducing virus-induced tumor cell motility and migration. A detailed understanding of the molecular association between oncogenic viral antigens with Nm23-H1 may reveal the underlying mechanisms for tumor virus-associated malignancies. In this review, we will focus on the recent advances to our understanding of the molecular basis of oncogenic virus-induced progression of tumor metastasis by deregulation of Nm23-H1. PMID:25199839

  9. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis.

    PubMed

    Wang, Zhi Dong; Wei, Sheng Quan; Wang, Qin Yi

    2015-01-01

    Tumors require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors. Many potential oncogenic mutations have been identified in tumor angiogenesis. Somatic mutations in the small GTPase KRAS are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated anti-tumor activity both in vitro and in vivo. The extracellular regulated protein kinases (ERK) signaling is known to be a major cellular target of biguanides. Based on KRAS activates several down-stream effectors leading to the stimulation of the RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAF/MEK/ERK) and phosphatidylinositol-3-kinase (PI3K) pathways, we investigated the anti-tumor effects of biguanides on the proliferation of KRAS-mutated tumor cells in vitro and on KRAS-driven tumor growth in vivo. In cancer cells harboring oncogenic KRAS, phenformin switches off the ERK pathway and inhibit the expression of pro-angiogenic molecules. In tumor xenografts harboring the KRAS mutation, phenformin extensively modifies the tumor growth causing abrogation of angiogenesis. These results strongly suggest that significant therapeutic advantage may be achieved by phenformin anti-angiogenesis for the treatment of tumor.

  10. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer.

    PubMed

    Vallejo, Adrian; Perurena, Naiara; Guruceaga, Elisabet; Mazur, Pawel K; Martinez-Canarias, Susana; Zandueta, Carolina; Valencia, Karmele; Arricibita, Andrea; Gwinn, Dana; Sayles, Leanne C; Chuang, Chen-Hua; Guembe, Laura; Bailey, Peter; Chang, David K; Biankin, Andrew; Ponz-Sarvise, Mariano; Andersen, Jesper B; Khatri, Purvesh; Bozec, Aline; Sweet-Cordero, E Alejandro; Sage, Julien; Lecanda, Fernando; Vicent, Silve

    2017-02-21

    KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.

  11. Co-factors Required for TLR7- and TLR9- dependent Innate Immune Responses

    PubMed Central

    Chiang, Chih-yuan; Engel, Alex; Opaluch, Amanda M.; Ramos, Irene; Maestre, Ana M.; Secundino, Ismael; De Jesus, Paul D.; Nguyen, Quy T.; Welch, Genevieve; Bonamy, Ghislain M.C.; Miraglia, Loren J.; Orth, Anthony P.; Nizet, Victor; Fernandez-Sesma, Ana; Zhou, Yingyao; Barton, Gregory M.; Chanda, Sumit K.

    2012-01-01

    SUMMARY Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent pro-inflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis we identify 190 co-factors required for TLR7- and TLR9-directed signaling responses. A set of co-factors were cross-profiled for their activities downstream of several immunoreceptors, and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection. PMID:22423970

  12. Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus.

    PubMed

    Ogura, Atsushi; Yoshida, Masa-aki; Moritaki, Takeya; Okuda, Yuki; Sese, Jun; Shimizu, Kentaro K; Sousounis, Konstantinos; Tsonis, Panagiotis A

    2013-01-01

    Coleoid cephalopods have an elaborate camera eye whereas nautiloids have primitive pinhole eye without lens and cornea. The Nautilus pinhole eye provides a unique example to explore the module of lens formation and its evolutionary mechanism. Here, we conducted an RNA-seq study of developing eyes of Nautilus and pygmy squid. First, we found that evolutionary distances from the common ancestor to Nautilus or squid are almost the same. Although most upstream eye development controlling genes were expressed in both species, six3/6 that are required for lens formation in vertebrates was not expressed in Nautilus. Furthermore, many downstream target genes of six3/6 including crystallin genes and other lens protein related genes were not expressed in Nautilus. As six3/6 and its controlling pathways are widely conserved among molluscs other than Nautilus, the present data suggest that deregulation of the six3/6 pathway led to the pinhole eye evolution in Nautilus.

  13. Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus

    PubMed Central

    Ogura, Atsushi; Yoshida, Masa-aki; Moritaki, Takeya; Okuda, Yuki; Sese, Jun; Shimizu, Kentaro K.; Sousounis, Konstantinos; Tsonis, Panagiotis A.

    2013-01-01

    Coleoid cephalopods have an elaborate camera eye whereas nautiloids have primitive pinhole eye without lens and cornea. The Nautilus pinhole eye provides a unique example to explore the module of lens formation and its evolutionary mechanism. Here, we conducted an RNA-seq study of developing eyes of Nautilus and pygmy squid. First, we found that evolutionary distances from the common ancestor to Nautilus or squid are almost the same. Although most upstream eye development controlling genes were expressed in both species, six3/6 that are required for lens formation in vertebrates was not expressed in Nautilus. Furthermore, many downstream target genes of six3/6 including crystallin genes and other lens protein related genes were not expressed in Nautilus. As six3/6 and its controlling pathways are widely conserved among molluscs other than Nautilus, the present data suggest that deregulation of the six3/6 pathway led to the pinhole eye evolution in Nautilus. PMID:23478590

  14. Fragile X syndrome: mechanistic insights and therapeutic avenues regarding the role of potassium channels.

    PubMed

    Lee, Hye Young; Jan, Lily Yeh

    2012-10-01

    Fragile X syndrome (FXS) is a common form of mental disability and one of the known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeats that leads to DNA methylation of the fragile X mental retardation gene 1 (FMR1) and transcriptional silencing, resulting in the absence of fragile X mental retardation protein (FMRP), an mRNA binding protein. Although it is widely known that FMRP is critical for metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), which has provided a general theme for developing pharmacological drugs for FXS, specific downstream targets of FMRP may also be of therapeutic value. Since alterations in potassium channel expression level or activity could underlie neuronal network defects in FXS, here we describe recent findings on how these channels might be altered in mouse models of FXS and the possible therapeutic avenues for treating FXS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Hippo signaling regulates Microprocessor and links cell density-dependent miRNA biogenesis to cancer

    PubMed Central

    Mori, Masaki; Triboulet, Robinson; Mohseni, Morvarid; Schlegelmilch, Karin; Shrestha, Kriti; Camargo, Fernando D.; Gregory, Richard I.

    2014-01-01

    SUMMARY Global downregulation of microRNAs (miRNAs) is commonly observed in human cancers and can have a causative role in tumorigenesis. The mechanisms responsible for this phenomenon remain poorly understood. Here we show that YAP, the downstream target of the tumor-suppressive Hippo signaling pathway regulates miRNA biogenesis in a cell density-dependent manner. At low cell density, nuclear YAP binds and sequesters p72 (DDX17), a regulatory component of the miRNA processing machinery. At high cell density, Hippo-mediated cytoplasmic retention of YAP facilitates p72 association with Microprocessor and binding to a specific sequence motif in pri-miRNAs. Inactivation of the Hippo pathway or expression of constitutively active YAP causes widespread miRNA suppression in cells and tumors and a corresponding post-transcriptional induction of MYC expression. Thus, the Hippo pathway links contact-inhibition regulation to miRNA biogenesis and may be responsible for the widespread miRNA repression observed in cancer. PMID:24581491

  16. A polymer nanoparticle with engineered affinity for a vascular endothelial growth factor (VEGF165)

    NASA Astrophysics Data System (ADS)

    Koide, Hiroyuki; Yoshimatsu, Keiichi; Hoshino, Yu; Lee, Shih-Hui; Okajima, Ai; Ariizumi, Saki; Narita, Yudai; Yonamine, Yusuke; Weisman, Adam C.; Nishimura, Yuri; Oku, Naoto; Miura, Yoshiko; Shea, Kenneth J.

    2017-07-01

    Protein affinity reagents are widely used in basic research, diagnostics and separations and for clinical applications, the most common of which are antibodies. However, they often suffer from high cost, and difficulties in their development, production and storage. Here we show that a synthetic polymer nanoparticle (NP) can be engineered to have many of the functions of a protein affinity reagent. Polymer NPs with nM affinity to a key vascular endothelial growth factor (VEGF165) inhibit binding of the signalling protein to its receptor VEGFR-2, preventing receptor phosphorylation and downstream VEGF165-dependent endothelial cell migration and invasion into the extracellular matrix. In addition, the NPs inhibit VEGF-mediated new blood vessel formation in Matrigel plugs in vivo. Importantly, the non-toxic NPs were not found to exhibit off-target activity. These results support the assertion that synthetic polymers offer a new paradigm in the search for abiotic protein affinity reagents by providing many of the functions of their protein counterparts.

  17. Role of Smad signaling in kidney disease.

    PubMed

    Zhang, Yanhua; Wang, Songyan; Liu, Shengmao; Li, Chunguang; Wang, Ji

    2015-12-01

    Smads are the key intermediates of canonical transforming growth factor-beta (TGF-β) signaling. These intermediates are divided into three distinct subgroups based on their role in TGF-β family signal transduction: Receptor-regulated Smads (R-Smads) 1, 2, 3, 5 and 8, common Smad4, and inhibitory Smads6 and 7. TGF-β signaling through Smad pathway involves phosphorylation, ubiquitination, sumoylation, acetylation, and protein-protein interactions with mitogen-activated protein kinases, PI3K-Akt/PKB, and Wnt/GSK-3. Several studies have suggested that upregulation or downregulation of TGF-β/Smad signaling pathways may be a pathogenic mechanism in the progression of chronic kidney disease. Smad2 and 3 are the two major downstream R-Smads in TGF-β-mediated renal fibrosis, while Smad7 also controls renal inflammation. In this review, we characterize the role of Smads in kidney disease, describe the molecular mechanisms, and discuss the potential of Smads as a therapeutic target in chronic kidney disease.

  18. Roles of ERβ and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen.

    PubMed

    Huang, Weiren; Chen, Yuanbin; Liu, Yuchen; Zhang, Qiaoxia; Yu, Zhou; Mou, Lisha; Wu, Hanwei; Zhao, Li; Long, Ting; Qin, Danian; Gui, Yaoting

    2015-01-01

    Bladder cancer belongs to one of the most common cancers and is a leading cause of deaths in our society. Urothelial carcinoma of the bladder (UCB) is the main type of this cancer, and the estrogen receptors in UCB remain to be studied. Our experiment aimed to investigate the possible biological effect of 17β-estradiol on human bladder-derived T24 carcinoma cells and to indicate its related mechanisms. T24 cells were treated with various doses of 17β-estradiol, and cell proliferation was detected using MTT assays. 17β-estradiol promoted T24 cell proliferation independent of ERβ/GPR30-regulated EGFR-MAPK pathway, while it inhibited cell growth via GPR30. Furthermore, the expression levels of downstream genes (c-FOS, BCL-2, and CYCLIN D1) were increased by 17β-estradiol and this effect was independently associated with activity of the EGFR-MAPK pathway. The two estrogen receptors might be potential therapeutic targets for the treatment of bladder cancer.

  19. Signaling pathways relevant to cognition-enhancing drug targets.

    PubMed

    Ménard, Caroline; Gaudreau, Pierrette; Quirion, Rémi

    2015-01-01

    Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.

  20. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5).

    PubMed

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-12-23

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17-24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5 , which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism.

  1. miR-203 and miR-320 Regulate Bone Morphogenetic Protein-2-Induced Osteoblast Differentiation by Targeting Distal-Less Homeobox 5 (Dlx5)

    PubMed Central

    Laxman, Navya; Mallmin, Hans; Nilsson, Olle; Kindmark, Andreas

    2016-01-01

    MicroRNAs (miRNAs) are a family of small, non-coding RNAs (17–24 nucleotides), which regulate gene expression either by the degradation of the target mRNAs or inhibiting the translation of genes. Recent studies have indicated that miRNA plays an important role in regulating osteoblast differentiation. In this study, we identified miR-203 and miR-320b as important miRNAs modulating osteoblast differentiation. We identified Dlx5 as potential common target by prediction algorithms and confirmed this by knock-down and over expression of the miRNAs and assessing Dlx5 at mRNA and protein levels and specificity was verified by luciferase reporter assays. We examined the effect of miR-203 and miR-320b on osteoblast differentiation by transfecting with pre- and anti-miRs. Over-expression of miR-203 and miR-320b inhibited osteoblast differentiation, whereas inhibition of miR-203 and miR-320b stimulated alkaline phosphatase activity and matrix mineralization. We show that miR-203 and miR-320b negatively regulate BMP-2-induced osteoblast differentiation by suppressing Dlx5, which in turn suppresses the downstream osteogenic master transcription factor Runx2 and Osx and together they suppress osteoblast differentiation. Taken together, we propose a role for miR-203 and miR-320b in modulating bone metabolism. PMID:28025541

  2. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  3. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma.

    PubMed

    Yuan, Yang; Jiaoming, Li; Xiang, Wang; Yanhui, Liu; Shu, Jiang; Maling, Gou; Qing, Mao

    2018-05-01

    Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

  4. Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites

    PubMed Central

    Diermeier, Sarah D.; Németh, Attila; Rehli, Michael; Grummt, Ingrid; Längst, Gernot

    2013-01-01

    Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. PMID:24068958

  5. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb.

    PubMed

    Lallemand, Yvan; Bensoussan, Vardina; Cloment, Cécile Saint; Robert, Benoît

    2009-07-15

    In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.

  6. Emergent Rules for Codon Choice Elucidated by Editing Rare Arginine Codons in Escherichia coli

    DTIC Science & Technology

    2016-09-20

    alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we imple- mented a CRISPR ... Crispr -assisted MAGE). First, we designed oligos that changed not only the target AGR codon to NNN but also made several synonymous changes at least 50...nt downstream that would disrupt a 20-bp CRISPR target lo- cus. MAGE was used to replace each AGR with NNN in parallel, and CRISPR /cas9 was used to

  7. Dana-Farber Cancer Institute: Identification of Therapeutic Targets Across Cancer Types | Office of Cancer Genomics

    Cancer.gov

    The Dana Farber Cancer Institute CTD2 Center focuses on the use of high-throughput genetic and bioinformatic approaches to identify and credential oncogenes and co-dependencies in cancers. This Center aims to provide the cancer research community with information that will facilitate the prioritization of targets based on both genomic and functional evidence, inform the most appropriate genetic context for downstream mechanistic and validation studies, and enable the translation of this information into therapeutics and diagnostics.

  8. Does Targeted, Disease-Specific Public Research Funding Influence Pharmaceutical Innovation?

    ERIC Educational Resources Information Center

    Blume-Kohout, Margaret E.

    2012-01-01

    Public funding for biomedical research is often justified as a means to encourage development of more (and better) treatments for disease. However, few studies have investigated the relationship between these expenditures and downstream pharmaceutical innovation. In particular, although recent analyses have shown a clear contribution of federally…

  9. Yorkie and Scalloped: partners in growth activation.

    PubMed

    Bandura, Jennifer L; Edgar, Bruce A

    2008-03-01

    The Hippo (Hpo) signaling pathway limits organ growth in organisms from Drosophila to mammals by suppressing the activity of the transcriptional coactivator Yorkie (Yki)/YAP. The TEAD/TEF factor Scalloped (Sd) has been identified as the first known transcription factor to partner with Yki as a downstream target of Hpo signaling.

  10. Sex- and Tissue-specific Functions of Drosophila Doublesex Transcription Factor Target Genes

    PubMed Central

    Clough, Emily; Jimenez, Erin; Kim, Yoo-Ah; Whitworth, Cale; Neville, Megan C.; Hempel, Leonie; Pavlou, Hania J.; Chen, Zhen-Xia; Sturgill, David; Dale, Ryan; Smith, Harold E.; Przytycka, Teresa M.; Goodwin, Stephen F.; Van Doren, Mark; Oliver, Brian

    2014-01-01

    Primary sex determination “switches” evolve rapidly, but Doublesex (DSX) related transcription factors (DMRTs) act downstream of these switches to control sexual development in most animal species. Drosophila dsx encodes female- and male-specific isoforms (DSXF and DSXM), but little is known about how dsx controls sexual development, whether DSXF and DSXM bind different targets, or how DSX proteins direct different outcomes in diverse tissues. We undertook genome-wide analyses to identify DSX targets using in vivo occupancy, binding site prediction, and evolutionary conservation. We find that DSXF and DSXM bind thousands of the same targets in multiple tissues in both sexes, yet these targets have sex- and tissue-specific functions. Interestingly, DSX targets show considerable overlap with targets identified for mouse DMRT1. DSX targets include transcription factors and signaling pathway components providing for direct and indirect regulation of sex-biased expression. PMID:25535918

  11. Experimental and numerical study on thermal-hydraulic performance of wing-shaped-tubes-bundle equipped with winglet vortex generators

    NASA Astrophysics Data System (ADS)

    Abdelatief, Mohamed A.; Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.

    2018-03-01

    The present work evaluates, experimentally and numerically, by the aid of commercial code FLUENT 6.3.26, the effects of relative locations (ΔX or ΔY), heights (hw), and span-angle (θ) of winglet-vortex-generators (WVGs) on thermal-hydraulic performance enhancement for down-stream and/or up-stream wing-shaped-tubes bundle heat exchangers for air Re ranging from 1.85 × 103 to 9.7 × 103 while water Re = 5 × 102. hw is set as 5 mm, 7.5 mm and 10 mm. For tube down-stream, θ is set as 0° (Base-line-case) and from 5° to 45° clockwise common-flow up (CFUp) and counterclockwise common-flow down (CFDn) while for tube up-stream it is set as -5°, -10° and -15° CFUp. Results show that the increase of θ counterclockwise-(CFDn) or clockwise-(CFUp) leads to increase the values of Nu number. Using WVGs with (+5 ° ≤ θ ≤ +45°) results in increasing Nu number by about from 34 to 48% comparing with that of base-line-case. The lowest values of drag coefficient ( f) for tube down-stream are obtained at +5° CFDn and -15° CFUp with respect to the base-line case. For tube up-stream, Nu number increases by increasing θ from 0° to -5° and the values of Nu number for θ varying from -5° to -15° have no significant changes. ( f) increases with hw and has negligible effect on ha. Furthermore, optimization analyses of θ and longitudinal fin (LF) are utilized, in four cases, for finding the optimum combination and maximum efficiency. The highest values of heat transfer parameters such as effectiveness (ɛ), area goodness factor (G) and efficiency index (η) and the lowest values of fluid-flow parameters like ( f) and hence the best efficiency, are achieved for -15° CFUp down-stream, ("case 3" of -15° CFUp down-stream and 6 mm LF height) and +5° CFDn down-stream. Correlations of Nu number, ( f) and (ɛ) as a function of θ and Re for the studied cases are performed.

  12. Stability Thresholds and Performance Standards for Flexible Lining Materials in Channel and Slope Restoration Applications

    DTIC Science & Technology

    2012-07-01

    common industry term Bioengineering - Structural applications using vegetation- seed, plants, live cuttings and/or wood NRCS, common industry term...downstream, the use of non-biodegradable products (geosynthetics, plastics , rebar, metal anchors, etc.) in natural settings, and limited benefits to or...entanglement until vegetation establishment and adherence of the TRM to the soil surface (ECTC 2008). Stitch- bonded, geosynthetic extruded and fused TRMs

  13. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    PubMed

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  14. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR

    PubMed Central

    2013-01-01

    Background Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. Findings We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. Conclusions These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects. PMID:23693071

  15. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology.

    PubMed

    Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H

    2018-05-14

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.

  16. Deptor Is a Novel Target of Wnt/β-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth.

    PubMed

    Wang, Qingding; Zhou, Yuning; Rychahou, Piotr; Harris, Jennifer W; Zaytseva, Yekaterina Y; Liu, Jinpeng; Wang, Chi; Weiss, Heidi L; Liu, Chunming; Lee, Eun Y; Evers, B Mark

    2018-06-15

    Activation of the Wnt/β-catenin signaling pathway drives colorectal cancer growth by deregulating expression of downstream target genes, including the c-myc proto-oncogene. The critical targets that mediate the functions of oncogenic c-Myc in colorectal cancer have yet to be fully elucidated. Previously, we showed that activation of PI3K/Akt/mTOR contributes to colorectal cancer growth and metastasis. Here, we show that Deptor, a suppressor of mTOR, is a direct target of Wnt/β-catenin/c-Myc signaling in colorectal cancer cells. Inhibition of Wnt/β-catenin or knockdown of c-Myc decreased, while activation of Wnt/β-catenin or overexpression of c-Myc increased the expression of Deptor. c-Myc bound the promoter of Deptor and transcriptionally regulated Deptor expression. Inhibition of Wnt/β-catenin/c-Myc signaling increased mTOR activation, and the combination of Wnt and Akt/mTOR inhibitors enhanced inhibition of colorectal cancer cell growth in vitro and in vivo Deptor expression was increased in colorectal cancer cells; knockdown of Deptor induced differentiation, decreased expression of B lymphoma Mo-MLV insertion region 1 (Bmi1), and decreased proliferation in colorectal cancer cell lines and primary human colorectal cancer cells. Importantly, our work identifies Deptor as a downstream target of the Wnt/β-catenin/c-Myc signaling pathway, acting as a tumor promoter in colorectal cancer cells. Moreover, we provide a molecular basis for the synergistic combination of Wnt and mTOR inhibitors in treating colorectal cancer with elevated c-Myc. Significance: The mTOR inhibitor DEPTOR acts as a tumor promoter and could be a potential therapeutic target in colorectal cancer. Cancer Res; 78(12); 3163-75. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams

    USGS Publications Warehouse

    Haggard, B.E.; Galloway, J.M.; Green, W.R.; Meyer, M.T.

    2006-01-01

    Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN). ?? ASA, CSSA, SSSA.

  18. Effects of high salinity wastewater discharges on unionid mussels in the Allegheny River, Pennsylvania

    USGS Publications Warehouse

    Kathleen Patnode,; Hittle, Elizabeth A.; Robert Anderson,; Lora Zimmerman,; Fulton, John W.

    2015-01-01

    We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the Allegheny River.

  19. Toward an Orofacial Gene Regulatory Network

    PubMed Central

    Kousa, Youssef A.; Schutte, Brian C.

    2015-01-01

    Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in Interferon Regulatory Factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude Syndrome (1/35,000 live births) and Popliteal Pterygium Syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude Syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world’s population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (Branchio-oculo-facial Syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting. PMID:26332872

  20. miR-223/Hsp70/JNK/JUN/miR-223 feedback loop modulates the chemoresistance of osteosarcoma to cisplatin.

    PubMed

    Tang, Qi; Yuan, Qi; Li, Hui; Wang, Wanchun; Xie, Guangrong; Zhu, Kewei; Li, Ding

    2018-03-11

    Osteosarcoma (OS) is a primary bone malignancy with a five-year survival rate of 60%; the chemoresistance of OS still remains a huge challenge. Heat shock protein 70 (Hsp70), a member of HSP family, is overexpressed in OS cell lines and involved in the resistance of OS cell lines. In addition, miRNAs have been involved in the carcinogenesis and chemoresistance of OS; of them, miR-223 has been reported to be underexpressed and serve as a tumor suppressor in OS through targeting Hsp90B1, also a member of HSP family. Herein, online tools predicted that Hsp70 might be a direct target of miR-223. In the present study, miR-223 expression was down-regulated in OS tissues and cell lines; miR-223 overexpression enhanced the cellular effects of cisplatin (CDDP) on OS cell lines. Through binding to the HSPA1A 3'UTR, miR-223 could regulate Hsp70 protein levels and downstream JNK/JUN signaling pathway, thus modulating OS cell apoptosis through Hsp70 under CDDP stress. Finally, JUN, a downstream transcription factor of JNK signaling, could bind to the promoter region of miR-223 to promote its transcription. In summary, miR-223, Hsp70 and downstream JNK/JUN formed a feedback loop to modulate the chemoresistance of OS to CDDP. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor

    PubMed Central

    Niwa, Ryusuke; Hada, Kazumasa; Moliyama, Kouichi; Ohniwa, Ryosuke L.; Tan, Yi-Meng; Olsson-Carter, Katherine; Chi, Woo; Reinke, Valerie; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) and its family members control the timing of key developmental events in part by directly regulating expression of hunchback-like-1 (hbl-1). C. elegans hbl-1 mutants display multiple developmental timing deficiencies, including cell cycle defects during larval development. While hbl-1 is predicted to encode a transcriptional regulator, downstream targets of HBL-1 have not been fully elucidated. Here we report using microarray analysis to uncover genes downstream of HBL-1. We established a transgenic strain that overexpresses hbl-1 under the control of a heat shock promoter. Heat shock-induced hbl-1 overexpression led to retarded hypodermal structures at the adult stage, opposite to the effect seen in loss of function (lf) hbl-1 mutants. The microarray screen identified numerous potential genes that are upregulated or downregulated by HBL-1, including sym-1, which encodes a leucine-rich repeat protein with a signal sequence. We found an increase in sym-1 transcription in the heat shock-induced hbl-1 overexpression strain, while loss of hbl-1 function caused a decrease in sym-1 expression levels. Furthermore, we found that sym-1(lf) modified the hypodermal abnormalities in hbl-1 mutants. Given that SYM-1 is a protein secreted from hypodermal cells to the surrounding cuticle, we propose that the adult-specific cuticular structures may be under the temporal control of HBL-1 through regulation of sym-1 transcription. PMID:19923914

  2. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors

    PubMed Central

    Karlsson, Hannah; Svensson, Emma; Gigg, Camilla; Jarvius, Malin; Olsson-Strömberg, Ulla; Savoldo, Barbara; Dotti, Gianpietro; Loskog, Angelica

    2015-01-01

    CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G) CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G) CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs. PMID:26700307

  3. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia.

    PubMed

    Alachkar, Houda; Mutonga, Martin B G; Metzeler, Klaus H; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-12-15

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients.

  4. Preclinical efficacy of maternal embryonic leucine-zipper kinase (MELK) inhibition in acute myeloid leukemia

    PubMed Central

    Alachkar, Houda; Mutonga, Martin B.G.; Metzeler, Klaus H.; Fulton, Noreen; Malnassy, Gregory; Herold, Tobias; Spiekermann, Karsten; Bohlander, Stefan K.; Hiddemann, Wolfgang; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2014-01-01

    Maternal embryonic leucine-zipper kinase (MELK), which was reported to be frequently up-regulated in various types of solid cancer, plays critical roles in formation and maintenance of cancer stem cells. However, little is known about the relevance of this kinase in hematologic malignancies. Here we report characterization of possible roles of MELK in acute myeloid leukemia (AML). MELK is expressed in AML cell lines and AML blasts with higher levels in less differentiated cells. MELK is frequently upregulated in AML with complex karyotypes and is associated with worse clinical outcome. MELK knockdown resulted in growth inhibition and apoptosis of leukemic cells. Hence, we investigated the potent anti-leukemia activity of OTS167, a small molecule MELK kinase inhibitor, in AML, and found that the compound induced cell differentiation and apoptosis as well as decreased migration of AML cells. MELK expression was positively correlated with the expression of FOXM1 as well as its downstream target genes. Furthermore, MELK inhibition resulted in downregulation of FOXM1 activity and the expression of its downstream targets. Taken together, and given that OTS167 is undergoing a phase I clinical trial in solid cancer, our study warrants clinical evaluation of this compound as a novel targeted therapy for AML patients. PMID:25365263

  5. Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID

    PubMed Central

    Kodgire, Prashant; Mukkawar, Priyanka; Ratnam, Sarayu; Martin, Terence E.

    2013-01-01

    Somatic hypermutation (SHM) of Ig genes is initiated by the activation-induced cytidine deaminase (AID), and requires target gene transcription. We previously proposed that AID may associate with the RNA polymerase II (Pol). Here, to determine aspects of the transcription process required for SHM, we knocked-in a transcription terminator into an Ig gene variable region in DT40 chicken B cell line. We found that the human β-globin terminator was an efficient inhibitor of downstream transcription in these cells. The terminator reduced mutations downstream of the poly(A) signal, suggesting that the process of transcription is essential for efficient SHM and that AID has better access to its target when Pol is in the elongating rather than terminating mode. Mutations upstream of the poly(A) site were almost doubled in the active terminator clones compared with an inactivated terminator, and this region showed more single-stranded DNA, indicating that Pol pausing assists SHM. Moreover, the nontranscribed DNA strand was the preferred SHM target upstream of the active terminator. Pol pausing during poly(A) site recognition may facilitate persistence of negative supercoils, exposing the coding single strand and possibly allowing the nascent RNA intermittent reannealing with the template strand, for prolonged access of AID. PMID:23752228

  6. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma

    PubMed Central

    Zhu, Yuan Xiao; Kortuem, K. Martin; Stewart, A. Keith

    2014-01-01

    Although several mechanisms have been proposed to explain the activity of thalidomide, lenalidomide and pomalidomide in multiple myeloma (MM), including demonstrable anti-angiogenic, anti-proliferative and immunomodulatory effects, the precise cellular targets and molecular mechanisms have only recently become clear. A landmark study recently identified cereblon (CRBN) as a primary target of thalidomide teratogenicity. Subsequently it was demonstrated that CRBN is also required for the anti-myeloma activity of thalidomide and related drugs, the so-called immune-modulatory drugs (IMiDs). Low CRBN expression was found to correlate with drug resistance in MM cell lines and primary MM cells. One of the downstream targets of CRBN identified is interferon regulatory factor 4 (IRF4), which is critical for myeloma cell survival and is down-regulated by IMiD treatment. CRBN is also implicated in several effects of IMiDs, such as down-regulation of tumor necrosis factor-α (TNF-α) and T cell immunomodulatory activity, demonstrating that the pleotropic actions of the IMiDs are initiated by binding to CRBN. Future dissection of CRBN downstream signaling will help to delineate the underlying mechanisms for IMiD action and eventually lead to development of new drugs with more specific anti-myeloma activities. It may also provide a biomarker to predict IMiD response and resistance. PMID:22966948

  7. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yonghuai; Institute of Hematology, Peking University, Beijing; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing

    Although mTOR (mammalian target of rapamycin) activation is frequently observed in acute myeloid leukemia (AML) patients, the precise function and the downstream targets of mTOR are poorly understood. Here we revealed that PFKFB3, but not PFKFB1, PFKFB2 nor PFKFB4 was a novel downstream substrate of mTOR signaling pathway as PFKFB3 level was augmented after knocking down TSC2 in THP1 and OCI-AML3 cells. Importantly, PFKFB3 silencing suppressed glycolysis and cell proliferation of TSC2 silencing OCI-AML3 cells and activated apoptosis pathway. These results suggested that mTOR up-regulation of PFKFB3 was essential for AML cells survival. Mechanistically, Rapamycin treatment or Raptor knockdown reducedmore » the expression of PFKFB3 in TSC2 knockdown cells, while Rictor silencing did not have such effect. Furthermore, we also revealed that mTORC1 up-regulated PFKFB3 was dependent on hypoxia-inducible factor 1α (HIF1α), a positive regulator of glycolysis. Moreover, PFKFB3 inhibitor PFK15 and rapamycin synergistically blunted the AML cell proliferation. Taken together, PFKFB3 was a promising drug target in AML patients harboring mTOR hyper-activation.« less

  8. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma: impact on keratinocyte proliferation and stromal cell activation.

