Science.gov

Sample records for common genetic mechanism

  1. Transcriptomic analysis of genetically defined autism candidate genes reveals common mechanisms of action

    PubMed Central

    2013-01-01

    Background Austism spectrum disorder (ASD) is a heterogeneous behavioral disorder or condition characterized by severe impairment of social engagement and the presence of repetitive activities. The molecular etiology of ASD is still largely unknown despite a strong genetic component. Part of the difficulty in turning genetics into disease mechanisms and potentially new therapeutics is the sheer number and diversity of the genes that have been associated with ASD and ASD symptoms. The goal of this work is to use shRNA-generated models of genetic defects proposed as causative for ASD to identify the common pathways that might explain how they produce a core clinical disability. Methods Transcript levels of Mecp2, Mef2a, Mef2d, Fmr1, Nlgn1, Nlgn3, Pten, and Shank3 were knocked-down in mouse primary neuron cultures using shRNA constructs. Whole genome expression analysis was conducted for each of the knockdown cultures as well as a mock-transduced culture and a culture exposed to a lentivirus expressing an anti-luciferase shRNA. Gene set enrichment and a causal reasoning engine was employed to identify pathway level perturbations generated by the transcript knockdown. Results Quantification of the shRNA targets confirmed the successful knockdown at the transcript and protein levels of at least 75% for each of the genes. After subtracting out potential artifacts caused by viral infection, gene set enrichment and causal reasoning engine analysis showed that a significant number of gene expression changes mapped to pathways associated with neurogenesis, long-term potentiation, and synaptic activity. Conclusions This work demonstrates that despite the complex genetic nature of ASD, there are common molecular mechanisms that connect many of the best established autism candidate genes. By identifying the key regulatory checkpoints in the interlinking transcriptional networks underlying autism, we are better able to discover the ideal points of intervention that provide the

  2. DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases

    PubMed Central

    Bettencourt, Conceição; Hensman‐Moss, Davina; Flower, Michael; Wiethoff, Sarah; Brice, Alexis; Goizet, Cyril; Stevanin, Giovanni; Koutsis, Georgios; Karadima, Georgia; Panas, Marios; Yescas‐Gómez, Petra; García‐Velázquez, Lizbeth Esmeralda; Alonso‐Vilatela, María Elisa; Lima, Manuela; Raposo, Mafalda; Traynor, Bryan; Sweeney, Mary; Wood, Nicholas; Giunti, Paola; Durr, Alexandra; Holmans, Peter; Houlden, Henry; Tabrizi, Sarah J.

    2016-01-01

    Objective The polyglutamine diseases, including Huntington's disease (HD) and multiple spinocerebellar ataxias (SCAs), are among the commonest hereditary neurodegenerative diseases. They are caused by expanded CAG tracts, encoding glutamine, in different genes. Longer CAG repeat tracts are associated with earlier ages at onset, but this does not account for all of the difference, and the existence of additional genetic modifying factors has been suggested in these diseases. A recent genome‐wide association study (GWAS) in HD found association between age at onset and genetic variants in DNA repair pathways, and we therefore tested whether the modifying effects of variants in DNA repair genes have wider effects in the polyglutamine diseases. Methods We assembled an independent cohort of 1,462 subjects with HD and polyglutamine SCAs, and genotyped single‐nucleotide polymorphisms (SNPs) selected from the most significant hits in the HD study. Results In the analysis of DNA repair genes as a group, we found the most significant association with age at onset when grouping all polyglutamine diseases (HD+SCAs; p = 1.43 × 10–5). In individual SNP analysis, we found significant associations for rs3512 in FAN1 with HD+SCAs (p = 1.52 × 10–5) and all SCAs (p = 2.22 × 10–4) and rs1805323 in PMS2 with HD+SCAs (p = 3.14 × 10–5), all in the same direction as in the HD GWAS. Interpretation We show that DNA repair genes significantly modify age at onset in HD and SCAs, suggesting a common pathogenic mechanism, which could operate through the observed somatic expansion of repeats that can be modulated by genetic manipulation of DNA repair in disease models. This offers novel therapeutic opportunities in multiple diseases. Ann Neurol 2016;79:983–990 PMID:27044000

  3. A common genetic mechanism determines plasma apolipoprotein B levels and dense LDL subfraction distribution in familial combined hyperlipidemia.

    PubMed Central

    Juo, S H; Bredie, S J; Kiemeney, L A; Demacker, P N; Stalenhoef, A F

    1998-01-01

    Familial combined hyperlipidemia (FCH) is a common lipid disorder characterized by elevations of plasma cholesterol and/or triglyceride in first-degree relatives. A predominance of small, dense LDL particles and elevated apolipoprotein B (apoB) levels is commonly found in members of FCH families. Many studies have investigated the genetic mechanisms determining individuals' lipid levels, in FCH families. Previously, we demonstrated a major gene effect on LDL particle size and codominant Mendelian inheritance involved in determination of apoB levels in a sample of 40 well-defined FCH families. An elevation of apoB levels is associated metabolically with a predominance of small, dense LDL particles in FCH. To establish whether a common gene regulates both traits, we conducted a bivariate genetic analysis to test the hypothesis of a common genetic mechanism. In this study, we found that 66% of the total phenotypic correlation is due to shared genetic components. Further bivariate segregation analysis suggested that both traits share a common major gene plus individual polygenic components. This common major gene explains 37% of the variance of adjusted LDL particle size and 23% of the variance of adjusted apoB levels. Our study suggests that a major gene that has pleiotropic effects on LDL particle size and apoB levels may be the gene underlying FCH in the families we studied. PMID:9683593

  4. Resilience to orthostasis and haemorrhage: A pilot study of common genetic and conditioning mechanisms

    PubMed Central

    Davydov, Dmitry M.; Zhdanov, Renad I.; Dvoenosov, Vladimir G.; Kravtsova, Olga A.; Voronina, Elena N.; Filipenko, Maxim L.

    2015-01-01

    A major challenge presently is not only to identify the genetic polymorphisms increasing risk to diseases, but to also find out factors and mechanisms, which can counteract a risk genotype by developing a resilient phenotype. The objective of this study was to examine acquired and innate vagal mechanisms that protect against physical challenges and haemorrhages in 19 athletes and 61 non-athletes. These include examining change in heart rate variability (HF-HRV; an indicator of vagus activity) in response to orthostatic challenge, platelet count (PLT), mean platelet volume (MPV), and single-nucleotide polymorphisms in genes that encode several coagulation factors, PAI-1, and MTHFR. Individual differences in PLT and MPV were significant predictors, with opposite effects, of the profiles of the HF-HRV changes in response to orthostasis. Regular physical training of athletes indirectly (through MPV) modifies the genetic predisposing effects of some haemostatic factors (PAI-1 and MTHFR) on vagal tone and reactivity. Individual differences in vagal tone were also associated with relationships between Factor 12 C46T and Factor 11 C22771T genes polymorphisms. This study showed that genetic predispositions for coagulation are modifiable. Its potential significance is promoting advanced protection against haemorrhages in a variety of traumas and injuries, especially in individuals with coagulation deficits. PMID:26024428

  5. Genetics implicate common mechanisms in autism and schizophrenia: synaptic activity and immunity.

    PubMed

    Liu, Xiaoming; Li, Zhengwei; Fan, Conghai; Zhang, Dongli; Chen, Jiao

    2017-08-01

    The diagnosis of debilitating psychiatric disorders like autism spectrum disorder (ASD) and schizophrenia (SCHZ) is on the rise. These are severe conditions that lead to social isolation and require lifelong professional care. Improved diagnosis of ASD and SCHZ provides early access to medication and therapy, but the reality is that the mechanisms and the cellular pathology underlying these conditions are mostly unknown at this time. Although both ASD and SCHZ have strong inherited components, genetic risk seems to be distributed in hundreds of variants, each conferring low risk. The poor understanding of the genetics of ASD and SCHZ is a significant hurdle to developing effective treatments for these costly conditions. The recent implementation of next-generation sequencing technologies and the creation of large consortia have started to reveal the genetic bases of ASD and SCHZ. Alterations in gene expression regulation, synaptic architecture and activity and immunity seem to be the main cellular mechanisms contributing to both ASD and SCHZ, a surprising overlap given the distinct phenotypes and onset of these conditions. These diverse pathways seem to converge in aberrant synaptic plasticity and remodelling, which leads to altered connectivity between relevant brain regions. Continuous efforts to understand the genetic basis of ASD and SCHZ will soon lead to significant progress in the mechanistic understanding of these prominent psychiatric disorders and enable the development of disease-modifying therapies for these devastating conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Integrative genomic profiling reveals conserved genetic mechanisms for tumorigenesis in common entities of non-Hodgkin's lymphoma.

    PubMed

    Green, Michael R; Aya-Bonilla, Carlos; Gandhi, Maher K; Lea, Rod A; Wellwood, Jeremy; Wood, Peter; Marlton, Paula; Griffiths, Lyn R

    2011-05-01

    Recent developments in genomic technologies have resulted in increased understanding of pathogenic mechanisms and emphasized the importance of central survival pathways. Here, we use a novel bioinformatic based integrative genomic profiling approach to elucidate conserved mechanisms of lymphomagenesis in the three commonest non-Hodgkin's lymphoma (NHL) entities: diffuse large B-cell lymphoma, follicular lymphoma, and B-cell chronic lymphocytic leukemia. By integrating genome-wide DNA copy number analysis and transcriptome profiling of tumor cohorts, we identified genetic lesions present in each entity and highlighted their likely target genes. This revealed a significant enrichment of components of both the apoptosis pathway and the mitogen activated protein kinase pathway, including amplification of the MAP3K12 locus in all three entities, within the set of genes targeted by genetic alterations in these diseases. Furthermore, amplification of 12p13.33 was identified in all three entities and found to target the FOXM1 oncogene. Amplification of FOXM1 was subsequently found to be associated with an increased MYC oncogenic signaling signature, and siRNA-mediated knock-down of FOXM1 resulted in decreased MYC expression and induced G2 arrest. Together, these findings underscore genetic alteration of the MAPK and apoptosis pathways, and genetic amplification of FOXM1 as conserved mechanisms of lymphomagenesis in common NHL entities. Integrative genomic profiling identifies common central survival mechanisms and highlights them as attractive targets for directed therapy. 2011 Wiley-Liss, Inc.

  7. Mechanisms of population genetic heterogeneity among molting common mergansers on Kodiak Island, Alaska: implications for assessments of migratory connectivity

    USGS Publications Warehouse

    Pearce, John M.; Zwiefelhofer, Denny; Maryanski, Nate

    2009-01-01

    Quantifying population genetic heterogeneity within nonbreeding aggregations can inform our understanding of patterns of site fidelity, migratory connectivity, and gene flow between breeding and nonbreeding areas. However, characterizing mechanisms that contribute to heterogeneity, such as migration and dispersal, is required before site fidelity and migratory connectivity can be assessed accurately. We studied nonbreeding groups of Common Mergansers (Mergus merganser) molting on Kodiak Island, Alaska, from 2005 to 2007, using banding data to assess rates of recapture, mitochondrial (mt) DNA to determine natal area, and nuclear microsatellite genotypes to assess dispersal. Using baseline information from differentiated mtDNA haplogroups across North America, we were able to assign individuals to natal regions and document population genetic heterogeneity within and among molting groups. Band-recovery and DNA data suggest that both migration from and dispersal among natal areas contribute to admixed groups of males molting on Kodiak Island. A lack of differentiation in the Common Merganser's nuclear, bi-parentally inherited DNA, observed across North America, implies that dispersal can mislead genetic assessments of migratory connectivity and assignments of nonbreeding individuals to breeding areas. Thus multiple and independent data types are required to account for such behaviors before accurate assessments of migratory connectivity can be made.

  8. Eight Common Genetic Variants Associated with Serum DHEAS Levels Suggest a Key Role in Ageing Mechanisms

    PubMed Central

    Bell, Jordana T.; Bhasin, Shalender; Eriksson, Joel; Eriksson, Anna; Ernst, Florian; Ferrucci, Luigi; Frayling, Timothy M.; Glass, Daniel; Grundberg, Elin; Haring, Robin; Hedman, Åsa K.; Hofman, Albert; Kiel, Douglas P.; Kroemer, Heyo K.; Liu, Yongmei; Lunetta, Kathryn L.; Maggio, Marcello; Lorentzon, Mattias; Mangino, Massimo; Melzer, David; Miljkovic, Iva; Nica, Alexandra; Penninx, Brenda W. J. H.; Vasan, Ramachandran S.; Rivadeneira, Fernando; Small, Kerrin S.; Soranzo, Nicole; Uitterlinden, André G.; Völzke, Henry; Wilson, Scott G.; Xi, Li; Zhuang, Wei Vivian; Harris, Tamara B.; Murabito, Joanne M.; Ohlsson, Claes; Murray, Anna; de Jong, Frank H.; Spector, Tim D.; Wallaschofski, Henri

    2011-01-01

    Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands—yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10−36), SULT2A1 (rs2637125; p = 2.61×10−19), ARPC1A (rs740160; p = 1.56×10−16), TRIM4 (rs17277546; p = 4.50×10−11), BMF (rs7181230; p = 5.44×10−11), HHEX (rs2497306; p = 4.64×10−9), BCL2L11 (rs6738028; p = 1.72×10−8), and CYP2C9 (rs2185570; p = 2.29×10−8). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS. PMID:21533175

  9. Commonalities in biological pathways, genetics, and cellular mechanism between Alzheimer Disease and other neurodegenerative diseases: An in silico-updated overview.

    PubMed

    Ahmad, Khurshid; Baig, Mohammad Hassan; Mushtaq, Gohar; Kamal, Mohammad Amjad; Greig, Nigel H; Choi, Inho

    2017-02-03

    Alzheimer's disease (AD) is the most common and well-studied neurodegenerative disease (ND). Biological pathways, pathophysiology and genetics of AD show commonalities with other NDs viz. Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Prion Disease and Dentatorubral-pallidoluysian atrophy (DRPLA). Many of the NDs, sharing the common features and molecular mechanisms suggests that pathology may be directly comparable and be implicated in disease prevention and development of highly effective therapies. In this review, a brief description of pathophysiology, clinical symptoms and available treatment of various NDs have been explored with special emphasis on AD. Commonalities in these fatal NDs provide support for therapeutic advancements and enhance the understanding of disease manifestation. The studies concentrating on the commonalities in biological pathways, cellular mechanisms and genetics may provide the scope to researchers to identify few novel common target/s for disease prevention and development of effective common drugs for multi-neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Construction of gene clusters resembling genetic causal mechanisms for common complex disease with an application to young-onset hypertension.

    PubMed

    Lynn, Ke-Shiuan; Lu, Chen-Hua; Yang, Han-Ying; Hsu, Wen-Lian; Pan, Wen-Harn

    2013-07-23

    Lack of power and reproducibility are caveats of genetic association studies of common complex diseases. Indeed, the heterogeneity of disease etiology demands that causal models consider the simultaneous involvement of multiple genes. Rothman's sufficient-cause model, which is well known in epidemiology, provides a framework for such a concept. In the present work, we developed a three-stage algorithm to construct gene clusters resembling Rothman's causal model for a complex disease, starting from finding influential gene pairs followed by grouping homogeneous pairs. The algorithm was trained and tested on 2,772 hypertensives and 6,515 normotensives extracted from four large Caucasian and Taiwanese databases. The constructed clusters, each featured by a major gene interacting with many other genes and identified a distinct group of patients, reproduced in both ethnic populations and across three genotyping platforms. We present the 14 largest gene clusters which were capable of identifying 19.3% of hypertensives in all the datasets and 41.8% if one dataset was excluded for lack of phenotype information. Although a few normotensives were also identified by the gene clusters, they usually carried less risky combinatory genotypes (insufficient causes) than the hypertensive counterparts. After establishing a cut-off percentage for risky combinatory genotypes in each gene cluster, the 14 gene clusters achieved a classification accuracy of 82.8% for all datasets and 98.9% if the information-short dataset was excluded. Furthermore, not only 10 of the 14 major genes but also many other contributing genes in the clusters are associated with either hypertension or hypertension-related diseases or functions. We have shown with the constructed gene clusters that a multi-causal pie-multi-component approach can indeed improve the reproducibility of genetic markers for complex disease. In addition, our novel findings including a major gene in each cluster and sufficient risky

  11. Common endocrine and genetic mechanisms of behavioral development in male and worker honey bees and the evolution of division of labor.

    PubMed Central

    Giray, T; Robinson, G E

    1996-01-01

    Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior. PMID:8876203

  12. Common endocrine and genetic mechanisms of behavioral development in male and worker honey bees and the evolution of division of labor.

    PubMed

    Giray, T; Robinson, G E

    1996-10-15

    Temporal polyethism is a highly derived form of behavioral development displayed by social insects. Hormonal and genetic mechanisms regulating temporal polyethism in worker honey bees have been identified, but the evolution of these mechanisms is not well understood. We performed three experiments with male honey bees (drones) to investigate how mechanisms regulating temporal polyethism may have evolved because, relative to workers, drones display an intriguing combination of similarities and differences in behavioral development. We report that behavioral development in drones is regulated by mechanisms common to workers. In experiment 1, drones treated with the juvenile hormone (JH) analog methoprene started flying at significantly younger ages than did control drones, as is the case for workers. In experiment 2, there was an age-related increase in JH associated with the onset of drone flight, as in workers. In experiment 3, drones derived from workers with fast rates of behavioral development themselves started flying at younger ages than drones derived from workers with slower rates of behavioral development. These results suggest that endocrine and genetic mechanisms associated with temporal polyethism did not evolve strictly within the context of worker social behavior.

  13. Genetic influences in common respiratory disorders.

    PubMed

    Workman, M Linda; Winkelman, Chris

    2008-06-01

    Respiratory disorders are common problems for adults and children in North America and generally represent the outcome of gene-environment interactions. Some problems are considered genetic in origin, such as cystic fibrosis, and others are considered environmental in origin, such as respiratory infections. Emerging information indicates that even genetic-based disorders are influenced by the environment and that environmental-based disorders are modified by personal genetic factors in individual physiologic responses. An understanding of an individual's personal risk factors for disease or health problem development can allow health care professionals to tailor health promotion strategies and treatment plans with appropriate environmental manipulation. This article explores the genetic influences that may affect the individual's physiologic responses and the consequences of environmental stimuli.

  14. Genetic control of inflorescence in common bean.

    PubMed

    Guilherme, S R; Ramalho, M A P; de F B Abreu, A; Pereira, L A

    2014-12-04

    The number of pods per common bean plant is a primary component of grain yield, which depends on the number of flowers produced and on the flower set. Thus, a larger number of flowers per plant would increase yield. Lines with inflorescences that had a large number of flowers compared to common bean plants now under cultivation were identified. We analyzed the genetic control of this trait and its association with grain yield. The cultivar BRSMG Talismã was crossed with 2 lines, L.59583 and L.59692, which have a large number of flowers. The F1, F2, and F3 generations were obtained. These generations were assessed together with the parents in a randomized block experimental design with 2 replications. The traits assessed included length of inflorescence, number of pods per inflorescence, number of pods per plant, number of grains per plant, 100-grain weight, and grain yield per plant. Mean genetic components and variance were estimated. The traits length of inflorescence and number of pods per inflorescence exhibited genetic control with predominance that showed an additive effect. In the 2 crosses, genetic control of grain yield and of its primary components showed that the allelic interaction of dominance was high. The wide variability in the traits assessed may be used to increase yield of the common bean plant by increasing the number of flowers on the plant.

  15. Genetic defects in common variable immunodeficiency

    PubMed Central

    Kopecký, O; Lukešová, Š

    2007-01-01

    Common variable immunodeficiency (CVID) is the most frequent clinically manifested primary immunodeficiency. According to clinical and laboratory findings, CVID is a heterogeneous group of diseases. Recently, the defects of molecules regulating activation and terminal differentiation of B lymphocytes have been described in some patients with CVID. In this study, we show the overview of deficiencies of inducible costimulator, transmembrane activator and calcium-modulator and cytophilin ligand interactor, CD19 molecules, their genetic basis, pathogenesis and clinical manifestations. PMID:17627754

  16. Latent common genetic components of obesity traits

    PubMed Central

    Harders, R; Luke, A; Zhu, X; Cooper, RS

    2008-01-01

    Background Obesity is rapidly becoming a global epidemic. Unlike many complex human diseases, obesity is defined not just by a single trait or phenotype, but jointly by measures of anthropometry and metabolic status. Methods We applied maximum likelihood factor analysis to identify common latent factors underlying observed covariance in multiple obesity-related measures. Both the genetic components and the mode of inheritance of the common factors were evaluated. A total of 1775 participants from 590 families for whom measures on obesity-related traits were available were included in this study. Results The average age of participants was 37 years, 39% of the participants were obese (body mass index ≥ 30.0 kg/m2) and 26% were overweight (body mass index 25.0 - 29.9 kg/m2). Two latent common factors jointly accounting for over 99% of the correlations among obesity-related traits were identified. Complex segregation analysis of the age and sex-adjusted latent factors provide evidence for a Mendelian mode of inheritance of major genetic effect with heritability estimates of 40.4% and 47.5% for the first and second factors, respectively. Conclusions These findings provide a support for multivariate-based approach for investigating pleiotropic effects on obesity-related traits which can be applied in both genetic linkage and association mapping. PMID:18936762

  17. Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common genetic mechanism

    PubMed Central

    Feldman, C R; Durso, A M; Hanifin, C T; Pfrender, M E; Ducey, P K; Stokes, A N; Barnett, K E; Brodie III, E D; Brodie Jr, E D

    2016-01-01

    Convergent evolution of tetrodotoxin (TTX) resistance, at both the phenotypic and genetic levels, characterizes coevolutionary arms races between amphibians and their snake predators around the world, and reveals remarkable predictability in the process of adaptation. Here we examine the repeatability of the evolution of TTX resistance in an undescribed predator–prey relationship between TTX-bearing Eastern Newts (Notophthalmus viridescens) and Eastern Hog-nosed Snakes (Heterodon platirhinos). We found that that local newts contain levels of TTX dangerous enough to dissuade most predators, and that Eastern Hog-nosed Snakes within newt range are highly resistant to TTX. In fact, these populations of Eastern Hog-nosed Snakes are so resistant to TTX that the potential for current reciprocal selection might be limited. Unlike all other cases of TTX resistance in vertebrates, H. platirhinos lacks the adaptive amino acid substitutions in the skeletal muscle sodium channel that reduce TTX binding, suggesting that physiological resistance in Eastern Hog-nosed Snakes is conferred by an alternate genetic mechanism. Thus, phenotypic convergence in this case is not due to parallel molecular evolution, indicating that there may be more than one way for this adaptation to arise, even among closely related species. PMID:26374236

  18. Is there more than one way to skin a newt? Convergent toxin resistance in snakes is not due to a common genetic mechanism.

    PubMed

    Feldman, C R; Durso, A M; Hanifin, C T; Pfrender, M E; Ducey, P K; Stokes, A N; Barnett, K E; Brodie, E D; Brodie, E D

    2016-01-01

    Convergent evolution of tetrodotoxin (TTX) resistance, at both the phenotypic and genetic levels, characterizes coevolutionary arms races between amphibians and their snake predators around the world, and reveals remarkable predictability in the process of adaptation. Here we examine the repeatability of the evolution of TTX resistance in an undescribed predator-prey relationship between TTX-bearing Eastern Newts (Notophthalmus viridescens) and Eastern Hog-nosed Snakes (Heterodon platirhinos). We found that that local newts contain levels of TTX dangerous enough to dissuade most predators, and that Eastern Hog-nosed Snakes within newt range are highly resistant to TTX. In fact, these populations of Eastern Hog-nosed Snakes are so resistant to TTX that the potential for current reciprocal selection might be limited. Unlike all other cases of TTX resistance in vertebrates, H. platirhinos lacks the adaptive amino acid substitutions in the skeletal muscle sodium channel that reduce TTX binding, suggesting that physiological resistance in Eastern Hog-nosed Snakes is conferred by an alternate genetic mechanism. Thus, phenotypic convergence in this case is not due to parallel molecular evolution, indicating that there may be more than one way for this adaptation to arise, even among closely related species.

  19. Genetics of allergy and allergic sensitization: common variants, rare mutations

    PubMed Central

    Bønnelykke, Klaus; Sparks, Rachel; Waage, Johannes; Milner, Joshua D

    2015-01-01

    Our understanding of the specific genetic lesions in allergy has improved in recent years due to identification of common risk variants from genome-wide association studies (GWAS) and studies of rare, monogenic diseases. Large-scale GWAS have identified novel susceptibility loci and provided information about shared genetics between allergy, related phenotypes and autoimmunity. Studies of monogenic diseases have elucidated critical cellular pathways and protein functions responsible for allergy. These complementary approaches imply genetic mechanisms involved in Th2 immunity, T-cell differentiation, TGFβ signaling, regulatory T-cell function and skin/mucosal function as well as yet unknown mechanisms associated with newly identified genes. Future studies, in combination with data on gene expression and epigenetics, are expected to increase our understanding of the pathogenesis of allergy. PMID:26386198

  20. Genetic Diversity of Croatian Common Bean Landraces

    PubMed Central

    Carović-Stanko, Klaudija; Liber, Zlatko; Vidak, Monika; Barešić, Ana; Grdiša, Martina; Lazarević, Boris; Šatović, Zlatko

    2017-01-01

    In Croatia, the majority of the common bean production is based on local landraces, grown by small-scale farmers in low input production systems. Landraces are adapted to the specific growing conditions and agro-environments and show a great morphological diversity. These local landraces are in danger of genetic erosion caused by complex socio-economic changes in rural communities. The low profitability of farms and their small size, the advanced age of farmers and the replacement of traditional landraces with modern bean cultivars and/or other more profitable crops have been identified as the major factors affecting genetic erosion. Three hundred accessions belonging to most widely used landraces were evaluated by phaseolin genotyping and microsatellite marker analysis. A total of 183 different multi-locus genotypes in the panel of 300 accessions were revealed using 26 microsatellite markers. Out of 183 accessions, 27.32% were of Mesoamerican origin, 68.31% of Andean, while 4.37% of accessions represented putative hybrids between gene pools. Accessions of Andean origin were further classified into phaseolin type II (“H” or “C”) and III (“T”), the latter being more frequent. A model-based cluster analysis based on microsatellite markers revealed the presence of three clusters in congruence with the results of phaseolin type analysis. PMID:28473842

  1. Epigenetic Mechanisms in Commonly Occurring Cancers

    PubMed Central

    2012-01-01

    Cancer is a collection of very complex diseases that share many traits while differing in many ways as well. This makes a universal cure difficult to attain, and it highlights the importance of understanding each type of cancer at a molecular level. Although many strides have been made in identifying the genetic causes for some cancers, we now understand that simple changes in the primary DNA sequence cannot explain the many steps that are necessary to turn a normal cell into a rouge cancer cell. In recent years, some research has shifted to focusing on detailing epigenetic contributions to the development and progression of cancer. These changes occur apart from primary genomic sequences and include DNA methylation, histone modifications, and miRNA expression. Since these epigenetic modifications are reversible, drugs targeting epigenetic changes are becoming more common in clinical settings. Daily discoveries elucidating these complex epigenetic processes are leading to advances in the field of cancer research. These advances, however, come at a rapid and often overwhelming pace. This review specifically summarizes the main epigenetic mechanisms currently documented in solid tumors common in the United States and Europe. PMID:22519822

  2. Is there a Common Genetic Basis for Autoimmune Diseases?

    PubMed Central

    Anaya, Juan-Manuel; Gómez, LuisMiguel; Castiblanco, John

    2006-01-01

    Autoimmune diseases (ADs) represent a diverse collection of diseases in terms of their demographic profile and primary clinical manifestations. The commonality between them however, is the damage to tissues and organs that arises from the response to self-antigens. The presence of shared pathophysiological mechanisms within ADs has stimulated searches for common genetic roots to these diseases. Two approaches have been undertaken to sustain the “common genetic origin” theory of ADs. Firstly, a clinical genetic analysis showed that autoimmunity aggregates within families of probands diagnosed with primary Sjögren's (pSS) syndrome or type 1 diabetes mellitus (T1D). A literature review supported the establishment of a familiar cluster of ADs depending upon the proband's disease phenotype. Secondly, in a same and well-defined population, a large genetic association study indicated that a number of polymorphic genes (i.e. HLA-DRB1, TNF and PTPN22) influence the susceptibility for acquiring different ADs. Likewise, association and linkage studies in different populations have revealed that several susceptibility loci overlap in ADs, and clinical studies have shown that frequent clustering of several ADs occurs. Thus, the genetic factors for ADs consist of two types: those which are common to many ADs (acting in epistatic pleitropy) and those that are specific to a given disorder. Their identification and functional characterization will allow us to predict their effect as well as to indicate potential new therapeutic interventions. Both autoimmunity family history and the co-occurrence of ADs in affected probands should be considered when performing genetic association and linkage studies. PMID:17162361

  3. Genetic mechanisms of apomixis.

    PubMed Central

    Spielman, Melissa; Vinkenoog, Rinke; Scott, Rod J

    2003-01-01

    The introduction of apomixis to crops would allow desirable genotypes to be propagated while preventing undesirable gene flow, but so far there has been little success in transferring this trait from a natural apomict to another species. One explanation is the sensitivity of endosperm to changes in relative maternal and paternal contribution owing to parental imprinting, an epigenetic system of transcriptional regulation by which some genes are expressed from only the maternally or paternally contributed allele. In sexual species, endosperm typically requires a ratio of two maternal genomes to one paternal genome for normal development, but this ratio is often altered in apomicts, suggesting that the imprinting system is altered as well. We present evidence that modification of DNA methylation is one mechanism by which the imprinting system could be altered to allow endosperm development in apomicts. Another feature of natural apomixis is the modification of the normal fertilization programme. Sexual reproduction uses both sperm from each pollen grain, but pseudogamous apomicts, which require a sexual endosperm to support the asexual embryo, often use just one. We present evidence that multiple fertilization of the central cell is possible in Arabidopsis thaliana, suggesting that pseudogamous apomicts may also need to acquire a mechanism for preventing more than one sperm from contributing to the endosperm. We conclude that strategies to transfer apomixis to crop species should take account of endosperm development and particularly its sensitivity to parental imprinting, as well as the mechanism of fertilization. PMID:12831475

  4. Genetic Determinants of Osteoporosis: Common Bases to Cardiovascular Diseases?

    PubMed Central

    Marini, Francesca; Brandi, Maria Luisa

    2010-01-01

    Osteoporosis is the most common and serious age-related skeletal disorder, characterized by a low bone mass and bone microarchitectural deterioration, with a consequent increase in bone fragility and susceptibility to spontaneous fractures, and it represents a major worldwide health care problem with important implications for health care costs, morbidity and mortality. Today is well accepted that osteoporosis is a multifactorial disorder caused by the interaction between environment and genes that singularly exert modest effects on bone mass and other aspects of bone strength and fracture risk. The individuation of genetic factors responsible for osteoporosis predisposition and development is fundamental for the disease prevention and for the setting of novel therapies, before fracture occurrence. In the last decades the interest of the Scientific Community has been concentrated in the understanding the genetic bases of this disease but with controversial and/or inconclusive results. This review tries to summarize data on the most representative osteoporosis candidate genes. Moreover, since recently osteoporosis and cardiovascular diseases have shown to share common physiopathological mechanisms, this review also provides information on the current understanding of osteoporosis and cardiovascular diseases common genetic bases. PMID:20948561

  5. Identifying genetics and genomics nursing competencies common among published recommendations.

    PubMed

    Greco, Karen E; Salveson, Catherine

    2009-10-01

    The purpose of this article is to identify published recommendations for genetics and genomics competencies or curriculum for nurses in the United States and to summarize genetic and genomic nursing competencies based on common themes among these documents. A review of the literature between January 1998 and June 2008 was conducted. Efforts were also made to access the gray literature. Five consensus documents describing recommendations for genetics and genomics competencies for nurses meeting inclusion criteria were analyzed. Twelve genetics and genomics competencies were created based on common themes among the recommendations. These competencies include: demonstrate an understanding of basic genetic and genomic concepts, provide and explain genetic and genomic information, refer to appropriate genetics professionals and services, and identify the limits of one's own genetics and genomics expertise. The competencies represent fundamental genetics and genomics competencies for nurses on the basis of common themes among several consensus recommendations identified in the literature.

  6. Common genetic variants influence human subcortical brain structures

    PubMed Central

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  7. Common genetic variants influence human subcortical brain structures.

    PubMed

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  8. Space Station Freedom common berthing mechanism

    NASA Technical Reports Server (NTRS)

    Illi, Erik

    1992-01-01

    The Common Berthing Mechanism (CBM) is a generic device used to join the pressurized elements of the Space Station Freedom (SSF) utilizing the Space Shuttle Orbiter Remote Manipulator System (SRMS) or the Space Station Remote Manipulator System (SSRMS). The two berthing halves, the active, and the passive, maintain a pressurized atmosphere to allow astronaut passage, as well as to provide a structural linkage between elements. The generic design of the CBM allows any Passive Berthing Mechanism to berth with any Active Berthing Mechanism, permitting a variety of pressurized module patterns to be built.

  9. The phenotypic and genetic signatures of common musculoskeletal pain conditions

    PubMed Central

    Diatchenko, Luda; Fillingim, Roger B.; Smith, Shad B.; Maixner, William

    2014-01-01

    Musculoskeletal pain conditions, such as fibromyalgia and low back pain, tend to coexist in affected individuals and are characterized by a report of pain greater than expected based on the results of a standard physical evaluation. The pathophysiology of these conditions is largely unknown, we lack biological markers for accurate diagnosis, and conventional therapeutics have limited effectiveness. Growing evidence suggests that chronic pain conditions are associated with both physical and psychological triggers, which initiate pain amplification and psychological distress; thus, susceptibility is dictated by complex interactions between genetic and environmental factors. Herein, we review phenotypic and genetic markers of common musculoskeletal pain conditions, selected based on their association with musculoskeletal pain in previous research. The phenotypic markers of greatest interest include measures of pain amplification and ‘psychological’ measures (such as emotional distress, somatic awareness, psychosocial stress and catastrophizing). Genetic polymorphisms reproducibly linked with musculoskeletal pain are found in genes contributing to serotonergic and adrenergic pathways. Elucidation of the biological mechanisms by which these markers contribute to the perception of pain in these patients will enable the development of novel effective drugs and methodologies that permit better diagnoses and approaches to personalized medicine. PMID:23545734

  10. A Review of Vascular Anomalies: Genetics and Common Syndromes

    PubMed Central

    Killion, Elizabeth; Mohan, Kriti; Lee, Edward I.

    2014-01-01

    Vascular tumors and malformations are unique in that affected cells exhibit disrupted angiogenesis. The current treatment options often yield suboptimal results. New insight into the genetics and molecular basis of vascular anomalies may pave the way for potential development of targeted therapy. The authors review the genetic and molecular basis of vascular anomalies and common associated syndromes. PMID:25045331

  11. Genetics of Common Endocrine Disease: The Present and the Future.

    PubMed

    Goodarzi, Mark O

    2016-03-01

    In honor of the 75th issue of the Journal of Clinical Endocrinology and Metabolism, the author was invited to present his perspectives on genetics in human endocrinology. This paper reviews what the field has achieved in the genetics of common endocrine disease, and offers predictions on where the field will move in the future and its impact on endocrine clinical practice. The October 2015 data release of the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) Catalog of Published Genome-wide Association Studies was queried regarding endocrinologic diseases and traits. PubMed searches were focused on genetic prediction of disease, genetic findings and drug targets, functional interrogation of genetic loci, use of genetics to subtype disease, missing heritability, systems genomics, and higher order chromatin structures as regulators of gene function. Nearly a quarter of genome wide association study findings concern endocrinologic diseases and traits. While these findings have not yet dramatically altered clinical care, genetics will have a major impact by providing the drug targets of tomorrow, facilitated by experimental and bioinformatic advances that will shorten the time from gene discovery to drug development. Use of genetic findings to subtype common endocrine disease will allow more precise prevention and treatment efforts. Future advances will allow us to move away from the common view of DNA as a string of letters, allowing exploration of higher order structure that likely explains much "missing heritability." The future will see a greater role of genetics at the bedside, with genetic epidemiologic discoveries leading not only to new treatments of endocrine disease, but also helping us prescribe the right drug to the right patients by allowing subclassification of common heterogeneous endocrine conditions. Future technological breakthroughs will reveal the heritable mysteries hidden in chromatin structure, leading to a

  12. Genetics of Common Endocrine Disease: The Present and the Future

    PubMed Central

    2016-01-01

    Context: In honor of the 75th issue of the Journal of Clinical Endocrinology and Metabolism, the author was invited to present his perspectives on genetics in human endocrinology. This paper reviews what the field has achieved in the genetics of common endocrine disease, and offers predictions on where the field will move in the future and its impact on endocrine clinical practice. Evidence Acquisition: The October 2015 data release of the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) Catalog of Published Genome-wide Association Studies was queried regarding endocrinologic diseases and traits. PubMed searches were focused on genetic prediction of disease, genetic findings and drug targets, functional interrogation of genetic loci, use of genetics to subtype disease, missing heritability, systems genomics, and higher order chromatin structures as regulators of gene function. Evidence Synthesis: Nearly a quarter of genome wide association study findings concern endocrinologic diseases and traits. While these findings have not yet dramatically altered clinical care, genetics will have a major impact by providing the drug targets of tomorrow, facilitated by experimental and bioinformatic advances that will shorten the time from gene discovery to drug development. Use of genetic findings to subtype common endocrine disease will allow more precise prevention and treatment efforts. Future advances will allow us to move away from the common view of DNA as a string of letters, allowing exploration of higher order structure that likely explains much “missing heritability.” Conclusions: The future will see a greater role of genetics at the bedside, with genetic epidemiologic discoveries leading not only to new treatments of endocrine disease, but also helping us prescribe the right drug to the right patients by allowing subclassification of common heterogeneous endocrine conditions. Future technological breakthroughs will reveal

  13. [Molecular genetic and epigenetic mechanisms of hepatocarcinogenesis].

    PubMed

    Xue, Kai-Xian

    2005-06-01

    Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and one of the most frequent human malignant neoplasms. Common risk factors of human HCC include chronic hepatitis virus (HBV and HCV) infection, dietary aflatoxin B1 (AFB1) ingestion, chronic alcohol abuse, and cirrhosis associated with genetic liver diseases. Hepatocarcinogenesis is the result of interaction between hereditary and environmental factors. Inheritance determines individual susceptibility to cancer; environment determines which susceptible individuals express cancer. Studies of genetic and epigenetic mechanisms of hepatocarcinogenesis showed that HCC development is a complex polygene and multipathway process; the activation of proto-oncogenes and the inactivation of tumor suppressor genes induced by genetic and epigenetic alterations are core biological processes of hepatocarcinogenesis; RB1, p53, and Wnt pathways are commonly affected in HCCs of different etiologies, which may reflect common pathologic sequence of HCC: chronic liver injury, cirrhosis, atypical hyperplastic nodules, and HCC of early stages. Hepatitis virus infection-associated HCCs have frequent alterations in RB1 pathway, including methylation of p16INK4a and RB1 genes and amplification of Cyclin D1. AFB1 exposure-associated HCCs have frequent alterations in p53 pathway; the G-->T mutation of p53 gene at codon 249 has been identified as a genetic hallmark of HCC caused by AFB1. Alcoholism-associated HCCs have frequent alterations in both RB1 and p53 pathways. The roles of some important genes related to cell apoptosis, DNA repair, drug metabolism, and tumor metastasis in hepatocarcinogenesis had been discussed.

  14. Common Genetic Variants Associate with Serum Phosphorus Concentration

    PubMed Central

    Glazer, Nicole L.; Köttgen, Anna; Felix, Janine F.; Hwang, Shih-Jen; Liu, Yongmei; Lohman, Kurt; Kritchevsky, Stephen B.; Hausman, Dorothy B.; Petersen, Ann-Kristin; Gieger, Christian; Ried, Janina S.; Meitinger, Thomas; Strom, Tim M.; Wichmann, H. Erich; Campbell, Harry; Hayward, Caroline; Rudan, Igor; de Boer, Ian H.; Psaty, Bruce M.; Rice, Kenneth M.; Chen, Yii-Der Ida; Li, Man; Arking, Dan E.; Boerwinkle, Eric; Coresh, Josef; Yang, Qiong; Levy, Daniel; van Rooij, Frank J.A.; Dehghan, Abbas; Rivadeneira, Fernando; Uitterlinden, André G.; Hofman, Albert; van Duijn, Cornelia M.; Shlipak, Michael G.; Kao, W.H. Linda; Witteman, Jacqueline C.M.; Siscovick, David S.; Fox, Caroline S.

    2010-01-01

    Phosphorus is an essential mineral that maintains cellular energy and mineralizes the skeleton. Because complex actions of ion transporters and regulatory hormones regulate serum phosphorus concentrations, genetic variation may determine interindividual variation in phosphorus metabolism. Here, we report a comprehensive genome-wide association study of serum phosphorus concentration. We evaluated 16,264 participants of European ancestry from the Cardiovascular Heath Study, Atherosclerosis Risk in Communities Study, Framingham Offspring Study, and the Rotterdam Study. We excluded participants with an estimated GFR <45 ml/min per 1.73 m2 to focus on phosphorus metabolism under normal conditions. We imputed genotypes to approximately 2.5 million single-nucleotide polymorphisms in the HapMap and combined study-specific findings using meta-analysis. We tested top polymorphisms from discovery cohorts in a 5444-person replication sample. Polymorphisms in seven loci with minor allele frequencies 0.08 to 0.49 associate with serum phosphorus concentration (P = 3.5 × 10−16 to 3.6 × 10−7). Three loci were near genes encoding the kidney-specific type IIa sodium phosphate co-transporter (SLC34A1), the calcium-sensing receptor (CASR), and fibroblast growth factor 23 (FGF23), proteins that contribute to phosphorus metabolism. We also identified genes encoding phosphatases, kinases, and phosphodiesterases that have yet-undetermined roles in phosphorus homeostasis. In the replication sample, five of seven top polymorphisms associate with serum phosphorous concentrations (P < 0.05 for each). In conclusion, common genetic variants associate with serum phosphorus in the general population. Further study of the loci identified in this study may help elucidate mechanisms of phosphorus regulation. PMID:20558539

  15. Prospects for genetically modified non-human primate models, including the common marmoset.

    PubMed

    Sasaki, Erika

    2015-04-01

    Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research.

  16. Evidence of Common Genetic Overlap Between Schizophrenia and Cognition.

    PubMed

    Hubbard, Leon; Tansey, Katherine E; Rai, Dheeraj; Jones, Peter; Ripke, Stephan; Chambert, Kimberly D; Moran, Jennifer L; McCarroll, Steven A; Linden, David E J; Owen, Michael J; O'Donovan, Michael C; Walters, James T R; Zammit, Stanley

    2016-05-01

    Cognitive impairment is a core feature of schizophrenia but there is limited understanding of the genetic relationship between cognition in the general population and schizophrenia. We examine how common variants associated with schizophreniaen massecontribute to childhood cognitive ability in a population-based sample, and the extent to which common genetic variants associated with childhood cognition explain variation in schizophrenia. Schizophrenia polygenic risk scores were derived from the Psychiatric Genomics Consortium (n= 69 516) and tested for association with IQ, attention, processing speed, working memory, problem solving, and social cognition in over 5000 children aged 8 from the Avon Longitudinal Study of Parents and Children birth cohort. Polygenic scores for these cognitive domains were tested for association with schizophrenia in a large UK schizophrenia sample (n= 11 853). Bivariate genome-wide complex trait analysis (GCTA) estimated the amount of shared genetic factors between schizophrenia and cognitive domains. Schizophrenia polygenic risk score was associated with lower performance IQ (P= .001) and lower full IQ (P= .013). Polygenic score for performance IQ was associated with increased risk for schizophrenia (P= 3.56E-04). Bivariate GCTA revealed moderate genetic correlation between schizophrenia and both performance IQ (rG= -.379,P= 6.62E-05) and full IQ (rG= -.202,P= 5.00E-03), with approximately 14% of the genetic component of schizophrenia shared with that for performance IQ. Our results support the presence of shared common genetic factors between schizophrenia and childhood cognitive ability. We observe a genetic relationship between schizophrenia and performance IQ but not verbal IQ or other cognitive variables, which may have implications for studies utilizing cognitive endophenotypes for psychosis.

  17. Genetic diversity analysis of common beans based on molecular markers

    PubMed Central

    Gill-Langarica, Homar R.; Muruaga-Martínez, José S.; Vargas-Vázquez, M.L. Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-01-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation. PMID:22215964

  18. Genetic diversity analysis of common beans based on molecular markers.

    PubMed

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  19. Parents' Attitudes Toward Pediatric Genetic Testing for Common Disease Risk

    PubMed Central

    Hensley Alford, Sharon; Emmons, Karen M.; Lipkus, Isaac M.; Wilfond, Benjamin S.; McBride, Colleen M.

    2011-01-01

    OBJECTIVE: To describe parents' attitudes toward pediatric genetic testing for common, adult-onset health conditions and to identify factors underlying these attitudes. PARTICIPANTS AND METHODS: Parents (n = 219) enrolled in a large, group-practice health plan were offered a “multiplex” genetic test for susceptibility to 8 common, adult-onset health conditions and completed an online survey assessing attitudes and beliefs about the risks and benefits of the test for their child, their willingness to consider having their child tested, and other psychosocial variables. RESULTS: Parents viewed the benefits of pediatric testing to outweigh its risks (positive decisional balance) and were moderately interested in pediatric testing. Variables associated with positive decisional balance included greater interest in knowing about gene-health associations in their child, anticipation of less difficulty understanding their child's genetic health risks, and more positive emotional reactions to learning about their child's decreased health risks (adjusted R2 = 0.33, P < .0001). Similarly, variables associated with greater parental willingness to test were being a mother (versus being a father), greater perceived risk of diseases in their child, greater interest in knowing about gene-health relationships in their child, anticipating less difficulty learning about their child's genetic health risks, anticipating more positive emotional reactions to learning about their child's decreased health risks, and positive decisional balance (adjusted R2 = 0.57, P < .0001). CONCLUSIONS: As genetic susceptibility testing for common, adult-onset health conditions proliferates, pediatricians should anticipate parents' interest in testing children and be prepared to facilitate informed decision making about such testing. PMID:21502235

  20. Identifying Common Genetic Risk Factors of Diabetic Neuropathies

    PubMed Central

    Witzel, Ini-Isabée; Jelinek, Herbert F.; Khalaf, Kinda; Lee, Sungmun; Khandoker, Ahsan H.; Alsafar, Habiba

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, with 60–70% of affected individuals suffering from associated neurovascular complications that act on multiple organ systems. The most common and clinically significant neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac autonomic neuropathy. These conditions seriously impact an individual’s quality of life and significantly increase the risk of morbidity and mortality. Although advances in gene sequencing technologies have identified several genetic variants that may regulate the development and progression of T2DM, little is known about whether or not the variants are involved in disease progression and how these genetic variants are associated with diabetic neuropathy specifically. Significant missing heritability data and complex disease etiologies remain to be explained. This article is the first to provide a review of the genetic risk variants implicated in the diabetic neuropathies and to highlight potential commonalities. We thereby aim to contribute to the creation of a genetic-metabolic model that will help to elucidate the cause of diabetic neuropathies, evaluate a patient’s risk profile, and ultimately facilitate preventative and targeted treatment for the individual. PMID:26074879

  1. Progress and promise in understanding the genetic basis of common diseases

    PubMed Central

    Price, Alkes L.; Spencer, Chris C. A.; Donnelly, Peter

    2015-01-01

    Susceptibility to common human diseases is influenced by both genetic and environmental factors. The explosive growth of genetic data, and the knowledge that it is generating, are transforming our biological understanding of these diseases. In this review, we describe the technological and analytical advances that have enabled genome-wide association studies to be successful in identifying a large number of genetic variants robustly associated with common disease. We examine the biological insights that these genetic associations are beginning to produce, from functional mechanisms involving individual genes to biological pathways linking associated genes, and the identification of functional annotations, some of which are cell-type-specific, enriched in disease associations. Although most efforts have focused on identifying and interpreting genetic variants that are irrefutably associated with disease, it is increasingly clear that—even at large sample sizes—these represent only the tip of the iceberg of genetic signal, motivating polygenic analyses that consider the effects of genetic variants throughout the genome, including modest effects that are not individually statistically significant. As data from an increasingly large number of diseases and traits are analysed, pleiotropic effects (defined as genetic loci affecting multiple phenotypes) can help integrate our biological understanding. Looking forward, the next generation of population-scale data resources, linking genomic information with health outcomes, will lead to another step-change in our ability to understand, and treat, common diseases. PMID:26702037

  2. Progress and promise in understanding the genetic basis of common diseases.

    PubMed

    Price, Alkes L; Spencer, Chris C A; Donnelly, Peter

    2015-12-22

    Susceptibility to common human diseases is influenced by both genetic and environmental factors. The explosive growth of genetic data, and the knowledge that it is generating, are transforming our biological understanding of these diseases. In this review, we describe the technological and analytical advances that have enabled genome-wide association studies to be successful in identifying a large number of genetic variants robustly associated with common disease. We examine the biological insights that these genetic associations are beginning to produce, from functional mechanisms involving individual genes to biological pathways linking associated genes, and the identification of functional annotations, some of which are cell-type-specific, enriched in disease associations. Although most efforts have focused on identifying and interpreting genetic variants that are irrefutably associated with disease, it is increasingly clear that--even at large sample sizes--these represent only the tip of the iceberg of genetic signal, motivating polygenic analyses that consider the effects of genetic variants throughout the genome, including modest effects that are not individually statistically significant. As data from an increasingly large number of diseases and traits are analysed, pleiotropic effects (defined as genetic loci affecting multiple phenotypes) can help integrate our biological understanding. Looking forward, the next generation of population-scale data resources, linking genomic information with health outcomes, will lead to another step-change in our ability to understand, and treat, common diseases. © 2015 The Authors.

  3. Identification of common genetic variation that modulates alternative splicing.

    PubMed

    Hull, Jeremy; Campino, Susana; Rowlands, Kate; Chan, Man-Suen; Copley, Richard R; Taylor, Martin S; Rockett, Kirk; Elvidge, Gareth; Keating, Brendan; Knight, Julian; Kwiatkowski, Dominic

    2007-06-01

    Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.

  4. Genetic mechanisms of pollution resistance in a marine invertebrate.

    PubMed

    Galletly, Bronwyn C; Blows, Mark W; Marshall, Dustin J

    2007-12-01

    Pollution is a common stress in the marine environment and one of today's most powerful agents of selection, yet we have little understanding of how anthropogenic toxicants influence mechanisms of adaptation in marine populations. Due to their life history strategies, marine invertebrates are unable to avoid stress and must adapt to variable environments. We examined the genetic basis of pollution resistance across multiple environments using the marine invertebrate, Styela plicata. Gametes were crossed in a quantitative genetic breeding design to enable partitioning of additive genetic variance across a concentration gradient of a common marine pollutant, copper. Hatching success was scored as a measure of stress resistance in copper concentrations of 0, 75, 150, and 350 microg/L. There was a significant genotype x environment interaction in hatching success across copper concentrations. Further analysis using factor analytic modeling confirmed a significant dimension of across-environment genetic variation where the genetic basis of resistance to stress in the first three environments differed from that in the environment of highest copper concentration. A second genetic dimension further differentiated between the genetic basis of resistance to low and high stress environments. These results suggest that marine organisms use different genetic mechanisms to adapt to different levels of pollution and that the level of genetic variation to adapt to intense pollution stresses may be limited.

  5. Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links.

    PubMed

    Hulbert, S W; Jiang, Y-H

    2016-05-03

    Autism spectrum disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral assessment with circuit-level analysis in genetically modified models with strong construct validity.

  6. Common inflammatory mechanisms in Lewy body disease and Alzheimer disease.

    PubMed

    Mrak, Robert E; Griffin, W Sue T

    2007-08-01

    Cortical Lewy body disease as a cause of dementia has been recognized for more than 40 years. Only in the past 15 to 20 years, however, has the true frequency of this entity come to be appreciated, primarily because of the advent of sensitive and specific immunohistochemical diagnostic techniques. We now know that there is frequent and extensive overlap, both clinically and pathologically, between Lewy body and Alzheimer diseases. Although some of this overlap may be attributable to common genetic and environmental risk factors, it is also now apparent that the 2 diseases share common neuroinflammatory mechanisms involving activation of microglia, overexpression of interleukin-1 and other inflammatory mediators, and inflammatory toxicity to neurons. Activated microglia are found in association with alpha-synuclein-containing neurons and glia in Parkinson disease, in dementia with Lewy bodies, and in multiple system atrophy, and these associations are reminiscent of microglial associations with neurofibrillary tangle-containing neurons in Alzheimer disease. In vitro and in vivo experimental work has shown reciprocal induction between alpha-synuclein and injured neurons on one hand and activated microglia and cytokine overexpression on the other. These neuroinflammatory processes may be a common link driving progression in both diseases and explaining the frequent overlap between the 2 diseases.

  7. Cochlear Implantation in Common Forms of Genetic Deafness

    PubMed Central

    Vivero, Richard J.; Fan, Kenneth; Angeli, Simon; Balkany, Thomas J; Liu, Xue Z

    2010-01-01

    Genetic factors are among the main etiologies of severe to profound hearing loss and may play an important role in cochlear implantation (CI) outcomes. While genes for common forms of deafness have been cloned, efforts to correlate the functional outcome of CIs with a genetic form of deafness carried by the patient have been largely anecdotal to date. It has been suggested that the differences in auditory performance may be explained by differences in the number of surviving spiral ganglion cells, etiology of hearing loss, and other factors. Knowledge of the specific loci and mutations involved in patients who receive cochlear implants may elucidate other factors related to CI performance. In this review article, current knowledge of cochlear implants for hereditary hearing loss will be discussed with an emphasis on relevant clinical genotype-phenotype correlations. PMID:20655117

  8. Cochlear implantation in common forms of genetic deafness.

    PubMed

    Vivero, Richard J; Fan, Kenneth; Angeli, Simon; Balkany, Thomas J; Liu, Xue Z

    2010-10-01

    Genetic factors are among the main etiologies of severe to profound hearing loss and may play an important role in cochlear implantation (CI) outcomes. While genes for common forms of deafness have been cloned, efforts to correlate the functional outcome of CIs with a genetic form of deafness carried by the patient have been largely anecdotal to date. It has been suggested that the differences in auditory performance may be explained by differences in the number of surviving spiral ganglion cells, etiology of hearing loss, and other factors. Knowledge of the specific loci and mutations involved in patients who receive cochlear implants may elucidate other factors related to CI performance. In this review article, current knowledge of cochlear implants for hereditary hearing loss will be discussed with an emphasis on relevant clinical genotype-phenotype correlations.

  9. Human Heredity: Genetic Mechanisms in Humans.

    ERIC Educational Resources Information Center

    Blank, C. E.

    1988-01-01

    Discussed are some of the uncertainties in human genetic mechanisms that are often presented as dogma in Biology textbooks. Presented is a brief historical background and illustrations involving chromosome abnormality in humans and linkage studies in humans. (CW)

  10. Human Heredity: Genetic Mechanisms in Humans.

    ERIC Educational Resources Information Center

    Blank, C. E.