    PubMed

    Quan, Taihao; Xu, Yiru; Qin, Zhaoping; Robichaud, Patrick; Betcher, Stephanie; Calderone, Ken; He, Tianyuan; Johnson, Timothy M; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Yes-associated protein (YAP) is a transcriptional co-activator of hippo signaling pathway, which plays an important role in organ size control and tumorigenesis. Here we report that YAP and its downstream transcriptional targets CCN1 and CCN2 are markedly elevated in keratinocytes in human skin basal cell carcinoma tumor islands. In human keratinocytes, knockdown of YAP significantly reduced expression of CCN1 and CCN2, and repressed proliferation and survival. This inhibition of proliferation and survival was rescued by restoration of CCN1 expression, but not by CCN2 expression. In basal cell carcinoma stroma, CCN2-regulated genes type I collagen, fibronectin, and α-smooth muscle actin were highly expressed. Furthermore, atomic force microscopy revealed increased tissue stiffness in basal cell carcinoma stroma compared to normal dermis. These data provide evidence that up-regulation of YAP in basal cell carcinoma impacts both aberrant keratinocyte proliferation, via CCN1, and tumor stroma cell activation and stroma remodeling, via CCN2. Targeting YAP and/or CCN1 and CCN2 may provide clinical benefit in basal cell carcinoma. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Quantification of DNA cleavage specificity in Hi-C experiments.

    PubMed

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Evidence for transcriptional interference in a dual-luciferase reporter system.

    PubMed

    Wu, Guo-Qing; Wang, Xiao; Zhou, Hong-Ying; Chai, Ke-Qun; Xue, Qian; Zheng, Ai-Hong; Zhu, Xiu-Ming; Xiao, Jian-Yong; Ying, Xu-Hua; Wang, Fu-Wei; Rui, Tao; Xu, Li-Yun; Zhang, Yong-Kui; Liao, Yi-Ji; Xie, Dan; Lu, Li-Qin; Huang, Dong-Sheng

    2015-12-01

    The dual-luciferase reporter assay is widely used for microRNA target identification and the functional validation of predicted targets. To determine whether curcumin regulates expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) by targeting its 3'untranslated region (3'UTR), two luciferase reporter systems containing exactly the same sequence of the EZH2 3'UTR were used to perform dual-luciferase reporter assays. Surprisingly, there were certain discrepancies between the luciferase activities derived from these two reporter constructs. We normalized luciferase activity to an internal control to determine the amount of the reporter construct successfully transfected into cells, induced a transcriptional block with flavopiridol, quantified renilla luciferase mRNA levels, and compared the absolute luciferase activity among the different groups. The results suggested that curcumin promoted the transcription of the luciferase genes located downstream of the simian vacuolating virus 40 (SV40) early enhancer/promoter, but not those located downstream of the human cytomegalovirus (CMV) immediate-early or the herpes simplex virus thymidine kinase (HSV-TK) promoters. These results explain the discrepancies between the two luciferase reporter systems. The current study underscores the importance of taking caution when interpreting the results of dual-luciferase reporter assays and provides strategies to overcome the potential pitfall accompanying dual-luciferase reporter systems.

  11. Evidence for transcriptional interference in a dual-luciferase reporter system

    PubMed Central

    Wu, Guo-Qing; Wang, Xiao; Zhou, Hong-Ying; Chai, Ke-Qun; Xue, Qian; Zheng, Ai-Hong; Zhu, Xiu-Ming; Xiao, Jian-Yong; Ying, Xu-Hua; Wang, Fu-Wei; Rui, Tao; Xu, Li-Yun; Zhang, Yong-Kui; Liao, Yi-Ji; Xie, Dan; Lu, Li-Qin; Huang, Dong-Sheng

    2015-01-01

    The dual-luciferase reporter assay is widely used for microRNA target identification and the functional validation of predicted targets. To determine whether curcumin regulates expression of the histone methyltransferase enhancer of zeste homolog 2 (EZH2) by targeting its 3′untranslated region (3′UTR), two luciferase reporter systems containing exactly the same sequence of the EZH2 3′UTR were used to perform dual-luciferase reporter assays. Surprisingly, there were certain discrepancies between the luciferase activities derived from these two reporter constructs. We normalized luciferase activity to an internal control to determine the amount of the reporter construct successfully transfected into cells, induced a transcriptional block with flavopiridol, quantified renilla luciferase mRNA levels, and compared the absolute luciferase activity among the different groups. The results suggested that curcumin promoted the transcription of the luciferase genes located downstream of the simian vacuolating virus 40 (SV40) early enhancer/promoter, but not those located downstream of the human cytomegalovirus (CMV) immediate-early or the herpes simplex virus thymidine kinase (HSV-TK) promoters. These results explain the discrepancies between the two luciferase reporter systems. The current study underscores the importance of taking caution when interpreting the results of dual-luciferase reporter assays and provides strategies to overcome the potential pitfall accompanying dual-luciferase reporter systems. PMID:26620302

  12. An electrophysiological investigation of reinforcement effects in attention deficit/hyperactivity disorder: Dissociating cue sensitivity from down-stream effects on target engagement and performance.

    PubMed

    Chronaki, Georgia; Soltesz, Fruzsina; Benikos, Nicholas; Sonuga-Barke, Edmund J S

    2017-12-01

    Neural hypo-sensitivity to cues predicting positive reinforcement has been observed in ADHD using the Monetary Incentive Delay (MID) task. Here we report the first study using an electrophysiological analogue of this task to distinguish between (i) cue related anticipation of reinforcement and downstream effects on (ii) target engagement and (iii) performance in a clinical sample of adolescents with ADHD and controls. Thirty-one controls and 32 adolescents with ADHD aged 10-16 years performed the electrophysiological (e)-MID task - in which preparatory cues signal whether a response to an upcoming target will be reinforced or not - under three conditions; positive reinforcement, negative reinforcement (response cost) and no consequence (neutral). We extracted values for both cue-related potentials known to be, both, associated with response preparation and modulated by reinforcement (Cue P3 and Cue CNV) and target-related potentials (target P3) and compared these between ADHD and controls. ADHD and controls did not differ on cue-related components on neutral trials. Against expectation, adolescents with ADHD displayed Cue P3 and Cue CNV reinforcement-related enhancement (versus neutral trials) compared to controls. ADHD individuals displayed smaller target P3 amplitudes and slower and more variable performance - but effects were not modulated by reinforcement contingencies. When age, IQ and conduct problems were controlled effects were marginally significant but the pattern of results did not change. ADHD was associated with hypersensitivity to positive (and marginally negative) reinforcement reflected on components often thought to be associated with response preparation - however these did not translate into improved attention to targets. In the case of ADHD, upregulated CNV may be a specific marker of hyper-arousal rather than an enhancement of anticipatory attention to upcoming targets. Future studies should examine the effects of age, IQ and conduct problems on reinforcement sensitivity in ADHD. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Role of BMP receptor traffic in synaptic growth defects in an ALS model.

    PubMed

    Deshpande, Mugdha; Feiger, Zachary; Shilton, Amanda K; Luo, Christina C; Silverman, Ethan; Rodal, Avital A

    2016-10-01

    TAR DNA-binding protein 43 (TDP-43) is genetically and functionally linked to amyotrophic lateral sclerosis (ALS) and regulates transcription, splicing, and transport of thousands of RNA targets that function in diverse cellular pathways. In ALS, pathologically altered TDP-43 is believed to lead to disease by toxic gain-of-function effects on RNA metabolism, as well as by sequestering endogenous TDP-43 and causing its loss of function. However, it is unclear which of the numerous cellular processes disrupted downstream of TDP-43 dysfunction lead to neurodegeneration. Here we found that both loss and gain of function of TDP-43 in Drosophila cause a reduction of synaptic growth-promoting bone morphogenic protein (BMP) signaling at the neuromuscular junction (NMJ). Further, we observed a shift of BMP receptors from early to recycling endosomes and increased mobility of BMP receptor-containing compartments at the NMJ. Inhibition of the recycling endosome GTPase Rab11 partially rescued TDP-43-induced defects in BMP receptor dynamics and distribution and suppressed BMP signaling, synaptic growth, and larval crawling defects. Our results indicate that defects in receptor traffic lead to neuronal dysfunction downstream of TDP-43 misregulation and that rerouting receptor traffic may be a viable strategy for rescuing neurological impairment. © 2016 Deshpande, Feiger, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis

    PubMed Central

    Bielecka, Monika; Watanabe, Mutsumi; Morcuende, Rosa; Scheible, Wolf-Rüdiger; Hawkesford, Malcolm J.; Hesse, Holger; Hoefgen, Rainer

    2015-01-01

    Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using ‘omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes. PMID:25674096

  15. A Framework for Propagation of Uncertainties in the Kepler Data Analysis Pipeline

    NASA Technical Reports Server (NTRS)

    Clarke, Bruce D.; Allen, Christopher; Bryson, Stephen T.; Caldwell, Douglas A.; Chandrasekaran, Hema; Cote, Miles T.; Girouard, Forrest; Jenkins, Jon M.; Klaus, Todd C.; Li, Jie; hide

    2010-01-01

    The Kepler space telescope is designed to detect Earth-like planets around Sun-like stars using transit photometry by simultaneously observing 100,000 stellar targets nearly continuously over a three and a half year period. The 96-megapixel focal plane consists of 42 charge-coupled devices (CCD) each containing two 1024 x 1100 pixel arrays. Cross-correlations between calibrated pixels are introduced by common calibrations performed on each CCD requiring downstream data products access to the calibrated pixel covariance matrix in order to properly estimate uncertainties. The prohibitively large covariance matrices corresponding to the 75,000 calibrated pixels per CCD preclude calculating and storing the covariance in standard lock-step fashion. We present a novel framework used to implement standard propagation of uncertainties (POU) in the Kepler Science Operations Center (SOC) data processing pipeline. The POU framework captures the variance of the raw pixel data and the kernel of each subsequent calibration transformation allowing the full covariance matrix of any subset of calibrated pixels to be recalled on-the-fly at any step in the calibration process. Singular value decomposition (SVD) is used to compress and low-pass filter the raw uncertainty data as well as any data dependent kernels. The combination of POU framework and SVD compression provide downstream consumers of the calibrated pixel data access to the full covariance matrix of any subset of the calibrated pixels traceable to pixel level measurement uncertainties without having to store, retrieve and operate on prohibitively large covariance matrices. We describe the POU Framework and SVD compression scheme and its implementation in the Kepler SOC pipeline.

  16. Time-of-travel and dispersion studies, Lehigh River, Francis E. Walter Lake to Easton, Pennsylvania

    USGS Publications Warehouse

    Kauffman, C.D.

    1983-01-01

    Results of time-of-travel and dispersion studies are presented for the 77.0 mile reach of the Lehigh River from Francis E. Walter Lake to Easton, Pennsylvania. Rhodamine WT dye was injected at several points for a variety of several common flow conditions and its downstream travel was monitored at a number of downstream points by means of a fluorometer. Time-of-travel data have been related to stream discharge, distance along the river channel and dispersion. If 2.205 pounds of a conservative water soluble contaminant were accidentally spilled into the Lehigh River at Penn Haven Junction at Black Creek 6.09 miles downstream from Rockport, Pennsylvania, when the discharge at Walnutport, Pennsylvania, was 600 cubic feet per second, the leading edge, peak, and trailing edge of the contaminant would arrive 31.6 miles downstream at the Northhampton, Pennsylvania, water intakes 45, 54, and 66 hours later, respectively. The maximum concentration expected at the intakes would be about 1.450 micrograms per liter. From data and relations presented, time-of-travel and maximum concentration estimates can be made for any two points within the reach. (USGS)

  17. Rho proteins of plants--functional cycle and regulation of cytoskeletal dynamics.

    PubMed

    Mucha, Elena; Fricke, Inka; Schaefer, Antje; Wittinghofer, Alfred; Berken, Antje

    2011-11-01

    Rho-related ROP proteins are molecular switches that essentially regulate a wide variety of processes. Of central interest is their influence on the plant cytoskeleton by which they affect vital processes like cell division, growth, morphogenesis, and pathogen defense. ROPs switch between GTP- and GDP-bound conformations by strictly regulated nucleotide exchange and GTP-hydrolysis, and only the active GTP-form interacts with downstream effectors to ultimately provoke a biological response. However, the mode of action of the engaged regulators and effectors as well as their upstream and downstream interaction partners have long been largely unknown. As opposed to analogous systems in animals and fungi, plants use specific GTPase activating proteins (RopGAPs) with a unique domain composition and novel guanine nucleotide exchange factors (RopGEFs) with a probable link to cell surface receptors. Moreover, plants comprise novel effector molecules and adapters connecting ROPs to mostly unknown downstream targets on the route to the cytoskeleton. This review aims to summarize recent knowledge on the molecular mechanisms and reaction cascades involved in ROP dependent cytoskeletal rearrangements, addressing the structure and function of the unusual RopGAPs, RopGEFs and effectors, and the upstream and downstream pathways linking ROPs to cell receptor-like kinases, actin filaments, and microtubules. Copyright © 2010 Elsevier GmbH. All rights reserved.

  18. Development of CCHE2D embankment break model

    USDA-ARS?s Scientific Manuscript database

    Earthen embankment breach often results in detrimental impact on downstream residents and infrastructure, especially those located in the flooding zone. Embankment failures are most commonly caused by overtopping or internal erosion. This study is to develop a practical numerical model for simulat...

  19. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2.

    PubMed

    Ler, Lian Dee; Ghosh, Sujoy; Chai, Xiaoran; Thike, Aye Aye; Heng, Hong Lee; Siew, Ee Yan; Dey, Sucharita; Koh, Liang Kai; Lim, Jing Quan; Lim, Weng Khong; Myint, Swe Swe; Loh, Jia Liang; Ong, Pauline; Sam, Xin Xiu; Huang, Dachuan; Lim, Tony; Tan, Puay Hoon; Nagarajan, Sanjanaa; Cheng, Christopher Wai Sam; Ho, Henry; Ng, Lay Guat; Yuen, John; Lin, Po-Hung; Chuang, Cheng-Keng; Chang, Ying-Hsu; Weng, Wen-Hui; Rozen, Steven G; Tan, Patrick; Creasy, Caretha L; Pang, See-Tong; McCabe, Michael T; Poon, Song Ling; Teh, Bin Tean

    2017-02-22

    Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A -mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A -null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A -null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A -null cell lines. EZH2 inhibition delayed tumor onset in KDM6A -null cells and caused regression of KDM6A -null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A , which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2. Copyright © 2017, American Association for the Advancement of Science.

  20. Pathogenic Anti-Müllerian Hormone Variants in Polycystic Ovary Syndrome.

    PubMed

    Gorsic, Lidija K; Kosova, Gulum; Werstein, Brian; Sisk, Ryan; Legro, Richard S; Hayes, M Geoffrey; Teixeira, Jose M; Dunaif, Andrea; Urbanek, Margrit

    2017-08-01

    Polycystic ovary syndrome (PCOS), a common endocrine condition, is the leading cause of anovulatory infertility. Given that common disease-susceptibility variants account for only a small percentage of the estimated PCOS heritability, we tested the hypothesis that rare variants contribute to this deficit in heritability. Unbiased whole-genome sequencing (WGS) of 80 patients with PCOS and 24 reproductively normal control subjects identified potentially deleterious variants in AMH, the gene encoding anti-Müllerian hormone (AMH). Targeted sequencing of AMH of 643 patients with PCOS and 153 control patients was used to replicate WGS findings. Dual luciferase reporter assays measured the impact of the variants on downstream AMH signaling. We found 24 rare (minor allele frequency < 0.01) AMH variants in patients with PCOS and control subjects; 18 variants were specific to women with PCOS. Seventeen of 18 (94%) PCOS-specific variants had significantly reduced AMH signaling, whereas none of 6 variants observed in control subjects showed significant defects in signaling. Thus, we identified rare AMH coding variants that reduced AMH-mediated signaling in a subset of patients with PCOS. To our knowledge, this study is the first to identify rare genetic variants associated with a common PCOS phenotype. Our findings suggest decreased AMH signaling as a mechanism for the pathogenesis of PCOS. AMH decreases androgen biosynthesis by inhibiting CYP17 activity; a potential mechanism of action for AMH variants in PCOS, therefore, is to increase androgen biosynthesis due to decreased AMH-mediated inhibition of CYP17 activity. Copyright © 2017 Endocrine Society

  1. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study.

    PubMed

    Burslem, George M; Smith, Blake E; Lai, Ashton C; Jaime-Figueroa, Saul; McQuaid, Daniel C; Bondeson, Daniel P; Toure, Momar; Dong, Hanqing; Qian, Yimin; Wang, Jing; Crew, Andrew P; Hines, John; Crews, Craig M

    2018-01-18

    Proteolysis targeting chimera (PROTAC) technology has emerged over the last two decades as a powerful tool for targeted degradation of endogenous proteins. Herein we describe the development of PROTACs for receptor tyrosine kinases, a protein family yet to be targeted for induced protein degradation. The use of VHL-recruiting PROTACs against this protein family reveals several advantages of degradation over inhibition alone: direct comparisons of fully functional, target-degrading PROTACs with target-inhibiting variants that contain an inactivated E3 ligase-recruiting ligand show that degradation leads to more potent inhibition of cell proliferation and a more durable and sustained downstream signaling response, and thus addresses the kinome rewiring challenge seen with many receptor tyrosine kinase inhibitors. Combined, these findings demonstrate the ability to target receptor tyrosine kinases for degradation using the PROTAC technology and outline the advantages of this degradation-based approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells

    PubMed Central

    Nguyen, Trieu; Iyer, Dharini; Liu, Boxiang; Wang, Ting; Sazonova, Olga; Matic, Ljubica Perisic; Maegdefessel, Lars; Quertermous, Thomas

    2017-01-01

    Both environmental factors and genetic loci have been associated with coronary artery disease (CAD), however gene-gene and gene-environment interactions that might identify molecular mechanisms of risk are not easily studied by human genetic approaches. We have previously identified the transcription factor TCF21 as the causal CAD gene at 6q23.2 and characterized its downstream transcriptional network that is enriched for CAD GWAS genes. Here we investigate the hypothesis that TCF21 interacts with a downstream target gene, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates the cellular response to environmental contaminants, including dioxin and polycyclic aromatic hydrocarbons (e.g., tobacco smoke). Perturbation of TCF21 expression in human coronary artery smooth muscle cells (HCASMC) revealed that TCF21 promotes expression of AHR, its heterodimerization partner ARNT, and cooperates with these factors to upregulate a number of inflammatory downstream disease related genes including IL1A, MMP1, and CYP1A1. TCF21 was shown to bind in AHR, ARNT and downstream target gene loci, and co-localization was noted for AHR-ARNT and TCF21 binding sites genome-wide in regions of HCASMC open chromatin. These regions of co-localization were found to be enriched for GWAS signals associated with cardio-metabolic as well as chronic inflammatory disease phenotypes. Finally, we show that similar to TCF21, AHR gene expression is increased in atherosclerotic lesions in mice in vivo using laser capture microdissection, and AHR protein is localized in human carotid atherosclerotic lesions where it is associated with protein kinases with a critical role in innate immune response. These data suggest that TCF21 can cooperate with AHR to activate an inflammatory gene expression program that is exacerbated by environmental stimuli, and may contribute to the overall risk for CAD. PMID:28481916

  3. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity.

    PubMed

    Dasen, Jeremy S; Tice, Bonnie C; Brenner-Morton, Susan; Jessell, Thomas M

    2005-11-04

    Spinal motor neurons acquire specialized "pool" identities that determine their ability to form selective connections with target muscles in the limb, but the molecular basis of this striking example of neuronal specificity has remained unclear. We show here that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity. Two interdependent sets of Hox regulatory interactions operate within motor neurons, one assigning rostrocaudal motor pool position and a second directing motor pool diversity at a single segmental level. This Hox regulatory network directs the downstream transcriptional identity of motor neuron pools and defines the pattern of target-muscle connectivity.

  4. Towards β-globin gene-targeting with integrase-defective lentiviral vectors.

    PubMed

    Inanlou, Davoud Nouri; Yakhchali, Bagher; Khanahmad, Hossein; Gardaneh, Mossa; Movassagh, Hesam; Cohan, Reza Ahangari; Ardestani, Mehdi Shafiee; Mahdian, Reza; Zeinali, Sirous

    2010-11-01

    We have developed an integrase-defective lentiviral (LV) vector in combination with a gene-targeting approach for gene therapy of β-thalassemia. The β-globin gene-targeting construct has two homologous stems including sequence upstream and downstream of the β-globin gene, a β-globin gene positioned between hygromycin and neomycin resistant genes and a herpes simplex virus type 1 thymidine kinase (HSVtk) suicide gene. Utilization of integrase-defective LV as a vector for the β-globin gene increased the number of selected clones relative to non-viral methods. This method represents an important step toward the ultimate goal of a clinical gene therapy for β-thalassemia.

  5. RSK2 is a new Pim2 target with pro-survival functions in FLT3-ITD-positive acute myeloid leukemia.

    PubMed

    Hospital, M-A; Jacquel, A; Mazed, F; Saland, E; Larrue, C; Mondesir, J; Birsen, R; Green, A S; Lambert, M; Sujobert, P; Gautier, E-F; Salnot, V; Le Gall, M; Decroocq, J; Poulain, L; Jacque, N; Fontenay, M; Kosmider, O; Récher, C; Auberger, P; Mayeux, P; Bouscary, D; Sarry, J-E; Tamburini, J

    2018-03-01

    Acute myeloid leukemia (AML) with the FLT3 internal tandem duplication (FLT3-ITD AML) accounts for 20-30% of AML cases. This subtype usually responds poorly to conventional therapies, and might become resistant to FLT3 tyrosine kinase inhibitors (TKIs) due to molecular bypass mechanisms. New therapeutic strategies focusing on resistance mechanisms are therefore urgently needed. Pim kinases are FLT3-ITD oncogenic targets that have been implicated in FLT3 TKI resistance. However, their precise biological function downstream of FLT3-ITD requires further investigation. We performed high-throughput transcriptomic and proteomic analyses in Pim2-depleted FLT3-ITD AML cells and found that Pim2 predominantly controlled apoptosis through Bax expression and mitochondria disruption. We identified ribosomal protein S6 kinase A3 (RSK2), a 90 kDa serine/threonine kinase involved in the mitogen-activated protein kinase cascade encoded by the RPS6KA3 gene, as a novel Pim2 target. Ectopic expression of an RPS6KA3 allele rescued the viability of Pim2-depleted cells, supporting the involvement of RSK2 in AML cell survival downstream of Pim2. Finally, we showed that RPS6KA3 knockdown reduced the propagation of human AML cells in vivo in mice. Our results point to RSK2 as a novel Pim2 target with translational therapeutic potential in FLT3-ITD AML.

  6. Identification and Validation of Ifit1 as an Important Innate Immune Bottleneck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Vartanian, Keri B.; Mitchell, Hugh D.

    The innate immune system plays important roles in a number of disparate processes. Foremost, innate immunity is a first responder to invasion by pathogens and triggers early defensive responses and recruits the adaptive immune system. The innate immune system also responds to endogenous damage signals that arise from tissue injury. Recently it has been found that innate immunity plays an important role in neuroprotection against ischemic stroke through the activation of the primary innate immune receptors, Toll-like receptors (TLRs). Using several large-scale transcriptomic data sets from mouse and mouse macrophage studies we identified targets predicted to be important in controllingmore » innate immune processes initiated by TLR activation. Targets were identified as genes with high betweenness centrality, so-called bottlenecks, in networks inferred from statistical associations between gene expression patterns. A small set of putative bottlenecks were identified in each of the data sets investigated including interferon-stimulated genes (Ifit1, Ifi47, Tgtp and Oasl2) as well as genes uncharacterized in immune responses (Axud1 and Ppp1r15a). We further validated one of these targets, Ifit1, in mouse macrophages by showing that silencing it suppresses induction of predicted downstream genes by lipopolysaccharide (LPS)-mediated TLR4 activation through an unknown direct or indirect mechanism. Our study demonstrates the utility of network analysis for identification of interesting targets related to innate immune function, and highlights that Ifit1 can exert a positive regulatory effect on downstream genes.« less

  7. GLI activation by atypical protein kinase C ι/λ regulates the growth of basal cell carcinomas.

    PubMed

    Atwood, Scott X; Li, Mischa; Lee, Alex; Tang, Jean Y; Oro, Anthony E

    2013-02-28

    Growth of basal cell carcinomas (BCCs) requires high levels of hedgehog (HH) signalling through the transcription factor GLI. Although inhibitors of membrane protein smoothened (SMO) effectively suppress HH signalling, early tumour resistance illustrates the need for additional downstream targets for therapy. Here we identify atypical protein kinase C ι/λ (aPKC-ι/λ) as a novel GLI regulator in mammals. aPKC-ι/λ and its polarity signalling partners co-localize at the centrosome and form a complex with missing-in-metastasis (MIM), a scaffolding protein that potentiates HH signalling. Genetic or pharmacological loss of aPKC-ι/λ function blocks HH signalling and proliferation of BCC cells. Prkci is a HH target gene that forms a positive feedback loop with GLI and exists at increased levels in BCCs. Genome-wide transcriptional profiling shows that aPKC-ι/λ and SMO control the expression of similar genes in tumour cells. aPKC-ι/λ functions downstream of SMO to phosphorylate and activate GLI1, resulting in maximal DNA binding and transcriptional activation. Activated aPKC-ι/λ is upregulated in SMO-inhibitor-resistant tumours and targeting aPKC-ι/λ suppresses signalling and growth of resistant BCC cell lines. These results demonstrate that aPKC-ι/λ is critical for HH-dependent processes and implicates aPKC-ι/λ as a new, tumour-selective therapeutic target for the treatment of SMO-inhibitor-resistant cancers.

  8. Neuroprotective effects of electro acupuncture on hypoxic-ischemic encephalopathy in newborn rats Ass.

    PubMed

    Xu, Tao; Li, Wenjie; Liang, Yiqun; Yang, Zhonghua; Liu, Jingdong; Wang, Yejun; Su, Nailun

    2014-11-01

    Hypoxic-ischemic encephalopathy (HIE) is a common and potentially devastating condition in the neonate, associated with high mortality and morbidity. Effective treatment options are limited and therefore alternative therapies such as acupuncture are increasingly used. Previous studies have shown that electro acupuncture promoted proliferation of neural progenitor cell and increased expression of neurotrophic factor in HIE. However, effects of electro acupuncture on downstream signaling pathways have been rarely researched. So, in the present study, we aimed to evaluate the neuroprotective effects of electro acupuncture on HIE and to further investigate the role of GDNF family receptor member RET and its key downstream PI3-K/Akt pathway in the process. A rat HIE model was constructed by the left common carotid artery (LCCA) ligation method in combination with hypoxic treatment. Considering that Baihui (GV20), Dazhui (GV14), Quchi (LI11) and Yongquan (KI1) are commonly used in clinics for stroke treatment and are easy to locate, we chose the above four acupoints as the combination for electro acupuncture treatment which was performed once a day for different time periods. Hematoxylin-eosin (HE) staining and transmission electron microscopy results showed that electro acupuncture could ameliorate neurologic damage and alleviate the degenerative changes of ultra structure of cortical neurons in rats subjected to HIE. And the longer acupuncture treatment lasted, the better its therapeutic effect would be. This was accompanied by gradually increased expression of GDNF family receptor RET at the mRNA level and its downstream signaling Akt at the protein level in the ischemic cortex. These findings suggest that electro acupuncture shows neuroprotective effects in HIE, which at least in part is attributed to activation of PI3-K/Akt signaling pathway.

  9. TRP channels in brown and white adipogenesis from human progenitors: new therapeutic targets and the caveats associated with the common antibiotic, streptomycin.

    PubMed

    Goralczyk, Anna; van Vijven, Marc; Koch, Mathilde; Badowski, Cedric; Yassin, M Shabeer; Toh, Sue-Anne; Shabbir, Asim; Franco-Obregón, Alfredo; Raghunath, Michael

    2017-08-01

    Transient receptor potential (TRP) channels are polymodal cell sensors responding to diverse stimuli and widely implicated in the developmental programs of numerous tissues. The evidence for an involvement of TRP family members in adipogenesis, however, is scant. We present the first comprehensive expression profile of all known 27 human TRP genes in mesenchymal progenitors cells during white or brown adipogenesis. Using positive trilineage differentiation as an exclusion criterion, TRP polycystic (P)3, and TPR melastatin (M)8 were found to be uniquely adipospecific. Knockdown of TRPP3 repressed the expression of the brown fat signature genes uncoupling protein (UCP)-1 and peroxisome proliferator-activated receptor γ coactivator (PGC)-1α as well as attenuated forskolin-stimulated uncoupled respiration. However, indices of generalized adipogenesis, such as lipid droplet morphology and fatty acid binding protein (FAPB)-4 expression, were not affected, indicating a principal mitochondrial role of TRPP3. Conversely, activating TRPM8 with menthol up-regulated UCP-1 expression and augmented uncoupled respiration predominantly in white adipocytes (browning), whereas streptomycin antagonized TRPM8-mediated calcium entry, downregulated UCP-1 expression, and mitigated uncoupled respiration; menthol was less capable of augmenting uncoupled respiration (thermogenesis) in brown adipocytes. TRPP3 and TRPM8 hence appear to be involved in the priming of mitochondria to perform uncoupled respiration downstream of adenylate cyclase. Our results also underscore the developmental caveats of using antibiotics in adipogenic studies.-Goralczyk, A., van Vijven, M., Koch, M., Badowski, C., Yassin, M. S., Toh, S.-A., Shabbir, A., Franco-Obregón, A., Raghunath, M. TRP channels in brown and white adipogenesis from human progenitors: new therapeutic targets and the caveats associated with the common antibiotic, streptomycin. © FASEB.

  10. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells.

    PubMed

    Filosto, Simone; Baston, David S; Chung, Samuel; Becker, Cathleen R; Goldkorn, Tzipora

    2013-08-01

    The EGF receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung carcinoma (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKI) such as erlotinib. However, despite the efficacy observed in patients with NSCLC harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in patients with NSCLC who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke, evidenced by their autophosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating cigarette smoke-induced resistance to TKIs in both WT EGFR- and L858R MT EGFR-expressing NSCLC cells. First, we show that cigarette smoke exposure of A549 cells leads to time-dependent activation of Src, which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we show that Src inhibition restores TKI sensitivity in cigarette smoke-exposed NSCLC cells, preventing EGFR autophosphorylation in the presence of erlotinib. Furthermore, we show that overexpression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to cigarette smoke. Importantly, the TKI resistance that emerges even in cigarette smoke-exposed L858R EGFR-expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers.

  11. Src mediates cigarette smoke-induced resistance to tyrosine kinase inhibitors in NSCLC cells

    PubMed Central

    Filosto, Simone; Baston, David S.; Chung, Samuel; Becker, Cathleen R.; Goldkorn, Tzipora

    2015-01-01

    The EGF Receptor (EGFR) is a proto-oncogene commonly dysregulated in several cancers including non-small cell lung cancer (NSCLC) and, thus, is targeted for treatment using tyrosine kinase inhibitors (TKIs) such as Erlotinib. However, despite the efficacy observed in NSCLC patients harboring oncogenic variants of the EGFR, general ineffectiveness of TKIs in NSCLC patients who are current and former smokers necessitates identification of novel mechanisms to overcome this phenomenon. Previously, we showed that NSCLC cells harboring either wild-type (WT) EGFR or oncogenic mutant (MT) L858R EGFR become resistant to the effects of TKIs when exposed to cigarette smoke (CS), evidenced by their auto-phosphorylation and prolonged downstream signaling. Here, we present Src as a target mediating CS-induced resistance to TKIs in both WT EGFR and L858R MT EGFR expressing NSCLC cells. First, we show that CS exposure of A549 cells leads to time-dependent activation of Src which then abnormally binds to the WT EGFR causing TKI resistance, contrasting previous observations of constitutive binding between inactive Src and TKI-sensitive L858R MT EGFR. Next, we demonstrate that Src inhibition restores TKI sensitivity in CS-exposed NSCLC cells, preventing EGFR auto-phosphorylation in the presence of Erlotinib. Furthermore, we show that over-expression of a dominant-negative Src (Y527F/K295R) restores TKI sensitivity to A549 exposed to CS. Importantly, the TKI resistance that emerges even in CS-exposed L858R EGFR expressing NSCLC cells could be eliminated with Src inhibition. Together, these findings offer new rationale for using Src inhibitors for treating TKI-resistant NSCLC commonly observed in smokers. PMID:23686837

  12. Plasma Glycoproteomics Reveals Sepsis Outcomes Linked to Distinct Proteins in Common Pathways

    PubMed Central

    DeLeon-Pennell, Kristine Y.; Nguyen, Nguyen T.; de Castro Brás, Lisandra E.; Flynn, Elizabeth R.; Cannon, Presley L.; Griswold, Michael E.; Jin, Yu-Fang; Puskarich, Michael A.; Jones, Alan E.; Lindsey, Merry L.

    2015-01-01

    Objective Sepsis remains a predominant cause of mortality in the ICU, yet strategies to increase survival have proved largely unsuccessful. This study aimed to identify proteins linked to sepsis outcomes using a glycoproteomic approach to target extracellular proteins that trigger downstream pathways and direct patient outcomes. Design Plasma was obtained from the LacTATEs cohort. N-linked plasma glycopeptides were quantified by solid-phase extraction coupled with mass spectrometry. Glycopeptides were assigned to proteins using RefSeq and visualized in a heat map. Protein differences were validated by immunoblotting, and proteins were mapped for biological processes using Database for Annotation, Visualization and Integrated Discovery and for functional pathways using Kyoto Encyclopedia of Genes and Genomes databases. Setting Hospitalized care. Measurements and Main Results A total of 501 glycopeptides corresponding to 234 proteins were identified. Of these, 66 glycopeptides were unique to the survivor group and corresponded to 54 proteins, 60 were unique to the nonsurvivor group and corresponded to 43 proteins, and 375 were common responses between groups and corresponded to 137 proteins. Immunoblotting showed that nonsurvivors had increased total kininogen; decreased total cathepsin-L1, vascular cell adhesion molecule, periostin, and neutrophil gelatinase–associated lipocalin; and a two-fold decrease in glycosylated clusterin (all p < 0.05). Kyoto Encyclopedia of Genes and Genomes analysis identified six enriched pathways. Interestingly, survivors relied on the extrinsic pathway of the complement and coagulation cascade, whereas nonsurvivors relied on the intrinsic pathway. Conclusion This study identifies proteins linked to patient outcomes and provides insight into unexplored mechanisms that can be investigated for the identification of novel therapeutic targets. (Crit Care Med 2015; XX:00–00) PMID:26086942

  13. Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma.

    PubMed

    Park, Yun-Yong; Sohn, Bo Hwa; Johnson, Randy L; Kang, Myoung-Hee; Kim, Sang Bae; Shim, Jae-Jun; Mangala, Lingegowda S; Kim, Ji Hoon; Yoo, Jeong Eun; Rodriguez-Aguayo, Cristian; Pradeep, Sunila; Hwang, Jun Eul; Jang, Hee-Jin; Lee, Hyun-Sung; Rupaimoole, Rajesha; Lopez-Berestein, Gabriel; Jeong, Woojin; Park, Inn Sun; Park, Young Nyun; Sood, Anil K; Mills, Gordon B; Lee, Ju-Seog

    2016-01-01

    Metabolic activation is a common feature of many cancer cells and is frequently associated with the clinical outcomes of various cancers, including hepatocellular carcinoma. Thus, aberrantly activated metabolic pathways in cancer cells are attractive targets for cancer therapy. Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ) are oncogenic downstream effectors of the Hippo tumor suppressor pathway, which is frequently inactivated in many cancers. Our study revealed that YAP1/TAZ regulates amino acid metabolism by up-regulating expression of the amino acid transporters solute carrier family 38 member 1 (SLC38A1) and solute carrier family 7 member 5 (SLC7A5). Subsequently, increased uptake of amino acids by the transporters (SLC38A1 and SLC7A5) activates mammalian target of rapamycin complex 1 (mTORC1), a master regulator of cell growth, and stimulates cell proliferation. We also show that high expression of SLC38A1 and SLC7A5 is significantly associated with shorter survival in hepatocellular carcinoma patients. Furthermore, inhibition of the transporters and mTORC1 significantly blocks YAP1/TAZ-mediated tumorigenesis in the liver. These findings elucidate regulatory networks connecting the Hippo pathway to mTORC1 through amino acid metabolism and the mechanism's potential clinical implications for treating hepatocellular carcinoma. YAP1 and TAZ regulate cancer metabolism and mTORC1 through regulation of amino acid transportation, and two amino acid transporters, SLC38A1 and SLC7A5, might be important therapeutic targets. © 2015 by the American Association for the Study of Liver Diseases.

  14. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease.

    PubMed

    Jazvinšćak Jembrek, Maja; Slade, Neda; Hof, Patrick R; Šimić, Goran

    2018-05-04

    Alzheimer's disease (AD), the most common progressive neurodegenerative disorder, is characterized by severe cognitive decline and personality changes as a result of synaptic and neuronal loss. The defining clinicopathological hallmarks of the disease are deposits of amyloid precursor protein (APP)-derived amyloid-β peptides (Aβ) in the brain parenchyma, and intracellular aggregates of truncated and hyperphosphorylated tau protein in neurofibrillary tangles (NFT). At the cellular and molecular levels, many intertwined pathological mechanisms that relate Aβ and tau pathology with a transcription factor p53 have been revealed. p53 is activated in response to various stressors that threaten genomic stability. Depending on damage severity, it promotes neuronal death or survival, predominantly via transcription-dependent mechanisms that affect expression of apoptosis-related target genes. Levels of p53 are enhanced in the AD brain and maintain sustained tau hyperphosphorylation, whereas intracellular Aβ directly contributes to p53 pool and promotes downstream p53 effects. The review summarizes the role of p53 in neuronal function, discusses the interactions of p53, tau, and Aβ in the normal brain and during the progression of AD pathology, and considers the impact of the most prominent hereditary risk factors of AD on p53/tau/Aβ interactions. A better understanding of this intricate interplay would provide deeper insight into AD pathology and might offer some novel therapeutic targets for the improvement of treatment options. In this regard, drugs and natural compounds targeting the p53 pathway are of growing interest in neuroprotection as they may represent promising therapeutic approaches in the prevention of oxidative stress-dependent pathological processes underlying AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Inhibiting the Epidermal Growth Factor Receptor | Center for Cancer Research

    Cancer.gov

    The Epidermal Growth Factor Receptor (EGFR) is a widely distributed cell surface receptor that responds to several extracellular signaling molecules through an intracellular tyrosine kinase, which phosphorylates target enzymes to trigger a downstream molecular cascade. Since the discovery that EGFR mutations and amplifications are critical in a number of cancers, efforts have

  16. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling

    USDA-ARS?s Scientific Manuscript database

    VEGF is one of the most critical factors that induce angiogenesis, and has thus become an attractive target for anti-angiogenesis treatment. However, most of the current anti-VEGF agents that often cause side effects cannot be recommended for long term use. Identification of natural VEGF inhibitors...

  17. A Memory Advantage for Untrustworthy Faces

    ERIC Educational Resources Information Center

    Rule, Nicholas O.; Slepian, Michael L.; Ambady, Nalini

    2012-01-01

    Inferences of others' social traits from their faces can influence how we think and behave towards them, but little is known about how perceptions of people's traits may affect downstream cognitions, such as memory. Here we explored the relationship between targets' perceived social traits and how well they were remembered following a single brief…

  18. Edaravone alleviates Alzheimer’s disease-type pathologies and cognitive deficits

    PubMed Central

    Jiao, Shu-Sheng; Yao, Xiu-Qing; Liu, Yu-Hui; Wang, Qing-Hua; Zeng, Fan; Lu, Jian-Jun; Liu, Jia; Zhu, Chi; Shen, Lin-Lin; Liu, Cheng-Hui; Wang, Ye-Ran; Zeng, Gui-Hua; Parikh, Ankit; Chen, Jia; Liang, Chun-Rong; Xiang, Yang; Bu, Xian-Le; Deng, Juan; Li, Jing; Xu, Juan; Zeng, Yue-Qin; Xu, Xiang; Xu, Hai-Wei; Zhong, Jin-Hua; Zhou, Hua-Dong; Zhou, Xin-Fu; Wang, Yan-Jiang

    2015-01-01

    Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis. PMID:25847999

  19. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides.

    PubMed

    Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D

    2014-04-18

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.

  20. Targeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides

    PubMed Central

    2015-01-01

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide. PMID:24506227

  1. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila

    PubMed Central

    Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S

    2012-01-01

    The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393

  2. Physical and functional interactions between Drosophila TRAF2 and Pelle kinase contribute to Dorsal activation.

    PubMed

    Shen, B; Liu, H; Skolnik, E Y; Manley, J L

    2001-07-17

    Signaling through the Toll receptor is required for dorsal/ventral polarity in Drosophila embryos, and also plays an evolutionarily conserved role in the immune response. Upon ligand binding, Toll appears to multimerize and activate the associated kinase, Pelle. However, the immediate downstream targets of Pelle have not been identified. Here we show that Drosophila tumor necrosis factor receptor-associated factor 2 (dTRAF2), a homologue of human TRAF6, physically and functionally interacts with Pelle, and is phosphorylated by Pelle in vitro. Importantly, dTRAF2 and Pelle cooperate to activate Dorsal synergistically in cotransfected Schneider cells. Deletion of the C-terminal TRAF domain of dTRAF2 enhances Dorsal activation, perhaps reflecting the much stronger interaction of the mutant protein with phosphorylated, active Pelle. Taken together, our results indicate that Pelle and dTRAF2 physically and functionally interact, and that the TRAF domain acts as a regulator of this interaction. dTRAF2 thus appears to be a downstream target of Pelle. We discuss these results in the context of Toll signaling in flies and mammals.

  3. Discovery and preclinical pharmacology of a selective ATP-competitive Akt inhibitor (GDC-0068) for the treatment of human tumors.

    PubMed

    Blake, James F; Xu, Rui; Bencsik, Josef R; Xiao, Dengming; Kallan, Nicholas C; Schlachter, Stephen; Mitchell, Ian S; Spencer, Keith L; Banka, Anna L; Wallace, Eli M; Gloor, Susan L; Martinson, Matthew; Woessner, Richard D; Vigers, Guy P A; Brandhuber, Barbara J; Liang, Jun; Safina, Brian S; Li, Jun; Zhang, Birong; Chabot, Christine; Do, Steven; Lee, Leslie; Oeh, Jason; Sampath, Deepak; Lee, Brian B; Lin, Kui; Liederer, Bianca M; Skelton, Nicholas J

    2012-09-27

    The discovery and optimization of a series of 6,7-dihydro-5H-cyclopenta[d]pyrimidine compounds that are ATP-competitive, selective inhibitors of protein kinase B/Akt is reported. The initial design and optimization was guided by the use of X-ray structures of inhibitors in complex with Akt1 and the closely related protein kinase A. The resulting compounds demonstrate potent inhibition of all three Akt isoforms in biochemical assays and poor inhibition of other members of the cAMP-dependent protein kinase/protein kinase G/protein kinase C extended family and block the phosphorylation of multiple downstream targets of Akt in human cancer cell lines. Biological studies with one such compound, 28 (GDC-0068), demonstrate good oral exposure resulting in dose-dependent pharmacodynamic effects on downstream biomarkers and a robust antitumor response in xenograft models in which the phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin pathway is activated. 28 is currently being evaluated in human clinical trials for the treatment of cancer.

  4. Inhibition of mammalian target of rapamycin activation in the rostral anterior cingulate cortex attenuates pain-related aversion in rats.

    PubMed

    Lu, Bo; Jiang, Jingyan; Sun, Jianliang; Xiao, Chun; Meng, Bo; Zheng, Jinwei; Li, Xiaoyu; Wang, Ruichun; Wu, Guorong; Chen, Junping

    2016-09-01

    Pain is a complex experience that comprises both sensory and affective dimensions. Mammalian target of rapamycin (mTOR) plays an important role in the modulation of neuronal plasticity associated with the pathogenesis of pain sensation. However, the role of mTOR in pain affect is unclear. Using a formalin-induced conditioned place avoidance (F-CPA) test, the current study investigated the effects of the mTOR specific inhibitor rapamycin on noxious stimulation induced aversion in the rostral anterior cingulate cortex (rACC). Intraplantar injection of 5% formalin was associated with significant activation of mTOR, as well as p70 ribosomal S6 protein (p70S6K), its downstream effector, in the rACC. The inhibition of mTOR activation with rapamycin disrupted pain-related aversion; however, this inhibition did not affect formalin-induced spontaneous nociceptive behaviors in rats. These findings demonstrated for the first time that mTOR and its downstream pathway in the rACC contribute to the induction of pain-related negative emotion. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The relative importance of local retention and inter-reef dispersal of neutrally buoyant material on coral reefs

    NASA Astrophysics Data System (ADS)

    Black, Kerry P.

    1993-03-01

    Reef-scale, eddy-resolving numerical models are applied to discriminate between local trapping of neutrally buoyant passive material coming from a natal reef versus trapping of this material on reefs downstream. A hydrodynamic model is coupled with a Lagrangian (nongridded) dispersal simulation to map the movement of material such as passive larvae within and between natural reefs. To simplify the interpretation, a number of schematic reef shapes, sizes and spacings were devised to represent the most common cases typifying Australia's Great Barrier Reef. Prior investigations have shown that coral reefs on the Great Barrier Reef may retain material for times equivalent to the pelagic dispersal period of many species. This paper explores whether larvae are more likely to settle on the natal reef, settle downstream or fail to settle at all. The modelling neglects active larval behaviour and treats the vertically well-mixed case of notionally weightless particles only. The crown-of-thorns starfish larvae with a pelagic dispersal period of at least 10 days are one example of this case. Larvae are most likely to be found near the natal reef rather than its downstream neighbour, mostly because the currents take the vertically well-mixed material around, rather than onto, the downstream reef. Of all the simulations, the highest numbers were found on natal reefs (e.g. 8% after 10 days) while downstream numbers mostly varied between 0 and 1% after 10 days. Particle numbers equalised only when spacing between the two reefs was less than the reef length (6 km), or when the downstream reef was in the direct path of the larval stream.

  6. The Evolutionary Fate of the Genes Encoding the Purine Catabolic Enzymes in Hominoids, Birds, and Reptiles

    PubMed Central

    Keebaugh, Alaine C.; Thomas, James W.

    2010-01-01

    Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes. PMID:20106906

  7. The evolutionary fate of the genes encoding the purine catabolic enzymes in hominoids, birds, and reptiles.

    PubMed

    Keebaugh, Alaine C; Thomas, James W

    2010-06-01

    Gene loss has been proposed to play a major role in adaptive evolution, and recent studies are beginning to reveal its importance in human evolution. However, the potential consequence of a single gene-loss event upon the fates of functionally interrelated genes is poorly understood. Here, we use the purine metabolic pathway as a model system in which to explore this important question. The loss of urate oxidase (UOX) activity, a necessary step in this pathway, has occurred independently in the hominoid and bird/reptile lineages. Because the loss of UOX would have removed the functional constraint upon downstream genes in this pathway, these downstream genes are generally assumed to have subsequently deteriorated. In this study, we used a comparative genomics approach to empirically determine the fate of UOX itself and the downstream genes in five hominoids, two birds, and a reptile. Although we found that the loss of UOX likely triggered the genetic deterioration of the immediate downstream genes in the hominoids, surprisingly in the birds and reptiles, the UOX locus itself and some of the downstream genes were present in the genome and predicted to encode proteins. To account for the variable pattern of gene retention and loss after the inactivation of UOX, we hypothesize that although gene loss is a common fate for genes that have been rendered obsolete due to the upstream loss of an enzyme a metabolic pathway, it is also possible that same lack of constraint will foster the evolution of new functions or allow the optimization of preexisting alternative functions in the downstream genes, thereby resulting in gene retention. Thus, adaptive single-gene losses have the potential to influence the long-term evolutionary fate of functionally interrelated genes.

  8. Observation and numerical simulation of a convective initiation during COHMEX

    NASA Technical Reports Server (NTRS)

    Song, J. Aaron; Kaplan, Michael L.

    1991-01-01

    Under a synoptically undisturbed condition, a dual-peak convective lifecycle was observed with the COoperative Huntsville Meteorological EXperiment (COHMEX) observational network over a 24-hour period. The lifecycle included a multicell storm, which lasted about 6 hours, produced a peak rainrate exceeding 100 mm/hr, and initiated a downstream mesoscale convective system. The 24-hour accumulated rainfall of this event was the largest during the entire COHMEX. The downstream mesoscale convective system, unfortunately, was difficult to investigate quantitatively due to the lack of mesoscale observations. The dataset collected near the time of the multicell storm evolution, including its initiation, was one of the best datasets of COHMEX. In this study, the initiation of this multicell storm is chosen as the target of the numerical simulations.

  9. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development.

    PubMed

    Santin, Franco; Bhogale, Sneha; Fantino, Elisa; Grandellis, Carolina; Banerjee, Anjan K; Ulloa, Rita M

    2017-02-01

    Among many factors that regulate potato tuberization, calcium and calcium-dependent protein kinases (CDPKs) play an important role. CDPK activity increases at the onset of tuber formation with StCDPK1 expression being strongly induced in swollen stolons. However, not much is known about the transcriptional and posttranscriptional regulation of StCDPK1 or its downstream targets in potato development. To elucidate further, we analyzed its expression in different tissues and stages of the life cycle. Histochemical analysis of StCDPK1::GUS (β-glucuronidase) plants demonstrated that StCDPK1 is strongly associated with the vascular system in stems, roots, during stolon to tuber transition, and in tuber sprouts. In agreement with the observed GUS profile, we found specific cis-acting elements in StCDPK1 promoter. In silico analysis predicted miR390 to be a putative posttranscriptional regulator of StCDPK1. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis showed ubiquitous expression of StCDPK1 in different tissues which correlated well with Western blot data except in leaves. On the contrary, miR390 expression exhibited an inverse pattern in leaves and tuber eyes suggesting a possible regulation of StCDPK1 by miR390. This was further confirmed by Agrobacterium co-infiltration assays. In addition, in vitro assays showed that recombinant StCDPK1-6xHis was able to phosphorylate the hydrophilic loop of the auxin efflux carrier StPIN4. Altogether, these results indicate that StCDPK1 expression is varied in a tissue-specific manner having significant expression in vasculature and in tuber eyes; is regulated by miR390 at posttranscriptional level and suggest that StPIN4 could be one of its downstream targets revealing the overall role of this kinase in potato development. © 2016 Scandinavian Plant Physiology Society.

  10. Biological Role and Therapeutic Targeting of TGF-β3 in Glioblastoma.

    PubMed

    Seystahl, Katharina; Papachristodoulou, Alexandros; Burghardt, Isabel; Schneider, Hannah; Hasenbach, Kathy; Janicot, Michel; Roth, Patrick; Weller, Michael

    2017-06-01

    Transforming growth factor (TGF)-β contributes to the malignant phenotype of glioblastoma by promoting invasiveness and angiogenesis and creating an immunosuppressive microenvironment. So far, TGF-β 1 and TGF-β 2 isoforms have been considered to act in a similar fashion without isoform-specific function in glioblastoma. A pathogenic role for TGF-β 3 in glioblastoma has not been defined yet. Here, we studied the expression and functional role of endogenous and exogenous TGF-β 3 in glioblastoma models. TGF-β 3 mRNA is expressed in human and murine long-term glioma cell lines as well as in human glioma-initiating cell cultures with expression levels lower than TGF-β 1 or TGF-β 2 in most cell lines. Inhibition of TGF-β 3 mRNA expression by ISTH2020 or ISTH2023, two different isoform-specific phosphorothioate locked nucleic acid (LNA)-modified antisense oligonucleotide gapmers, blocks downstream SMAD2 and SMAD1/5 phosphorylation in human LN-308 cells, without affecting TGF-β 1 or TGF-β 2 mRNA expression or protein levels. Moreover, inhibition of TGF-β 3 expression reduces invasiveness in vitro Interestingly, depletion of TGF-β 3 also attenuates signaling evoked by TGF-β 1 or TGF-β 2 In orthotopic syngeneic (SMA-560) and xenograft (LN-308) in vivo glioma models, expression of TGF-β 3 as well as of the downstream target, plasminogen-activator-inhibitor (PAI)-1 , was reduced, while TGF-β 1 and TGF-β 2 levels were unaffected following systemic treatment with TGF-β 3 -specific antisense oligonucleotides. We conclude that TGF-β 3 might function as a gatekeeper controlling downstream signaling despite high expression of TGF-β 1 and TGF-β 2 isoforms. Targeting TGF-β 3 in vivo may represent a promising strategy interfering with aberrant TGF-β signaling in glioblastoma. Mol Cancer Ther; 16(6); 1177-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae.

    PubMed

    Liao, Hsien-Ching; Chen, Mei-Yu

    2012-02-24

    The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.

  12. MicroRNA-200b Downregulates Oxidation Resistance 1 (Oxr1) Expression in the Retina of Type 1 Diabetes Model

    PubMed Central

    Murray, Anne R.; Chen, Qian; Takahashi, Yusuke; Zhou, Kevin K.; Park, Kyoungmin; Ma, Jian-xing

    2013-01-01

    Purpose. MicroRNAs (miRNAs) are known to participate in post-transcriptional regulation of gene expression and are involved in multiple pathogenic processes. Here, we identified miRNA expression changes in the retinas of Akita mice, a genetic model of type 1 diabetes, and investigated the potential role of miRNA in diabetic retinopathy. Methods. Visual function of Akita and control mice was evaluated by electroretinography. MiRNA expression changes in the retinas of Akita mice were identified by miRNA-specific microarray and confirmed by quantitative RT-PCR (qRT-PCR). The potential downstream targets of identified miRNAs were predicted by bioinformatic analysis using web-based applications and confirmed by dual luciferase assay. The mRNA and protein changes of identified downstream targets were examined by qRT-PCR and Western blot analysis. Results. MiRNA-specific microarray and qRT-PCR showed that miR-200b was upregulated significantly in the Akita mouse retina. Sequence analysis and luciferase assay identified oxidation resistance 1 (Oxr1) as a downstream target gene regulated by miR-200b. In a human Müller cell line, MIO-M1, transfection of a miR-200b mimic downregulated Oxr1 expression. Conversely, transfection of MIO-M1 with a miR-200b inhibitor resulted in upregulated Oxr1. Furthermore, overexpression of recombinant Oxr1 attenuated oxidative stress marker, nitration of cellular proteins, and ameliorated apoptosis induced by 4-hydroxynonenal (4-HNE), an oxidative stressor. Similarly, transfection of a miR-200b inhibitor decreased, whereas transfection of miR-200b mimic increased the number of apoptotic cells following 4-HNE treatment. Conclusions. These results suggested that miR-200b–regulated Oxr1 potentially has a protective role in diabetic retinopathy. PMID:23404117

  13. The miR-106b-25 cluster targets Smad7, activates TGF-β signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer

    PubMed Central

    Smith, Anna L.; Iwanaga, Ritsuko; Drasin, David J.; Micalizzi, Douglas S.; Vartuli, Rebecca L; Tan, Aik-Choon; Ford, Heide L.

    2012-01-01

    The role of TGF-β signaling in tumorigenesis is paradoxical: it can be tumor suppressive or tumor promotional, depending on context. The metastatic regulator, Six1, was recently shown to mediate this switch, providing a novel means to explain this elusive “TGF-β paradox”. Herein, we identify a mechanism by which Six1 activates the tumor promotional arm of TGF-β signaling, via its ability to upregulate the miR-106b-25 microRNA cluster, and further identify a novel function for this cluster of microRNAs. While expression of the miR-106b-25 cluster is known to overcome TGF-β-mediated growth suppression via targeting p21 and BIM, we demonstrate for the first time that this same cluster can additionally target the inhibitory Smad7 protein, resulting in increased levels of the TGF-β type I receptor (TβRI) and downstream activation of TGF-β signaling. We further show that the miR-106b-25 cluster is sufficient to induce an epithelial to mesenchymal transition and a tumor initiating cell phenotype, and that it is required downstream of Six1 to induce these phenotypes. Finally, we demonstrate a significant correlation between miR-106b, Six1, and activated TGF-β signaling in human breast cancers, and further show that high levels of miR-106b and miR-93 in breast tumors significantly predicts shortened time to relapse. These findings expand the spectrum of oncogenic functions of miR-106b-25, and may provide a novel molecular explanation, through the Six1 regulated miR-106b-25 cluster, by which TGF-β signaling shifts from tumor suppressive to tumor promoting. PMID:22286770

  14. High-throughput screening identifies microRNAs that target Nox2 and improve function after acute myocardial infarction.

    PubMed

    Yang, Junyu; Brown, Milton E; Zhang, Hanshuo; Martinez, Mario; Zhao, Zhihua; Bhutani, Srishti; Yin, Shenyi; Trac, David; Xi, Jianzhong Jeff; Davis, Michael E

    2017-05-01

    Myocardial infarction (MI) is the most common cause of heart failure. Excessive production of ROS plays a key role in the pathogenesis of cardiac remodeling after MI. NADPH with NADPH oxidase (Nox)2 as the catalytic subunit is a major source of superoxide production, and expression is significantly increased in the infarcted myocardium, especially by infiltrating macrophages. While microRNAs (miRNAs) are potent regulators of gene expression and play an important role in heart disease, there still lacks efficient ways to identify miRNAs that target important pathological genes for treating MI. Thus, the overall objective was to establish a miRNA screening and delivery system for improving heart function after MI using Nox2 as a critical target. With the use of the miRNA-target screening system composed of a self-assembled cell microarray (SAMcell), three miRNAs, miR-106b, miR-148b, and miR-204, were identified that could regulate Nox2 expression and its downstream products in both human and mouse macrophages. Each of these miRNAs were encapsulated into polyketal (PK3) nanoparticles that could effectively deliver miRNAs into macrophages. Both in vitro and in vivo studies in mice confirmed that PK3-miRNAs particles could inhibit Nox2 expression and activity and significantly improve infarct size and acute cardiac function after MI. In conclusion, our results show that miR-106b, miR-148b, and miR-204 were able to improve heart function after myocardial infarction in mice by targeting Nox2 and possibly altering inflammatory cytokine production. This screening system and delivery method could have broader implications for miRNA-mediated therapeutics for cardiovascular and other diseases. NEW & NOTEWORTHY NADPH oxidase (Nox)2 is a promising target for treating cardiovascular disease, but there are no specific inhibitors. Finding endogenous signals that can target Nox2 and other inflammatory molecules is of great interest. In this study, we used high-throughput screening to identify microRNAs that target Nox2 and improve cardiac function after infarction. Copyright © 2017 the American Physiological Society.

  15. Plasma spray nozzle with low overspray and collimated flow

    NASA Technical Reports Server (NTRS)

    Beason, Jr., George P. (Inventor); McKechnie, Timothy N. (Inventor); Power, Christopher A. (Inventor)

    1996-01-01

    An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow. The unique bell shape of the nozzle downstream end produces a plasma spray that is ideally expanded at the nozzle exit and thus virtually free of shock phenomena, and that is highly collimated so as to exhibit significantly reduced fanning and diffusion between the nozzle and the target. The overall result is a significant reduction in the amount of material escaping from the plasma stream in the form of overspray and a corresponding improvement in the cost of the coating operation and in the quality and integrity of the coating itself.

  16. Occurrence of emerging contaminants in water and bed material in the Missouri River, North Dakota, 2007

    USGS Publications Warehouse

    Damschen, William C.; Lundgren, Robert F.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Standing Rock Sioux Tribe, conducted a reconnaissance study to determine the occurrence of emerging contaminants in water and bed sediment within the Missouri River upstream and downstream from the cities of Bismarck and Mandan, North Dakota, and upstream from the city of Fort Yates, North Dakota, during September-October 2007. At each site, water samples were collected twice and bed-sediment samples were collected once. Samples were analyzed for more than 200 emerging contaminants grouped into four compound classes - wastewater compounds, human-health pharmaceutical compounds, hormones, and antibiotics. Only sulfamethoxazole, an antibiotic, was present at a concentration higher than minimum detection limits. It was detected in a water sample collected downstream from the cities of Bismarck and Mandan, and in bed-sediment samples collected at the two sites downstream from the cities of Bismarck and Mandan and upstream from Fort Yates. Sulfamethoxazole is an antibiotic commonly used for treating bacterial infections in humans and animals.

  17. Downscaling GLOF Hazards: An in-depth look at the Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Rounce, D.; McKinney, D. C.; Lala, J.

    2016-12-01

    The Nepal Himalaya house a large number of glacial lakes that pose a flood hazard to downstream communities and infrastructure. The modeling of the entire process chain of these glacial lake outburst floods (GLOFs) has been advancing rapidly in recent years. The most common cause of failure is mass movement entering the glacial lake, which triggers a tsunami-like wave that breaches the terminal moraine and causes the ensuing downstream flood. Unfortunately, modeling the avalanche, the breach of the moraine, and the downstream flood requires a large amount of site-specific information and can be very labor-intensive. Therefore, these detailed models need to be paired with large-scale hazard assessments that identify the glacial lakes that are the biggest threat and the triggering events that threaten these lakes. This study discusses the merger of a large-scale, remotely-based hazard assessment with more detailed GLOF models to show how GLOF hazard modeling can be downscaled in the Nepal Himalaya.

  18. p21-activated kinases in cancer.

    PubMed

    Kumar, Rakesh; Gururaj, Anupama E; Barnes, Christopher J

    2006-06-01

    The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of cancers. p21-activated kinases (Paks) are serine/threonine kinases that function as downstream nodes for various oncogenic signalling pathways. Paks are well-known regulators of cytoskeletal remodelling and cell motility, but have recently also been shown to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, which results in tumour formation and cell invasiveness. Alterations in Pak expression have been detected in human tumours, which makes them an attractive new therapeutic target.

  19. Deja Vu: EGF receptors drive resistance to BRAF inhibitors.

    PubMed

    Girotti, Maria Romina; Marais, Richard

    2013-05-01

    The promise of personalized medicine is upon us, and in some cancers, targeted therapies are rapidly becoming the mainstay of treatment for selected patients based on their molecular profile. The protein kinase BRAF is a driver oncogene in both thyroid cancer and melanoma, but while drugs that target BRAF and its downstream signaling pathway are effective in melanoma, they are ineffective in thyroid cancer. In this issue of Cancer Discovery, Montero-Conde and colleagues investigate why thyroid cancer is resistant to BRAF inhibitors despite the presence of BRAF mutation.

  20. Dana-Farber Cancer Institute: Identification of Therapeutic Targets in KRAS Driven Lung Cancer | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at Dana Farber Cancer Institute focuses on the use of high-throughput genetic and bioinformatic approaches to identify and credential oncogenes and co-dependencies in cancers. This Center aims to provide the cancer research community with information that will facilitate the prioritization of targets based on both genomic and functional evidence, inform the most appropriate genetic context for downstream mechanistic and validation studies, and enable the translation of this information into therapeutics and diagnostics.

  1. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    PubMed

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  2. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of targeted and untargeted effects-based monitoring tools to assess impacts of contaminants of emerging concern on fish in the South Platte River, CO.