    1988-01-01

    Discussed are some of the uncertainties in human genetic mechanisms that are often presented as dogma in Biology textbooks. Presented is a brief historical background and illustrations involving chromosome abnormality in humans and linkage studies in humans. (CW)

  11. Most genetic risk for autism resides with common variation

    PubMed Central

    Gaugler, Trent; Klei, Lambertus; Sanders, Stephan J.; Bodea, Corneliu A.; Goldberg, Arthur P.; Lee, Ann B.; Mahajan, Milind; Manaa, Dina; Pawitan, Yudi; Reichert, Jennifer; Ripke, Stephan; Sandin, Sven; Sklar, Pamela; Svantesson, Oscar; Reichenberg, Abraham; Hultman, Christina M.; Devlin, Bernie

    2014-01-01

    A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (henceforth autism) the nature of its allelic spectrum is uncertain. Individual risk genes have been identified from rare variation, especially de novo mutations1–8. From this evidence one might conclude that rare variation dominates its allelic spectrum, yet recent studies show that common variation, individually of small effect, has substantial impact en masse9,10. At issue is how much of an impact relative to rare variation. Using a unique epidemiological sample from Sweden, novel methods that distinguish total narrow-sense heritability from that due to common variation, and by synthesizing results from other studies, we reach several conclusions about autism’s genetic architecture: its narrow-sense heritability is ≈54% and most traces to common variation; rare de novo mutations contribute substantially to individuals’ liability; still their contribution to variance in liability, 2.6%, is modest compared to heritable variation. PMID:25038753

  12. New IBD genetics: common pathways with other diseases.

    PubMed

    Lees, C W; Barrett, J C; Parkes, M; Satsangi, J

    2011-12-01

    Complex disease genetics has been revolutionised in recent years by the advent of genome-wide association (GWA) studies. The chronic inflammatory bowel diseases (IBDs), Crohn's disease and ulcerative colitis have seen notable successes culminating in the discovery of 99 published susceptibility loci/genes (71 Crohn's disease; 47 ulcerative colitis) to date. Approximately one-third of loci described confer susceptibility to both Crohn's disease and ulcerative colitis. Amongst these are multiple genes involved in IL23/Th17 signalling (IL23R, IL12B, JAK2, TYK2 and STAT3), IL10, IL1R2, REL, CARD9, NKX2.3, ICOSLG, PRDM1, SMAD3 and ORMDL3. The evolving genetic architecture of IBD has furthered our understanding of disease pathogenesis. For Crohn's disease, defective processing of intracellular bacteria has become a central theme, following gene discoveries in autophagy and innate immunity (associations with NOD2, IRGM, ATG16L1 are specific to Crohn's disease). Genetic evidence has also demonstrated the importance of barrier function to the development of ulcerative colitis (HNF4A, LAMB1, CDH1 and GNA12). However, when the data are analysed in more detail, deeper themes emerge including the shared susceptibility seen with other diseases. Many immune-mediated diseases overlap in this respect, paralleling the reported epidemiological evidence. However, in several cases the reported shared susceptibility appears at odds with the clinical picture. Examples include both type 1 and type 2 diabetes mellitus. In this review we will detail the presently available data on the genetic overlap between IBD and other diseases. The discussion will be informed by the epidemiological data in the published literature and the implications for pathogenesis and therapy will be outlined. This arena will move forwards very quickly in the next few years. Ultimately, we anticipate that these genetic insights will transform the landscape of common complex diseases such as IBD.

  13. Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    PubMed Central

    Drummond, M. Bradley; Hawkins, Gregory A.; Yang, Jenny; Chen, Ting-huei; Quibrera, Pedro Miguel; Anderson, Wayne; Barr, R. Graham; Bleecker, Eugene R.; Beaty, Terri; Casaburi, Richard; Castaldi, Peter; Cho, Michael H.; Comellas, Alejandro; Crapo, James D.; Criner, Gerard; Demeo, Dawn; Christenson, Stephanie A.; Couper, David J.; Doerschuk, Claire M.; Freeman, Christine M.; Gouskova, Natalia A.; Han, MeiLan K.; Hanania, Nicola A.; Hansel, Nadia N.; Hersh, Craig P.; Hoffman, Eric A.; Kaner, Robert J.; Kanner, Richard E.; Kleerup, Eric C.; Lutz, Sharon; Martinez, Fernando J.; Meyers, Deborah A.; Peters, Stephen P.; Regan, Elizabeth A.; Rennard, Stephen I.; Scholand, Mary Beth; Silverman, Edwin K.; Woodruff, Prescott G.; O’Neal, Wanda K.; Bowler, Russell P.

    2016-01-01

    conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group. PMID:27532455

  14. Factors of skin ageing share common mechanisms.

    PubMed

    Giacomoni, P U; Rein, G

    2001-01-01

    Ageing has been defined as the accumulation of molecular modifications which manifest as macroscopic clinical changes. Human skin, unique among mammalians insofar as it is deprived of fur, is particularly sensitive to environmental stress. Major environmental factors have been recognized to induce modifications of the morphological and biophysical properties of the skin. Metabolites from ingested or inhaled substances do affect skin, which is also sensitive to endogenous hormone levels. Factors as diverse as ultraviolet radiation, atmospheric pollution, wounds, infections, traumatisms, anoxya, cigarette smoke, and hormonal status have a role in increasing the rate of accumulation of molecular modifications and have thus been termed 'factors of ageing'. All these factors share as a common feature, the capability to directly or indirectly induce one of the steps of the micro-inflammatory cycle, which includes the expression of ICAM-1 in endothelial cells. This triggers a process leading to the accumulation of damages in the skin resulting in skin ageing since ICAM-1 expression provokes recruitment and diapedesis of circulating immune cells, which digest the extracellular matrix (ECM) by secreting collagenases, myeloperoxidases and reactive oxygen species. The activation of these lytic processes provokes random damage to resident cells, which in turn secrete prostaglandines and leukotrienes. These signaling molecules induce the degranulation of resident mast cells which release the autacoid histamine and the cytokine TNF-alpha thus activating endothelial cells lining adjacent capillaries which release P-selectin and synthesize ICAM-1. This closes a self-maintained micro-inflammatory cycle, which results in the accumulation of ECM damage, i.e. skin aging. In this paper we review the evidence that two factors able to induce macroscopical and molecular modifications in the skin, protein glycation and stretch, activate the micro-inflammatory cycle. We further present

  15. Genetic sampling for estimating density of common species.

    PubMed

    Cheng, Ellen; Hodges, Karen E; Sollmann, Rahel; Mills, L Scott

    2017-08-01

    Understanding population dynamics requires reliable estimates of population density, yet this basic information is often surprisingly difficult to obtain. With rare or difficult-to-capture species, genetic surveys from noninvasive collection of hair or scat has proved cost-efficient for estimating densities. Here, we explored whether noninvasive genetic sampling (NGS) also offers promise for sampling a relatively common species, the snowshoe hare (Lepus americanus Erxleben, 1777), in comparison with traditional live trapping. We optimized a protocol for single-session NGS sampling of hares. We compared spatial capture-recapture population estimates from live trapping to estimates derived from NGS, and assessed NGS costs. NGS provided population estimates similar to those derived from live trapping, but a higher density of sampling plots was required for NGS. The optimal NGS protocol for our study entailed deploying 160 sampling plots for 4 days and genotyping one pellet per plot. NGS laboratory costs ranged from approximately $670 to $3000 USD per field site. While live trapping does not incur laboratory costs, its field costs can be considerably higher than for NGS, especially when study sites are difficult to access. We conclude that NGS can work for common species, but that it will require field and laboratory pilot testing to develop cost-effective sampling protocols.

  16. Genetic Diagnosis Using Whole Exome Sequencing in Common Variable Immunodeficiency

    PubMed Central

    Maffucci, Patrick; Filion, Charles A.; Boisson, Bertrand; Itan, Yuval; Shang, Lei; Casanova, Jean-Laurent; Cunningham-Rundles, Charlotte

    2016-01-01

    Whole exome sequencing (WES) has proven an effective tool for the discovery of genetic defects in patients with primary immunodeficiencies (PIDs). However, success in dissecting the genetic etiology of common variable immunodeficiency (CVID) has been limited. We outline a practical framework for using WES to identify causative genetic defects in these subjects. WES was performed on 50 subjects diagnosed with CVID who had at least one of the following criteria: early onset, autoimmune/inflammatory manifestations, low B lymphocytes, and/or familial history of hypogammaglobulinemia. Following alignment and variant calling, exomes were screened for mutations in 269 PID-causing genes. Variants were filtered based on the mode of inheritance and reported frequency in the general population. Each variant was assessed by study of familial segregation and computational predictions of deleteriousness. Out of 433 variations in PID-associated genes, we identified 17 probable disease-causing mutations in 15 patients (30%). These variations were rare or private and included monoallelic mutations in NFKB1, STAT3, CTLA4, PIK3CD, and IKZF1, and biallelic mutations in LRBA and STXBP2. Forty-two other damaging variants were found but were not considered likely disease-causing based on the mode of inheritance and/or patient phenotype. WES combined with analysis of PID-associated genes is a cost-effective approach to identify disease-causing mutations in CVID patients with severe phenotypes and was successful in 30% of our cohort. As targeted therapeutics are becoming the mainstay of treatment for non-infectious manifestations in CVID, this approach will improve management of patients with more severe phenotypes. PMID:27379089

  17. Genetic determinants of common obesity and their value in prediction.

    PubMed

    Loos, Ruth J F

    2012-04-01

    Genome-wide association studies (GWAS) have revolutionised the discovery of genes for common traits and diseases, including obesity-related traits. In less then four years time, 52 genetic loci were identified to be unequivocally associated with obesity-related traits. This vast success raised hope and expectations that genetic information would become soon an integral part of personalised medicine. However, these loci have only small effects on obesity-susceptibility and explain just a fraction of the total variance. As such, their accuracy to predict obesity is poor and not competitive with the predictive ability of traditional risk factors. Nevertheless, some of these loci are being used in commercially available personal genome tests to estimate individuals' lifetime risk of obesity. While proponents believe that personal genome profiling could have beneficial effects on behaviour, early reports do not support this hypothesis. To conclude, the most valuable contribution of GWAS-identified loci lies in their contribution to elucidating new physiological pathways that underlie obesity-susceptibility.

  18. Premature birth and diseases in premature infants: common genetic background?

    PubMed

    Hallman, Mikko

    2012-04-01

    It has been proposed that during human evolution, development of obligate bipedalism, narrow birth canal cross-sectional area and the large brain have forced an adjustment in duration of pregnancy (scaling of gestational age; Plunkett 2011). Children compared to other mammals are born with proportionally small brains (compared to adult brains), suggesting shortening of pregnancy duration during recent evolution. Prevalence of both obstructed delivery and premature birth is still exceptionally high. In near term infants, functional maturity and viability is high, and gene variants predisposing to respiratory distress syndrome (RDS) are rare. Advanced antenatal and neonatal treatment practices during the new era of medicine allowed survival of also very preterm infants (gestation <32 weeks). Genetic factors may play a major role in predisposing these infants to common pulmonary (bronchopulmonary dysplasia [BPD]; RDS) and intracerebral (intraventricular hemorrhage [IVH], cerebral palsy [CP]) diseases. Fetal genes also influence the susceptibility to preterm labor and premature birth. Specific genes associating with diseases in preterm infants may also contribute to the susceptibility to preterm birth. Understanding and applying the knowledge of genetic interactions in normal and abnormal perinatal-neonatal development requires large, well-structured population cohorts, studies involving the whole genome and international interdisciplinary collaboration.

  19. Caveats in modeling a common motif in genetic circuits

    NASA Astrophysics Data System (ADS)

    Labavić, Darka; Nagel, Hannes; Janke, Wolfhard; Meyer-Ortmanns, Hildegard

    2013-06-01

    From a coarse-grained perspective, the motif of a self-activating species, activating a second species that acts as its own repressor, is widely found in biological systems, in particular in genetic systems with inherent oscillatory behavior. Here we consider a specific realization of this motif as a genetic circuit, termed the bistable frustrated unit, in which genes are described as directly producing proteins. Upon an improved resolution in time, we focus on the effect that inherent time scales on the underlying scale can have on the bifurcation patterns on a coarser scale. Time scales are set by the binding and unbinding rates of the transcription factors to the promoter regions of the genes. Depending on the ratio of these rates to the decay times of both proteins, the appropriate averaging procedure for obtaining a coarse-grained description changes and leads to sets of deterministic equations, which considerably differ in their bifurcation structure. In particular, the desired intermediate range of regular limit cycles fades away when the binding rates of genes are not fast as compared to the decay time of the proteins. Our analysis illustrates that the common topology of the widely found motif alone does not imply universal features in the dynamics.

  20. MCDK, UPJO, and VUR: A common genetic cause

    SciTech Connect

    Robson, W.L.M.; Rogers, R.C.; Leung, A.K.C.

    1995-11-20

    Devriendt and Fryns suggest the possibility that multicystic dysplasia of the kidney (MCDK) and uretero-pelvic junction obstruction (UPJO) may have a common genetic cause transmitted as an autosomal dominant disorder with variable expression, and that a candidate gene is localized on chromosome arm 6p. Izquierdo et al. reported that 4 of 5 families with autosomal dominant hereditary hydronephrosis demonstrated linkage to the major histocompatibility locus at 6p21. Fryns et al. provide further support for their hypothesis by reporting a fetus with bilateral MCDK and an associated de novo balanced translocation (6;19) (p23.1; q13.4). We agree that a genetically determined disturbance in blood supply to the ureteric bud might cause MCDK and UPJO. Devriendt and Fryns further suggest that vesico-ureteral reflux (VUR) might also be caused by permutations of the candidate gene on 6p. Contralateral VUR has been reported in 11 to 28% of patients with MCDK. In patients with unilateral renal agenesis (URA), VUR has been noted in 15 to 30% of patients. VUR has been noted in up to 40% of patients with UPJO. The frequent occurrence of VUR in URA, MCDK, and UPJO supports the suggestion by Devriendt and Fryns that this association might be linked to different mutations in a single gene. 10 refs.

  1. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck.

    PubMed

    Sonsthagen, Sarah A; Talbot, Sandy L; Lanctot, Richard B; McCracken, Kevin G

    2010-02-01

    We investigated local genetic associations among female Pacific common eiders (Somateria mollissima v-nigrum) nesting in a stochastic Arctic environment within two groups of barrier islands (Simpson Lagoon and Mikkelsen Bay) in the Beaufort Sea, Alaska. Nonrandom genetic associations were observed among nesting females using regional spatial autocorrelation analyses for distance classes up to 1000 m in Simpson Lagoon. Nearest-neighbour analyses identified clusters of genetically related females with positive lr values observed for 0-13% and 0-7% of the comparisons in Simpson Lagoon and Mikkelsen Bay, respectively, across years. These results indicate that a proportion of females are nesting in close proximity to more genetically related individuals, albeit at low frequency. Such kin groupings may form through active association between relatives or through natal philopatry and breeding site fidelity. Eiders nest in close association with driftwood, which is redistributed annually by seasonal storms. Yet, genetic associations were still observed. Microgeographic structure may thus be more attributable to kin association than natal philopatry and site fidelity. However, habitat availability may also influence the level of structure observed. Regional structure was present only within Simpson Lagoon and this island group includes at least three islands with sufficient driftwood for colonies, whereas only one island at Mikkelsen Bay has these features. A long-term demographic study is needed to understand more fully the mechanisms that lead to fine-scale genetic structure observed in common eiders breeding in the Beaufort Sea.

  2. Most common 'sporadic' cancers have a significant germline genetic component.

    PubMed

    Lu, Yi; Ek, Weronica E; Whiteman, David; Vaughan, Thomas L; Spurdle, Amanda B; Easton, Douglas F; Pharoah, Paul D; Thompson, Deborah J; Dunning, Alison M; Hayward, Nicholas K; Chenevix-Trench, Georgia; Macgregor, Stuart

    2014-11-15

    Common cancers have been demarcated into 'hereditary' or 'sporadic' ('non-hereditary') types historically. Such distinctions initially arose from work identifying rare, highly penetrant germline mutations causing 'hereditary' cancer. While rare mutations are important in particular families, most cases in the general population are 'sporadic'. Twin studies have suggested that many 'sporadic' cancers show little or no heritability. To quantify the role of germline mutations in cancer susceptibility, we applied a method for estimating the importance of common genetic variants (array heritability, h(2)g) to twelve cancer types. The following cancers showed a significant (P < 0.05) array heritability: melanoma USA set h(2)g = 0.19 (95% CI = 0.01-0.37) and Australian set h(2)g = 0.30 (0.10-0.50); pancreatic h(2)g = 0.18 (0.06-0.30); prostate h(2)g = 0.81 (0.32-1); kidney h(2)g = 0.18 (0.04-0.32); ovarian h(2)g = 0.30 (0.18-0.42); esophageal adenocarcinoma h(2)g = 0.24 (0.14-0.34); esophageal squamous cell carcinoma h(2)g = 0.19 (0.07-0.31); endometrial UK set h(2)g = 0.23 (0.01-0.45) and Australian set h(2)g = 0.39 (0.02-0.76). Three cancers showed a positive but non-significant effect: breast h(2) g = 0.13 (0-0.56); gastric h(2)g = 0.11 (0-0.27); lung h(2)g = 0.10 (0-0.24). One cancer showed a small effect: bladder h(2)g = 0.01 (0-0.11). Among these cancers, previous twin studies were only able to show heritability for prostate and breast cancer, but we can now make much stronger statements for several common cancers which emphasize the important role of genetic variants in cancer susceptibility. We have demonstrated that several 'sporadic' cancers have a significant inherited component. Larger genome-wide association studies in these cancers will continue to find more loci, which explain part of the remaining polygenic component.

  3. The Microbiome-Mitochondrion Connection: Common Ancestries, Common Mechanisms, Common Goals.

    PubMed

    Franco-Obregón, Alfredo; Gilbert, Jack A

    2017-01-01

    Lynn Margulis in the 1960s elegantly proposed a shared phylogenetic history between bacteria and mitochondria; this relationship has since become a cornerstone of modern cellular biology. Yet, an interesting facet of the interaction between the microbiome and mitochondria has been mostly ignored, that of the systems biology relationship that underpins host health and longevity. The mitochondria are descendants of primordial aerobic pleomorphic bacteria (likely genus Rickettsia) that entered (literally and functionally) into a mutualistic partnership with ancient anaerobic microbes (likely Archaea). A stable symbiosis was established, given the metabolic versatility of the early mitochondria, which were capable of providing energy with or without oxygen, whereas nutrient gathering was the assumed responsibility of the host. While microbial relationships with single-cell protists must have occurred in the past, as they occur today, the evolution of multicellular organisms generated a new framework for symbiosis with the microbial world, taking the ancient partnership to an entirely new level. Cell-cell communication between microbes and single-cell protists was augmented through multicellularity to allow distant communication between the host cells and the microbiome, resulting in the development of complex metabolic relationships and an immune system to manage these interactions. Thus, the host is now the body and its resident mitochondria, and the microbiome is an essential supplier of metabolites that act at the level of mitochondria in skeletal muscle to stabilize host metabolism. We humans are caretakers of a profoundly vast and diverse microbiota, the majority of which resides in the gut. Indeed, the microbial genetic diversity of our microbiota outstrips our own by several orders of magnitude, and the cellular abundance is roughly equivalent to our somatic selves. Modern clinical science has elegantly highlighted the importance of the microbiome for metabolic

  4. Deconstructing Mendel: new paradigms in genetic mechanisms.

    PubMed

    Gilchrist, D; Glerum, D M; Wevrick, R

    2000-06-01

    As knowledge of the mechanisms of genetic action expands, this new information must be incorporated into the whole. The result is that old concepts are modified or deleted or new paradigms are created. The authors review advances in the understanding of traditional and nontraditional inheritance, including genomic imprinting and mitochondrial inheritance.

  5. Common Gene Variants Account for Most Genetic Risk for Autism

    MedlinePlus

    ... in a unique Swedish sample in the journal Nature Genetics, July 20, 2014. “Thanks to the boost ... National Institute of Mental Health (NIMH). “Knowing the nature of the genetic risk will reveal clues to ...

  6. Low-frequency and common genetic variation in ischemic stroke

    PubMed Central

    Malik, Rainer; Traylor, Matthew; Pulit, Sara L.; Bevan, Steve; Hopewell, Jemma C.; Holliday, Elizabeth G.; Zhao, Wei; Abrantes, Patricia; Amouyel, Philippe; Attia, John R.; Battey, Thomas W.K.; Berger, Klaus; Boncoraglio, Giorgio B.; Chauhan, Ganesh; Cheng, Yu-Ching; Chen, Wei-Min; Clarke, Robert; Cotlarciuc, Ioana; Debette, Stephanie; Falcone, Guido J.; Ferro, Jose M.; Gamble, Dale M.; Ilinca, Andreea; Kittner, Steven J.; Kourkoulis, Christina E.; Lemmens, Robin; Levi, Christopher R.; Lichtner, Peter; Lindgren, Arne; Liu, Jingmin; Meschia, James F.; Mitchell, Braxton D.; Oliveira, Sofia A.; Pera, Joana; Reiner, Alex P.; Rothwell, Peter M.; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L.M.; Tatlisumak, Turgut; Thijs, Vincent; Vicente, Astrid M.; Woo, Daniel; Seshadri, Sudha; Saleheen, Danish; Rosand, Jonathan; Markus, Hugh S.; Worrall, Bradford B.

    2016-01-01

    Objective: To investigate the influence of common and low-frequency genetic variants on the risk of ischemic stroke (all IS) and etiologic stroke subtypes. Methods: We meta-analyzed 12 individual genome-wide association studies comprising 10,307 cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We selected variants showing the highest degree of association (p < 1E-5) in the discovery phase for replication in Caucasian (13,435 cases and 29,269 controls) and South Asian (2,385 cases and 5,193 controls) samples followed by a transethnic meta-analysis. We further investigated the p value distribution for different bins of allele frequencies for all IS and stroke subtypes. Results: We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed significant enrichment in low-frequency variants (allele frequency <5%) for both LVD and small vessel disease, and an enrichment of higher frequency variants (allele frequency 10% and 30%) for CE (all p < 1E-5). Conclusions: Our findings suggest that the missing heritability in IS subtypes can in part be attributed to low-frequency and rare variants. Larger sample sizes are needed to identify the variants associated with all IS and stroke subtypes. PMID:26935894

  7. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations.

    PubMed Central

    Rieseberg, Loren H; Widmer, Alex; Arntz, A Michele; Burke, John M

    2003-01-01

    Segregating hybrids often exhibit phenotypes that are extreme or novel relative to the parental lines. This phenomenon is referred to as transgressive segregation, and it provides a mechanism by which hybridization might contribute to adaptive evolution. Genetic studies indicate that transgressive segregation typically results from recombination between parental taxa that possess quantitative trait loci (QTLs) with antagonistic effects (i.e. QTLs with effects that are in the opposite direction to parental differences for those traits). To assess whether this genetic architecture is common, we tabulated the direction of allelic effects for 3252 QTLs from 749 traits and 96 studies. Most traits (63.6%) had at least one antagonistic QTL, indicating that the genetic substrate for transgressive segregation is common. Plants had significantly more antagonistic QTLs than animals, which agrees with previous reports that transgressive segregation is more common in plants than in animals. Likewise, antagonistic QTLs were more frequent in intra- than in interspecific crosses and in morphological than in physiological traits. These results indicate that transgressive segregation provides a general mechanism for the production of extreme phenotypes at both above and below the species level and testify to the possible creative part of hybridization in adaptive evolution and speciation. PMID:12831480

  8. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations.

    PubMed

    Rieseberg, Loren H; Widmer, Alex; Arntz, A Michele; Burke, John M

    2003-06-29

    Segregating hybrids often exhibit phenotypes that are extreme or novel relative to the parental lines. This phenomenon is referred to as transgressive segregation, and it provides a mechanism by which hybridization might contribute to adaptive evolution. Genetic studies indicate that transgressive segregation typically results from recombination between parental taxa that possess quantitative trait loci (QTLs) with antagonistic effects (i.e. QTLs with effects that are in the opposite direction to parental differences for those traits). To assess whether this genetic architecture is common, we tabulated the direction of allelic effects for 3252 QTLs from 749 traits and 96 studies. Most traits (63.6%) had at least one antagonistic QTL, indicating that the genetic substrate for transgressive segregation is common. Plants had significantly more antagonistic QTLs than animals, which agrees with previous reports that transgressive segregation is more common in plants than in animals. Likewise, antagonistic QTLs were more frequent in intra- than in interspecific crosses and in morphological than in physiological traits. These results indicate that transgressive segregation provides a general mechanism for the production of extreme phenotypes at both above and below the species level and testify to the possible creative part of hybridization in adaptive evolution and speciation.

  9. Additional mechanisms conferring genetic susceptibility to Alzheimer’s disease

    PubMed Central

    Calero, Miguel; Gómez-Ramos, Alberto; Calero, Olga; Soriano, Eduardo; Avila, Jesús; Medina, Miguel

    2015-01-01

    Familial Alzheimer’s disease (AD), mostly associated with early onset, is caused by mutations in three genes (APP, PSEN1, and PSEN2) involved in the production of the amyloid β peptide. In contrast, the molecular mechanisms that trigger the most common late onset sporadic AD remain largely unknown. With the implementation of an increasing number of case-control studies and the upcoming of large-scale genome-wide association studies there is a mounting list of genetic risk factors associated with common genetic variants that have been associated with sporadic AD. Besides apolipoprotein E, that presents a strong association with the disease (OR∼4), the rest of these genes have moderate or low degrees of association, with OR ranging from 0.88 to 1.23. Taking together, these genes may account only for a fraction of the attributable AD risk and therefore, rare variants and epistastic gene interactions should be taken into account in order to get the full picture of the genetic risks associated with AD. Here, we review recent whole-exome studies looking for rare variants, somatic brain mutations with a strong association to the disease, and several studies dealing with epistasis as additional mechanisms conferring genetic susceptibility to AD. Altogether, recent evidence underlines the importance of defining molecular and genetic pathways, and networks rather than the contribution of specific genes. PMID:25914626

  10. [Genetic and epigenetic mechanisms in obesity].

    PubMed

    Hinney, A; Herrfurth, N; Schonnop, L; Volckmar, A-L

    2015-02-01

    Obesity is a relevant medical problem. Around 60 % of German adults are overweight, 20 % are obese. The hereditary contribution to the variance of body weight is high. Nevertheless, molecular genetic studies have as yet explained only a small part of the inter-individual variability in the body mass index (BMI). Monogenic forms of obesity, in which loss of a single gene product leads to extreme obesity, are very infrequent. Variance of body weight is commonly explained by a complex interplay of many genetic variants (polygenic obesity). Each variant contributes only a small amount to the body weight. Currently, the largest published analysis of individuals of European origin identified 32 genetic variations (single nucleotide polymorphisms, SNPs) associated with BMI (obesity). Overall, these polygenic obesity variants only explain about 5 % of the variance of the BMI. In addition to the DNA variants epigenetic factors seem to also play a role in body weight regulation. These epigenetic marks can change in the course of life. They might provide an interface between genetic and environmental influences. It is conceivable that in future it will be possible to use epigenetic and genetic markers to detect a predisposition for obesity and to improve prevention and therapy.

  11. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology

    PubMed Central

    Port, Russell G.; Gandal, Michael J.; Roberts, Timothy P. L.; Siegel, Steven J.; Carlson, Gregory C.

    2014-01-01

    Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD. PMID:25538564

  12. Convergence of circuit dysfunction in ASD: a common bridge between diverse genetic and environmental risk factors and common clinical electrophysiology.

    PubMed

    Port, Russell G; Gandal, Michael J; Roberts, Timothy P L; Siegel, Steven J; Carlson, Gregory C

    2014-01-01

    Most recent estimates indicate that 1 in 68 children are affected by an autism spectrum disorder (ASD). Though decades of research have uncovered much about these disorders, the pathological mechanism remains unknown. Hampering efforts is the seeming inability to integrate findings over the micro to macro scales of study, from changes in molecular, synaptic and cellular function to large-scale brain dysfunction impacting sensory, communicative, motor and cognitive activity. In this review, we describe how studies focusing on neuronal circuit function provide unique context for identifying common neurobiological disease mechanisms of ASD. We discuss how recent EEG and MEG studies in subjects with ASD have repeatedly shown alterations in ensemble population recordings (both in simple evoked related potential latencies and specific frequency subcomponents). Because these disease-associated electrophysiological abnormalities have been recapitulated in rodent models, studying circuit differences in these models may provide access to abnormal circuit function found in ASD. We then identify emerging in vivo and ex vivo techniques, focusing on how these assays can characterize circuit level dysfunction and determine if these abnormalities underlie abnormal clinical electrophysiology. Such circuit level study in animal models may help us understand how diverse genetic and environmental risks can produce a common set of EEG, MEG and anatomical abnormalities found in ASD.

  13. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish

    PubMed Central

    Hogan, J. Derek; Downey-Wall, Alan M.; Gurski, Lauren M.; Portnoy, David S.; Heath, Daniel D.

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or “chaotic” pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought. PMID:27119659

  14. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish.

    PubMed

    Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.

  15. Genetic Correlation between Body Fat Percentage and Cardiorespiratory Fitness Suggests Common Genetic Etiology

    PubMed Central

    Gjesing, Anette P.; Sandholt, Camilla H.; Jonsson, Anna; Mahendran, Yuvaraj; Have, Christian T.; Ekstrøm, Claus T.; Bjerregaard, Anne-Louise; Brage, Soren; Witte, Daniel R.; Jørgensen, Marit E.; Aadahl, Mette; Thuesen, Betina H.; Linneberg, Allan; Eiberg, Hans; Pedersen, Oluf; Grarup, Niels; Kilpeläinen, Tuomas O.; Hansen, Torben

    2016-01-01

    Objectives It has long been discussed whether fitness or fatness is a more important determinant of health status. If the same genetic factors that promote body fat percentage (body fat%) are related to cardiorespiratory fitness (CRF), part of the concurrent associations with health outcomes could reflect a common genetic origin. In this study we aimed to 1) examine genetic correlations between body fat% and CRF; 2) determine whether CRF can be attributed to a genetic risk score (GRS) based on known body fat% increasing loci; and 3) examine whether the fat mass and obesity associated (FTO) locus associates with CRF. Methods Genetic correlations based on pedigree information were examined in a family based cohort (n = 230 from 55 families). For the genetic association analyses, we examined two Danish population-based cohorts (ntotal = 3206). The body fat% GRS was created by summing the alleles of twelve independent risk variants known to associate with body fat%. We assessed CRF as maximal oxygen uptake expressed in millilitres of oxygen uptake per kg of body mass (VO2max), per kg fat-free mass (VO2maxFFM), or per kg fat mass (VO2maxFM). All analyses were adjusted for age and sex, and when relevant, for body composition. Results We found a significant negative genetic correlation between VO2max and body fat% (ρG = -0.72 (SE ±0.13)). The body fat% GRS associated with decreased VO2max (β = -0.15 mL/kg/min per allele, p = 0.0034, age and sex adjusted). The body fat%-increasing FTO allele was associated with a 0.42 mL/kg/min unit decrease in VO2max per allele (p = 0.0092, age and sex adjusted). Both associations were abolished after additional adjustment for body fat%. The fat% increasing GRS and FTO risk allele were associated with decreased VO2maxFM but not with VO2maxFFM. Conclusions Our findings suggest a shared genetic etiology between whole body fat% and CRF. PMID:27846319

  16. Shared genetic variants suggest common pathways in allergy and autoimmune diseases.

    PubMed

    Kreiner, Eskil; Waage, Johannes; Standl, Marie; Brix, Susanne; Pers, Tune H; Couto Alves, Alexessander; Warrington, Nicole M; Tiesler, Carla M T; Fuertes, Elaine; Franke, Lude; Hirschhorn, Joel N; James, Alan; Simpson, Angela; Tung, Joyce Y; Koppelman, Gerard H; Postma, Dirkje S; Pennell, Craig E; Jarvelin, Marjo-Riitta; Custovic, Adnan; Timpson, Nicholas; Ferreira, Manuel A; Strachan, David P; Henderson, John; Hinds, David; Bisgaard, Hans; Bønnelykke, Klaus

    2017-09-01

    The relationship between allergy and autoimmune disorders is complex and poorly understood. We sought to investigate commonalities in genetic loci and pathways between allergy and autoimmune diseases to elucidate shared disease mechanisms. We meta-analyzed 2 genome-wide association studies on self-reported allergy and sensitization comprising a total of 62,330 subjects. These results were used to calculate enrichment for single nucleotide polymorphisms (SNPs) previously associated with autoimmune diseases. Furthermore, we probed for enrichment within genetic pathways and of transcription factor binding sites and characterized commonalities in variant burden on tissue-specific regulatory sites by calculating the enrichment of allergy SNPs falling in gene regulatory regions in various cells using Encode Roadmap DNase-hypersensitive site data. Finally, we compared the allergy data with those of all known diseases. Among 290 loci previously associated with 16 autoimmune diseases, we found a significant enrichment of loci also associated with allergy (P = 1.4e-17) encompassing 29 loci at a false discovery rate of less than 0.05. Such enrichment seemed to be a general characteristic for autoimmune diseases. Among the common loci, 48% had the same direction of effect for allergy and autoimmune diseases. Additionally, we observed an enrichment of allergy SNPs falling within immune pathways and regions of chromatin accessible in immune cells that was also represented in patients with autoimmune diseases but not those with other diseases. We identified shared susceptibility loci and commonalities in pathways between allergy and autoimmune diseases, suggesting shared disease mechanisms. Further studies of these shared genetic mechanisms might help in understanding the complex relationship between these diseases, including the parallel increase in disease prevalence. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  17. Race, common genetic variation, and therapeutic response disparities in heart failure.

    PubMed

    Taylor, Mathew R; Sun, Albert Y; Davis, Gordon; Fiuzat, Mona; Liggett, Stephen B; Bristow, Michael R

    2014-12-01

    Because of its comparatively recent evolution, Homo sapiens exhibit relatively little within-species genomic diversity. However, because of genome size, a proportionately small amount of variation creates ample opportunities for both rare mutations that may cause disease as well as more common genetic variations that may be important in disease modification or pharmacogenetics. Primarily because of the East African origin of modern humans, individuals of African ancestry (AA) exhibit greater degrees of genetic diversity than more recently established populations, such as those of European ancestry (EA) or Asian ancestry. Those population effects extend to differences in frequency of common gene variants that may be important in heart failure natural history or therapy. For cell-signaling mechanisms important in heart failure, we review and present new data for genetic variation between AA and EA populations. Data indicate that: 1) neurohormonal signaling mechanisms frequently (16 of the 19 investigated polymorphisms) exhibit racial differences in the allele frequencies of variants comprising key constituents; 2) some of these differences in allele frequency may differentially affect the natural history of heart failure in AA compared with EA individuals; and 3) in many cases, these differences likely play a role in observed racial differences in drug or device response. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Do common eiders nest in kin groups? Microgeographic genetic structure in a philopatric sea duck

    USGS Publications Warehouse

    Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; McCracken, K.G.

    2010-01-01

    We investigated local genetic associations among female Pacific common eiders (Somateria mollissima v-nigrum) nesting in a stochastic Arctic environment within two groups of barrier islands (Simpson Lagoon and Mikkelsen Bay) in the Beaufort Sea, Alaska. Nonrandom genetic associations were observed among nesting females using regional spatial autocorrelation analyses for distance classes up to 1000 m in Simpson Lagoon. Nearest-neighbour analyses identified clusters of genetically related females with positive lr values observed for 0-13% and 0-7% of the comparisons in Simpson Lagoon and Mikkelsen Bay, respectively, across years. These results indicate that a proportion of females are nesting in close proximity to more genetically related individuals, albeit at low frequency. Such kin groupings may form through active association between relatives or through natal philopatry and breeding site fidelity. Eiders nest in close association with driftwood, which is redistributed annually by seasonal storms. Yet, genetic associations were still observed. Microgeographic structure may thus be more attributable to kin association than natal philopatry and site fidelity. However, habitat availability may also influence the level of structure observed. Regional structure was present only within Simpson Lagoon and this island group includes at least three islands with sufficient driftwood for colonies, whereas only one island at Mikkelsen Bay has these features. A long-term demographic study is needed to understand more fully the mechanisms that lead to fine-scale genetic structure observed in common eiders breeding in the Beaufort Sea. ?? Published 2010. This article is a US Government work and is in the public domain in the USA.

  19. [Researches on genetics and genetic epidemiology of common complex diseases: challenge and strategies].

    PubMed

    Gu, Dong-feng

    2006-04-01

    With the rapid development of human genome project, increased genetic and population-based association studies are focused on the identification of the underlying susceptibility genes and contributions from gene-environment interaction to common complex diseases. Whole-genome association study with high-density single nucleotide polymorphisms is one of the most important milestones in that process. However, problems still exist in study design, data processing, and results interpretation. Large-scale cohort study or population-based case-control design with sufficient statistical power, new approaches to assess the gene-gene and gene-environment interactions, as guarantee of the consistency and replicability of these researches are crucial in the exploration of the causes of these common complex diseases.

  20. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis.

    PubMed

    Glabe, Charles G; Kayed, Rakez

    2006-01-24

    Recent findings indicate that soluble amyloid oligomers may represent the primary pathologic species in degenerative diseases. These amyloid oligomers share common structural features and the ability to permeabilize membranes, suggesting that they also share a common primary mechanism of pathogenesis. Membrane permeabilization by amyloid oligomers may initiate a common group of downstream pathologic processes, including intracellular calcium dyshomeostasis, production of reactive oxygen species, altered signaling pathways, and mitochondrial dysfunction that represent key effectors of cellular dysfunction and cell death in amyloid-associated degenerative disease, such as sporadic inclusion-body myositis.

  1. Common mechanism underlies repeated evolution of extreme pollution tolerance

    PubMed Central

    Whitehead, Andrew; Pilcher, Whitney; Champlin, Denise; Nacci, Diane

    2012-01-01

    Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation, which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid, repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations harboured genotypes that enabled adaptation to twentieth-century industrial pollutants. PMID:21733895

  2. Common mechanism underlies repeated evolution of extreme pollution tolerance.

    PubMed

    Whitehead, Andrew; Pilcher, Whitney; Champlin, Denise; Nacci, Diane

    2012-02-07

    Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wildlife populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved mechanisms enabling three populations of killifish resident in urban estuaries to survive normally lethal pollution exposure during development, and to test whether mechanisms are unique or common across populations. We show that killifish populations from these polluted sites have independently converged on a common adaptive mechanism, despite variation in contaminant profiles among sites. These populations are united by a similarly profound desensitization of aryl-hydrocarbon receptor-mediated transcriptional activation, which is associated with extreme tolerance to the lethal effects of toxic dioxin-like pollutants. The rapid, repeated, heritable and convergent nature of evolved tolerance suggests that ancestral killifish populations harboured genotypes that enabled adaptation to twentieth-century industrial pollutants.

  3. The genetics of insomnia--evidence for epigenetic mechanisms?

    PubMed

    Palagini, Laura; Biber, Knut; Riemann, Dieter

    2014-06-01

    Sleep is a complex physiological process and still remains one of the great mysteries of science. Over the past 10 y, genetic research has provided a new avenue to address the regulation and function of sleep. Gene loci that contribute quantitatively to sleep characteristics and variability have already been identified. However, up to now, a genetic basis has been established only for a few sleep disorders. Little is yet known about the genetic background of insomnia, one of the most common sleep disorders. According to the conceptualisation of the 3P model of insomnia, predisposing, precipitating and perpetuating factors contribute to the development and maintenance of insomnia. Growing evidence from studies of predisposing factors suggests a certain degree of heritability for insomnia and for a reactivity of sleep patterns to stressful events, explaining the emergence of insomnia in response to stressful life events. While a genetic susceptibility may modulate the impact of stress on the brain, this finding does not provide us with a complete understanding of the capacity of stress to produce long-lasting perturbations of brain and behaviour. Epigenetic gene-environment interactions have been identified just recently and may provide a more complex understanding of the genetic control of sleep and its disorders. It was recently hypothesised that stress-response-related brain plasticity might be epigenetically controlled and, moreover, several epigenetic mechanisms have been assumed to be involved in the regulation of sleep. Hence, it might be postulated that insomnia may be influenced by an epigenetic control process of both sleep mechanisms and stress-response-related gene-environment interactions having an impact on brain plasticity. This paper reviews the evidence for the genetic basis of insomnia and recent theories about epigenetic mechanisms involved in both sleep regulation and brain-stress response, leading to the hypothesis of an involvement of epigenetic

  4. Quantitative genetics of pigmentation development in 2 populations of the common garter snake, Thamnophis sirtalis.

    PubMed

    Westphal, Michael F; Morgan, Theodore J

    2010-01-01

    The evolutionary importance of ontogenetic change has been noted since Darwin. However, most analyses of phenotypic evolution focus on single landmark ages. Here, we present an inheritance study that quantifies genetic variation in pigmentation across early-age (i.e., birth to 180 days) development in 2 populations of the common garter snake, Thamnophis sirtalis. The populations are phenotypically distinct and geographically isolated (Manitoba, CA and Northern California, USA). There were highly significant differences between populations for the developmental trajectory of mean pigmentation, with the Manitoba population exhibiting a mean pigmentation level that increased across ontogeny, whereas the California population exhibited mean pigmentation that was invariant across ontogeny. Subsequent quantitative genetic analyses revealed heritable variation at all ages in Manitoba but low levels of phenotypic and genetic variation in California at all ages. A quantitative genetic decomposition of the longitudinal genetic variance-covariance matrix for the age-specific pigmentation phenotypes in the Manitoba population revealed 2 primary orthogonal axes that explained most ( approximately 100%) of the pigmentation variation across ontogeny. The primary axis, explaining 93% of the genetic variation, is an axis of genetic variation whose principal value loadings change from positive to negative across development, suggesting that the most rapid evolutionary response to selection on pigmentation variation will occur in the direction characterized by a tradeoff in early-age versus late-age pigmentation phenotypes. Pigmentation is known to be ecologically important and subject to rapid evolution under selection. Our study shows that significant differences exist between these 2 populations for their capacity to respond to selection on pigmentation which is not only influenced by the population of origin but also by the developmental process. We suggest that developmental

  5. Genetics in Common Liver Diseases: From Pathophysiology to Precise Treatment.

    PubMed

    Lammert, Frank

    In the past 2 decades, advances in genetics have improved our understanding of liver disease and physiology. Firstly, developments in genomic technologies drove the identification of genes responsible for monogenic (Mendelian) liver diseases. Over the last decade, genome-wide association studies allowed for the dissection of the genetic susceptibility to complex liver diseases such as fatty liver disease and drug-induced liver injury, in which environmental co-factors play critical roles. The findings have allowed the identification and elaboration of pathophysiological processes, have indicated the need for reclassification of liver diseases and risk factors and have already pointed to new disease treatments. This is illustrated by the interaction of alcohol, overnutrition and the PNPLA3 gene, which represents an 'infernal triangle' for the liver. In the future, genetics will allow further stratification of liver diseases and contribute to personalized (precision) medicine, offering novel opportunities for translational research and clinical care of our patients. © 2016 S. Karger AG, Basel.

  6. Genetic Mechanisms of Antimicrobial Resistance of Acinetobacter baumannii.

    PubMed

    Esterly, John S; Richardson, Chad L; Eltoukhy, Noha S; Qi, Chao; Scheetz, Marc H

    2011-02-01

    To summarize published data identifying known genetic mechanisms of antibiotic resistance in Acinetobacter baumannii and the correlating phenotypic expression of antibiotic resistance. MEDLINE databases (1966-July 15, 2010) were searched to identify original reports of genetic mechanisms of antibiotic resistance in A. baumannii. Numerous genetic mechanisms of resistance to multiple classes of antibiotics are known to exist in A. baumannii, a gram-negative bacterium increasingly implicated in nosocomial infections. Mechanisms may be constitutive or acquired via plasmids, integrons, and transposons. Methods of resistance include enzymatic modification of antibiotic molecules, modification of antibiotic target sites, expression of efflux pumps, and downregulation of cell membrane porin channel expression. Resistance to β-lactams appears to be primarily caused by β-lactamase production, including extended spectrum β-lactamases (b/aTEM, blaSHV, b/aTX-M,b/aKPC), metallo-β-lactamases (blaMP, blaVIM, bla, SIM), and most commonly, oxacillinases (blaOXA). Antibiotic target site alterations confer resistance to fluoroquinolones (gyrA, parC) and aminoglycosides (arm, rmt), and to a much lesser extent, β-lactams. Efflux pumps (tet, ade, abe) contribute to resistance against β-lactams, tetracyclines, fluoroquinolones, and aminoglycosides. Finally, porin channel deletion (carO, oprD) appears to contribute to β-lactam resistance and may contribute to rarely seen polymyxin resistance. Of note, efflux pumps and porin deletions as solitary mechanisms may not render clinical resistance to A. baumannii. A. baumannii possesses copious genetic resistance mechanisms. Knowledge of local genotypes and expressed phenotypes for A. baumannii may aid clinicians more than phenotypic susceptibilities reported in large epidemiologic studies. © 2011 SAGE Publications.

  7. Genome-wide genetic investigation of serological measures of common infections

    PubMed Central

    Rubicz, Rohina; Yolken, Robert; Drigalenko, Eugene; Carless, Melanie A; Dyer, Thomas D; Kent Jr, Jack; Curran, Joanne E; Johnson, Matthew P; Cole, Shelley A; Fowler, Sharon P; Arya, Rector; Puppala, Sobha; Almasy, Laura; Moses, Eric K; Kraig, Ellen; Duggirala, Ravindranath; Blangero, John; Leach, Charles T; Göring, Harald HH

    2015-01-01

    Populations and individuals differ in susceptibility to infections because of a number of factors, including host genetic variation. We previously demonstrated that differences in antibody titer, which reflect infection history, are significantly heritable. Here we attempt to identify the genetic factors influencing variation in these serological phenotypes. Blood samples from >1300 Mexican Americans were quantified for IgG antibody level against 12 common infections, selected on the basis of their reported role in cardiovascular disease risk: Chlamydia pneumoniae; Helicobacter pylori; Toxoplasma gondii; cytomegalovirus; herpes simplex I virus; herpes simplex II virus; human herpesvirus 6 (HHV6); human herpesvirus 8 (HHV8); varicella zoster virus; hepatitis A virus (HAV); influenza A virus; and influenza B virus. Pathogen-specific quantitative antibody levels were analyzed, as were three measures of pathogen burden. Genome-wide linkage and joint linkage and association analyses were performed using ~1 million SNPs. Significant linkage (lod scores >3.0) was obtained for HHV6 (on chromosome 7), HHV8 (on chromosome 6), and HAV (on chromosome 13). SNP rs4812712 on chromosome 20 was significantly associated with C. pneumoniae (P=5.3 × 10−8). However, no genome-wide significant loci were obtained for the other investigated antibodies. We conclude that it is possible to localize host genetic factors influencing some of these antibody traits, but that further larger-scale investigations will be required to elucidate the genetic mechanisms contributing to variation in antibody levels. PMID:25758998

  8. Mean Platelet Volume and Arterial Stiffness – Clinical Relationship and Common Genetic Variability

    PubMed Central

    Panova-Noeva, Marina; Arnold, Natalie; Hermanns, M. Iris; Prochaska, Jürgen H.; Schulz, Andreas; Spronk, Henri M.; Binder, Harald; Pfeiffer, Norbert; Beutel, Manfred; Blankenberg, Stefan; Zeller, Tanja; Lotz, Johannes; Münzel, Thomas; Lackner, Karl J.; ten Cate, Hugo; Wild, Philipp S.

    2017-01-01

    Vessel wall stiffening is an important clinical parameter, but it is unknown whether platelets, key elements in the pathogenesis of arterial thrombosis, are associated with arterial stiffness. The present studies sought to determine whether mean platelet volume (MPV), a potential marker of platelet activation, is linked to vascular elasticity as assessed by the augmentation index (AIx), in 15,010 individuals from the population-based Gutenberg Health Study. Multivariable analysis showed that MPV in both males (β 0.776; 95thCI [0.250;1.16]; p = 0.0024) and females (β 0.881[0.328;1.43]; p = 0.0018) is strongly associated with AIx. Individuals with MPV and AIx above the sex-specific medians had worse survival. Association analysis between MPV-related genetic variants and arterial stiffness identified four genetic variants in males and one in females related with AIx. Cox regression analysis for mortality identified one of these joint genetic variants close to ring finger protein 145 gene (RNF145, rs10076782) linked with increased mortality (hazard ratio 2.02; 95thCI [1.35;3.02]; p = 0.00061). Thus, these population-based data demonstrate a close relation between platelet volume as a potential marker of platelet activation and arterial stiffness in both sexes. Further research is warranted to further elucidate the mechanisms underlying larger platelets‘ role in arterial stiffening including the role of shared common genetics. PMID:28059166

  9. Chemoconvulsant-induced seizure susceptibility: toward a common genetic basis?

    PubMed

    Chaix, Yohan; Ferraro, Thomas N; Lapouble, Eve; Martin, Benoît

    2007-01-01

    Despite the efforts employed, understanding the genetic architecture underlying epilepsy remains difficult. To reach this aim, convulsive epilepsies are classically modeled in mice, where genetic studies are less constricting than in humans. Pharmacogenetic approaches are one major source of investigation where kainic acid, pentylenetetrazol, and the ss-carboline family represent compounds that are used extensively. Several quantitative trait loci (QTLs) influencing the convulsant effects of these drugs have been mapped using either recombinant inbred strains (RIS) or segregating F2 populations (or both). In our laboratory, we have recently mapped two QTLs for methyl 6, 7-dimethoxy-4-ethyl-ss-carboline-3-carboxylate (DMCM), and seizure response using an F2 method. One is located on the distal part of Chromosome 1, a region implicated in a number of other studies. Here, we address the general importance of this chromosomal fragment for influencing seizure susceptibility.

  10. Common genetic aspects between polycystic ovary syndrome and diabetes mellitus.

    PubMed

    Mendoza, Nicolas

    2011-11-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous disease that involves menstrual dysfunction and reproductive difficulty as well as metabolic problems. From a genetic point of view, it is a complex disease that is subject to environmental influences, mainly dietary, which makes it similar to other metabolic processes, such as diabetes and obesity. So, the interest of the diagnosis of the PCOS is, not only to improve fertility but to prevent possible future medical complications like the diabetes mellitus and the obesity. Due to the classical definition of PCOS as functional hyperandrogenism, the race to discover genetic alterations that could lead to the development of PCOS started with the androgen metabolism genes. However, the list of candidates was later expanded to other genes outside this hormonal pathway, and it now includes genes involved in carbohydrate and lipid metabolism as well as those involved in inflammatory processes. The list of genes candidates involved in PCOS is related to diabetes and inflammatory processes.

  11. Identification of Toxic Pyrrolizidine Alkaloids and Their Common Hepatotoxicity Mechanism

    PubMed Central

    Yan, Xinmiao; Kang, Hong; Feng, Jun; Yang, Yiyan; Tang, Kailin; Zhu, Ruixin; Yang, Li; Wang, Zhengtao; Cao, Zhiwei

    2016-01-01

    Pyrrolizidine Alkaloids (PAs) are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH) metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational methods were adopted to test our hypothesis in consideration of the limitations of current experimental approaches. Firstly, the potential targets of 22 PAs (from three major PA types) in GSH metabolism were identified by reverse docking; Secondly, glutathione S-transferase A1 (GSTA1) and glutathione peroxidase 1 (GPX1) targets pattern was found to be a special characteristic of toxic PAs with stepwise multiple linear regressions; Furthermore, the molecular mechanism underlying the interactions within toxic PAs and these two targets was demonstrated with the ligand-protein interaction analysis; Finally, GSTA1 and GPX1 were proved to be significant nodes in GSH metabolism. Overall, toxic PAs could be identified by GSTA1 and GPX1 targets pattern, which suggests their common hepatotoxicity mechanism: the interfering of detoxication in GSH metabolism. In addition, all the strategies developed here could be extended to studies on toxicity mechanism of other toxins. PMID:26959016

  12. Identification of Toxic Pyrrolizidine Alkaloids and Their Common Hepatotoxicity Mechanism.

    PubMed

    Yan, Xinmiao; Kang, Hong; Feng, Jun; Yang, Yiyan; Tang, Kailin; Zhu, Ruixin; Yang, Li; Wang, Zhengtao; Cao, Zhiwei

    2016-03-07

    Pyrrolizidine Alkaloids (PAs) are currently one of the most important botanical hepatotoxic ingredients. Glutathion (GSH) metabolism is the most reported pathway involved in hepatotoxicity mechanism of PAs. We speculate that, for different PAs, there should be a common mechanism underlying their hepatotoxicity in GSH metabolism. Computational methods were adopted to test our hypothesis in consideration of the limitations of current experimental approaches. Firstly, the potential targets of 22 PAs (from three major PA types) in GSH metabolism were identified by reverse docking; Secondly, glutathione S-transferase A1 (GSTA1) and glutathione peroxidase 1 (GPX1) targets pattern was found to be a special characteristic of toxic PAs with stepwise multiple linear regressions; Furthermore, the molecular mechanism underlying the interactions within toxic PAs and these two targets was demonstrated with the ligand-protein interaction analysis; Finally, GSTA1 and GPX1 were proved to be significant nodes in GSH metabolism. Overall, toxic PAs could be identified by GSTA1 and GPX1 targets pattern, which suggests their common hepatotoxicity mechanism: the interfering of detoxication in GSH metabolism. In addition, all the strategies developed here could be extended to studies on toxicity mechanism of other toxins.

  13. Common molecular mechanisms in explicit and implicit memory.

    PubMed

    Barco, Angel; Bailey, Craig H; Kandel, Eric R

    2006-06-01

    Cellular and molecular studies of both implicit and explicit memory suggest that experience-dependent modulation of synaptic strength and structure is a fundamental mechanism by which these memories are encoded and stored within the brain. In this review, we focus on recent advances in our understanding of two types of memory storage: (i) sensitization in Aplysia, a simple form of implicit memory, and (ii) formation of explicit spatial memories in the mouse hippocampus. These two processes share common molecular mechanisms that have been highly conserved through evolution.

  14. Genetics and Common Disorders: Implications for Primary Care and Public Health Providers

    SciTech Connect

    McInerney, Joseph D.; Greendale, Karen; Peay, Holly L.

    2005-06-01

    We developed this program for primary care providers (PCPs) and public health professionals (PHPs) who are interested in increasing their understanding of the genetics of common chronic diseases and of the implications of genetics and genomics for their fields. The program differs from virtually all previous educational efforts in genetics for health professionals in that it focuses on the genetics of common chronic disease and on the broad principles that emerge when one views disease from the perspectives of variation and individuality, which are at the heart of thinking genetically. The CD-ROM introduces users to content that will improve their understanding of topics such as: • A framework for genetics and common disease; • Basic information on genetics, genomics, genetic medicine, and public health genetics, all in the context of common chronic disease; • The status of research on genetic contributions to specific common diseases, including a review of research methods; • Genetic/environmental interaction as the new “central dogma” of public health genetics; • The importance of taking and analyzing a family history; • The likely impact of potential gene discovery and genetic testing on genetic counseling and risk assessment and on the practices of PCPs and PHPs; • Stratification of populations into low-, moderate-, and high-risk categories; • The potential role of PCPs and PHPs in identifying high-risk individuals and families, in providing limited genetics services, and in referring to clinical genetics specialists; the potential for standard referral algorithms; • Implications of genetic insights for diagnosis and treatment; • Ethical, legal, and social issues that arise from genetic testing for common chronic diseases; and • Specific prevention strategies based on understanding of genetics and genetic/ environmental interactions. The interactive content – developed by experts in genetics, primary care, and public health – is

  15. Common mechanisms of synaptic plasticity in vertebrates and invertebrates

    PubMed Central

    Glanzman, David L.

    2016-01-01

    Until recently, the literature on learning-related synaptic plasticity in invertebrates has been dominated by models assuming plasticity is mediated by presynaptic changes, whereas the vertebrate literature has been dominated by models assuming it is mediated by postsynaptic changes. Here I will argue that this situation does not reflect a biological reality and that, in fact, invertebrate and vertebrate nervous systems share a common set of mechanisms of synaptic plasticity. PMID:20152143

  16. Epidemiological mechanisms of genetic resistance to kuru

    PubMed Central

    Atkins, Katherine E.; Townsend, Jeffrey P.; Medlock, Jan; Galvani, Alison P.