    PubMed

    Ekman, Drew R; Keteles, Kristen; Beihoffer, Jon; Cavallin, Jenna E; Dahlin, Kenneth; Davis, John M; Jastrow, Aaron; Lazorchak, James M; Mills, Marc A; Murphy, Mark; Nguyen, David; Vajda, Alan M; Villeneuve, Daniel L; Winkelman, Dana L; Collette, Timothy W

    2018-08-01

    Rivers in the arid Western United States face increasing influences from anthropogenic contaminants due to population growth, urbanization, and drought. To better understand and more effectively track the impacts of these contaminants, biologically-based monitoring tools are increasingly being used to complement routine chemical monitoring. This study was initiated to assess the ability of both targeted and untargeted biologically-based monitoring tools to discriminate impacts of two adjacent wastewater treatment plants (WWTPs) on Colorado's South Platte River. A cell-based estrogen assay (in vitro, targeted) determined that water samples collected downstream of the larger of the two WWTPs displayed considerable estrogenic activity in its two separate effluent streams. Hepatic vitellogenin mRNA expression (in vivo, targeted) and NMR-based metabolomic analyses (in vivo, untargeted) from caged male fathead minnows also suggested estrogenic activity downstream of the larger WWTP, but detected significant differences in responses from its two effluent streams. The metabolomic results suggested that these differences were associated with oxidative stress levels. Finally, partial least squares regression was used to explore linkages between the metabolomics responses and the chemical contaminants that were detected at the sites. This analysis, along with univariate statistical approaches, identified significant covariance between the biological endpoints and estrone concentrations, suggesting the importance of this contaminant and recommending increased focus on its presence in the environment. These results underscore the benefits of a combined targeted and untargeted biologically-based monitoring strategy when used alongside contaminant monitoring to more effectively assess ecological impacts of exposures to complex mixtures in surface waters. Published by Elsevier Ltd.

  4. Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness.

    PubMed

    Casas, Bárbara S; Adolphe, Christelle; Lois, Pablo; Navarrete, Nelson; Solís, Natalia; Bustamante, Eva; Gac, Patricio; Cabané, Patricio; Gallegos, Ivan; Wainwright, Brandon J; Palma, Verónica

    2017-10-13

    Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1 , the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1 lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes.

  5. Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness

    PubMed Central

    Casas, Bárbara S.; Adolphe, Christelle; Lois, Pablo; Navarrete, Nelson; Solís, Natalia; Bustamante, Eva; Gac, Patricio; Cabané, Patricio; Gallegos, Ivan; Wainwright, Brandon J.; Palma, Verónica

    2017-01-01

    Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1, the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes. PMID:29137400

  6. Double-stranded RNA transcribed from vector-based oligodeoxynucleotide acts as transcription factor decoy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xiao; Gang, Yi; Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, Shaanxi Province

    2015-02-06

    Highlights: • A shRNA vector based transcription factor decoy, VB-ODN, was designed. • VB-ODN for NF-κB inhibited cell viability in HEK293 cells. • VB-ODN inhibited expression of downstream genes of target transcription factors. • VB-ODN may enhance nuclear entry ratio for its feasibility of virus production. - Abstract: In this study, we designed a short hairpin RNA vector-based oligodeoxynucleotide (VB-ODN) carrying transcription factor (TF) consensus sequence which could function as a decoy to block TF activity. Specifically, VB-ODN for Nuclear factor-κB (NF-κB) could inhibit cell viability and decrease downstream gene expression in HEK293 cells without affecting expression of NF-κB itself.more » The specific binding between VB-ODN produced double-stranded RNA and NF-κB was evidenced by electrophoretic mobility shift assay. Moreover, similar VB-ODNs designed for three other TFs also inhibit their downstream gene expression but not that of themselves. Our study provides a new design of decoy for blocking TF activity.« less

  7. Identification of thioredoxin-interacting protein (TXNIP) as a downstream target for IGF1 action.

    PubMed

    Nagaraj, Karthik; Lapkina-Gendler, Lena; Sarfstein, Rive; Gurwitz, David; Pasmanik-Chor, Metsada; Laron, Zvi; Yakar, Shoshana; Werner, Haim

    2018-01-30

    Laron syndrome (LS), or primary growth hormone (GH) insensitivity, is the best-characterized entity among the congenital insulin-like growth factor 1 (IGF1) deficiencies. Life-long exposure to minute endogenous IGF1 levels is linked to low stature as well as a number of endocrine and metabolic abnormalities. While elevated IGF1 is correlated with increased cancer incidence, epidemiological studies revealed that patients with LS do not develop tumors. The mechanisms associated with cancer protection in LS are yet to be discovered. Recent genomic analyses identified a series of metabolic genes that are overrepresented in patients with LS. Given the augmented expression of these genes in a low IGF1 milieu, we hypothesized that they may constitute targets for IGF1 action. Thioredoxin-interacting protein (TXNIP) plays a critical role in cellular redox control by thioredoxin. TXNIP serves as a glucose and oxidative stress sensor, being commonly silenced by genetic or epigenetic events in cancer cells. Consistent with its enhanced expression in LS, we provide evidence that TXNIP gene expression is negatively regulated by IGF1. These results were corroborated in animal studies. In addition, we show that oxidative and glucose stresses led to marked increases in TXNIP expression. Supplementation of IGF1 attenuated TXNIP levels, suggesting that IGF1 exerts its antiapoptotic effect via inhibition of TXNIP Augmented TXNIP expression in LS may account for cancer protection in this condition. Finally, TXNIP levels could be potentially useful in the clinic as a predictive or diagnostic biomarker for IGF1R-targeted therapies.

  8. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease.

    PubMed

    Chen, Shuai; Kang, Yujia; Sun, Yan; Zhong, Yanhong; Li, Yanli; Deng, Lijuan; Tao, Jin; Li, Yang; Tian, Yingpu; Zhao, Yinan; Cheng, Jianghong; Liu, Wenjie; Feng, Gen-Sheng; Lu, Zhongxian

    2016-12-01

    Fatty liver disease is a serious health problem worldwide and is the most common cause for chronic liver disease and metabolic disorders. The major challenge in the prevention and intervention of this disease is the incomplete understanding of the underlying mechanism and thus lack of potent therapeutic targets due to multifaceted and interdependent disease factors. In this study, we investigated the role of a signaling adaptor protein, GRB2-associated-binding protein 2 (Gab2), in fatty liver using an animal disease model. Gab2 expression in hepatocytes responded to various disease factor stimulations, and Gab2 knockout mice exhibited resistance to fat-induced obesity, fat- or alcohol-stimulated hepatic steatosis, as well as methionine and choline deficiency-induced steatohepatitis. Concordantly, the forced expression or knockdown of Gab2 enhanced or diminished oleic acid (OA)- or ethanol-induced lipid production in hepatocytes in vitro, respectively. During lipid accumulation in hepatocytes, both fat and alcohol induced the recruitment of PI3K or Socs3 by Gab2 and the activation of their downstream signaling proteins AKT, ERK, and Stat3. Therefore, Gab2 may be a disease-associated protein that is induced by pathogenic factors to amplify and coordinate multifactor-induced signals to govern disease development in the liver. Our research provides a novel potential target for the prevention and intervention of fatty liver disease. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  9. The future of uveitis treatment.

    PubMed

    Lin, Phoebe; Suhler, Eric B; Rosenbaum, James T

    2014-01-01

    Uveitis is a heterogeneous collection of diseases with polygenic and environmental influences. This heterogeneity presents challenges in trial design and selection of end points. Despite the multitude of causes, therapeutics targeting common inflammatory pathways are effective in treating diverse forms of uveitis. These treatments, including corticosteroids and immunomodulatory agents, although often effective, can have untoward side effects, limiting their utility. The search for drugs with equal or improved efficacy that are safe is therefore paramount. A mechanism-based approach is most likely to yield the future breakthroughs in the treatment of uveitis. We review the literature and provide examples of the nuances of immune regulation and dysregulation that can be targeted for therapeutic benefit. As our understanding of the causes of uveitis grows we will learn how to better apply antibodies designed to block interaction between inflammatory cytokines and their receptors. T-lymphocyte activation can be targeted by blocking co-stimulatory pathways or inhibiting major histocompatibility complex protein interactions. Furthermore, intracellular downstream molecules from cytokine or other pathways can be inhibited using small molecule inhibitors, which have the benefit of being orally bioavailable. An emerging field is the lipid-mediated inflammatory and regulatory pathways. Alternatively, anti-inflammatory cytokines can be provided by administering recombinant protein, and intracellular "brakes" of inflammatory pathways can be introduced potentially by gene therapy. Novel approaches of delivering a therapeutic substance include, but are not limited to, the use of small interfering RNA, viral and nonviral gene therapy, and microparticle or viscous gel sustained-release drug-delivery platforms. Copyright © 2014. Published by Elsevier Inc.

  10. Runx2 Expression in Smooth Muscle Cells Is Required for Arterial Medial Calcification in Mice

    PubMed Central

    Lin, Mu-En; Chen, Theodore; Leaf, Elizabeth M.; Speer, Mei Y.; Giachelli, Cecilia M.

    2016-01-01

    Arterial medial calcification (AMC) is a hallmark of aging, diabetes, and chronic kidney disease. Smooth muscle cell (SMC) transition to an osteogenic phenotype is a common feature of AMC, and is preceded by expression of runt-related transcription factor 2 (Runx2), a master regulator of bone development. Whether SMC-specific Runx2 expression is required for osteogenic phenotype change and AMC remains unknown. We therefore created an improved targeting construct to generate mice with floxed Runx2 alleles (Runx2f/f) that do not produce truncated Runx2 proteins after Cre recombination, thereby preventing potential off-target effects. SMC-specific deletion using SM22–recombinase transgenic allele mice (Runx2ΔSM) led to viable mice with normal bone and arterial morphology. After vitamin D overload, arterial SMCs in Runx2f/f mice expressed Runx2, underwent osteogenic phenotype change, and developed severe AMC. In contrast, vitamin D–treated Runx2ΔSM mice had no Runx2 in blood vessels, maintained SMC phenotype, and did not develop AMC. Runx2 deletion did not affect serum calcium, phosphate, fibroblast growth factor-23, or alkaline phosphatase levels. In vitro, Runx2f/f SMCs calcified to a much greater extent than those derived from Runx2ΔSM mice. These data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients. PMID:25987250

  11. A biochemical approach to identifying microRNA targets

    PubMed Central

    Karginov, Fedor V.; Conaco, Cecilia; Xuan, Zhenyu; Schmidt, Bryan H.; Parker, Joel S.; Mandel, Gail; Hannon, Gregory J.

    2007-01-01

    Identifying the downstream targets of microRNAs (miRNAs) is essential to understanding cellular regulatory networks. We devised a direct biochemical method for miRNA target discovery that combined RNA-induced silencing complex (RISC) purification with microarray analysis of bound mRNAs. Because targets of miR-124a have been analyzed, we chose it as our model. We honed our approach both by examining the determinants of stable binding between RISC and synthetic target RNAs in vitro and by determining the dependency of both repression and RISC coimmunoprecipitation on miR-124a seed sites in two of its well characterized targets in vivo. Examining the complete spectrum of miR-124 targets in 293 cells yielded both a set that were down-regulated at the mRNA level, as previously observed, and a set whose mRNA levels were unaffected by miR-124a. Reporter assays validated both classes, extending the spectrum of mRNA targets that can be experimentally linked to the miRNA pathway. PMID:18042700

  12. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected during the study show seasonal differences in all measured parameters. In particular, surprisingly high concentrations of chlorophyll-a were measured at all three main study sites in winter and early spring, likely due to changes in algal populations. Discharge conditions and dissolved orthophosphorus concentrations are key drivers for chlorophyll-a on a seasonal and annual basis on the Snake River. Discharge conditions and upstream periphyton growth are most likely the key drivers for chlorophyll-a in the Boise River. Phytoplankton growth is not limited or driven by nutrient availability in the Boise River. Lower discharges and minimal substrate disturbance in WY2010 in comparison with WY2009 may have caused prolonged and increased periphyton and macrophyte growth and a reduced amount of sloughed algae in suspension in the summer of WY2010. Chlorophyll-a measured in samples commonly is used as an indicator of sestonic algae biomass, but chlorophyll-a concentrations and fluorescence may not be the most appropriate surrogates for algae growth, eutrophication, and associated effects on beneficial uses. Assessment of the effects of algae growth on beneficial uses should evaluate not only sestonic algae, but also benthic algae and macrophytes. Alternatively, continuous monitoring of dissolved oxygen detects the influence of aquatic plant respiration for all types of algae and macrophytes and is likely a more direct measure of effects on beneficial uses such as aquatic habitat. Most measured water-quality parameters in the Snake River were statistically different upstream and downstream of the confluence with the Boise River. Higher concentrations and loads were measured at the downstream site (Snake River at Nyssa) than the upstream site (Snake River near Adrian) for total phosphorus, dissolved orthophosphorus, total nitrogen, dissolved nitrite and nitrate, suspended sediment, and turbidity. Higher dissolved oxygen concentrations and pH were measured at the upstream site (Snake River near Adrian) than the downstream site (Snake River at Nyssa). Contributions from the Boise River measured at Parma do not constitute all of the increase in nutrient and sediment loads in the Snake River between the upstream and downstream sites. Surrogate models were developed using a combination of continuously monitored variables to estimate concentrations of nutrients and suspended sediment when samples were not possible. The surrogate models explained from 66 to 95 percent of the variability in nutrient and suspended sediment concentrations, depending on the site and model. Although the surrogate models could not always represent event-based changes in modeled parameters, they generally were successful in representing seasonal and annual patterns. Over a longer period, the surrogate models could be a useful tool for measuring compliance with state and site-specific water-quality standards and TMDL targets, for representing daily and seasonal variability in constituents, and for assessing effects of phosphorus reduction measures within the watershed.

  13. Purification of Proteins Fused to Maltose-Binding Protein.

    PubMed

    Lebendiker, Mario; Danieli, Tsafi

    2017-01-01

    Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.

  14. Synergistic anti-tumor effect of 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 on human melanoma.

    PubMed

    Calero, R; Morchon, E; Martinez-Argudo, I; Serrano, R

    2017-10-10

    Drug resistance by MAPK signaling recovery or activation of alternative signaling pathways, such as PI3K/AKT/mTOR, is an important factor that limits the long-term efficacy of targeted therapies in melanoma patients. In the present study, we investigated the phospho-proteomic profile of RTKs and its correlation with downstream signaling pathways in human melanoma. We found that tyrosine kinase receptors expression correlated with the expression of pivotal downstream components of the RAS/RAF/MAPK and PI3K/AKT/mTOR pathways in melanoma cell lines and tumors. We also found high expression of HSP90 and the PI3K/AKT/mTOR pathway proteins, 4EBP1 and AKT compared with healthy tissue and this correlated with poor overall survival of melanoma patients. The combination of the HSP90 inhibitor 17AAG with the PI3K/mTOR inhibitor NVP-BEZ235 showed a synergistic activity decreasing melanoma cell growth, inducing apoptosis and targeting simultaneously the MAPK and PI3K/AKT/mTOR pathways. These results demonstrate that the combination of HSP90 and PI3K/mTOR inhibitors could be an effective therapeutic strategy that target the main survival pathways in melanoma and must be considered to overcome resistance to BRAF inhibitors in melanoma patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. 6-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-small cell lung cancer A549 cells.

    PubMed

    Hung, Jen-Yu; Hsu, Ya-Ling; Li, Chien-Te; Ko, Ying-Chin; Ni, Wen-Chiu; Huang, Ming-Shyan; Kuo, Po-Lin

    2009-10-28

    This study is the first study to investigate the anticancer effect of 6-shogaol in human non-small cell lung cancer A549 cells. 6-Shogaol inhibited cell proliferation by inducing autophagic cell death, but not, predominantly, apoptosis. Pretreatment of cells with 3-methyladenine (3-MA), an autophagy inhibitor, suppressed 6-shogaol mediated antiproliferation activity, suggesting that induction of autophagy by 6-shogaol is conducive to cell death. We also found that 6-shogaol inhibited survival signaling through the AKT/mTOR signaling pathway by blocking the activation of AKT and downstream targets, including the mammalian target of rapamycin (mTOR), forkhead transcription factors (FKHR) and glycogen synthase kinase-3beta (GSK-3beta). Phosphorylation of both of mTOR's downstream targets, p70 ribosomal protein S6 kinase (p70S6 kinase) and 4E-BP1, was also diminished. Overexpression of AKT by AKT cDNA transfection decreased 6-shogaol mediated autophagic cell death, supporting inhibition of AKT beneficial to autophagy. Moreover, reduction of AKT expression by siRNA potentiated 6-shogaol's effect, also supporting inhibition of AKT beneficial to autophagy. Taken together, these findings suggest that 6-shogaol may be a promising chemopreventive agent against human non-small cell lung cancer.

  16. Overexpression of nucleostemin contributes to an advanced malignant phenotype and a poor prognosis in oral squamous cell carcinoma

    PubMed Central

    Yoshida, R; Nakayama, H; Nagata, M; Hirosue, A; Tanaka, T; Kawahara, K; Nakagawa, Y; Matsuoka, Y; Sakata, J; Arita, H; Hiraki, A; Shinohara, M; Ito, T

    2014-01-01

    Background: Nucleostemin (NS) is essential for the maintenance of stem cell properties, the functions of which remain poorly understood in cancer cells. The purpose of this study was to explore the impact of NS on malignancy and its clinical significance in oral squamous cell carcinoma (OSCC) patients. Methods: We investigated the effects of NS on the proliferation and invasion of OSCC using NS-overexpressing or -knockdown OSCC cells. We assessed the activation of the STAT3 (signal transducer and activator of transcription 3) signalling pathway and the downstream targets in the cells with different expression levels of NS. An immunohistochemical analysis of NS was also performed in 54 OSCC patients who were treated with preoperative chemoradiotherapy and surgery. Results: The overexpression of NS significantly enhanced the proliferation and invasive potential of OSCC cells. On the other hand, downregulation of NS suppressed the invasiveness of the cells. The alterations of these malignant phenotypes were associated with the activation of STAT3 signalling and its downstream targets. An immunohistochemical analysis demonstrated that a high NS tumour expression level significantly correlated with an advanced T-stage and N-stage. Furthermore, a Cox regression analysis revealed that the NS status (hazard ratio, 9.09; P=0.002) was a significant progression factor for OSCC patients. Conclusions: Our results suggest that targeting NS may provide a promising treatment for highly malignant OSCC. PMID:25314067

  17. Insulin-like growth factor-1 signaling in renal cell carcinoma.

    PubMed

    Tracz, Adam F; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M

    2016-07-12

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells.

  18. Combination of the MEK inhibitor pimasertib with BTK or PI3K-delta inhibitors is active in preclinical models of aggressive lymphomas.

    PubMed

    Gaudio, E; Tarantelli, C; Kwee, I; Barassi, C; Bernasconi, E; Rinaldi, A; Ponzoni, M; Cascione, L; Targa, A; Stathis, A; Goodstal, S; Zucca, E; Bertoni, F

    2016-06-01

    Lymphomas are among the most common human cancers and represent the cause of death for still too many patients. The B-cell receptor with its downstream signaling pathways represents an important therapeutic target for B-cell lymphomas. Here, we evaluated the activity of the MEK1/2 inhibitor pimasertib as single agent and in combination with other targeted drugs in lymphoma preclinical models. Cell lines derived mature B-cell lymphomas were exposed to increasing doses of pimasertib alone. Immunoblotting and gene expression profiling were performed. Combination of pimasertib with idelalisib or ibrutinib was assessed. Pimasertib as single agent exerted a dose-dependent antitumor activity across a panel of 23 lymphoma cell lines, although at concentrations higher than reported for solid tumors. Strong synergism was observed with pimasertib combined with the PI3K inhibitor idelalisib and the BTK inhibitor ibrutinib in cell lines derived from diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma. The data were confirmed in an in vivo experiment treating DLBCL xenografts with pimasertib and ibrutinib. The data presented here provide the basis for further investigation of regimens including pimasertib in relapsed and refractory lymphomas. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Hepatic AMP Kinase as a Potential Target for Treating Nonalcoholic Fatty Liver Disease: Evidence from Studies of Natural Products.

    PubMed

    Xu, Gang; Huang, Kaixun; Zhou, Jun

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is the leading cause of cryptogenic cirrhosis and has consistently been implicated in related metabolic disorders, such as dyslipidemia and type 2 diabetes (T2D). However, the pathogenesis of NAFLD remains to be elucidated, and no established therapeutic regimens for treating NAFLD exist. Adenosine monophosphate (AMP)-activated protein kinase (AMPK), the main cellular energy sensor, has been implicated as a key regulator of hepatic lipid and glucose metabolism. Recently, emerging evidence indicates that many plant-derived natural products are capable of ameliorating NAFLD by targeting AMPK. The published literature in PubMed relating to this topic was searched through June 2016. Significant advances have been made with respect to understanding the protective effects of plant-derived natural products against NAFLD. A variety of natural products, including alkaloids (berberine, demethyleneberberine, nicotine, caffeine, etc.), polyphenols (resveratrol, puerarin, curcumin, caffeic acid, etc.) and other compounds (β- caryophyllene, gastrodin, compound K, betulinic acid, etc.), have demonstrated promising results in preclinical studies. Mechanistic studies of these compounds have focused on their activation of AMPK and its downstream effectors involved in lipid metabolism. The findings of this review confirm that plant-derived natural products capable of activating the AMPK signaling pathway are potential therapeutic agents for NAFLD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Exploring the mechanistic insights of Cas scaffolding protein family member 4 with protein tyrosine kinase 2 in Alzheimer's disease by evaluating protein interactions through molecular docking and dynamic simulations.

    PubMed

    Hassan, Mubashir; Shahzadi, Saba; Alashwal, Hany; Zaki, Nazar; Seo, Sung-Yum; Moustafa, Ahmed A

    2018-05-22

    Cas scaffolding protein family member 4 and protein tyrosine kinase 2 are signaling proteins, which are involved in neuritic plaques burden, neurofibrillary tangles, and disruption of synaptic connections in Alzheimer's disease. In the current study, a computational approach was employed to explore the active binding sites of Cas scaffolding protein family member 4 and protein tyrosine kinase 2 proteins and their significant role in the activation of downstream signaling pathways. Sequential and structural analyses were performed on Cas scaffolding protein family member 4 and protein tyrosine kinase 2 to identify their core active binding sites. Molecular docking servers were used to predict the common interacting residues in both Cas scaffolding protein family member 4 and protein tyrosine kinase 2 and their involvement in Alzheimer's disease-mediated pathways. Furthermore, the results from molecular dynamic simulation experiment show the stability of targeted proteins. In addition, the generated root mean square deviations and fluctuations, solvent-accessible surface area, and gyration graphs also depict their backbone stability and compactness, respectively. A better understanding of CAS and their interconnected protein signaling cascade may help provide a treatment for Alzheimer's disease. Further, Cas scaffolding protein family member 4 could be used as a novel target for the treatment of Alzheimer's disease by inhibiting the protein tyrosine kinase 2 pathway.

  1. Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.

    2013-12-01

    Migraine is a common disabling headache disorder characterized by recurrent episodes sometimes preceded or accompanied by focal neurological symptoms called aura. The relation between two subtypes, migraine without aura (MWoA) and migraine with aura (MWA), is explored with the aim to identify targets for neuromodulation techniques. To this end, a dynamically regulated control system is schematically reduced to a network of the trigeminal nerve, which innervates the cranial circulation, an associated descending modulatory network of brainstem nuclei, and parasympathetic vasomotor efferents. This extends the idea of a migraine generator region in the brainstem to a larger network and is still simple and explicit enough to open up possibilities for mathematical modeling in the future. In this study, it is suggested that the migraine generator network (MGN) is driven and may therefore respond differently to different spatio-temporal noxious input in the migraine subtypes MWA and MWoA. The noxious input is caused by a cortical perturbation of homeostasis, known as spreading depression (SD). The MGN might even trigger SD in the first place by a failure in vasomotor control. As a consequence, migraine is considered as an inherently dynamical disease to which a linear course from upstream to downstream events would not do justice. Minimally invasive and noninvasive neuromodulation techniques are briefly reviewed and their rational is discussed in the context of the proposed mechanism.

  2. A taspine derivative supresses Caco-2 cell growth by competitively targeting EphrinB2 and regulating its pathway.

    PubMed

    Dai, Bingling; Wang, Wenjie; Ma, Yujiao; Liu, Rui; Zhang, Yanmin

    2016-09-01

    Colorectal cancer is a common gastrointestinal malignancy worldwide and it is a lethal and aggressive malignancy with a dismal prognosis. In the present study, we investigated the effect of taspine derivative 12k on human colorectal cancer targeted at EphrinB2 and its PDZ. The results indicated that 12k could bind to EphrinB2 and showed a higher suppressive effect on EphrinB2/HEK293 than on HEK293 cells. Caco‑2 cells were screened for high expression of EphrinB2. We found that 12k not only significantly decreased Caco‑2 cell viability and colony formation but impaired migration. Meanwhile, 12k effectively inhibited blood vessel formation in a tissue model of angiogenesis. Mechanistic studies revealed that 12k significantly reduced the phosphorylation of EphrinB2 and PDZ protein PICK1. Accordingly, it was associated with the downregulation by 12k of the PI3K/AKT/mTOR and MAPK signaling pathways which were downstream of VEGFR2, yet it had no effect on VEGFR3. Moreover, the expression of CD34, CD45 and HIF‑1α were downregulated in the Caco‑2 cells. In conclusion, our findings showed that 12k had an inhibitory effect on the growth of Caco-2 cells, and it functioned by interrupting the phosphorylation of EphrinB2 and its related signaling pathway.

  3. The fate of large sediment inputs in rivers: Implications for watershed and waterway management

    Treesearch

    Thomas E. Lisle

    2000-01-01

    Valued resources in and along stream channels are commonly many river miles downstream of large sediment inputs such as landslides. Evaluating and predicting the arrival, severity, and duration of sediment impacts thus requires an understanding of how river channels digest elevated sediment loads.

  4. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    PubMed

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  5. Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators.

    PubMed

    Johnson, Ann Mary; Kartha, C C

    2014-04-01

    Insulin-like growth factor-1 (IGF-1) is known to promote proliferation in many cell types including c-kit(pos) cardiac stem cells (CSCs). Downstream signaling pathways of IGF-1 induced CSC proliferation have not been investigated. An important downstream target of IGF-1/Akt-1 signaling is FoxO3a, a key negative regulator of cell-cycle progression. We studied the effect of IGF-1 on proliferation of c-kit(pos) murine CSCs and found that IGF-1-mediated cell proliferation is associated with FoxO3a phosphorylation and inactivation of its transcriptional activity. PI3 inhibitors LY294002 and Wortmannin abolished the effect of IGF-1 on FoxO3a phosphorylation indicating that FoxO3a phosphorylation is mediated by PI3/Akt-1 pathway. In cells with FoxO3a translocation to the cytoplasm, there is decreased expression of cell-cycle inhibitors such as p27(kip1) and p57(kip2) and increased expression of CyclinD1. Our study provides evidence that IGF-1 induced CSC proliferation could be the result of FoxO3a inactivation and its downstream effect on cell-cycle regulators.

  6. Modeling the combined influence of host dispersal and waterborne fate and transport on pathogen spread in complex landscapes

    PubMed Central

    Lu, Ding; McDowell, Julia Z.; Davis, George M.; Spear, Robert C.; Remais, Justin V.

    2012-01-01

    Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host. We present experimentally-derived dispersal estimates for the intermediate snail host and fate and transport estimates for the passive downstream diffusion of cercariae, the waterborne, human-infective parasite stage. Using a one dimensional advective transport model exhibiting first-order decay, we simulate the added spatial reach and relative increase in cercarial concentrations that dispersing snail hosts contribute to downstream sites. Simulation results suggest that snail dispersal can substantially increase the concentrations of cercariae reaching downstream locations, relative to no snail dispersal, effectively putting otherwise isolated downstream sites at increased risk of exposure to cercariae from upstream sources. The models developed here can be applied to other infectious diseases with multiple life-stages and hosts, and have important implications for targeted ecological control of disease spread. PMID:23162675

  7. Initiated chemical vapor deposition polymers for high peak-power laser targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxamusa, Salmaan H.; Lepro, Xavier; Lee, Tom

    2016-12-05

    Here, we report two examples of initiated chemical vapor deposition (iCVD) polymers being developed for use in laser targets for high peak-power laser systems. First, we show that iCVD poly(divinylbenzene) is more photo-oxidatively stable than the plasma polymers currently used in laser targets. Thick layers (10–12 μm) of this highly crosslinked polymer can be deposited with near-zero intrinsic film stress. Second, we show that iCVD epoxy polymers can be crosslinked after deposition to form thin adhesive layers for assembling precision laser targets. The bondlines can be made as thin as ~ 1 μm, approximately a factor of 2 thinner thanmore » achievable using viscous resin-based adhesives. These bonds can withstand downstream coining and stamping processes.« less

  8. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing

    PubMed Central

    Aono, Jun; Ruiz-Rodriguez, Ernesto; Qing, Hua; Findeisen, Hannes M.; Jones, Karrie L.; Heywood, Elizabeth B.; Bruemmer, Dennis

    2016-01-01

    Objectives The present study sought to investigate the mechanisms underlying the mitogenic function of telomerase and to test the hypothesis that everolimus, commonly used on drug-eluting stents, suppresses smooth muscle cells (SMC) proliferation by targeting telomerase. Background Proliferation of SMC during neointima formation is prevented by drug-eluting stents. Although the replicative capacity of mammalian cells is enhanced by telomerase expression, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target remain to be investigated. Methods We first employed constitutive expression of telomerase reverse transcriptase (TERT) in cell systems to study transcriptional mechanisms by which telomerase activates a mitogenic program. Second, overexpression of telomerase in mice provided a model to study the role of telomerase as a drug target for the antiproliferative efficacy of everolimus. Results Inhibition of neointima formation by everolimus is lost in mice overexpressing TERT, indicating that repression of telomerase confers the antiproliferative efficacy of everolimus. Everolimus reduces TERT expression in SMC through an Ets-1–dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Using chromatin immunoprecipitation assays, we finally demonstrate that TERT induces E2F binding to S-phase gene promoters and supports histone acetylation, effects that are inhibited by everolimus and mediate its antiproliferative activity. Conclusions These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus. Our studies further identify a novel mitogenic pathway in SMC, which depends on the epigenetic activation of S-phase gene promoters by TERT. PMID:27127803

  9. MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Gaoyang; Liu, Boning; Meng, Zhaowei

    Lung cancer is the common cause of death from cancer, and most lung cancer patients die of metastasis. MicroRNAs (miRNAs) function as either oncogenes or tumor suppressors, playing crucial role not only in tumorigenesis, but also in tumor invasion and metastasis. There are several studies showed that miR-26a is involved in carcinogenesis, however, its role in tumor metastasis need to be elucidated. In this study, we showed that ectopic expression of miR-26a enhanced migration and invasion of lung cancer cells. Glycogen synthase kinase-3β (GSK3β) was identified as a direct target of miR-26a. GSK3β expression negatively correlated with miR-26a expression inmore » lung cancer tissues. Silencing of GSK3β achieved similar effect as miR-26a over-expression; over-expression of GSK3β reversed the enhanced effect of miR-26a on lung cancer cell migration and invasion. Further study indicated that miR-26a increased β-catenin expression and nuclear translocation. C-myc and cyclin D1, the downstream genes of β-catenin, were also up-regulated by miR-26a. Furthermore, xenograft study showed that miR-26a promoted lung cancer cell growth in vivo, and suppressed GSK3β expression. Collectively, our results demonstrated that miR-26a enhanced metastatic potential of lung cancer cells via activation of β-catenin pathway by targeting GSK3β, suggesting the potential applicability of miR-26a as a target for cancer treatment. - Highlights: • miR-26a enhances migration and invasion of lung cancer cells. • GSK3β is identified as a direct target of miR-26a. • miR-26a activates β-catenin pathway by targeting GSK3β. • miR-26a promotes lung cancer cell growth in vivo.« less

  10. MiR-223 modulates hepatocellular carcinoma cell proliferation through promoting apoptosis via the Rab1-mediated mTOR activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Zheng; Qi, Ruizhao; Guo, Xiaodong

    Hepatocellular carcinoma (HCC) is a common digestive malignancy. MiR-223, a well-identified miRNA, exhibits diverse properties in different cancers. In this study, we demonstrated that miR-223 could suppress cell growth and promote apoptosis in HepG2 and Bel-7402 HCC cell lines. We screened and identified a novel miR-223 target, Ras-related protein Rab-1(Rab1). Upregulation of miR-223 would specifically and markedly down-regulate Rab1 expression. In addition, miR-223-overexpressing subclones showed significant cell growth inhibition by increasing cell apoptosis in HepG2 and Bel-7402 cells. To identify the mechanisms, we firstly investigated the mTOR pathway and found that pmTOR, p70S6K and Bcl-2 were dramatically down-regulated after miR-223 transfection,more » while no changes in the level of Bax was visualized. Furthermore, our data showed that the anti-tumor effects arising from miR-223 transfection in HCC cells may be due to the deactivation of mTOR pathway caused by the suppression of Rab1 expression when miR-223 is overexpressed. In summary, our results indicate that miR-223 functions as a tumor suppressor and plays a critical role in inhibiting the tumorigenesis and promoting the apoptosis of HCC through the mTOR signaling pathway in vitro. By targeting Rab1, miR-223 efficiently mediates the mTOR pathway. Given these, miR-223 may be a potential therapeutic target for treating HCC. - Highlights: • miR-223 is downregulated in hepatocellular carcinomas. • Rab1 is a novel downstream target of miR-223. • miR-223 suppressed cell growth and enhanced apoptosis in HepG2 and Bel-7402 cells. • miR-223 modulated mTOR signaling pathway by targeting Rab1.« less

  11. miRnalyze: an interactive database linking tool to unlock intuitive microRNA regulation of cell signaling pathways

    PubMed Central

    Subhra Das, Sankha; James, Mithun; Paul, Sandip

    2017-01-01

    Abstract The various pathophysiological processes occurring in living systems are known to be orchestrated by delicate interplays and cross-talks between different genes and their regulators. Among the various regulators of genes, there is a class of small non-coding RNA molecules known as microRNAs. Although, the relative simplicity of miRNAs and their ability to modulate cellular processes make them attractive therapeutic candidates, their presence in large numbers make it challenging for experimental researchers to interpret the intricacies of the molecular processes they regulate. Most of the existing bioinformatic tools fail to address these challenges. Here, we present a new web resource ‘miRnalyze’ that has been specifically designed to directly identify the putative regulation of cell signaling pathways by miRNAs. The tool integrates miRNA-target predictions with signaling cascade members by utilizing TargetScanHuman 7.1 miRNA-target prediction tool and the KEGG pathway database, and thus provides researchers with in-depth insights into modulation of signal transduction pathways by miRNAs. miRnalyze is capable of identifying common miRNAs targeting more than one gene in the same signaling pathway—a feature that further increases the probability of modulating the pathway and downstream reactions when using miRNA modulators. Additionally, miRnalyze can sort miRNAs according to the seed-match types and TargetScan Context ++ score, thus providing a hierarchical list of most valuable miRNAs. Furthermore, in order to provide users with comprehensive information regarding miRNAs, genes and pathways, miRnalyze also links to expression data of miRNAs (miRmine) and genes (TiGER) and proteome abundance (PaxDb) data. To validate the capability of the tool, we have documented the correlation of miRnalyze’s prediction with experimental confirmation studies. Database URL: http://www.mirnalyze.in PMID:28365733

  12. GIV/Girdin Links Vascular Endothelial Growth Factor Signaling to Akt Survival Signaling in Podocytes Independent of Nephrin

    PubMed Central

    Wang, Honghui; Misaki, Taro; Taupin, Vanessa; Eguchi, Akiko; Ghosh, Pradipta

    2015-01-01

    Podocytes are critically involved in the maintenance of the glomerular filtration barrier and are key targets of injury in many glomerular diseases. Chronic injury leads to progressive loss of podocytes, glomerulosclerosis, and renal failure. Thus, it is essential to maintain podocyte survival and avoid apoptosis after acute glomerular injury. In normal glomeruli, podocyte survival is mediated via nephrin-dependent Akt signaling. In several glomerular diseases, nephrin expression decreases and podocyte survival correlates with increased vascular endothelial growth factor (VEGF) signaling. How VEGF signaling contributes to podocyte survival and prevents apoptosis remains unknown. We show here that Gα–interacting, vesicle-associated protein (GIV)/girdin mediates VEGF receptor 2 (VEGFR2) signaling and compensates for nephrin loss. In puromycin aminonucleoside nephrosis (PAN), GIV expression increased, GIV was phosphorylated by VEGFR2, and p-GIV bound and activated Gαi3 and enhanced downstream Akt2, mammalian target of rapamycin complex 1 (mTORC1), and mammalian target of rapamycin complex-2 (mTORC2) signaling. In GIV-depleted podocytes, VEGF-induced Akt activation was abolished, apoptosis was triggered, and cell migration was impaired. These effects were reversed by introducing GIV but not a GIV mutant that cannot activate Gαi3. Our data indicate that after PAN injury, VEGF promotes podocyte survival by triggering assembly of an activated VEGFR2/GIV/Gαi3 signaling complex and enhancing downstream PI3K/Akt survival signaling. Because of its important role in promoting podocyte survival, GIV may represent a novel target for therapeutic intervention in the nephrotic syndrome and other proteinuric diseases. PMID:25012178

  13. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacentmore » to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.« less

  14. Effects of Packstock Use and Backpackers on Water Quality in Yosemite National Park, California

    NASA Astrophysics Data System (ADS)

    Forrester, H.; Clow, D. W.; Roche, J. W.; Heyvaert, A.

    2016-12-01

    Visitor use, primarily backpacker camping, packstock (horse and mule) trail use, and packstock grazing, in designated Wilderness, increases the potential for negative effects on water quality. To determine the effects of visitor use on water quality in Wilderness in Yosemite National Park, we collected and analyzed surface-water samples for water quality indicators, consisting of fecal indicator bacteria (Escherichia coli), nutrients (nitrogen, phosphorus), suspended sediment concentration (SSC), and hormones (e.g. estrogen compounds) during the summers of 2012-2014. We collected samples upstream and downstream from different types of visitor use at routine intervals (weekly or biweekly) and during storms. Additionally, we sampled upstream and downstream from meadows, and targeted different types of visitor use during a park-wide synoptic sampling campaign (n=63). At packstock stream crossings, statistically significant (P≤0.05) increases in Escherichia coli (E. coli) and SSC occurred downstream from crossings compared to upstream conditions during routine sampling (median difference: 3 CFU 100ml-1, and >0.3 mg l-1, respectively) and during storms (median difference: 32 CFU 100ml-1, and 2.9 mg l-1). At backpacker campsites, during routine sampling, significant increases occurred downstream from backpacker camping for E. coli (median difference: 1 CFU 100ml-1), and estrogen hormones were detected. At packstock grazing areas, which are located in meadows, no significant increases were detected for any of the measured water quality indicators downstream from grazing. Most synoptic sample concentrations were near or below detection limits. Our results indicate that under current use levels: 1) packstock trail use and backpacker camping are associated with detectable effects on water quality, which are most pronounced during storms; 2) increases in water quality indicators were not detected downstream from meadows where packstock were grazed; and 3) environmental processes in meadows provide a valuable ecosystem service by reducing human related sources of microbial contamination.

  15. mTOR Complex 2 mediates Akt Phosphorylation that Requires PKCε in Adult Cardiac Muscle Cells

    PubMed Central

    Moschella, Phillip C.; McKillop, John; Pleasant, Dorea L.; Harston, Rebecca K.; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2013-01-01

    Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKC ε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKC ε phosphorylation. Furthermore, phosphorylation of PKC ε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKC ε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKC ε in the Akt activation. Biochemical analyses also revealed that PKC ε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKC ε functions downstream of mTORC2 leading to Akt activation. PMID:23673367

  16. mTOR complex 2 mediates Akt phosphorylation that requires PKCε in adult cardiac muscle cells.

    PubMed

    Moschella, Phillip C; McKillop, John; Pleasant, Dorea L; Harston, Rebecca K; Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani

    2013-09-01

    Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Closing the loop of deep brain stimulation

    PubMed Central

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  18. Closing the loop of deep brain stimulation.

    PubMed

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-12-20

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment.

  19. WRKY transcription factors: key components in abscisic acid signalling.

    PubMed

    Rushton, Deena L; Tripathi, Prateek; Rabara, Roel C; Lin, Jun; Ringler, Patricia; Boken, Ashley K; Langum, Tanner J; Smidt, Lucas; Boomsma, Darius D; Emme, Nicholas J; Chen, Xianfeng; Finer, John J; Shen, Qingxi J; Rushton, Paul J

    2012-01-01

    WRKY transcription factors (TFs) are key regulators of many plant processes, including the responses to biotic and abiotic stresses, senescence, seed dormancy and seed germination. For over 15 years, limited evidence has been available suggesting that WRKY TFs may play roles in regulating plant responses to the phytohormone abscisic acid (ABA), notably some WRKY TFs are ABA-inducible repressors of seed germination. However, the roles of WRKY TFs in other aspects of ABA signalling, and the mechanisms involved, have remained unclear. Recent significant progress in ABA research has now placed specific WRKY TFs firmly in ABA-responsive signalling pathways, where they act at multiple levels. In Arabidopsis, WRKY TFs appear to act downstream of at least two ABA receptors: the cytoplasmic PYR/PYL/RCAR-protein phosphatase 2C-ABA complex and the chloroplast envelope-located ABAR-ABA complex. In vivo and in vitro promoter-binding studies show that the target genes for WRKY TFs that are involved in ABA signalling include well-known ABA-responsive genes such as ABF2, ABF4, ABI4, ABI5, MYB2, DREB1a, DREB2a and RAB18. Additional well-characterized stress-inducible genes such as RD29A and COR47 are also found in signalling pathways downstream of WRKY TFs. These new insights also reveal that some WRKY TFs are positive regulators of ABA-mediated stomatal closure and hence drought responses. Conversely, many WRKY TFs are negative regulators of seed germination, and controlling seed germination appears a common function of a subset of WRKY TFs in flowering plants. Taken together, these new data demonstrate that WRKY TFs are key nodes in ABA-responsive signalling networks. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  20. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    PubMed

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  1. Hemoglobin A1c as a Diagnostic Tool: Public Health Implications From an Actor–Network Perspective

    PubMed Central

    Rock, Melanie

    2012-01-01

    Public health arguments for collecting hemoglobin A1c (HbA1c) data, particularly in clinical settings, should be reframed to place more emphasis on nonmedical determinants of population health. We compare individual- with population-level interpretations of HbA1c titers. This comparison reveals that public health researchers need to pay close attention to diagnostic tests and their uses, including rhetorical uses. We also synthesize historical and current evidence to map out 2 possible scenarios for the future. In the first scenario, prevention efforts emphasize primary care and focus almost entirely downstream. The second scenario anticipates downstream interventions but also upstream interventions targeting environments. Our analysis adapts actor–network theory to strategic planning and forecasting in public health. PMID:22095361

  2. Subcellular Redox Signaling.

    PubMed

    Zhu, Liping; Lu, Yankai; Zhang, Jiwei; Hu, Qinghua

    2017-01-01

    Oxidative and antioxidative system of cells and tissues maintains a balanced state under physiological conditions. A disruption in this balance of redox status has been associated with numerous pathological processes. Reactive oxygen species (ROS) as a major redox signaling generates in a spatiotemporally dependent manner. Subcellular organelles such as mitochondria, endoplasmic reticulum, plasma membrane and nuclei contribute to the production of ROS. In addition to downstream effects of ROS signaling regulated by average ROS changes in cytoplasm, whether subcelluar ROS mediate biological effect(s) has drawn greater attentions. With the advance in redox-sensitive probes targeted to different subcellular compartments, the investigation of subcellular ROS signaling and its associated cellular function has become feasible. In this review, we discuss the subcellular ROS signaling, with particular focus on mechanisms of subcellular ROS production and its downstream effects.

  3. IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors

    PubMed Central

    Becker, Amy M.; Michael, Drew G.; Satpathy, Ansuman T.; Sciammas, Roger; Singh, Harinder

    2012-01-01

    While most blood lineages are assumed to mature through a single cellular and developmental route downstream of HSCs, dendritic cells (DCs) can be derived from both myeloid and lymphoid progenitors in vivo. To determine how distinct progenitors can generate similar downstream lineages, we examined the transcriptional changes that accompany loss of in vivo myeloid potential as common myeloid progenitors differentiate into common DC progenitors (CDPs), and as lymphoid-primed multipotent progenitors (LMPPs) differentiate into all lymphoid progenitors (ALPs). Microarray studies revealed that IFN regulatory factor 8 (IRF-8) expression increased during each of these transitions. Competitive reconstitutions using Irf8−/− BM demonstrated cell-intrinsic defects in the formation of CDPs and all splenic DC subsets. Irf8−/− common myeloid progenitors and, unexpectedly, Irf8−/− ALPs produced more neutrophils in vivo than their wild-type counterparts at the expense of DCs. Retroviral expression of IRF-8 in multiple progenitors led to reduced neutrophil production and increased numbers of DCs, even in the granulocyte-macrophage progenitor (GMP), which does not normally possess conventional DC potential. These data suggest that IRF-8 represses a neutrophil module of development and promotes convergent DC development from multiple lymphoid and myeloid progenitors autonomously of cellular context. PMID:22238324

  4. Synthesis of common management concerns associated with dam removal

    USGS Publications Warehouse

    Tullos, Desiree D.; Collins, Mathias J.; Bellmore, J. Ryan; Bountry, Jennifer A.; Connolly, Patrick J.; Shafroth, Patrick B.; Wilcox, Andrew C.

    2016-01-01

    Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether or not these concerns are warranted at a particular site. We used a dam-removal science database supplemented with other information sources to explore seven frequently-raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by non-native plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors like natural watershed variability and disturbance history.

  5. miR-34a is a common link in both HIV- and antiretroviral therapy-induced vascular aging.

    PubMed

    Zhan, Jiaxin; Qin, Shanshan; Lu, Lili; Hu, Xiamin; Zhou, Jun; Sun, Yeying; Yang, Jian; Liu, Ying; Wang, Zunzhe; Tan, Ning; Chen, Jiyan; Zhang, Chunxiang

    2016-11-26

    Both HIV and antiretroviral therapy could induce vascular aging with unclear mechanisms. In this study, via microarray analysis, we identified, for the first time, that miR-34a expression was significantly increased in both HIV-infected, and antiretroviral agents-treated vessels and vascular endothelial cells (ECs) from these vessels. In cultured ECs, miR-34a expression was significantly increased by HIV-Tat protein and by the antiretroviral agents, lopinavir/ritonavir. Both HIV-Tat protein and antiretroviral agents could induce EC senescence, which was inhibited by miR-34a inhibition. In contrast, EC senescence was exacerbated by miR-34a overexpression. In addition, the vascular ECs isolated from miR-34a knockout mice were resistant to HIV and antiretroviral agents-mediated senescence. In vivo, miR-34a expression in mouse vascular walls and their ECs was increased by antiretroviral therapy and by HIV-1 Tat transgenic approach. miR-34a inhibition could effectively inhibit both HIV-Tat protein and antiretroviral therapy-induced vascular aging in mice. The increased miR-34a was induced via p53, whereas Sirt1 was a downstream target gene of miR-34a in both HIV-Tat protein and antiretroviral agents-treated ECs and vessels. The study has demonstrated that miR-34a is a common link in both HIV and antiretroviral therapy-mediated vascular aging.

  6. In situ analysis of integrin and growth factor receptor signaling pathways in human glioblastomas suggests overlapping relationships with focal adhesion kinase activation.

    PubMed

    Riemenschneider, Markus J; Mueller, Wolf; Betensky, Rebecca A; Mohapatra, Gayatry; Louis, David N

    2005-11-01

    Deregulated integrin signaling is common in cancers, including glioblastoma. Integrin binding and growth factor receptor signaling activate focal adhesion kinase (FAK) and subsequently up-regulate extracellular regulated kinases (ERK-1/2), leading to cell-cycle progression and cell migration. Most studies of this pathway have used in vitro systems or tumor lysate-based approaches. We examined these pathways primarily in situ using a panel of 30 glioblastomas and gene expression arrays, immunohistochemistry, and fluorescence in situ hybridization, emphasizing the histological distribution of molecular changes. Within individual tumors, increased expression of FAK, p-FAK, paxillin, ERK-1/2, and p-ERK-1/2 occurred in regions of elevated EGFR and/or PDGFRA expression. Moreover, FAK activation levels correlated with EGFR and PDGFRA expression, and p-FAK and EGFR expression co-localized at the single-cell level. In addition, integrin expression was enriched in EGFR/PDGFRA-overexpressing areas but was more regionally confined than FAK, p-FAK, and paxillin. Integrins beta8 and alpha5beta1 were most commonly expressed, often in a perinecrotic or perivascular pattern. Taken together, our data suggest that growth factor receptor overexpression facilitates alterations in the integrin signaling pathway. Thus, FAK may act in glioblastoma as a downstream target of growth factor signaling, with integrins enhancing the impact of such signaling in the tumor microenvironment.

  7. Accounting for host cell protein behavior in anion-exchange chromatography.

    PubMed

    Swanson, Ryan K; Xu, Ruo; Nettleton, Daniel S; Glatz, Charles E

    2016-11-01

    Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis provided data on the three physicochemical properties most commonly exploited during DSP for each HCP: pI (isoelectric point), molecular weight, and surface hydrophobicity. The protein separation behaviors of two alternative expression host extracts (corn germ and E. coli) were characterized. A multivariate random forest (MVRF) statistical methodology was then applied to the database of characterized proteins creating a tool for predicting the AEX behavior of a mixture of proteins. The accuracy of the MVRF method was determined by calculating a root mean squared error value for each database. This measure never exceeded a value of 0.045 (fraction of protein populating each of the multiple separation fractions) for AEX. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1453-1463, 2016. © 2016 American Institute of Chemical Engineers.

  8. Clinical trials recruitment planning: A proposed framework from the Clinical Trials Transformation Initiative.

    PubMed

    Huang, Grant D; Bull, Jonca; Johnston McKee, Kelly; Mahon, Elizabeth; Harper, Beth; Roberts, Jamie N

    2018-03-01

    Patient recruitment is widely recognized as a key determinant of success for clinical trials. Yet a substantial number of trials fail to reach recruitment goals-a situation that has important scientific, financial, ethical, and policy implications. Further, there are important effects on stakeholders who directly contribute to the trial including investigators, sponsors, and study participants. Despite efforts over multiple decades to identify and address barriers, recruitment challenges persist. To advance a more comprehensive approach to trial recruitment, the Clinical Trials Transformation Initiative (CTTI) convened a project team to examine the challenges and to issue actionable, evidence-based recommendations for improving recruitment planning that extend beyond common study-specific strategies. We describe our multi-stakeholder effort to develop a framework that delineates three areas essential to strategic recruitment planning efforts: (1) trial design and protocol development, (2) trial feasibility and site selection, and (3) communication. Our recommendations propose an upstream approach to recruitment planning that has the potential to produce greater impact and reduce downstream barriers. Additionally, we offer tools to help facilitate adoption of the recommendations. We hope that our framework and recommendations will serve as a guide for initial efforts in clinical trial recruitment planning irrespective of disease or intervention focus, provide a common basis for discussions in this area and generate targets for further analysis and continual improvement. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Dabrafenib in combination with trametinib in the treatment of patients with BRAF V600-positive advanced or metastatic non-small cell lung cancer: clinical evidence and experience.

    PubMed

    Khunger, Arjun; Khunger, Monica; Velcheti, Vamsidhar

    2018-01-01

    Mutations in the BRAF oncogene are found in 2-4% of all non-small cell lung cancer (NSCLC) patients. The most common activating mutation present within the BRAF oncogene is associated with valine substitution for glutamate at position 600 (V600E) within the BRAF kinase. BRAF-targeted therapies are effective in patients with melanoma and NSCLC harboring BRAF V600E mutation. In both melanoma and NSCLC, dual inhibition of both BRAF and the downstream mitogen-activated protein kinase (MEK) improves response rates compared with BRAF inhibition alone. BRAF-MEK combination therapy (dabrafenib plus trametinib) demonstrated tolerability and efficacy in a recent phase II clinical trial and was approved by the European Medicines Agency and United States Food and Drug Administration for patients with stage IV NSCLC harboring BRAF V600E mutation. Here, in this review, we outline the preclinical and clinical data for BRAF and MEK inhibitor combination treatment for NSCLC patients with BRAF V600E mutation.

  10. Discharge rating equation and hydraulic characteristics of standard Denil fishways

    USGS Publications Warehouse

    Odeh, M.

    2003-01-01

    This paper introduces a new equation to predict discharge capacity in the commonly used Denil fishway using water surface elevation in the upstream reservoir and fishway width and slope as the independent variables. A dimensionless discharge coefficient based only on the physical slope of the fishway is introduced. The discharge equation is based on flow physics, dimensional analysis, and experiments with three full-scale fishways of different sizes. Hydraulic characteristics of flow inside these fishways are discussed. Water velocities decreased by more than 50% and remained relatively unchanged in the fully developed flow downstream of the vena contracta region, near the upstream baffle where fish exit the fishway. Engineers and biologists need to be aware of this fact and ensure that fish can negotiate the vena contracta velocities rather than velocities within the developed flow region only. Discharge capacity was directly proportional to the fishway width and slope. The new equation is a design tool for engineers and field biologists, especially when designing a fishway based on flow availability in conjunction with the swimming capabilities of target fish species.

  11. The effects of cocaine on HIV transcription.

    PubMed

    Tyagi, Mudit; Weber, Jaime; Bukrinsky, Michael; Simon, Gary L

    2016-06-01

    Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.

  12. Homeodomain Transcription Factor Msx-2 Regulates Uterine Progenitor Cell Response to Diethylstilbestrol.

    PubMed

    Yin, Yan; Lin, Congxing; Zhang, Ivy; Fisher, Alexander V; Dhandha, Maulik; Ma, Liang

    The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2 . To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adi, Y. A., E-mail: yudi.adi@math.uad.ac.id; Department of Mathematic Faculty of MIPA Universitas Gadjah Mada; Kusumo, F. A.

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present amore » mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.« less

  14. A mathematical model of phosphorylation AKT in Acute Myeloid Leukemia

    NASA Astrophysics Data System (ADS)

    Adi, Y. A.; Kusumo, F. A.; Aryati, L.; Hardianti, M. S.

    2016-04-01

    In this paper we consider a mathematical model of PI3K/AKT signaling pathways in phosphorylation AKT. PI3K/AKT pathway is an important mediator of cytokine signaling implicated in regulation of hematopoiesis. Constitutive activation of PI3K/AKT signaling pathway has been observed in Acute Meyloid Leukemia (AML) it caused by the mutation of Fms-like Tyrosine Kinase 3 in internal tandem duplication (FLT3-ITD), the most common molecular abnormality associated with AML. Depending upon its phosphorylation status, protein interaction, substrate availability, and localization, AKT can phosphorylate or inhibite numerous substrates in its downstream pathways that promote protein synthesis, survival, proliferation, and metabolism. Firstly, we present a mass action ordinary differential equation model describing AKT double phosphorylation (AKTpp) in a system with 11 equations. Finally, under the asumtion enzyme catalyst constant and steady state equilibrium, we reduce the system in 4 equation included Michaelis Menten constant. Simulation result suggested that a high concentration of PI3K and/or a low concentration of phospatase increased AKTpp activation. This result also indicates that PI3K is a potential target theraphy in AML.

  15. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways.

    PubMed

    Nair, Rajan P; Duffin, Kristina Callis; Helms, Cynthia; Ding, Jun; Stuart, Philip E; Goldgar, David; Gudjonsson, Johann E; Li, Yun; Tejasvi, Trilokraj; Feng, Bing-Jian; Ruether, Andreas; Schreiber, Stefan; Weichenthal, Michael; Gladman, Dafna; Rahman, Proton; Schrodi, Steven J; Prahalad, Sampath; Guthery, Stephen L; Fischer, Judith; Liao, Wilson; Kwok, Pui-Yan; Menter, Alan; Lathrop, G Mark; Wise, Carol A; Begovich, Ann B; Voorhees, John J; Elder, James T; Krueger, Gerald G; Bowcock, Anne M; Abecasis, Gonçalo R

    2009-02-01

    Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P < 5 x 10(-8)). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-alpha and regulate NF-kappaB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders.

  16. Signaling Network Map of Endothelial TEK Tyrosine Kinase

    PubMed Central

    Sandhya, Varot K.; Singh, Priyata; Parthasarathy, Deepak; Kumar, Awinav; Gattu, Rudrappa; Mathur, Premendu Prakash; Mac Gabhann, F.; Pandey, Akhilesh

    2014-01-01

    TEK tyrosine kinase is primarily expressed on endothelial cells and is most commonly referred to as TIE2. TIE2 is a receptor tyrosine kinase modulated by its ligands, angiopoietins, to regulate the development and remodeling of vascular system. It is also one of the critical pathways associated with tumor angiogenesis and familial venous malformations. Apart from the vascular system, TIE2 signaling is also associated with postnatal hematopoiesis. Despite the involvement of TIE2-angiopoietin system in several diseases, the downstream molecular events of TIE2-angiopoietin signaling are not reported in any pathway repository. Therefore, carrying out a detailed review of published literature, we have documented molecular signaling events mediated by TIE2 in response to angiopoietins and developed a network map of TIE2 signaling. The pathway information is freely available to the scientific community through NetPath, a manually curated resource of signaling pathways. We hope that this pathway resource will provide an in-depth view of TIE2-angiopoietin signaling and will lead to identification of potential therapeutic targets for TIE2-angiopoietin associated disorders. PMID:25371820

  17. Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma.

    PubMed

    Song, Ye; Zheng, Shihao; Wang, Jizhou; Long, Hao; Fang, Luxiong; Wang, Gang; Li, Zhiyong; Que, Tianshi; Liu, Yi; Li, Yilei; Zhang, Xi'an; Fang, Weiyi; Qi, Songtao

    2017-06-27

    Gliomas are the most common form of malignant primary brain tumors with poor 5-year survival rate. Dysregulation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was observed in gliomas, but the specific role and molecular mechanism of PLOD2 in glioma have not been reported yet. In this study, PLOD2 was found to be frequently up-regulated in glioma and could serve as an independent prognostic marker to identify patients with poor clinical outcome. Knockdown of PLOD2 inhibited proliferation, migration and invasion of glioma cells in vitro and in vivo. Mechanistically, inhibition of PLOD2 inactivated PI3K/AKT signaling pathway and thus regulated the expression of its downstream epithelial-mesenchymal transition (EMT)-associated regulators, including E-cadherin, vimentin, N-cadherin, β-catenin, snail and slug in glioma cells. Moreover, PLOD2 could be induced by hypoxia-inducible factor-1α (HIF-1α) via hypoxia, thereby promoting hypoxia-induced EMT in glioma cells. Our data suggests that PLOD2 may be a potential therapeutic target for patients with glioma.

  18. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis.

    PubMed

    Bhinge, Akshay; Namboori, Seema C; Zhang, Xiaoyu; VanDongen, Antonius M J; Stanton, Lawrence W

    2017-04-11

    Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS), it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN)-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Homeodomain Transcription Factor Msx-2 Regulates Uterine Progenitor Cell Response to Diethylstilbestrol

    PubMed Central

    Yin, Yan; Lin, Congxing; Zhang, Ivy; Fisher, Alexander V; Dhandha, Maulik; Ma, Liang

    2015-01-01

    The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2. To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development. PMID:26457333

  20. Axl as a mediator of cellular growth and survival.

    PubMed

    Axelrod, Haley; Pienta, Kenneth J

    2014-10-15

    The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.

  1. Understanding resistance to EGFR inhibitors—impact on future treatment strategies

    PubMed Central

    Wheeler, Deric L.; Dunn, Emily F.; Harari, Paul M.

    2010-01-01

    EGFR is a tyrosine kinase that participates in the regulation of cellular homeostasis. Following ligand binding, EGFR stimulates downstream cell signaling cascades that influence cell proliferation, apoptosis, migration, survival and complex processes, including angiogenesis and tumorigenesis. EGFR has been strongly implicated in the biology of human epithelial malignancies, with therapeutic applications in cancers of the colon, head and neck, lung, and pancreas. Accordingly, targeting EGFR has been intensely pursued, with the development of a series of promising molecular inhibitors for use in clinical oncology. As is common in cancer therapy, challenges with respect to treatment resistance emerge over time. This situation is certainly true of EGFR inhibitor therapies, where intrinsic and acquired resistance is now well recognized. In this Review, we provide a brief overview regarding the biology of EGFR biology, preclinical and clinical development of EGFR inhibitors, and molecular mechanisms that underlie the development of treatment resistance. A greater understanding of the mechanisms that lead to EGFR resistance may provide valuable insights to help design new strategies that will enhance the impact of this promising class of inhibitors for the treatment of cancer. PMID:20551942

  2. A New Strategy to Control and Eradicate “Undruggable” Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology

    PubMed Central

    Lee, Michael P.; Lee, Caroline Dasom; Lafever, Alex C.; Svyatova, Elizaveta; Kanda, Kevin; Collier, Amber L.; Siewertsz van Reesema, Lauren L.; Tang-Tan, Angela M.; Zheleva, Vasilena; Bwayi, Monicah N.; Bian, Minglei; Schmidt, Rebecca L.; Petersen, Gloria M.

    2018-01-01

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely “undruggable”. Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future. PMID:29757973

  3. Integrated development of up- and downstream processes supported by the Cherry-Tag™ for real-time tracking of stability and solubility of proteins.

    PubMed

    Baumann, Pascal; Bluthardt, Nicolai; Renner, Sarah; Burghardt, Hannah; Osberghaus, Anna; Hubbuch, Jürgen

    2015-04-20

    Product analytics is the bottleneck of most processes in bioprocess engineering, as it is rather time-consuming. Real-time and in-line product tracing without sample pre-treatment is only possible for few products. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for straightforward product analytics by VIS absorption measurements. When the fused protein becomes unstable or insoluble, the chromophore function of the group is lost, which makes this technology an ideal screening tool for solubility and stability in up- and downstream process development. The Cherry-Tag™ technology will be presented for the tagged enzyme glutathione-S-transferase (GST) from Escherichia coli in a combined up- and downstream process development study. High-throughput cultivations were carried out in a 48-well format in a BioLector system (m2p-Labs, Germany). The best cultivation setup of highest product titer was scaled up to a 2.5L shake flask culture, followed by a selective affinity chromatography product capturing step. In upstream applications the tag was capable of identifying conditions where insoluble and non-native inclusion bodies were formed. In downstream applications the red-colored product was found to be bound effectively to a GST affinity column. Thus, it was identified to be a native and active protein, as the binding mechanism relies on catalytic activity of the enzyme. The Cherry-Tag™ was found to be a reliable and quantitative tool for real-time tracking of stable and soluble proteins in up- and downstream processing applications. Denaturation and aggregation of the product can be detected in-line at any stage of the process. Critical stages can be identified and subsequently changed or replaced. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors.

    PubMed

    Husson, Steven J; Costa, Wagner Steuer; Wabnig, Sebastian; Stirman, Jeffrey N; Watson, Joseph D; Spencer, W Clay; Akerboom, Jasper; Looger, Loren L; Treinin, Millet; Miller, David M; Lu, Hang; Gottschalk, Alexander

    2012-05-08

    Nociception generally evokes rapid withdrawal behavior in order to protect the tissue from harmful insults. Most nociceptive neurons responding to mechanical insults display highly branched dendrites, an anatomy shared by Caenorhabditis elegans FLP and PVD neurons, which mediate harsh touch responses. Although several primary molecular nociceptive sensors have been characterized, less is known about modulation and amplification of noxious signals within nociceptor neurons. First, we analyzed the FLP/PVD network by optogenetics and studied integration of signals from these cells in downstream interneurons. Second, we investigated which genes modulate PVD function, based on prior single-neuron mRNA profiling of PVD. Selectively photoactivating PVD, FLP, and downstream interneurons via Channelrhodopsin-2 (ChR2) enabled the functional dissection of this nociceptive network, without interfering signals by other mechanoreceptors. Forward or reverse escape behaviors were determined by PVD and FLP, via integration by command interneurons. To identify mediators of PVD function, acting downstream of primary nocisensor molecules, we knocked down PVD-specific transcripts by RNAi and quantified light-evoked PVD-dependent behavior. Cell-specific disruption of synaptobrevin or voltage-gated Ca(2+) channels (VGCCs) showed that PVD signals chemically to command interneurons. Knocking down the DEG/ENaC channel ASIC-1 and the TRPM channel GTL-1 indicated that ASIC-1 may extend PVD's dynamic range and that GTL-1 may amplify its signals. These channels act cell autonomously in PVD, downstream of primary mechanosensory molecules. Our work implicates TRPM channels in modifying excitability of and DEG/ENaCs in potentiating signal output from a mechano-nociceptor neuron. ASIC-1 and GTL-1 homologs, if functionally conserved, may denote valid targets for novel analgesics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. PAX3-FOXO1: Zooming in on an "undruggable" target.