    2013-01-01

    Transmissible spongiform encephalopathies (TSEs), such as kuru, are invariably fatal neurodegenerative conditions caused by a malformation of the prion protein. Heterozygosity of codon 129 of the prion protein gene has been associated with increased host resistance to TSEs, although the mechanism by which this resistance is achieved has not been determined. To evaluate the epidemiological mechanism of human resistance to kuru, we developed a model that combines the dynamics of kuru transmission and the population genetics of human resistance. We fitted our model to kuru data from the epidemic that occurred in Papua New Guinea over the last hundred years. To elucidate the epidemiological mechanism of human resistance, we estimated the incubation period and transmission rate of kuru for codon 129 heterozygotes and homozygotes using kuru incidence data and human genotype frequency data from 1957 to 2004. Our results indicate that human resistance arises from a combination of both a longer incubation period and reduced susceptibility to infection. This work provides evidence for balancing selection acting on a human population and the mechanistic basis for the heterozygote resistance to kuru. PMID:23740487

  17. Epidemiological mechanisms of genetic resistance to kuru.

    PubMed

    Atkins, Katherine E; Townsend, Jeffrey P; Medlock, Jan; Galvani, Alison P

    2013-08-06

    Transmissible spongiform encephalopathies (TSEs), such as kuru, are invariably fatal neurodegenerative conditions caused by a malformation of the prion protein. Heterozygosity of codon 129 of the prion protein gene has been associated with increased host resistance to TSEs, although the mechanism by which this resistance is achieved has not been determined. To evaluate the epidemiological mechanism of human resistance to kuru, we developed a model that combines the dynamics of kuru transmission and the population genetics of human resistance. We fitted our model to kuru data from the epidemic that occurred in Papua New Guinea over the last hundred years. To elucidate the epidemiological mechanism of human resistance, we estimated the incubation period and transmission rate of kuru for codon 129 heterozygotes and homozygotes using kuru incidence data and human genotype frequency data from 1957 to 2004. Our results indicate that human resistance arises from a combination of both a longer incubation period and reduced susceptibility to infection. This work provides evidence for balancing selection acting on a human population and the mechanistic basis for the heterozygote resistance to kuru.

  18. Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features

    PubMed Central

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses. PMID:22312347

  19. Feline and canine coronaviruses: common genetic and pathobiological features.

    PubMed

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  20. [Genetic polymorphisms commonly influencing efficacy of diverse addictive substances].

    PubMed

    Nishizawa, Daisuke; Ikeda, Kazutaka

    2014-04-01

    Opioids, such as morphine and fentanyl, are widely used as effective analgesics for the treatment of acute and chronic pain. In addition, the opioid system has a key role in the rewarding effects of morphine, ethanol, cocaine and various other drugs. The authors have focused on G-protein-activated inwardly rectifying potassium (GIRK) channel subunits, GIRK2 and GIRK3, that are important molecules in opioid transmission, and found that the single-nucleotide polymorphisms (SNPs) within the GIRK2 and GIRK3 gene regions were significantly associated with postoperative requirements of analgesics including opioids in patients who underwent abdominal surgery and mRNA expression of these genes in postmortem specimens, one of which was also associated with vulnerability to methamphetamine (METH) dependence. Further, by conducting a multistage genome-wide association study (GWAS) in healthy subjects, the authors found that genetic polymorphisms within a linkage disequilibrium block that spans 2q33.3-2q34 were strongly associated with the requirements for postoperative opioid analgesics after painful cosmetic surgery. The C allele of the best candidate SNP, rs2952768, was associated with more analgesic requirements, and consistent results were obtained in patients who underwent abdominal surgery. In addition, carriers of the C allele in this SNP exhibited less vulnerability to severe drug dependence in patients with methamphetamine dependence, alcohol dependence, and eating disorders and a lower 'Reward Dependence score on a personality questionnaire in healthy subjects. Furthermore, the C/C genotype of this SNP was significantly associated with the elevated expression of a neighboring gene, CREB1. The results show that SNPs in this locus are the most potent genetic factors associated with human opioid sensitivity known to date, affecting both the efficacy of opioid analgesics and liability to severe substance dependence. These outcomes provide valuable information for the

  1. Kidney and eye diseases: common risk factors, etiological mechanisms, and pathways.

    PubMed

    Wong, Chee Wai; Wong, Tien Yin; Cheng, Ching-Yu; Sabanayagam, Charumathi

    2014-06-01

    Chronic kidney disease is an emerging health problem worldwide. The eye shares striking structural, developmental, and genetic pathways with the kidney, suggesting that kidney disease and ocular disease may be closely linked. A growing number of studies have found associations of chronic kidney disease with age-related macular degeneration, diabetic retinopathy, glaucoma, and cataract. In addition, retinal microvascular parameters have been shown to be predictive of chronic kidney disease. Chronic kidney disease shares common vascular risk factors including diabetes, hypertension, smoking, and obesity, and pathogenetic mechanisms including inflammation, oxidative stress, endothelial dysfunction, and microvascular dysfunction, with ocular diseases supporting the 'Common Soil Hypothesis.' In this review, we present major epidemiological evidence for these associations and explore underlying pathogenic mechanisms and common risk factors for kidney and ocular disease. Understanding the link between kidney and ocular disease can lead to the development of new treatment and screening strategies for both diseases.

  2. Diverse system stresses: common mechanisms of chromosome fragmentation.

    PubMed

    Stevens, J B; Abdallah, B Y; Liu, G; Ye, C J; Horne, S D; Wang, G; Savasan, S; Shekhar, M; Krawetz, S A; Hüttemann, M; Tainsky, M A; Wu, G S; Xie, Y; Zhang, K; Heng, H H Q

    2011-06-30

    Chromosome fragmentation (C-Frag) is a newly identified MCD (mitotic cell death), distinct from apoptosis and MC (mitotic catastrophe). As different molecular mechanisms can induce C-Frag, we hypothesize that the general mechanism of its induction is a system response to cellular stress. A clear link between C-Frag and diverse system stresses generated from an array of molecular mechanisms is shown. Centrosome amplification, which is also linked to diverse mechanisms of stress, is shown to occur in association with C-Frag. This led to a new model showing that diverse stresses induce common, MCD. Specifically, different cellular stresses target the integral chromosomal machinery, leading to system instability and triggering of MCD by C-Frag. This model of stress-induced cell death is also applicable to other types of cell death. The current study solves the previously confusing relationship between the diverse molecular mechanisms of chromosome pulverization, suggesting that incomplete C-Frag could serve as the initial event responsible for forms of genome chaos including chromothripsis. In addition, multiple cell death types are shown to coexist with C-Frag and it is more dominant than apoptosis at lower drug concentrations. Together, this study suggests that cell death is a diverse group of highly heterogeneous events that are linked to stress-induced system instability and evolutionary potential.

  3. Population genetics of invasive common carp Cyprinus carpio L. in coastal drainages in eastern Australia.

    PubMed

    Haynes, G D; Gilligan, D M; Grewe, P; Moran, C; Nicholas, F W

    2010-10-01

    The common carp Cyprinus carpio introduced in two drainages in eastern Australia are largely descended from European common carp, and in a third drainage they descend largely from East Asian common carp. The partial genetic differentiation among the species in those drainages is consistent with their origins.

  4. Common mechanisms of human perceptual and motor learning

    PubMed Central

    Censor, Nitzan; Sagi, Dov; Cohen, Leonardo G.

    2016-01-01

    The adult mammalian brain has a remarkable capacity to learn in both the perceptual and motor domains through the formation and consolidation of memories. Such practice-enabled procedural learning results in perceptual and motor skill improvements. Here, we examine evidence supporting the notion that perceptual and motor learning in humans exhibit analogous properties, including similarities in temporal dynamics and the interactions between primary cortical and higher-order brain areas. These similarities may point to the existence of a common general mechanism for learning in humans. PMID:22903222

  5. Common mechanisms of pain and depression: are antidepressants also analgesics?

    PubMed Central

    Nekovarova, Tereza; Yamamotova, Anna; Vales, Karel; Stuchlik, Ales; Fricova, Jitka; Rokyta, Richard

    2014-01-01

    Neither pain, nor depression exist as independent phenomena per se, they are highly subjective inner states, formed by our brain and built on the bases of our experiences, cognition and emotions. Chronic pain is associated with changes in brain physiology and anatomy. It has been suggested that the neuronal activity underlying subjective perception of chronic pain may be divergent from the activity associated with acute pain. We will discuss the possible common pathophysiological mechanism of chronic pain and depression with respect to the default mode network of the brain, neuroplasticity and the effect of antidepressants on these two pathological conditions. The default mode network of the brain has an important role in the representation of introspective mental activities and therefore can be considered as a nodal point, common for both chronic pain and depression. Neuroplasticity which involves molecular, cellular and synaptic processes modifying connectivity between neurons and neuronal circuits can also be affected by pathological states such as chronic pain or depression. We suppose that pathogenesis of depression and chronic pain shares common negative neuroplastic changes in the central nervous system (CNS). The positive impact of antidepressants would result in a reduction of these pathological cellular/molecular processes and in the amelioration of symptoms, but it may also increase survival times and quality of life of patients with chronic cancer pain. PMID:24723864

  6. [Ontogenetic clock: molecular-genetic mechanism].

    PubMed

    Pisaruk, A V

    2010-01-01

    Proposed is a hypothesis of the mechanism providing for the cell to count out the time of life and to change (according to the set program) the expression of chromosomal genes in order to control ontogenesis ("ontogenetic clock"). This mechanism represents an autonomous molecular-genetic oscillator, which memorizes the number of cycles of own oscillations through cutting the terminal tau-segment of chrono-DNA using special restrictase. The latter is formed at this segment out of two sub-units (proteins) in each cycle of oscillator operation. These proteins are alternately synthesized on ribosomes, since each inhibits the synthesis of the other, thus ensuring successive binding of restrictase sub-units at the terminal segment of chrono-DNA and its single section in one cycle. In addition, each of these proteins is a repressor of own gene and activator of the gene of the other protein, thus ensuring efficiency and reliability of oscillator operation. The design of oscillator of ontogenetic clock is similar to that of circadian oscillator, but its frequency is not synchronized with the nature's physical rhythms and depends on body temperature. Therefore, it is physical rather than biological time that is measured. The chrono-DNA consists of short repetitive sequences of nucleotides (tau-segments) and temporal (regulatory) genes inserted over specified number of these segments. The shortening of chrono-DNA leads to uncovering the next gene and to its destruction by exonuclease. As a result, the synthesis of activator (repressor) stops and the expression of some chromosomal genes changes, initiating the next stage of ontogenesis.

  7. Rapid Target Modeling Through Genetic Inheritance Mechanism Genetically Evolved Target Prototypmg (GETP). Phase I

    DTIC Science & Technology

    1996-12-10

    Phase I Final Report Rapid Target Modeling Through Genetic Inheritance Mechanism Genetically Evolved Target Prototyping (GETP) Pbiai Dat December 10...COVERED 12/10/96 Final Report 5/7/96-12/10/96 A. TITE AND SUBTITU S. FUNDING NUMBERS Rapid Target Modeling Through Genetic Inheritance Mechanism... Genetically Evolved Target Prototyping (GETP) 6. AUTHOR(S) Dr. Jerzy Bala (P1) Dr. Peter Pachowicz (Co-P1) B.K. Gogia (PM) 7. PERFORMING ORGANIZATION

  8. Drosophila neurotrophins reveal a common mechanism for nervous system formation.

    PubMed

    Zhu, Bangfu; Pennack, Jenny A; McQuilton, Peter; Forero, Manuel G; Mizuguchi, Kenji; Sutcliffe, Ben; Gu, Chun-Jing; Fenton, Janine C; Hidalgo, Alicia

    2008-11-18

    Neurotrophic interactions occur in Drosophila, but to date, no neurotrophic factor had been found. Neurotrophins are the main vertebrate secreted signalling molecules that link nervous system structure and function: they regulate neuronal survival, targeting, synaptic plasticity, memory and cognition. We have identified a neurotrophic factor in flies, Drosophila Neurotrophin (DNT1), structurally related to all known neurotrophins and highly conserved in insects. By investigating with genetics the consequences of removing DNT1 or adding it in excess, we show that DNT1 maintains neuronal survival, as more neurons die in DNT1 mutants and expression of DNT1 rescues naturally occurring cell death, and it enables targeting by motor neurons. We show that Spätzle and a further fly neurotrophin superfamily member, DNT2, also have neurotrophic functions in flies. Our findings imply that most likely a neurotrophin was present in the common ancestor of all bilateral organisms, giving rise to invertebrate and vertebrate neurotrophins through gene or whole-genome duplications. This work provides a missing link between aspects of neuronal function in flies and vertebrates, and it opens the opportunity to use Drosophila to investigate further aspects of neurotrophin function and to model related diseases.

  9. Change Is Good: Variations in Common Biological Mechanisms in the Epsilonproteobacterial Genera Campylobacter and Helicobacter

    PubMed Central

    Gilbreath, Jeremy J.; Cody, William L.; Merrell, D. Scott; Hendrixson, David R.

    2011-01-01

    Summary: Microbial evolution and subsequent species diversification enable bacterial organisms to perform common biological processes by a variety of means. The epsilonproteobacteria are a diverse class of prokaryotes that thrive in diverse habitats. Many of these environmental niches are labeled as extreme, whereas other niches include various sites within human, animal, and insect hosts. Some epsilonproteobacteria, such as Campylobacter jejuni and Helicobacter pylori, are common pathogens of humans that inhabit specific regions of the gastrointestinal tract. As such, the biological processes of pathogenic Campylobacter and Helicobacter spp. are often modeled after those of common enteric pathogens such as Salmonella spp. and Escherichia coli. While many exquisite biological mechanisms involving biochemical processes, genetic regulatory pathways, and pathogenesis of disease have been elucidated from studies of Salmonella spp. and E. coli, these paradigms often do not apply to the same processes in the epsilonproteobacteria. Instead, these bacteria often display extensive variation in common biological mechanisms relative to those of other prototypical bacteria. In this review, five biological processes of commonly studied model bacterial species are compared to those of the epsilonproteobacteria C. jejuni and H. pylori. Distinct differences in the processes of flagellar biosynthesis, DNA uptake and recombination, iron homeostasis, interaction with epithelial cells, and protein glycosylation are highlighted. Collectively, these studies support a broader view of the vast repertoire of biological mechanisms employed by bacteria and suggest that future studies of the epsilonproteobacteria will continue to provide novel and interesting information regarding prokaryotic cellular biology. PMID:21372321

  10. Multiple mutations of lung squamous cell carcinoma shared common mechanisms

    PubMed Central

    Hu, Zhaoyan; Gu, Biao; Shi, Yan

    2016-01-01

    Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell lung cancers which is the cause of 80% of all lung cancer deaths. The genes that highly mutated in patients with LUSC and their roles played in the tumorigenesis remains unknown. Data of patients with Lung squamous cell carcinoma (LUSC) were retrieved from The Cancer Genome Atlas (TCGA). Differentially expressed genes were identified between control and cancer samples. Patients and controls can be separated by mRNA expression level showing that the between-group variance and totally 1265 genes were differentially expressed between controls and patients. Top genes whose mutations highly occurred in patients with LUSC were identified, most of these genes were shown to be related with tumorigenesis in previous studies. All of the genes mostly mutated were independently correlated with expression levels of all genes. These mutations did not show the trend of co-occurrence. However, the influenced gene of these mutations had overlaps. After studying the intersection of these genes, a group of shared genes were identified. The shared pathways enriched which played critical role in LUSC were identified based on these shared genes. Different mutations had contribution to the progression of LUSC. Though these genes involved different specific mechanisms, most of them may share a common mechanism which is critical for LUSC. The results may suggest a neglected mechanism and also indicate a potential target for therapies. PMID:27835590

  11. Common folds and transport mechanisms of secondary active transporters.

    PubMed

    Shi, Yigong

    2013-01-01

    Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.

  12. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains

    PubMed Central

    Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.

    2015-01-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression

  13. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains.

    PubMed

    Bennett, Brian J; Davis, Richard C; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C; Hazen, Stanley L; Gargalovic, Peter S; Lusis, Aldons J

    2015-12-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression

  14. Genetic analysis of mechanisms of aging.

    PubMed

    Rose, M R; Archer, M A

    1996-06-01

    A wide range of genetic models with postponed aging are now available, from selected mice and Drosophilia to mutant Caenorhabditis elegans and Saccharomyces cerevisiae. These systems allow efficient testing of alternative mechanistic hypotheses for aging. Genetic analysis is forging stronger connections between particular alleles and susceptibility to particular 'diseases of aging'; for example, two different genes for Alzheimer disease have been identified.

  15. Mechanical anisotropy and the common occurrence of misoriented faults

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Massironi, M.; Menegon, L.; Bolognesi, F.; Donghi, V.

    2011-12-01

    classified as relatively weak faults, and all characterized by slip along phyllosilicate-rich mylonitic foliations. Anisotropic Slip Tendency analysis demonstrates that the activation of a mechanically weak misoriented phyllosilicate-rich foliation must be considered not only possible, but even more probable than the development of new Andersonian conjugate sets of strong faults. In other words, the activation of a weak foliation reduces differential stresses to a level that does not allow the development of "optimally oriented" (in the Andersonian sense) faults/fractures. This quantitative modelling result is confirmed by the field observation that, where faulting develops along a phyllosilicate-rich foliation, almost no classical Andersonian faults can be found. Finally, we will speculate on how the large scale tectonic evolution of orogenic belts, continental rifts, and some large scale continental transform margins results in the extensive formation, in the ductile/metamorphic layer of the crust, of phyllosilicate-rich mylonitic belts (mis)oriented in such a way as to be commonly activated as described above, once they are exhumed in the brittle/frictional layer. This mechanism is likely to influence the large-scale mechanics of the brittle crust.

  16. PRELIMINARY ANALYSIS OF COMMON LOON GENETIC STRUCTURE IN NORTH AMERICA BASED ON FIVE MICROSATELLITE LOCI

    EPA Science Inventory

    This study seeks to determine fine-scale genetic structure of Common Loon breeding populations in order to link wintering birds with their breeding regions. Common Loons are large piscivorous birds that breed in lakes of northern North America and Iceland. Loons are highly phil...

  17. PRELIMINARY ANALYSIS OF COMMON LOON GENETIC STRUCTURE IN NORTH AMERICA BASED ON FIVE MICROSATELLITE LOCI

    EPA Science Inventory

    This study seeks to determine fine-scale genetic structure of Common Loon breeding populations in order to link wintering birds with their breeding regions. Common Loons are large piscivorous birds that breed in lakes of northern North America and Iceland. Loons are highly phil...

  18. Common TLR1 Genetic Variation Is Not Associated with Death from Melioidosis, a Common Cause of Sepsis in Rural Thailand

    PubMed Central

    Chantratita, Narisara; Tandhavanant, Sarunporn; Myers, Nicolle D.; Chierakul, Wirongrong; Wuthiekanun, Vanaporn; Mahavanakul, Weera; Limmathurotsakul, Direk; Peacock, Sharon J.; West, T. Eoin

    2014-01-01

    Melioidosis, infection caused by the Gram-negative bacterium Burkholderia pseudomallei, is a common cause of sepsis in northeast Thailand. In white North Americans, common functional genetic variation in TLR1 is associated with organ failure and death from sepsis. We hypothesized that TLR1 variants would be associated with outcomes in Thais with melioidosis. We collated the global frequencies of three TLR1 variants that are common in white North American populations: rs5743551 (-7202A/G), rs4833095 (742A/G), and rs5743618 (1804G/T). We noted a reversal of the minor allele from white North American subjects to Asian populations that was particularly pronounced for rs5743618. In the Utah residents of European ancestry, the frequency of the rs5743618 T allele was 17% whereas in Vietnamese subjects the frequency was >99%. We conducted a genetic association study in 427 patients with melioidosis to determine the association of TLR1 variation with organ failure or death. We genotyped rs5743551 and rs4833095. The variants were in high linkage disequilibrium but neither variant was associated with organ failure or in-hospital death. In 300 healthy Thai individuals we further tested the association of TLR1 variation with ex vivo blood responses to Pam3CSK4, a TLR1 agonist. Neither variant was robustly associated with blood cytokine responses induced by Pam3CSK4. We identified additional common variation in TLR1 by searching public databases and the published literature and screened three additional TLR1 variants for associations with Pam3CSK4-induced responses but found none. We conclude that the genetic architecture of TLR1 variation differs substantially in southeast Asians compared to other populations and common variation in TLR1 in Thais is not associated with outcome from melioidosis or with altered blood responses to Pam3CSK4. Our findings highlight the need for additional studies of TLR1 and other innate immune genetic modulators of the inflammatory host response

  19. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders

    PubMed Central

    Johnson, Rebecca A.; Mitchell, Gordon S.

    2013-01-01

    In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: 1) increased (descending) central respiratory drive, 2) motor neuron plasticity, 3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and 4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: 1) respiratory motor neuron death, 2) de- or dysmyelination of cervical spinal pathways, and 3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to “fight” for adequate breathing in the face of mounting pathology. PMID:23727226

  20. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones

    PubMed Central

    Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.

    2013-01-01

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273

  1. Intraspecific morphological and genetic variation of common species predicts ranges of threatened ones.

    PubMed

    Fuller, Trevon L; Thomassen, Henri A; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M; Jarrín-V, Pablo; Devitt, Susan E Cameron; Mason, Eliza; Schweizer, Rena M; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J; Pollinger, John P; Saatchi, Sassan; Graham, Catherine H; Wayne, Robert K; Smith, Thomas B

    2013-06-07

    Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible.

  2. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    PubMed Central

    Küpper Cardoso Perseguini, Juliana Morini; Chioratto, Alisson Fernando; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Carbonell, Sérgio Augusto Moraes; Costa Mondego, Jorge Mauricio; Gazaffi, Rodrigo; Franco Garcia, Antonio Augusto; de Campos, Tatiana; de Souza, Anete Pereira; Rubiano, Luciana Benchimol

    2011-01-01

    A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats – SSRs and amplified fragment length polymorphisms – AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger’s modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm. PMID:21637550

  3. Common genetic architecture underlying young children's food fussiness and liking for vegetables and fruit.

    PubMed

    Fildes, Alison; van Jaarsveld, Cornelia H M; Cooke, Lucy; Wardle, Jane; Llewellyn, Clare H

    2016-04-01

    Food fussiness (FF) is common in early childhood and is often associated with the rejection of nutrient-dense foods such as vegetables and fruit. FF and liking for vegetables and fruit are likely all heritable phenotypes; the genetic influence underlying FF may explain the observed genetic influence on liking for vegetables and fruit. Twin analyses make it possible to get a broad-based estimate of the extent of the shared genetic influence that underlies these traits. We quantified the extent of the shared genetic influence that underlies FF and liking for vegetables and fruit in early childhood with the use of a twin design. Data were from the Gemini cohort, which is a population-based sample of twins born in England and Wales in 2007. Parents of 3-y-old twins (n= 1330 pairs) completed questionnaire measures of their children's food preferences (liking for vegetables and fruit) and the FF scale from the Children's Eating Behavior Questionnaire. Multivariate quantitative genetic modeling was used to estimate common genetic influences that underlie FF and liking for vegetables and fruit. Genetic correlations were significant and moderate to large in size between FF and liking for both vegetables (-0.65) and fruit (-0.43), which indicated that a substantial proportion of the genes that influence FF also influence liking. Common genes that underlie FF and liking for vegetables and fruit largely explained the observed phenotypic correlations between them (68-70%). FF and liking for fruit and vegetables in young children share a large proportion of common genetic factors. The genetic influence on FF may determine why fussy children typically reject fruit and vegetables.

  4. Common genetic heterogeneity of human interleukin-37 leads to functional variance.

    PubMed

    Yan, Jingjing; Zhang, Yuling; Cheng, Shimeng; Kang, Bin; Peng, Jinbiao; Zhang, Xiaodan; Yuan, Meichun; Chu, Wenqi; Zhang, Wen; Shen, Jiayin; Zhang, Shuye

    2017-09-01

    Interleukin-37 (IL-37) is an inhibitory member of the IL-1 family of cytokines. We previously found that balanced selection maintains common variations of the human IL37 gene. However, the functional consequences of this selection have yet to be validated. Here, using cells expressing exogenous IL-37 variants, including IL-37 Ref and IL-37 Var1 and Var2, we found that the three variants of IL-37 exhibited different immunoregulatory potencies in response to immune stimulation. The protein level of IL-37 Var2 was found to be significantly less than that of IL-37 Ref or Var1, despite the comparable mRNA levels of all three variants. Further study showed that IL-37 Var2 was rapidly degraded by a proteasome-dependent mechanism mediated by enhanced polyubiquitination, leading to a transient upregulation of IL-37 Var2 after immune stimulation. Finally, when ectopically expressed in cells, human IL-37 Var2 exerted less inhibition on proinflammatory cytokine production than did other IL-37 variants. Conversely, purified extracellular IL-37 variant proteins demonstrated comparable inhibitory abilities in vitro. In conclusion, our study reveals that common genetic variants of IL37 lead to different immune-inhibitory potencies, primarily as a result of differences in IL-37 protein stability, suggesting the possible involvement of these variants in various human diseases.

  5. Common Functional Genetic Variants in Catecholamine Storage Vesicle Protein Promoter Motifs Interact to Trigger Systemic Hypertension

    PubMed Central

    Zhang, Kuixing; Rao, Fangwen; Wang, Lei; Rana, Brinda K.; Ghosh, Sajalendu; Mahata, Manjula; Salem, Rany M.; Rodriguez-Flores, Juan L.; Fung, Maple M.; Waalen, Jill; Tayo, Bamidele; Taupenot, Laurent; Mahata, Sushil K.; O'Connor, Daniel T.

    2010-01-01

    Objectives The purpose of this study was to explore transcriptional mechanisms whereby genetic variation in the CHGB promoter influence BP and hypertension. Background Hypertension is a complex trait in which deranged autonomic control of the circulation may be an etiological culprit. Chromogranin B (CHGB) is a major soluble protein in the core of catecholamine storage vesicles, playing a necessary (catalytic) role in the biogenesis of secretory vesicles. Previously we found that genetic variation at CHGB influenced plasma CHGB expression as well as autonomic function, and that BP association was maximal towards the 5′ end of the gene. Methods After polymorphism discovery, we functionally characterized the 2 common variants in the proximal CHGB promoter, A-296C and A-261T, which lay within the same haplotype block in black and white populations. CHGB promoter activity was studied by haplotype/luciferase reporter transfection. Transcriptional mechanisms were probed by EMSA and ChIP. Results The A-296C variant disrupted a c-FOS motif, and exhibited differential mobility shifting to chromaffin cell nuclear proteins during EMSA, differential binding of endogenous c-FOS on ChIP, and differential transcriptional response to exogenous c-FOS. A-261T disrupted motifs for SRY and YY1, with similar consequences for gel mobility during EMSA, endogenous factor binding during ChIP, and transcriptional responses to the exogenous factors. 2-SNP haplotype analyses demonstrated a profound (p∼3×10-20) effect of CHGB promoter variation on BP in the European ancestry population, with a rank order of CT

  6. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    PubMed Central

    Kasperavičiūtė, Dalia; Catarino, Claudia B.; Heinzen, Erin L.; Depondt, Chantal; Cavalleri, Gianpiero L.; Caboclo, Luis O.; Tate, Sarah K.; Jamnadas-Khoda, Jenny; Chinthapalli, Krishna; Clayton, Lisa M.S.; Shianna, Kevin V.; Radtke, Rodney A.; Mikati, Mohamad A.; Gallentine, William B.; Husain, Aatif M.; Alhusaini, Saud; Leppert, David; Middleton, Lefkos T.; Gibson, Rachel A.; Johnson, Michael R.; Matthews, Paul M.; Hosford, David; Heuser, Kjell; Amos, Leslie; Ortega, Marcos; Zumsteg, Dominik; Wieser, Heinz-Gregor; Steinhoff, Bernhard J.; Krämer, Günter; Hansen, Jörg; Dorn, Thomas; Kantanen, Anne-Mari; Gjerstad, Leif; Peuralinna, Terhi; Hernandez, Dena G.; Eriksson, Kai J.; Kälviäinen, Reetta K.; Doherty, Colin P.; Wood, Nicholas W.; Pandolfo, Massimo; Duncan, John S.; Sander, Josemir W.; Delanty, Norman

    2010-01-01

    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies. PMID:20522523

  7. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study.

    PubMed

    Kasperaviciūte, Dalia; Catarino, Claudia B; Heinzen, Erin L; Depondt, Chantal; Cavalleri, Gianpiero L; Caboclo, Luis O; Tate, Sarah K; Jamnadas-Khoda, Jenny; Chinthapalli, Krishna; Clayton, Lisa M S; Shianna, Kevin V; Radtke, Rodney A; Mikati, Mohamad A; Gallentine, William B; Husain, Aatif M; Alhusaini, Saud; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Heuser, Kjell; Amos, Leslie; Ortega, Marcos; Zumsteg, Dominik; Wieser, Heinz-Gregor; Steinhoff, Bernhard J; Krämer, Günter; Hansen, Jörg; Dorn, Thomas; Kantanen, Anne-Mari; Gjerstad, Leif; Peuralinna, Terhi; Hernandez, Dena G; Eriksson, Kai J; Kälviäinen, Reetta K; Doherty, Colin P; Wood, Nicholas W; Pandolfo, Massimo; Duncan, John S; Sander, Josemir W; Delanty, Norman; Goldstein, David B; Sisodiya, Sanjay M

    2010-07-01

    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio<1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.

  8. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis.

    PubMed

    Yun, Seongseok; Vincelette, Nicole D

    2015-07-01

    Iron is an essential component of erythropoiesis and its metabolism is tightly regulated by a variety of internal and external cues including iron storage, tissue hypoxia, inflammation and degree of erythropoiesis. There has been remarkable improvement in our understanding of the molecular mechanisms of iron metabolism past decades. The classical model of iron metabolism with iron response element/iron response protein (IRE/IRP) is now extended to include hepcidin model. Endogenous and exogenous signals funnel down to hepcidin via wide range of signaling pathways including Janus Kinase/Signal Transducer and Activator of Transcription 3 (JAK/STAT3), Bone Morphogenetic Protein/Hemojuvelin/Mothers Against Decapentaplegic Homolog (BMP/HJV/SMAD), and Von Hippel Lindau/Hypoxia-inducible factor/Erythropoietin (VHL/HIF/EPO), then relay to ferroportin, which directly regulates intra- and extracellular iron levels. The successful molecular delineation of iron metabolism further enhanced our understanding of common genetic and acquired disorder, hemochromatosis. The majority of the hereditary hemochromatosis (HH) patients are now shown to have mutations in the genes coding either upstream or downstream proteins of hepcidin, resulting in iron overload. The update on hepcidin centered mechanisms of iron metabolism and their clinical perspective in hemochromatosis will be discussed in this review.

  9. Grasping in the pigeon (Columba livia): final common path mechanisms.

    PubMed

    Klein, B G; Deich, J D; Zeigler, H P

    1985-12-01

    A combination of cinematographic and denervation procedures were used to analyse the mechanisms involved in the adjustment of gape size during grasping in the pigeon. Gape size was found to vary directly with seed size and to reflect the operation of two variables, jaw opening velocity and jaw opening duration. Effects upon duration are mediated, indirectly, by the effect of seed size upon head height, which, in turn, controls the velocity of head descent. The data suggest that the control of gape during grasping may involve two different effector systems (jaw muscles, neck muscles). Analysis of the displacement of individual jaws (maxilla, mandible) during grasping indicates that both opener muscles take part in the control of gape. Denervation experiments (motor nerve section) identified these opener motoneurons as contributors to the final common path for the opening phase of grasping. A comparison of the kinematics of pecking/grasping in pigeons and reaching/grasping in humans reveals a number of similarities in the topography and spatiotemporal organization of these behaviors.

  10. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants.

    PubMed

    Gompert, Zachariah; Lucas, Lauren K; Buerkle, C Alex; Forister, Matthew L; Fordyce, James A; Nice, Chris C

    2014-09-01

    Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome-wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree- and genetic ancestry-based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities.

  11. Singapore Cancer Network (SCAN) Guidelines for Referral for Genetic Evaluation of Common Hereditary Cancer Syndromes.

    PubMed

    2015-10-01

    The SCAN cancer genetics workgroup aimed to develop Singapore Cancer Network (SCAN) clinical practice guidelines for referral for genetic evaluation of common hereditary cancer syndromes. The workgroup utilised a modified ADAPTE process to calibrate high quality international evidence-based clinical practice guidelines to our local setting. To formulate referral guidelines for the 3 most commonly encountered hereditary cancer syndromes to guide healthcare providers in Singapore who care for cancer patients and/or their family members, 7, 5, and 3 sets of international guidelines respectively for hereditary breast and ovarian cancer (HBOC) syndrome, Lynch syndrome (LS), and familial adenomatous polyposis (FAP) were evaluated. For each syndrome, the most applicable one was selected, with modifications made such that they would be appropriate to the local context. These adapted guidelines form the SCAN Guidelines 2015 for referral for genetic evaluation of common hereditary cancer syndromes.

  12. High frequency of genetic recombination is a common feature of primate lentivirus replication.

    PubMed

    Chen, Jianbo; Powell, Douglas; Hu, Wei-Shau

    2006-10-01

    Recent studies indicate that human immunodeficiency virus type 1 (HIV-1) recombines at exceedingly high rates, approximately 1 order of magnitude more frequently than simple gammaretroviruses such as murine leukemia virus and spleen necrosis virus. We hypothesize that this high frequency of genetic recombination is a common feature of primate lentiviruses. Alternatively, it is possible that HIV-1 is unique among primate lentiviruses in possessing high recombination rates. Among other primate lentiviruses, only the molecular mechanisms of HIV-2 replication have been extensively studied. There are reported differences between the replication mechanisms of HIV-1 and those of HIV-2, such as preferences for RNA packaging in cis and properties of reverse transcriptase and RNase H activities. These biological disparities could lead to differences in recombination rates between the two viruses. Currently, HIV-1 is the only primate lentivirus in which recombination rates have been measured. To test our hypothesis, we established recombination systems to measure the recombination rates of two other primate lentiviruses, HIV-2 and simian immunodeficiency virus from African green monkeys (SIVagm), in one round of viral replication. We determined that, for markers separated by 588, 288, and 90 bp, HIV-2 recombined at rates of 7.4%, 5.5%, and 2.4%, respectively, whereas SIVagm recombined at rates of 7.8%, 5.6%, and 2.7%, respectively. These high recombination rates are within the same range as the previously measured HIV-1 recombination rates. Taken together, our results indicate that HIV-1, HIV-2, and SIVagm all possess high recombination frequencies; hence, the high recombination potential is most likely a common feature of primate lentivirus replication.

  13. The most common genetic syndromes and associated anomalies in Latvian patients with cleft lip with or without palate.

    PubMed

    Lace, Baiba; Barkane, Biruta; Akota, Ilze

    2006-01-01

    1 over 700 newborns every year is born with cleft lip with/or without palate, in 30% of cases there is a certain genetic mechanism underlying development of disease: chromosomal anomalies, monogenic diseases, exposure to teratogens or in utero disruptive mechanisms. The objective of our study is to describe the most common genetic syndromes and associated anomalies in patients with CL/CP in Latvia. Study material was medical records obtained from Riga Cleft Lip and Palate Centre Registry in a time period of 1980 till 2005. There was analyzed information about patients with identified genetic syndromes and associated anomalies. In a time period from 1980 till 2005, the following genetic syndromes were identified: Van der Woude, Fetal alcohol syndrome, Holzgreve syndrome, Marfan syndrome, Myotonic dystrophy, Klippel-Feil syndrome, Patau syndrome, Potter sequence and Pierre Robin sequence. 16% of CL/CP patients have recognized genetic syndromes or associated anomalies, including profound, severe and moderate mental retardation. Number is lower than expected, but still correlates with date presented in other populations. Long term follow-up of multidisciplinary specialists which includes cardiologists, clinical-geneticists and paediatricians, is needed for CL/CP patients with associated anomalies in order to identify timely side diseases and complications. Grant: Baltic-Taiwan joint research project "Identification of genes involved in craniofacial morphogenesis and susceptibility to orofacial clefting in a human genome scan 2004-2006".

  14. The Relationship Between the Genetic and Environmental Influences on Common Externalizing Psychopathology and Mental Wellbeing

    PubMed Central

    Kendler, Kenneth S.; Myers, John M.; Keyes, Corey L. M.

    2012-01-01

    To determine the relationship between the genetic and environmental risk factors for externalizing psychopathology and mental wellbeing, we examined detailed measures of emotional, social and psychological wellbeing, and a history of alcohol-related problems and smoking behavior in the last year in 1,386 individual twins from same-sex pairs from the MIDUS national US sample assessed in 1995. Cholesky decomposition analyses were performed with the Mx program. The best fit model contained one highly heritable common externalizing psychopathology factor for both substance use/abuse measures, and one strongly heritable common factor for the three wellbeing measures. Genetic and environmental risk factors for externalizing psychopathology were both negatively associated with levels of mental wellbeing and accounted for, respectively, 7% and 21% of its genetic and environmental influences. Adding internalizing psychopathology assessed in the last year to the model, genetic risk factors unique for externalizing psychopathology were now positively related to levels of mental wellbeing, although accounting for only 5% of the genetic variance. Environmental risk factors unique to externalizing psychopathology continued to be negatively associated with mental wellbeing, accounting for 26% of the environmental variance. When both internalizing psychopathology and externalizing psychopathology are associated with mental wellbeing, the strongest risk factors for low mental wellbeing are genetic factors that impact on both internalizing psychopathology and externalizing psychopathology, and environmental factors unique to externalizing psychopathology. In this model, genetic risk factors for externalizing psychopathology predict, albeit weakly, higher levels of mental wellbeing. PMID:22506307

  15. The relationship between the genetic and environmental influences on common externalizing psychopathology and mental wellbeing.

    PubMed

    Kendler, Kenneth S; Myers, John M; Keyes, Corey L M

    2011-12-01

    To determine the relationship between the genetic and environmental risk factors for externalizing psychopathology and mental wellbeing, we examined detailed measures of emotional, social and psychological wellbeing, and a history of alcohol-related problems and smoking behavior in the last year in 1,386 individual twins from same-sex pairs from the MIDUS national US sample assessed in 1995. Cholesky decomposition analyses were performed withthe Mx program. The best fit model contained one highly heritable common externalizing psychopathology factor for both substance use/abuse measures, and one strongly heritable common factor for the three wellbeing measures. Genetic and environmental risk factors for externalizing psychopathology were both negatively associated with levels of mental wellbeing and accounted for, respectively, 7% and 21% of its genetic and environmental influences. Adding internalizing psychopathology assessed in the last year to the model, genetic risk factors unique for externalizing psychopathology were now positively related to levels of mental wellbeing, although accounting for only 5% of the genetic variance. Environmental risk factors unique to externalizing psychopathology continued to be negatively associated with mental wellbeing, accounting for 26% of the environmental variance. When both internalizing psychopathology and externalizing psychopathology are associated with mental wellbeing, the strongest risk factors for low mental wellbeing are genetic factors that impact on both internalizing psychopathology and externalizing psychopathology, and environmental factors unique to externalizing psychopathology. In this model, genetic risk factors for externalizing psychopathology predict, albeit weakly, higher levels of mental wellbeing.

  16. Genome-wide association studies and genetic architecture of common human diseases.

    PubMed

    Montgomery, Grant W

    2011-06-03

    Genome-wide association scans provide the first successful method to identify genetic variation contributing to risk for common complex disease. Progress in identifying genes associated with melanoma show complex relationships between genes for pigmentation and the development of melanoma. Novel risk loci account for only a small fraction of the genetic variation contributing to this and many other diseases. Large meta-analyses find additional variants, but there is current debate about the contribution of common polymorphisms, rare polymorphisms or mutations to disease risk.

  17. Common Transcriptional Mechanisms for Visual Photoreceptor Cell Differentiation among Pancrustaceans

    PubMed Central

    Mahato, Simpla; Morita, Shinichi; Tucker, Abraham E.; Liang, Xulong; Jackowska, Magdalena; Friedrich, Markus; Shiga, Yasuhiro; Zelhof, Andrew C.

    2014-01-01

    A hallmark of visual rhabdomeric photoreceptors is the expression of a rhabdomeric opsin and uniquely associated phototransduction molecules, which are incorporated into a specialized expanded apical membrane, the rhabdomere. Given the extensive utilization of rhabdomeric photoreceptors in the eyes of protostomes, here we address whether a common transcriptional mechanism exists for the differentiation of rhabdomeric photoreceptors. In Drosophila, the transcription factors Pph13 and Orthodenticle (Otd) direct both aspects of differentiation: rhabdomeric opsin transcription and rhabdomere morphogenesis. We demonstrate that the orthologs of both proteins are expressed in the visual systems of the distantly related arthropod species Tribolium castaneum and Daphnia magna and that their functional roles are similar in these species. In particular, we establish that the Pph13 homologs have the ability to bind a subset of Rhodopsin core sequence I sites and that these sites are present in key phototransduction genes of both Tribolium and Daphnia. Furthermore, Pph13 and Otd orthologs are capable of executing deeply conserved functions of photoreceptor differentiation as evidenced by the ability to rescue their respective Drosophila mutant phenotypes. Pph13 homologs are equivalent in their ability to direct both rhabdomere morphogenesis and opsin expression within Drosophila, whereas Otd paralogs demonstrate differential abilities to regulate photoreceptor differentiation. Finally, loss-of-function analyses in Tribolium confirm the conserved requirement of Pph13 and Otd in regulating both rhabdomeric opsin transcription and rhabdomere morphogenesis. Taken together, our data identify components of a regulatory framework for rhabdomeric photoreceptor differentiation in Pancrustaceans, providing a foundation for defining ancestral regulatory modules of rhabdomeric photoreceptor differentiation. PMID:24991928

  18. Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): Natural replicate tests of post-Pleistocene evolution

    USGS Publications Warehouse

    Morris-Pocock, J. A.; Taylor, S.A.; Birt, T.P.; Damus, M.; Piatt, J.F.; Warheit, K.I.; Friesen, V.L.

    2008-01-01

    Understanding the factors that influence population differentiation in temperate taxa can be difficult because the signatures of both historic and contemporary demographics are often reflected in population genetic patterns. Fortunately, analyses based on coalescent theory can help untangle the relative influence of these historic and contemporary factors. Common murres (Uria aalge) are vagile seabirds that breed in the boreal and low arctic waters of the Northern Hemisphere. Previous analyses revealed that Atlantic and Pacific populations are genetically distinct; however, less is known about population genetic structure within ocean basins. We employed the mitochondrial control region, four microsatellite loci and four intron loci to investigate population genetic structure throughout the range of common murres. As in previous studies, we found that Atlantic and Pacific populations diverged during the Pleistocene and do not currently exchange migrants. Therefore, Atlantic and Pacific murre populations can be used as natural replicates to test mechanisms of population differentiation. While we found little population genetic structure within the Pacific, we detected significant east-west structuring among Atlantic colonies. The degree that population genetic structure reflected contemporary population demographics also differed between ocean basins. Specifically, while the low levels of population differentiation in the Pacific are at least partially due to high levels of contemporary gene flow, the east-west structuring of populations within the Atlantic appears to be the result of historic fragmentation of populations rather than restricted contemporary gene flow. The contrasting results in the Atlantic and Pacific Oceans highlight the necessity of carefully considering multilocus nonequilibrium population genetic approaches when reconstructing the demographic history of temperate Northern Hemisphere taxa. ?? 2008 The Authors.

  19. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    PubMed Central

    Torres, Anthony R.; Sweeten, Thayne L.; Johnson, Randall C.; Odell, Dennis; Westover, Jonna B.; Bray-Ward, Patricia; Ward, David C.; Davies, Christopher J.; Thomas, Aaron J.; Croen, Lisa A.; Benson, Michael

    2016-01-01

    The “common variant—common disease” hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the “common variant—common disease” hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in

  20. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder.

    PubMed

    Torres, Anthony R; Sweeten, Thayne L; Johnson, Randall C; Odell, Dennis; Westover, Jonna B; Bray-Ward, Patricia; Ward, David C; Davies, Christopher J; Thomas, Aaron J; Croen, Lisa A; Benson, Michael

    2016-01-01

    The "common variant-common disease" hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the "common variant-common disease" hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in autism over

  1. Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee

    PubMed Central

    Rittschof, Clare C.; Bukhari, Syed Abbas; Sloofman, Laura G.; Troy, Joseph M.; Caetano-Anollés, Derek; Cash-Ahmed, Amy; Kent, Molly; Lu, Xiaochen; Sanogo, Yibayiri O.; Weisner, Patricia A.; Zhang, Huimin; Bell, Alison M.; Ma, Jian; Sinha, Saurabh; Robinson, Gene E.; Stubbs, Lisa

    2014-01-01

    Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic “toolkits” that are used in independent evolutions of the response to social challenge in diverse taxa. PMID:25453090

  2. Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus)

    PubMed Central

    Song, Jin-Won; Gu, Se Hun; Bennett, Shannon N; Arai, Satoru; Puorger, Maria; Hilbe, Monika; Yanagihara, Richard

    2007-01-01

    More than 20 years ago, hantaviral antigens were reported in tissues of the Eurasian common shrew (Sorex araneus), Eurasian water shrew (Neomys fodiens) and common mole (Talpa europea), suggesting that insectivores, or soricomorphs, might serve as reservoirs of unique hantaviruses. Using RT-PCR, sequences of a genetically distinct hantavirus, designated Seewis virus (SWSV), were amplified from lung tissue of a Eurasian common shrew, captured in October 2006 in Graubünden, Switzerland. Pair-wise analysis of the full-length S and partial M and L segments of SWSV indicated approximately 55%–72% similarity with hantaviruses harbored by Murinae, Arvicolinae, Neotominae and Sigmodontinae rodents. Phylogenetically, SWSV grouped with other recently identified shrew-borne hantaviruses. Intensified efforts are underway to clarify the genetic diversity of SWSV throughout the geographic range of the Eurasian common shrew, as well as to determine its relevance to human health. PMID:17967200

  3. Common genetic variants, acting additively, are a major source of risk for autism

    PubMed Central

    2012-01-01

    Background Autism spectrum disorders (ASD) are early onset neurodevelopmental syndromes typified by impairments in reciprocal social interaction and communication, accompanied by restricted and repetitive behaviors. While rare and especially de novo genetic variation are known to affect liability, whether common genetic polymorphism plays a substantial role is an open question and the relative contribution of genes and environment is contentious. It is probable that the relative contributions of rare and common variation, as well as environment, differs between ASD families having only a single affected individual (simplex) versus multiplex families who have two or more affected individuals. Methods By using quantitative genetics techniques and the contrast of ASD subjects to controls, we estimate what portion of liability can be explained by additive genetic effects, known as narrow-sense heritability. We evaluate relatives of ASD subjects using the same methods to evaluate the assumptions of the additive model and partition families by simplex/multiplex status to determine how heritability changes with status. Results By analyzing common variation throughout the genome, we show that common genetic polymorphism exerts substantial additive genetic effects on ASD liability and that simplex/multiplex family status has an impact on the identified composition of that risk. As a fraction of the total variation in liability, the estimated narrow-sense heritability exceeds 60% for ASD individuals from multiplex families and is approximately 40% for simplex families. By analyzing parents, unaffected siblings and alleles not transmitted from parents to their affected children, we conclude that the data for simplex ASD families follow the expectation for additive models closely. The data from multiplex families deviate somewhat from an additive model, possibly due to parental assortative mating. Conclusions Our results, when viewed in the context of results from genome

  4. Are Farm-Reared Quails for Game Restocking Really Common Quails (Coturnix coturnix)?: A Genetic Approach

    PubMed Central

    Sanchez-Donoso, Ines; Vilà, Carles; Puigcerver, Manel; Butkauskas, Dalius; Caballero de la Calle, José Ramón; Morales-Rodríguez, Pablo Antonio; Rodríguez-Teijeiro, José Domingo

    2012-01-01

    The common quail (Coturnix coturnix) is a popular game species for which restocking with farm-reared individuals is a common practice. In some areas, the number of released quails greatly surpasses the number of wild breeding common quail. However, common quail are difficult to raise in captivity and this casts suspicion about a possible hybrid origin of the farmed individuals from crosses with domestic Japanese quail (C. japonica). In this study we used a panel of autosomal microsatellite markers to characterize the genetic origin of quails reared for hunting purposes in game farms in Spain and of quails from an experimental game farm which was founded with hybrids that have been systematically backcrossed with wild common quails. The genotypes of these quail were compared to those of wild common quail and domestic strains of Japanese quail. Our results show that more than 85% of the game farm birds were not common quail but had domestic Japanese quail ancestry. In the experimental farm a larger proportion of individuals could not be clearly separated from pure common quails. We conclude that the majority of quail sold for restocking purposes were not common quail. Genetic monitoring of individuals raised for restocking is indispensable as the massive release of farm-reared hybrids could represent a severe threat for the long term survival of the native species. PMID:22701745

  5. Teaching Evolutionary Mechanisms: Genetic Drift and M&M's.

    ERIC Educational Resources Information Center

    Staub, Nancy L.

    2002-01-01

    Describes a classroom activity that teaches the mechanism of genetic drift to undergraduates. Illustrates a number of concepts that are critical in developing evolution literacy by sampling M&M milk chocolate candies. (MM)

  6. Teaching Evolutionary Mechanisms: Genetic Drift and M&M's.

    ERIC Educational Resources Information Center

    Staub, Nancy L.

    2002-01-01

    Describes a classroom activity that teaches the mechanism of genetic drift to undergraduates. Illustrates a number of concepts that are critical in developing evolution literacy by sampling M&M milk chocolate candies. (MM)

  7. Genetic mutations and mechanisms in dilated cardiomyopathy.

    PubMed

    McNally, Elizabeth M; Golbus, Jessica R; Puckelwartz, Megan J

    2013-01-01

    Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are "private" or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia.

  8. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia.

    PubMed

    Pollegioni, Paola; Woeste, Keith E; Chiocchini, Francesca; Del Lungo, Stefano; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E; Mapelli, Sergio; Malvolti, Maria Emilia

    2015-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history.

  9. Ancient Humans Influenced the Current Spatial Genetic Structure of Common Walnut Populations in Asia

    PubMed Central

    Pollegioni, Paola; Woeste, Keith E.; Chiocchini, Francesca; Del Lungo, Stefano; Olimpieri, Irene; Tortolano, Virginia; Clark, Jo; Hemery, Gabriel E.; Mapelli, Sergio; Malvolti, Maria Emilia

    2015-01-01

    Common walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. It is generally accepted that J. regia survived and grew spontaneously in almost completely isolated stands in its Asian native range after the Last Glacial Maximum. Despite its natural geographic isolation, J. regia evolved over many centuries under the influence of human management and exploitation. We evaluated the hypothesis that the current distribution of natural genetic resources of common walnut in Asia is, at least in part, the product of ancient anthropogenic dispersal, human cultural interactions, and afforestation. Genetic analysis combined with ethno-linguistic and historical data indicated that ancient trade routes such as the Persian Royal Road and Silk Road enabled long-distance dispersal of J. regia from Iran and Trans-Caucasus to Central Asia, and from Western to Eastern China. Ancient commerce also disrupted the local spatial genetic structure of autochthonous walnut populations between Tashkent and Samarkand (Central-Eastern Uzbekistan), where the northern and central routes of the Northern Silk Road converged. A significant association between ancient language phyla and the genetic structure of walnut populations is reported even after adjustment for geographic distances that could have affected both walnut gene flow and human commerce over the centuries. Beyond the economic importance of common walnut, our study delineates an alternative approach for understanding how the genetic resources of long-lived perennial tree species may be affected by the interaction of geography and human history. PMID:26332919

  10. Identification of Genetic Differentiation between Waxy and Common Maize by SNP Genotyping

    PubMed Central

    Hao, Derong; Zhang, Zhenliang; Cheng, Yujing; Chen, Guoqing; Lu, Huhua; Mao, Yuxiang; Shi, Mingliang; Huang, Xiaolan; Zhou, Guangfei; Xue, Lin

    2015-01-01

    Waxy maize (Zea mays L. var. ceratina) is an important vegetable and economic crop that is thought to have originated from cultivated flint maize and most recently underwent divergence from common maize. In this study, a total of 110 waxy and 110 common maize inbred lines were genotyped with 3072 SNPs to evaluate the genetic diversity, population structure, and linkage disequilibrium decay as well as identify putative loci that are under positive selection. The results revealed abundant genetic diversity in the studied panel and that genetic diversity was much higher in common than in waxy maize germplasms. Principal coordinate analysis and neighbor-joining cluster analysis consistently classified the 220 accessions into two major groups and a mixed group with mixed ancestry. Subpopulation structure in both waxy and common maize sets were associated with the germplasm origin and corresponding heterotic groups. The LD decay distance (1500–2000 kb) in waxy maize was lower than that in common maize. Fourteen candidate loci were identified as under positive selection between waxy and common maize at the 99% confidence level. The information from this study can assist waxy maize breeders by enhancing parental line selection and breeding program design. PMID:26566240

  11. Common DNA sequences with potential for detection of genetically manipulated organisms in food.

    PubMed

    MacCormick, C A; Griffin, H G; Underwood, H M; Gasson, M J

    1998-06-01

    Foods produced by genetic engineering technology are now appearing on the market and many more are likely to emerge in the future. The safety aspects, regulation, and labelling of these foods are still contentious issues in most countries and recent surveys highlight consumer concerns about the safety and labelling of genetically modified food. In most countries it is necessary to have approval for the use of genetically manipulated organisms (GMOs) in the production of food. In order to police regulations, a technology to detect such foods is desirable. In addition, a requirement to label approved genetically modified food would necessitate a monitoring system. One solution is to 'tag' approved GMOs with some form of biological or genetic marker, permitting the surveillance of foods for the presence of approved products of genetic engineering. While non-approved GMOs would not be detected by such a surveillance, they might be detected by a screen for DNA sequences common to all or most GMOs. This review focuses on the potential of using common DNA sequences as detection probes for GMOs. The identification of vector sequences, plant transcription terminators, and marker genes by PCR and hybridization techniques is discussed.

  12. Mechanical properties of the common carotid artery in Williams syndrome

    PubMed Central

    Aggoun, Y; Sidi, D; Levy, B; Lyonnet, S; Kachaner, J; Bonnet, D

    2000-01-01

    OBJECTIVE—To determine whether arterial wall hypertrophy in elastic arteries was associated with alteration in their mechanical properties in young patients with Williams syndrome.
METHODS—Arterial pressure and intima-media thickness, cross sectional compliance, distensibility, circumferential wall stress, and incremental elastic modulus of the common carotid artery were measured non-invasively in 21 Williams patients (mean (SD) age 8.5 (4) years) and 21 children of similar age.
RESULTS—Systolic and diastolic blood pressures were higher in Williams patients (125/66 v 113/60 mm Hg, p < 0.05). The mean (SD) intima-media thickness was increased in Williams patients, at 0.6 (0.07) v 0.5 (0.03) mm (p < 0.001). Normotensive Williams patients had a lower circumferential wall stress (2.1 (0.5) v 3.0 (0.7) mm Hg, p < 0.01), a higher distensibility (1.1 (0.3) v 0.8 (0.3) mm Hg−1.10−2, p < 0.01), similar cross sectional compliance (0.14 (0.04) v 0.15 (0.05) mm2.mm Hg−1, p > 0.05), and lower incremental elastic modulus (7.4 (2.0) v 14.0 (5.0) mm Hg.102; p < 0.001).
CONCLUSIONS—The compliance of the large elastic arteries is not modified in Williams syndrome, even though increased intima-media thickness and lower arterial stiffness are consistent features. Therefore systemic hypertension cannot be attributed to impaired compliance of the arterial tree in this condition.