    PubMed

    Wachtel, Marco; Schäfer, Beat W

    2018-06-01

    Driver oncogenes are prime targets for therapy in tumors many of which, including leukemias and sarcomas, express recurrent fusion transcription factors. One specific example for such a cancer type is alveolar rhabdomyosarcoma, which is associated in the majority of cases with the fusion protein PAX3-FOXO1. Since fusion transcription factors are challenging targets for development of small molecule inhibitors, indirect inhibitory strategies for this type of oncogenes represent a more promising approach. One can envision strategies at different molecular levels including upstream modifiers and activators, epigenetic and transcriptional co-regulators, and downstream effector targets. In this review, we will discuss the current knowledge regarding potential therapeutic targets that might contribute to indirect interference with PAX3-FOXO1 activity in alveolar rhabdomyosarcoma at the different molecular levels and extrapolate these findings to fusion transcription factors in general. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Null EPAC Mutants Reveal a Sequential Order of Versatile cAMP Effects during "Drosophila" Aversive Odor Learning

    ERIC Educational Resources Information Center

    Richlitzki, Antje; Latour, Philipp; Schwärzel, Martin

    2017-01-01

    Here, we define a role of the cAMP intermediate EPAC in "Drosophila" aversive odor learning by means of null epac mutants. Complementation analysis revealed that EPAC acts downstream from the "rutabaga" adenylyl cyclase and in parallel to protein kinase A. By means of targeted knockdown and genetic rescue we identified mushroom…

  7. A Novel Differentiation Therapy Approach to Reduce the Metastatic Potential of Basal, Highly Metastatic, Triple-Negative Breast Cancers

    DTIC Science & Technology

    2011-05-01

    task 1 b) GATA3 was shown to directly modulate expression of genes regulating the cell cycle (Pei et al., 2009; Molenaar et al., 2010) and GATA3...downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Ce/l15:389-401. Molenaar JJ, Ebus

  8. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    DTIC Science & Technology

    2015-12-01

    abnormalities, and predisposition to cancer. The current treatment of steroids and chronic transfusions leads to significant morbidity. Approximately 25...more rigorously test this hypothesis and identify new downstream targets and microRNAs, we propose three specific aims. In Aim 1, we will...aplasia, congenital abnormalities, and predisposition to cancer. The current treatment of steroids and chronic transfusions leads to significant

  9. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... downstream of the analyzer. The gauge tap must be within 2 inches of the analyzer exit port. Gauge... must be used. The gauge tap must be within 2 inches of the analyzer entrance port. (vi) Calibration or.... Equivalent loadings (0.5 mg/1075 mm2 stain area) shall be used as target loadings when other filter sizes are...

  10. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... downstream of the analyzer. The gauge tap must be within 2 inches of the analyzer exit port. Gauge... must be used. The gauge tap must be within 2 inches of the analyzer entrance port. (vi) Calibration or.... Equivalent loadings (0.5 mg/1075 mm2 stain area) shall be used as target loadings when other filter sizes are...

  11. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-07-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application.

  12. Effects of inhibitors of vascular endothelial growth factor receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine hemangiosarcoma cell lines

    PubMed Central

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Sakai, Hiroki; Takagi, Satoshi

    2016-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm with no current effective treatment. Previous studies showed that receptor tyrosine kinases and molecules within their downstream pathways involving phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (m-TOR) or mitogen-activated protein kinase (MAPK) were overexpressed in canine, human, and murine tumors, including HSA. The present study investigated the effects of inhibitors of these pathways in canine splenic and hepatic HSA cell lines using assays of cell viability and apoptosis. Inhibitors of the MAPK pathway did not affect canine HSA cell viability. However, cell viability was significantly reduced by exposure to inhibitors of vascular endothelial growth factor receptor 2 and the PI3K/Akt/m-TOR pathway; these inhibitors also induced apoptosis in these cell lines. These results suggest that these inhibitors reduce the proliferation of canine HSA cells by inducing apoptosis. Further study of these inhibitors, using xenograft mouse models of canine HSA, are warranted to explore their potential for clinical application. PMID:27408334

  13. Epidermal growth factor receptor and integrins control force-dependent vinculin recruitment to E-cadherin junctions.

    PubMed

    Sehgal, Poonam; Kong, Xinyu; Wu, Jun; Sunyer, Raimon; Trepat, Xavier; Leckband, Deborah

    2018-03-20

    This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  14. Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis

    PubMed Central

    McNamara, Colleen R.; Ahuja, Ruchita; Osafo-Addo, Awo D.; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D.; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation. PMID:23469174

  15. A Functional Assay for GPR55: Envision Protocol.

    PubMed

    Anavi-Goffer, Sharon; Ross, Ruth A

    2016-01-01

    AlphaScreen(®) SureFire(®) assay is a novel technology that combines luminescent oxygen channeling technology, nano-beads, and monocloncal antibodies to detect the level of a selected protein in a volume lower than 5 μl. This method is more sensitive compared with the traditional enzyme-linked immunosorbent assays (ELISA), and can detect an increasing number of new targets. Here, we described a method for AlphaScreen(®) SureFire(®) assay that targets ERK1/2 phosphorylation, a primary downstream signaling pathway that conveys activation of GPR55 by L-α-lysophosphatidylinositol (LPI) and certain cannabinoids.

  16. Activation of YUCCA5 by the Transcription Factor TCP4 Integrates Developmental and Environmental Signals to Promote Hypocotyl Elongation in Arabidopsis.

    PubMed

    Challa, Krishna Reddy; Aggarwal, Pooja; Nath, Utpal

    2016-09-05

    Cell expansion is an essential process in plant morphogenesis and is regulated by the coordinated action of environmental stimuli and endogenous factors, such as the phytohormones auxin and brassinosteroid. Although the biosynthetic pathways that generate these hormones and their downstream signaling mechanisms have been extensively studied, the upstream transcriptional network that modulates their levels and connects their action to cell morphogenesis is less clear. Here we show that the miR319-regulated TCP (TEOSINTE BRANCHED 1, CYCLODEA, PROLIFERATING CELL FACTORS) transcription factors, notably TCP4, directly activate YUCCA5 transcription and integrate the auxin response to a brassinosteroid-dependent molecular circuit that promotes cell elongation in Arabidopsis hypocotyls. Further, TCP4 modulates the common transcriptional network downstream to auxin-BR signaling, which is also triggered by environmental cues, such as light, to promote cell expansion. Our study links TCP function with the hormone response during cell morphogenesis and shows that developmental and environmental signals converge on a common transcriptional network to promote cell elongation. {copyright, serif} 2016 American Society of Plant Biologists. All rights reserved.

  17. The Double Flybys of the Cassini Mission: Navigation Challenges and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Wagner, Sean; Buffington, Brent

    2014-01-01

    Since 2004, the Cassini spacecraft has flown by Titan and other Saturn moons numerous times, successfully accomplishing its 100th targeted encounter of Titan in March 2014. The navigation of Cassini is challenging, even more so with "double flybys," two encounters separated by at most a few days. Because of this tight spacing, there is not enough time for a maneuver in between. Additionally, maneuvers prior to a double flyby only target one of the two encounters. This paper discusses the challenges faced by the Cassini Navigation Team with each double flyby, as well as lessons learned during operational support of each dual encounter. The strengths and weaknesses of the targeting strategies considered for each double flyby are also detailed, by comparing downstream ?V costs and changes to the non-targeted flyby conditions.

  18. Immunoglobulin class switch DNA recombination: induction, targeting and beyond

    PubMed Central

    Xu, Zhenming; Zan, Hong; Pone, Egest J.; Mai, Thach; Casali, Paolo

    2012-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus is central to the maturation of the antibody response and critically requires the AID cytidine deaminase. CSR entails changes of the chromatin state and transcriptional activation of the IgH locus upstream and downstream switch (S) regions that are to undergo S-S DNA recombination, induction of AID, and targeting of CSR factors to S regions by 14-3-3 adaptors and as enabled by the transcription machinery and histone modifications. In this Review, we focus on recent advances in CSR induction and targeting. We also outline an integrated model of the assembly of macromolecular complexes that transduce critical epigenetic information to enzymatic effectors of the CSR machinery. PMID:22728528

  19. Targeting MUC1-C inhibits the AKT-S6K1-elF4A pathway regulating TIGAR translation in colorectal cancer.

    PubMed

    Ahmad, Rehan; Alam, Maroof; Hasegawa, Masanori; Uchida, Yasumitsu; Al-Obaid, Omar; Kharbanda, Surender; Kufe, Donald

    2017-02-02

    Colorectal cancer is third most common malignancy and is the second most common cause of cancer-related death. The MUC1 heterodimeric protein is aberrantly overexpressed in colorectal cancer and has been linked to poor outcomes in this disease. Here, we investigate the effects of the MUC1-C subunit inhibitor (GO-203), which disrupts MUC1-C homo-oligomerization, on human colorectal cancer cells. TIGAR mRNA level was determined using qRT-PCR. Western blotting was used to measure TIGAR protein level and AKT-mTOR-S6K1 pathways. Reactive oxygen species and apoptosis were measured by flow cytometry. Effect of MUC1-C peptide, GO-203 was studied on colorectal xenograft tumors. Immunohistochemistry was utilized for TIGAR staining. Treatment of MUC1-overexpressing SKCO-1 and Colo-205 colon cancer cells with GO-203 was associated with downregulation of the TP53-inducible glycolysis and apoptosis regulator (TIGAR) protein. TIGAR promotes the shunting of glycolytic intermediates into the pentose phosphate pathway and thus is of importance for maintaining redox balance. We show that GO-203-induced suppression of TIGAR is mediated by inhibition of AKT and the downstream mTOR pathway. The results also demonstrate that targeting MUC1-C blocks eIF4A cap-dependent translation of TIGAR. In concert with these results, GO-203-induced suppression of TIGAR was associated with decreases in GSH levels. GO-203 treatment also resulted in increases in reactive oxygen species (ROS) and loss of mitochondrial transmembrane potential. Consistent with these results, GO-203 inhibited the growth of colon cancer cells in vitro and as xenografts in nude mice. Inhibition of MUC1-C also downregulated TIGAR expression in xenograft tissues. These findings indicate that MUC1-C is a potential target for the treatment of colorectal cancer. Colorectal cancer patients who overexpress MUC1-C may be candidates for treatment with the MUC1-C inhibitor alone or in combination therapy with other agents.

  20. Improved Algorithms for Blending Dam Releases to Meet Downstream Water-Temperature Targets in the CE-QUAL-W2 Water-Quality Model

    NASA Astrophysics Data System (ADS)

    Rounds, S. A.; Buccola, N. L.

    2014-12-01

    The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced with new features to help dam operators and managers efficiently explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths in the reservoir. The original blending algorithm in this version of the model was limited to mixing releases from two outlets at a time, and few constraints could be imposed. The new enhanced blending algorithm allows the user to (1) specify a time-series of target release temperatures, (2) designate from 2 to 10 floating or fixed-elevation outlets for blending, (3) impose maximum head constraints as well as minimum and maximum flow constraints for any blended outlet, and (4) set a priority designation for each outlet that allows the model to choose which outlets to use and how to balance releases among them. The modified model was tested against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. The enhanced model code is being used to evaluate operational and structural scenarios at multiple dam/reservoir systems in the Willamette River basin in Oregon, where downstream temperature management for endangered fish is a high priority for resource managers and dam operators. These updates to the CE-QUAL-W2 blending algorithm allow scenarios involving complicated dam operations and/or hypothetical outlet structures to be evaluated more efficiently with the model, with decreased need for multiple/iterative model runs or preprocessing of model inputs to fully characterize the operational constraints.

  1. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  2. IL-15 Activates the Jak3/STAT3 Signaling Pathway to Mediate Glucose Uptake in Skeletal Muscle Cells

    PubMed Central

    Krolopp, James E.; Thornton, Shantaé M.; Abbott, Marcia J.

    2016-01-01

    Myokines are specialized cytokines that are secreted from skeletal muscle (SKM) in response to metabolic stimuli, such as exercise. Interleukin-15 (IL-15) is a myokine with potential to reduce obesity and increase lean mass through induction of metabolic processes. It has been previously shown that IL-15 acts to increase glucose uptake in SKM cells. However, the downstream signals orchestrating the link between IL-15 signaling and glucose uptake have not been fully explored. Here we employed the mouse SKM C2C12 cell line to examine potential downstream targets of IL-15-induced alterations in glucose uptake. Following differentiation, C2C12 cells were treated overnight with 100 ng/ml of IL-15. Activation of factors associated with glucose metabolism (Akt and AMPK) and known downstream targets of IL-15 (Jak1, Jak3, STAT3, and STAT5) were assessed with IL-15 stimulation. IL-15 stimulated glucose uptake and GLUT4 translocation to the plasma membrane. IL-15 treatment had no effect on phospho-Akt, phospho-Akt substrates, phospho-AMPK, phospho-Jak1, or phospho-STAT5. However, with IL-15, phospho-Jak3 and phospho-STAT3 levels were increased along with increased interaction of Jak3 and STAT3. Additionally, IL-15 induced a translocation of phospho-STAT3 from the cytoplasm to the nucleus. We have evidence that a mediator of glucose uptake, HIF1α, expression was dependent on IL-15 induced STAT3 activation. Finally, upon inhibition of STAT3 the positive effects of IL-15 on glucose uptake and GLUT4 translocation were abolished. Taken together, we provide evidence for a novel signaling pathway for IL-15 acting through Jak3/STAT3 to regulate glucose metabolism. PMID:28066259

  3. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors.

    PubMed

    Je, Byoung Il; Xu, Fang; Wu, Qingyu; Liu, Lei; Meeley, Robert; Gallagher, Joseph P; Corcilius, Leo; Payne, Richard J; Bartlett, Madelaine E; Jackson, David

    2018-03-15

    Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA ( CLV ) and WUSCHEL ( WUS ) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins. © 2018, Je et al.

  4. Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan.

    PubMed

    Hsu, Jih-Tay; Chen, Chia-Yang; Young, Chu-Wen; Chao, Wei-Liang; Li, Mao-Hao; Liu, Yung-Hsin; Lin, Chu-Ming; Ying, Chingwen

    2014-07-30

    Antibiotics are commonly used in swine feed to treat and prevent disease, as well as to promote growth. Antibiotics released into the environment via wastewater could accelerate the emergence of antibiotic-resistant bacteria and resistance genes in the surrounding environment. In this study, we quantified the occurrence of sulfonamides, sulfonamide-resistant microorganisms and resistance genes in the wastewater from a swine farm in northern Taiwan and its surrounding natural water bodies and soils. Sulfonamide levels were similar in the receiving downstream and upstream river water. However, the prevalence of sulfonamide-resistant bacteria and resistance genes, as analyzed by cultivation-dependent and -independent molecular approaches, was significantly greater in the downstream compared to the upstream river water samples. Barcoded-pyrosequencing revealed a highly diverse bacterial community structure in each sample. However, the sequence identity of the sulfonamide resistance gene sul1 in the wastewater and downstream environment samples was nearly identical (99-100%). The sul1 gene, which is genetically linked to class 1 integrons, was dominant in the downstream water bodies and soils. In conclusion, the increased prevalence of sulfonamide resistance genes in the wastewater from a swine farm, independent of the persistent presence of sulfonamides, could be a potential source of resistant gene pools in the surrounding environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds.

    PubMed

    Rood, Stewart B; Braatne, Jeffrey H; Goater, Lori A

    2010-09-01

    River valleys represent biologically rich corridors characterized by natural disturbances that create moist and barren sites suitable for colonization by native riparian plants, and also by weeds. Dams and reservoirs interrupt the longitudinal corridors and we hypothesized that this could restrict downstream weed expansion. To consider this "reservoir impediment" hypothesis we assessed the occurrences and abundances of weeds along a 315-km river valley corridor that commenced with an unimpounded reach of the Snake River and extended through Brownlee, Oxbow, and Hells Canyon reservoirs and dams, and downstream along the Snake River. Sampling along 206 belt transects with 3610 quadrats revealed 16 noxious and four invasive weed species. Ten weeds were upland plants, with Canada thistle (Cirsium arvense) restricted to the upstream reaches, where field morning glory (Convolvulus arvensis) was also more common. In contrast, St. John's wort (Hypericum perforatum) was more abundant below the dams, and medusahead wildrye (Taeniatherum caput-medusae) occurred primarily along the reservoirs. All seven riparian species were abundant in the upstream zones but sparse or absent below the dams. This pattern was observed for the facultative riparian species, poison hemlock (Conium maculatum) and perennial pepperweed (Lepidium latifolium), the obligate riparian, yellow nut sedge (Cyperus esculentus), the invasive perennial, reed canary grass (Phalaris arundinacea), and three invasive riparian trees, Russian olive (Elaeagnus angustifolia), false indigo (Amorpha fruticosa), and tamarisk (Tamarix spp.). The hydrophyte purple loosestrife (Lythrum salicaria) was also restricted to the upstream zone. These longitudinal patterns indicate that the reservoirs have impeded the downstream expansion of riparian weeds, and this may especially result from the repetitive draw-down and refilling of Brownlee Reservoir that imposes a lethal combination of drought and flood stress. The dams and reservoirs may also interrupt hydrochory, the downstream flow of seeds and clonal fragments. We thus conclude that with some operational patterns, dams and reservoirs can impede the downstream expansion of riparian weeds.

  6. How to Be a Male at Different Elevations: Ecology of Intra-Sexual Segregation in the Trawling Bat Myotis daubentonii

    PubMed Central

    Nardone, Valentina; Cistrone, Luca; Di Salvo, Ivy; Ariano, Alessandro; Migliozzi, Antonello; Allegrini, Claudia; Ancillotto, Leonardo; Fulco, Antonio; Russo, Danilo

    2015-01-01

    Intra-sexual segregation is a form of social segregation widespread among vertebrates. In the bat Myotis daubentonii, males are disproportionately abundant at higher elevations, while females are restricted to lower altitude. Intra-male segregation is also known to occur yet its ecological and behavioural determinants are unclear. We studied male segregation along a river in Central Italy where we tested the following predictions: 1. Upstream ( > 1000 m a.s.l.) males will rely on scarcer prey; 2. To deal with this limitation and exploit a cooler roosting environment, they will employ more prolonged and deeper torpor than downstream (< 900 m a.s.l.) males; 3. Body condition will be better in downstream males as they forage in more productive areas; 4. To cope with less predictable foraging opportunities, upstream males will use more habitat types. Consistent with our predictions, we found that prey were less common at higher altitudes, where bats exhibited prolonged and deeper torpor. Body condition was better in downstream males than in upstream males but not in all summer months. This result reflected a decrease in downstream males’ body condition over the season, perhaps due to the energy costs of reduced opportunities to use torpor and/or intraspecific competition. Downstream males mainly foraged over selected riparian vegetation whereas upstream males used a greater variety of habitats. One controversial issue is whether upstream males are excluded from lower elevations by resident bats. We tested this by translocating 10 upstream males to a downstream roost: eight returned to the high elevation site in 1-2 nights, two persisted at low altitude but did not roost with resident bats. These results are consistent with the idea of segregation due to competition. Living at high altitude allows for more effective heterothermy and may thus be not detrimental for survival, but by staying at lower altitude males increase proximity to females and potentially benefit from summer mating opportunities. PMID:26230548

  7. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development.

    PubMed

    Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen

    2015-10-01

    Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.

  8. The Akt signaling pathway

    PubMed Central

    Madhunapantula, SubbaRao V; Mosca, Paul J

    2011-01-01

    Studies using cultured melanoma cells and patient tumor biopsies have demonstrated deregulated PI3 kinase-Akt3 pathway activity in ∼70% of melanomas. Furthermore, targeting Akt3 and downstream PRAS40 has been shown to inhibit melanoma tumor development in mice. Although these preclinical studies and several other reports using small interfering RNAs and pharmacological agents targeting key members of this pathway have been shown to retard melanoma development, analysis of early Phase I and Phase II clinical trials using pharmacological agents to target this pathway demonstrate the need for (1) selection of patients whose tumors have PI3 kinase-Akt pathway deregulation, (2) further optimization of therapeutic agents for increased potency and reduced toxicity, (3) the identification of additional targets in the same pathway or in other signaling cascades that synergistically inhibit the growth and progression of melanoma, and (4) better methods for targeted delivery of pharmaceutical agents inhibiting this pathway. In this review we discuss key potential targets in PI3K-Akt3 signaling, the status of pharmacological agents targeting these proteins, drugs under clinical development, and strategies to improve the efficacy of therapeutic agents targeting this pathway. PMID:22157148

  9. Soil Investigation of Lower East Fork Poplar Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Johnbull O.; Mayes, Melanie; Earles, Jennifer E.

    2017-03-01

    Mercury is regarded by the US Department of Energy (DOE) Oak Ridge Office of Environmental Management as a priority contaminant on the Oak Ridge Reservation because of the environmental risks associated with substantial losses from buildings, soils, and surface waters at the Y-12 National Security Complex (Y-12). As a result of historical releases of mercury from Y-12 primarily in the 1950s and early 1960s, the lower East Fork Poplar Creek (LEFPC) stream channel and bank soil margins are contaminated with mercury (Brooks and Southworth 2011; Tennessee Valley Authority 1985b, a). A Mercury Remediation Technology Development project is underway to evaluatemore » the nature of downstream mercury contamination and to develop targeted site-specific remedial technologies that can mitigate mercury release and biological uptake. It is known that mercury concentration varies longitudinally and with depth in LEFPC bank soils; however, soil types and soil physical properties are not well known, especially relative to the zones of mercury contamination. Moreover, there are no soil maps for the downstream reaches of LEFPC in Roane County (i.e. from the Chestnut Hill Road downstream) and this work represents the first ever soil mapping along this section of LEFPC.« less

  10. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation.

    PubMed

    Hamaoka, Yuho; Negishi, Manabu; Katoh, Hironori

    2016-08-01

    EphA2, a member of the Eph receptor tyrosine kinases, is frequently overexpressed in a variety of malignancies, including glioblastoma, and its expression is correlated with poor prognosis. EphA2 acts as a tumor promoter through a ligand ephrin-independent mechanism, which requires phosphorylation of EphA2 on serine 897 (S897), leading to increased cell migration and invasion. In this study, we show that ligand-independent EphA2 signaling occurs downstream of the MEK/ERK/RSK pathway and mediates epidermal growth factor (EGF)-induced cell proliferation in glioblastoma cells. Suppression of EphA2 expression by long-term exposure to ligand ephrinA1 or EphA2-targeted shRNA inhibited EGF-induced cell proliferation. Stimulation of the cells with EGF induced EphA2 S897 phosphorylation, which was suppressed by MEK and RSK inhibitors, but not by phosphatidylinositol 3-kinase (PI3K) and Akt inhibitors. The RSK inhibitor or RSK2-targeted shRNA also suppressed EGF-induced cell proliferation. Furthermore, overexpression of wild-type EphA2 promoted cell proliferation without EGF stimulation, whereas overexpression of EphA2-S897A mutant suppressed EGF- or RSK2-induced proliferation. Taken together, these results suggest that EphA2 is a key downstream target of the MEK/ERK/RSK signaling pathway in the regulation of glioblastoma cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Prolyl isomerase Pin1 acts downstream of miR-200 to promote cancer stem-like cell traits in breast cancer

    PubMed Central

    Luo, Man-Li; Gong, Chang; Chen, Chun-Hau; Lee, Daniel Y.; Hu, Hai; Huang, Pengyu; Yao, Yandan; Guo, Wenjun; Reinhardt, Ferenc; Wulf, Gerburg; Lieberman, Judy; Zhou, Xiao Zhen; Song, Erwei; Lu, Kun Ping

    2014-01-01

    Breast cancer stem-like cells (BCSC) have been implicated in tumor growth, metastasis, drug resistance and relapse but druggable targets in appropriate subsets of this cell population have yet to be identified. Here we identify a fundamental role for the prolyl isomerase Pin1 in driving BCSC expansion, invasiveness and tumorigenicity, defining it as a key target of miR-200c which is known to be a critical regluator in BSCS. Pin1 overexpression expanded the growth and tumorigenicity of BCSC and triggered epithelial-mesenchymal transition (EMT). Conversely, genetic or pharmaacological inhibition of Pin1 reduced the abundance and self-renewal activity of BCSC. Moreover, moderate overexpression of miR-200c-resistant Pin1 rescued the BCSC defect in miR-200c-expressing cells. Genetic deletion of Pin1 also decreased the abundance and repopulating capability of normal mouse mammary stem cells. In human cells freshly isolated from reduction mammoplasty tissues, Pin1 overexpression endowed BCSC traits to normal breast epithelial cells, expanding both luminal and basal/myoepithelial lineages in these cells. In contrast, Pin1 silencing in primary breast cancer cells isolated from clinical samples inhibited the expansion, self-renewal activity and tumorigenesis of BCSC in vitro and in vivo. Overall, our work demonstrated that Pin1 is a pivotal regulator acting downstream of miR-200c to drive BCSC and breast tumorigenicity, highlighting a new therapeutic target to eradicate BCSC. PMID:24786790

  12. Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2.

    PubMed

    Karathedath, Sreeja; Rajamani, Bharathi M; Musheer Aalam, Syed Mohammed; Abraham, Ajay; Varatharajan, Savitha; Krishnamurthy, Partha; Mathews, Vikram; Velayudhan, Shaji Ramachandran; Balasubramanian, Poonkuzhali

    2017-01-01

    Cytarabine (Ara-C) and Daunorubicin (Dnr) forms the backbone of acute myeloid leukemia (AML) therapy. Drug resistance and toxic side effects pose a major threat to treatment success and hence alternate less toxic therapies are warranted. NF-E2 related factor-2 (Nrf2), a master regulator of antioxidant response is implicated in chemoresistance in solid tumors. However, little is known about the role of Nrf2 in AML chemoresistance and the effect of pharmacological inhibitor brusatol in modulating this resistance. Primary AML samples with high ex-vivo IC50 to Ara-C, ATO, Dnr had significantly high NRF2 RNA expression. Gene-specific knockdown of NRF2 improved sensitivity to these drugs in resistant AML cell lines by decreasing the expression of downstream antioxidant targets of Nrf2 by compromising the cell's ability to scavenge the ROS. Treatment with brusatol, a pharmacological inhibitor of Nrf2, improved sensitivity to Ara-C, ATO, and Dnr and reduced colony formation capacity. AML cell lines stably overexpressing NRF2 showed increased resistance to ATO, Dnr and Ara-C and increased expression of downstream targets. This study demonstrates that Nrf2 could be an ideal druggable target in AML, more so to the drugs that function through ROS, suggesting the possibility of using Nrf2 inhibitors in combination with chemotherapeutic agents to modulate drug resistance in AML.

  13. S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model.

    PubMed

    Santos, Ana Isabel; Carreira, Bruno Pereira; Izquierdo-Álvarez, Alicia; Ramos, Elena; Lourenço, Ana Sofia; Filipa Santos, Daniela; Morte, Maria Inês; Ribeiro, Luís Filipe; Marreiros, Ana; Sánchez-López, Nuria; Marina, Anabel; Carvalho, Caetana Monteiro; Martínez-Ruiz, Antonio; Araújo, Inês Maria

    2018-01-01

    Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by post-translational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine-C118S-, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presence of NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus. Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis. Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may provide a target for NO-induced stimulation of neurogenesis with implications for brain repair. Antioxid. Redox Signal. 28, 15-30.

  14. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    PubMed

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. EVI1 Interferes with Myeloid Maturation via Transcriptional Repression of Cebpa, via Binding to Two Far Downstream Regulatory Elements*

    PubMed Central

    Wilson, Michael; Tsakraklides, Vasiliki; Tran, Minh; Xiao, Ying-Yi; Zhang, Yi; Perkins, Archibald S.

    2016-01-01

    One mechanism by which oncoproteins work is through perturbation of cellular maturation; understanding the mechanisms by which this occurs can lead to the development of targeted therapies. EVI1 is a zinc finger oncoprotein involved in the development of acute myeloid leukemia; previous work has shown it to interfere with the maturation of granulocytes from immature precursors. Here we investigate the mechanism by which that occurs, using an immortalized hematopoietic progenitor cell line, EML-C1, as a model system. We document that overexpression of EVI1 abrogates retinoic acid-induced maturation of EML cells into committed myeloid cells, a process that can be documented by the down-regulation of stem cell antigen-1 and acquisition of responsiveness to granulocyte-macrophage colony-stimulating factor. We show that this requires DNA binding capacity of EVI1, suggesting that downstream target genes are involved. We identify the myeloid regulator Cebpa as a target gene and identify two EVI1 binding regions within evolutionarily conserved enhancer elements at +35 and +37 kb relative to the gene. EVI1 can strongly suppress Cebpa transcription, and add-back of Cebpa into EVI1-expressing EML cells partially corrects the block in maturation. We identify the DNA sequences to which EVI1 binds at +35 and +37 kb and show that mutation of one of these releases Cebpa from EVI1-induced suppression. We observe a more complex picture in primary bone marrow cells, where EVI1 suppresses Cebpa in stem cells but not in more committed progenitors. Our data thus identify a regulatory node by which EVI1 contributes to leukemia, and this represents a possible therapeutic target for treatment of EVI1-expressing leukemia. PMID:27129260

  16. The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.

    PubMed

    Kim, Mi Jung; Jang, In-Cheol; Chua, Nam-Hai

    2016-07-01

    The Mediator complex is known to be a master coordinator of transcription by RNA polymerase II, and this complex is recruited by transcription factors (TFs) to target promoters for gene activation or repression. The plant-specific TF WRINKLED1 (WRI1) activates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. However, no Mediator subunit has yet been identified that mediates WRI1 transcriptional activity. Promoter-β-glucuronidase fusion experiments showed that MEDIATOR15 (MED15) is expressed in the same cells in the embryo as WRI1. We found that the Arabidopsis (Arabidopsis thaliana) MED15 subunit of the Mediator complex interacts directly with WRI1 in the nucleus. Overexpression of MED15 or WRI1 increased transcript levels of WRI1 target genes involved in glycolysis and fatty acid biosynthesis; these genes were down-regulated in wild-type or WRI1-overexpressing plants by silencing of MED15 However, overexpression of MED15 in the wri1 mutant also increased transcript levels of WRI1 target genes, suggesting that MED15 also may act with other TFs to activate downstream lipid-related genes. Chromatin immunoprecipitation assays confirmed the association of MED15 with six WRI1 target gene promoters. Additionally, silencing of MED15 resulted in reduced fatty acid content in seedlings and mature seeds, whereas MED15 overexpression increased fatty acid content in both developmental stages. Similar results were found in wri1 mutant and WRI1 overexpression lines. Together, our results indicate that the WRI1/MED15 complex transcriptionally regulates glycolysis-related and fatty acid biosynthetic genes during embryogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2.

    PubMed

    Ma, Weina; Zhu, Man; Zhang, Dongdong; Yang, Liu; Yang, Tianfeng; Li, Xin; Zhang, Yanmin

    2017-02-15

    Berberine, a plant-derived compound isolated from Coptis chinensis used in traditional Chinese medicine, has been shown to possess anti-cancer properties. However, no study has shown that berberine could target ephrin-B2, which plays a critical role in cell proliferation and migration. The aim of this study is to investigate the effect of berberine on cancer cell growth and migration, through the regulation of ephrin-B2 and downstream signaling molecules. In this study, a high ephrin-B2-expressing cell membrane chromatography method was developed to investigate 48 crude extracts from traditional Chinese medicine that could act on ephrin-B2. Cell proliferative and wound-healing assays were used to study the effect of berberine on cancer cell growth and migration. The mechanism of berberine was investigated using western blot. Berberine was isolated from C. chinensis extracts and showed activity on the HEK293/ephrin-B2 cell membrane chromatography column. Berberine showed a greater inhibitory effect in high-expressing ephrin-B2 cells (HEK293/ephrin-B2 cells) than in normal HEK293 cells, and decreased the expression of ephrin-B2 and its PDZ binding proteins, which indicates that ephrin-B2 is a target of berberine. Furthermore, berberine downregulates the phosphorylation of VEGFR2 and downstream signaling members (AKT and Erk1/2), which in turn downregulates the expression of MMP2 and MMP9. The above data confirm the inhibitory effects of berberine on ZR-75-30 cell proliferation and cell migration. Overall, our studies demonstrate that berberine inhibits cell growth and migration by targeting ephrin-B2. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Ultrasound Targeted Microbubble Destruction-Mediated Delivery of a Transcription Factor Decoy Inhibits STAT3 Signaling and Tumor Growth

    PubMed Central

    Kopechek, Jonathan A.; Carson, Andrew R.; McTiernan, Charles F.; Chen, Xucai; Hasjim, Bima; Lavery, Linda; Sen, Malabika; Grandis, Jennifer R.; Villanueva, Flordeliza S.

    2015-01-01

    Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many cancers where it acts to promote tumor progression. A STAT3-specific transcription factor decoy has been developed to suppress STAT3 downstream signaling, but a delivery strategy is needed to improve clinical translation. Ultrasound-targeted microbubble destruction (UTMD) has been shown to enhance image-guided local delivery of molecular therapeutics to a target site. The objective of this study was to deliver STAT3 decoy to squamous cell carcinoma (SCC) tumors using UTMD to disrupt STAT3 signaling and inhibit tumor growth. Studies performed demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles inhibited STAT3 signaling in SCC cells in vitro. Studies performed in vivo demonstrated that UTMD treatment with STAT3 decoy-loaded microbubbles induced significant tumor growth inhibition (31-51% reduced tumor volume vs. controls, p < 0.05) in mice bearing SCC tumors. Furthermore, expression of STAT3 downstream target genes (Bcl-xL and cyclin D1) was significantly reduced (34-39%, p < 0.05) in tumors receiving UTMD treatment with STAT3 decoy-loaded microbubbles compared to controls. In addition, the quantity of radiolabeled STAT3 decoy detected in tumors eight hours after treatment was significantly higher with UTMD treatment compared to controls (70-150%, p < 0.05). This study demonstrates that UTMD can increase delivery of a transcription factor decoy to tumors in vivo and that the decoy can inhibit STAT3 signaling and tumor growth. These results suggest that UTMD treatment holds potential for clinical use to increase the concentration of a transcription factor signaling inhibitor in the tumor. PMID:26681983

  19. Regulatory Disruption and Arbitrage in Health-Care Data Protection.

    PubMed

    Terry, Nicolas P

    This article explains how the structure of U.S. health-care data protection (specifically its sectoral and downstream properties) has led to a chronically uneven policy environment for different types of health-care data. It examines claims for health-care data protection exceptionalism and competing demands such as data liquidity. In conclusion, the article takes the position that healthcare- data exceptionalism remains a valid imperative and that even current concerns about data liquidity can be accommodated in an exceptional protective model. However, re-calibrating our protection of health-care data residing outside of the traditional health-care domain is challenging, currently even politically impossible. Notwithstanding, a hybrid model is envisioned with downstream HIPAA model remaining the dominant force within the health-care domain, but being supplemented by targeted upstream and point-of-use protections applying to health-care data in disrupted spaces.

  20. Dual HER2\\PIK3CA targeting overcomes single-agent acquired resistance in HER2 amplified uterine serous carcinoma cell lines in vitro and in vivo

    PubMed Central

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L.; English, Diana P.; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E.; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D.

    2015-01-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC), and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA mutated and PIK3CA-wild type HER2/neu amplified USC cell lines. Cell viability and cell cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC-xenografts. We found both single agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long lasting growth inhibition in both USC xenografts when compared to single agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA or pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild type PIK3CA resistant to chemotherapy. PMID:26333383

  1. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR.

    PubMed

    Chin, Randall M; Fu, Xudong; Pai, Melody Y; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S; Monsalve, Gabriela C; Hu, Eileen; Whelan, Stephen A; Wang, Jennifer X; Jung, Gwanghyun; Solis, Gregory M; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S; Godwin, Hilary A; Chang, Helena R; Faull, Kym F; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R; Clarke, Catherine F; Teitell, Michael A; Petrascheck, Michael; Reue, Karen; Jung, Michael E; Frand, Alison R; Huang, Jing

    2014-06-19

    Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit β is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit β and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Min-Ji; Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752; Jang, Jin-Kyung

    Highlights: •CaMKIIδ mediates H{sub 2}O{sub 2}-induced Ca{sup 2+} overload in cardiomyocytes. •miR-145 can inhibit Ca{sup 2+} overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca{sup 2+}) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca{sup 2+} signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation,more » apoptosis, and development. However, the roles of miRNAs in Ca{sup 2+}-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H{sub 2}O{sub 2}-mediated Ca{sup 2+} overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca{sup 2+} overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca{sup 2+}-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca{sup 2+} overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.« less

  3. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets

    PubMed Central

    Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa

    2014-01-01

    Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice. PMID:25221469

  4. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology

    PubMed Central

    Balint, Bettina; Vincent, Angela; Meinck, Hans-Michael; Irani, Sarosh R; Bhatia, Kailash P

    2018-01-01

    Abstract Movement disorders are a prominent and common feature in many autoantibody-associated neurological diseases, a group of potentially treatable conditions that can mimic infectious, metabolic or neurodegenerative disease. Certain movement disorders are likely to associate with certain autoantibodies; for example, the characteristic dyskinesias, chorea and dystonia associated with NMDAR antibodies, stiff person spectrum disorders with GAD, glycine receptor, amphiphysin or DPPX antibodies, specific paroxysmal dystonias with LGI1 antibodies, and cerebellar ataxia with various anti-neuronal antibodies. There are also less-recognized movement disorder presentations of antibody-related disease, and a considerable overlap between the clinical phenotypes and the associated antibody spectra. In this review, we first describe the antibodies associated with each syndrome, highlight distinctive clinical or radiological ‘red flags’, and suggest a syndromic approach based on the predominant movement disorder presentation, age, and associated features. We then examine the underlying immunopathophysiology, which may guide treatment decisions in these neuroimmunological disorders, and highlight the exceptional interface between neuronal antibodies and neurodegeneration, such as the tauopathy associated with IgLON5 antibodies. Moreover, we elaborate the emerging pathophysiological parallels between genetic movement disorders and immunological conditions, with proteins being either affected by mutations or targeted by autoantibodies. Hereditary hyperekplexia, for example, is caused by mutations of the alpha subunit of the glycine receptor leading to an infantile-onset disorder with exaggerated startle and stiffness, whereas antibodies targeting glycine receptors can induce acquired hyperekplexia. The spectrum of such immunological and genetic analogies also includes cerebellar ataxias and some encephalopathies. Lastly, we discuss how these pathophysiological considerations could reflect on possible future directions regarding antigen-specific immunotherapies or targeting the pathophysiological cascades downstream of the antibody effects. PMID:29053777

  5. The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis

    PubMed Central

    Sechler, Marybeth; Parrish, Janet K.; Birks, Diane K.; Jedlicka, Paul

    2017-01-01

    Ewing Sarcoma is the second most common solid pediatric malignant neoplasm of bone and soft tissue. Driven by EWS/Ets, or rarely variant, oncogenic fusions, Ewing Sarcoma is a biologically and clinically aggressive disease with a high propensity for metastasis. However, the mechanisms underpinning Ewing Sarcoma metastasis are currently not well understood. In the present study, we identify and characterize a novel metastasis-promotional pathway in Ewing Sarcoma, involving the histone demethylase KDM3A, previously identified by our laboratory as a new cancer-promoting gene in this disease. Using global gene expression profiling, we show that KDM3A positively regulates genes and pathways implicated in cell migration and metastasis, and demonstrate, using functional assays, that KDM3A promotes migration in vitro and experimental, post-intravasation, metastasis in vivo. We further identify the Melanoma Cell Adhesion Molecule (MCAM) as a novel KDM3A target gene in Ewing Sarcoma, and an important effector of KDM3A pro-metastatic action. Specifically, we demonstrate that MCAM depletion, like KDM3A depletion, inhibits cell migration in vitro and experimental metastasis in vivo, and that MCAM partially rescues impaired migration due to KDM3A knock-down. Mechanistically, we show that KDM3A regulates MCAM expression both through a direct mechanism, involving modulation of H3K9 methylation at the MCAM promoter, and an indirect mechanism, via the Ets1 transcription factor. Lastly, we identify an association between high MCAM levels in patient tumors and poor survival, in two different Ewing Sarcoma clinical cohorts. Taken together, our studies uncover a new metastasis-promoting pathway in Ewing Sarcoma, with therapeutically targetable components. PMID:28319067

  6. Dysregulation of mTOR signaling in fragile X syndrome.

    PubMed

    Sharma, Ali; Hoeffer, Charles A; Takayasu, Yukihiro; Miyawaki, Takahiro; McBride, Sean M; Klann, Eric; Zukin, R Suzanne

    2010-01-13

    Fragile X syndrome, the most common form of inherited mental retardation and leading genetic cause of autism, is caused by transcriptional silencing of the Fmr1 gene. The fragile X mental retardation protein (FMRP), the gene product of Fmr1, is an RNA binding protein that negatively regulates translation in neurons. The Fmr1 knock-out mouse, a model of fragile X syndrome, exhibits cognitive deficits and exaggerated metabotropic glutamate receptor (mGluR)-dependent long-term depression at CA1 synapses. However, the molecular mechanisms that link loss of function of FMRP to aberrant synaptic plasticity remain unclear. The mammalian target of rapamycin (mTOR) signaling cascade controls initiation of cap-dependent translation and is under control of mGluRs. Here we show that mTOR phosphorylation and activity are elevated in hippocampus of juvenile Fmr1 knock-out mice by four functional readouts: (1) association of mTOR with regulatory associated protein of mTOR; (2) mTOR kinase activity; (3) phosphorylation of mTOR downstream targets S6 kinase and 4E-binding protein; and (4) formation of eukaryotic initiation factor complex 4F, a critical first step in cap-dependent translation. Consistent with this, mGluR long-term depression at CA1 synapses of FMRP-deficient mice is exaggerated and rapamycin insensitive. We further show that the p110 subunit of the upstream kinase phosphatidylinositol 3-kinase (PI3K) and its upstream activator PI3K enhancer PIKE, predicted targets of FMRP, are upregulated in knock-out mice. Elevated mTOR signaling may provide a functional link between overactivation of group I mGluRs and aberrant synaptic plasticity in the fragile X mouse, mechanisms relevant to impaired cognition in fragile X syndrome.

  7. Mediator Tail Module Is Required for Tac1-Activated CDR1 Expression and Azole Resistance in Candida albicans.

    PubMed

    Liu, Zhongle; Myers, Lawrence C

    2017-11-01

    The human fungal pathogen Candida albicans develops drug resistance after long-term exposure to azole drugs in the treatment of chronic candidiasis. Gain-of-function (GOF) mutations in the transcription factor Tac1 and the consequent expression of its targets, drug efflux pumps Cdr1 and Cdr2, are a common mechanism by which C. albicans acquires fluconazole resistance. The mechanism by which GOF mutations hyperactivate Tac1 is currently unknown. Here, we define a transcriptional activation domain (TAD) at the C terminus of Tac1. GOF mutations within the Tac1 TAD, outside the context of full-length Tac1, generally do not enhance its absolute potential as a transcriptional activator. Negative regulation of the Tac1 TAD by the Tac1 middle region is necessary for the activating effect of GOF mutations or fluphenazine to be realized. We have found that full-length Tac1, when hyperactivated by xenobiotics or GOF mutations, facilitates the recruitment of the Mediator coactivator complex to the CDR1 promoter. Azole resistance and the activation of Tac1 target genes, such as CDR1 , are dependent on the Tac1 TAD and subunits of the Mediator tail module. The dependence of different Tac1 target promoters on the Mediator tail module, however, varies widely. Lastly, we show that hyperactivation of Tac1 is correlated with its Mediator-dependent phosphorylation, a potentially useful biomarker for Tac1 hyperactivation. The role of Mediator in events downstream of Tac1 hyperactivation in fluconazole-resistant clinical isolates is complex and provides opportunities and challenges for therapeutic intervention. Copyright © 2017 American Society for Microbiology.

  8. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOERSTER,C.

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.« less

  9. Army Science and Technology Master Plan, Fiscal Year 1997 - Volume 2.

    DTIC Science & Technology

    1996-12-01

    areas. Microbiology, physiology, and pharmacology are essential sciences in the production of fermented and processed foods (bread, yogurt , beer, wine...engineering) are of significant interest to the U.S. Army, and include production of the material (including cell culture and fermentation ), downstream...remains strong in targeted delivery (associated with MOD laboratories). Hungary has an established capability in production of fermenters . Remediation

  10. Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon

    PubMed Central

    Braatne, Jeffrey H.; Goater, Lori A.; Blair, Charles L.

    2007-01-01

    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies. PMID:18043964

  11. Additional measures do not improve the diagnostic accuracy of the Hospital Admission Risk Profile for detecting downstream quality of life in community-dwelling older people presenting to a hospital emergency department.

    PubMed

    Grimmer, K; Milanese, S; Beaton, K; Atlas, A

    2014-01-01

    The Hospital Admission Risk Profile (HARP) instrument is commonly used to assess risk of functional decline when older people are admitted to hospital. HARP has moderate diagnostic accuracy (65%) for downstream decreased scores in activities of daily living. This paper reports the diagnostic accuracy of HARP for downstream quality of life. It also tests whether adding other measures to HARP improves its diagnostic accuracy. One hundred and forty-eight independent community dwelling individuals aged 65 years or older were recruited in the emergency department of one large Australian hospital with a medical problem for which they were discharged without a hospital ward admission. Data, including age, sex, primary language, highest level of education, postcode, living status, requiring care for daily activities, using a gait aid, receiving formal community supports, instrumental activities of daily living in the last week, hospitalization and falls in the last 12 months, and mental state were collected at recruitment. HARP scores were derived from a formula that summed scores assigned to age, activities of daily living, and mental state categories. Physical and mental component scores of a quality of life measure were captured by telephone interview at 1 and 3 months after recruitment. HARP scores are moderately accurate at predicting downstream decline in physical quality of life, but did not predict downstream decline in mental quality of life. The addition of other variables to HARP did not improve its diagnostic accuracy for either measure of quality of life. HARP is a poor predictor of quality of life.

  12. Decline of aspen (Populus tremuloides) in the Interior West [Abstract 2

    Treesearch

    Dale L. Bartos

    1997-01-01

    It is commonly recognized that aspen (Populus tremuloides) ecosystems in the Interior West provide numerous benefits: (1) forage for livestock, (2) habitat for wildlife, (3) water for downstream users, (4) esthetics, (5) sites for recreational opportunities, (6) wood fiber, and (7) landscape diversity. Loss or potential loss of aspen on these lands can be attributed...

  13. MicroRNA cluster miR-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats.

    PubMed

    Xin, Hongqi; Katakowski, Mark; Wang, Fengjie; Qian, Jian-Yong; Liu, Xian Shuang; Ali, Meser M; Buller, Benjamin; Zhang, Zheng Gang; Chopp, Michael

    2017-03-01

    Multipotent mesenchymal stromal cell (MSC) harvested exosomes are hypothesized as the major paracrine effectors of MSCs. In vitro, the miR-17-92 cluster promotes oligodendrogenesis, neurogenesis, and axonal outgrowth. We, therefore, investigated whether the miR-17-92 cluster-enriched exosomes harvested from MSCs transfected with an miR-17-92 cluster plasmid enhance neurological recovery compared with control MSC-derived exosomes. Rats subjected to 2 hours of transient middle cerebral artery occlusion were intravenously administered miR-17-92 cluster-enriched exosomes, control MSC exosomes, or liposomes and were euthanized 28 days post-middle cerebral artery occlusion. Histochemistry, immunohistochemistry, and Golgi-Cox staining were used to assess dendritic, axonal, synaptic, and myelin remodeling. Expression of phosphatase and tensin homolog and activation of its downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β in the peri-infarct region were measured by means of Western blots. Compared with the liposome treatment, both exosome treatment groups exhibited significant improvement of functional recovery, but miR-17-92 cluster-enriched exosome treatment had significantly more robust effects on improvement of neurological function and enhancements of oligodendrogenesis, neurogenesis, and neurite remodeling/neuronal dendrite plasticity in the ischemic boundary zone (IBZ) than the control MSC exosome treatment. Moreover, miR-17-92 cluster-enriched exosome treatment substantially inhibited phosphatase and tensin homolog, a validated miR-17-92 cluster target gene, and subsequently increased the phosphorylation of phosphatase and tensin homolog downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β compared with control MSC exosome treatment. Our data suggest that treatment of stroke with tailored exosomes enriched with the miR-17-92 cluster increases neural plasticity and functional recovery after stroke, possibly via targeting phosphatase and tensin homolog to activate the PI3K/protein kinase B/mechanistic target of rapamycin/glycogen synthase kinase 3β signaling pathway. © 2017 American Heart Association, Inc.

  14. Control of jasmonate biosynthesis and senescence by miR319 targets.

    PubMed

    Schommer, Carla; Palatnik, Javier F; Aggarwal, Pooja; Chételat, Aurore; Cubas, Pilar; Farmer, Edward E; Nath, Utpal; Weigel, Detlef

    2008-09-23

    Considerable progress has been made in identifying the targets of plant microRNAs, many of which regulate the stability or translation of mRNAs that encode transcription factors involved in development. In most cases, it is unknown, however, which immediate transcriptional targets mediate downstream effects of the microRNA-regulated transcription factors. We identified a new process controlled by the miR319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes. In contrast to other miRNA targets, several of which modulate hormone responses, TCPs control biosynthesis of the hormone jasmonic acid. Furthermore, we demonstrate a previously unrecognized effect of TCPs on leaf senescence, a process in which jasmonic acid has been proposed to be a critical regulator. We propose that miR319-controlled TCP transcription factors coordinate two sequential processes in leaf development: leaf growth, which they negatively regulate, and leaf senescence, which they positively regulate.

  15. Mercury Handling for the Target System for a Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Van B; Mcdonald, K; Kirk, H.

    2012-01-01

    The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes andmore » waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.« less

  16. Plasma Lens for Muon and Neutrino Beams

    NASA Astrophysics Data System (ADS)

    Kahn, Stephen; Korenev, Sergey; Bishai, Mary; Diwan, Milind; Gallardo, Juan; Hershcovitch, Ady; Johnson, Brant

    2008-04-01

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-current lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. A plasma lens has additional advantage: larger axial current than horns, minimal neutrino contamination during antineutrino running, and negligible pion absorption or scattering. Results from particle simulations using a plasma lens will be presented.

  17. The surprising costs of silence: Asymmetric preferences for prosocial lies of commission and omission.

    PubMed

    Levine, Emma; Hart, Joanna; Moore, Kendra; Rubin, Emily; Yadav, Kuldeep; Halpern, Scott

    2018-01-01

    Across 7 experiments (N = 3883), we demonstrate that communicators and targets make egocentric moral judgments of deception. Specifically, communicators focus more on the costs of deception to them-for example, the guilt they feel when they break a moral rule-whereas targets focus more on whether deception helps or harms them. As a result, communicators and targets make asymmetric judgments of prosocial lies of commission and omission: Communicators often believe that omitting information is more ethical than telling a prosocial lie, whereas targets often believe the opposite. We document these effects within the context of health care discussions, employee layoffs, and economic games, among both clinical populations (i.e., oncologists and cancer patients) and lay people. We identify moderators and downstream consequences of this asymmetry. We conclude by discussing psychological and practical implications for medicine, management, behavioral ethics, and human communication. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Anticancer molecules targeting fibroblast growth factor receptors.

    PubMed

    Liang, Guang; Liu, Zhiguo; Wu, Jianzhang; Cai, Yuepiao; Li, Xiaokun

    2012-10-01

    The fibroblast growth factor receptor (FGFR) family includes four highly conserved receptor tyrosine kinases: FGFR1-4. Upon ligand binding, FGFRs activate an array of downstream signaling pathways, such as the mitogen activated protein kinase (MAPK) and the phosphoinositide-3-kinase (PI3K)/Akt pathways. These FGFR cascades play crucial roles in tumor cell proliferation, angiogenesis, migration, and survival. The combination of knockdown studies and pharmaceutical inhibition in preclinical models demonstrates that FGFRs are attractive targets for therapeutic intervention in cancer. Multiple FGFR inhibitors with various structural skeletons have been designed, synthesized, and evaluated. Reviews on FGFRs have recently focused on FGFR signaling, pathophysiology, and functions in cancer or other diseases. In this article, we review recent advances in structure-activity relationships (SAR) of FGFR inhibitors, as well as the FGFR-targeting drug design strategies currently employed in targeting deregulated FGFRs by antibodies and small molecule inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Hyperactive locomotion in a Drosophila model is a functional readout for the synaptic abnormalities underlying fragile X syndrome.

    PubMed

    Kashima, Risa; Redmond, Patrick L; Ghatpande, Prajakta; Roy, Sougata; Kornberg, Thomas B; Hanke, Thomas; Knapp, Stefan; Lagna, Giorgio; Hata, Akiko

    2017-05-02

    Fragile X syndrome (FXS) is the most common cause of heritable intellectual disability and autism and affects ~1 in 4000 males and 1 in 8000 females. The discovery of effective treatments for FXS has been hampered by the lack of effective animal models and phenotypic readouts for drug screening. FXS ensues from the epigenetic silencing or loss-of-function mutation of the fragile X mental retardation 1 ( FMR1 ) gene, which encodes an RNA binding protein that associates with and represses the translation of target mRNAs. We previously found that the activation of LIM kinase 1 (LIMK1) downstream of augmented synthesis of bone morphogenetic protein (BMP) type 2 receptor (BMPR2) promotes aberrant synaptic development in mouse and Drosophila models of FXS and that these molecular and cellular markers were correlated in patients with FXS. We report that larval locomotion is augmented in a Drosophila FXS model. Genetic or pharmacological intervention on the BMPR2-LIMK pathway ameliorated the synaptic abnormality and locomotion phenotypes of FXS larvae, as well as hyperactivity in an FXS mouse model. Our study demonstrates that (i) the BMPR2-LIMK pathway is a promising therapeutic target for FXS and (ii) the locomotion phenotype of FXS larvae is a quantitative functional readout for the neuromorphological phenotype associated with FXS and is amenable to the screening novel FXS therapeutics. Copyright © 2017, American Association for the Advancement of Science.

  20. BCL11B-Mediated Epigenetic Repression Is a Crucial Target for Histone Deacetylase Inhibitors in Cutaneous T-Cell Lymphoma.

    PubMed

    Fu, Wenjing; Yi, Shengguo; Qiu, Lei; Sun, Jingru; Tu, Ping; Wang, Yang

    2017-07-01

    The treatment options for advanced cutaneous T-cell lymphoma (CTCL) are limited because of its unclear pathogenesis. Histone deacetylase (HDAC) inhibitors (HDACis) are recently developed therapeutics approved for refractory CTCL. However, the response rate is relatively low and unpredictable. Previously, we discovered that BCL11B, a key T-cell development regulator, was aberrantly overexpressed in mycosis fungoides, the most common CTCL, as compared with benign inflammatory skin. In this study, we identified a positive correlation between BCL11B expression and sensitivity to HDACi in CTCL lines. BCL11B suppression in BCL11B-high cells induced cell apoptosis by de-repressing apoptotic pathways and showed synergistic effects with suberoylanilide hydroxamic acid (SAHA), a pan-HDACi. Next, we identified the physical interaction and shared downstream genes between BCL11B and HDAC1/2 in CTCL lines. This interaction was essential in the anti-apoptosis effect of BCL11B, and the synergism between BCL11B suppression and HDACi treatment. Further, in clinical samples from 46 mycosis fungoides patients, BCL11B showed increased but varied expression in advanced tumor stage. Analysis of four patients receiving SAHA treatment suggested a positive correlation between BCL11B expression and favorable response to SAHA treatment. In conclusion, BCL11B may serve as a therapeutic target and a useful marker for improving HDACi efficacy in advanced CTCL. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volakakis, Nikolaos; Joodmardi, Eliza; Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4Amore » NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.« less

  2. iTRAQ proteomics analysis reveals that PI3K is highly associated with bupivacaine-induced neurotoxicity pathways.

    PubMed

    Zhao, Wei; Liu, Zhongjie; Yu, Xujiao; Lai, Luying; Li, Haobo; Liu, Zipeng; Li, Le; Jiang, Shan; Xia, Zhengyuan; Xu, Shi-yuan

    2016-02-01

    Bupivacaine, a commonly used local anesthetic, has potential neurotoxicity through diverse signaling pathways. However, the key mechanism of bupivacaine-induced neurotoxicity remains unclear. Cultured human SH-SY5Y neuroblastoma cells were treated (bupivacaine) or untreated (control) with bupivacaine for 24 h. Compared to the control group, bupivacaine significantly increased cyto-inhibition, cellular reactive oxygen species, DNA damage, mitochondrial injury, apoptosis (increased TUNEL-positive cells, cleaved caspase 3, and Bcl-2/Bax), and activated autophagy (enhanced LC3II/LC3I ratio). To explore changes in protein expression and intercommunication among the pathways involved in bupivacaine-induced neurotoxicity, an 8-plex iTRAQ proteomic technique and bioinformatics analysis were performed. Compared to the control group, 241 differentially expressed proteins were identified, of which, 145 were up-regulated and 96 were down-regulated. Bioinformatics analysis of the cross-talk between the significant proteins with altered expression in bupivacaine-induced neurotoxicity indicated that phosphatidyl-3-kinase (PI3K) was the most frequently targeted protein in each of the interactions. We further confirmed these results by determining the downstream targets of the identified signaling pathways (PI3K, Akt, FoxO1, Erk, and JNK). In conclusion, our study demonstrated that PI3K may play a central role in contacting and regulating the signaling pathways that contribute to bupivacaine-induced neurotoxicity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Coordinated dysregulation of mRNAs and microRNAs in the rat medial prefrontal cortex following a history of alcohol dependence

    PubMed Central

    Tapocik, Jenica D.; Solomon, Matthew; Flanigan, Meghan; Meinhardt, Marcus; Barbier, Estelle; Schank, Jesse; Schwandt, Melanie; Sommer, Wolfgang H.; Heilig, Markus

    2012-01-01

    Long-term changes in brain gene expression have been identified in alcohol dependence, but underlying mechanisms remain unknown. Here, we examined the potential role of microRNAs for persistent gene expression changes in the rat medial prefrontal cortex after a history of alcohol dependence. Two-bottle free-choice alcohol consumption increased following 7-week exposure to intermittent alcohol intoxication. A bioinformatic approach using microarray analysis, qPCR, bioinformatic analysis, and microRNA-mRNA integrative analysis identified expression patterns indicative of a disruption in synaptic processes and neuroplasticity. 41 rat-microRNAs and 165 mRNAs in the medial prefrontal cortex were significantly altered after chronic alcohol exposure. A subset of the microRNAs and mRNAs was confirmed by qPCR. Gene ontology categories of differential expression pointed to functional processes commonly associated with neurotransmission, neuroadaptation, and synaptic plasticity. microRNA-mRNA expression pairing identified 33 microRNAs putatively targeting 89 mRNAs suggesting transcriptional networks involved in axonal guidance and neurotransmitter signaling. Our results demonstrate a significant shift in microRNA expression patterns in the medial prefrontal cortex following a history of dependence. Due to their global regulation of multiple downstream target transcripts, microRNAs may play a pivotal role in the reorganization of synaptic connections and long term neuroadaptations in alcohol dependence. microRNA-mediated alterations of transcriptional networks may be involved in disrupted prefrontal control over alcohol-drinking observed in alcoholic patients. PMID:22614244

  4. Investigation of cAMP microdomains as a path to novel cancer diagnostics.

    PubMed

    Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H

    2014-12-01

    Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MENA is a transcriptional target of the Wnt/beta-catenin pathway.

    PubMed

    Najafov, Ayaz; Seker, Tuncay; Even, Ipek; Hoxhaj, Gerta; Selvi, Osman; Ozel, Duygu Esen; Koman, Ahmet; Birgül-İyison, Necla

    2012-01-01

    Wnt/β-catenin signalling pathway plays important roles in embryonic development and carcinogenesis. Overactivation of the pathway is one of the most common driving forces in major cancers such as colorectal and breast cancers. The downstream effectors of the pathway and its regulation of carcinogenesis and metastasis are still not very well understood. In this study, which was based on two genome-wide transcriptomics screens, we identify MENA (ENAH, Mammalian enabled homologue) as a novel transcriptional target of the Wnt/β-catenin signalling pathway. We show that the expression of MENA is upregulated upon overexpression of degradation-resistant β-catenin. Promoters of all mammalian MENA homologues contain putative binding sites for Tcf4 transcription factor--the primary effector of the Wnt/β-catenin pathway and we demonstrate functionality of these Tcf4-binding sites using luciferase reporter assays and overexpression of β-catenin, Tcf4 and dominant-negative Tcf4. In addition, lithium chloride-mediated inhibition of GSK3β also resulted in increase in MENA mRNA levels. Chromatin immunoprecipitation showed direct interaction between β-catenin and MENA promoter in Huh7 and HEK293 cells and also in mouse brain and liver tissues. Moreover, overexpression of Wnt1 and Wnt3a ligands increased MENA mRNA levels. Additionally, knock-down of MENA ortholog in D. melanogaster eyeful and sensitized eye cancer fly models resulted in increased tumor and metastasis formations. In summary, our study identifies MENA as novel nexus for the Wnt/β-catenin and the Notch signalling cascades.

  6. Myeloid cell origins, differentiation, and clinical implications

    PubMed Central

    Weiskopf, Kipp; Schnorr, Peter J.; Pang, Wendy W.; Chao, Mark P.; Chhabra, Akanksha; Seita, Jun; Feng, Mingye; Weissman, Irving L.