Keywords: elastin; Williams syndrome; hypertension; compliance PMID:10956293

  13. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method

    PubMed Central

    Rietveld, Cornelius A.; Esko, Tõnu; Davies, Gail; Pers, Tune H.; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F.; Emilsson, Valur; Johnson, Andrew D.; Lee, James J.; de Leeuw, Christiaan; Marioni, Riccardo E.; Medland, Sarah E.; Miller, Michael B.; Rostapshova, Olga; van der Lee, Sven J.; Vinkhuyzen, Anna A. E.; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M.; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L.; Hansell, Narelle K.; Hayward, Caroline; Iacono, William G.; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C.; Magnusson, Patrik K. E.; Martin, Nicholas G.; McGue, Matt; McMahon, George; Pedersen, Nancy L.; Pinker, Steven; Porteous, David J.; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H.; Starr, John M.; Tiemeier, Henning; Timpson, Nicholas J.; Trzaskowski, Maciej; Uitterlinden, André G.; Verhulst, Frank C.; Ward, Mary E.; Wright, Margaret J.; Davey Smith, George; Deary, Ian J.; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M.; Benjamin, Daniel J.; Koellinger, Philipp D.

    2014-01-01

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. PMID:25201988

  14. Genetic Variation in Human Vitamin C Transporter Genes in Common Complex Diseases123

    PubMed Central

    Shaghaghi, Mandana Amir; Kloss, Olena

    2016-01-01

    Adequate plasma, cellular, and tissue vitamin C concentrations are required for maintaining optimal health through suppression of oxidative stress and optimizing functions of certain enzymes that require vitamin C as a cofactor. Polymorphisms in the vitamin C transporter genes, compromising genes encoding sodium-dependent ascorbate transport proteins, and also genes encoding facilitative transporters of dehydroascorbic acid, are associated with plasma and tissue cellular ascorbate status and hence cellular redox balance. This review summarizes our current knowledge of the links between variations in vitamin C transporter genes and common chronic diseases. We conclude that emerging genetic knowledge has a good likelihood of defining future personalized dietary recommendations and interventions; however, further validations through biological studies as well as controlled dietary trials are required to identify predictive and actionable genetic biomarkers. We further advocate the need to consider genetic variation of vitamin C transporters in future clinical and epidemiologic studies on common complex diseases. PMID:26980812

  15. Genetic and silvicultural research promoting common walnut (Juglans regia) for timber production in the United Kingdom

    Treesearch

    Gabriel E. Hemery

    2004-01-01

    A combination of genetic and silvicultural research is required to improve the viability of common walnut for timber production in the UK. A summary of a research programme, initiated in 1996, is provided. Establishment of walnut plantations using tree shelters indicated positive benefits using 0.75 m shelters but larger shelters (1.20 m) caused early flushing and...

  16. Genetic analysis and molecular mapping of crown rust resistance in common wheat

    USDA-ARS?s Scientific Manuscript database

    Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley in the Great Plain regions of the United States. However, a few genotypes of common wheat were found to be susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown ru...

  17. Common Genetic and Environmental Influences on Major Depressive Disorder and Conduct Disorder

    ERIC Educational Resources Information Center

    Subbarao, Anjali; Rhee, Soo Hyun; Young, Susan E.; Ehringer, Marissa A.; Corley, Robin P.; Hewitt, John K.

    2008-01-01

    The evidence for common genetic and environmental influences on conduct disorder (CD) and major depressive disorder (MDD) in adolescents was examined. A sample of 570 monozygotic twin pairs, 592 dizygotic twin pairs, and 426 non-twin siblings, aged 12-18 years, was recruited from the Colorado Twin Registry. For the past year data, there was a…

  18. Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms.

    PubMed

    Lowery, Robert K; Uribe, Gabriel; Jimenez, Eric B; Weiss, Mark A; Herrera, Kristian J; Regueiro, Maria; Herrera, Rene J

    2013-11-01

    Analyses of the genetic relationships among modern humans, Neanderthals and Denisovans have suggested that 1-4% of the non-Sub-Saharan African gene pool may be Neanderthal derived, while 6-8% of the Melanesian gene pool may be the product of admixture between the Denisovans and the direct ancestors of Melanesians. In the present study, we analyzed single nucleotide polymorphism (SNP) diversity among a worldwide collection of contemporary human populations with respect to the genetic constitution of these two archaic hominins and Pan troglodytes (chimpanzee). We partitioned SNPs into subsets, including those that are derived in both archaic lineages, those that are ancestral in both archaic lineages and those that are only derived in one archaic lineage. By doing this, we have conducted separate examinations of subsets of mutations with higher probabilities of divergent phylogenetic origins. While previous investigations have excluded SNPs from common ancestors in principal component analyses, we included common ancestral SNPs in our analyses to visualize the relative placement of the Neanderthal and Denisova among human populations. To assess the genetic similarities among the various hominin lineages, we performed genetic structure analyses to provide a comparison of genetic patterns found within contemporary human genomes that may have archaic or common ancestral roots. Our results indicate that 3.6% of the Neanderthal genome is shared with roughly 65.4% of the average European gene pool, which clinally diminishes with distance from Europe. Our results suggest that Neanderthal genetic associations with contemporary non-Sub-Saharan African populations, as well as the genetic affinities observed between Denisovans and Melanesians most likely result from the retention of ancient mutations in these populations.

  19. Genetic Characterization of Legionella pneumophila Isolated from a Common Watershed in Comunidad Valenciana, Spain.

    PubMed

    Sánchez-Busó, Leonor; Coscollá, Mireia; Pinto-Carbó, Marta; Catalán, Vicente; González-Candelas, Fernando

    2013-01-01

    Legionella pneumophila infects humans to produce legionellosis and Pontiac fever only from environmental sources. In order to establish control measures and study the sources of outbreaks it is essential to know extent and distribution of strain variants of this bacterium in the environment. Sporadic and outbreak-related cases of legionellosis have been historically frequent in the Comunidad Valenciana region (CV, Spain), with a high prevalence in its Southeastern-most part (BV). Environmental investigations for the detection of Legionella pneumophila are performed in this area routinely. We present a population genetics study of 87 L. pneumophila strains isolated in 13 different localities of the BV area irrigated from the same watershed and compare them to a dataset of 46 strains isolated in different points of the whole CV. Our goal was to compare environmental genetic variation at two different geographic scales, at county and regional levels. Genetic diversity, recombination and population structure were analyzed with Sequence-Based Typing data and three intergenic regions. The results obtained reveal a low, but detectable, level of genetic differentiation between both datasets, mainly, but not only, attributed to the occurrence of unusual variants of the neuA locus present in the BV populations. This differentiation is still detectable when the 10 loci considered are analyzed independently, despite the relatively high incidence of the most common genetic variant in this species, sequence type 1 (ST-1). However, when the genetic data are considered without their associated geographic information, four major groups could be inferred at the genetic level which did not show any correlation with sampling locations. The overall results indicate that the population structure of these environmental samples results from the joint action of a global, widespread ST-1 along with genetic differentiation at shorter geographic distances, which in this case are related to

  20. Genetic Characterization of Legionella pneumophila Isolated from a Common Watershed in Comunidad Valenciana, Spain

    PubMed Central

    Sánchez-Busó, Leonor; Coscollá, Mireia; Pinto-Carbó, Marta; Catalán, Vicente; González-Candelas, Fernando

    2013-01-01

    Legionella pneumophila infects humans to produce legionellosis and Pontiac fever only from environmental sources. In order to establish control measures and study the sources of outbreaks it is essential to know extent and distribution of strain variants of this bacterium in the environment. Sporadic and outbreak-related cases of legionellosis have been historically frequent in the Comunidad Valenciana region (CV, Spain), with a high prevalence in its Southeastern-most part (BV). Environmental investigations for the detection of Legionella pneumophila are performed in this area routinely. We present a population genetics study of 87 L. pneumophila strains isolated in 13 different localities of the BV area irrigated from the same watershed and compare them to a dataset of 46 strains isolated in different points of the whole CV. Our goal was to compare environmental genetic variation at two different geographic scales, at county and regional levels. Genetic diversity, recombination and population structure were analyzed with Sequence-Based Typing data and three intergenic regions. The results obtained reveal a low, but detectable, level of genetic differentiation between both datasets, mainly, but not only, attributed to the occurrence of unusual variants of the neuA locus present in the BV populations. This differentiation is still detectable when the 10 loci considered are analyzed independently, despite the relatively high incidence of the most common genetic variant in this species, sequence type 1 (ST-1). However, when the genetic data are considered without their associated geographic information, four major groups could be inferred at the genetic level which did not show any correlation with sampling locations. The overall results indicate that the population structure of these environmental samples results from the joint action of a global, widespread ST-1 along with genetic differentiation at shorter geographic distances, which in this case are related to

  1. Common Mechanism Underlies Repeated Evolution of Extreme Pollution Tolerance

    EPA Science Inventory

    Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wild populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved me...

  2. Common Mechanism Underlies Repeated Evolution of Extreme Pollution Tolerance

    EPA Science Inventory

    Human alterations to the environment can exert strong evolutionary pressures, yet contemporary adaptation to human-mediated stressors is rarely documented in wild populations. A common-garden experimental design was coupled with comparative transcriptomics to discover evolved me...

  3. The Mosaic Theory Revisited: Common Molecular Mechanisms Coordinating Diverse Organ and Cellular Events in Hypertension

    PubMed Central

    Harrison, David G.

    2012-01-01

    Over 60 years ago, Dr. Irvine Page proposed the Mosaic Theory of hypertension, which states that many factors, including genetics, environment, adaptive, neural, mechanical and hormonal perturbations interdigitate to raise blood pressure. In the past two decades, it has become clear that common molecular and cellular events in various organs underlie many features of the Mosaic Theory. Two of these are the production of reactive oxygen species (ROS) and inflammation. These factors increase neuronal firing in specific brain centers, increase sympathetic outflow, alter vascular tone and morphology and promote sodium retention in the kidney. Moreover, factors such as genetics and environment contribute to oxidant generation and inflammation. Other common cellular signals, including calcium signaling and endoplasmic reticulum stress are similarly perturbed in different cells in hypertension and contribute to components of Dr. Page’s theory. Thus, Dr. Page’s Mosaic Theory formed a framework for future studies of molecular and cellular signals in the context of hypertension, and has greatly aided our understanding of this complex disease. PMID:23321405

  4. Genetic advances uncover mechanisms of chemotherapy-induced peripheral neuropathy.

    PubMed

    Chua, K C; Kroetz, D L

    2017-04-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting toxicity experienced in 30-40% of patients undergoing treatment with various chemotherapeutics, including taxanes, vinca alkaloids, epothilones, proteasome inhibitors, and thalidomide. Importantly, CIPN significantly affects a patient's quality of life. Recent genetic association studies are enhancing our understanding of CIPN pathophysiology and serve as a foundation for identification of genetic biomarkers to predict toxicity risk and for the development of novel strategies for prevention and treatment.

  5. Sensitization to Common and Uncommon Pets or Other Furry Animals: Which May Be Common Mechanisms?

    PubMed Central

    Liccardi, G; Triggiani, M; Piccolo, A; Salzillo, A; Parente, R; Manzi, F; Vatrella, A

    2016-01-01

    Exposure to animal allergens constitutes a relevant risk factor for the development of allergic sensitization. Moreover, an increasing number of people become owners of less common animals. In this article we summarize aspects related to sensitization to cat/dog which may be applied also to uncommon pets or other furry animals. The data discussed here suggest that several different factors may induce allergic sensitization to furry animals with or without previous contact. Allergic sensitization without animal exposure is a relevant risk for patients because they are not aware about the possibility that even severe respiratory symptoms may develop after an occasional animal contact. This aspect should be taken into account by susceptible individuals before acquiring pets or beginning a contact for working/leisure activity with a common as well as uncommon animal. As a consequence, skin prick test and/or evaluation of specific IgE antibodies (by classic ImmunoCAP or micro-array technique ImmunoCAP ISAC) also to less common (“new”) mammalian allergens could be recommended in individuals already sensitized to common pets to identify the occurrence of allergic sensitization and consequently to avoid future exposures to uncommon animal allergens. PMID:27326390

  6. A common genetic factor explains the association between psychopathic personality and antisocial behavior.

    PubMed

    Larsson, Henrik; Tuvblad, Catherine; Rijsdijk, Fruhling V; Andershed, Henrik; Grann, Martin; Lichtenstein, Paul

    2007-01-01

    Both psychopathic personality traits and antisocial behavior are influenced by genetic as well as environmental factors. However, little is known about how genetic and environmental factors contribute to the associations between the psychopathic personality traits and antisocial behavior. Data were drawn from a longitudinal population-based twin sample including all 1480 twin pairs born in Sweden between May 1985 and December 1986. The twins responded to mailed self-report questionnaires at two occasions: 1999 (twins 13-14 years old), and 2002 (twins 16-17 years old). A common genetic factor loaded substantially on both psychopathic personality traits and antisocial behavior, whereas a common shared environmental factor loaded exclusively on antisocial behavior. The genetic overlap between psychopathic personality traits and antisocial behavior may reflect a genetic vulnerability to externalizing psychopathology. The finding of shared environmental influences only in antisocial behavior suggests an etiological distinction between psychopathic personality dimensions and antisocial behavior. Knowledge about temperamental correlates to antisocial behavior is important for identification of susceptibility genes, as well as for possible prevention through identification of at-risk children early in life.

  7. Common Genetic Factors Influence Hand Strength, Processing Speed, and Working Memory

    PubMed Central

    Ogata, Soshiro; Kato, Kenji; Honda, Chika; Hayakawa, Kazuo

    2014-01-01

    Background It is important to detect cognitive decline at an early stage, especially before onset of mild cognitive impairment and dementia. Processing speed and working memory are aspects of cognitive function that are associated with cognitive decline. Hand strength is an inexpensive, easily measurable indicator of cognitive decline. However, associations between hand strength, processing speed, and working memory have not been studied. In addition, the genetic and environmental structure of the association between hand strength and cognitive decline is unclear. We investigated phenotypic associations between hand strength, processing speed, and working memory and examined the genetic and environmental structure of the associations between phenotypes. Methods Hand strength, processing speed (digit symbol performance), and working memory (digit span performance) were examined in monozygotic and dizygotic twin pairs. Generalized estimating equations were used to identify phenotypic associations, and structural equation modeling was used to investigate the genetic and environmental structure of the association. Results Generalized estimating equations showed that hand strength was phenotypically associated with digit symbol performance but not with digit span performance. Structural equation modeling showed that common genetic factors influenced hand strength and digit symbol and digit span performance. Conclusions There was a phenotypic association between hand strength and processing speed. In addition, some genetic factors were common to hand strength, processing speed, and working memory. PMID:24292650

  8. A QTL model to map the common genetic basis for correlative phenotypic plasticity.

    PubMed

    Zhou, Tao; Lyu, Yafei; Xu, Fang; Bo, Wenhao; Zhai, Yi; Zhang, Jian; Pang, Xiaoming; Zheng, Bingsong; Wu, Rongling

    2015-01-01

    As an important mechanism for adaptation to heterogeneous environment, plastic responses of correlated traits to environmental alteration may also be genetically correlated, but less is known about the underlying genetic basis. We describe a statistical model for mapping specific quantitative trait loci (QTLs) that control the interrelationship of phenotypic plasticity between different traits. The model is constructed by a bivariate mixture setting, implemented with the EM algorithm to estimate the genetic effects of QTLs on correlative plastic response. We provide a series of procedure that test (1) how a QTL controls the phenotypic plasticity of a single trait; and (2) how the QTL determines the correlation of environment-induced changes of different traits. The model is readily extended to test how epistatic interactions among QTLs play a part in the correlations of different plastic traits. The model was validated through computer simulation and used to analyse multi-environment data of genetic mapping in winter wheat, showing its utilization in practice.

  9. Mechanisms of non-genetic inheritance and psychiatric disorders.

    PubMed

    Toth, Miklos

    2015-01-01

    Inheritance is typically associated with the Mendelian transmission of information from parents to offspring by alleles (DNA sequence). However, empirical data clearly suggest that traits can be acquired from ancestors by mechanisms that do not involve genetic alleles, referred to as non-genetic inheritance. Information that is non-genetically transmitted across generations includes parental experience and exposure to certain environments, but also parental mutations and polymorphisms, because they can change the parental 'intrinsic' environment. Non-genetic inheritance is not limited to the first generation of the progeny, but can involve the grandchildren and even further generations. Non-genetic inheritance has been observed for multiple traits including overall development, cardiovascular risk and metabolic symptoms, but this review will focus on the inheritance of behavioral abnormalities pertinent to psychiatric disorders. Multigenerational non-genetic inheritance is often interpreted as the transmission of epigenetic marks, such as DNA methylation and chromatin modifications, via the gametes (transgenerational epigenetic inheritance). However, information can be carried across generations by a large number of bioactive substances, including hormones, cytokines, and even microorganisms, without the involvement of the gametes. We reason that this broader definition of non-genetic inheritance is more appropriate, especially in the context of psychiatric disorders, because of the well-recognized role of parental and early life environmental factors in later life psychopathology. Here we discuss the various forms of non-genetic inheritance in humans and animals, as well as rodent models of psychiatric conditions to illustrate possible mechanisms.

  10. Mechanisms of Non-Genetic Inheritance and Psychiatric Disorders

    PubMed Central

    Toth, Miklos

    2015-01-01

    Inheritance is typically associated with the Mendelian transmission of information from parents to offspring by alleles (DNA sequence). However, empirical data clearly suggest that traits can be acquired from ancestors by mechanisms that do not involve genetic alleles, referred to as non-genetic inheritance. Information that is non-genetically transmitted across generations includes parental experience and exposure to certain environments, but also parental mutations and polymorphisms, because they can change the parental ‘intrinsic' environment. Non-genetic inheritance is not limited to the first generation of the progeny, but can involve the grandchildren and even further generations. Non-genetic inheritance has been observed for multiple traits including overall development, cardiovascular risk and metabolic symptoms, but this review will focus on the inheritance of behavioral abnormalities pertinent to psychiatric disorders. Multigenerational non-genetic inheritance is often interpreted as the transmission of epigenetic marks, such as DNA methylation and chromatin modifications, via the gametes (transgenerational epigenetic inheritance). However, information can be carried across generations by a large number of bioactive substances, including hormones, cytokines, and even microorganisms, without the involvement of the gametes. We reason that this broader definition of non-genetic inheritance is more appropriate, especially in the context of psychiatric disorders, because of the well-recognized role of parental and early life environmental factors in later life psychopathology. Here we discuss the various forms of non-genetic inheritance in humans and animals, as well as rodent models of psychiatric conditions to illustrate possible mechanisms. PMID:24889369

  11. Genetic structure of the Common Eider in the western Aleutian Islands prior to fox eradication

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; Wilson, Robert E.; Petersen, Margaret R.; Williams, Jeffrey C.; Byrd, G. Vernon; McCracken, Kevin G.

    2013-01-01

    Since the late 18th century bird populations residing in the Aleutian Archipelago have been greatly reduced by introduced arctic foxes (Alopex lagopus). We analyzed data from microsatellite, nuclear intron, and mitochondrial (mtDNA) loci to examine the spatial genetic structure, demography, and gene flow among four Aleutian Island populations of the Common Eider (Somateria mollissima) much reduced by introduced foxes. In mtDNA, we found high levels of genetic structure within and between island groups (ΦST = 0.643), but we found no population subdivision in microsatellites or nuclear introns. Differences in genetic structure between the mitochondrial and nuclear genomes are consistent with the Common Eider's breeding and winter biology, as females are highly philopatric and males disperse. Nevertheless, significant differences between islands in the mtDNA of males and marginal significance (P =0.07) in the Z-linked locus Smo 1 suggest that males may also have some level of fidelity to island groups. Severe reduction of populations by the fox, coupled with females' high philopatry, may have left the genetic signature of a bottleneck effect, resulting in the high levels of genetic differentiation observed in mtDNA (ΦST = 0.460–0.807) between islands only 440 km apart. Reestablishment of the Common Eider following the fox's eradication was likely through recruitment from within the islands and bolstered by dispersal from neighboring islands, as suggested by the lack of genetic structure and asymmetry in gene flow between Attu and the other Near Islands.

  12. Improved prediction of complex diseases by common genetic markers: state of the art and further perspectives.

    PubMed

    Müller, Bent; Wilcke, Arndt; Boulesteix, Anne-Laure; Brauer, Jens; Passarge, Eberhard; Boltze, Johannes; Kirsten, Holger

    2016-03-01

    Reliable risk assessment of frequent, but treatable diseases and disorders has considerable clinical and socio-economic relevance. However, as these conditions usually originate from a complex interplay between genetic and environmental factors, precise prediction remains a considerable challenge. The current progress in genotyping technology has resulted in a substantial increase of knowledge regarding the genetic basis of such diseases and disorders. Consequently, common genetic risk variants are increasingly being included in epidemiological models to improve risk prediction. This work reviews recent high-quality publications targeting the prediction of common complex diseases. To be included in this review, articles had to report both, numerical measures of prediction performance based on traditional (non-genetic) risk factors, as well as measures of prediction performance when adding common genetic variants to the model. Systematic PubMed-based search finally identified 55 eligible studies. These studies were compared with respect to the chosen approach and methodology as well as results and clinical impact. Phenotypes analysed included tumours, diabetes mellitus, and cardiovascular diseases. All studies applied one or more statistical measures reporting on calibration, discrimination, or reclassification to quantify the benefit of including SNPs, but differed substantially regarding the methodological details that were reported. Several examples for improved risk assessments by considering disease-related SNPs were identified. Although the add-on benefit of including SNP genotyping data was mostly moderate, the strategy can be of clinical relevance and may, when being paralleled by an even deeper understanding of disease-related genetics, further explain the development of enhanced predictive and diagnostic strategies for complex diseases.

  13. [Molecular genetic mechanism of the kidney cancer].

    PubMed

    Nakaigawa, N; Yao, M; Kishida, T; Kubota, Y

    2001-01-01

    The oncogenic mechanisms of renal cell carcinoma(RCC) are becoming elucidated with recent advances in molecular biology. von Hipple-Lindau disease(VHL) tumor suppressor gene is mutated and inactivated frequently in clear cell type RCCs. The VHL protein forms a complex which shows a ubiquitin ligase activity. The lost of the ubiquitin ligase activity of VHL protein may be a key step for clear cell tumorigenesis. Papillary renal cell carcinomas are caused by activating mutation in the tyrosine kinase domain of the MET gene. This tumorigenic pathway is regulated by c-Src. Immunogene therapies have been started for the patients with advanced RCC. The information based on microarray and Serial Analysis of Gene Expression(SAGE) will provide novel diagnosis and therapy which focus on the tumorigenic mechanism of RCC in the near future.

  14. Citizens in the commons: blood and genetics in the making of the civic

    PubMed Central

    Reddy, Deepa S.

    2013-01-01

    This essay is based on ethnographic fieldwork conducted with the Indian community in Houston, as part of a NIH/NHGRI-sponsored ethics study and sample collection initiative entitled ‘Indian and Hindu Perspectives on Genetic Variation Research.’ Taking a cue from my Indian interlocutors who largely support and readily respond to such initiatives on the grounds that they will undoubtedly serve ‘humanity’ and the common good, I explore notions of the commons that are created in the process of soliciting blood for genetic research. How does blood become the stuff of which a civic discourse is made? How do idealistic individual appeals to donate blood, ethics research protocols, open-source databases, debates on approaches to genetic research, patents and Intellectual Property regulations, markets and the nation-state itself variously engage, limit or further ideas of the common good? Moving much as my interlocutors do, between India and the United States, I explore the nature of the commons that is both imagined and pragmatically reckoned in both local and global diasporic contexts. PMID:24478538

  15. A common mechanism for coenzyme cobalamin-dependent reductive dehalogenases.

    PubMed

    Johannissen, Linus O; Leys, David; Hay, Sam

    2017-02-22

    Distinct mechanisms have been proposed for the biological dehalogenation catalyzed by cobalamin-dependent enzymes, with two recent crystallographic studies suggesting different mechanisms based on the observed interaction between the organohalide substrate and cobalamin. In one case, involving an aromatic dibromide substrate in NpRdhA, a novel Co(II)-Br interaction was observed using EPR, suggesting a mechanism involving a [CoXR] adduct. However, in the case of trichloroethylene in PceA, a significantly longer Co-Cl distance was observed in X-ray crystal structures, suggesting a dissociative electron transfer mechanism. Subsequent DFT models of these reactions have not reproduced these differences in binding modes. Here, we have performed molecular docking and DFT calculations to investigate and compare the interaction between different organohalides and cobalamin in both NpRdhA and PceA. In each case, despite differences in binding in the Co(II) state, the reaction likely proceeds via formation of a [CoXR] adduct in the Co(I) state that weakens the breaking carbon-halide bond, suggesting this could be a general mechanism for cobalamin-dependent dehalogenation.

  16. A common biological mechanism in cancer and Alzheimer’s disease?

    PubMed Central

    Behrens, Maria I; Lendon, Corinne; Roe, Catherine M.

    2009-01-01

    Cancer and Alzheimer’s disease (AD) are two common disorders for which the final pathophysiological mechanism is not yet clearly defined. In a prospective longitudinal study we have previously shown an inverse association between AD and cancer, such that the rate of developing cancer in general with time was significantly slower in participants with AD, while participants with a history of cancer had a slower rate of developing AD. In cancer, cell regulation mechanisms are disrupted with augmentation of cell survival and/or proliferation, whereas conversely, AD is associated with increased neuronal death, either caused by, or concomitant with, beta amyloid (Aβ) and tau deposition. The possibility that perturbations of mechanisms involved in cell survival/death regulation could be involved in both disorders is discussed. Genetic polymorphisms, DNA methylation or other mechanisms that induce changes in activity of molecules with key roles in determining the decision to “repair and live”- or “die” could be involved in the pathogenesis of the two disorders. As examples, the role of p53, Pin1 and the Wnt signaling pathway are discussed as potential candidates that, speculatively, may explain inverse associations between AD and cancer. PMID:19519301

  17. Quantum mechanics, common sense, and the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Danielsson, Ulf H.; Schiffer, Marcelo

    1993-11-01

    The purpose of this paper is to analyze, in the light of information theory and with the arsenal of (elementary) quantum mechanics (EPR, correlations, copying machines, teleportation, mixing produced in subsystems owing to a trace operation, etc.) the scenarios available on the market to resolve the so-called black hole information paradox. We shall conclude that the only plausible ones are those where either the unitary evolution of quantum mechanics is given up, in which information leaks continuously in the course of black hole evaporation through nonlocal processes, or those in which the world is polluted by an infinite number of metastable remnants.

  18. Competition--a common motif for the imprinting mechanism?

    PubMed Central

    Barlow, D P

    1997-01-01

    Imprinted genes, in contrast to the majority of mammalian genes, are able to restrict expression to one of the two parental alleles in somatic diploid cells. Although the silent allele of an imprinted gene appears to be transcriptionally repressed, it often bears little other resemblance to normal genes in an inactive state. The key to the imprinting mechanism may be a form of parental-specific expression-competition between cis-linked genes and not parental-specific expression versus repression. Thus, the imprinting mechanism may be better understood if the chromosomal region containing imprinted genes is viewed as 'active' on both parental chromosomes. PMID:9384569

  19. Genetic mechanisms of scorpion venom peptide diversification.

    PubMed

    Zhijian, Cao; Feng, Luo; Yingliang, Wu; Xin, Mao; Wenxin, Li

    2006-03-01

    The diversity of scorpion venom peptides is well shown by the presence of about 400 such polypeptides with or without disulfide bonds. Scorpion toxins with disulfide bonds present a variety of sequence features and pharmacological functions by affecting different ion channels, while the venom peptides without disulfide bonds represent a new subfamily, having much lower sequence homology among each other and different functions (e.g. bradykinin-potentiating, antimicrobial, molecular cell signal initiating and immune modulating). Interestingly, all scorpion venom peptides with divergent functions may have evolved from a common ancestor gene. Over the lengthy evolutionary time, the diversification of scorpion venom peptides evolved through polymorphism, duplication, trans-splicing, or alternative splicing at the gene level. In order to completely clarify the diversity of scorpion toxins and toxin-like peptides, toxinomics (genomics and proteomics of scorpion toxins and toxin-like peptides) are expected to greatly advance in the near future.

  20. Endocarditis is a common stroke mechanism in hemodialysis patients.

    PubMed

    Ishida, Koto; Brown, Mesha Gay; Weiner, Mark; Kobrin, Sidney; Kasner, Scott E; Messé, Steven R

    2014-04-01

    Hemodialysis patients are at high risk for ischemic stroke, and previous studies have noted a high rate of cardioembolism in this population. The aim of this study was to determine ischemic stroke causes among hemodialysis patients and elucidate specific cardioembolic stroke mechanisms. This study is a retrospective cross-sectional study of hemodialysis patients admitted with acute stroke to the University of Pennsylvania Health System between 2003 and 2010. Strokes were classified using modified Trial of Org 10,172 in Acute Stroke Treatment (TOAST) criteria as large vessel, cardioembolism, small vessel, atypical, multiple causes, or cryptogenic. Cardioembolic strokes were further characterized for specific mechanism. We identified 52 patients hospitalized with acute stroke while receiving hemodialysis. Mean age was 64±13 years, 56% were female, and 67% were black. Stroke subtypes included 3 (6%) large vessel, 20 (38%) cardioembolism, 6 (11%) small vessel, 3 (6%) other, 4 (8%) with multiple causes, and 16 (31%) were unknown. Among patients who had an echocardiogram performed, 5 of 52 (10%; 95% confidence interval, 1%-18%) had a patent foramen ovale. Cardioembolic stroke mechanisms included 6 with infective endocarditis (accounting for 12% of all strokes). Cardioembolism and cryptogenic stroke are the predominant stroke mechanisms among hemodialysis patients. Infective endocarditis was identified frequently relative to other stroke cohorts, and a raised index of suspicion is warranted in the hemodialysis population.

  1. Some common corrosion mechanisms leading to boiler tube failure

    SciTech Connect

    Bain, D.I.; Haff, J.D.; Kelly, J.A.

    1996-10-01

    Corrosion mechanisms remain a major cause of tube failures in operating boiler units. Conditions resulting in caustic corrosion, acid corrosion, chelant corrosion and sulfate induced high temperature external corrosion of boiler tribes are reviewed. Three case histories are presented illustrating the impact of the conditions discussed on boiler tube failures.

  2. Advancing the understanding of autism disease mechanisms through genetics

    PubMed Central

    de la Torre-Ubieta, Luis; Won, Hyejung; Stein, Jason L; Geschwind, Daniel H

    2016-01-01

    Progress in understanding the genetic etiology of autism spectrum disorders (ASD) has fueled remarkable advances in our understanding of its potential neurobiological mechanisms. Yet, at the same time, these findings highlight extraordinary causal diversity and complexity at many levels ranging from molecules to circuits and emphasize the gaps in our current knowledge. Here we review current understanding of the genetic architecture of ASD and integrate genetic evidence, neuropathology and studies in model systems with how they inform mechanistic models of ASD pathophysiology. Despite the challenges, these advances provide a solid foundation for the development of rational, targeted molecular therapies. PMID:27050589

  3. Associations Between Common and Rare Exonic Genetic Variants and Serum Levels of 20 Cardiovascular-Related Proteins

    PubMed Central

    Solomon, Terry; Smith, Erin N.; Matsui, Hiroko; Braekkan, Sigrid K.; Wilsgaard, Tom; Njølstad, Inger; Mathiesen, Ellisiv B.; Hansen, John-Bjarne

    2016-01-01

    Background— Genetic variation can be used to study causal relationships between biomarkers and diseases. Here, we identify new common and rare genetic variants associated with cardiovascular-related protein levels (protein quantitative trait loci [pQTLs]). We functionally annotate these pQTLs, predict and experimentally confirm a novel molecular interaction, and determine which pQTLs are associated with diseases and physiological phenotypes. Methods and Results— As part of a larger case–control study of venous thromboembolism, serum levels of 51 proteins implicated in cardiovascular diseases were measured in 330 individuals from the Tromsø Study. Exonic genetic variation near each protein’s respective gene (cis) was identified using sequencing and arrays. Using single site and gene-based tests, we identified 27 genetic associations between pQTLs and the serum levels of 20 proteins: 14 associated with common variation in cis, of which 6 are novel (ie, not previously reported); 7 associations with rare variants in cis, of which 4 are novel; and 6 associations in trans. Of the 20 proteins, 15 were associated with single sites and 7 with rare variants. cis-pQTLs for kallikrein and F12 also show trans associations for proteins (uPAR, kininogen) known to be cleaved by kallikrein and with NTproBNP. We experimentally demonstrate that kallikrein can cleave proBNP (NTproBNP precursor) in vitro. Nine of the pQTLs have previously identified associations with 17 disease and physiological phenotypes. Conclusions— We have identified cis and trans genetic variation associated with the serum levels of 20 proteins and utilized these pQTLs to study molecular mechanisms underlying disease and physiological phenotypes. PMID:27329291

  4. Commonality.

    ERIC Educational Resources Information Center

    Beaton, Albert E., Jr.

    Commonality analysis is an attempt to understand the relative predictive power of the regressor variables, both individually and in combination. The squared multiple correlation is broken up into elements assigned to each individual regressor and to each possible combination of regressors. The elements have the property that the appropriate sums…

  5. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders.

    PubMed

    Lotan, Amit; Fenckova, Michaela; Bralten, Janita; Alttoa, Aet; Dixson, Luanna; Williams, Robert W; van der Voet, Monique

    2014-01-01

    Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders-attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10(-5)). 22% of genes overlapped two or more disorders. The most widely shared subset of genes-common to five of six disorders-included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20-30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders.

  6. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders

    PubMed Central

    Lotan, Amit; Fenckova, Michaela; Bralten, Janita; Alttoa, Aet; Dixson, Luanna; Williams, Robert W.; van der Voet, Monique

    2014-01-01

    Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders—attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10−5). 22% of genes overlapped two or more disorders. The most widely shared subset of genes—common to five of six disorders–included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20–30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders. PMID:25414627

  7. Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder.

    PubMed

    Mühleisen, Thomas W; Mattheisen, Manuel; Strohmaier, Jana; Degenhardt, Franziska; Priebe, Lutz; Schultz, C Christoph; Breuer, René; Meier, Sandra; Hoffmann, Per; Rivandeneira, Fernando; Hofman, Albert; Uitterlinden, André G; Moebus, Susanne; Gieger, Christian; Emeny, Rebecca; Ladwig, Karl-Heinz; Wichmann, H-Erich; Schwarz, Markus; Kammerer-Ciernioch, Jutta; Schlösser, Ralf G M; Nenadic, Igor; Sauer, Heinrich; Mössner, Rainald; Maier, Wolfgang; Rujescu, Dan; Lange, Christoph; Ophoff, Roel A; Schulze, Thomas G; Rietschel, Marcella; Nöthen, Markus M; Cichon, Sven

    2012-06-01

    A recent study found genome-wide significant association between common variation in the gene neurocan (NCAN, rs1064395) and bipolar disorder (BD). In view of accumulating evidence that BD and schizophrenia partly share genetic risk factors, we tested this single-nucleotide polymorphism for association with schizophrenia in three independent patient-control samples of European ancestry, totaling 5061 patients and 9655 controls. The rs1064395 A-allele, which confers risk for BD, was significantly over-represented in schizophrenia patients compared to controls (p=2.28×10(-3); odds ratio=1.11). Follow-up in non-overlapping samples from the Schizophrenia Psychiatric GWAS Consortium (5537 patients, 8043 controls) provided further support for our finding (p=0.0239, odds ratio=1.07). Our data suggest that genetic variation in NCAN is a common risk factor for BD and schizophrenia. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Hierarchical spatial genetic structure of Common Eiders (Somateria mollissima) breeding along a migratory corridor

    USGS Publications Warehouse

    Sonsthagen, S.A.; Talbot, S.L.; Lanctot, Richard B.; Scribner, K.T.; McCracken, K.G.

    2009-01-01

    Documentation of spatial genetic discordance among breeding populations of Arctic-nesting avian species is important, because anthropogenic change is altering environmental linkages at micro- and macrogeographic scales. We estimated levels of population subdivision within Pacific Common Eiders (Somateria mollissima v-nigrum) breeding on 12 barrier islands in the western Beaufort Sea, Alaska, using molecular markers and capture—mark—recapture (CMR) data. Common Eider populations were genetically structured on a microgeographic scale. Regional comparisons between populations breeding on island groups separated by 90 km (Mikkelsen Bay and Simpson Lagoon) revealed structuring at 14 microsatellite loci (F ST = 0.004, P < 0.01), a nuclear intron (F ST = 0.022, P = 0.02), and mitochondrial DNA (ΦST = 0.082, P < 0.05). The CMR data (n = 34) did not indicate female dispersal between island groups. Concordance between genetic and CMR data indicates that females breeding in the western Beaufort Sea are strongly philopatric to island groups rather than to a particular island. Despite the apparent high site fidelity of females, coalescence-based models of gene flow suggest that asymmetrical western dispersal occurs between island groups and is likely mediated by Mikkelsen Bay females stopping early on spring migration at Simpson Lagoon to breed. Alternatively, late-arriving females may be predisposed to nest in Simpson Lagoon because of the greater availability and wider distribution of nesting habitat. Our results indicate that genetic discontinuities, mediated by female philopatry, can exist at microgeographic scales along established migratory corridors.

  9. Genetics of diabetic nephropathy: are there clues to the understanding of common kidney diseases?

    PubMed

    Conway, B R; Maxwell, A P

    2009-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease in the Western world. There is evidence for a genetic susceptibility to diabetic kidney disease, but despite intensive research efforts it has proved difficult to identify the causative genes. Improvements in genotyping technologies have made genome-wide association studies (GWAS), employing hundreds of thousands of single nucleotide polymorphisms, affordable. Recently, such scans have advanced understanding of the genetics of common complex diseases, finding more than 100 novel susceptibility variants for diverse disorders including type 1 and 2 diabetes, coronary heart disease, Crohn's disease and rheumatoid arthritis. In this review, type 2 diabetes is highlighted to illustrate how genome-wide association studies have been used to study the genetics of complex multifactorial conditions; in addition, diabetic nephropathy will be used to demonstrate how similar scans could be employed to detect genetic factors predisposing to kidney disease. The identification of such variants would permit early identification of atrisk patients, enabling targeting of therapy and a move towards primary prevention. In addition, these powerful research methodologies may identify genes that were not previously known to predispose to nephropathy, thereby enhancing our understanding of the pathophysiology of renal disorders and potentially leading to novel therapeutic approaches.

  10. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    PubMed Central

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  11. Common biological networks underlie genetic risk for alcoholism in African- and European-American populations

    PubMed Central

    Kos, Mark Z.; Yan, Jia; Dick, Danielle M.; Agrawal, Arpana; Bucholz, Kathleen K.; Rice, John P.; Johnson, Eric O.; Schuckit, Marc; Kuperman, Sam; Kramer, John; Goate, Alison M.; Tischfield, Jay A.; Foroud, Tatiana; Nurnberger, John; Hesselbrock, Victor; Porjesz, Bernice; Bierut, Laura J.; Edenberg, Howard J.; Almasy, Laura

    2013-01-01

    Alcohol dependence (AD) is a heritable substance addiction with adverse physical and psychological consequences, representing a major health and economic burden on societies worldwide. Genes thus far implicated via linkage, candidate gene and genome-wide association studies (GWAS) account for only a small fraction of its overall risk, with effects varying across ethnic groups. Here we investigate the genetic architecture of alcoholism and report on the extent to which common, genome-wide SNPs collectively account for risk of AD in two US populations, African-Americans (AAs) and European-Americans (EAs). Analyzing GWAS data for two independent case-control sample sets, we compute polymarker scores that are significantly associated with alcoholism (P=1.64 × 10−3 and 2.08 × 10−4 for EAs and AAs, respectively), reflecting the small individual effects of thousands of variants derived from patterns of allelic architecture that are population-specific. Simulations show that disease models based on rare and uncommon causal variants (MAF<0.05) best fit the observed distribution of polymarker signals. When scoring bins were annotated for gene location and examined for constituent biological networks, gene enrichment is observed for several cellular processes and functions in both EA and AA populations, transcending their underlying allelic differences. Our results reveal key insights into the complex etiology of AD, raising the possibility of an important role for rare and uncommon variants, and identify polygenic mechanisms that encompass a spectrum of disease liability, with some, such as chloride transporters and glycine metabolism genes, displaying subtle, modifying effects that are likely to escape detection in most GWAS designs. PMID:23607416

  12. Common biological networks underlie genetic risk for alcoholism in African- and European-American populations.

    PubMed

    Kos, M Z; Yan, J; Dick, D M; Agrawal, A; Bucholz, K K; Rice, J P; Johnson, E O; Schuckit, M; Kuperman, S; Kramer, J; Goate, A M; Tischfield, J A; Foroud, T; Nurnberger, J; Hesselbrock, V; Porjesz, B; Bierut, L J; Edenberg, H J; Almasy, L

    2013-07-01

    Alcohol dependence (AD) is a heritable substance addiction with adverse physical and psychological consequences, representing a major health and economic burden on societies worldwide. Genes thus far implicated via linkage, candidate gene and genome-wide association studies (GWAS) account for only a small fraction of its overall risk, with effects varying across ethnic groups. Here we investigate the genetic architecture of alcoholism and report on the extent to which common, genome-wide SNPs collectively account for risk of AD in two US populations, African-Americans (AAs) and European-Americans (EAs). Analyzing GWAS data for two independent case-control sample sets, we compute polymarker scores that are significantly associated with alcoholism (P = 1.64 × 10(-3) and 2.08 × 10(-4) for EAs and AAs, respectively), reflecting the small individual effects of thousands of variants derived from patterns of allelic architecture that are population specific. Simulations show that disease models based on rare and uncommon causal variants (MAF < 0.05) best fit the observed distribution of polymarker signals. When scoring bins were annotated for gene location and examined for constituent biological networks, gene enrichment is observed for several cellular processes and functions in both EA and AA populations, transcending their underlying allelic differences. Our results reveal key insights into the complex etiology of AD, raising the possibility of an important role for rare and uncommon variants, and identify polygenic mechanisms that encompass a spectrum of disease liability, with some, such as chloride transporters and glycine metabolism genes, displaying subtle, modifying effects that are likely to escape detection in most GWAS designs.

  13. Genetic, Molecular and Cellular Mechanisms Underlying the J Wave Syndromes

    PubMed Central

    Antzelevitch, Charles

    2012-01-01

    An early repolarization (ER) pattern in the ECG, distinguished by J-point elevation, slurring of the terminal part of the QRS and ST-segment elevation has long been recognized and considered to be a benign electrocardiographic manifestation. Experimental studies conducted over a decade ago suggested that some cases of ER may be associated with malignant arrhythmias. Validation of this hypothesis was provided by recent studies demonstrating that an ER pattern in the inferior or inferolateral leads is associated with increased risk for life-threatening arrhythmias, termed ER syndrome (ERS). Because accentuated J waves characterize both Brugada syndrome (BS) and ERS, these syndromes have been grouped under the term “J wave syndromes”. ERS and BS share similar ECG characteristics, clinical outcomes and risk factors, as well as a common arrhythmic platform related to amplification of Ito-mediated J waves. Although BS and ERS differ with respect to the magnitude and lead location of abnormal J wave manifestation, they can be considered to represent a continuous spectrum of phenotypic expression. Although most subjects exhibiting an ER pattern are at minimal to no risk, mounting evidence suggests that careful attention should be paid to subjects with “high risk” ER. The challenge ahead is to be able to identify those at risk for sudden cardiac death. Here I review the clinical and genetic aspects as well as the cellular and molecular mechanisms underlying the J wave syndromes. PMID:22498570

  14. Genetic Mechanisms Involved in the Phenotype of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2007-01-01

    Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA…

  15. Genetic Mechanisms Involved in the Phenotype of Down Syndrome

    ERIC Educational Resources Information Center

    Patterson, David

    2007-01-01

    Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA…

  16. Common Brain Mechanisms of Chronic Pain and Addiction.

    PubMed

    Elman, Igor; Borsook, David

    2016-01-06

    While chronic pain is considered by some to be a CNS disease, little is understood about underlying neurobiological mechanisms. Addiction models have heuristic value in this regard, because both pain and addictive disorders are characterized by impaired hedonic capacity, compulsive drug seeking, and high stress. In drug addiction such symptomatology has been attributed to reward deficiency, impaired inhibitory control, incentive sensitization, aberrant learning, and anti-reward allostatic neuroadaptations. Here we propose that similar neuroadaptations exist in chronic pain patients.

  17. Allen's rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient.

    PubMed

    Alho, J S; Herczeg, G; Laugen, A T; Räsänen, K; Laurila, A; Merilä, J

    2011-01-01

    Ecogeographical rules linking climate to morphology have gained renewed interest because of climate change. Yet few studies have evaluated to what extent geographical trends ascribed to these rules have a genetic, rather than environmentally determined, basis. This applies especially to Allen's rule, which states that the relative extremity length decreases with increasing latitude. We studied leg length in the common frog (Rana temporaria) along a 1500 km latitudinal gradient utilizing wild and common garden data. In the wild, the body size-corrected femur and tibia lengths did not conform to Allen's rule but peaked at mid-latitudes. However, the ratio of femur to tibia length increased in the north, and the common garden data revealed a genetic cline consistent with Allen's rule in some trait and treatment combinations. While selection may have shortened the leg length in the north, the genetic trend seems to be partially masked by environmental effects. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  18. Discriminatory power of common genetic variants in personalized breast cancer diagnosis

    PubMed Central

    Wu, Yirong; Abbey, Craig K.; Liu, Jie; Ong, Irene; Peissig, Peggy; Onitilo, Adedayo A.; Fan, Jun; Yuan, Ming; Burnside, Elizabeth S.

    2016-01-01

    Technology advances in genome-wide association studies (GWAS) has engendered optimism that we have entered a new age of precision medicine, in which the risk of breast cancer can be predicted on the basis of a person’s genetic variants. The goal of this study is to evaluate the discriminatory power of common genetic variants in breast cancer risk estimation. We conducted a retrospective case-control study drawing from an existing personalized medicine data repository. We collected variables that predict breast cancer risk: 153 high-frequency/low-penetrance genetic variants, reflecting the state-of-the-art GWAS on breast cancer, mammography descriptors and BI-RADS assessment categories in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We trained and tested naïve Bayes models by using these predictive variables. We generated ROC curves and used the area under the ROC curve (AUC) to quantify predictive performance. We found that genetic variants achieved comparable predictive performance to BI-RADS assessment categories in terms of AUC (0.650 vs. 0.659, p-value = 0.742), but significantly lower predictive performance than the combination of BI-RADS assessment categories and mammography descriptors (0.650 vs. 0.751, p-value < 0.001). A better understanding of relative predictive capability of genetic variants and mammography data may benefit clinicians and patients to make appropriate decisions about breast cancer screening, prevention, and treatment in the era of precision medicine. PMID:27279675

  19. Genetic-basis analysis of heterotic loci in Dongxiang common wild rice (Oryza rufipogon Griff.).

    PubMed

    Luo, Xiao-Jin; Xin, Xiao-Yun; Yang, Jin-Shui

    2012-04-01

    Heterosis is widely used in genetic crop improvement; however, the genetic basis of heterosis is incompletely understood. The use of whole-genome segregating populations poses a problem for establishing the genetic basis of heterosis, in that interactions often mask the effects of individual loci. However, introgression line (IL) populations permit the partitioning of heterosis into defined genomic regions, eliminating a major part of the genome-wide epistasis. In our previous study, based on mid-parental heterosis (HMP) value with single-point analysis, 42 heterotic loci (HLs) associated with six yield-related traits were detected in wild and cultivated rice using a set of 265 ILs of Dongxiang common wild rice (Oryza rufipogon Griff.). In this study, the genetic effects of HLs were determined as the combined effects of both additive and dominant gene actions, estimated from the performance values of testcross F1s and the dominance effects estimated from the HMP values of testcross F1s. We characterized the gene action type at each HL. Thirty-eight of the 42 HLs were over-dominant, and in the absence of epistasis, four HLs were dominant. Therefore, we favour that over-dominance is a major genetic basis of 'wild-cultivar' crosses at the single functional Mendelian locus level.

  20. Discriminatory power of common genetic variants in personalized breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Yirong; Abbey, Craig K.; Liu, Jie; Ong, Irene; Peissig, Peggy; Onitilo, Adedayo A.; Fan, Jun; Yuan, Ming; Burnside, Elizabeth S.

    2016-03-01

    Technology advances in genome-wide association studies (GWAS) has engendered optimism that we have entered a new age of precision medicine, in which the risk of breast cancer can be predicted on the basis of a person's genetic variants. The goal of this study is to evaluate the discriminatory power of common genetic variants in breast cancer risk estimation. We conducted a retrospective case-control study drawing from an existing personalized medicine data repository. We collected variables that predict breast cancer risk: 153 high-frequency/low-penetrance genetic variants, reflecting the state-of-the-art GWAS on breast cancer, mammography descriptors and BI-RADS assessment categories in the Breast Imaging Reporting and Data System (BI-RADS) lexicon. We trained and tested naïve Bayes models by using these predictive variables. We generated ROC curves and used the area under the ROC curve (AUC) to quantify predictive performance. We found that genetic variants achieved comparable predictive performance to BI-RADS assessment categories in terms of AUC (0.650 vs. 0.659, p-value = 0.742), but significantly lower predictive performance than the combination of BI-RADS assessment categories and mammography descriptors (0.650 vs. 0.751, p-value < 0.001). A better understanding of relative predictive capability of genetic variants and mammography data may benefit clinicians and patients to make appropriate decisions about breast cancer screening, prevention, and treatment in the era of precision medicine.

  1. New insights into mechanisms of small vessel disease stroke from genetics.

    PubMed

    Tan, Rhea; Traylor, Matthew; Rutten-Jacobs, Loes; Markus, Hugh

    2017-04-01

    Cerebral small vessel disease (SVD) is a common cause of lacunar strokes, vascular cognitive impairment (VCI) and vascular dementia. SVD is thought to result in reduced cerebral blood flow, impaired cerebral autoregulation and increased blood-brain barrier (BBB) permeability. However, the molecular mechanisms underlying SVD are incompletely understood. Recent studies in monogenic forms of SVD, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and 'sporadic' SVD have shed light on possible disease mechanisms in SVD. Proteomic and biochemical studies in post-mortem monogenic SVD patients, as well as in animal models of monogenic disease have suggested that disease pathways are shared between different types of monogenic disease, often involving the impairment of extracellular matrix (ECM) function. In addition, genetic studies in 'sporadic' SVD have also shown that the disease is highly heritable, particularly among young-onset stroke patients, and that common variants in monogenic disease genes may contribute to disease processes in some SVD subtypes. Genetic studies in sporadic lacunar stroke patients have also suggested distinct genetic mechanisms between subtypes of SVD. Genome-wide association studies (GWAS) have also shed light on other potential disease mechanisms that may be shared with other diseases involving the white matter, or with pathways implicated in monogenic disease. This review brings together recent data from studies in monogenic SVD and genetic studies in 'sporadic' SVD. It aims to show how these provide new insights into the pathogenesis of SVD, and highlights the possible convergence of disease mechanisms in monogenic and sporadic SVD.

  2. A Common Mechanism Underlying Food Choice and Social Decisions.

    PubMed

    Krajbich, Ian; Hare, Todd; Bartling, Björn; Morishima, Yosuke; Fehr, Ernst

    2015-10-01

    People make numerous decisions every day including perceptual decisions such as walking through a crowd, decisions over primary rewards such as what to eat, and social decisions that require balancing own and others' benefits. The unifying principles behind choices in various domains are, however, still not well understood. Mathematical models that describe choice behavior in specific contexts have provided important insights into the computations that may underlie decision making in the brain. However, a critical and largely unanswered question is whether these models generalize from one choice context to another. Here we show that a model adapted from the perceptual decision-making domain and estimated on choices over food rewards accurately predicts choices and reaction times in four independent sets of subjects making social decisions. The robustness of the model across domains provides behavioral evidence for a common decision-making process in perceptual, primary reward, and social decision making.

  3. Common Lung Microbiome Identified among Mechanically Ventilated Surgical Patients

    PubMed Central

    Smith, Ashley D.; Zhang, Yan; Barber, Robert C.; Minshall, Christian T.; Huebinger, Ryan M.

    2016-01-01

    The examination of the pulmonary microbiome in patients with non-chronic disease states has not been extensively examined. Traditional culture based screening methods are often unable to identify bacteria from bronchoalveolar lavage samples. The advancement of next-generation sequencing technologies allows for a culture-independent molecular based analysis to determine the microbial composition in the lung of this patient population. For this study, the Ion Torrent PGM system was used to assess the microbial complexity of culture negative bronchoalveolar lavage samples. A group of samples were identified that all displayed high diversity and similar relative abundance of bacteria. This group consisted of Hydrogenophaga, unclassified Bacteroidetes, Pedobacter, Thauera, and Acinetobacter. These bacteria may be representative of a common non-pathogenic pulmonary microbiome associated within this population of patients. PMID:27898681

  4. A Common Mechanism Underlying Food Choice and Social Decisions

    PubMed Central

    Krajbich, Ian; Hare, Todd; Bartling, Björn; Morishima, Yosuke; Fehr, Ernst

    2015-01-01

    People make numerous decisions every day including perceptual decisions such as walking through a crowd, decisions over primary rewards such as what to eat, and social decisions that require balancing own and others’ benefits. The unifying principles behind choices in various domains are, however, still not well understood. Mathematical models that describe choice behavior in specific contexts have provided important insights into the computations that may underlie decision making in the brain. However, a critical and largely unanswered question is whether these models generalize from one choice context to another. Here we show that a model adapted from the perceptual decision-making domain and estimated on choices over food rewards accurately predicts choices and reaction times in four independent sets of subjects making social decisions. The robustness of the model across domains provides behavioral evidence for a common decision-making process in perceptual, primary reward, and social decision making. PMID:26460812

  5. The Genetics of Common Variation affecting Platelet Development, Function and Pharmaceutical Targeting

    PubMed Central

    Johnson, Andrew D.

    2011-01-01

    Summary Common variant effects on human platelet function and response to anti-platelet treatment have traditionally been studied using candidate gene approaches involving a limited number of variants and genes. These studies have often been undertaken in clinically defined cohorts. More recently, studies have applied genome-wide scans in larger population samples than prior candidate studies, in some cases scanning relatively healthy individuals. These studies demonstrate synergy with some prior candidate gene findings (e.g., GP6, ADRA2A) but also uncover novel loci involved in platelet function. Here, I summarise findings on common genetic variation influencing platelet development, function and therapeutics. Taken together, candidate gene and genome-wide studies begin to account for common variation in platelet function and provide information that may ultimately be useful in pharmacogenetic applications in the clinic. More than 50 loci have been identified with consistent associations with platelet phenotypes in ≥2 populations. Several variants are under further study in clinical trials relating to anti-platelet therapies. In order to have useful clinical applications, variants must have large effects on a modifiable outcome. Regardless of clinical applications, studies of common genetic influences, even of small effect, offer additional insights into platelet biology including the importance of intracellular signalling and novel receptors. Understanding of common platelet-related genetics remains behind parallel fields (e.g., lipids, blood pressure) due to challenges in phenotype ascertainment. Further work is necessary to discover and characterise loci for platelet function, and to assess whether these loci contribute to disease aetiologies or response to therapeutics. PMID:21781261

  6. PERIODIC LATERALIZED EPILEPTIFORM DISCHARGES AND AFTERDISCHARGES: COMMON DYNAMIC MECHANISMS

    PubMed Central

    Kalamangalam, Giridhar P; Slater, Jeremy D

    2015-01-01

    Objective No neurophysiological hypothesis currently exist addressing how and why periodic lateralized epileptiform discharges (PLEDs) arise in certain types of brain disease. Based on spectral analysis of clinical scalp EEG traces, we formulated a general mechanism for the emergence of PLEDs. Methods We retrospectively analyzed spectra of PLED time-series and control EEG segments from the opposite hemisphere in 25 hospitalized neurological patients. The observations led to the development of a phenomenological model for PLED emergence. Results Similar to that observed in our previous work (Kalamangalam et al. 2014) with afterdischarges, an analytic relationship is found between the spectrum of the baseline EEG and the PLED EEG, characterized by ‘condensation’ of the main baseline spectral cluster, with variable inclusion of higher harmonics of the condensate. Significance PLEDs may arise by synchronization of pre-existing local field potentials, through a variable combination of enhancement of excitatory neurotransmission and inactivation of inhibitory neurotransmission provoked by the PLED-associated disease process. Higher harmonics in the PLED spectrum may arise by recurrent feedback, possibly from entrained single units. Significance A mechanism is suggested for PLED emergence in certain diseased brain states, and the association of PLEDs with EEG seizures. The framework is a spatially extended version of that which we proposed underlies afterdischarge, and analogous to the cooperative behavior seen in a variety of natural multi-oscillator systems. PMID:25710632

  7. PSM`s most common struggle: Implementing mechanical integrity

    SciTech Connect

    Remson, A.C.; Farmer, J.H.; King, S.C.

    1995-10-01

    Most companies have found that of the 14 OSHA PSM elements, Mechanical Integrity (MI) presents the greatest implementation challenge. Although maintenance departments have successfully installed, repaired, and replaced plant equipment for decades, many of these same maintenance departments have struggled with OSHA`s PSM requirements. One major challenge is prioritizing resources. Opportunities to improve will always exist; however, it is often difficult to effectively allocate money and manpower. Another challenge is simply getting organized. The MI program should be supported by appropriate, useful procedures; but given the multifaceted and ever-changing nature of maintenance, what procedures should be written? How detailed should be procedures be? With nearly 3 years of PSM enforcement complete, an analysis of OSHA`s MI citation helps to provide insight to these challenges. This paper presents ideas for implementing MI in a manner that meets OSHA`s expectations while contributing to safe, effective maintenance in PSM-covered processes. In particular, the paper presents ideas for developing MI programs that effectively prioritize company resources, with appropriate inspection/test/preventive maintenance and quality assurance (QA) activities. This paper also presents ideas for developing a list of mechanical integrity procedures to address OSHA`s requirements as well as the type of information to include in those procedures. 10 refs., 3 tabs.

  8. [Phytopathological and molecular genetic identification of brown rust resistance genes in common wheat accessions with alien genetic material].

    PubMed

    Gaĭnullin, N R; Lapochkina, I F; Zhemchuzhina, A I; Kiseleva, M I; Kolomiets, T M; Kovalenko, E D

    2007-08-01

    Brown rust resistance genes were sought in 23 resistant common wheat accessions with alien genetic material of Aegilops speltoides, Ae. triuncialis, and Triticum kiharae from the Arsenal collection. The genes were identified by common phytopathological tests and PCR analysis with STS markers directed to the known Lr genes. None of the methods identified the resistance genes in two accessions. In the other accessions, the combination of the two methods broadened the spectrum of detectable genes and, in some cases, allowed double verification of the presence of a resistance gene. Most accessions proved to contain several brown rust resistance genes, combining juvenile and adult plant ones. The accessions were found to contain gene combinations that ensured field resistance and immunity under the conditions of the Non-Chernozem region (Lr13 + Lr10 and Lr12 + Lr34). Accessions with alien genetic material contained a unique combination of five or six resistance genes. Since the accessions were rich in brown rust resistance genes, including effective ones, and carried rare combinations of these genes, they were proposed as donors to be universally employed in breeding for immunity in all regions of Russia.

  9. The role of genetics in fisheries management under the E.U. common fisheries policy.

    PubMed

    Casey, J; Jardim, E; Martinsohn, J Th

    2016-12-01

    Exploitation of fish and shellfish stocks by the European Union fishing fleet is managed under the Common Fisheries Policy (CFP), which aims to ensure that fishing and aquaculture are environmentally, economically and socially sustainable and that they provide a source of healthy food for E.U. citizens. A notable feature of the CFP is its legally enshrined requirement for sound scientific advice to underpin its objectives. The CFP was first conceived in 1970 when it formed part of the Common Agricultural Policy. Its formal inception as a stand-alone regulation occurred in 1983 and since that time, the CFP has undergone reforms in 1992, 2002 and 2013, each time bringing additional challenges to the scientific advisory process as the scope of the advice increased in response to changing objectives arising from E.U. regulations and commitments to international agreements. This paper reviews the influence that genetics has had on fish stock assessments and the provision of management advice for European fisheries under successive reforms of the CFP. The developments in genetics since the inception of the CFP have given rise to a diverse and versatile set of genetic techniques that have the potential to provide significant added value to fisheries assessments and the scientific advisory process. While in some cases, notably Pacific salmon Oncorhynchus spp., genetics appear to be very well integrated into existing management schemes, it seems that for marine fishes, discussions on the use of genetics and genomics for fisheries management are often driven by the remarkable technological progress in this field, rather than imminent needs emerging from policy frameworks. An example is the recent suggestion to use environmental (e)DNA for monitoring purposes. While there is no denying that state-of-the-art genetic and genomic approaches can and will be of value to address a number of issues relevant for the management and conservation of marine renewable natural resources, a

  10. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia

    PubMed Central

    Steullet, P; Cabungcal, J-H; Coyle, J; Didriksen, M; Gill, K; Grace, A A; Hensch, T K; LaMantia, A-S; Lindemann, L; Maynard, T M; Meyer, U; Morishita, H; O'Donnell, P; Puhl, M; Cuenod, M; Do, K Q

    2017-01-01

    Parvalbumin inhibitory interneurons (PVIs) are crucial for maintaining proper excitatory/inhibitory balance and high-frequency neuronal synchronization. Their activity supports critical developmental trajectories, sensory and cognitive processing, and social behavior. Despite heterogeneity in the etiology across schizophrenia and autism spectrum disorder, PVI circuits are altered in these psychiatric disorders. Identifying mechanism(s) underlying PVI deficits is essential to establish treatments targeting in particular cognition. On the basis of published and new data, we propose oxidative stress as a common pathological mechanism leading to PVI impairment in schizophrenia and some forms of autism. A series of animal models carrying genetic and/or environmental risks relevant to diverse etiological aspects of these disorders show PVI deficits to be all accompanied by oxidative stress in the anterior cingulate cortex. Specifically, oxidative stress is negatively correlated with the integrity of PVIs and the extracellular perineuronal net enwrapping these interneurons. Oxidative stress may result from dysregulation of systems typically affected in schizophrenia, including glutamatergic, dopaminergic, immune and antioxidant signaling. As convergent end point, redox dysregulation has successfully been targeted to protect PVIs with antioxidants/redox regulators across several animal models. This opens up new perspectives for the use of antioxidant treatments to be applied to at-risk individuals, in close temporal proximity to environmental impacts known to induce oxidative stress. PMID:28322275

  11. [Genetic background in common forms of obesity - from studies on identical twins to candidate genes of obesity].

    PubMed

    Bendlová, Běla; Lukášová, Petra; Vaňková, Markéta; Vejražková, Daniela; Bradnová, Olga; Včelák, Josef; Stanická, Soňa; Zamrazilová, Hana; Aldhoon-Hainerová, Irena; Dušátková, Lenka; Kunešová, Marie; Hainer, Vojtěch

    2014-01-01

    Common obesity is a result of interaction between genes and environmental/lifestyle factors, with heritability estimates 40-70%. Not only the susceptibility to obesity but also the success of weight management depends on the genetic background of each individual. This paper summarizes the up-to-date knowledge on genetic causes of common obesities. Introduction of genome-wide association studies (GWAS) led to an identification of a total of 32 variants associated with obesity/BMI and 14 with body fat distribution. Further, a great progress in revealing the mechanisms regulating the energy balance was also noted. However, the proportion of explained variance for BMI is still low, suggesting other mechanisms such as gene-gene and gene-environment interactions, rare gene variants, copy number variants polymorphisms, or epigenetic modifications and microRNAs regulating gene transcription. In summary, we present results of our studies on obesity risk variants in Czech adults, children and adolescents including those evaluating the influence of selected gene variants on the outcomes of weight management.

  12. A common mechanism of cellular death induced by bactericidal antibiotics.

    PubMed

    Kohanski, Michael A; Dwyer, Daniel J; Hayete, Boris; Lawrence, Carolyn A; Collins, James J

    2007-09-07

    Antibiotic mode-of-action classification is based upon drug-target interaction and whether the resultant inhibition of cellular function is lethal to bacteria. Here we show that the three major classes of bactericidal antibiotics, regardless of drug-target interaction, stimulate the production of highly deleterious hydroxyl radicals in Gram-negative and Gram-positive bacteria, which ultimately contribute to cell death. We also show, in contrast, that bacteriostatic drugs do not produce hydroxyl radicals. We demonstrate that the mechanism of hydroxyl radical formation induced by bactericidal antibiotics is the end product of an oxidative damage cellular death pathway involving the tricarboxylic acid cycle, a transient depletion of NADH, destabilization of iron-sulfur clusters, and stimulation of the Fenton reaction. Our results suggest that all three major classes of bactericidal drugs can be potentiated by targeting bacterial systems that remediate hydroxyl radical damage, including proteins involved in triggering the DNA damage response, e.g., RecA.

  13. Common genetic variants contribute to primary hypertriglyceridemia without differences between familial combined hyperlipidemia and isolated hypertriglyceridemia.

    PubMed

    De Castro-Orós, Isabel; Cenarro, Ana; Tejedor, María Teresa; Baila-Rueda, Lucía; Mateo-Gallego, Rocío; Lamiquiz-Moneo, Itziar; Pocoví, Miguel; Civeira, Fernando

    2014-12-01

    The majority of hypertriglyceridemias are diagnosed as familial combined hyperlipidemia (FCHL) and primary isolated hypertriglyceridemias. The contribution of common genetic variants in primary hypertriglyceridemias and the genetic difference between FCHL and isolated hypertriglyceridemias have not been thoroughly examined. This study involved 580 patients with hypertriglyceridemias and 403 controls. Of the 37 single nucleotide polymorphisms examined, 12 located in 10 genes showed allelic and genotype frequency differences between hypertriglyceridemias and controls. The minor alleles of APOE, APOA5, GALNTN2, and GCKR variants were positively correlated with plasma triglycerides, whereas minor alleles of ADIPOR2, ANGPTL3, LPL, and TRIB1 polymorphisms were inversely associated. Body mass index, glucose, sex, rs328 and rs7007797 in LPL, rs662799 and rs3135506 in APOA5, and rs1260326 in GCKR explained 36% of the variability in plasma triglycerides, 7.3% of which was attributable to the genetic variables. LPL, GCKR, and APOA5 polymorphisms fit dominant, recessive, and additive inheritance models, respectively. Variants more frequently identified in isolated hypertriglyceridemias were rs7412 in APOE and rs1800795 in IL6; rs2808607 in CYP7A1 and rs3812316 and rs17145738 in MLXIPL were more frequent in FCHL. The other 32 single nucleotide polymorphisms presented similar frequencies between isolated hypertriglyceridemias and FCHL. Common genetic variants found in LPL, APOA5, and GCKR are associated with triglycerides levels in patients with primary hypertriglyceridemias. FCHL and isolated hypertriglyceridemias are probably trace to an accumulation of genetic variants predisposing to familial and sporadic hypertriglyceridemias or to hypertriglyceridemias and hypercholesterolemia in case of FCHL. © 2014 American Heart Association, Inc.

  14. Memory, reasoning, and categorization: parallels and common mechanisms.

    PubMed

    Hayes, Brett K; Heit, Evan; Rotello, Caren M

    2014-01-01

    Traditionally, memory, reasoning, and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts) and methodological tools (signal detection analysis, receiver operating characteristic curves) from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks.

  15. Memory, reasoning, and categorization: parallels and common mechanisms

    PubMed Central

    Hayes, Brett K.; Heit, Evan; Rotello, Caren M.

    2014-01-01

    Traditionally, memory, reasoning, and categorization have been treated as separate components of human cognition. We challenge this distinction, arguing that there is broad scope for crossover between the methods and theories developed for each task. The links between memory and reasoning are illustrated in a review of two lines of research. The first takes theoretical ideas (two-process accounts) and methodological tools (signal detection analysis, receiver operating characteristic curves) from memory research and applies them to important issues in reasoning research: relations between induction and deduction, and the belief bias effect. The second line of research introduces a task in which subjects make either memory or reasoning judgments for the same set of stimuli. Other than broader generalization for reasoning than memory, the results were similar for the two tasks, across a variety of experimental stimuli and manipulations. It was possible to simultaneously explain performance on both tasks within a single cognitive architecture, based on exemplar-based comparisons of similarity. The final sections explore evidence for empirical and processing links between inductive reasoning and categorization and between categorization and recognition. An important implication is that progress in all three of these fields will be expedited by further investigation of the many commonalities between these tasks. PMID:24987380

  16. Genetic evidence for female host-specific races of the common cuckoo.

    PubMed

    Gibbs, H L; Sorenson, M D; Marchetti, K; Brooke, M D; Davies, N B; Nakamura, H

    2000-09-14

    The common cuckoo Cuculus canorus is divided into host-specific races (gentes). Females of each race lay a distinctive egg type that tends to match the host's eggs, for instance, brown and spotted for meadow pipit hosts or plain blue for redstart hosts. The puzzle is how these gentes remain distinct. Here, we provide genetic evidence that gentes are restricted to female lineages, with cross mating by males maintaining the common cuckoo genetically as one species. We show that there is differentiation between gentes in maternally inherited mitochondrial DNA, but not in microsatellite loci of nuclear DNA. This supports recent behavioural evidence that female, but not male, common cuckoos specialize on a particular host, and is consistent with the possibility that genes affecting cuckoo egg type are located on the female-specific W sex chromosome. Our results also support the ideas that common cuckoos often switched hosts during evolution, and that some gentes may have multiple, independent origins, due to colonization by separate ancestral lineages.

  17. Evaluation of Mechanical Losses in Piezoelectric Plates using Genetic algorithm

    NASA Astrophysics Data System (ADS)

    Arnold, F. J.; Gonçalves, M. S.; Massaro, F. R.; Martins, P. S.

    Numerical methods are used for the characterization of piezoelectric ceramics. A procedure based on genetic algorithm is applied to find the physical coefficients and mechanical losses. The coefficients are estimated from a minimum scoring of cost function. Electric impedances are calculated from Mason's model including mechanical losses constant and dependent on frequency as a linear function. The results show that the electric impedance percentage error in the investigated interval of frequencies decreases when mechanical losses depending on frequency are inserted in the model. A more accurate characterization of the piezoelectric ceramics mechanical losses should be considered as frequency dependent.

  18. Pleiotropy among Common Genetic Loci Identified for Cardiometabolic Disorders and C-Reactive Protein

    PubMed Central

    Ligthart, Symen; de Vries, Paul S.; Uitterlinden, André G.; Hofman, Albert; Franco, Oscar H.; Chasman, Daniel I.; Dehghan, Abbas

    2015-01-01

    Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS). We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463) as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10) appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18) had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes. PMID:25768928

  19. Assessing Genetic Structure in Common but Ecologically Distinct Carnivores: The Stone Marten and Red Fox

    PubMed Central

    Basto, Mafalda P.; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W.; Fernandes, Carlos

    2016-01-01

    The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning

  20. Assessing Genetic Structure in Common but Ecologically Distinct Carnivores: The Stone Marten and Red Fox.

    PubMed

    Basto, Mafalda P; Santos-Reis, Margarida; Simões, Luciana; Grilo, Clara; Cardoso, Luís; Cortes, Helder; Bruford, Michael W; Fernandes, Carlos

    2016-01-01

    The identification of populations and spatial genetic patterns is important for ecological and conservation research, and spatially explicit individual-based methods have been recognised as powerful tools in this context. Mammalian carnivores are intrinsically vulnerable to habitat fragmentation but not much is known about the genetic consequences of fragmentation in common species. Stone martens (Martes foina) and red foxes (Vulpes vulpes) share a widespread Palearctic distribution and are considered habitat generalists, but in the Iberian Peninsula stone martens tend to occur in higher quality habitats. We compared their genetic structure in Portugal to see if they are consistent with their differences in ecological plasticity, and also to illustrate an approach to explicitly delineate the spatial boundaries of consistently identified genetic units. We analysed microsatellite data using spatial Bayesian clustering methods (implemented in the software BAPS, GENELAND and TESS), a progressive partitioning approach and a multivariate technique (Spatial Principal Components Analysis-sPCA). Three consensus Bayesian clusters were identified for the stone marten. No consensus was achieved for the red fox, but one cluster was the most probable clustering solution. Progressive partitioning and sPCA suggested additional clusters in the stone marten but they were not consistent among methods and were geographically incoherent. The contrasting results between the two species are consistent with the literature reporting stricter ecological requirements of the stone marten in the Iberian Peninsula. The observed genetic structure in the stone marten may have been influenced by landscape features, particularly rivers, and fragmentation. We suggest that an approach based on a consensus clustering solution of multiple different algorithms may provide an objective and effective means to delineate potential boundaries of inferred subpopulations. sPCA and progressive partitioning

  1. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Common Neural Mechanisms Underlying Reversal Learning by Reward and Punishment

    PubMed Central

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations. PMID:24349211

  3. Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms

    PubMed Central

    Schumacher, Björn; van der Pluijm, Ingrid; Moorhouse, Michael J.; Kosteas, Theodore; Robinson, Andria Rasile; Suh, Yousin; Breit, Timo M.; van Steeg, Harry; Niedernhofer, Laura J.; van IJcken, Wilfred; Bartke, Andrzej; Spindler, Stephen R.; Hoeijmakers, Jan H. J.; van der Horst, Gijsbertus T. J.; Garinis, George A.

    2008-01-01

    Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice. Subsequent analysis of significantly over-represented biological processes revealed suppression of the endocrine and energy pathways with increased stress responses in both delayed and premature aging. To test the relevance of these processes in natural aging, we compared the transcriptomes of liver, lung, kidney, and spleen over the entire murine adult lifespan and subsequently confirmed these findings on an independent aging cohort. The majority of genes showed similar expression changes in all four organs, indicating a systemic transcriptional response with aging. This systemic response included the same biological processes that are triggered in progeroid and long-lived mice. However, on a genome-wide scale, transcriptomes of naturally aged mice showed a strong association to progeroid but not to long-lived mice. Thus, endocrine and metabolic changes are indicative of “survival” responses to genotoxic stress or starvation, whereas genome-wide associations in gene expression with natural aging are indicative of biological age, which may thus delineate pro- and anti-aging effects of treatments aimed at health-span extension. PMID:18704162

  4. Common neural mechanisms underlying reversal learning by reward and punishment.

    PubMed

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.

  5. Malformations of cortical development: genetic mechanisms and diagnostic approach

    PubMed Central

    2017-01-01

    Malformations of cortical development are rare congenital anomalies of the cerebral cortex, wherein patients present with intractable epilepsy and various degrees of developmental delay. Cases show a spectrum of anomalous cortical formations with diverse anatomic and morphological abnormalities, a variety of genetic causes, and different clinical presentations. Brain magnetic resonance imaging has been of great help in determining the exact morphologies of cortical malformations. The hypothetical mechanisms of malformation include interruptions during the formation of cerebral cortex in the form of viral infection, genetic causes, and vascular events. Recent remarkable developments in genetic analysis methods have improved our understanding of these pathological mechanisms. The present review will discuss normal cortical development, the current proposed malformation classifications, and the diagnostic approach for malformations of cortical development. PMID:28203254

  6. Genetic factors and epigenetic mechanisms of longevity: current perspectives.

    PubMed

    Lazarus, Jessica; Mather, Karen A; Thalamuthu, Anbupalam; Kwok, John B J

    2015-01-01

    The exceptional longevity phenotype, defined as living beyond the age of 95, results from complex interactions between environmental and genetic factors. Epigenetic mechanisms, such as DNA methylation and histone modifications, mediate the interaction of these factors. This review will provide an overview of animal model studies used to examine age-related epigenetic modifications. Key human studies will be used to illustrate the progress made in the identification of the genetic loci associated with exceptional longevity, including APOE and FOXO3 and genes/loci that are also differentially methylated between long-lived individuals and younger controls. Future studies should focus on elucidating whether identified longevity genetic loci directly influence epigenetic mechanisms, especially on differentially methylated regions associated with longevity.

  7. Malformations of cortical development: genetic mechanisms and diagnostic approach.

    PubMed

    Lee, Jeehun

    2017-01-01

    Malformations of cortical development are rare congenital anomalies of the cerebral cortex, wherein patients present with intractable epilepsy and various degrees of developmental delay. Cases show a spectrum of anomalous cortical formations with diverse anatomic and morphological abnormalities, a variety of genetic causes, and different clinical presentations. Brain magnetic resonance imaging has been of great help in determining the exact morphologies of cortical malformations. The hypothetical mechanisms of malformation include interruptions during the formation of cerebral cortex in the form of viral infection, genetic causes, and vascular events. Recent remarkable developments in genetic analysis methods have improved our understanding of these pathological mechanisms. The present review will discuss normal cortical development, the current proposed malformation classifications, and the diagnostic approach for malformations of cortical development.

  8. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    SciTech Connect

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  9. Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss - A Common Hereditary Deafness.

    PubMed

    Wingard, Jeffrey C; Zhao, Hong-Bo

    2015-01-01

    Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K(+)-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required.

  10. Genetic Structure in the Northern Range Margins of Common Ash, Fraxinus excelsior L.

    PubMed Central

    Tollefsrud, Mari Mette; Myking, Tor; Sønstebø, Jørn Henrik; Lygis, Vaidotas; Hietala, Ari Mikko; Heuertz, Myriam

    2016-01-01

    During post glacial colonization, loss of genetic diversity due to leading edge effects may be attenuated in forest trees because of their prolonged juvenile phase, allowing many migrants to reach the colonizing front before populations become reproductive. The northern range margins of temperate tree taxa in Europe are particularly suitable to study the genetic processes that follow colonization because they have been little affected by northern refugia. Here we examined how post glacial range dynamics have shaped the genetic structure of common ash (Fraxinus excelsior L.) in its northern range compared to its central range in Europe. We used four chloroplast and six nuclear microsatellites to screen 42 populations (1099 trees), half of which corresponded to newly sampled populations in the northern range and half of which represented reference populations from the central range obtained from previously studies. We found that northern range populations of common ash have the same chloroplast haplotypes as south-eastern European populations, suggesting that colonization of the northern range took place along a single migration route, a result confirmed by the structure at the nuclear microsatellites. Along this route, diversity strongly decreased only in the northern range, concomitantly with increasing population differentiation and complex population substructures, a pattern consistent with a leading edge colonization model. Our study highlights that while diversity is maintained in the central range of common ash due to broad colonizing fronts and high levels of gene flow, it profoundly decreases in the northern range, where colonization was unidirectional and probably involved repeated founder events and population fluctuations. Currently, common ash is threatened by ash dieback, and our results on northern populations will be valuable for developing gene conservation strategies. PMID:27907032

  11. Application of SNPscan in Genetic Screening for Common Hearing Loss Genes

    PubMed Central

    Ke, Jia; Li, Tao; Hu, Ping; Song, Yu; Xu, Chiyu; Wang, Jie; Cheng, Jing; Zhang, Lei; Duan, Hong; Yuan, Huijun; Ma, Furong

    2016-01-01

    The current study reports the successful application of a fast and efficient genetic screening system for common hearing loss (HL) genes based on SNPscan genotyping technology. Genetic analysis of 115 variants in common genes related to HL, GJB2, SLC26A4 and MT-RNR, was performed on 695 subjects with non-syndromic hearing loss (NSHL) from the Northern China. The results found that 38.7% (269/695) of cases carried bi-allelic pathogenic variants in GJB2 and SLC26A4 and 0.7% (5/695) of cases carried homoplasmic MT-RNR1 variants. The variant allele frequency of GJB2, SLC26A4 and MT-RNR1 was 19.8% (275/1390), 21.9% (304/1390), and 0.86% (6/695), respectively. This approach can explain ~40% of NSHL cases and thus is a useful tool for establishing primary molecular diagnosis of NSHL in clinical genetics. PMID:27792752

  12. Genetic structure, diversity, and interisland dispersal in the endangered Mariana Common Moorhen (Gallinula chloropus guami)

    USGS Publications Warehouse

    Miller, Mark P.; Mullins, Thomas D.; Haig, Susan M.; Takano, Leilani; Garcia, Karla

    2015-01-01

    The Mariana Common Moorhen (Gallinula chloropus guami) is a highly endangered taxon, with fewer than 300 individuals estimated to occur in the wild. The subspecies is believed to have undergone population declines attributable to loss of wetland habitats on its native islands in the Mariana Islands. We analyzed mitochondrial DNA (mtDNA) sequences (control region and ND2 genes) and nuclear microsatellite loci in Mariana Common Moorhens from Guam and Saipan, the two most distal islands inhabited by the subspecies. Our analyses revealed similar nuclear genetic diversity and effective population size estimates on Saipan and Guam. Birds from Guam and Saipan were genetically differentiated (microsatellites: FST = 0.152; control region: FST = 0.736; ND2: FST= 0.390); however, assignment tests revealed the presence of first-generation dispersers from Guam onto Saipan (1 of 27 sampled birds) and from Saipan onto Guam (2 of 28 sampled birds), suggesting the capability for long-distance interpopulation movements within the subspecies. The observed dispersal rate was consistent with long-term estimates of effective numbers of migrants per generation between islands, indicating that movement between islands has been an ongoing process in this system. Despite known population declines, bottleneck tests revealed no signature of historical bottleneck events, suggesting that the magnitude of past population declines may have been comparatively small relative to the severity of declines that can be detected using genetic data.

  13. Association between Common Genetic Variants and Polycystic Ovary Syndrome Risk in a Chinese Han Population

    PubMed Central

    Sun, Ying; Yuan, Yi; Yang, Hua; Li, Jingjie; Feng, Tian; Ouyang, Yongri; Jin, Tianbo; Liu, Ming

    2016-01-01

    Objective: Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies affecting 5-7% of reproductive age women worldwide. The aim of our study was to explore the PCOS-related single nucleotide polymorphism (SNP) associations between common genetic variants and PCOS risk in a Han Chinese women population. Methods: In this case-control study, 285 Chinese Han women aged 28.50±6.858 years with PCOS and 299 controls of a mean age of 32.66±7.018 years were compared. We selected recently published genome-wide association studies (GWAS) which identified several genetic loci in PCOS. All the SNPs were genotyped by Sequenom Mass-ARRAY technology. Associations between the gene and the risk of PCOS were tested using various genetic models by Statistical Package for the Social Sciences and Plink. Results: We found that rs705702 in the RAB5B/SUOX was associated with PCOS (odds ratio=1.42; 95% confidence interval=1.08-1.87, p=0.011) and increased the PCOS risk. The genotypic model analysis also showed that rs705702 was associated with PCOS risk. Conclusion: Our results suggest that SNPs rs705702 in gene RAB5B/SUOX was associated with PCOS in Han Chinese women. PMID:27217259

  14. Integrating Genetic and Functional Genomic Data to Elucidate Common Disease Tra

    NASA Astrophysics Data System (ADS)

    Schadt, Eric

    2005-03-01

    The reconstruction of genetic networks in mammalian systems is one of the primary goals in biological research, especially as such reconstructions relate to elucidating not only common, polygenic human diseases, but living systems more generally. Here I present a statistical procedure for inferring causal relationships between gene expression traits and more classic clinical traits, including complex disease traits. This procedure has been generalized to the gene network reconstruction problem, where naturally occurring genetic variations in segregating mouse populations are used as a source of perturbations to elucidate tissue-specific gene networks. Differences in the extent of genetic control between genders and among four different tissues are highlighted. I also demonstrate that the networks derived from expression data in segregating mouse populations using the novel network reconstruction algorithm are able to capture causal associations between genes that result in increased predictive power, compared to more classically reconstructed networks derived from the same data. This approach to causal inference in large segregating mouse populations over multiple tissues not only elucidates fundamental aspects of transcriptional control, it also allows for the objective identification of key drivers of common human diseases.

  15. An Overview of Genetic Mechanisms in the Bacterial Cell.

    ERIC Educational Resources Information Center

    Metcalfe, Judith; Baumberg, Simon

    1988-01-01

    Outlines the genetic elements found in the bacterial cell which play a role in recombining DNA sequences. Provides a core structure to which the mechanisms occurring in and between bacterial cells can be related. Discusses the practicalities of recombinant DNA techniques. (Author/CW)

  16. An Overview of Genetic Mechanisms in the Bacterial Cell.

    ERIC Educational Resources Information Center

    Metcalfe, Judith; Baumberg, Simon

    1988-01-01

    Outlines the genetic elements found in the bacterial cell which play a role in recombining DNA sequences. Provides a core structure to which the mechanisms occurring in and between bacterial cells can be related. Discusses the practicalities of recombinant DNA techniques. (Author/CW)

  17. Divided versus selective attention: evidence for common processing mechanisms.

    PubMed

    Hahn, Britta; Wolkenberg, Frank A; Ross, Thomas J; Myers, Carol S; Heishman, Stephen J; Stein, Dan J; Kurup, Pradeep K; Stein, Elliot A

    2008-06-18

    The current study revisited the question of whether there are brain mechanisms specific to divided attention that differ from those used in selective attention. Increased neuronal activity required to simultaneously process two stimulus dimensions as compared with each separate dimension has often been observed, but rarely has activity induced by a divided attention condition exceeded the sum of activity induced by the component tasks. Healthy participants performed a selective-divided attention paradigm while undergoing functional Magnetic Resonance Imaging (fMRI). The task required participants to make a same-different judgment about either one of two simultaneously presented stimulus dimensions, or about both dimensions. Performance accuracy was equated between tasks by dynamically adjusting the stimulus display time. Blood Oxygenation Level Dependent (BOLD) signal differences between tasks were identified by whole-brain voxel-wise comparisons and by region-specific analyses of all areas modulated by the divided attention task (DIV). No region displayed greater activation or deactivation by DIV than the sum of signal change by the two selective attention tasks. Instead, regional activity followed the tasks' processing demands as reflected by reaction time. Only a left cerebellar region displayed a correlation between participants' BOLD signal intensity and reaction time that was selective for DIV. The correlation was positive, reflecting slower responding with greater activation. Overall, the findings do not support the existence of functional brain activity specific to DIV. Increased activity appears to reflect additional processing demands by introducing a secondary task, but those demands do not appear to qualitatively differ from processes of selective attention.

  18. Birdsong and human speech: common themes and mechanisms.

    PubMed

    Doupe, A J; Kuhl, P K

    1999-01-01

    Human speech and birdsong have numerous parallels. Both humans and songbirds learn their complex vocalizations early in life, exhibiting a strong dependence on hearing the adults they will imitate, as well as themselves as they practice, and a waning of this dependence as they mature. Innate predispositions for perceiving and learning the correct sounds exist in both groups, although more evidence of innate descriptions of species-specific signals exists in songbirds, where numerous species of vocal learners have been compared. Humans also share with songbirds an early phase of learning that is primarily perceptual, which then serves to guide later vocal production. Both humans and songbirds have evolved a complex hierarchy of specialized forebrain areas in which motor and auditory centers interact closely, and which control the lower vocal motor areas also found in nonlearners. In both these vocal learners, however, how auditory feedback of self is processed in these brain areas is surprisingly unclear. Finally, humans and songbirds have similar critical periods for vocal learning, with a much greater ability to learn early in life. In both groups, the capacity for late vocal learning may be decreased by the act of learning itself, as well as by biological factors such as the hormones of puberty. Although some features of birdsong and speech are clearly not analogous, such as the capacity of language for meaning, abstraction, and flexible associations, there are striking similarities in how sensory experience is internalized and used to shape vocal outputs, and how learning is enhanced during a critical period of development. Similar neural mechanisms may therefore be involved.

  19. Common mechanism of thermodynamic and mechanical origin for ageing and crystallization of glasses

    NASA Astrophysics Data System (ADS)

    Yanagishima, Taiki; Russo, John; Tanaka, Hajime

    2017-06-01

    The glassy state is known to undergo slow structural relaxation, where the system progressively explores lower free-energy minima which are either amorphous (ageing) or crystalline (devitrification). Recently, there is growing interest in the unusual intermittent collective displacements of a large number of particles known as `avalanches'. However, their structural origin and dynamics are yet to be fully addressed. Here, we study hard-sphere glasses which either crystallize or age depending on the degree of size polydispersity, and show that a small number of particles are thermodynamically driven to rearrange in regions of low density and bond orientational order. This causes a transient loss of mechanical equilibrium which facilitates a large cascade of motion. Combined with previously identified phenomenology, we have a complete kinetic pathway for structural change which is common to both ageing and crystallization. Furthermore, this suggests that transient force balance is what distinguishes glasses from supercooled liquids.

  20. Common mechanism of thermodynamic and mechanical origin for ageing and crystallization of glasses.

    PubMed

    Yanagishima, Taiki; Russo, John; Tanaka, Hajime

    2017-06-29

    The glassy state is known to undergo slow structural relaxation, where the system progressively explores lower free-energy minima which are either amorphous (ageing) or crystalline (devitrification). Recently, there is growing interest in the unusual intermittent collective displacements of a large number of particles known as 'avalanches'. However, their structural origin and dynamics are yet to be fully addressed. Here, we study hard-sphere glasses which either crystallize or age depending on the degree of size polydispersity, and show that a small number of particles are thermodynamically driven to rearrange in regions of low density and bond orientational order. This causes a transient loss of mechanical equilibrium which facilitates a large cascade of motion. Combined with previously identified phenomenology, we have a complete kinetic pathway for structural change which is common to both ageing and crystallization. Furthermore, this suggests that transient force balance is what distinguishes glasses from supercooled liquids.

  1. Serpentine soils affect heavy metal tolerance but not genetic diversity in a common Mediterranean ant.

    PubMed

    Frizzi, Filippo; Masoni, Alberto; Çelikkol, Mine; Palchetti, Enrico; Ciofi, Claudio; Chelazzi, Guido; Santini, Giacomo

    2017-08-01

    Natural habitats with serpentine soils are rich in heavy metal ions, which may significantly affect ecological communities. Exposure to metal pollutants results, for instance, in a reduction of population genetic diversity and a diffused higher tolerance towards heavy metals. In this study, we investigated whether chronic exposure to metals in serpentine soils affect accumulation patterns, tolerance towards metal pollutants, and genetic diversity in ants. In particular, we studied colonies of the common Mediterranean ant, Crematogaster scutellaris, along a contamination gradient consisting of two differently contaminated forests and a reference soil with no geogenic contamination. We first evaluated the metal content in both soil and ants' body. Then, we tested for tolerance towards metal pollutants by evaluating the mortality of ants fed with nickel (Ni) solutions of increasing concentrations. Finally, differences in genetic diversity among ants from different areas were assessed using eight microsatellite loci. Interestingly, a higher tolerance to nickel solutions was found in ants sampled in sites with intermediate levels of heavy metals. This may occur, because ants inhabiting strongly contaminated areas tend to accumulate higher amounts of contaminants. Additional ingestion of toxicants beyond the saturation threshold would lead to death. There was no difference in the genetic diversity among ant colonies sampled in different sites. This was probably the result of queen mediated gene flow during nuptial flights across uncontaminated and contaminated areas of limited geographical extent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A common genetic influence on human intensity ratings of sugars and high-potency sweeteners.

    PubMed

    Hwang, Liang-Dar; Zhu, Gu; Breslin, Paul A S; Reed, Danielle R; Martin, Nicholas G; Wright, Margaret J

    2015-08-01

    The perception of sweetness varies among individuals but the sources of this variation are not fully understood. Here, in a sample of 1,901 adolescent and young adults (53.8% female; 243 MZ and 452 DZ twin pairs, 511 unpaired individuals; mean age 16.2±2.8, range 12–26 years), we studied the variation in the perception of sweetness intensity of two monosaccharides and two high-potency sweeteners: glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame. Perceived intensity for all sweeteners decreased with age (2–5% per year) and increased with the history of otitis media (6–9%). Males rated aspartame slightly stronger than females (7%). We found similar heritabilities for sugars (glucose: h2=0.31, fructose: h2=0.34) and high-potency sweeteners (NHDC: h2=0.31, aspartame: h2=0.30); all were in the modest range. Multivariate modeling showed that a common genetic factor accounted for >75% of the genetic variance in the four sweeteners, suggesting that individual differences in perceived sweet intensity, which are partly due to genetic factors, may be attributed to a single set of genes. This study provided evidence of the shared genetic pathways between the perception of sugars and high-potency sweeteners.

  3. Common genetic risk factors for venous thrombosis in the Chinese population.

    PubMed

    Tang, Liang; Wang, Hua-Fang; Lu, Xuan; Jian, Xiao-Rong; Jin, Bi; Zheng, Hong; Li, Yi-Qing; Wang, Qing-Yun; Wu, Tang-Chun; Guo, Huan; Liu, Hui; Guo, Tao; Yu, Jian-Ming; Yang, Rui; Yang, Yan; Hu, Yu

    2013-02-07

    Venous thrombosis is a major medical disorder caused by both genetic and environmental factors. Little is known about the genetic background of venous thrombosis in the Chinese population. A total of 1,304 individuals diagnosed with a first venous thrombosis and 1,334 age- and sex-matched healthy participants were enrolled in this study. Resequencing of THBD (encoding thrombomodulin) in 60 individuals with venous thrombosis and 60 controls and a functional assay showed that a common variant, c.-151G>T (rs16984852), in the 5' UTR significantly reduced the gene expression and could cause a predisposition to venous thrombosis. Therefore, this variant was genotyped in a case-control study, and results indicated that heterozygotes had a 2.80-fold (95% confidence interval = 1.88-4.29) increased risk of venous thrombosis. The THBD c.-151G>T variant was further investigated in a family analysis involving 176 first-degree relatives from 38 index families. First-degree relatives with this variant had a 3.42-fold increased risk of venous thrombosis, and their probability of remaining thrombosis-free was significantly lower than that of relatives without the variant. In addition, five rare mutations that might be deleterious were also identified in thrombophilic individuals by sequencing. This study is the largest genetic investigation of venous thrombosis in the Chinese population. Further study on genetics of thrombosis should focus on resequencing of THBD and other hemostasis genes in different populations.

  4. Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms.

    PubMed

    Chen, Xi; Burgoyne, Robert D

    2012-02-14

    An array of experimental models have been developed in the small model organisms C. elegans, S. cerevisiae and D. melanogaster for the study of various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and expanded polyglutamine diseases as exemplified by Huntington's disease (HD) and related ataxias. Genetic approaches to determine the nature of regulators of the disease phenotypes have ranged from small scale to essentially whole genome screens. The published data covers distinct models in all three organisms and one important question is the extent to which shared genetic factors can be uncovered that affect several or all disease models. Surprisingly it has appeared that there may be relatively little overlap and that many of the regulators may be organism or disease-specific. There is, however, a need for a fully integrated analysis of the available genetic data based on careful comparison of orthologues across the species to determine the real extent of overlap. We carried out an integrated analysis using C. elegans as the baseline model organism since this is the most widely studied in this context. Combination of data from 28 published studies using small to large scale screens in all three small model organisms gave a total of 950 identifications of genetic regulators. Of these 624 were separate genes with orthologues in C. elegans. In addition, 34 of these genes, which all had human orthologues, were found to overlap across studies. Of the common genetic regulators some such as chaperones, ubiquitin-related enzymes (including the E3 ligase CHIP which directly links the two pathways) and histone deacetylases were involved in expected pathways whereas others such as the peroxisomal acyl CoA-oxidase suggest novel targets for neurodegenerative disease therapy We identified a significant number of overlapping regulators of neurodegenerative disease models. Since the diseases have, as an underlying feature, protein aggregation

  5. [Genetic diversity of reaction of common wheat (Triticum aestivum L.) cultivars to light intensity].

    PubMed

    Evtushenko, E V; Chekurov, V M

    2000-05-01

    The effect of low light intensity (LI) on the period from sprouting to earing was studied in 12 cultivars of the spring common wheat under controlled conditions. Differences between cultivars with respect to their responses to LI (RLIs) were found both for those that were photoperiod-sensitive and those that were almost photoperiod-neutral. Specifically, a prolonged photoperiod and a low LI differently increased the period from sprouting to earling in different cultivars. Genetic analysis of the RLI demonstrated, for the first time, that the weak response was incompletely dominant in F1. The results of genetic analysis agree with the hypothesis that the cultivars Pitic 62 and Novosibirskaya 22 differ in alleles of two loci controlling the RLI in wheat.

  6. Breast cancer predisposition and brain hemispheric laterality specification likely share a common genetic cause.

    PubMed

    Klar, Amar J S

    2011-01-01

    The majority of breast cancer cases seen in women remain unexplained by simple Mendelian genetics. It is generally hypothesized that such non-familial, so-called sporadic cases, result from exposure of the affected individuals to a cancer-causing environment and/or from stochastic cell biological errors. Clearly, adverse environment exposure can cause disease, but is that necessarily the cause of most sporadic cases? Curiously, female breast cancer patients who were selected to prefer right-hand-use reportedly exhibited a higher incidence of reversed-brain hemispheric laterality when compared to that of the public at large. Notably, such a higher level of hemispheric reversal is also found in healthy, left-handed or ambidextrous persons. Based on the association between these disparate traits, a new hypothesis for the etiology of sporadic breast cancer cases is advanced here; breast cancer predisposition and brain laterality development likely share a common genetic cause.

  7. Common variation in ISL1 confers genetic susceptibility for human congenital heart disease.

    PubMed

    Stevens, Kristen N; Hakonarson, Hakon; Kim, Cecilia E; Doevendans, Pieter A; Koeleman, Bobby P C; Mital, Seema; Raue, Jennifer; Glessner, Joseph T; Coles, John G; Moreno, Victor; Granger, Anne; Gruber, Stephen B; Gruber, Peter J

    2010-05-26

    Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant-common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations.

  8. Genetic variability for iron and zinc content in common bean lines and interaction with water availability.

    PubMed

    Pereira, H S; Del Peloso, M J; Bassinello, P Z; Guimarães, C M; Melo, L C; Faria, L C

    2014-08-28

    The common bean is an important source of iron and zinc in humans. Increases in the contents of these minerals can combat mineral deficiencies, but these contents are influenced by environmental conditions. Thus, the objectives of this study were to investigate the interaction between common bean lines and water availability on iron and zinc contents (CFe and CZn, respectively), identify superior lines with stable CFe and CZn, and test for a genetic relationship between CFe and CZn. Six crop trials were performed using a randomized block design with three replications. The trials were performed during the winter sowing period for three different combinations of year and site in Brazil. For each combination, 53 lines were evaluated across two parallel trials; one trial was irrigated according to the crop requirements, and the other trial operated under a water deficit. Interaction was detected between lines and environments, and between lines and water availability for CFe and CZn. However, some lines exhibited high CFe and CZn in both conditions. Lines G 6492 and G 6490 exhibited high mean values, stability, and adaptability for both minerals. Other lines exhibited high CFe (Xamego) or CZn (Bambuí and Iapar 65). A moderate genetic correlation (0.62) between CFe and CZn was detected. Water availability during the common bean cycle had an effect on CFe and CZn; however, lines with high CFe and CZn in different conditions of water availability and environment were detected.

  9. Genetic basis of cell-cell fusion mechanisms.

    PubMed

    Aguilar, Pablo S; Baylies, Mary K; Fleissner, Andre; Helming, Laura; Inoue, Naokazu; Podbilewicz, Benjamin; Wang, Hongmei; Wong, Melissa

    2013-07-01

    Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Genetic basis of cell-cell fusion mechanisms

    PubMed Central

    Aguilar, Pablo S.; Baylies, Mary K.; Fleissner, Andre; Helming, Laura; Inoue, Naokazu; Podbilewicz, Benjamin; Wang, Hongmei; Wong, Melissa

    2013-01-01

    Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes, and in multicellular organisms, it is a strategy to sculpt organs such as muscles, bones, and placenta. Moreover, this mechanism has been implicated in pathological conditions such as infection and cancer. Study of genetic model organisms has uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: (i) competence: cell induction and differentiation, (ii) commitment: cell determination, migration and adhesion, and (iii) cell fusion: membrane merging and cytoplasmic mixing. Recent work has led to the discovery of fusogens, cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (Syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which fusogens merge membranes. PMID:23453622

  11. Promoting the Use of Common Oat Genetic Resources through Diversity Analysis and Core Collection Construction.

    PubMed

    Boczkowska, Maja; Łapiński, Bogusław; Kordulasińska, Izabela; Dostatny, Denise F; Czembor, Jerzy H

    2016-01-01

    The assessment of diversity and population structure and construction of a core collection is beneficial for the efficient use and management of germplasm. A unique collection of common oat landraces, cultivated in the temperate climate of central Europe until the end of the twentieth century, is preserved in the Polish gene bank. It consists of 91 accessions that have never been used in breeding programs. In order to optimise the use of this genetic resource, we aimed to: (1) determine genetic and agro-morphological diversity, (2) identify internal genetic variation of the tested accessions, (3) form a core collection and (4) recognise the accessions useful for breeding programs or re-release for cultivation. The collection was screened using ISSR markers (1520 loci) and eight agro-morphological traits. Uniquely, we performed molecular studies based on 24 individuals of every accession instead of bulk samples. Therefore, assessment of the degree of diversity within each population and the identification of overlapping gene pools were possible. The observed internal diversity (Nei unbiased coefficient) was in the range of 0.17-0.31. Based on combined genetic and agro-morphological data, we established the core collection composed of 21 landraces. Due to valuable compositions of important traits, some accessions were also identified as useful for breeding programs. The population structure and principal coordinate analysis revealed two major clusters. Based on the previous results, the accessions classified within the smaller one were identified as obsolete varieties instead of landraces. Our results show that the oat landraces are, in general, resistant to local races of diseases, well adapted to local conditions and, in some cases, yielding at the level of modern varieties. Therefore, in situ conservation of the landraces in the near future may be satisfactory for both farmers and researchers in terms of the genetic resources preservation.

  12. Promoting the Use of Common Oat Genetic Resources through Diversity Analysis and Core Collection Construction

    PubMed Central

    Łapiński, Bogusław; Kordulasińska, Izabela; Dostatny, Denise F.; Czembor, Jerzy H.

    2016-01-01

    The assessment of diversity and population structure and construction of a core collection is beneficial for the efficient use and management of germplasm. A unique collection of common oat landraces, cultivated in the temperate climate of central Europe until the end of the twentieth century, is preserved in the Polish gene bank. It consists of 91 accessions that have never been used in breeding programs. In order to optimise the use of this genetic resource, we aimed to: (1) determine genetic and agro-morphological diversity, (2) identify internal genetic variation of the tested accessions, (3) form a core collection and (4) recognise the accessions useful for breeding programs or re-release for cultivation. The collection was screened using ISSR markers (1520 loci) and eight agro-morphological traits. Uniquely, we performed molecular studies based on 24 individuals of every accession instead of bulk samples. Therefore, assessment of the degree of diversity within each population and the identification of overlapping gene pools were possible. The observed internal diversity (Nei unbiased coefficient) was in the range of 0.17–0.31. Based on combined genetic and agro-morphological data, we established the core collection composed of 21 landraces. Due to valuable compositions of important traits, some accessions were also identified as useful for breeding programs. The population structure and principal coordinate analysis revealed two major clusters. Based on the previous results, the accessions classified within the smaller one were identified as obsolete varieties instead of landraces. Our results show that the oat landraces are, in general, resistant to local races of diseases, well adapted to local conditions and, in some cases, yielding at the level of modern varieties. Therefore, in situ conservation of the landraces in the near future may be satisfactory for both farmers and researchers in terms of the genetic resources preservation. PMID:27959891

  13. Fitness and genetic architecture of parent and hybrid willows in common gardens.

    PubMed

    Fritz, Robert S; Hochwender, Cris G; Albrectsen, Benedicte R; Czesak, Mary Ellen

    2006-06-01

    Models of hybrid zone dynamics incorporate different patterns of hybrid fitness relative to parental species fitness. An important but understudied source of variation underlying these fitness differences is the environment. We investigated the performance of two willow species and their F1, F2, and backcross hybrids using a common-garden experiment with six replicated gardens that differed in soil moisture. Aboveground biomass, catkin production, seed production per catkin, and seed germination rate were significantly different among genetic classes. For aboveground biomass and catkin production, hybrids generally had intermediate or inferior performance compared to parent species. Salix eriocephala had the highest performance for all performance measures, but in two gardens F, plants had superior or equal performance for aboveground biomass and female catkin production. Salix eriocephala and backcrosses to S. eriocephala had the highest numbers of filled seeds per catkin and the highest estimates of total fitness in all gardens. Measures of filled seeds per catkin and germination rate tend to support the model of endogenous hybrid unfitness, and these two measures had major effects on estimates of total seed production per catkin. We also estimated how the two willow species differ genetically in these fitness measures using line cross analysis. We found a complex genetic architecture underlying the fitness differences between species that involved additive, dominance, and epistatic genetic effects for all fitness measures. The environment was important in the expression of these genetic differences, because the type of epistasis differed among the gardens for above-ground biomass and for female catkin production. These findings suggest that fine-scale environmental variation can have a significant impact on hybrid fitness in hybrid zones where parents and hybrids are widely interspersed.

  14. Common genetic variation near MC4R is associated with waist circumference and insulin resistance.

    PubMed

    Chambers, John C; Elliott, Paul; Zabaneh, Delilah; Zhang, Weihua; Li, Yun; Froguel, Philippe; Balding, David; Scott, James; Kooner, Jaspal S

    2008-06-01

    We carried out a genome-wide association study (318,237 SNPs) for insulin resistance and related phenotypes in 2,684 Indian Asians, with further testing in 11,955 individuals of Indian Asian or European ancestry. We found associations of rs12970134 near MC4R with waist circumference (P = 1.7 x 10(-9)) and, independently, with insulin resistance. Homozygotes for the risk allele of rs12970134 have approximately 2 cm increased waist circumference. Common genetic variation near MC4R is associated with risk of adiposity and insulin resistance.

  15. Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans

    PubMed Central

    Bakken, Trygve E.; Roddey, J. Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Gruen, Jeffrey R.; Jernigan, Terry L.; Kaufmann, Walter E.; Kenet, Tal; Kennedy, David N.; Kuperman, Joshua M.; Murray, Sarah S.; Sowell, Elizabeth R.; Rimol, Lars M.; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A.; Schork, Nicholas J.; Dale, Anders M.

    2012-01-01

    Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (Pcombined = 3.2 × 10−8). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10−9) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5′ UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception. PMID:22343285

  16. Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans.

    PubMed

    Bakken, Trygve E; Roddey, J Cooper; Djurovic, Srdjan; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Jernigan, Terry L; Kaufmann, Walter E; Kenet, Tal; Kennedy, David N; Kuperman, Joshua M; Murray, Sarah S; Sowell, Elizabeth R; Rimol, Lars M; Mattingsdal, Morten; Melle, Ingrid; Agartz, Ingrid; Andreassen, Ole A; Schork, Nicholas J; Dale, Anders M; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R; Jagust, William; Trojanowki, John Q; Toga, Arthur W; Beckett, Laurel; Green, Robert C; Saykin, Andrew J; Morris, John; Liu, Enchi; Montine, Tom; Gamst, Anthony; Thomas, Ronald G; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Harvey, Danielle; Kornak, John; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Bandy, Dan; Koeppe, Robert A; Foster, Norm; Reiman, Eric M; Chen, Kewei; Mathis, Chet; Cairns, Nigel J; Taylor-Reinwald, Lisa; Trojanowki, J Q; Shaw, Les; Lee, Virginia M Y; Korecka, Magdalena; Crawford, Karen; Neu, Scott; Foroud, Tatiana M; Potkin, Steven; Shen, Li; Kachaturian, Zaven; Frank, Richard; Snyder, Peter J; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S; Pawluczyk, Sonia; Spann, Bryan M; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L; Lord, Joanne L; Johnson, Kris; Doody, Rachelle S; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S; Bell, Karen L; Morris, John C; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P Murali; Petrella, Jeffrey R; Coleman, R Edward; Arnold, Steven E; Karlawish, Jason H; Wolk, David; Smith, Charles D; Jicha, Greg; Hardy, Peter; Lopez, Oscar L; Oakley, MaryAnn; Simpson, Donna M; Porsteinsson, Anton P; Goldstein, Bonnie S; Martin, Kim; Makino, Kelly M; Ismail, M Saleem; Brand, Connie; Mulnard, Ruth A; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I; Lah, James J; Cellar, Janet S; Burns, Jeffrey M; Anderson, Heather S; Swerdlow, Russell H; Apostolova, Liana; Lu, Po H; Bartzokis, George; Silverman, Daniel H S; Graff-Radford, Neill R; Parfitt, Francine; Johnson, Heather; Farlow, Martin R; Hake, Ann Marie; Matthews, Brandy R; Herring, Scott; van Dyck, Christopher H; Carson, Richard E; MacAvoy, Martha G; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Ging-Yuek; Hsiung, Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A; Johnson, Keith A; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O; Wolday, Saba; Bwayo, Salome K; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; Kittur, Smita; Borrie, Michael; Lee, T-Y; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M; Potkin, Steven G; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W; Kataki, Maria; Zimmerman, Earl A; Celmins, Dzintra; Brown, Alice D; Pearlson, Godfrey D; Blank, Karen; Anderson, Karen; Santulli, Robert B; Schwartz, Eben S; Sink, Kaycee M; Williamson, Jeff D; Garg, Pradeep; Watkins, Franklin; Ott, Brian R; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J; Miller, Bruce L; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabether; Rachinsky, Irina; Drost, Dick; Jernigan, Terry; McCabe, Connor; Grant, Ellen; Ernst, Thomas; Kuperman, Josh; Chung, Yoon; Murray, Sarah; Bloss, Cinnamon; Darst, Burcu; Pritchett, Lexi; Saito, Ashley; Amaral, David; DiNino, Mishaela; Eyngorina, Bella; Sowell, Elizabeth; Houston, Suzanne; Soderberg, Lindsay; Kaufmann, Walter; van Zijl, Peter; Rizzo-Busack, Hilda; Javid, Mohsin; Mehta, Natasha; Ruberry, Erika; Powers, Alisa; Rosen, Bruce; Gebhard, Nitzah; Manigan, Holly; Frazier, Jean; Kennedy, David; Yakutis, Lauren; Hill, Michael; Gruen, Jeffrey; Bosson-Heenan, Joan; Carlson, Heatherly

    2012-03-06

    Visual cortical surface area varies two- to threefold between human individuals, is highly heritable, and has been correlated with visual acuity and visual perception. However, it is still largely unknown what specific genetic and environmental factors contribute to normal variation in the area of visual cortex. To identify SNPs associated with the proportional surface area of visual cortex, we performed a genome-wide association study followed by replication in two independent cohorts. We identified one SNP (rs6116869) that replicated in both cohorts and had genome-wide significant association (P(combined) = 3.2 × 10(-8)). Furthermore, a metaanalysis of imputed SNPs in this genomic region identified a more significantly associated SNP (rs238295; P = 6.5 × 10(-9)) that was in strong linkage disequilibrium with rs6116869. These SNPs are located within 4 kb of the 5' UTR of GPCPD1, glycerophosphocholine phosphodiesterase GDE1 homolog (Saccharomyces cerevisiae), which in humans, is more highly expressed in occipital cortex compared with the remainder of cortex than 99.9% of genes genome-wide. Based on these findings, we conclude that this common genetic variation contributes to the proportional area of human visual cortex. We suggest that identifying genes that contribute to normal cortical architecture provides a first step to understanding genetic mechanisms that underlie visual perception.