    2016-01-01

    The hematopoietic stem cell (HSC) is a multipotent stem cell that resides in the bone marrow and has the ability to form all of the cells of the blood and immune system. Since its first purification in 1988, additional studies have refined the phenotype and functionality of HSCs and characterized all of their downstream progeny. The hematopoietic lineage is divided into two main branches: the myeloid and lymphoid arms. The myeloid arm is characterized by the Common Myeloid Progenitor and all of its resulting cell types. The stages of hematopoiesis have been defined in both mice and humans. During embryological development, the earliest hematopoiesis takes place in yolk sac blood islands then migrates to the fetal liver and hematopoietic organs. Some adult myeloid populations develop directly from yolk sac progenitors without apparent bone marrow intermediates, such as tissue resident macrophages. Hematopoiesis also changes over time, with a bias of the dominating HSCs towards myeloid development as animals age. Defects in myelopoiesis contribute to many hematologic disorders, and some of these can be overcome with therapies that target the aberrant stage of development. Furthermore, insights into myeloid development have informed us of mechanisms of programmed cell removal. The CD47/SIRPα axis, a myeloid-specific immune checkpoint, limits macrophage removal of HSCs but can be exploited by hematologic and solid malignancies. Therapeutics targeting CD47 represent a new strategy for treating cancer. Overall, an understanding of hematopoiesis and myeloid cell development has implications for regenerative medicine, hematopoietic cell transplantation, malignancy, and many other diseases. PMID:27763252

  7. MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma

    PubMed Central

    Ranjan, Atul; Iyer, Swathi V.; Ward, Christopher; Link, Tim; Diaz, Francisco J.; Dhar, Animesh; Tawfik, Ossama W.; Weinman, Steven A.; Azuma, Yoshiaki; Izumi, Tadahide; Iwakuma, Tomoo

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk. PMID:29765550

  8. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair

    PubMed Central

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J.; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D.; Wang, Zhao-Qi; Jasin, Maria

    2005-01-01

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca–/– cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice. PMID:15650050

  9. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    PubMed

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  10. Global preamplification simplifies targeted mRNA quantification

    PubMed Central

    Kroneis, Thomas; Jonasson, Emma; Andersson, Daniel; Dolatabadi, Soheila; Ståhlberg, Anders

    2017-01-01

    The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification. PMID:28332609

  11. Antagonism of EGFR and HER3 Enhances the Response to Inhibitors of the PI3K-Akt Pathway in Triple-Negative Breast Cancer

    PubMed Central

    Tao, Jessica J.; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S.; Carey, Lisa A.; Perou, Charles M.; Baselga, José; Scaltriti, Maurizio

    2014-01-01

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidyl-inositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting. PMID:24667376

  12. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer.

    PubMed

    Tao, Jessica J; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S; Carey, Lisa A; Perou, Charles M; Baselga, José; Scaltriti, Maurizio

    2014-03-25

    Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.

  13. The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR) pathway.

    PubMed

    Talos, Delia M; Sun, Hongyu; Zhou, Xiangping; Fitzgerald, Erin C; Jackson, Michele C; Klein, Peter M; Lan, Victor J; Joseph, Annelise; Jensen, Frances E

    2012-01-01

    Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures.

  14. The Interaction between Early Life Epilepsy and Autistic-Like Behavioral Consequences: A Role for the Mammalian Target of Rapamycin (mTOR) Pathway

    PubMed Central

    Fitzgerald, Erin C.; Jackson, Michele C.; Klein, Peter M.; Lan, Victor J.; Joseph, Annelise; Jensen, Frances E.

    2012-01-01

    Early life seizures can result in chronic epilepsy, cognitive deficits and behavioral changes such as autism, and conversely epilepsy is common in autistic children. We hypothesized that during early brain development, seizures could alter regulators of synaptic development and underlie the interaction between epilepsy and autism. The mammalian Target of Rapamycin (mTOR) modulates protein translation and is dysregulated in Tuberous Sclerosis Complex, a disorder characterized by epilepsy and autism. We used a rodent model of acute hypoxia-induced neonatal seizures that results in long term increases in neuronal excitability, seizure susceptibility, and spontaneous seizures, to determine how seizures alter mTOR Complex 1 (mTORC1) signaling. We hypothesized that seizures occurring at a developmental stage coinciding with a critical period of synaptogenesis will activate mTORC1, contributing to epileptic networks and autistic-like behavior in later life. Here we show that in the rat, baseline mTORC1 activation peaks during the first three postnatal weeks, and induction of seizures at postnatal day 10 results in further transient activation of its downstream targets phospho-4E-BP1 (Thr37/46), phospho-p70S6K (Thr389) and phospho-S6 (Ser235/236), as well as rapid induction of activity-dependent upstream signaling molecules, including BDNF, phospho-Akt (Thr308) and phospho-ERK (Thr202/Tyr204). Furthermore, treatment with the mTORC1 inhibitor rapamycin immediately before and after seizures reversed early increases in glutamatergic neurotransmission and seizure susceptibility and attenuated later life epilepsy and autistic-like behavior. Together, these findings suggest that in the developing brain the mTORC1 signaling pathway is involved in epileptogenesis and altered social behavior, and that it may be a target for development of novel therapies that eliminate the progressive effects of neonatal seizures. PMID:22567115

  15. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia.

    PubMed

    Oittinen, Mikko; Popp, Alina; Kurppa, Kalle; Lindfors, Katri; Mäki, Markku; Kaikkonen, Minna U; Viiri, Keijo

    2017-02-01

    Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457. © 2016 AlphaMed Press.

  16. Pro-Apoptotic Effects of JDA-202, a Novel Natural Diterpenoid, on Esophageal Cancer Through Targeting Peroxiredoxin I

    PubMed Central

    Shi, Xiao-Jing; Ding, Lina; Zhou, Wenjuan; Ji, Yage; Wang, Junwei; Wang, Huimin; Ma, Yongcheng; Jiang, Guozhong; Tang, Kai

    2017-01-01

    Abstract Aims: Esophageal cancer (EC) is an aggressive malignancy and the most common solid tumor of gastrointestinal tract all over the world, with high incidence in Asia. The current study was designed to investigate the anticancer efficacy and mechanism that is involved in the action of a natural ent-kaurene diterpenoid, JDA-202, targeting EC. Results: We found that an antioxidant protein peroxiredoxin I (Prx I) was upregulated in human EC tissues as well as in EC cell lines. JDA-202, a novel natural compound isolated from Isodon rubescens (Labiatae), was proved to possess strong anti-proliferative activities on those cell lines. Importantly, JDA-202 does not only bind to Prx I directly and markedly inhibit the activity of Prx I in vitro, but it also significantly induces hydrogen peroxide (H2O2)-related cell death. Furthermore, overexpression of Prx I significantly reversed EC109 cell apoptosis caused by JDA-202, whereas short interfering RNA (siRNA)-induced Prx I knockdown resulted in marked cell death even without JDA-202 pretreatment. On the other hand, the increased phosphorylation of mitogen-activated protein kinase (MAPK) proteins (c-Jun N-terminal kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) by JDA-202 was suppressed by N-acetylcysteine (NAC) or catalase, a known reactive oxygen species (ROS) or H2O2 scavenger. JDA-202 also significantly inhibited the growth of EC109 tumor xenograft, without significant body weight loss and multi-organ toxicities. Innovation and Conclusion: Our findings, for the first time, demonstrated that JDA-202 may serve as a lead compound, targeting the overexpressed Prx I in EC cell lines and ROS accumulation as well as inhibiting the activation of their downstream targets in MAPKs. Antioxid. Redox Signal. 27, 73–92. PMID:27650197

  17. CE-UV/VIS and CE-MS for monitoring organic impurities during the downstream processing of fermentative-produced lactic acid from second-generation renewable feedstocks.

    PubMed

    Laube, Hendrik; Matysik, Frank-Michael; Schmidberger, Andreas; Mehlmann, Kerstin; Toursel, Andreas; Boden, Jana

    2016-01-01

    During the downstream process of bio-based bulk chemicals, organic impurities, mostly residues from the fermentation process, must be separated to obtain a pure and ready-to-market chemical. In this study, capillary electrophoresis was investigated for the non-targeting downstream process monitoring of organic impurities and simultaneous quantitative detection of lactic acid during the purification process of fermentatively produced lactic acid. The downstream process incorporated 11 separation units, ranging from filtration, adsorption and ion exchange to electrodialysis and distillation, and 15 different second-generation renewable feedstocks were processed into lactic acid. The identification of organic impurities was established through spiking and the utilization of an advanced capillary electrophoresis mass spectrometry system. A total of 53 % of the organic impurities were efficiently removed via bipolar electrodialysis; however, one impurity, pyroglutamic acid, was recalcitrant to separation. It was demonstrated that the presence of pyroglutamic acid disrupts the polymerization of lactic acid into poly lactic acid. Pyroglutamic acid was present in all lactic acid solutions, independent of the type of renewable resource or the bacterium applied. Pyroglutamic acid, also known as 5-oxoproline, is a metabolite in the glutathione cycle, which is present in all living microorganisms. pyroglutamic acid is found in many proteins, and during intracellular protein metabolism, N-terminal glutamic acid and glutamine residues can spontaneously cyclize to become pyroglutamic acid. Hence, the concentration of pyroglutamic acid in the lactic acid solution can only be limited to a certain amount. The present study proved the capillary electrophoresis system to be an important tool for downstream process monitoring. The high product concentration encountered in biological production processes did not hinder the capillary electrophoresis from separating and detecting organic impurities, even at minor concentrations. The coupling of the capillary electrophoresis with a mass spectrometry system allowed for the straightforward identification of the remaining critical impurity, pyroglutamic acid. Although 11 separation units were applied during the downstream process, the pyroglutamic acid concentration remained at 12,900 ppm, which was comparatively high. All organic impurities found were tracked by the capillary electrophoresis, allowing for further separation optimization.

  18. The Thrombolytic Effect of Diagnostic Ultrasound-Induced Microbubble Cavitation in Acute Carotid Thromboembolism.

    PubMed

    Porter, Thomas R; Xie, Feng; Lof, John; Powers, Jeffry; Vignon, Francois; Shi, William; White, Matthew

    2017-08-01

    Acute ischemic stroke is often due to thromboembolism forming over ruptured atherosclerotic plaque in the carotid artery (CA). The presence of intraluminal CA thrombus is associated with a high risk of thromboembolic cerebral ischemic events. The cavitation induced by diagnostic ultrasound high mechanical index (MI) impulses applied locally during a commercially available intravenous microbubble infusion has dissolved intravascular thrombi, especially when using longer pulse durations. The beneficial effects of this in acute carotid thromboembolism is not known. An oversized balloon injury was created in the distal extracranial common CA of 38 porcine carotid arteries. After this, a 70% to 80% stenosis was created in the mid common CA proximal to the injury site using partial balloon inflation. Acute thrombotic CA occlusions were created just distal to the balloon catheter by injecting fresh autologous arterial thrombi. After angiographic documentation of occlusion, the common carotid thrombosis was treated with either diagnostic low MI imaging alone (0.2 MI; Philips S5-1) applied through a tissue mimicking phantom (TMP) or intermittent diagnostic high MI stable cavitation (SC)-inducing impulses with a longer pulse duration (0.8 MI; 20 microseconds' pulse duration) or inertial cavitation (IC) impulses (1.2 MI; 20 microseconds' pulse duration). All treatment times were for 30 minutes. Intravenous ultrasound contrast (2% Definity; Lantheus Medical) was infused during the treatment period. Angiographic recanalization in 4 intracranial and extracranial vessels downstream from the CA occlusion (auricular, ascending pharyngeal, buccinator, and maxillary) was assessed with both magnetic resonance 3-dimensional time-of-flight and phase contrast angiography. All magnetic resonance images were interpreted by an independent neuroradiologist using the thrombolysis in cerebral infarction (TICI) scoring system. By phase contrast angiography, at least mild recanalization (TICI 2a or higher) was seen in 64% of downstream vessels treated with SC impulses compared with 33% of IC treated and 29% of low MI alone treated downstream vessels (P = 0.001), whereas moderate or complete recanalization (TICI 2b or higher) was seen in 39% of SC treated vessels compared with 10% IC treated and 21% of low MI alone treated vessels (P = 0.001). High MI 20-microsecond pulse duration impulses during a commercial microbubble infusion can be used to recanalize acutely thrombosed carotid arteries and restore downstream flow without anticoagulants. However, this effect is only seen with SC-inducing impulses and not at higher mechanical indices, when a paradoxical reversal of the thrombolytic effect is observed. Diagnostic ultrasound-induced SC can be a nonsurgical method of dissolving CA thrombi and preventing thromboembolization.

  19. Targeting Extracellular DNA to Deliver IGF-1 to the Injured Heart

    NASA Astrophysics Data System (ADS)

    Khan, Raffay S.; Martinez, Mario D.; Sy, Jay C.; Pendergrass, Karl D.; Che, Pao-Lin; Brown, Milton E.; Cabigas, E. Bernadette; Dasari, Madhuri; Murthy, Niren; Davis, Michael E.

    2014-03-01

    There is a great need for the development of therapeutic strategies that can target biomolecules to damaged myocardium. Necrosis of myocardium during a myocardial infarction (MI) is characterized by extracellular release of DNA, which can serve as a potential target for ischemic tissue. Hoechst, a histological stain that binds to double-stranded DNA can be conjugated to a variety of molecules. Insulin-like growth factor-1 (IGF-1), a small protein/polypeptide with a short circulating-half life is cardioprotective following MI but its clinical use is limited by poor delivery, as intra-myocardial injections have poor retention and chronic systemic presence has adverse side effects. Here, we present a novel delivery vehicle for IGF-1, via its conjugation to Hoechst for targeting infarcted tissue. Using a mouse model of ischemia-reperfusion, we demonstrate that intravenous delivery of Hoechst-IGF-1 results in activation of Akt, a downstream target of IGF-1 and protects from cardiac fibrosis and dysfunction following MI.

  20. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response.

    PubMed

    Parvez, Saba; Fu, Yuan; Li, Jiayang; Long, Marcus J C; Lin, Hong-Yu; Lee, Dustin K; Hu, Gene S; Aye, Yimon

    2015-01-14

    Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.

  1. CRISPR/Cas9 for genome editing: progress, implications and challenges.

    PubMed

    Zhang, Feng; Wen, Yan; Guo, Xiong

    2014-09-15

    Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system provides a robust and multiplexable genome editing tool, enabling researchers to precisely manipulate specific genomic elements, and facilitating the elucidation of target gene function in biology and diseases. CRISPR/Cas9 comprises of a nonspecific Cas9 nuclease and a set of programmable sequence-specific CRISPR RNA (crRNA), which can guide Cas9 to cleave DNA and generate double-strand breaks at target sites. Subsequent cellular DNA repair process leads to desired insertions, deletions or substitutions at target sites. The specificity of CRISPR/Cas9-mediated DNA cleavage requires target sequences matching crRNA and a protospacer adjacent motif locating at downstream of target sequences. Here, we review the molecular mechanism, applications and challenges of CRISPR/Cas9-mediated genome editing and clinical therapeutic potential of CRISPR/Cas9 in future. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression

    DTIC Science & Technology

    2015-10-01

    invasive carcinoma and, ultimately, metastatic disease [1-3]. Mouse models of PIN (mPIN) generated by a single- mutant gene in prostate do not progress...downstream target) is sufficient to significantly reduce the initiation of prostate cancer in the Pten conditional knockout mouse model [19-21...the possibility that these two genetic hits cooperate to promote tumor progression, and mouse models show that this cooperation accelerates

  3. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors.

    PubMed

    Olson, Michael F

    2018-05-04

    The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.

  4. [miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene].

    PubMed

    Li, Pei; Hu, Jing; Zhang, Ying; Li, Jianping; Dang, Yunzhi; Zhang, Rui; Wei, Lichun; Shi, Mei

    2018-02-01

    Objective To investigate the role and mechanism of microRNA-182 (miR-182) in the proliferation of cervical cancer cells. Methods With liposome-mediated transient transfection method, the level of miR-182 in HeLa and SiHa cells was increased or decreased. CCK-8 assay and colony formation assay were used to observe the effect of miR-182 on the proliferation of cervical cancer cells. Using bioinformatics predictions, real-time quantitative PCR, and dual luciferase reporter assay, we clarified the role of miR-182 in posttranscriptional regulation of adenomatous polyposis coli (APC) gene and its effect on the downstream molecules (c-Myc and cyclin D1) of Wnt singling pathway. Results Up-regulation of miR-182 significantly promoted the proliferation of cervical cancer cells, while down-regulation of miR-182 significantly inhibited the proliferation of cervical cancer cells. Over-expression of miR-182 inhibited the expression of APC gene in cervical cancer cells and the regulation of miR-182 affected the expression of canonical Wnt signaling pathway downstream molecules in cervical cancer cells. Conclusion The miR-182 stimulates canonical Wnt signaling pathway by targeting APC gene and enhances the proliferation of cervical cancer cells.

  5. Evaluating the Role of Host AMPK in Leishmania Burden.

    PubMed

    Moreira, Diana; Estaquier, Jérôme; Cordeiro-da-Silva, Anabela; Silvestre, Ricardo

    2018-01-01

    The study of host AMP-activated protein kinase (AMPK) activation during Leishmania infection imposes distinct types of techniques to measure protein expression and activation, as well as to quantify, at transcription and translational levels, its downstream targets. The investigation of host AMPK protein modulation during Leishmania infection should primarily be assessed during in vitro infections using as a host murine bone marrow-derived macrophages (BMMos). The infection outcome is assessed measuring the percentage of infected cells in the context of BMMos. To evaluate AMPK activity during infection, the expression of AMPK phosphorylated at Thr172 as well as the transcription and translational levels of its downstream targets are evaluated by quantitative PCR and immunoblotting. The modulation of AMPK activity in vivo is determined specifically in sorted splenic macrophages harboring Leishmania parasites recovered from infected mice using fluorescent-labeled parasites in the infectious inocolum. The modulation of AMPK activity was assessed by AMPK activators and inhibitors and also using AMPK, SIRT1, or LKB1 KO mice models. The infection outcome in BMMos and in vivo was further determined using these two different approaches. To finally understand the metabolic impact of AMPK during infection, in vitro metabolic assays in infected BMMos were measured in the bioenergetic profile using an extracellular flux analyzer.

  6. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells

    PubMed Central

    2012-01-01

    Background Hepatic metabolic derangements are key components in the development of fatty liver disease. AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and carnitine palmitoyl transferase 1 (CPT-1) pathway. In this study, cyanidin-3-O-β-glucoside (Cy-3-g), a typical anthocyanin pigment was used to examine its effects on AMPK activation and fatty acid metabolism in human HepG2 hepatocytes. Results Anthocyanin Cy-3-g increased cellular AMPK activity in a calmodulin kinase kinase dependent manner. Furthermore, Cy-3-g substantially induced AMPK downstream target ACC phosphorylation and inactivation, and then decreased malonyl CoA contents, leading to stimulation of CPT-1 expression and significant increase of fatty acid oxidation in HepG2 cells. These effects of Cy-3-g are largely abolished by pharmacological and genetic inhibition of AMPK. Conclusion This study demonstrates that Cy-3-g regulates hepatic lipid homeostasis via an AMPK-dependent signaling pathway. Targeting AMPK activation by anthocyanin may represent a promising approach for the prevention and treatment of obesity-related nonalcoholic fatty liver disease. PMID:22243683

  7. Selection of peptides interfering with protein-protein interaction.

    PubMed

    Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M

    2009-01-01

    Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.

  8. Lipid body accumulation alters calcium signaling dynamics in immune cells

    PubMed Central

    Greineisen, William E.; Speck, Mark; Shimoda, Lori M.N.; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J.; Turner, Helen

    2014-01-01

    Summary There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcεRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signalling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcεRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signalling pathway and its downstream targets. PMID:25016314

  9. Human Catestatin Peptides Differentially Regulate Infarct Size in the Ischemic-Reperfused Rat Heart

    PubMed Central

    Brar, Bhawanjit K.; Helgeland, Erik; Mahata, Sushil K.; Zhang, Kuixing; O'Connor, Daniel T.; Helle, Karen B.; Jonassen, Anne K.

    2010-01-01

    In acute myocardial infarction increased plasma levels of chromogranin A is correlated with decreased survival. At the human chromogranin A gene locus there are two naturally occurring amino acid substitution variants within the catestatin region, i.e. Gly364 Ser and Pro370Leu, displaying differential potencies towards inhibition of nicotinic cholinergic agonist-evoked catecholamine secretion from sympathochromaffin cells and different degrees of processing from the prohormone. Here, we examine whether two of the variants and the wild type catestatin may affect the development of infarct size during ischemic reperfusion in the Langendorff rat heart model. The hearts were subjected to regional ischemia followed by reperfusion in the presence or absence of synthetic variants of human catestatin. Compared to the Gly364Ser variant both the wild type and the Pro370Leu variant increased infarct size while decreasing the cardiac levels of phosphorylated Akt and two of its downstream targets, FoxO1 and BAD. In conclusion, these findings suggest that, in contrast to the Gly364Ser variant, the wild type catestatin and the Pro370Leu variant (allele frequency ~0.3%) increased myocardial infarct size via a mechanism involving dephosphorylation of Akt and the two downstream targets during ischemic reperfusion in the isolated rat heart. PMID:20655339

  10. Ribosomal S6 kinase (RSK) modulators: a patent review.

    PubMed

    Ludwik, Katarzyna A; Lannigan, Deborah A

    2016-09-01

    The p90 ribosomal S6 kinases (RSK) are a family of Ser/Thr protein kinases that are downstream effectors of MEK1/2-ERK1/2. Increased RSK activation is implicated in the etiology of multiple pathologies, including numerous types of cancers, cardiovascular disease, liver and lung fibrosis, and infections. The review summarizes the patent and scientific literature on small molecule modulators of RSK and their potential use as therapeutics. The patents were identified using World Intellectual Property Organization and United States Patent and Trademark Office databases. The compounds described are predominantly RSK inhibitors, but a RSK activator is also described. The majority of the inhibitors are not RSK-specific. Based on the overwhelming evidence that RSK is involved in a number of diseases that have high mortalities it seems surprising that there are no RSK modulators that have pharmacokinetic properties suitable for in vivo use. MEK1/2 inhibitors are in the clinic, but the efficacy of these compounds appears to be limited by their side effects. We hypothesize that targeting the downstream effectors of MEK1/2, like RSK, are an untapped source of drug targets and that they will generate less side effects than MEK1/2 inhibitors because they regulate fewer effectors.

  11. Stimulation of electro-fermentation in single-chamber microbial electrolysis cells driven by genetically engineered anode biofilms

    NASA Astrophysics Data System (ADS)

    Awate, Bhushan; Steidl, Rebecca J.; Hamlischer, Thilo; Reguera, Gemma

    2017-07-01

    Unwanted metabolites produced during fermentations reduce titers and productivity and increase the cost of downstream purification of the targeted product. As a result, the economic feasibility of otherwise attractive fermentations is low. Using ethanol fermentation by the consolidated bioprocessing cellulolytic bacterium Cellulomonas uda, we demonstrate the effectiveness of anodic electro-fermentations at maximizing titers and productivity in a single-chamber microbial electrolysis cell (SCMEC) without the need for metabolic engineering of the fermentative microbe. The performance of the SCMEC platform relied on the genetic improvements of anode biofilms of the exoelectrogen Geobacter sulfurreducens that prevented the oxidation of cathodic hydrogen and improved lactate oxidation. Furthermore, a hybrid bioanode was designed that maximized the removal of organic acids in the fermentation broth. The targeted approach increased cellobiose consumption rates and ethanol titers, yields, and productivity three-fold or more, prevented pH imbalances and reduced batch-to-batch variability. In addition, the sugar substrate was fully consumed and ethanol was enriched in the broth during the electro-fermentation, simplifying its downstream purification. Such improvements and the possibility of scaling up SCMEC configurations highlight the potential of anodic electro-fermentations to stimulate fermentative bacteria beyond their natural capacity and to levels required for industrial implementation.

  12. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface.

    PubMed

    Mehrabi, Masomeh; Mahdiuni, Hamid; Rasouli, Hassan; Mansouri, Kamran; Shahlaei, Mohsen; Khodarahmi, Reza

    2018-04-14

    Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play significant roles in cell proliferation and signaling. All the members of the EGFR/ErbB family are primary goals for cancer therapy, particularly for tumors of breast, cervix, ovaries, kidney, esophagus, prostate and non-small-cell lung carcinoma and head and neck tumors. However, the therapeutic ability of accessible anti-ErbB agents is limited. Therefore, recognizing EGF analogues or small organic molecules with high affinity for the extracellular domain of the EGFR is a critical target on cancer research. An effective EGF analogue should have a comparable binding affinity for EGFR in order to create an effective ligand competitive inhibition against circulating wild EGF while fails to transduce appropriate downstream signaling into the cancer cell. In our earlier study we have developed a mutant form of human EGF (mEGF, lacking the four critical amino acid residues; Gln 43 , Tyr 44 , Arg 45 and Asp 46 at the C-terminal of the protein) and its binding properties and mitogenic activity were assessed. The mEGF showed high affinity for EGFR binding domains but caused poor EGFR dimerization and phosphorylation and especially, mEGF induced EGFR internalization. However, underlying mechanism of action of EGF analogues is still unclear and thus considered to be worthwhile for further study. With regard to different effects of the EGF analogue on EGFR activating process, computational analysis of wild EGF/EGFR and mEGF/EGFR complexes (along with EGFt/EGFR complex) were done. Results of the protein dissection identified several interactions within "ligand/EGFR" that are common among EGF and EGFt/mEGF. These results disclose that while several interactions are conserved within EGF/EGFR interfaces, EGF/EGFR interactions on site III interface controls the affinity, EGFR dimerization and subsequent downstream signaling through a heterogeneous set of non-covalent interactions. These findings not only represent the EGFR dynamics complexity but also smooth the path for structure-based design of therapeutics targeting C-terminal region of EGF (and the related domain within the receptor) or EGFR-based imaging probes. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Wellborn, Steven R.; Okiishi, Theodore H.

    1996-01-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily in the circumferential direction at about 40% of the hub wheel speed. Measurements indicated that the flow within both cavities was much more complex than first envisioned. A vortical flow structure in the meridional plane, similar to a driven cavity, existed within the upstream cavity Furthermore, other spatial and temporal variations in Row properties existed. the most prominent being caused by the upstream potential influence of the downstream blade. This influence caused the fluid within cavities near the leading edges of either stator blades in space or rotor blades in time to be driven radially inward relative to fluid near blade mid-pitch. This influence also produced large unsteady velocity fluctuations in the downstream cavity because of the passing of the downstream rotor blade.

  14. Nested effects models for learning signaling networks from perturbation data.

    PubMed

    Fröhlich, Holger; Tresch, Achim; Beissbarth, Tim

    2009-04-01

    Targeted gene perturbations have become a major tool to gain insight into complex cellular processes. In combination with the measurement of downstream effects via DNA microarrays, this approach can be used to gain insight into signaling pathways. Nested Effects Models were first introduced by Markowetz et al. as a probabilistic method to reverse engineer signaling cascades based on the nested structure of downstream perturbation effects. The basic framework was substantially extended later on by Fröhlich et al., Markowetz et al., and Tresch and Markowetz. In this paper, we present a review of the complete methodology with a detailed comparison of so far proposed algorithms on a qualitative and quantitative level. As an application, we present results on estimating the signaling network between 13 genes in the ER-alpha pathway of human MCF-7 breast cancer cells. Comparison with the literature shows a substantial overlap.

  15. Estimating the waiting time of multi-priority emergency patients with downstream blocking.

    PubMed

    Lin, Di; Patrick, Jonathan; Labeau, Fabrice

    2014-03-01

    To characterize the coupling effect between patient flow to access the emergency department (ED) and that to access the inpatient unit (IU), we develop a model with two connected queues: one upstream queue for the patient flow to access the ED and one downstream queue for the patient flow to access the IU. Building on this patient flow model, we employ queueing theory to estimate the average waiting time across patients. Using priority specific wait time targets, we further estimate the necessary number of ED and IU resources. Finally, we investigate how an alternative way of accessing ED (Fast Track) impacts the average waiting time of patients as well as the necessary number of ED/IU resources. This model as well as the analysis on patient flow can help the designer or manager of a hospital make decisions on the allocation of ED/IU resources in a hospital.

  16. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling

    NASA Astrophysics Data System (ADS)

    Kondo, Yuki; Ito, Tasuku; Nakagami, Hirofumi; Hirakawa, Yuki; Saito, Masato; Tamaki, Takayuki; Shirasu, Ken; Fukuda, Hiroo

    2014-03-01

    During plant radial growth typically seen in trees, procambial and cambial cells act as meristematic cells in the vascular system to self-proliferate and differentiate into xylem cells. These two processes are regulated by a signalling pathway composed of a peptide ligand and its receptor; tracheary element differentiation inhibitory factor (TDIF) and TDIF RECEPTOR (TDR). Here we show that glycogen synthase kinase 3 proteins (GSK3s) are crucial downstream components of the TDIF signalling pathway suppressing xylem differentiation from procambial cells. TDR interacts with GSK3s at the plasma membrane and activates GSK3s in a TDIF-dependent fashion. Consistently, a specific inhibitor of plant GSK3s strongly induces xylem cell differentiation through BRI1-EMS SUPPRESSOR 1 (BES1), a well-known target transcription factor of GSK3s. Our findings provide insight into the regulation of cell fate determination in meristem maintenance.

  17. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila.

    PubMed

    Hing, H; Xiao, J; Harden, N; Lim, L; Zipursky, S L

    1999-06-25

    The SH2/SH3 adaptor protein Dock has been proposed to transduce signals from guidance receptors to the actin cytoskeleton in Drosophila photoreceptor (R cell) growth cones. Here, we demonstrate that Drosophila p21-activated kinase (Pak) is required in a Dock pathway regulating R cell axon guidance and targeting. Dock and Pak colocalize to R cell axons and growth cones, physically interact, and their loss-of-function phenotypes are indistinguishable. Normal patterns of R cell connectivity require Pak's kinase activity and binding sites for both Dock and Cdc42/Rac. A membrane-tethered form of Pak (Pak(myr) acts as a dominant gain-of-function protein. Retinal expression of Pak(myr) rescues the R cell connectivity phenotype in dock mutants. These data establish Pak as a critical regulator of axon guidance and a downstream effector of Dock in vivo.

  18. The role of aquaporin-5 in cancer cell migration: A potential active participant.

    PubMed

    Jensen, Helene H; Login, Frédéric H; Koffman, Jennifer S; Kwon, Tae-Hwan; Nejsum, Lene N

    2016-10-01

    Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Occurrence of Pharmaceuticals in Calgary's Wastewater and Related Surface Water.

    PubMed

    Chen, M; Cooper, V I; Deng, J; Amatya, P L; Ambrus, D; Dong, S; Stalker, N; Nadeau-Bonilla, C; Patel, J

    2015-05-01

    The influents/effluents from Calgary's water resource recovery facilities and the surface water were analyzed for pharmaceuticals in the present study. The median concentrations in the effluents for the 15 targeted pharmaceuticals were within the range of 0.006 to 3.32 ppb. Although the wastewater treatment facilities were not designed to remove pharmaceuticals, this study indicates that the wastewater treatment processes are effective in removing some of the pharmaceuticals from the aqueous phase. The removal rate estimated can be 99.5% for caffeine, whereas little or no removal was observed for carbamazepine. Biodegradation, chemical degradation, and sorption could be some of the mechanisms responsible for the removal of pharmaceuticals. The drug residues in downstream surface water could be associated with incomplete removal of pharmaceuticals during the treatment process and may lead to concerns in terms of potential impacts on the aquatic ecosystem. However, this study does not indicate any immediate risks to the downstream aquatic environment.

  20. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility

    PubMed Central

    Yan, Catherine; Martinez-Quiles, Narcisa; Eden, Sharon; Shibata, Tomoyuki; Takeshima, Fuminao; Shinkura, Reiko; Fujiwara, Yuko; Bronson, Roderick; Snapper, Scott B.; Kirschner, Marc W.; Geha, Raif; Rosen, Fred S.; Alt, Frederick W.

    2003-01-01

    The Wiskott–Aldrich syndrome related protein WAVE2 is implicated in the regulation of actin-cytoskeletal reorganization downstream of the small Rho GTPase, Rac. We inactivated the WAVE2 gene by gene-targeted mutation to examine its role in murine development and in actin assembly. WAVE2-deficient embryos survived until approximately embryonic day 12.5 and displayed growth retardation and certain morphological defects, including malformations of the ventricles in the developing brain. WAVE2-deficient embryonic stem cells displayed normal proliferation, whereas WAVE2-deficient embryonic fibroblasts exhibited severe growth defects, as well as defective cell motility in response to PDGF, lamellipodium formation and Rac-mediated actin polymerization. These results imply a non-redundant role for WAVE2 in murine embryogenesis and a critical role for WAVE2 in actin-based processes downstream of Rac that are essential for cell movement. PMID:12853475

Top