  17. Shared Genetic Factors Involved in Celiac Disease, Type 2 Diabetes and Anorexia Nervosa Suggest Common Molecular Pathways for Chronic Diseases

    PubMed Central

    Mostowy, Joanna; Montén, Caroline; Gudjonsdottir, Audur H.; Arnell, Henrik; Browaldh, Lars; Nilsson, Staffan; Agardh, Daniel

    2016-01-01

    Background and Objectives Genome-wide association studies (GWAS) have identified several genetic regions involved in immune-regulatory mechanisms to be associated with celiac disease. Previous GWAS also revealed an over-representation of genes involved in type 2 diabetes and anorexia nervosa associated with celiac disease, suggesting involvement of common metabolic pathways for development of these chronic diseases. The aim of this study was to extend these previous analyses to study the gene expression in the gut from children with active celiac disease. Material and Methods Thirty six target genes involved in type 2 diabetes and four genes associated with anorexia nervosa were investigated for gene expression in small intestinal biopsies from 144 children with celiac disease at median (range) age of 7.4 years (1.6–17.8) and from 154 disease controls at a median (range) age 11.4.years (1.4–18.3). Results A total of eleven of genes were differently expressed in celiac patients compared with disease controls of which CD36, CD38, FOXP1, SELL, PPARA, PPARG, AGT previously associated with type 2 diabetes and AKAP6, NTNG1 with anorexia nervosa remained significant after correction for multiple testing. Conclusion Shared genetic factors involved in celiac disease, type 2 diabetes and anorexia nervosa suggest common underlying molecular pathways for these diseases. PMID:27483138

  18. Discovery of common human genetic variants of GTP cyclohydrolase 1 (GCH1) governing nitric oxide, autonomic activity, and cardiovascular risk

    PubMed Central

    Zhang, Lian; Rao, Fangwen; Zhang, Kuixing; Khandrika, Srikrishna; Das, Madhusudan; Vaingankar, Sucheta M.; Bao, Xuping; Rana, Brinda K.; Smith, Douglas W.; Wessel, Jennifer; Salem, Rany M.; Rodriguez-Flores, Juan L.; Mahata, Sushil K.; Schork, Nicholas J.; Ziegler, Michael G.; O’Connor, Daniel T.

    2007-01-01

    GTP cyclohydrolase 1 (GCH1) is rate limiting in the provision of the cofactor tetrahydrobiopterin for biosynthesis of catecholamines and NO. We asked whether common genetic variation at GCH1 alters transmitter synthesis and predisposes to disease. Here we undertook a systematic search for polymorphisms in GCH1, then tested variants’ contributions to NO and catecholamine release as well as autonomic function in twin pairs. Renal NO and neopterin excretions were significantly heritable, as were baroreceptor coupling (heart rate response to BP fluctuation) and pulse interval (1/heart rate). Common GCH1 variant C+243T in the 3′-untranslated region (3′-UTRs) predicted NO excretion, as well as autonomic traits: baroreceptor coupling, maximum pulse interval, and pulse interval variability, though not catecholamine secretion. In individuals with the most extreme BP values in the population, C+243T affected both diastolic and systolic BP, principally in females. In functional studies, C+243T decreased reporter expression in transfected 3′-UTRs plasmids. We conclude that human NO secretion traits are heritable, displaying joint genetic determination with autonomic activity by functional polymorphism at GCH1. Our results document novel pathophysiological links between a key biosynthetic locus and NO metabolism and suggest new strategies for approaching the mechanism, diagnosis, and treatment of risk predictors for cardiovascular diseases such as hypertension. PMID:17717598

  19. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders.

    PubMed

    Marian, Ali J; van Rooij, Eva; Roberts, Robert

    2016-12-27

    This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  1. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies

    PubMed Central

    Hensman Moss, Davina J.; Poulter, Mark; Beck, Jon; Hehir, Jason; Polke, James M.; Campbell, Tracy; Adamson, Garry; Mudanohwo, Ese; McColgan, Peter; Haworth, Andrea; Wild, Edward J.; Sweeney, Mary G.; Houlden, Henry; Mead, Simon

    2014-01-01

    Objective: In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies. Methods: A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases. Results: Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset. Discussion: This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data. PMID:24363131

  2. Genomic selection for recovery of original genetic background from hybrids of endangered and common breeds

    PubMed Central

    Amador, Carmen; Hayes, Ben J; Daetwyler, Hans D

    2014-01-01

    Critically endangered breeds and populations are often crossed with more common breeds or subspecies. This results in genetic admixture that can be undesirable when it challenges the genetic integrity of wild and domestic populations, causing a loss in special characteristics or unique genetic material and ultimately extinction. Here, we present two genomic selection strategies, using genome-wide DNA markers, to recover the genomic content of the original endangered population from admixtures. Each strategy relies on the estimation of the proportion of nonintrogressed genome in individuals based on a different method: either genomic prediction or identification of breed-specific haplotypes. Then, breeding programs that remove introgressed genomic information can be designed. To test these strategies, we used empirical 50K SNP array data from two pure sheep breeds, Merino (used as target breed), Poll Dorset and an existing admixed population of both breeds. Sheep populations with varying degrees of introgression and admixture were simulated starting from these real genotypes. Both strategies were capable of identifying segment origin, and both removed up to the 100% of the Poll Dorset segments. While the selection process led to substantial inbreeding, we controlled it by imposing a minimum number of individuals contributing to the next generation. PMID:24567744

  3. [Genetic singularity coefficients of common vetch Vicia sativa L. accessions determined with molecular markers].

    PubMed

    Potokina, E K; Aleksandrova, T G

    2008-11-01

    Organization and practical application of ex situ collections require estimation of genetic differences between numerous accessions of local cultivars and field weed forms collected from the same ecological and geographical region and similar in their morphophysiological characteristics. A mathematical algorithm for estimating the degree of genetic singularity of a specimen in the system of local gene pool determined with the help of molecular markers is described. The utility of this algorithm is demonstrated by the example of classification of 677 common vetch accessions from the collection of the Vavilov Institute of Plant Industry from 11 ecological-geographic regions of Russia analyzed using AFLP. The proposed classification of accessions is the result of processing the AFLP data by weighting the marker traits based on their frequency in particular regions. This allowed each accession to be characterized according to the ratio of rare and frequent alleles as a genetic singularity coefficient. The proposed method is appropriate for any types of molecular markers. A practical result of its application is the classification of accessions using a five-point score scale, which can be added to descriptors of certificate databases and used for optimization of the work with collections.

  4. Common genetic variation near MC4R has a sex-specific impact on human brain structure and eating behavior.

    PubMed

    Horstmann, Annette; Kovacs, Peter; Kabisch, Stefan; Boettcher, Yvonne; Schloegl, Haiko; Tönjes, Anke; Stumvoll, Michael; Pleger, Burkhard; Villringer, Arno

    2013-01-01

    Obesity is associated with genetic and environmental factors but the underlying mechanisms remain poorly understood. Recent genome-wide association studies (GWAS) identified obesity- and type 2 diabetes-associated genetic variants located within or near genes that modulate brain activity and development. Among the top hits is rs17782313 near MC4R, encoding for the melanocortin-4-receptor, which is expressed in brain regions that regulate eating. Here, we hypothesized rs17782313-associated changes in human brain regions that regulate eating behavior. Therefore, we examined effects of common variants at rs17782313 near MC4R on brain structure and eating behavior. Only in female homozygous carriers of the risk allele we found significant increases of gray matter volume (GMV) in the right amygdala, a region known to influence eating behavior, and the right hippocampus, a structure crucial for memory formation and learning. Further, we found bilateral increases in medial orbitofrontal cortex, a multimodal brain structure encoding the subjective value of reinforcers, and bilateral prefrontal cortex, a higher order regulation area. There was no association between rs17782313 and brain structure in men. Moreover, among female subjects only, we observed a significant increase of 'disinhibition', and, more specifically, on 'emotional eating' scores of the Three Factor Eating Questionnaire in carriers of the variant rs17782313's risk allele. These findings suggest that rs17782313's effect on eating behavior is mediated by central mechanisms and that these effects are sex-specific.

  5. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    NASA Astrophysics Data System (ADS)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  6. Abandoning the common law: medical negligence, genetic tests and wrongful life in the Australian High Court.

    PubMed

    Faunce, Thomas; Jefferys, Susannah

    2007-05-01

    The Australian High Court recently found that the common law could allow parents to claim tortious damages when medical negligence was proven to have led to the birth of an unplanned, but healthy, baby (Cattanach v Melchior (2003) 215 CLR 1). In Harriton v Stephens (2006) 80 ALJR 791; [2006] HCA 15 and Waller v James; Waller v Hoolahan (2006) 80 ALJR 846; [2006] HCA 16 the High Court in a six-to-one decision (Kirby J dissenting) decided that no such claim could be made by a child when medical negligence in failing to order an in utero genetic test caused the child severe disability. In an era when almost all pregnancies will soon require patented fetal genetic tests as part of the professional standard of care, the High Court, by barring so-called "wrongful life" (better termed "wrongful suffering") claims, may have created a partial immunity from suit for their corporate manufacturers and the doctors who administer them. What lessons can be learnt from this case about how the Australian High Court is, or should be, approaching medical negligence cases and its role as guardian of the Australian common law?

  7. Modelling the evolution of common cuckoo host-races: speciation or genetic swamping?

    PubMed

    Krüger, O; Kolss, M

    2013-11-01

    Co-evolutionary arms races have provided clear evidence for evolutionary change, especially in host-parasite systems. The evolution of host-specific races in the common cuckoo (Cuculus canorus), however, is also an example where sexual conflict influences the outcome. Cuckoo females benefit from better adaptation to overcome host defences, whereas cuckoo males face a trade-off between the benefits of better adaptation to a host and the benefits of multiple mating with females from other host-races. The outcome of this trade-off might be genetic differentiation or prevention of it by genetic swamping. We use a simulation model to test which outcome is more likely with three sympatric cuckoo host-races. We assume a cost for cuckoo chicks that express a host adaptation allele not suited to their foster host species and that cuckoo males that switch to another host-race experience either a fitness benefit or cost. Over most of the parameter space, cuckoo male host-race fidelity increases significantly with time, and gene flow between host-races ceases within a few thousand to a hundred thousand generations. Our results hence support the idea that common cuckoo host-races might be in the incipient stages of speciation.

  8. Genetic evidence for common pathways in human age-related diseases

    PubMed Central

    Johnson, Simon C; Dong, Xiao; Vijg, Jan; Suh, Yousin

    2015-01-01

    Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age-related diseases, suggesting that common pathways of aging may influence age-related diseases in humans as well. To determine whether there is genetic evidence supporting the notion of common pathways underlying age-related diseases, we analyzed the genes and pathways found to be associated with five major categories of age-related disease using a total of 410 genomewide association studies (GWAS). While only a small number of genes are shared among all five disease categories, those found in at least three of the five major age-related disease categories are highly enriched for apoliprotein metabolism genes. We found that a more substantial number of gene ontology (GO) terms are shared among the 5 age-related disease categories and shared GO terms include canonical aging pathways identified in model organisms, such as nutrient-sensing signaling, translation, proteostasis, stress responses, and genome maintenance. Taking advantage of the vast amount of genetic data from the GWAS, our findings provide the first direct evidence that conserved pathways of aging simultaneously influence multiple age-related diseases in humans as has been demonstrated in model organisms. PMID:26077337

  9. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits

    PubMed Central

    Ulirsch, Jacob C.; Nandakumar, Satish K.; Wang, Li; Giani, Felix C.; Zhang, Xiaolan; Rogov, Peter; Melnikov, Alexandre; McDonel, Patrick; Do, Ron; Mikkelsen, Tarjei S.; Sankaran, Vijay G.

    2016-01-01

    Summary Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneous screen 2756 variants in strong linkage-disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164 using targeted genome editing. Functional follow up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type specific transcriptional regulatory pathways. PMID:27259154

  10. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits.

    PubMed

    Ulirsch, Jacob C; Nandakumar, Satish K; Wang, Li; Giani, Felix C; Zhang, Xiaolan; Rogov, Peter; Melnikov, Alexandre; McDonel, Patrick; Do, Ron; Mikkelsen, Tarjei S; Sankaran, Vijay G

    2016-06-02

    Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Genetic evidence for common pathways in human age-related diseases.

    PubMed

    Johnson, Simon C; Dong, Xiao; Vijg, Jan; Suh, Yousin

    2015-10-01

    Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age-related diseases, suggesting that common pathways of aging may influence age-related diseases in humans as well. To determine whether there is genetic evidence supporting the notion of common pathways underlying age-related diseases, we analyzed the genes and pathways found to be associated with five major categories of age-related disease using a total of 410 genomewide association studies (GWAS). While only a small number of genes are shared among all five disease categories, those found in at least three of the five major age-related disease categories are highly enriched for apoliprotein metabolism genes. We found that a more substantial number of gene ontology (GO) terms are shared among the 5 age-related disease categories and shared GO terms include canonical aging pathways identified in model organisms, such as nutrient-sensing signaling, translation, proteostasis, stress responses, and genome maintenance. Taking advantage of the vast amount of genetic data from the GWAS, our findings provide the first direct evidence that conserved pathways of aging simultaneously influence multiple age-related diseases in humans as has been demonstrated in model organisms. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Maintenance of genetic variation in human personality: testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding.

    PubMed

    Verweij, Karin J H; Yang, Jian; Lahti, Jari; Veijola, Juha; Hintsanen, Mirka; Pulkki-Råback, Laura; Heinonen, Kati; Pouta, Anneli; Pesonen, Anu-Katriina; Widen, Elisabeth; Taanila, Anja; Isohanni, Matti; Miettunen, Jouko; Palotie, Aarno; Penke, Lars; Service, Susan K; Heath, Andrew C; Montgomery, Grant W; Raitakari, Olli; Kähönen, Mika; Viikari, Jorma; Räikkönen, Katri; Eriksson, Johan G; Keltikangas-Järvinen, Liisa; Lehtimäki, Terho; Martin, Nicholas G; Järvelin, Marjo-Riitta; Visscher, Peter M; Keller, Matthew C; Zietsch, Brendan P

    2012-10-01

    Personality traits are basic dimensions of behavioral variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide single nucleotide polymorphism (SNP) data from > 8000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance.

  13. Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding

    PubMed Central

    Verweij, Karin J.H.; Yang, Jian; Lahti, Jari; Veijola, Juha; Hintsanen, Mirka; Pulkki-Råback, Laura; Heinonen, Kati; Pouta, Anneli; Pesonen, Anu-Katriina; Widen, Elisabeth; Taanila, Anja; Isohanni, Matti; Miettunen, Jouko; Palotie, Aarno; Penke, Lars; Service, Susan K.; Heath, Andrew C.; Montgomery, Grant W.; Raitakari, Olli; Kähönen, Mika; Viikari, Jorma; Räikkönen, Katri; Eriksson, Johan G; Keltikangas-Järvinen, Liisa; Lehtimäki, Terho; Martin, Nicholas G.; Järvelin, Marjo-Riitta; Visscher, Peter M.; Keller, Matthew C.; Zietsch, Brendan P.

    2012-01-01

    Personality traits are basic dimensions of behavioural variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly-growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide SNP data from >8,000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially-desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance. PMID:23025612

  14. Heritability estimates of the Big Five personality traits based on common genetic variants.

    PubMed

    Power, R A; Pluess, M

    2015-07-14

    According to twin studies, the Big Five personality traits have substantial heritable components explaining 40-60% of the variance, but identification of associated genetic variants has remained elusive. Consequently, knowledge regarding the molecular genetic architecture of personality and to what extent it is shared across the different personality traits is limited. Using genomic-relatedness-matrix residual maximum likelihood analysis (GREML), we here estimated the heritability of the Big Five personality factors (extraversion, agreeableness, conscientiousness, neuroticism and openness for experience) in a sample of 5011 European adults from 527,469 single-nucleotide polymorphisms across the genome. We tested for the heritability of each personality trait, as well as for the genetic overlap between the personality factors. We found significant and substantial heritability estimates for neuroticism (15%, s.e. = 0.08, P = 0.04) and openness (21%, s.e. = 0.08, P < 0.01), but not for extraversion, agreeableness and conscientiousness. The bivariate analyses showed that the variance explained by common variants entirely overlapped between neuroticism and openness (rG = 1.00, P < 0.001), despite low phenotypic correlation (r = - 0.09, P < 0.001), suggesting that the remaining unique heritability may be determined by rare or structural variants. As far as we are aware of, this is the first study estimating the shared and unique heritability of all Big Five personality traits using the GREML approach. Findings should be considered exploratory and suggest that detectable heritability estimates based on common variants is shared between neuroticism and openness to experiences.

  15. Common and Distinct Genetic Properties of ESCRT-II Components in Drosophila

    PubMed Central

    Herz, Hans-Martin; Woodfield, Sarah E.; Chen, Zhihong; Bolduc, Clare; Bergmann, Andreas

    2009-01-01

    Background Genetic studies in yeast have identified class E vps genes that form the ESCRT complexes required for protein sorting at the early endosome. In Drosophila, mutations of the ESCRT-II component vps25 cause endosomal defects leading to accumulation of Notch protein and increased Notch pathway activity. These endosomal and signaling defects are thought to account for several phenotypes. Depending on the developmental context, two different types of overgrowth can be detected. Tissue predominantly mutant for vps25 displays neoplastic tumor characteristics. In contrast, vps25 mutant clones in a wild-type background trigger hyperplastic overgrowth in a non-autonomous manner. In addition, vps25 mutant clones also promote apoptotic resistance in a non-autonomous manner. Principal Findings Here, we genetically characterize the remaining ESCRT-II components vps22 and vps36. Like vps25, mutants of vps22 and vps36 display endosomal defects, accumulate Notch protein and – when the tissue is predominantly mutant – show neoplastic tumor characteristics. However, despite these common phenotypes, they have distinct non-autonomous phenotypes. While vps22 mutations cause strong non-autonomous overgrowth, they do not affect apoptotic resistance. In contrast, vps36 mutations increase apoptotic resistance, but have little effect on non-autonomous proliferation. Further characterization reveals that although all ESCRT-II mutants accumulate Notch protein, only vps22 and vps25 mutations trigger Notch activity. Conclusions/Significance The ESCRT-II components vps22, vps25 and vps36 display common and distinct genetic properties. Our data redefine the role of Notch for hyperplastic and neoplastic overgrowth in these mutants. While Notch is required for hyperplastic growth, it appears to be dispensable for neoplastic transformation. PMID:19132102

  16. Genetic potential of common bean progenies selected for crude fiber content obtained through different breeding methods.

    PubMed

    Júnior, V A P; Melo, P G S; Pereira, H S; Bassinello, P Z; Melo, L C

    2015-05-29

    Gastrointestinal health is of great importance due to the increasing consumption of functional foods, especially those concern-ing diets rich in fiber content. The common bean has been valorized as a nutritious food due to its appreciable fiber content and the fact that it is consumed in many countries. The current study aimed to evaluate and compare the genetic potential of common bean progenies of the carioca group, developed through different breeding methods, for crude fiber content. The progenies originated through hybridization of two advanced strains, CNFC 7812 and CNFC 7829, up to the F7 generation using three breeding methods: bulk-population, bulk within F2 families, and single seed descent. Fifteen F8 progenies were evaluated in each method, as well as two check cultivars and both parents, us-ing a 7 x 7 simple lattice design, with experimental plots comprised of two 4-m long rows. Field trials were conducted in eleven environments encompassing four Brazilian states and three different sowing times during 2009 and 2010. Estimates of genetic parameters indicate differences among the breeding methods, which seem to be related to the different processes for sampling the advanced progenies inherent to each method, given that the trait in question is not subject to natural selection. Variability amongst progenies occurred within the three breeding methods and there was also a significant effect of environment on the progeny for all methods. Progenies developed by bulk-population attained the highest estimates of genetic parameters, had less interaction with the environment, and greater variability.

  17. Development of taxon-specific sequences of common wheat for the detection of genetically modified wheat.

    PubMed

    Iida, Mayu; Yamashiro, Satomi; Yamakawa, Hirohito; Hayakawa, Katsuyuki; Kuribara, Hideo; Kodama, Takashi; Furui, Satoshi; Akiyama, Hiroshi; Maitani, Tamio; Hino, Akihiro

    2005-08-10

    Qualitative and quantitative Polymerase Chain Reaction (PCR) systems aimed at the specific detection and quantification of common wheat DNA are described. Many countries have issued regulations to label foods that include genetically modified organisms (GMOs). PCR technology is widely recognized as a reliable and useful technique for the qualitative and quantitative detection of GMOs. Detection methods are needed to amplify a target GM gene, and the amplified results should be compared with those of the corresponding taxon-specific reference gene to obtain reliable results. This paper describes the development of a specific DNA sequence in the waxy-D1 gene for common wheat (Triticum aestivum L.) and the design of a specific primer pair and TaqMan probe on the waxy-D1 gene for PCR analysis. The primers amplified a product (Wx012) of 102 bp. It is indicated that the Wx012 DNA sequence is specific to common wheat, showing homogeneity in qualitative PCR results and very similar quantification accuracy along 19 distantly related common wheat varieties. In Southern blot and real-time PCR analyses, this sequence showed either a single or a low number of copy genes. In addition, by qualitative and quantitative PCR using wx012 primers and a wx012-T probe, the limits of detection of the common wheat genome were found to be about 15 copies, and the reproducibility was reliable. In consequence, the PCR system using wx012 primers and wx012-T probe is considered to be suitable for use as a common wheat-specific taxon-specific reference gene in DNA analyses, including GMO tests.

  18. The role of common genetic variation in educational attainment and income: evidence from the National Child Development Study

    PubMed Central

    Davies, Neil M.; Hemani, Gibran; Timpson, Nic J.; Windmeijer, Frank; Davey Smith, George

    2015-01-01

    We investigated the role of common genetic variation in educational attainment and household income. We used data from 5,458 participants of the National Child Development Study to estimate: 1) the associations of rs9320913, rs11584700 and rs4851266 and socioeconomic position and educational phenotypes; and 2) the univariate chip-heritability of each phenotype, and the genetic correlation between each phenotype and educational attainment at age 16. The three SNPs were associated with most measures of educational attainment. Common genetic variation contributed to 6 of 14 socioeconomic background phenotypes, and 17 of 29 educational phenotypes. We found evidence of genetic correlations between educational attainment at age 16 and 4 of 14 social background and 8 of 28 educational phenotypes. This suggests common genetic variation contributes both to differences in educational attainment and its relationship with other phenotypes. However, we remain cautious that cryptic population structure, assortative mating, and dynastic effects may influence these associations. PMID:26561353

  19. The role of common genetic variation in educational attainment and income: evidence from the National Child Development Study.

    PubMed

    Davies, Neil M; Hemani, Gibran; Timpson, Nic J; Windmeijer, Frank; Davey Smith, George

    2015-11-12

    We investigated the role of common genetic variation in educational attainment and household income. We used data from 5,458 participants of the National Child Development Study to estimate: 1) the associations of rs9320913, rs11584700 and rs4851266 and socioeconomic position and educational phenotypes; and 2) the univariate chip-heritability of each phenotype, and the genetic correlation between each phenotype and educational attainment at age 16. The three SNPs were associated with most measures of educational attainment. Common genetic variation contributed to 6 of 14 socioeconomic background phenotypes, and 17 of 29 educational phenotypes. We found evidence of genetic correlations between educational attainment at age 16 and 4 of 14 social background and 8 of 28 educational phenotypes. This suggests common genetic variation contributes both to differences in educational attainment and its relationship with other phenotypes. However, we remain cautious that cryptic population structure, assortative mating, and dynastic effects may influence these associations.

  20. Network-based SNP meta-analysis identifies joint and disjoint genetic features across common human diseases

    PubMed Central

    2012-01-01

    Background Genome-wide association studies (GWAS) have provided a large set of genetic loci influencing the risk for many common diseases. Association studies typically analyze one specific trait in single populations in an isolated fashion without taking into account the potential phenotypic and genetic correlation between traits. However, GWA data can be efficiently used to identify overlapping loci with analogous or contrasting effects on different diseases. Results Here, we describe a new approach to systematically prioritize and interpret available GWA data. We focus on the analysis of joint and disjoint genetic determinants across diseases. Using network analysis, we show that variant-based approaches are superior to locus-based analyses. In addition, we provide a prioritization of disease loci based on network properties and discuss the roles of hub loci across several diseases. We demonstrate that, in general, agonistic associations appear to reflect current disease classifications, and present the potential use of effect sizes in refining and revising these agonistic signals. We further identify potential branching points in disease etiologies based on antagonistic variants and describe plausible small-scale models of the underlying molecular switches. Conclusions The observation that a surprisingly high fraction (>15%) of the SNPs considered in our study are associated both agonistically and antagonistically with related as well as unrelated disorders indicates that the molecular mechanisms influencing causes and progress of human diseases are in part interrelated. Genetic overlaps between two diseases also suggest the importance of the affected entities in the specific pathogenic pathways and should be investigated further. PMID:22988944

  1. Participation in Genetic Research: Amazon's Mechanical Turk Workforce in the United States and India.

    PubMed

    Groth, Susan W; Dozier, Ann; Demment, Margaret; Li, Dongmei; Fernandez, I Diana; Chang, Jack; Dye, Timothy

    2016-01-01

    Genomic research has innumerable benefits. However, if people are unwilling to participate in genomic research, application of knowledge will be limited. This study examined the likelihood of respondents from a high- and a low- to middle-income country to participate in genetic research. Cross-sectional data were collected using Amazon's Mechanical Turk workforce to ascertain attitudes toward participation in genetic research. Registered country of residence was either the US (n = 505) or India (n = 505). Multiple logistic regression models were used to assess adjusted effects of demographic characteristics, health, social status, beliefs and concerns on 4 genetic research outcomes. Participants from India who believed chance and powerful others influenced their health were more likely to participate in genetic research (OR = 1.0, 95% CI 1.0-1.1) and to agree with sharing of DNA data (OR = 1.1, 95% CI 1.1-1.2). US participants were more likely to be concerned about protection of family history, which they indicated would affect participation (OR = 3.6, 95% CI 2.1-6.0). Commonalities for the likelihood of participation were beliefs that genetic research could help find new treatments (India OR = 2.3, 95% CI 1.0-5.4; US OR = 4.7, 95% CI 2.0-11.2) and descendants would benefit (India OR = 2.6, 95% CI 1.2-5.5; US OR = 3.0, 95% CI 1.3-7.1). Concurrence of beliefs on benefits and concerns about genetic research suggest they may be common across countries. Consideration of commonalities may be important to increase global participation in genetic research. © 2016 S. Karger AG, Basel.

  2. Prediction of breast cancer risk based on common genetic variants in women of East Asian ancestry.

    PubMed

    Wen, Wanqing; Shu, Xiao-Ou; Guo, Xingyi; Cai, Qiuyin; Long, Jirong; Bolla, Manjeet K; Michailidou, Kyriaki; Dennis, Joe; Wang, Qin; Gao, Yu-Tang; Zheng, Ying; Dunning, Alison M; García-Closas, Montserrat; Brennan, Paul; Chen, Shou-Tung; Choi, Ji-Yeob; Hartman, Mikael; Ito, Hidemi; Lophatananon, Artitaya; Matsuo, Keitaro; Miao, Hui; Muir, Kenneth; Sangrajrang, Suleeporn; Shen, Chen-Yang; Teo, Soo H; Tseng, Chiu-Chen; Wu, Anna H; Yip, Cheng Har; Simard, Jacques; Pharoah, Paul D P; Hall, Per; Kang, Daehee; Xiang, Yongbing; Easton, Douglas F; Zheng, Wei

    2016-12-08

    Approximately 100 common breast cancer susceptibility alleles have been identified in genome-wide association studies (GWAS). The utility of these variants in breast cancer risk prediction models has not been evaluated adequately in women of Asian ancestry. We evaluated 88 breast cancer risk variants that were identified previously by GWAS in 11,760 cases and 11,612 controls of Asian ancestry. SNPs confirmed to be associated with breast cancer risk in Asian women were used to construct a polygenic risk score (PRS). The relative and absolute risks of breast cancer by the PRS percentiles were estimated based on the PRS distribution, and were used to stratify women into different levels of breast cancer risk. We confirmed significant associations with breast cancer risk for SNPs in 44 of the 78 previously reported loci at P < 0.05. Compared with women in the middle quintile of the PRS, women in the top 1% group had a 2.70-fold elevated risk of breast cancer (95% CI: 2.15-3.40). The risk prediction model with the PRS had an area under the receiver operating characteristic curve of 0.606. The lifetime risk of breast cancer for Shanghai Chinese women in the lowest and highest 1% of the PRS was 1.35% and 10.06%, respectively. Approximately one-half of GWAS-identified breast cancer risk variants can be directly replicated in East Asian women. Collectively, common genetic variants are important predictors for breast cancer risk. Using common genetic variants for breast cancer could help identify women at high risk of breast cancer.

  3. Detecting Genetic Association of Common Human Facial Morphological Variation Using High Density 3D Image Registration

    PubMed Central

    Hu, Sile; Zhou, Hang; Guo, Jing; Jin, Li; Tang, Kun

    2013-01-01

    Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation. PMID:24339768

  4. Common Variant in GRN Is a Genetic Risk Factor for Hippocampal Sclerosis in the Elderly

    PubMed Central

    Dickson, Dennis W.; Baker, Matthew; Rademakers, Rosa

    2010-01-01

    Background Hippocampal sclerosis (HpScl) is common in elderly subjects with dementia, either alone or accompanied by other pathologic processes. It is also found in >70% of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP). TDP-43 inclusions are detected in >20% of Alzheimer disease (AD) and >70% of HpScl cases. The most common cause of FTLD-TDP is mutation in the progranulin gene (GRN). Recently, a common genetic variant in the 3′ untranslated region (3′UTR) of GRN (rs5848; c.*78C>T) located in a microRNA binding site regulated progranulin expression, and the T-allele was increased in FTLD-TDP compared to controls. Objective The goal of this study was to determine if the 3′UTR variant in GRN was associated with TDP-43 immunoreactivity in AD with and without HpScl. Methods 644 cases of pathologically confirmed AD, including 57 with HpScl, were screened for TDP-43 immunoreactivity and were genotyped at the GRN 3′UTR single-nucleotide polymorphism rs5848 using previously published methods. Results There was a trend (p = 0.06) for TDP-43 immunoreactivity, but a very significant (p = 0.005) association of HpScl with the variant, with 72% of AD with HpScl carrying a T-allele, compared to 51% of AD without HpScl carrying a T-allele. Conclusion The results suggest that a genetic variant in GRN leading to decreased levels of progranulin may be a risk factor for HpScl in AD, while its role in TDP-43 immunoreactivity in AD remains less certain. PMID:20197700

  5. Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly.

    PubMed

    Dickson, Dennis W; Baker, Matthew; Rademakers, Rosa

    2010-01-01

    Hippocampal sclerosis (HpScl) is common in elderly subjects with dementia, either alone or accompanied by other pathologic processes. It is also found in >70% of frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP). TDP-43 inclusions are detected in >20% of Alzheimer disease (AD) and >70% of HpScl cases. The most common cause of FTLD-TDP is mutation in the progranulin gene (GRN). Recently, a common genetic variant in the 3' untranslated region (3'UTR) of GRN (rs5848; c.*78C>T) located in a microRNA binding site regulated progranulin expression, and the T-allele was increased in FTLD-TDP compared to controls. The goal of this study was to determine if the 3'UTR variant in GRN was associated with TDP-43 immunoreactivity in AD with and without HpScl. 644 cases of pathologically confirmed AD, including 57 with HpScl, were screened for TDP-43 immunoreactivity and were genotyped at the GRN 3'UTR single-nucleotide polymorphism rs5848 using previously published methods. There was a trend (p = 0.06) for TDP-43 immunoreactivity, but a very significant (p = 0.005) association of HpScl with the variant, with 72% of AD with HpScl carrying a T-allele, compared to 51% of AD without HpScl carrying a T-allele. The results suggest that a genetic variant in GRN leading to decreased levels of progranulin may be a risk factor for HpScl in AD, while its role in TDP-43 immunoreactivity in AD remains less certain. Copyright 2010 S. Karger AG, Basel.

  6. Genetic diversity and selection of common bean lines based on technological quality and biofortification.

    PubMed

    Steckling, S de M; Ribeiro, N D; Arns, F D; Mezzomo, H C; Possobom, M T D F

    2017-03-22

    The development of common bean cultivars with high technological quality that are biofortified with minerals, is required to meet the demand for food with health benefits. The objectives of this study were to evaluate whether common bean genotypes differ in terms of technological and mineral biofortification traits, to study the correlations between these characters, to analyze the genetic dissimilarity of common bean genotypes, and to select superior lines for these traits. For this, 14 common bean genotypes were evaluated in experiments conducted in three growing seasons in the Rio Grande do Sul State, Brazil. A significant genotype x environment interaction was observed for technological quality (mass of 100 grains and cooking time) and biofortification traits (concentration of potassium, phosphorus, calcium, iron, zinc, and copper). Positive correlation estimates were obtained between phosphorus and potassium (r = 0.575), iron and zinc (r = 0.641), copper and iron (r = 0.729), and copper and phosphorus (r = 0.533). In the main component cluster analysis, four groups of genotypes were formed. The following lines are recommended for selection: LP 11-363 for fast-cooking, CNFC 11 948 for high iron concentration, and LEC 03-14 for high potassium, phosphorus, and calcium concentrations in grains. Common bean lines with high phosphorus and iron concentrations in grains can be indirectly selected based on higher potassium, copper, and zinc concentrations. Controlled crossings between LP 11-363 x CNFC 11 948 and LP 11-363 x LEC 03-14 are recommended to obtain segregating lines that are fast-cooking and biofortified with minerals.

  7. NTRK3 Is a Potential Tumor Suppressor Gene Commonly Inactivated by Epigenetic Mechanisms in Colorectal Cancer

    PubMed Central

    Luo, Yanxin; Kaz, Andrew M.; Kanngurn, Samornmas; Welsch, Piri; Morris, Shelli M.; Wang, Jianping; Lutterbaugh, James D.; Markowitz, Sanford D.; Grady, William M.

    2013-01-01

    NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3. PMID:23874207

  8. Defective axonal transport: A common pathological mechanism in inherited and acquired peripheral neuropathies.

    PubMed

    Prior, Robert; Van Helleputte, Lawrence; Benoy, Veronick; Van Den Bosch, Ludo

    2017-09-01

    Peripheral neuropathies are characterized by a progressive and length-dependent loss of peripheral nerve function. This can be caused either by genetic defects, classified as 'inherited peripheral neuropathies', or they can be acquired throughout life. In that case, the disease is caused by various insults such as toxins and mechanical injuries, or it can arise secondary to medical conditions such as metabolic disorders, nutritional deficiencies, inflammation and infections. Peripheral neuropathies are not only very heterogeneous in etiology, but also in their pathology and clinical presentation. A commonality amongst all peripheral neuropathies is that no pharmacological disease-modifying therapies currently exist that can reverse or cure these diseases. Moreover, the length-dependent nature of the disease, affecting the longest nerves at the most distal sites, suggests an important role for disturbances in axonal transport, directly or indirectly linked to alterations in the cytoskeleton. In this review, we will give a systematic overview of the main arguments for the involvement of axonal transport defects in both inherited and acquired peripheral neuropathies. In addition, we will discuss the possible therapeutic strategies that can potentially counteract these disturbances, as this particular pathway might be a promising strategy to find a cure. Since counteracting axonal transport defects could limit the axonal degeneration and could be a driving force for neuronal regeneration, the benefits might be twofold. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective.

    PubMed

    Albuquerque, David; Stice, Eric; Rodríguez-López, Raquel; Manco, Licíno; Nóbrega, Clévio

    2015-08-01

    It is well-known that obesity is a complex multifactorial and heterogeneous condition with an important genetic component. Recently, major advances in obesity research emerged concerning the molecular mechanisms contributing to the obese condition. This review outlines several studies and data concerning the genetics and other important factors in the susceptibility risk to develop obesity. Based in the genetic etiology three main categories of obesity are considered: monogenic, syndromic, and common obesity. For the monogenic forms of obesity, the gene causing the phenotype is clearly identified, whereas for the common obesity the loci architecture underlying the phenotype is still being characterized. Given that, in this review we focus mainly in this obesity form, reviewing loci found until now by genome-wide association studies related with the susceptibility risk to develop obesity. Moreover, we also detail the obesity-related loci identified in children and in different ethnic groups, trying to highlight the complexity of the genetics underlying the common obese phenotype. Importantly, we also focus in the evolutionary hypotheses that have been proposed trying to explain how natural selection favored the spread of genes that increase the risk for an obese phenotype and how this predisposition to obesity evolved. Other factors are important in the obesity condition, and thus, we also discuss the epigenetic mechanisms involved in the susceptibility and development of obesity. Covering all these topics we expect to provide a complete and recent perspective about the underlying mechanisms involved in the development and origin of obesity. Only with a full understanding of the factors and mechanisms contributing to obesity, it will be possible to provide and allow the development of new therapeutic approaches to this condition.

  10. Common Genetic Variants in FOXP2 Are Not Associated with Individual Differences in Language Development.

    PubMed

    Mueller, Kathryn L; Murray, Jeffrey C; Michaelson, Jacob J; Christiansen, Morten H; Reilly, Sheena; Tomblin, J Bruce

    2016-01-01

    Much of our current knowledge regarding the association of FOXP2 with speech and language development comes from singleton and small family studies where a small number of rare variants have been identified. However, neither genome-wide nor gene-specific studies have provided evidence that common polymorphisms in the gene contribute to individual differences in language development in the general population. One explanation for this inconsistency is that previous studies have been limited to relatively small samples of individuals with low language abilities, using low density gene coverage. The current study examined the association between common variants in FOXP2 and a quantitative measure of language ability in a population-based cohort of European decent (n = 812). No significant associations were found for a panel of 13 SNPs that covered the coding region of FOXP2 and extended into the promoter region. Power analyses indicated we should have been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80% power. This suggests that, if a common variant associated with language ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that while genetic variants in FOXP2 may be significant for rare forms of language impairment, they do not contribute appreciably to individual variation in the normal range as found in the general population.

  11. Common Genetic Variants in FOXP2 Are Not Associated with Individual Differences in Language Development

    PubMed Central

    Mueller, Kathryn L.; Murray, Jeffrey C.; Michaelson, Jacob J.; Christiansen, Morten H.; Reilly, Sheena; Tomblin, J. Bruce

    2016-01-01

    Much of our current knowledge regarding the association of FOXP2 with speech and language development comes from singleton and small family studies where a small number of rare variants have been identified. However, neither genome-wide nor gene-specific studies have provided evidence that common polymorphisms in the gene contribute to individual differences in language development in the general population. One explanation for this inconsistency is that previous studies have been limited to relatively small samples of individuals with low language abilities, using low density gene coverage. The current study examined the association between common variants in FOXP2 and a quantitative measure of language ability in a population-based cohort of European decent (n = 812). No significant associations were found for a panel of 13 SNPs that covered the coding region of FOXP2 and extended into the promoter region. Power analyses indicated we should have been able to detect a QTL variance of 0.02 for an associated allele with MAF of 0.2 or greater with 80% power. This suggests that, if a common variant associated with language ability in this gene does exist, it is likely of small effect. Our findings lead us to conclude that while genetic variants in FOXP2 may be significant for rare forms of language impairment, they do not contribute appreciably to individual variation in the normal range as found in the general population. PMID:27064276

  12. Disentangling genetic vs. environmental causes of sex determination in the common frog, Rana temporaria.

    PubMed

    Matsuba, Chikako; Miura, Ikuo; Merilä, Juha

    2008-01-08

    Understanding of sex ratio dynamics in a given species requires understanding its sex determination system, as well as access for reliable tools for sex identification at different life stages. As in the case of many other amphibians, the common frogs (Rana temporaria) do not have well differentiated sex chromosomes, and an identification of individuals' genetic sex may be complicated by sex reversals. Here, we report results of studies shedding light on the sex determination system and sex ratio variation in this species. A microsatellite locus RtSB03 was found to be sex-linked in four geographically disparate populations, suggesting male heterogamy in common frogs. However, in three other populations examined, no or little evidence for sex-linkage was detected suggesting either ongoing/recent recombination events, and/or frequent sex-reversals. Comparison of inheritance patterns of alleles in RtSB03 and phenotypic sex within sibships revealed a mixed evidence for sex-linkage: all individuals with male phenotype carried a male specific allele in one population, whereas results were more mixed in another population. These results make sense only if we assume that the RtSB03 locus is linked to male sex determination factor in some, but not in all common frog populations, and if phenotypic sex-reversals - for which there is earlier evidence from this species - are frequently occurring.

  13. Disentangling genetic vs. environmental causes of sex determination in the common frog, Rana temporaria

    PubMed Central

    Matsuba, Chikako; Miura, Ikuo; Merilä, Juha

    2008-01-01

    Background Understanding of sex ratio dynamics in a given species requires understanding its sex determination system, as well as access for reliable tools for sex identification at different life stages. As in the case of many other amphibians, the common frogs (Rana temporaria) do not have well differentiated sex chromosomes, and an identification of individuals' genetic sex may be complicated by sex reversals. Here, we report results of studies shedding light on the sex determination system and sex ratio variation in this species. Results A microsatellite locus RtSB03 was found to be sex-linked in four geographically disparate populations, suggesting male heterogamy in common frogs. However, in three other populations examined, no or little evidence for sex-linkage was detected suggesting either ongoing/recent recombination events, and/or frequent sex-reversals. Comparison of inheritance patterns of alleles in RtSB03 and phenotypic sex within sibships revealed a mixed evidence for sex-linkage: all individuals with male phenotype carried a male specific allele in one population, whereas results were more mixed in another population. Conclusion These results make sense only if we assume that the RtSB03 locus is linked to male sex determination factor in some, but not in all common frog populations, and if phenotypic sex-reversals – for which there is earlier evidence from this species – are frequently occurring. PMID:18182101

  14. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario.

    PubMed

    Ali, Muhammad Umar; Rahman, Muhammad Saif Ur; Cao, Jiang; Yuan, Ping Xi

    2017-08-01

    Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.

  15. The Impact of Ancestry and Common Genetic Variants on QT Interval in African Americans

    PubMed Central

    Smith, J. Gustav; Avery, Christy L.; Evans, Daniel S.; Nalls, Michael A.; Meng, Yan A.; Smith, Erin N.; Palmer, Cameron; Tanaka, Toshiko; Mehra, Reena; Butler, Anne M.; Young, Taylor; Buxbaum, Sarah G.; Kerr, Kathleen F.; Berenson, Gerald S.; Schnabel, Renate B.; Li, Guo; Ellinor, Patrick T.; Magnani, Jared W.; Chen, Wei; Bis, Joshua C.; Curb, J. David; Hsueh, Wen-Chi; Rotter, Jerome I.; Liu, Yongmei; Newman, Anne B.; Limacher, Marian C.; North, Kari E.; Reiner, Alexander P.; Quibrera, P. Miguel; Schork, Nicholas J.; Singleton, Andrew B.; Psaty, Bruce M.; Soliman, Elsayed Z.; Solomon, Allen J.; Srinivasan, Sathanur R.; Alonso, Alvaro; Wallace, Robert; Redline, Susan; Zhang, Zhu-Ming; Post, Wendy S.; Zonderman, Alan B.; Taylor, Herman A.; Murray, Sarah S.; Ferrucci, Luigi; Arking, Dan E.; Evans, Michele K.; Fox, Ervin R.; Sotoodehnia, Nona; Heckbert, Susan R.; Whitsel, Eric A.; Newton-Cheh, Christopher

    2013-01-01

    Background Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death (SCD) and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval. Methods and Results First, individual estimates of African and European ancestry were inferred from genome-wide single nucleotide polymorphism (SNP) data in seven population-based cohorts of African Americans (n=12 097) and regressed on measured QT interval from electrocardiograms. Second, imputation was performed for 2.8 million SNPs and a genome-wide association (GWA) study of QT interval performed in ten cohorts (n=13 105). There was no evidence of association between genetic ancestry and QT interval (p=0.94). Genome-wide significant associations (p<2.5×10−8) were identified with SNPs at two loci, upstream of the genes NOS1AP (rs12143842, p=2×10−15) and ATP1B1 (rs1320976, p=2×10−10). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low p-values (p<10−5) were observed for SNPs at several other loci previously identified in GWA studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF and PLN. Conclusions We observed no difference in duration of cardiac repolarization with global genetic indices of African ancestry. In addition, our GWA study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include African Americans. PMID:23166209

  16. Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study

    PubMed Central

    Zhang, Chenan; Doherty, Jennifer A.; Burgess, Stephen; Hung, Rayjean J.; Lindström, Sara; Kraft, Peter; Gong, Jian; Amos, Christopher I.; Sellers, Thomas A.; Monteiro, Alvaro N.A.; Chenevix-Trench, Georgia; Bickeböller, Heike; Risch, Angela; Brennan, Paul; Mckay, James D.; Houlston, Richard S.; Landi, Maria Teresa; Timofeeva, Maria N.; Wang, Yufei; Heinrich, Joachim; Kote-Jarai, Zsofia; Eeles, Rosalind A.; Muir, Ken; Wiklund, Fredrik; Grönberg, Henrik; Berndt, Sonja I.; Chanock, Stephen J.; Schumacher, Fredrick; Haiman, Christopher A.; Henderson, Brian E.; Amin Al Olama, Ali; Andrulis, Irene L.; Hopper, John L.; Chang-Claude, Jenny; John, Esther M.; Malone, Kathleen E.; Gammon, Marilie D.; Ursin, Giske; Whittemore, Alice S.; Hunter, David J.; Gruber, Stephen B.; Knight, Julia A.; Hou, Lifang; Le Marchand, Loic; Newcomb, Polly A.; Hudson, Thomas J.; Chan, Andrew T.; Li, Li; Woods, Michael O.; Ahsan, Habibul; Pierce, Brandon L.

    2015-01-01

    Epidemiological studies have reported inconsistent associations between telomere length (TL) and risk for various cancers. These inconsistencies are likely attributable, in part, to biases that arise due to post-diagnostic and post-treatment TL measurement. To avoid such biases, we used a Mendelian randomization approach and estimated associations between nine TL-associated SNPs and risk for five common cancer types (breast, lung, colorectal, ovarian and prostate cancer, including subtypes) using data on 51 725 cases and 62 035 controls. We then used an inverse-variance weighted average of the SNP-specific associations to estimate the association between a genetic score representing long TL and cancer risk. The long TL genetic score was significantly associated with increased risk of lung adenocarcinoma (P = 6.3 × 10−15), even after exclusion of a SNP residing in a known lung cancer susceptibility region (TERT-CLPTM1L) P = 6.6 × 10−6). Under Mendelian randomization assumptions, the association estimate [odds ratio (OR) = 2.78] is interpreted as the OR for lung adenocarcinoma corresponding to a 1000 bp increase in TL. The weighted TL SNP score was not associated with other cancer types or subtypes. Our finding that genetic determinants of long TL increase lung adenocarcinoma risk avoids issues with reverse causality and residual confounding that arise in observational studies of TL and disease risk. Under Mendelian randomization assumptions, our finding suggests that longer TL increases lung adenocarcinoma risk. However, caution regarding this causal interpretation is warranted in light of the potential issue of pleiotropy, and a more general interpretation is that SNPs influencing telomere biology are also implicated in lung adenocarcinoma risk. PMID:26138067

  17. Impact of ancestry and common genetic variants on QT interval in African Americans.

    PubMed

    Smith, J Gustav; Avery, Christy L; Evans, Daniel S; Nalls, Michael A; Meng, Yan A; Smith, Erin N; Palmer, Cameron; Tanaka, Toshiko; Mehra, Reena; Butler, Anne M; Young, Taylor; Buxbaum, Sarah G; Kerr, Kathleen F; Berenson, Gerald S; Schnabel, Renate B; Li, Guo; Ellinor, Patrick T; Magnani, Jared W; Chen, Wei; Bis, Joshua C; Curb, J David; Hsueh, Wen-Chi; Rotter, Jerome I; Liu, Yongmei; Newman, Anne B; Limacher, Marian C; North, Kari E; Reiner, Alexander P; Quibrera, P Miguel; Schork, Nicholas J; Singleton, Andrew B; Psaty, Bruce M; Soliman, Elsayed Z; Solomon, Allen J; Srinivasan, Sathanur R; Alonso, Alvaro; Wallace, Robert; Redline, Susan; Zhang, Zhu-Ming; Post, Wendy S; Zonderman, Alan B; Taylor, Herman A; Murray, Sarah S; Ferrucci, Luigi; Arking, Dan E; Evans, Michele K; Fox, Ervin R; Sotoodehnia, Nona; Heckbert, Susan R; Whitsel, Eric A; Newton-Cheh, Christopher

    2012-12-01

    Ethnic differences in cardiac arrhythmia incidence have been reported, with a particularly high incidence of sudden cardiac death and low incidence of atrial fibrillation in individuals of African ancestry. We tested the hypotheses that African ancestry and common genetic variants are associated with prolonged duration of cardiac repolarization, a central pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT interval. First, individual estimates of African and European ancestry were inferred from genome-wide single-nucleotide polymorphism (SNP) data in 7 population-based cohorts of African Americans (n=12,097) and regressed on measured QT interval from ECGs. Second, imputation was performed for 2.8 million SNPs, and a genome-wide association study of QT interval was performed in 10 cohorts (n=13,105). There was no evidence of association between genetic ancestry and QT interval (P=0.94). Genome-wide significant associations (P<2.5 × 10(-8)) were identified with SNPs at 2 loci, upstream of the genes NOS1AP (rs12143842, P=2 × 10(-15)) and ATP1B1 (rs1320976, P=2 × 10(-10)). The most significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT interval in individuals of European ancestry. Low probability values (P<10(-5)) were observed for SNPs at several other loci previously identified in genome-wide association studies in individuals of European ancestry, including KCNQ1, KCNH2, LITAF, and PLN. We observed no difference in duration of cardiac repolarization with global genetic indices of African American ancestry. In addition, our genome-wide association study extends the association of polymorphisms at several loci associated with repolarization in individuals of European ancestry to include individuals of African ancestry.

  18. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study

    PubMed Central

    Gerson, Elizabeth A.; Kelsey, Rick G.; St Clair, J. Bradley

    2009-01-01

    Background and Aims Previous measurements of conifer alkaloids have revealed significant variation attributable to many sources, environmental and genetic. The present study takes a complementary and intensive, common garden approach to examine genetic variation in Pinus ponderosa var. ponderosa alkaloid production. Additionally, this study investigates the potential trade-off between seedling growth and alkaloid production, and associations between topographic/climatic variables and alkaloid production. Methods Piperidine alkaloids were quantified in foliage of 501 nursery seedlings grown from seed sources in west-central Washington, Oregon and California, roughly covering the western half of the native range of ponderosa pine. A nested mixed model was used to test differences among broad-scale regions and among families within regions. Alkaloid concentrations were regressed on seedling growth measurements to test metabolite allocation theory. Likewise, climate characteristics at the seed sources were also considered as explanatory variables. Key Results Quantitative variation from seedling to seedling was high, and regional variation exceeded variation among families. Regions along the western margin of the species range exhibited the highest alkaloid concentrations, while those further east had relatively low alkaloid levels. Qualitative variation in alkaloid profiles was low. All measures of seedling growth related negatively to alkaloid concentrations on a natural log scale; however, coefficients of determination were low. At best, annual height increment explained 19·4 % of the variation in ln(total alkaloids). Among the climate variables, temperature range showed a negative, linear association that explained 41·8 % of the variation. Conclusions Given the wide geographic scope of the seed sources and the uniformity of resources in the seedlings' environment, observed differences in alkaloid concentrations are evidence for genetic regulation of alkaloid

  19. Genome sequence and genetic diversity of the common carp, Cyprinus carpio.

    PubMed

    Xu, Peng; Zhang, Xiaofeng; Wang, Xumin; Li, Jiongtang; Liu, Guiming; Kuang, Youyi; Xu, Jian; Zheng, Xianhu; Ren, Lufeng; Wang, Guoliang; Zhang, Yan; Huo, Linhe; Zhao, Zixia; Cao, Dingchen; Lu, Cuiyun; Li, Chao; Zhou, Yi; Liu, Zhanjiang; Fan, Zhonghua; Shan, Guangle; Li, Xingang; Wu, Shuangxiu; Song, Lipu; Hou, Guangyuan; Jiang, Yanliang; Jeney, Zsigmond; Yu, Dan; Wang, Li; Shao, Changjun; Song, Lai; Sun, Jing; Ji, Peifeng; Wang, Jian; Li, Qiang; Xu, Liming; Sun, Fanyue; Feng, Jianxin; Wang, Chenghui; Wang, Shaolin; Wang, Baosen; Li, Yan; Zhu, Yaping; Xue, Wei; Zhao, Lan; Wang, Jintu; Gu, Ying; Lv, Weihua; Wu, Kejing; Xiao, Jingfa; Wu, Jiayan; Zhang, Zhang; Yu, Jun; Sun, Xiaowen

    2014-11-01

    The common carp, Cyprinus carpio, is one of the most important cyprinid species and globally accounts for 10% of freshwater aquaculture production. Here we present a draft genome of domesticated C. carpio (strain Songpu), whose current assembly contains 52,610 protein-coding genes and approximately 92.3% coverage of its paleotetraploidized genome (2n = 100). The latest round of whole-genome duplication has been estimated to have occurred approximately 8.2 million years ago. Genome resequencing of 33 representative individuals from worldwide populations demonstrates a single origin for C. carpio in 2 subspecies (C. carpio Haematopterus and C. carpio carpio). Integrative genomic and transcriptomic analyses were used to identify loci potentially associated with traits including scaling patterns and skin color. In combination with the high-resolution genetic map, the draft genome paves the way for better molecular studies and improved genome-assisted breeding of C. carpio and other closely related species.

  20. Genetic characterization of Common Eiders breeding in the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; McCracken, Kevin G.

    2007-01-01

    We assessed population genetic subdivision among four colonies of Common Eiders (Somateria mollissima v-nigrum) breeding in the Yukon-Kuskokwim Delta (YKD), Alaska, using microsatellite genotypes and DNA sequences with differing modes of inheritance. Significant, albeit low, levels of genetic differentiation were observed between mainland populations and Kigigak Island for nuclear intron lamin A and mitochondrial DNA (mtDNA) control region. Intercolony variation in haplotypic frequencies also was observed at mtDNA. Positive growth signatures assayed from microsatellites, nuclear introns, and mtDNA indicate recent colonization of the YKD, and may explain the low levels of structuring observed. Gene flow estimates based on microsatellites, nuclear introns, and mtDNA suggest asymmetrical gene flow between mainland colonies and Kigigak Island, with more individuals on average dispersing from mainland populations to Kigigak Island than vice versa. The directionality of gene flow observed may be explained by the colonization of the YKD from northern glacial refugia or by YKD metapopulation dynamics.

  1. Biology and genetics of oculocutaneous albinism and vitiligo - common pigmentation disorders in southern Africa.

    PubMed

    Manga, Prashiela; Kerr, Robyn; Ramsay, Michèle; Kromberg, Jennifer G R

    2013-07-29

    Pigmentation disorders span the genetic spectrum from single-gene autosomal recessive disorders such as oculocutaneous albinism (OCA), the autosomal dominant disorder piebaldism to X-linked ocular albinism and multifactorial vitiligo. OCA connotes a group of disorders that result in hypopigmented skin due to decreased melanin production in melanocytes and loss of visual acuity. There are four non-syndromic forms, OCA1-4, which are classified based on the gene that is mutated (tyrosinase, OCA2, tyrosinase-related protein 1 and SLC45A2, respectively). Despite the fact that multiple genes account for the various forms of OCA, the phenotypes of all four forms result from disruption in the maturation and trafficking of the enzyme tyrosinase. OCA2 is the most prevalent autosomal recessive disorder among southern African blacks, affecting 1/3 900 individuals; while OCA3, although rare, is most prevalent in southern Africa. Another common pigmentation disorder in southern Africa is vitiligo, which affects 1 - 2% of people worldwide. Vitiligo is a complex, acquired disorder in which melanocytes are destroyed due to an autoimmune response. The aetiology underlying this disorder is poorly understood, although recent genetic association studies have begun to shed light on the contributing factors. Pigmentation disorders have significant psychosocial implications and co-morbidities, yet therapies are still lacking. Recent progress in our understanding of the pathobiology of both albinism and vitiligo may herald novel treatment strategies for these disorders. 

  2. Web-Based, Participant-Driven Studies Yield Novel Genetic Associations for Common Traits

    PubMed Central

    Eriksson, Nicholas; Macpherson, J. Michael; Tung, Joyce Y.; Hon, Lawrence S.; Naughton, Brian; Saxonov, Serge; Avey, Linda; Wojcicki, Anne; Pe'er, Itsik; Mountain, Joanna

    2010-01-01

    Despite the recent rapid growth in genome-wide data, much of human variation remains entirely unexplained. A significant challenge in the pursuit of the genetic basis for variation in common human traits is the efficient, coordinated collection of genotype and phenotype data. We have developed a novel research framework that facilitates the parallel study of a wide assortment of traits within a single cohort. The approach takes advantage of the interactivity of the Web both to gather data and to present genetic information to research participants, while taking care to correct for the population structure inherent to this study design. Here we report initial results from a participant-driven study of 22 traits. Replications of associations (in the genes OCA2, HERC2, SLC45A2, SLC24A4, IRF4, TYR, TYRP1, ASIP, and MC1R) for hair color, eye color, and freckling validate the Web-based, self-reporting paradigm. The identification of novel associations for hair morphology (rs17646946, near TCHH; rs7349332, near WNT10A; and rs1556547, near OFCC1), freckling (rs2153271, in BNC2), the ability to smell the methanethiol produced after eating asparagus (rs4481887, near OR2M7), and photic sneeze reflex (rs10427255, near ZEB2, and rs11856995, near NR2F2) illustrates the power of the approach. PMID:20585627

  3. GOOD GIFTS FOR THE COMMON GOOD: Blood and Bioethics in the Market of Genetic Research

    PubMed Central

    REDDY, DEEPA S.

    2008-01-01

    This article is based on ethnographic fieldwork conducted with the Indian community in Houston, as part of a NIH–NHGRI-sponsored ethics study and sample collection initiative entitled “Indian and Hindu Perspectives on Genetic Variation Research.” At the heart of this research is one central exchange—blood samples donated for genetic research—that draws both the Indian community and a community of researchers into an encounter with bioethics. I consider the meanings that come to be associated with blood donation as it passes through various hands, agendas, and associated ethical filters on its way to the lab bench: how and why blood is solicited, how the giving and taking of blood is rationalized, how blood as material substance is alienated, processed, documented, and made available for the promised ends of basic science research. Examining corporeal substances and asking what sorts of gifts and problems these represent, I argue, sheds some light on two imbricated tensions expressed by a community of Indians, on the one hand, and of geneticists and basic science researchers, on the other hand: that gifts ought to be free (but are not), and that science ought to be pure (but is not). In this article, I explore how experiences of bioethics are variously shaped by the histories and habits of Indic giving, prior sample collection controversies, commitments to “good science” and the common “good of humanity,” and negotiations of the sites where research findings circulate. PMID:18458755

  4. Web-based, participant-driven studies yield novel genetic associations for common traits.

    PubMed

    Eriksson, Nicholas; Macpherson, J Michael; Tung, Joyce Y; Hon, Lawrence S; Naughton, Brian; Saxonov, Serge; Avey, Linda; Wojcicki, Anne; Pe'er, Itsik; Mountain, Joanna

    2010-06-24

    Despite the recent rapid growth in genome-wide data, much of human variation remains entirely unexplained. A significant challenge in the pursuit of the genetic basis for variation in common human traits is the efficient, coordinated collection of genotype and phenotype data. We have developed a novel research framework that facilitates the parallel study of a wide assortment of traits within a single cohort. The approach takes advantage of the interactivity of the Web both to gather data and to present genetic information to research participants, while taking care to correct for the population structure inherent to this study design. Here we report initial results from a participant-driven study of 22 traits. Replications of associations (in the genes OCA2, HERC2, SLC45A2, SLC24A4, IRF4, TYR, TYRP1, ASIP, and MC1R) for hair color, eye color, and freckling validate the Web-based, self-reporting paradigm. The identification of novel associations for hair morphology (rs17646946, near TCHH; rs7349332, near WNT10A; and rs1556547, near OFCC1), freckling (rs2153271, in BNC2), the ability to smell the methanethiol produced after eating asparagus (rs4481887, near OR2M7), and photic sneeze reflex (rs10427255, near ZEB2, and rs11856995, near NR2F2) illustrates the power of the approach.

  5. Genetic Diversity and Symbiotic Efficiency of Indigenous Common Bean Rhizobia in Croatia

    PubMed Central

    Pohajda, Ines; Babić, Katarina Huić; Rajnović, Ivana; Kajić, Sanja

    2016-01-01

    Summary Nodule bacteria (rhizobia) in symbiotic associations with legumes enable considerable entries of biologically fixed nitrogen into soil. Efforts are therefore made to intensify the natural process of symbiotic nitrogen fixation by legume inoculation. Studies of field populations of rhizobia open up the possibility to preserve and probably exploit some indigenous strains with hidden symbiotic or ecological potentials. The main aim of the present study is to determine genetic diversity of common bean rhizobia isolated from different field sites in central Croatia and to evaluate their symbiotic efficiency and compatibility with host plants. The isolation procedure revealed that most soil samples contained no indigenous common bean rhizobia. The results indicate that the cropping history had a significant impact on the presence of indigenous strains. Although all isolates were found to belong to species Rhizobium leguminosarum, significant genetic diversity at the strain level was determined. Application of both random amplification of polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus–polymerase chain reaction (ERIC- -PCR) methods resulted in similar grouping of strains. Symbiotic efficiency of indigenous rhizobia as well as their compatibility with two commonly grown bean varieties were tested in field experiments. Application of indigenous rhizobial strains as inoculants resulted in significantly different values of nodulation, seed yield as well as plant nitrogen and seed protein contents. The most abundant nodulation and the highest plant nitrogen and protein contents were determined in plants inoculated with R. leguminosarum strains S17/2 and S21/6. Although, in general, the inoculation had a positive impact on seed yield, differences depending on the applied strain were not determined. The overall results show the high degree of symbiotic efficiency of the specific indigenous strain S21/6. These results indicate different

  6. Genetic Diversity and Symbiotic Efficiency of Indigenous Common Bean Rhizobia in Croatia.

    PubMed

    Pohajda, Ines; Babić, Katarina Huić; Rajnović, Ivana; Kajić, Sanja; Sikora, Sanja

    2016-12-01

    Nodule bacteria (rhizobia) in symbiotic associations with legumes enable considerable entries of biologically fixed nitrogen into soil. Efforts are therefore made to intensify the natural process of symbiotic nitrogen fixation by legume inoculation. Studies of field populations of rhizobia open up the possibility to preserve and probably exploit some indigenous strains with hidden symbiotic or ecological potentials. The main aim of the present study is to determine genetic diversity of common bean rhizobia isolated from different field sites in central Croatia and to evaluate their symbiotic efficiency and compatibility with host plants. The isolation procedure revealed that most soil samples contained no indigenous common bean rhizobia. The results indicate that the cropping history had a significant impact on the presence of indigenous strains. Although all isolates were found to belong to species Rhizobium leguminosarum, significant genetic diversity at the strain level was determined. Application of both random amplification of polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC- -PCR) methods resulted in similar grouping of strains. Symbiotic efficiency of indigenous rhizobia as well as their compatibility with two commonly grown bean varieties were tested in field experiments. Application of indigenous rhizobial strains as inoculants resulted in significantly different values of nodulation, seed yield as well as plant nitrogen and seed protein contents. The most abundant nodulation and the highest plant nitrogen and protein contents were determined in plants inoculated with R. leguminosarum strains S17/2 and S21/6. Although, in general, the inoculation had a positive impact on seed yield, differences depending on the applied strain were not determined. The overall results show the high degree of symbiotic efficiency of the specific indigenous strain S21/6. These results indicate different symbiotic

  7. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  8. Does Low Birth Weight Share Common Genetic or Environmental Risk with Childhood Disruptive Disorders?

    PubMed Central

    Ficks, Courtney A.; Lahey, Benjamin B.; Waldman, Irwin D.

    2015-01-01

    Although advances in neonatal care over the past century have resulted in increased rates of survival among at-risk births, including infants with low birth weight, we have much to learn about the psychological outcomes in this population. In particular, although it appears that there is growing evidence that low birth weight may be associated with an increased risk for Attention-Deficit/Hyperactive Disorder (ADHD) symptoms in childhood, few studies have examined birth weight as a risk factor for disruptive disorders that commonly co-occur with ADHD [e.g. Oppositional Defiant Disorder (ODD) or Conduct Disorder (CD)]. In addition, the etiology of the relation between birth weight and these disorders is unknown. The current investigation aimed to better understand the putative role of birth weight in disruptive behavior disorders in the context of potentially confounding genetic and environmental influences by examining phenotypic associations between birth weight and disruptive disorder symptoms across families (using generalized linear models with generalized estimating equations) as well as within families (using linear regression) in two independent twin samples (Sample 1: N = 1676 individuals; Sample 2: N = 4038 individuals). We found negative associations between birth weight and several childhood disruptive disorder symptom dimensions, including inattentive, hyperactive-impulsive, and broad externalizing symptoms in both samples. Nonetheless, the overall magnitude of these associations was very small, contributing to less than 1% of the variance in these symptom dimensions. Within-family associations between birth weight and disruptive disorder symptoms did not differ for monozygotic and dizygotic twin pairs, suggesting that nonshared environmental influences rather than common genetic influences are responsible for these associations. These consistent albeit weak associations between birth weight and disruptive disorder symptoms suggest that, at least in the

  9. A Comprehensive Analysis of Common Genetic Variation Around Six Candidate Loci for Intrahepatic Cholestasis of Pregnancy

    PubMed Central

    Dixon, Peter H; Wadsworth, Christopher A; Chambers, Jennifer; Donnelly, Jennifer; Cooley, Sharon; Buckley, Rebecca; Mannino, Ramona; Jarvis, Sheba; Syngelaki, Argyro; Geenes, Victoria; Paul, Priyadarshini; Sothinathan, Meera; Kubitz, Ralf; Lammert, Frank; Tribe, Rachel M; Ch'ng, Chin Lye; Marschall, Hanns-Ulrich; Glantz, Anna; Khan, Shahid A; Nicolaides, Kypros; Whittaker, John; Geary, Michael; Williamson, Catherine

    2014-01-01

    OBJECTIVES: Intrahepatic cholestasis of pregnancy (ICP) has a complex etiology with a significant genetic component. Heterozygous mutations of canalicular transporters occur in a subset of ICP cases and a population susceptibility allele (p.444A) has been identified in ABCB11. We sought to expand our knowledge of the detailed genetic contribution to ICP by investigation of common variation around candidate loci with biological plausibility for a role in ICP (ABCB4, ABCB11, ABCC2, ATP8B1, NR1H4, and FGF19). METHODS: ICP patients (n=563) of white western European origin and controls (n=642) were analyzed in a case–control design. Single-nucleotide polymorphism (SNP) markers (n=83) were selected from the HapMap data set (Tagger, Haploview 4.1 (build 22)). Genotyping was performed by allelic discrimination assay on a robotic platform. Following quality control, SNP data were analyzed by Armitage's trend test. RESULTS: Cochran–Armitage trend testing identified six SNPs in ABCB11 together with six SNPs in ABCB4 that showed significant evidence of association. The minimum Bonferroni corrected P value for trend testing ABCB11 was 5.81×10−4 (rs3815676) and for ABCB4 it was 4.6×10−7(rs2109505). Conditional analysis of the two clusters of association signals suggested a single signal in ABCB4 but evidence for two independent signals in ABCB11. To confirm these findings, a second study was performed in a further 227 cases, which confirmed and strengthened the original findings. CONCLUSIONS: Our analysis of a large cohort of ICP cases has identified a key role for common variation around the ABCB4 and ABCB11 loci, identified the core associations, and expanded our knowledge of ICP susceptibility. PMID:24366234

  10. Novel common and rare genetic determinants of paraoxonase activity: FTO, SERPINA12, and ITGAL[S

    PubMed Central

    Kim, Daniel S.; Burt, Amber A.; Crosslin, David R.; Robertson, Peggy D.; Ranchalis, Jane E.; Boyko, Edward J.; Nickerson, Deborah A.; Furlong, Clement E.; Jarvik, Gail P.

    2013-01-01

    HDL-associated paraoxonase 1 (PON1) activity is associated with cardiovascular and other human diseases. As the role of genetic variants outside of the PON gene cluster on PON1 activity is unknown, we sought to identify common and rare variants in such loci. We typed 33,057 variants on the CVD chip in 1,362 subjects to test for their effects on adjusted-PON1 activity. Three novel genes (FTO, ITGAL, and SERPINA12) and the PON gene cluster had SNPs associated with PON1 arylesterase (AREase) activity. These loci were carried forward for rare-variant analysis using Exome chip genotypes in an overlapping subset of 1,051 subjects using sequence kernel association testing. PON1 (P = 2.24 × 10−4), PON3 (P = 0.022), FTO (P = 0.019), and SERPINA12 (P = 0.039) had both common and rare variants associated with PON1 AREase. ITGAL variants were associated with PON1 activity when using weighted sequence kernel association testing (SKAT) analysis (P = 2.63 × 10−3). When adjusting for the initial common variants, SERPINA12 became marginally significant (P = 0.09), whereas all other findings remained significant (P < 0.05), suggesting independent rare-variant effects. We present novel findings that common and rare variants in FTO, SERPINA12, and ITGAL predict PON1 activity. These results further link PON1 to diabetes and inflammation and may inform the role of HDL in human disease. PMID:23160181

  11. Diabetes-Associated Common Genetic Variation and Its Association With GLP-1 Concentrations and Response to Exogenous GLP-1

    PubMed Central

    Smushkin, Galina; Sathananthan, Matheni; Sathananthan, Airani; Dalla Man, Chiara; Micheletto, Francesco; Zinsmeister, Alan R.; Cobelli, Claudio; Vella, Adrian

    2012-01-01

    The mechanisms by which common genetic variation predisposes to type 2 diabetes remain unclear. The disease-associated variants in TCF7L2 (rs7903146) and WFS1 (rs10010131) have been shown to affect response to exogenous glucagon-like peptide 1 (GLP-1), while variants in KCNQ1 (rs151290, rs2237892, and rs2237895) alter endogenous GLP-1 secretion. We set out to validate these observations using a model of GLP-1–induced insulin secretion. We studied healthy individuals using a hyperglycemic clamp and GLP-1 infusion. In addition, we measured active and total GLP-1 in response to an oral challenge in nondiabetic subjects. After genotyping the relevant single nucleotide polymorphisms, generalized linear regression models and repeated-measures ANCOVA models incorporating potential confounders, such as age and BMI, were used to assess the associations, if any, of response with genotype. These variants did not alter GLP-1 concentrations in response to oral intake. No effects on β-cell responsiveness to hyperglycemia and GLP-1 infusion were apparent. Diabetes-associated variation (T allele at rs7903146) in TCF7L2 may impair the ability of hyperglycemia to suppress glucagon (45 ± 2 vs. 47 ± 2 vs. 60 ± 5 ng/L for CC, CT, and TT, respectively, P = 0.02). In nondiabetic subjects, diabetes-associated genetic variation does not alter GLP-1 concentrations after an oral challenge or its effect on insulin secretion. PMID:22461567

  12. Advances in the genetic mechanisms of mitochondrial disease.

    PubMed

    Vladutiu, G D

    1997-12-01

    During the past 16 years since the delineation of the human mitochondrial genome, substantial advances have been made in identifying pathogenic mutations causing mitochondrial disorders. However, just as we have come to accept the unexpected in the nontraditional aspects of Mendelian inheritance with the discovery of trinucleotide expansions, imprinting and uniparental disomy, unusual characteristics of mitochondrial inheritance also have been found that defy existing laws. For example, we now know that the nuclear genetic background of an individual might influence the expression and tissue specificity of mitochondrial mutations. Pathogenic mitochondrial DNA mutations contribute to the generation of new mutations by compromising mitochondrial function and increasing free radical production. Evidence for recombination raises new questions about repair mechanisms of mitochondrial DNA. It appears that the more we learn about the bases of mitochondrial disease, the more complex diagnosis, treatment, and genetic counseling become.

  13. Unilateral retinitis pigmentosa: a proposal of genetic pathogenic mechanisms.

    PubMed

    Marsiglia, Marcela; Duncker, Tobias; Peiretti, Enrico; Brodie, Scott E; Tsang, Stephen H

    2012-01-01

    To investigate and integrate anatomic and physiologic findings from a group of patients who present retinitis pigmentosa affecting just one eye and use this information to propose mechanisms of disease pathogenesis. This prospective cross-sectional study examined 5 patients, all female, from 8 to 60 years old. The study was conducted in 4 university hospitals. The patients were selected according to the characteristics of ocular involvement, notably unilateral presentation of similar anatomic and functional abnormalities. Full-field electroretinogram, fundus photography, fundus autofluorescence, infrared imaging, optical coherence tomography, and genetic testing were performed. Full-field electroretinogram showed unilateral decrease in amplitude and increase in implicit time; autofluorescence showed unilateral areas of decreased intensity. The USH2AW4149R mutation was confirmed in one patient. Imaging and functional testing are important in elucidating the unilateral pattern of the disease and in monitoring these individuals. Mosaicism or somatic mutation may cause unilateral genetic disease presentation.

  14. Unilateral retinitis pigmentosa: a proposal of genetic pathogenic mechanisms

    PubMed Central

    Marsiglia, Marcela; Duncker, Tobias; Peiretti, Enrico; Brodie, Scott E.; Tsang, Stephen H.

    2013-01-01

    Purpose To investigate and integrate anatomic and physiologic findings from a group of patients who present retinitis pigmentosa affecting just one eye and use this information to propose mechanisms of disease pathogenesis. Methods This prospective cross-sectional study examined 5 patients, all female, from 8 to 60 years old. The study was conducted in 4 university hospitals. The patients were selected according to the characteristics of ocular involvement, notably unilateral presentation of similar anatomic and functional abnormalities. Full-field electroretinogram, fundus photography, fundus autofluorescence, infrared imaging, optical coherence tomography, and genetic testing were performed. Results Full-field electroretinogram showed unilateral decrease in amplitude and increase in implicit time; autofluorescence showed unilateral areas of decreased intensity. The USH2AW4149R mutation was confirmed in one patient. Conclusions Imaging and functional testing are important in elucidating the unilateral pattern of the disease and in monitoring these individuals. Mosaicism or somatic mutation may cause unilateral genetic disease presentation. PMID:22139616

  15. Variability in the common genetic architecture of social-communication spectrum phenotypes during childhood and adolescence

    PubMed Central

    2014-01-01

    , such as PLCB1, is unlikely to be due to chance (genome-wide empirical Pco-location = 0.007). Conclusions Our findings suggest that measurable common genetic effects for social-communication difficulties vary developmentally and that these changes may affect detectable overlaps with the autism spectrum. PMID:24564958

  16. Genetic mapping of two genes conferring resistance to powdery mildew in common bean (Phaseolus vulgaris L.).

    PubMed

    Pérez-Vega, Elena; Trabanco, Noemí; Campa, Ana; Ferreira, Juan José

    2013-06-01

    Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding

  17. Considering causal genes in the genetic dissection of kernel traits in common wheat.

    PubMed

    Mohler, Volker; Albrecht, Theresa; Castell, Adelheid; Diethelm, Manuela; Schweizer, Günther; Hartl, Lorenz

    2016-11-01

    Genetic factors controlling thousand-kernel weight (TKW) were characterized for their association with other seed traits, including kernel width, kernel length, ratio of kernel width to kernel length (KW/KL), kernel area, and spike number per m(2) (SN). For this purpose, a genetic map was established utilizing a doubled haploid population derived from a cross between German winter wheat cultivars Pamier and Format. Association studies in a diversity panel of elite cultivars supplemented genetic analysis of kernel traits. In both populations, genomic signatures of 13 candidate genes for TKW and kernel size were analyzed. Major quantitative trait loci (QTL) for TKW were identified on chromosomes 1B, 2A, 2D, and 4D, and their locations coincided with major QTL for kernel size traits, supporting the common belief that TKW is a function of other kernel traits. The QTL on chromosome 2A was associated with TKW candidate gene TaCwi-A1 and the QTL on chromosome 4D was associated with dwarfing gene Rht-D1. A minor QTL for TKW on chromosome 6B coincided with TaGW2-6B. The QTL for kernel dimensions that did not affect TKW were detected on eight chromosomes. A major QTL for KW/KL located at the distal tip of chromosome arm 5AS is being reported for the first time. TaSus1-7A and TaSAP-A1, closely linked to each other on chromosome 7A, could be related to a minor QTL for KW/KL. Genetic analysis of SN confirmed its negative correlation with TKW in this cross. In the diversity panel, TaSus1-7A was associated with TKW. Compared to the Pamier/Format bi-parental population where TaCwi-A1a was associated with higher TKW, the same allele reduced grain yield in the diversity panel, suggesting opposite effects of TaCwi-A1 on these two traits.

  18. SNP marker development for linkage map construction, anchoring of the common bean whole genome sequence and genetic research

    USDA-ARS?s Scientific Manuscript database

    Our objectives were to identify SNP DNA markers based on a diverse set of common bean cultivars via next generation sequencing technologies; to develop Illumina Infinium BeadChip assays containing SNPs with high polymorphism within and between common bean market classes, to create high density genet...

  19. Genetic diversity of indigenous common bean (Phaseolus vulgaris L.) rhizobia from the state of Minas Gerais, Brazil

    PubMed Central

    Torres, Adalgisa Ribeiro; Cursino, Luciana; Muro-Abad, Júpiter Israel; Gomes, Eliane Aparecida; de Araújo, Elza Fernandes; Hungria, Mariangela; Cassini, Sérvio Túlio Alves

    2009-01-01

    We characterized indigenous common bean rhizobia from five districts of the state of Minas Gerais, Brazil. The isolates were trapped by two common bean varieties, the Mineiro Precoce (Andean origin) and Ouro Negro (Mesoamerican origin). Analysis by BOX-PCR of selected isolates detected a high level of genetic diversity. PMID:24031433

  20. Genetic diversity of indigenous common bean (Phaseolus vulgaris L.) rhizobia from the state of Minas Gerais, Brazil.

    PubMed

    Torres, Adalgisa Ribeiro; Cursino, Luciana; Muro-Abad, Júpiter Israel; Gomes, Eliane Aparecida; de Araújo, Elza Fernandes; Hungria, Mariangela; Cassini, Sérvio Túlio Alves

    2009-10-01

    We characterized indigenous common bean rhizobia from five districts of the state of Minas Gerais, Brazil. The isolates were trapped by two common bean varieties, the Mineiro Precoce (Andean origin) and Ouro Negro (Mesoamerican origin). Analysis by BOX-PCR of selected isolates detected a high level of genetic diversity.

  1. Biaxial mechanical properties of the human thoracic and abdominal aorta, common carotid, subclavian, renal and common iliac arteries.

    PubMed

    Kamenskiy, Alexey V; Dzenis, Yuris A; Kazmi, Syed A Jaffar; Pemberton, Mark A; Pipinos, Iraklis I; Phillips, Nick Y; Herber, Kyle; Woodford, Thomas; Bowen, Robert E; Lomneth, Carol S; MacTaggart, Jason N

    2014-11-01

    The biomechanics of large- and medium-sized arteries influence the pathophysiology of arterial disease and the response to therapeutic interventions. However, a comprehensive comparative analysis of human arterial biaxial mechanical properties has not yet been reported. Planar biaxial extension was used to establish the passive mechanical properties of human thoracic (TA, [Formula: see text]) and abdominal (AA, [Formula: see text]) aorta, common carotid (CCA, [Formula: see text]), subclavian (SA, [Formula: see text]), renal (RA, [Formula: see text]) and common iliac (CIA, [Formula: see text]) arteries from 11 deceased subjects ([Formula: see text] years old). Histological evaluation determined the structure of each specimen. Experimental data were used to determine constitutive parameters for a structurally motivated nonlinear anisotropic constitutive model. All arteries demonstrated appreciable anisotropy and large nonlinear deformations. Most CCA, SA, TA, AA and CIA specimens were stiffer longitudinally, while most RAs were stiffer circumferentially. A switch in anisotropy was occasionally demonstrated for all arteries. The CCA was the most compliant, least anisotropic and least frequently diseased of all arteries, while the CIA and AA were the stiffest and the most diseased. The severity of atherosclerosis correlated with age, but was not affected by laterality. Elastin fibers in the aorta, SA and CCA were uniformly and mostly circumferentially distributed throughout the media, while in the RA and CIA, elastin was primarily axially aligned and concentrated in the external elastic lamina. Constitutive modeling provided good fits to the experimental data for most arteries. Biomechanical and architectural features of major arteries differ depending on location and functional environment. A better understanding of localized arterial mechanical properties may support the development of site-specific treatment modalities for arterial disease.

  2. Molecular mechanisms in atopic eczema: insights gained from genetic studies.

    PubMed

    Brown, Sara J

    2017-01-01

    Atopic eczema (synonymous with atopic dermatitis) is a common heterogeneous phenotype with a wide spectrum of severity, from mild transient disease to a severe chronic disorder with atopic and non-atopic comorbidities. Eczema is a complex trait, resulting from the interaction of multiple genetic and environmental factors. The skin, as an organ that can be biopsied easily, provides opportunities for detailed molecular genetic analysis. Strategies applied to the investigation of atopic eczema include candidate gene and genome-wide studies, extreme phenotypes, and comparative analysis of inflammatory skin diseases. Genetic studies have identified a central role for skin barrier impairment in eczema predisposition and perpetuation; this has brought about a paradigm shift in understanding atopic disease, but specific molecular targets to improve skin barrier function remain elusive. The role of Th2-mediated immune dysfunction is also central to atopic inflammation, and has proved to be a powerful target for biological therapy in atopic eczema. Advances in understanding eczema pathogenesis have provided opportunities for patient stratification, primary prevention, and therapy development, but there remain considerable challenges in the application of this knowledge to optimize benefit for patients with atopic eczema in the era of personalized medicine. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. The molecular genetics of autism spectrum disorders: genomic mechanisms, neuroimmunopathology, and clinical implications.

    PubMed

    Guerra, Daniel J

    2011-01-01

    Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  4. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    PubMed Central

    Guerra, Daniel J.

    2011-01-01

    Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD. PMID:22937247

  5. Common genetic variants on 5p14.1 associate with autism spectrum disorders

    PubMed Central

    Wang, Kai; Zhang, Haitao; Ma, Deqiong; Bucan, Maja; Glessner, Joseph T.; Abrahams, Brett S.; Salyakina, Daria; Imielinski, Marcin; Bradfield, Jonathan P.; Sleiman, Patrick M. A.; Kim, Cecilia E.; Hou, Cuiping; Frackelton, Edward; Chiavacci, Rosetta; Takahashi, Nagahide; Sakurai, Takeshi; Rappaport, Eric; Lajonchere, Clara M.; Munson, Jeffrey; Estes, Annette; Korvatska, Olena; Piven, Joseph; Sonnenblick, Lisa I.; Retuerto, Ana I. Alvarez; Herman, Edward I.; Dong, Hongmei; Hutman, Ted; Sigman, Marian; Ozonoff, Sally; Klin, Ami; Owley, Thomas; Sweeney, John A.; Brune, Camille W.; Cantor, Rita M.; Bernier, Raphael; Gilbert, John R.; Cuccaro, Michael L.; McMahon, William M.; Miller, Judith; State, Matthew W.; Wassink, Thomas H.; Coon, Hilary; Levy, Susan E.; Schultz, Robert T.; Nurnberger, John I.; Haines, Jonathan L.; Sutcliffe, James S.; Cook, Edwin H.; Minshew, Nancy J.; Buxbaum, Joseph D.; Dawson, Geraldine; Grant, Struan F. A.; Geschwind, Daniel H.; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Hakonarson, Hakon

    2009-01-01

    Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)—two genes encoding neuronal cell-adhesion molecules—revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 × 10−8, odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 × 10−8 to 2.1 × 10−10. Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs. PMID:19404256

  6. Genetic control of number of flowers and pod set in common bean.

    PubMed

    Martins, E S; Pinto Júnior, R A; Abreu, A F B; Ramalho, M A P

    2017-09-21

    This article aimed to study the genetic control of some flowers and pod set of common bean and to verify if its estimate varies with environmental conditions and gene pool. A complete diallel was used among six lines, but no reciprocal ones. The treatments were evaluated in three harvests/generations - F2, F3, and F4 - in 2015/2016, in a randomized complete block design with four replications. The plot consisted of 3 lines with 4 m. In the center line, a receptacle to collect the aborted flowers/pods was placed. The traits considered were the number of flowers/plant (N), the percentage of pod set (V), and the production of grain/plant (W). A joint diallel analysis was performed, and the correlations between N, V, ​​and W were estimated. N was 31.9 on average, and V was 40.4%. The average of Mesoamerican parents, for N and V, was higher than for Andean. Specific combining ability explained most of the variation for N, evidencing predominance of dominance effect. For V, specific combining ability was slightly lower than general combining ability, indicating additive loci and also dominance effects. These two traits were very influenced by environment and should be considered a strategy for greater grain yield stability of common bean.

  7. Common genetic architecture underlying young children’s food fussiness and liking for vegetables and fruit123

    PubMed Central

    Wardle, Jane

    2016-01-01

    Background: Food fussiness (FF) is common in early childhood and is often associated with the rejection of nutrient-dense foods such as vegetables and fruit. FF and liking for vegetables and fruit are likely all heritable phenotypes; the genetic influence underlying FF may explain the observed genetic influence on liking for vegetables and fruit. Twin analyses make it possible to get a broad-based estimate of the extent of the shared genetic influence that underlies these traits. Objective: We quantified the extent of the shared genetic influence that underlies FF and liking for vegetables and fruit in early childhood with the use of a twin design. Design: Data were from the Gemini cohort, which is a population-based sample of twins born in England and Wales in 2007. Parents of 3-y-old twins (n = 1330 pairs) completed questionnaire measures of their children’s food preferences (liking for vegetables and fruit) and the FF scale from the Children’s Eating Behavior Questionnaire. Multivariate quantitative genetic modeling was used to estimate common genetic influences that underlie FF and liking for vegetables and fruit. Results: Genetic correlations were significant and moderate to large in size between FF and liking for both vegetables (−0.65) and fruit (−0.43), which indicated that a substantial proportion of the genes that influence FF also influence liking. Common genes that underlie FF and liking for vegetables and fruit largely explained the observed phenotypic correlations between them (68–70%). Conclusions: FF and liking for fruit and vegetables in young children share a large proportion of common genetic factors. The genetic influence on FF may determine why fussy children typically reject fruit and vegetables. PMID:26864359

  8. Combining effects from rare and common genetic variants in an exome-wide association study of sequence data.

    PubMed

    Aschard, Hugues; Qiu, Weiliang; Pasaniuc, Bogdan; Zaitlen, Noah; Cho, Michael H; Carey, Vincent

    2011-11-29

    Recent breakthroughs in next-generation sequencing technologies allow cost-effective methods for measuring a growing list of cellular properties, including DNA sequence and structural variation. Next-generation sequencing has the potential to revolutionize complex trait genetics by directly measuring common and rare genetic variants within a genome-wide context. Because for a given gene both rare and common causal variants can coexist and have independent effects on a trait, strategies that model the effects of both common and rare variants could enhance the power of identifying disease-associated genes. To date, little work has been done on integrating signals from common and rare variants into powerful statistics for finding disease genes in genome-wide association studies. In this analysis of the Genetic Analysis Workshop 17 data, we evaluate various strategies for association of rare, common, or a combination of both rare and common variants on quantitative phenotypes in unrelated individuals. We show that the analysis of common variants only using classical approaches can achieve higher power to detect causal genes than recently proposed rare variant methods and that strategies that combine association signals derived independently in rare and common variants can slightly increase the power compared to strategies that focus on the effect of either the rare variants or the common variants.

  9. Cellular Mechanisms of Tissue Fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis

    PubMed Central

    2013-01-01

    Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis. PMID:23255577

  10. Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape.

    PubMed

    Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2014-07-01

    Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS  = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  11. Association of a common genetic variant in prostate stem cell antigen with cancer risk

    PubMed Central

    Zuo, Li; Zhang, Li Feng; Wu, Xiao Peng; Zhou, Zhong Xing; Zou, Jian Gang; He, Jun

    2014-01-01

    Introduction Polymorphisms in the prostate stem cell antigen (PSCA) gene have been hypothesized to increase the genetic susceptibility to cancers. The common sequence variation in PSCA rs2294008 (C>T) has been implicated in cancer risk. However, results of the relevant published studies were somewhat underpowered and controversial in general. Material and methods To evaluate the role of PSCA rs2294008 (C>T) genotype in global cancer, we performed a pooled analysis of all the available published studies involving 22,817 cancer patients and 27,753 control subjects. Results The results showed evidence that PSCA rs2294008 (C>T) was associated with increased total cancer risk in the overall comparisons. Stratified analysis by cancer type indicated that PSCA rs2294008 T is associated with increased risk of gastric cancer (OR = 1.24, 95% CI = 1.09–1.42, pheterogeneity < 0.001, I2 = 88.0%) and bladder cancer (OR = 1.07, 95% CI = 1.04–1.11, pheterogeneity = 0.108, I2 = 55.0%) by allelic contrast. Furthermore, in stratified analysis by histological types of gastric cancer, this PSCA variant showed significant associations with diffuse type (OR = 1.81, 95% CI = 1.16–2.81, pheterogeneity < 0.001, I2 = 88.9%) but not intestinal type (OR = 1.29, 95% CI = 0.95–1.74, pheterogeneity < 0.001, I2 = 85.2%) in a dominant genetic model. Similar results were found in Asian and European descendents and population-based studies. Conclusions In all, our meta-analysis suggests that PSCA rs2294008 (C>T) may play allele-specific roles in cancer development. Further prospective studies with larger numbers of participants worldwide should be performed in different kinds of cancer and other descendents in more detail. PMID:25097570

  12. Common genetic variation and survival after colorectal cancer diagnosis: a genome-wide analysis

    PubMed Central

    Phipps, Amanda I.; Passarelli, Michael N.; Chan, Andrew T.; Harrison, Tabitha A.; Jeon, Jihyoun; Hutter, Carolyn M.; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cheadle, Jeremy P.; Curtis, Keith R.; Duggan, David; Fisher, David; Fuchs, Charles S.; Gala, Manish; Giovannucci, Edward L.; Hayes, Richard B.; Hoffmeister, Michael; Hsu, Li; Jacobs, Eric J.; Jansen, Lina; Kaplan, Richard; Kap, Elisabeth J.; Maughan, Timothy S.; Potter, John D.; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; West, Hannah; White, Emily; Peters, Ulrike; Newcomb, Polly A.

    2016-01-01

    Genome-wide association studies have identified several germline single nucleotide polymorphisms (SNPs) significantly associated with colorectal cancer (CRC) incidence. Common germline genetic variation may also be related to CRC survival. We used a discovery-based approach to identify SNPs related to survival outcomes after CRC diagnosis. Genome-wide genotyping arrays were conducted for 3494 individuals with invasive CRC enrolled in six prospective cohort studies (median study-specific follow-up = 4.2–8.1 years). In pooled analyses, we used Cox regression to assess SNP-specific associations with CRC-specific and overall survival, with additional analyses stratified by stage at diagnosis. Top findings were followed-up in independent studies. A P value threshold of P < 5×10−8 in analyses combining discovery and follow-up studies was required for genome-wide significance. Among individuals with distant-metastatic CRC, several SNPs at 6p12.1, nearest the ELOVL5 gene, were statistically significantly associated with poorer survival, with the strongest associations noted for rs209489 [hazard ratio (HR) = 1.8, P = 7.6×10−10 and HR = 1.8, P = 3.7×10−9 for CRC-specific and overall survival, respectively). No SNPs were statistically significantly associated with survival among all cases combined or in cases without distant-metastases. SNPs in 6p12.1/ELOVL5 were associated with survival outcomes in individuals with distant-metastatic CRC, and merit further follow-up for functional significance. Findings from this genome-wide association study highlight the potential importance of genetic variation in CRC prognosis and provide clues to genomic regions of potential interest. PMID:26586795

  13. Investigations of a common genetic variant in betaine-homocysteine methyltransferase (BHMT) in coronary artery disease.

    PubMed

    Weisberg, Ilan S; Park, Eric; Ballman, Karla V; Berger, Peter; Nunn, Martha; Suh, Daniel S; Breksa, Andrew P; Garrow, Timothy A; Rozen, Rima

    2003-04-01

    Hyperhomocysteinemia, a risk factor for cardiovascular disease, can be caused by genetic mutations in enzymes of homocysteine metabolism. Homocysteine remethylation to methionine is catalyzed by folate-dependent methionine synthase, or by betaine-homocysteine methyltransferase (BHMT), which utilizes betaine as the methyl donor. Since genetic variants in folate-dependent remethylation have been reported to increase risk for cardiovascular disease and other common disorders, we screened BHMT for sequence changes that might alter risk for coronary artery disease (CAD). A variant in exon 6-R239Q-was identified. The frequency of this change was examined in 504 individuals who had undergone coronary angiography and were stratified into controls (those with no or mild disease) and cases (those with significant [>50% reduction in luminal diameter stenosis] 1-, 2-, 3-vessel disease). Although this variant did not affect plasma homocysteine, the QQ genotype was present in higher frequency in those with no or mild disease, compared with those with significant disease (11 vs. 6%), suggesting that it may decrease risk of CAD; a statistically-significant decrease was seen in the older subjects (13 vs. 7%). Multivariate analysis for the entire group revealed an odds ratio of 0.48 (95% CI: 0.21-1.06) for the QQ genotype; this association was similar in the younger (OR=0.36; 95% CI: 0.09-1.41) and older subjects (OR=0.42; 95% CI: 0.15-1.18). Our study suggests that the Q allele of the R239Q mutation may decrease the risk of CAD and that this variant warrants additional investigation of its relationship with the development of CAD as well as other homocysteine-dependent disorders.

  14. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  15. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  16. Genetic insights into the mechanisms of Fgf signaling.

    PubMed

    Brewer, J Richard; Mazot, Pierre; Soriano, Philippe

    2016-04-01

    The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.

  17. Genetic insights into the mechanisms of Fgf signaling

    PubMed Central

    Brewer, J. Richard; Mazot, Pierre; Soriano, Philippe

    2016-01-01

    The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo. PMID:27036966

  18. Commonalities and Distinctions Among Mechanisms of Addiction to Alcohol and Other Drugs.

    PubMed

    Ozburn, Angela R; Janowsky, Aaron J; Crabbe, John C

    2015-10-01

    Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in preclinical studies using rodent models of drug self-administration. While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. For alcohol, versus other drugs of abuse, we discuss and compare advances in: (i) neurocircuitry important for the different stages of drug dependence; (ii) transcriptomics and genetical genomics; and (iii) enduring effects, noting in particular the contributions of behavioral genetics and animal models. Copyright © 2015 by the Research Society on Alcoholism.

  19. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner

    PubMed Central

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2008-01-01

    Background Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. Results LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. Conclusion Life

  20. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner.

    PubMed

    Glansdorff, Nicolas; Xu, Ying; Labedan, Bernard

    2008-07-09

    Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. Life was born complex and the LUCA

  1. Neuroinflammation as a Common Mechanism Associated with the Modifiable Risk Factors for Alzheimer's and Parkinson`s Diseases.

    PubMed

    McKenzie, Jordan Alexander; Spielman, Lindsay J; Pointer, Caitlin B; Lowry, Jessica R; Bajwa, Ekta; Lee, Carolyn W; Klegeris, Andis

    2017-03-15

    Alzheimer's disease (AD) and Parkinson's disease (PD) are among the most common causes of dementia, which increasingly contribute to morbidity and mortality worldwide. A common hallmark in the pathogenesis of these two diseases is neuroinflammation, which is initially triggered by the presence of pathological structures associated with these disorders. Chronic neuroinflammation is sustained by persistent and aberrant microglial activation in the brain, which results in damage and death of neighboring cells, including neurons and glial cells. Two types of risk factors contribute to the development of AD and PD: non-modifiable risk factors and modifiable risk factors. Non-modifiable risk factors include genetic susceptibility that increases an individual's risk of developing the disease, whereas modifiable risk factors include a wide variety of health- and lifestyle-related factors that may be altered by changing individual behaviors. Exposure to environmental toxins could be viewed as a partially modifiable risk factor. This review focuses on four modifiable risk factors including physical inactivity, vascular disease-related conditions, obesity and type two diabetes mellitus, all of which have been identified as risk factors for the development of AD and PD. We highlight that control of the modifiable risk factors is a valid approach for managing the increased incidence of AD and PD. We describe neuroinflammatory mechanisms, which are common to AD and PD, that may link both these neurodegenerative diseases with the four common modifiable risk factors. Understanding these mechanisms could help identify novel therapeutic targets for combating these neurodegenerative diseases.

  2. Genetic and epigenetic mechanisms in the pathogenesis of neurofibromatosis type I

    SciTech Connect

    Metheny, L.J.; Amedeo, M.S.; Cappione, J.

    1995-11-01

    Neurofibromatosis type I (NF1) is a common genetic disease which leads to a variety of clinical features affecting cells of neural crest origin. In the period since the NF1 gene was isolated 1991, our understanding of the genetics of NF1 has increased remarkably. One of the most striking aspects of NF1 genetics is its complexity, both in terms of gene organization and expression. The gene is large and, when mutated, gives rise to diverse manifestations. A growing body of data suggests that mutations in the NF1 gene alone may not be responsible for all of the features of this disease. Epigenetic mechanisms, those which affect the NF1 transcript, play a role in the normal expression of the NF1 gene. Therefore, aberrations in those epigenetic processes are most likely pathogenic. Herein we summarize salient aspects of the vast body of NF1 literature and provide some insights into the myriad of regulatory mechanisms that may go awry in the genesis of this common but complex disease. 58 refs., 3 figs.

  3. Evaluation of common genetic variants in 82 candidate genes as risk factors for neural tube defects

    PubMed Central

    2012-01-01

    Background Neural tube defects (NTDs) are common birth defects (~1 in 1000 pregnancies in the US and Europe) that have complex origins, including environmental and genetic factors. A low level of maternal folate is one well-established risk factor, with maternal periconceptional folic acid supplementation reducing the occurrence of NTD pregnancies by 50-70%. Gene variants in the folate metabolic pathway (e.g., MTHFR rs1801133 (677 C > T) and MTHFD1 rs2236225 (R653Q)) have been found to increase NTD risk. We hypothesized that variants in additional folate/B12 pathway genes contribute to NTD risk. Methods A tagSNP approach was used to screen common variation in 82 candidate genes selected from the folate/B12 pathway and NTD mouse models. We initially genotyped polymorphisms in 320 Irish triads (NTD cases and their parents), including 301 cases and 341 Irish controls to perform case–control and family based association tests. Significantly associated polymorphisms were genotyped in a secondary set of 250 families that included 229 cases and 658 controls. The combined results for 1441 SNPs were used in a joint analysis to test for case and maternal effects. Results Nearly 70 SNPs in 30 genes were found to be associated with NTDs at the p < 0.01 level. The ten strongest association signals (p-value range: 0.0003–0.0023) were found in nine genes (MFTC, CDKN2A, ADA, PEMT, CUBN, GART, DNMT3A, MTHFD1 and T (Brachyury)) and included the known NTD risk factor MTHFD1 R653Q (rs2236225). The single strongest signal was observed in a new candidate, MFTC rs17803441 (OR = 1.61 [1.23-2.08], p = 0.0003 for the minor allele). Though nominally significant, these associations did not remain significant after correction for multiple hypothesis testing. Conclusions To our knowledge, with respect to sample size and scope of evaluation of candidate polymorphisms, this is the largest NTD genetic association study reported to date. The scale of the study and the

  4. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    PubMed

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  5. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research

    PubMed Central

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  6. Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci.

    PubMed

    Liu, M; Malone, S M; Vaidyanathan, U; Keller, M C; Abecasis, G; McGue, M; Iacono, W G; Vrieze, S I

    2017-04-01

    Endophenotypes are laboratory-based measures hypothesized to lie in the causal chain between genes and clinical disorder, and to serve as a more powerful way to identify genes associated with the disorder. One promise of endophenotypes is that they may assist in elucidating the neurobehavioral mechanisms by which an associated genetic polymorphism affects disorder risk in complex traits. We evaluated this promise by testing the extent to which variants discovered to be associated with schizophrenia through large-scale meta-analysis show associations with psychophysiological endophenotypes. We genome-wide genotyped and imputed 4905 individuals. Of these, 1837 were whole-genome-sequenced at 11× depth. In a community-based sample, we conducted targeted tests of variants within schizophrenia-associated loci, as well as genome-wide polygenic tests of association, with 17 psychophysiological endophenotypes including acoustic startle response and affective startle modulation, antisaccade, multiple frequencies of resting electroencephalogram (EEG), electrodermal activity and P300 event-related potential. Using single variant tests and gene-based tests we found suggestive evidence for an association between contactin 4 (CNTN4) and antisaccade and P300. We were unable to find any other variant or gene within the 108 schizophrenia loci significantly associated with any of our 17 endophenotypes. Polygenic risk scores indexing genetic vulnerability to schizophrenia were not related to any of the psychophysiological endophenotypes after correction for multiple testing. The results indicate significant difficulty in using psychophysiological endophenotypes to characterize the genetically influenced neurobehavioral mechanisms by which risk loci identified in genome-wide association studies affect disorder risk.

  7. International Space Station Passive and Active Common Berthing Mechanism Thermal Cycle Test.

    DTIC Science & Technology

    1996-09-01

    The International Space Station Alpha Common Berthing Mechanism (CBM) thermal cycle test was conducted in the Arnold Engineering Development Center...AEDC) 12V Thermal Vacuum Chamber. The CBM is the primary mechanical interface for joining the International Space Station Alpha modules on-orbit. The...Berthing Mechanism developed under the NASA-MSFC/Boeing International Space Station Alpha program. Performance parameters validated by tests include: thermal

  8. Common genetic effects of gender atypical behavior in childhood and sexual orientation in adulthood: a study of Finnish twins.

    PubMed

    Alanko, Katarina; Santtila, Pekka; Harlaar, Nicole; Witting, Katarina; Varjonen, Markus; Jern, Patrik; Johansson, Ada; von der Pahlen, Bettina; Sandnabba, N Kenneth

    2010-02-01

    The existence of genetic effects on gender atypical behavior in childhood and sexual orientation in adulthood and the overlap between these effects were studied in a population-based sample of 3,261 Finnish twins aged 33-43 years. The participants completed items on recalled childhood behavior and on same-sex sexual interest and behavior, which were combined into a childhood gender atypical behavior and a sexual orientation variable, respectively. The phenotypic association between the two variables was stronger for men than for women. Quantitative genetic analyses showed that variation in both childhood gender atypical behavior and adult sexual orientation was partly due to genetics, with the rest being explained by nonshared environmental effects. Bivariate analyses suggested that substantial common genetic and modest common nonshared environmental correlations underlie the co-occurrence of the two variables. The results were discussed in light of previous research and possible implications for theories of gender role development and sexual orientation.

  9. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains

    PubMed Central

    Tadmor-Levi, Roni; Asoulin, Efrat; Hulata, Gideon; David, Lior

    2017-01-01

    Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain “Amur Sassan” was successfully introgressed into two susceptible cultured strains up to the first backcross (BC1) generation. Variation in resistance of families from F1 and BC1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them

  10. Direct detection of common and rare inversion mutations in the genetic diagnosis of severe hemophilia A

    SciTech Connect

    Windsor, A.S.; Lillicrap, D.P.; Taylor, S.A.M.

    1994-09-01

    Approximately 50% of the cases of severe hemophilia A (factor VIII:C < 0.01 units/ml) may be due to gross rearrangements of the factor VIII gene. The mutation involves homologous sequences upstream of the factor VIII locus and within intron 22 in an intrachromosomal recombination, inversion, event. The rearrangements can readily be detected on a Southern blot using a probe that is complementary to sequences from within intron 22. We describe here the analysis of this mutation in 71 severe hemophilia A patients. Thirty two of the patients (45%) showed evidence of a rearrangement. Five different patterns of rearrangements were seen, two of which have previously been described and account for the majority of cases (pattern 1, 70% and pattern 2, 16%). Three other abnormal patterns were observed. The inversion mechanism does not usually result in the loss or gain of any genetic material, but in one patient, in whom a unique rearrangement pattern was observed (pattern 3), we have previously documented a gross deletion which removes exons 1-22 of the factor VII gene as well as sequences 5{prime} to the gene. In another individual a fourth pattern in which an extra 19.0 kb band is present was detected. In this case it is unclear as to whether the rearrangement is responsible for the disease or is simply coincident normal variation. A fifth pattern, in which an extra 16.0 kb band was detected, was observed in a family with a new mutation causing hemophilia A. The affected individual and his mother inherited a de novo rearrangement of the factor VIII gene from his unaffected grandfather, implicating it as the cause of the disease. In conclusion, testing for the factor VIII inversion mutation was positive in approximately 45% of severe hemophiliacs, 72% of whom were isolated cases, and as such should constitute the initial stage in the genetic testing protocol for these patients` families.

  11. Genetic Association Analysis of Common Variants in FOXO3 Related to Longevity in a Chinese Population

    PubMed Central

    Yan, Dongjing; Liao, Xiaoping; Wang, Xianshou; Fu, Yunxin; Cai, Wangwei

    2016-01-01

    Recent studies suggested that forkhead box class O3 (FOXO3) functions as a key regulator for the insulin/insulin-like growth factor-1signaling pathway that influence aging and longevity. This study aimed to comprehensively elucidate the association of common genetic variants in FOXO3 with human longevity in a Chinese population. Eighteen single-nucleotide polymorphisms (SNPs) in FOXO3 were successfully genotyped in 616 unrelated long-lived individuals and 846 younger controls. No nominally significant effects were found. However, when stratifying by gender, four SNPs (rs10499051, rs7762395, rs4946933 and rs3800230) previously reported to be associated with longevity and one novel SNP (rs4945815) showed significant association with male longevity (P-values: 0.007–0.032), but all SNPs were not associated with female longevity. Correspondingly, males carrying the G-G-T-G haplotype of rs10499051, rs7762395, rs4945815 and rs3800230 tended to have longer lifespan than those carrying the most common haplotype A-G-C-T (odds ratio = 2.36, 95% confidence interval = 1.20–4.63, P = 0.013). However, none of the associated SNPs and haplotype remained significant after Bonferroni correction. In conclusion, our findings revealed that the FOXO3 variants we tested in our population of Chinese men and women were associated with longevity in men only. None of these associations passed Bonferroni correction. Bonferroni correction is very stringent for association studies. We therefore believe the effects of these nominally significant variants on human longevity will be confirmed by future studies. PMID:27936216

  12. Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group.

    PubMed

    Borah, Basanta K; Sharma, Shweta; Kant, Ravi; Johnson, A M Anthony; Saigopal, Divi Venkata Ramana; Dasgupta, Indranil

    2013-10-01

    Plant viruses, possessing a bacilliform shape and containing double-stranded DNA, are emerging as important pathogens in a number of agricultural and horticultural crops in the tropics. They have been reported from a large number of countries in African and Asian continents, as well as from islands from the Pacific region. The viruses, belonging to two genera, Badnavirus and Tungrovirus, within the family Caulimoviridae, have genomes displaying a common plan, yet are highly variable, sometimes even between isolates of the same virus. In this article, we summarize the current knowledge with a view to revealing the common features embedded within the genetic diversity of this group of viruses. Virus; order Unassigned; family Caulimoviridae; genera Badnavirus and Tungrovirus; species Banana streak viruses, Bougainvillea spectabilis chlorotic vein banding virus, Cacao swollen shoot virus, Citrus yellow mosaic badnavirus, Dioscorea bacilliform viruses, Rice tungro bacilliform virus, Sugarcane bacilliform viruses and Taro bacilliform virus. Bacilliform in shape; length, 60-900 nm; width, 35-50 nm; circular double-stranded DNA of approximately 7.5 kbp with one or more single-stranded discontinuities. Each virus generally limited to its own host, including banana, bougainvillea, black pepper, cacao, citrus species, Dioscorea alata, rice, sugarcane and taro. Foliar streaking in banana and sugarcane, swelling of shoots in cacao, yellow mosaic in leaves and stems in citrus, brown spot in the tubers in yam and yellow-orange discoloration and stunting in rice. http://www.dpvweb.net. 2013 BSPP and JOHN WILEY & SONS LTD

  13. A Common Variation in EDAR Is a Genetic Determinant of Shovel-Shaped Incisors

    PubMed Central

    Kimura, Ryosuke; Yamaguchi, Tetsutaro; Takeda, Mayako; Kondo, Osamu; Toma, Takashi; Haneji, Kuniaki; Hanihara, Tsunehiko; Matsukusa, Hirotaka; Kawamura, Shoji; Maki, Koutaro; Osawa, Motoki; Ishida, Hajime; Oota, Hiroki

    2009-01-01

    Shovel shape of upper incisors is a common characteristic in Asian and Native American populations but is rare or absent in African and European populations. Like other common dental traits, genetic polymorphisms involved in the tooth shoveling have not yet been clarified. In ectodysplasin A receptor (EDAR), where dysfunctional mutations cause hypohidrotic ectodermal dysplasia, there is a nonsynonymous-derived variant, 1540C (rs3827760), that has a geographic distribution similar to that of the tooth shoveling. This allele has been recently reported to be associated with Asian-specific hair thickness. We aimed to clarify whether EDAR 1540C is also associated with dental morphology. For this purpose, we measured crown diameters and tooth-shoveling grades and analyzed the correlations between the dental traits and EDAR genotypes in two Japanese populations, inhabitants around Tokyo and in Sakishima Islands. The number of EDAR 1540C alleles in an individual was strongly correlated with the tooth-shoveling grade (p = 7.7 × 10−10). The effect of the allele was additive and explained 18.9% of the total variance in the shoveling grade, which corresponds to about one-fourth of the heritability of the trait reported previously. For data reduction of individual-level metric data, we applied a principal-component analysis, which yielded PC1-4, corresponding to four patterns of tooth size; this result implies that multiple factors are involved in dental morphology. The 1540C allele also significantly affected PC1 (p = 4.9 × 10−3), which denotes overall tooth size, and PC2 (p = 2.6 × 10−3), which denotes the ratio of mesiodistal diameter to buccolingual diameter. PMID:19804850

  14. Genetic Changes Accompanying the Domestication of Pisum sativum: Is there a Common Genetic Basis to the ‘Domestication Syndrome’ for Legumes?

    PubMed Central

    Weeden, Norman F.

    2007-01-01

    Background and Aims The changes that occur during the domestication of crops such as maize and common bean appear to be controlled by relatively few genes. This study investigates the genetic basis of domestication in pea (Pisum sativum) and compares the genes involved with those determined to be important in common bean domestication. Methods Quantitative trait loci and classical genetic analysis are used to investigate and identify the genes modified at three stages of the domestication process. Five recombinant inbred populations involving crosses between different lines representing different stages are examined. Key Results A minimum of 15 known genes, in addition to a relatively few major quantitative trait loci, are identified as being critical to the domestication process. These genes control traits such as pod dehiscence, seed dormancy, seed size and other seed quality characters, stem height, root mass, and harvest index. Several of the genes have pleiotropic effects that in species possessing a more rudimentary genetic characterization might have been interpreted as clusters of genes. Very little evidence for gene clustering was found in pea. When compared with common bean, pea has used a different set of genes to produce the same or similar phenotypic changes. Conclusions Similar to results for common bean, relatively few genes appear to have been modified during the domestication of pea. However, the genes involved are different, and there does not appear to be a common genetic basis to ‘domestication syndrome’ in the Fabaceae. PMID:17660515

  15. Common variants of OPA1 conferring genetic susceptibility to leprosy in Han Chinese from Southwest China.

    PubMed

    Xiang, Yang-Lin; Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2015-11-01

    Leprosy is an ancient chronic infection caused by Mycobacterium leprae. Onset of leprosy was highly affected by host nutritional condition and energy production, (partially) due to genomic loss and parasitic life style of M. leprae. The optic atrophy 1 (OPA1) gene plays an essential role in mitochondria, which function in cellular energy supply and innate immunity. To investigate the potential involvement of OPA1 in leprosy. We analyzed 7 common genetic variants of OPA1 in 1110 Han Chinese subjects with and without leprosy, followed by mRNA expression profiling and protein-protein interaction (PPI) network analysis. We observed positive associations between OPA1 variants rs9838374 (Pgenotypic=0.003) and rs414237 (Pgenotypic=0.002) with lepromatous leprosy. expression quantitative trait loci (eQTL) analysis showed that the leprosy-related risk allele C of rs414237 is correlated with lower OPA1 mRNA expression level. Indeed, we identified a decrease of OPA1 mRNA expression in both with patients and cellular model of leprosy. In addition, the PPI analysis showed that OPA1 protein was actively involved in the interaction network of M. leprae induced differentially expressed genes. Our results indicated that OPA1 variants confer risk of leprosy and may affect OPA1 expression, mitochondrial function and antimicrobial pathways. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures.

    PubMed

    Olalde, Iñigo; Schroeder, Hannes; Sandoval-Velasco, Marcela; Vinner, Lasse; Lobón, Irene; Ramirez, Oscar; Civit, Sergi; García Borja, Pablo; Salazar-García, Domingo C; Talamo, Sahra; María Fullola, Josep; Xavier Oms, Francesc; Pedro, Mireia; Martínez, Pablo; Sanz, Montserrat; Daura, Joan; Zilhão, João; Marquès-Bonet, Tomàs; Gilbert, M Thomas P; Lalueza-Fox, Carles

    2015-12-01

    The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter-gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. A Common Genetic Origin for Early Farmers from Mediterranean Cardial and Central European LBK Cultures

    PubMed Central

    Olalde, Iñigo; Schroeder, Hannes; Sandoval-Velasco, Marcela; Vinner, Lasse; Lobón, Irene; Ramirez, Oscar; Civit, Sergi; García Borja, Pablo; Salazar-García, Domingo C.; Talamo, Sahra; María Fullola, Josep; Xavier Oms, Francesc; Pedro, Mireia; Martínez, Pablo; Sanz, Montserrat; Daura, Joan; Zilhão, João; Marquès-Bonet, Tomàs; Gilbert, M. Thomas P.; Lalueza-Fox, Carles

    2015-01-01

    The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter–gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible. PMID:26337550

  18. Novel insights into thyroid hormones from the study of common genetic variation.

    PubMed

    Dayan, Colin M; Panicker, Vijay

    2009-04-01

    Effects of thyroid hormones in individual tissues are determined by many factors beyond their serum levels, including local deiodination and expression and activity of thyroid hormone transporters. These effects are difficult to examine by traditional techniques, but a novel approach that exploits the existence of common genetic variants has yielded new and surprising insights. Convincing evidence indicates a role of type 1 iodothyronine deiodinase (D1) in determining the serum T(4):T(3) ratio and a role of phosphodiesterase 8B in determining TSH levels. In addition, studies of type 2 iodothyronine deiodinase (D2) variants have shown that thyroid hormones contribute to osteoarthritis and these variants influence Intelligence quotient alterations associated with iodine deficiency. Preliminary evidence suggests associations between TSH-receptor variants and fasting glucose level, D1 variants and insulin-like growth factor I production, and D2 variants and hypertension, psychological well-being and response to T(3) or T(4) treatment. Intriguingly, most of these associations are independent of serum thyroid hormone levels, which highlights the importance of local regulation of thyroid hormones in tissues. Future research might reveal novel roles for thyroid hormones in obesity, cardiovascular disease, osteoporosis and depression and could have implications for interpretation of thyroid function tests and individualization of thyroid hormone replacement therapy.

  19. Low-frequency and common genetic variation in ischemic stroke: The METASTROKE collaboration.

    PubMed

    Malik, Rainer; Traylor, Matthew; Pulit, Sara L; Bevan, Steve; Hopewell, Jemma C; Holliday, Elizabeth G; Zhao, Wei; Abrantes, Patricia; Amouyel, Philippe; Attia, John R; Battey, Thomas W K; Berger, Klaus; Boncoraglio, Giorgio B; Chauhan, Ganesh; Cheng, Yu-Ching; Chen, Wei-Min; Clarke, Robert; Cotlarciuc, Ioana; Debette, Stephanie; Falcone, Guido J; Ferro, Jose M; Gamble, Dale M; Ilinca, Andreea; Kittner, Steven J; Kourkoulis, Christina E; Lemmens, Robin; Levi, Christopher R; Lichtner, Peter; Lindgren, Arne; Liu, Jingmin; Meschia, James F; Mitchell, Braxton D; Oliveira, Sofia A; Pera, Joana; Reiner, Alex P; Rothwell, Peter M; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tatlisumak, Turgut; Thijs, Vincent; Vicente, Astrid M; Woo, Daniel; Seshadri, Sudha; Saleheen, Danish; Rosand, Jonathan; Markus, Hugh S; Worrall, Bradford B; Dichgans, Martin

    2016-03-29

    To investigate the influence of common and low-frequency genetic variants on the risk of ischemic stroke (all IS) and etiologic stroke subtypes. We meta-analyzed 12 individual genome-wide association studies comprising 10,307 cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We selected variants showing the highest degree of association (p < 1E-5) in the discovery phase for replication in Caucasian (13,435 cases and 29,269 controls) and South Asian (2,385 cases and 5,193 controls) samples followed by a transethnic meta-analysis. We further investigated the p value distribution for different bins of allele frequencies for all IS and stroke subtypes. We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed significant enrichment in low-frequency variants (allele frequency <5%) for both LVD and small vessel disease, and an enrichment of higher frequency variants (allele frequency 10% and 30%) for CE (all p < 1E-5). Our findings suggest that the missing heritability in IS subtypes can in part be attributed to low-frequency and rare variants. Larger sample sizes are needed to identify the variants associated with all IS and stroke subtypes. © 2016 American Academy of Neurology.

  20. Cumulative role of rare and common putative functional genetic variants at NPAS3 in schizophrenia susceptibility.

    PubMed

    González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier

    2015-10-01

    Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.

  1. Cardioviruses Are Genetically Diverse and Cause Common Enteric Infections in South Asian Children▿

    PubMed Central

    Blinkova, Olga; Kapoor, Amit; Victoria, Joseph; Jones, Morris; Wolfe, Nathan; Naeem, Asif; Shaukat, Shahzad; Sharif, Salmaan; Alam, Muhammad Masroor; Angez, Mehar; Zaidi, Sohail; Delwart, Eric L.

    2009-01-01

    Cardioviruses cause enteric infections in mice and rats which when disseminated have been associated with myocarditis, type 1 diabetes, encephalitis, and multiple sclerosis-like symptoms. Cardioviruses have also been detected at lower frequencies in other mammals. The Cardiovirus genus within the Picornaviridae family is currently made up of two viral species, Theilovirus and Encephalomyocarditis virus. Until recently, only a single strain of cardioviruses (Vilyuisk virus within the Theilovirus species) associated with a geographically restricted and prevalent encephalitis-like condition had been reported to occur in humans. A second theilovirus-related cardiovirus (Saffold virus [SAFV]) was reported in 2007 and subsequently found in respiratory secretions from children with respiratory problems and in stools of both healthy and diarrheic children. Using viral metagenomics, we identified RNA fragments related to SAFV in the stools of Pakistani and Afghani children with nonpolio acute flaccid paralysis (AFP). We sequenced three near-full-length genomes, showing the presence of divergent strains of SAFV and preliminary evidence of a distant recombination event between the ancestors of the Theiler-like viruses of rats and those of human SAFV. Further VP1 sequencing showed the presence of five new SAFV genotypes, doubling the reported genetic diversity of human and animal theiloviruses combined. Both AFP patients and healthy children in Pakistan were found to be excreting SAFV at high frequencies of 9 and 12%, respectively. Further studies are needed to examine the roles of these highly common and diverse SAFV genotypes in nonpolio AFP and other human diseases. PMID:19193786

  2. Cardioviruses are genetically diverse and cause common enteric infections in South Asian children.

    PubMed

    Blinkova, Olga; Kapoor, Amit; Victoria, Joseph; Jones, Morris; Wolfe, Nathan; Naeem, Asif; Shaukat, Shahzad; Sharif, Salmaan; Alam, Muhammad Masroor; Angez, Mehar; Zaidi, Sohail; Delwart, Eric L

    2009-05-01

    Cardioviruses cause enteric infections in mice and rats which when disseminated have been associated with myocarditis, type 1 diabetes, encephalitis, and multiple sclerosis-like symptoms. Cardioviruses have also been detected at lower frequencies in other mammals. The Cardiovirus genus within the Picornaviridae family is currently made up of two viral species, Theilovirus and Encephalomyocarditis virus. Until recently, only a single strain of cardioviruses (Vilyuisk virus within the Theilovirus species) associated with a geographically restricted and prevalent encephalitis-like condition had been reported to occur in humans. A second theilovirus-related cardiovirus (Saffold virus [SAFV]) was reported in 2007 and subsequently found in respiratory secretions from children with respiratory problems and in stools of both healthy and diarrheic children. Using viral metagenomics, we identified RNA fragments related to SAFV in the stools of Pakistani and Afghani children with nonpolio acute flaccid paralysis (AFP). We sequenced three near-full-length genomes, showing the presence of divergent strains of SAFV and preliminary evidence of a distant recombination event between the ancestors of the Theiler-like viruses of rats and those of human SAFV. Further VP1 sequencing showed the presence of five new SAFV genotypes, doubling the reported genetic diversity of human and animal theiloviruses combined. Both AFP patients and healthy children in Pakistan were found to be excreting SAFV at high frequencies of 9 and 12%, respectively. Further studies are needed to examine the roles of these highly common and diverse SAFV genotypes in nonpolio AFP and other human diseases.

  3. Genetic progress estimation strategy for upright common bean plants using recurrent selection.

    PubMed

    Pereira, L A; Abreu, A F B; Júnior, I C Vieira; Pires, L P M; Ramalho, M A P

    2017-03-22

    Common bean producers in Brazil tend to grow plants as upright as possible. Because the control of this trait involves a large number of genes, recurrent selection (RS) is the best approach for successful plant improvement. Because plant architecture (PA) is evaluated using scores and usually has high heritability, RS for PA is performed through visual selection in generation S0. The aim of the present study was to evaluate selection progress and investigate whether this progress varies with the number of selected progenies or the generation evaluated. In addition, the effect of RS for the upright (PA) trait on progeny grain yield (GY) was investigated. Data of progenies S0:3 and S0:4 of the fifth, eighth, and twelfth cycles were used. A combined analysis of variance was performed using the adjusted means of the 47 best progenies from each generation and cycle, using two control cultivars as reference. A joint analysis of the two generations used during the evaluation of progenies for the different cycles was also performed. The genetic progress (GP) was estimated by fitting a linear regression equation to the relationship between the adjusted mean of each cycle and the number of cycles. We found that RS was efficient and the estimated GP of the evaluated progenies was 4.5%. Based on the GY heritability estimates, in more advanced generation selection for GY can be successfully performed on progenies. Thus, the selection already done for PA in F2 could be associated to the most productive progenies.

  4. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Wang, Lanfen; Mantri, Nitin; Zhang, Xiaoyan; Zhu, Zhendong; Wang, Shumin

    2017-01-01

    Anthracnose is a destructive disease of the common bean (Phaseolus vulgaris L.). The Andean cultivar Hongyundou has been demonstrated to possess strong resistance to anthracnose race 81. To study the genetics of this resistance, the Hongyundou cultivar was crossed with a susceptible genotype Jingdou. Segregation of resistance for race 81 was assessed in the F2 population and F2:3 lines under controlled conditions. Results indicate that Hongyundou carries a single dominant gene for anthracnose resistance. An allele test by crossing Hongyundou with another resistant cultivar revealed that the resistance gene is in the Co-1 locus (therefore named Co-1HY). The physical distance between this locus and the two flanking markers was 46 kb, and this region included four candidate genes, namely, Phvul.001G243500, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. These candidate genes encoded serine/threonine-protein kinases. Expression analysis of the four candidate genes in the resistant and susceptible cultivars under control condition and inoculated treatment revealed that all the four candidate genes are expressed at significantly higher levels in the resistant genotype than in susceptible genotype. Phvul.001G243600 and Phvul.001G243700 are expressed nearly 15-fold and 90-fold higher in the resistant genotype than in the susceptible parent before inoculation, respectively. Four candidate genes will provide useful information for further research into the resistance mechanism of anthracnose in common bean. The closely linked flanking markers identified here may be useful for transferring the resistance allele Co-1HY from Hongyundou to elite anthracnose susceptible common bean lines. PMID:28076395

  5. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.).

    PubMed

    Chen, Mingli; Wu, Jing; Wang, Lanfen; Mantri, Nitin; Zhang, Xiaoyan; Zhu, Zhendong; Wang, Shumin

    2017-01-01

    Anthracnose is a destructive disease of the common bean (Phaseolus vulgaris L.). The Andean cultivar Hongyundou has been demonstrated to possess strong resistance to anthracnose race 81. To study the genetics of this resistance, the Hongyundou cultivar was crossed with a susceptible genotype Jingdou. Segregation of resistance for race 81 was assessed in the F2 population and F2:3 lines under controlled conditions. Results indicate that Hongyundou carries a single dominant gene for anthracnose resistance. An allele test by crossing Hongyundou with another resistant cultivar revealed that the resistance gene is in the Co-1 locus (therefore named Co-1HY). The physical distance between this locus and the two flanking markers was 46 kb, and this region included four candidate genes, namely, Phvul.001G243500, Phvul.001G243600, Phvul.001G243700 and Phvul.001G243800. These candidate genes encoded serine/threonine-protein kinases. Expression analysis of the four candidate genes in the resistant and susceptible cultivars under control condition and inoculated treatment revealed that all the four candidate genes are expressed at significantly higher levels in the resistant genotype than in susceptible genotype. Phvul.001G243600 and Phvul.001G243700 are expressed nearly 15-fold and 90-fold higher in the resistant genotype than in the susceptible parent before inoculation, respectively. Four candidate genes will provide useful information for further research into the resistance mechanism of anthracnose in common bean. The closely linked flanking markers identified here may be useful for transferring the resistance allele Co-1HY from Hongyundou to elite anthracnose susceptible common bean lines.

  6. Common variants of the PINK1 and PARL genes do not confer genetic susceptibility to schizophrenia in Han Chinese.

    PubMed

    Li, Xiao; Zhang, Wen; Zhang, Chen; Yi, Zhenghui; Zhang, Deng-Feng; Gong, Wei; Tang, Jinsong; Wang, Dong; Lu, Weihong; Chen, Xiaogang; Fang, Yiru; Yao, Yong-Gang

    2015-04-01

    Schizophrenia is a prevalent psychiatric disorder with a complex etiology. Mitochondrial dysfunction has been frequently reported in schizophrenia. Phosphatase and tension homologue-induced kinase 1 (PINK1) and presenilin-associated rhomboid-like protease (PARL) are mitochondrial proteins, and genetic variants of these two genes may confer genetic susceptibility to schizophrenia by influencing mitochondrial function. In this study, we conducted a two-stage genetic association study to test this hypothesis. We genotyped 4 PINK1 and 5 PARL genetic variants and evaluated the potential association of the 9 SNPs with schizophrenia in two independent case-control cohorts of 2510 Han Chinese individuals. No positive association of common genetic variants of the PINK1 and PARL genes with schizophrenia was identified in our samples after Bonferroni correction. Re-analysis of the newly updated Psychiatric Genetics Consortium (PGC) data sets confirmed our negative result. Intriguingly, one PINK1 SNP (rs10916832), which showed a marginally significant association in only Hunan samples (P = 0.032), is associated with the expression of a schizophrenia susceptible gene KIF17 according to the expression quantitative trait locus (eQTL) analysis. Our study indicated that common genetic variants of the PINK1 and PARL genes are unlikely to be involved in schizophrenia. Further studies are essential to characterize the role of the PINK1 and PARL genes in schizophrenia.

  7. Rhizobium etli and Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: population genetics and biogeographic implications.

    PubMed

    Silva, Claudia; Vinuesa, Pablo; Eguiarte, Luis E; Martínez-Romero, Esperanza; Souza, Valeria

    2003-02-01

    The stability of the genetic structure of rhizobial populations nodulating Phaseolus vulgaris cultivated in a traditionally managed milpa plot in Mexico was studied over three consecutive years. The set of molecular markers analyzed (including partial rrs, glnII, nifH, and nodB sequences), along with host range experiments, placed the isolates examined in Rhizobium etli bv. phaseoli and Rhizobium gallicum bv. gallicum. Cluster analysis of multilocus enzyme electrophoresis and plasmid profile data separated the two species and identified numerically dominant clones within each of them. Population genetic analyses showed that there was high genetic differentiation between the two species and that there was low intrapopulation differentiation of the species over the 3 years. The results of linkage disequilibrium analyses are consistent with an epidemic genetic structure for both species, with frequent genetic exchange taking place within conspecific populations but not between the R. etli and R. gallicum populations. A subsample of isolates was selected and used for 16S ribosomal DNA PCR-restriction fragment length polymorphism analysis, nifH copy number determination, and host range experiments. Plasmid profiles and nifH hybridization patterns also revealed the occurrence of lateral plasmid transfer among distinct multilocus genotypes within species but not between species. Both species were recovered from nodules of the same plants, indicating that mechanisms other than host, spatial, or temporal isolation may account for the genetic barrier between the species. The biogeographic implications of finding an R. gallicum bv. gallicum population nodulating common bean in America are discussed.

  8. Interaction between common breast cancer susceptibility variants, genetic ancestry, and non-genetic risk factors in Hispanic women

    PubMed Central

    Fejerman, Laura; Stern, Mariana C.; John, Esther M.; Torres-Mejía, Gabriela; Hines, Lisa M.; Wolff, Roger K.; Baumgartner, Kathy B.; Giuliano, Anna R.; Ziv, Elad; Pérez-Stable, Eliseo J.; Slattery, Martha L.

    2015-01-01

    Background Most genetic variants associated with breast cancer risk have been discovered in women of European ancestry, and only a few genome-wide association studies (GWAS) have been conducted in minority groups. This research disparity persists in post-GWAS gene-environment interaction analyses. We tested the interaction between hormonal and lifestyle risk factors for breast cancer, and ten GWAS-identified single nucleotide polymorphisms (SNPs) among 2,107 Hispanic women with breast cancer and 2,587 unaffected controls, to gain insight into a previously reported gene by ancestry interaction in this population. Methods We estimated genetic ancestry with a set of 104 ancestry-informative markers selected to discriminate between Indigenous American and European ancestry. We used logistic regression models to evaluate main effects and interactions. Results We found that the rs13387042-2q35(G/A) SNP was associated with breast cancer risk only among postmenopausal women who never used hormone therapy [per A allele odds ratio (OR): 0.94 (95% confidence interval 0.74–1.20), 1.20 (0.94–1.53) and 1.49 (1.28–1.75) for current, former and never hormone therapy users, respectively, P-interaction 0.002] and premenopausal women who breastfed >12 months [OR: 1.01 (0.72–1.42), 1.19 (0.98–1.45) and 1.69 (1.26–2.26) for never, <12 months, and >12 months breastfeeding, respectively, P-interaction 0.014]. Conclusions The correlation between genetic ancestry, hormone replacement therapy use, and breastfeeding behavior partially explained a previously reported interaction between a breast cancer risk variant and genetic ancestry in Hispanic women. Impact These results highlight the importance of understanding the interplay between genetic ancestry, genetics, and non-genetic risk factors and their contribution to breast cancer risk. PMID:26364163

  9. Cellular and network mechanisms of genetically-determined absence seizures

    PubMed Central

    Pinault, Didier; O'Brien, Terence J.

    2005-01-01

    The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each of these models has its particular strengths and limitations, and the validity of findings from these models for the human condition cannot be assumed. Consequently, studies in different models have produced some conflicting findings and conclusions. A long-standing concept, based primarily from studies in vivo in cats and in vitro brain slices, is that these paroxysmal electrical events develop suddenly from sleep-related spindle oscillations. More specifically, it is proposed that the initial mechanisms that underlie absence-related spike-and-wave discharges are located in the thalamus, involving especially the thalamic reticular nucleus. By contrast, more recent studies in well-established, genetic models of absence epilepsy in rats demonstrate that spike-and-wave discharges originate in a cortical focus and develop from a wake-related natural corticothalamic sensorimotor rhythm. In this review we integrate recent findings showing that, in both the thalamus and the neocortex, genetically-determined, absence-related spike-and-wave discharges are the manifestation of hypersynchronized, cellular, rhythmic excitations and inhibitions that result from a combination of complex, intrinsic, synaptic mechanisms. Arguments are put forward supporting the hypothesis that layer VI corticothalamic neurons act as ‘drivers’ in the generation of spike-and-wave discharges in the somatosensory thalamocortical system that result in corticothalamic resonances particularly initially involving the thalamic reticular nucleus. However an important unresolved question is: what are the cellular

  10. Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae).

    PubMed

    Kwak, Myounghai; Gepts, Paul

    2009-03-01

    Domesticated materials with well-known wild relatives provide an experimental system to reveal how human selection during cultivation affects genetic composition and adaptation to novel environments. In this paper, our goal was to elucidate how two geographically distinct domestication events modified the structure and level of genetic diversity in common bean. Specifically, we analyzed the genome-wide genetic composition at 26, mostly unlinked microsatellite loci in 349 accessions of wild and domesticated common bean from the Andean and Mesoamerican gene pools. Using a model-based approach, implemented in the software STRUCTURE, we identified nine wild or domesticated populations in common bean, including four of Andean and four of Mesoamerican origins. The ninth population was the putative wild ancestor of the species, which was classified as a Mesoamerican population. A neighbor-joining analysis and a principal coordinate analysis confirmed genetic relationships among accessions and populations observed with the STRUCTURE analysis. Geographic and genetic distances in wild populations were congruent with the exception of a few putative hybrids identified in this study, suggesting a predominant effect of isolation by distance. Domesticated common bean populations possessed lower genetic diversity, higher F(ST), and generally higher linkage disequilibrium (LD) than wild populations in both gene pools; their geographic distributions were less correlated with genetic distance, probably reflecting seed-based gene flow after domestication. The LD was reduced when analyzed in separate Andean and Mesoamerican germplasm samples. The Andean domesticated race Nueva Granada had the highest F(ST) value and widest geographic distribution compared to other domesticated races, suggesting a very recent origin or a selection event, presumably associated with a determinate growth habit, which predominates in this race.

  11. High-level DNA amplifications are common genetic aberrations in B-cell neoplasms.

    PubMed Central

    Werner, C. A.; Döhner, H.; Joos, S.; Trümper, L. H.; Baudis, M.; Barth, T. F.; Ott, G.; Möller, P.; Lichter, P.; Bentz, M.

    1997-01-01

    Gene amplification is one of the molecular mechanisms resulting in the up-regulation of gene expression. In non-Hodgkin's lymphomas, such gene amplifications have been identified rarely. Using comparative genomic hybridization, a technique that has proven to be very sensitive for the detection of high-level DNA amplifications, we analyzed 108 cases of B-cell neoplasms (42 chronic B-cell leukemias, 5 mantle cell lymphomas, and 61 aggressive B-cell lymphomas). Twenty-four high-level amplifications were identified in 13% of the patients and mapped to 15 different genomic regions. Regions most frequently amplified were bands Xq26-28, 2p23-24, and 2p14-16 as well as 18q21 (three times each). Amplification of several proto-oncogenes and a cell cycle control gene (N-MYC (two cases), BCL2, CCND2, and GLI) located within the amplified regions was demonstrated by Southern blot analysis or fluorescence in situ hybridization to interphase nuclei of tumor cells. These data demonstrate that gene amplifications in B-cell neoplasms are much more frequent than previously assumed. The identification of highly amplified DNA regions and genes included in the amplicons provides important information for further analyses of genetic events involved in lymphomagenesis. Images Figure 2 Figure 3 PMID:9250147

  12. [Ethanol tolerance in yeast: molecular mechanisms and genetic engineering].

    PubMed

    Zhang, Qiumei; Zhao, Xinqing; Jiang, Rujiao; Li, Qian; Bai, Fengwu

    2009-04-01

    Improvement of stress tolerance to various adverse environmental conditions (such as toxic products, high temperature) of the industrial microorganisms is important for industrial applications. Ethanol produced by yeast fermentation is inhibitory to both yeast cell growth and metabolisms, and consequently is one of the key stress elements of brewer's yeast. Research on the biochemical and molecular mechanism of the tolerance of yeast can provide basis for breeding of yeast strain with improved ethanol tolerance. In recent years, employing global gene transcriptional analysis and functional analysis, new knowledge on the biochemical and molecular mechanisms of yeast ethanol tolerance has been accumulated, and novel genes and biochemical parameters related to ethanol tolerance have been revealed. Based on these studies, the overexpression and/or disruption of the related genes have successfully resulted in the breeding of new yeast strains with improved ethanol tolerance. This paper reviewed the recent research progress on the molecular mechanism of yeast ethanol tolerance, as well as the genetic engineering manipulations to improve yeast ethanol tolerance. The studies reviewed here not only deepened our knowledge on yeast ethanol tolerance, but also provided basis for more efficient bioconversion for bio-energy production.

  13. Autoimmune thyroid disease: mechanism, genetics and current knowledge.

    PubMed

    Dong, Y H; Fu, D G

    2014-01-01

    Recent epidemiological studies recognized a steady increase in the incidence of different autoimmune endocrine disorders, including autoimmune thyroid disease (AITD). The etiology of AITD is multifactorial and involves genetic and environmental factors and apparently with a strong preponderance in females. There are mainly two types of AITD, Graves' disease and Hashimoto's disease and both of these show strong association in age groups above 45-50 years. Among environmental factors smoking and alcohol have significant effects, both protective as well as for aggravating the disease, even though the precise nature of these effects are not clearly known. There are elevated levels of circulating antibodies against the thyroid proteins, mainly thyroid oxidase, thyroglobulin and thyroid stimulating hormone receptor, in patients with Graves' disease or Hashimoto's disease. Linkage and association studies in AITD identified several major genes that are relevant for the onset of AITD, including the thyroid-specific genes, thyroglobulin and thyroid-stimulating hormone receptor and also many immune-regulatory genes. In this review we addressed many aspects of AITD including disease mechanisms, involved thyroid antigens, environmental factors and genetic factors.

  14. Epigenetics and genetics in endometrial cancer: new carcinogenic mechanisms and relationship with clinical practice.

    PubMed

    Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Susumu, Nobuyuki; Aoki, Daisuke

    2012-04-01

    Endometrial cancer is the seventh most common cancer worldwide among females. An increased incidence and a younger age of patients are also predicted to occur, and therefore elucidation of the pathological mechanisms is important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, epigenetic mechanisms have been examined. Silencing of genes by DNA hypermethylation, hereditary epimutation of DNA mismatch repair genes and regulation of gene expression by miRNAs may underlie carcinogenesis in endometrial cancer. New therapies include targeting epigenetic changes using histone deacetylase inhibitors. Some cases of endometrial cancer may also be hereditary. Thus, patients with Lynch syndrome which is a hereditary disease, have a higher risk for developing endometrial cancer than the general population. Identification of such disease-related genes may contribute to early detection and prevention of endometrial cancer.

  15. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    SciTech Connect

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  16. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer.

    PubMed

    Jefferson, Artrish; Cadet, Valerie E; Hielscher, Abigail

    2015-09-01

    The use of oncolytic viruses for the treatment of cancer is an emerging field of cancer research and therapy. Oncolytic viruses are designed to induce tumor specific immunity while replicating selectively within cancer cells to cause lysis of the tumor cells. While there are several forms of oncolytic viruses, the use of vaccinia viruses for oncolysis may be more beneficial than other forms of oncolytic viruses. For example, vaccinia viruses have been shown to exert their anti-tumor effects through genetic engineering strategies which enhance their therapeutic efficacy. This paper will address some of the most common forms of genetically modified vaccinia viruses and will explore the mechanisms whereby they selectively target, enter and destroy cancer cells. Furthermore, this review will highlight how vaccinia viruses activate host immune responses against cancer cells and will address clinical trials evaluating the tumor-directed and killing efficacy of these viruses against solid tumors.

  17. Mechanisms of suppression: The wiring of genetic resilience.

    PubMed

    van Leeuwen, Jolanda; Pons, Carles; Boone, Charles; Andrews, Brenda J

    2017-07-01

    Recent analysis of genome sequences has identified individuals that are healthy despite carrying severe disease-associated mutations. A possible explanation is that these individuals carry a second genomic perturbation that can compensate for the detrimental effects of the disease allele, a phenomenon referred to as suppression. In model organisms, suppression interactions are generally divided into two classes: genomic suppressors which are secondary mutations in the genome that bypass a mutant phenotype, and dosage suppression interactions in which overexpression of a suppressor gene rescues a mutant phenotype. Here, we describe the general properties of genomic and dosage suppression, with an emphasis on the budding yeast. We propose that suppression interactions between genetic variants are likely relevant for determining the penetrance of human traits. Consequently, an understanding of suppression mechanisms may guide the discovery of protective variants in healthy individuals that carry disease alleles, which could direct the rational design of new therapeutics. © 2017 WILEY Periodicals, Inc.

  18. [Sickle cell anemia causes varied symptoms and high morbidity. Serious prognosis in the most common genetic disease in the world].

    PubMed

    Kjellander, Christian; Sennström, Maria K B; Stiller, Viveka; Ågren, Anna

    2015-03-03

    Sickle cell anemia is a life-threatening disease, and the most common genetic disease in the world. The prevalence of sickle cell anemia in Sweden is unknown. Sickle cell anemia is an important disease, because of its variable complications, in many medical and surgical specialties. The overview highlights common medical problems encountered in sickle cell anemia presented through a case report of a pregnant woman.

  19. Common genetic variants and modification of penetrance of BRCA2-associated breast cancer.

    PubMed

    Gaudet, Mia M; Kirchhoff, Tomas; Green, Todd; Vijai, Joseph; Korn, Joshua M; Guiducci, Candace; Segrè, Ayellet V; McGee, Kate; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Gauthier-Villars, Marion; Sobol, Hagay; Longy, Michel; Frenay, Marc; GEMO Study Collaborators; Hogervorst, Frans B L; Rookus, Matti A; Collée, J Margriet; Hoogerbrugge, Nicoline; van Roozendaal, Kees E P; Piedmonte, Marion; Rubinstein, Wendy; Nerenstone, Stacy; Van Le, Linda; Blank, Stephanie V; Caldés, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Arason, Adalgeir; Johannsson, Oskar T; Barkardottir, Rosa B; Devilee, Peter; Olopade, Olofunmilayo I; Neuhausen, Susan L; Wang, Xianshu; Fredericksen, Zachary S; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Viel, Alessandra; Radice, Paolo; Phelan, Catherine M; Narod, Steven; Rennert, Gad; Lejbkowicz, Flavio; Flugelman, Anath; Andrulis, Irene L; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda E; Montagna, Marco; D'Andrea, Emma; Friedman, Eitan; Laitman, Yael; Borg, Ake; Beattie, Mary; Ramus, Susan J; Domchek, Susan M; Nathanson, Katherine L; Rebbeck, Tim; Spurdle, Amanda B; Chen, Xiaoqing; Holland, Helene; John, Esther M; Hopper, John L; Buys, Saundra S; Daly, Mary B; Southey, Melissa C; Terry, Mary Beth; Tung, Nadine; Overeem Hansen, Thomas V; Nielsen, Finn C; Greene, Mark H; Greene, Mark I; Mai, Phuong L; Osorio, Ana; Durán, Mercedes; Andres, Raquel; Benítez, Javier; Weitzel, Jeffrey N; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Platte, Radka; Evans, D Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Walker, Lisa; Eason, Jacqueline; Barwell, Julian; Godwin, Andrew K; Schmutzler, Rita K; Wappenschmidt, Barbara; Engert, Stefanie; Arnold, Norbert; Gadzicki, Dorothea; Dean, Michael; Gold, Bert; Klein, Robert J; Couch, Fergus J; Chenevix-Trench, Georgia; Easton, Douglas F; Daly, Mark J; Antoniou, Antonis C; Altshuler, David M; Offit, Kenneth

    2010-10-28

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10(-5) and 39 SNPs had p-values<10(-4). These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66-0.86, ) and for rs311499 was 0.72 (95% CI 0.61-0.85, ). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18-1.39, ). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.

  20. Common Genetic Variants and Modification of Penetrance of BRCA2-Associated Breast Cancer

    PubMed Central

    Guiducci, Candace; Segrè, Ayellet V.; McGee, Kate; McGuffog, Lesley; Kartsonaki, Christiana; Morrison, Jonathan; Healey, Sue; Sinilnikova, Olga M.; Stoppa-Lyonnet, Dominique; Mazoyer, Sylvie; Gauthier-Villars, Marion; Sobol, Hagay; Longy, Michel; Frenay, Marc; GEMO Study Collaborators; Hogervorst, Frans B. L.; Rookus, Matti A.; Collée, J. Margriet; Hoogerbrugge, Nicoline; van Roozendaal, Kees E. P.; Piedmonte, Marion; Rubinstein, Wendy; Nerenstone, Stacy; Van Le, Linda; Blank, Stephanie V.; Caldés, Trinidad; de la Hoya, Miguel; Nevanlinna, Heli; Aittomäki, Kristiina; Lazaro, Conxi; Blanco, Ignacio; Arason, Adalgeir; Johannsson, Oskar T.; Barkardottir, Rosa B.; Devilee, Peter; Olopade, Olofunmilayo I.; Neuhausen, Susan L.; Wang, Xianshu; Fredericksen, Zachary S.; Peterlongo, Paolo; Manoukian, Siranoush; Barile, Monica; Viel, Alessandra; Radice, Paolo; Phelan, Catherine M.; Narod, Steven; Rennert, Gad; Lejbkowicz, Flavio; Flugelman, Anath; Andrulis, Irene L.; Glendon, Gord; Ozcelik, Hilmi; Toland, Amanda E.; Montagna, Marco; D'Andrea, Emma; Friedman, Eitan; Laitman, Yael; Borg, Ake; Beattie, Mary; Ramus, Susan J.; Domchek, Susan M.; Nathanson, Katherine L.; Rebbeck, Tim; Spurdle, Amanda B.; Chen, Xiaoqing; Holland, Helene; John, Esther M.; Hopper, John L.; Buys, Saundra S.; Daly, Mary B.; Southey, Melissa C.; Terry, Mary Beth; Tung, Nadine; Overeem Hansen, Thomas V.; Nielsen, Finn C.; Greene, Mark I.; Mai, Phuong L.; Osorio, Ana; Durán, Mercedes; Andres, Raquel; Benítez, Javier; Weitzel, Jeffrey N.; Garber, Judy; Hamann, Ute; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Platte, Radka; Evans, D. Gareth; Lalloo, Fiona; Eeles, Ros; Izatt, Louise; Walker, Lisa; Eason, Jacqueline; Barwell, Julian; Godwin, Andrew K.; Schmutzler, Rita K.; Wappenschmidt, Barbara; Engert, Stefanie; Arnold, Norbert; Gadzicki, Dorothea; Dean, Michael; Gold, Bert; Klein, Robert J.; Couch, Fergus J.; Chenevix-Trench, Georgia; Easton, Douglas F.; Daly, Mark J.; Antoniou, Antonis C.; Altshuler, David M.; Offit, Kenneth

    2010-01-01

    The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10−5 and 39 SNPs had p-values<10−4. These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66–0.86, ) and for rs311499 was 0.72 (95% CI 0.61–0.85, ). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18–1.39, ). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer. PMID:21060860

  1. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma.

    PubMed

    de Lima Castro, Sandra Aparecida; Gonçalves-Vidigal, Maria Celeste; Gilio, Thiago Alexandre Santana; Lacanallo, Giselly Figueiredo; Valentini, Giseli; da Silva Ramos Martins, Vanusa; Song, Qijian; Galván, Marta Zulema; Hurtado-Gonzales, Oscar P; Pastor-Corrales, Marcial Antonio

    2017-04-18

    The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. The inheritance of resistance studies for Paloma was performed in F2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F2 and F2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.

  2. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris)

    PubMed Central

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E.; Chapman, B. Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L.; Pauls, Karl P.; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might

  3. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris).

    PubMed

    Pandurangan, Sudhakar; Diapari, Marwan; Yin, Fuqiang; Munholland, Seth; Perry, Gregory E; Chapman, B Patrick; Huang, Shangzhi; Sparvoli, Francesca; Bollini, Roberto; Crosby, William L; Pauls, Karl P; Marsolais, Frédéric

    2016-01-01

    A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might

  4. Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants

    PubMed Central

    Pharoah, Paul D. P.; Michailidou, Kyriaki; Tyrer, Jonathan; Brook, Mark N.; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Dunning, Alison M.; Shah, Mitul; Luben, Robert; Brown, Judith; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Peto, Julian; dos-Santos-Silva, Isabel; Dudbridge, Frank; Johnson, Nichola; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Rutgers, Emiel J.; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Figueroa, Jonine; Chanock, Stephen J.; Brinton, Louise; Lissowska, Jolanta; Couch, Fergus J.; Olson, Janet E.; Vachon, Celine; Pankratz, Vernon S.; Lambrechts, Diether; Wildiers, Hans; Van Ongeval, Chantal; van Limbergen, Erik; Kristensen, Vessela; Grenaker Alnæs, Grethe; Nord, Silje; Borresen-Dale, Anne-Lise; Nevanlinna, Heli; Muranen, Taru A.; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fasching, Peter A.; Haeberle, Lothar; Ekici, Arif B.; Beckmann, Matthias W.; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Trentham-Dietz, Amy; Newcomb, Polly; Titus, Linda; Egan, Kathleen M.; Hunter, David J.; Lindstrom, Sara; Tamimi, Rulla M.; Kraft, Peter; Rahman, Nazneen; Turnbull, Clare; Renwick, Anthony; Seal, Sheila; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Benitez, Javier; Pilar Zamora, M.; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Anton-Culver, Hoda; Neuhausen, Susan L.; Ziogas, Argyrios; Bernstein, Leslie; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Khusnutdinova, Elza; Bermisheva, Marina; Prokofyeva, Darya; Takhirova, Zalina; Meindl, Alfons; Schmutzler, Rita K.; Sutter, Christian; Yang, Rongxi; Schürmann, Peter; Bremer, Michael; Christiansen, Hans; Park-Simon, Tjoung-Won; Hillemanns, Peter; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Pensotti, Valeria; Hopper, John L.; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C.; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Sigurdson, Alice J.; Doody, Michele M.; Hamann, Ute; Torres, Diana; Ulmer, Hans-Ulrich; Försti, Asta; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Marie Mulligan, Anna; Chenevix-Trench, Georgia; Balleine, Rosemary; Giles, Graham G.; Milne, Roger L.; McLean, Catriona; Lindblom, Annika; Margolin, Sara; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Eilber, Ursula; Wang-Gohrke, Shan; Hooning, Maartje J.; Hollestelle, Antoinette; van den Ouweland, Ans M. W.; Koppert, Linetta B.; Carpenter, Jane; Clarke, Christine; Scott, Rodney; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Brenner, Hermann; Arndt, Volker; Stegmaier, Christa; Karina Dieffenbach, Aida; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Offit, Kenneth; Vijai, Joseph; Robson, Mark; Rau-Murthy, Rohini; Dwek, Miriam; Swann, Ruth; Annie Perkins, Katherine; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Eccles, Diana M.; Tapper, William J.; Rafiq, Sajjad; John, Esther M.; Whittemore, Alice S.; Slager, Susan; Yannoukakos, Drakoulis; Toland, Amanda E.; Yao, Song; Zheng, Wei; Halverson, Sandra L.; González-Neira, Anna; Pita, Guillermo; Rosario Alonso, M.; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S.; Simard, Jacques; Hall, Per; Easton, Douglas F.; Garcia-Closas, Montserrat

    2015-01-01

    Background: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. Methods: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. Results: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. Conclusions: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report. PMID:25855707

  5. Common genetic variants in pituitary–thyroid axis genes and the risk of differentiated thyroid cancer

    PubMed Central

    Pastor, Susana; Akdi, Abdelmounaim; González, Eddy R; Castell, Juan; Biarnés, Josefina; Marcos, Ricard; Velázquez, Antonia

    2012-01-01

    Thyroid hormone receptors, THRA and THRB, together with the TSH receptor, TSHR, are key regulators of thyroid function. Alterations in the genes of these receptors (THRA, THRB and TSHR) have been related to thyroid diseases, including thyroid cancer. Moreover, there is evidence suggesting that predisposition to differentiated thyroid cancer (DTC) is related to common genetic variants with low penetrance that interact with each other and with environmental factors. In this study, we investigated the association of single nucleotide polymorphisms (SNPs) in the THRA (one SNP), THRB (three SNPs) and TSHR (two SNPs) genes with DTC risk. A case–control association study was conducted with 398 patients with sporadic DTC and 479 healthy controls from a Spanish population. Among the polymorphisms studied, only THRA-rs939348 was found to be associated with an increased risk of DTC (recessive model, odds ratio=1.80, 95% confidence interval=1.03–3.14, P=0.037). Gene–gene interaction analysis using the genotype data of this study together with our previous genotype data on TG and TRHR indicated a combined effect of the pairwises: THRB-TG (P interaction=0.014, THRB-rs3752874 with TG-rs2076740; P interaction=0.099, THRB-rs844107 with TG-rs2076740) and THRB-TRHR (P interaction=0.0024, THRB-rs3752874 with TRHR-rs4129682) for DTC risk in a Spanish population. Our results confirm that THRA is a risk factor for DTC, and we show for the first time the combined effect of THRB and TG or TRHR on DTC susceptibility, supporting the importance of gene–gene interaction in thyroid cancer risk. PMID:23781307

  6. Common genetic variants in NEFL influence gene expression and neuroblastoma risk.

    PubMed

    Capasso, Mario; Diskin, Sharon; Cimmino, Flora; Acierno, Giovanni; Totaro, Francesca; Petrosino, Giuseppe; Pezone, Lucia; Diamond, Maura; McDaniel, Lee; Hakonarson, Hakon; Iolascon, Achille; Devoto, Marcella; Maris, John M

    2014-12-01

    The genetic etiology of sporadic neuroblastoma is still largely obscure. In a genome-wide association study, we identified single-nucleotide polymorphisms (SNP) associated with neuroblastoma at the CASC15, BARD1, LMO1, DUSP12, HSD17B12, HACE1, and LIN28B gene loci, but these explain only a small fraction of neuroblastoma heritability. Other neuroblastoma susceptibility genes are likely hidden among signals discarded by the multiple testing corrections. In this study, we evaluated eight additional genes selected as candidates for further study based on proven involvement in neuroblastoma differentiation. SNPs at these candidate genes were tested for association with disease susceptibility in 2,101 cases and 4,202 controls, with the associations found replicated in an independent cohort of 459 cases and 809 controls. Replicated associations were further studied for cis-effect using gene expression, transient overexpression, silencing, and cellular differentiation assays. The neurofilament gene NEFL harbored three SNPs associated with neuroblastoma (rs11994014: Pcombined = 0.0050; OR, 0.88; rs2979704: Pcombined = 0.0072; OR, 0.87; rs1059111: Pcombined = 0.0049; OR, 0.86). The protective allele of rs1059111 correlated with increased NEFL expression. Biologic investigations showed that ectopic overexpression of NEFL inhibited cell growth specifically in neuroblastoma cells carrying the protective allele. NEFL overexpression also enhanced differentiation and impaired the proliferation and anchorage-independent growth of cells with protective allele and basal NEFL expression, while impairing invasiveness and proliferation of cells homozygous for the risk genotype. Clinically, high levels of NEFL expression in primary neuroblastoma specimens were associated with better overall survival (P = 0.03; HR, 0.68). Our results show that common variants of NEFL influence neuroblastoma susceptibility and they establish that NEFL expression influences disease initiation and

  7. Association between common genetic variants in the opioid pathway and smoking behaviors in Chinese men.

    PubMed

    Fang, Juan; Wang, Xiaohong; He, Bei

    2014-01-21

    There is biological evidence that the brain opioidergic system plays a critical role in the addictive properties of nicotine. The purpose of the present study was to examine the associations of single nucleotide polymorphisms (SNPs) in the genes encoding mu-opioid receptor (MOR) and the MOR-interacting proteins (including OPRM1, ARRB2, and HINT1) with smoking behaviors in Chinese men. A total of 284 subjects (including current and ex-smokers) were recruited. Special questionnaires were used to assess smoking behaviors including age of smoking initiation, daily cigarette consumption, and Fagerström test for nicotine dependence (FTND) score. Participant samples were genotyped for six SNPs in the opioid pathway genes: rs1799971 in OPRM1, rs1045280, rs2036657 and rs3786047 in ARRB2, rs3852209 and rs2278060 in HINT1. Linear and logistic regression models were used to determine single-locus and haplotype-based association analyses. There was no significant association between any of SNPs analyzed and smoking behaviors. Logistic regression analyses under dominant, recessive, and additive models showed no significant associations of the six SNPs with smoking status (current vs. ex-smokers). After adjustment for age at enrollment and smoking initiation age, HINT1 rs3852209 was significantly associated with smoking status with an OR of 0.54 (95% CI, 0.31-0.95; P = 0.03) under dominant inheritance model. No haplotypes in ARRB2 or HINT1 were related to smoking status. The present study indicates no significant association between common genetic variations in MOR and MOR-interacting proteins and smoking behaviors in Chinese men, and gives suggestive evidence that HINT1 rs3852209 may be related to smoking status. The findings require confirmation from further studies in additional larger samples.

  8. Association between Common Genetic Variants in the Opioid Pathway and Smoking Behaviors in Chinese Men

    PubMed Central

    2014-01-01

    Background There is biological evidence that the brain opioidergic system plays a critical role in the addictive properties of nicotine. The purpose of the present study was to examine the associations of single nucleotide polymorphisms (SNPs) in the genes encoding mu-opioid receptor (MOR) and the MOR-interacting proteins (including OPRM1, ARRB2, and HINT1) with smoking behaviors in Chinese men. Methods A total of 284 subjects (including current and ex-smokers) were recruited. Special questionnaires were used to assess smoking behaviors including age of smoking initiation, daily cigarette consumption, and Fagerström test for nicotine dependence (FTND) score. Participant samples were genotyped for six SNPs in the opioid pathway genes: rs1799971 in OPRM1, rs1045280, rs2036657 and rs3786047 in ARRB2, rs3852209 and rs2278060 in HINT1. Linear and logistic regression models were used to determine single-locus and haplotype-based association analyses. Results There was no significant association between any of SNPs analyzed and smoking behaviors. Logistic regression analyses under dominant, recessive, and additive models showed no significant associations of the six SNPs with smoking status (current vs. ex-smokers). After adjustment for age at enrollment and smoking initiation age, HINT1 rs3852209 was significantly associated with smoking status with an OR of 0.54 (95% CI, 0.31-0.95; P = 0.03) under dominant inheritance model. No haplotypes in ARRB2 or HINT1 were related to smoking status. Conclusions The present study indicates no significant association between common genetic variations in MOR and MOR-interacting proteins and smoking behaviors in Chinese men, and gives suggestive evidence that HINT1 rs3852209 may be related to smoking status. The findings require confirmation from further studies in additional larger samples. PMID:24447405

  9. Prediction of breast cancer risk based on profiling with common genetic variants.

    PubMed

    Mavaddat, Nasim; Pharoah, Paul D P; Michailidou, Kyriaki; Tyrer, Jonathan; Brook, Mark N; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Dunning, Alison M; Shah, Mitul; Luben, Robert; Brown, Judith; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Czene, Kamila; Darabi, Hatef; Eriksson, Mikael; Peto, Julian; Dos-Santos-Silva, Isabel; Dudbridge, Frank; Johnson, Nichola; Schmidt, Marjanka K; Broeks, Annegien; Verhoef, Senno; Rutgers, Emiel J; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J; Figueroa, Jonine; Chanock, Stephen J; Brinton, Louise; Lissowska, Jolanta; Couch, Fergus J; Olson, Janet E; Vachon, Celine; Pankratz, Vernon S; Lambrechts, Diether; Wildiers, Hans; Van Ongeval, Chantal; van Limbergen, Erik; Kristensen, Vessela; Grenaker Alnæs, Grethe; Nord, Silje; Borresen-Dale, Anne-Lise; Nevanlinna, Heli; Muranen, Taru A; Aittomäki, Kristiina; Blomqvist, Carl; Chang-Claude, Jenny; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fasching, Peter A; Haeberle, Lothar; Ekici, Arif B; Beckmann, Matthias W; Burwinkel, Barbara; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Trentham-Dietz, Amy; Newcomb, Polly; Titus, Linda; Egan, Kathleen M; Hunter, David J; Lindstrom, Sara; Tamimi, Rulla M; Kraft, Peter; Rahman, Nazneen; Turnbull, Clare; Renwick, Anthony; Seal, Sheila; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Benitez, Javier; Pilar Zamora, M; Arias Perez, Jose Ignacio; Menéndez, Primitiva; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Bogdanova, Natalia V; Antonenkova, Natalia N; Dörk, Thilo; Anton-Culver, Hoda; Neuhausen, Susan L; Ziogas, Argyrios; Bernstein, Leslie; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; van Asperen, Christi J; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Khusnutdinova, Elza; Bermisheva, Marina; Prokofyeva, Darya; Takhirova, Zalina; Meindl, Alfons; Schmutzler, Rita K; Sutter, Christian; Yang, Rongxi; Schürmann, Peter; Bremer, Michael; Christiansen, Hans; Park-Simon, Tjoung-Won; Hillemanns, Peter; Guénel, Pascal; Truong, Thérèse; Menegaux, Florence; Sanchez, Marie; Radice, Paolo; Peterlongo, Paolo; Manoukian, Siranoush; Pensotti, Valeria; Hopper, John L; Tsimiklis, Helen; Apicella, Carmel; Southey, Melissa C; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Sigurdson, Alice J; Doody, Michele M; Hamann, Ute; Torres, Diana; Ulmer, Hans-Ulrich; Försti, Asta; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Andrulis, Irene L; Knight, Julia A; Glendon, Gord; Marie Mulligan, Anna; Chenevix-Trench, Georgia; Balleine, Rosemary; Giles, Graham G; Milne, Roger L; McLean, Catriona; Lindblom, Annika; Margolin, Sara; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Eilber, Ursula; Wang-Gohrke, Shan; Hooning, Maartje J; Hollestelle, Antoinette; van den Ouweland, Ans M W; Koppert, Linetta B; Carpenter, Jane; Clarke, Christine; Scott, Rodney; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Brenner, Hermann; Arndt, Volker; Stegmaier, Christa; Karina Dieffenbach, Aida; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Offit, Kenneth; Vijai, Joseph; Robson, Mark; Rau-Murthy, Rohini; Dwek, Miriam; Swann, Ruth; Annie Perkins, Katherine; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Eccles, Diana M; Tapper, William J; Rafiq, Sajjad; John, Esther M; Whittemore, Alice S; Slager, Susan; Yannoukakos, Drakoulis; Toland, Amanda E; Yao, Song; Zheng, Wei; Halverson, Sandra L; González-Neira, Anna; Pita, Guillermo; Rosario Alonso, M; Álvarez, Nuria; Herrero, Daniel; Tessier, Daniel C; Vincent, Daniel; Bacot, Francois; Luccarini, Craig; Baynes, Caroline; Ahmed, Shahana; Maranian, Mel; Healey, Catherine S; Simard, Jacques; Hall, Per; Easton, Douglas F; Garcia-Closas, Montserrat

    2015-05-01

    Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report. © The Author 2015. Published by Oxford University Press.

  10. Study of the common genetic background for rheumatoid arthritis and systemic lupus erythematosus

    PubMed Central

    Orozco, Gisela; Eyre, Steve; Hinks, Anne; Bowes, John; Morgan, Ann W; Wilson, Anthony G; Wordsworth, Paul; Steer, Sophia; Hocking, Lynne; Thomson, Wendy; Worthington, Jane; Barton, Anne

    2011-01-01

    Background Evidence is beginning to emerge that there may be susceptibility loci for rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) that are common to both diseases. Objective To investigate single nucleotide polymorphisms that have been reported to be associated with SLE in a UK cohort of patients with RA and controls. Methods 3962 patients with RA and 9275 controls were included in the study. Eleven SNPs mapping to confirmed SLE loci were investigated. These mapped to the TNFSF4, BANK1, TNIP1, PTTG1, UHRF1BP1, ATG5, JAZF1, BLK, KIAA1542, ITGAM and UBE2L3 loci. Genotype frequencies were compared between patients with RA and controls using the trend test. Results The SNPs mapping to the BLK and UBE2L3 loci showed significant evidence for association with RA. Two other SNPs, mapping to ATG5 and KIAA1542, showed nominal evidence for association with RA (p=0.02 and p=0.02, respectively) but these were not significant after applying a Bonferroni correction. Additionally, a significant global enrichment in carriage of SLE alleles in patients with RA compared with controls (p=9.1×10−7) was found. Meta-analysis of this and previous studies confirmed the association of the BLK and UBE2L3 gene with RA at genome-wide significance levels (p<5×10−8). Together, the authors estimate that the SLE and RA overlapping loci, excluding HLA-DRB1 alleles, identified so far explain ∼5.8% of the genetic susceptibility to RA as a whole. Conclusion The findings confirm the association of the BLK and UBE2L3 loci with RA, thus adding to the list of loci showing overlap between RA and SLE. PMID:21068098

  11. Common genetic variants in pituitary-thyroid axis genes and the risk of differentiated thyroid cancer.

    PubMed

    Pastor, Susana; Akdi, Abdelmounaim; González, Eddy R; Castell, Juan; Biarnés, Josefina; Marcos, Ricard; Velázquez, Antonia

    2012-11-01

    Thyroid hormone receptors, THRA and THRB, together with the TSH receptor, TSHR, are key regulators of thyroid function. Alterations in the genes of these receptors (THRA, THRB and TSHR) have been related to thyroid diseases, including thyroid cancer. Moreover, there is evidence suggesting that predisposition to differentiated thyroid cancer (DTC) is related to common genetic variants with low penetrance that interact with each other and with environmental factors. In this study, we investigated the association of single nucleotide polymorphisms (SNPs) in the THRA (one SNP), THRB (three SNPs) and TSHR (two SNPs) genes with DTC risk. A case-control association study was conducted with 398 patients with sporadic DTC and 479 healthy controls from a Spanish population. Among the polymorphisms studied, only THRA-rs939348 was found to be associated with an increased risk of DTC (recessive model, odds ratio=1.80, 95% confidence interval=1.03-3.14, P=0.037). Gene-gene interaction analysis using the genotype data of this study together with our previous genotype data on TG and TRHR indicated a combined effect of the pairwises: THRB-TG (P interaction=0.014, THRB-rs3752874 with TG-rs2076740; P interaction=0.099, THRB-rs844107 with TG-rs2076740) and THRB-TRHR (P interaction=0.0024, THRB-rs3752874 with TRHR-rs4129682) for DTC risk in a Spanish population. Our results confirm that THRA is a risk factor for DTC, and we show for the first time the combined effect of THRB and TG or TRHR on DTC susceptibility, supporting the importance of gene-gene interaction in thyroid cancer risk.

  12. Plants on the move: towards common mechanisms governing mechanically-induced plant movements.

    PubMed

    Scorza, Livia Camilla Trevisan; Dornelas, Marcelo Carnier

    2011-12-01

    One may think that plants seem relatively immobile. Nevertheless, plants not only produce movement but these movements can be quite rapid such as the closing traps of carnivorous plants, the folding up of leaflets in some Leguminosae species and the movement of floral organs in order to increase cross pollination. We focus this review on thigmotropic and thigmonastic movements, both in vegetative and reproductive parts of higher plants. Ultrastructural studies revealed that most thigmotropic and thigmonastic movements are caused by differentially changing cell turgor within a given tissue. Auxin has emerged as a key molecule that modulates proton extrusion and thus causing changes in cell turgor by enhancing the activity of H(+)ATPase in cell membranes. Finding conserved molecules and/or operational molecular modules among diverse types of movements would help us to find universal mechanisms controlling movements in plants and thus improve our understanding about the evolution of such phenomena. © 2011 Landes Bioscience

  13. Blood pressure and cerebral white matter share common genetic factors in Mexican Americans.

    PubMed

    Kochunov, Peter; Glahn, David C; Lancaster, Jack; Winkler, Anderson; Karlsgodt, Kathrin; Olvera, Rene L; Curran, Joanna E; Carless, Melanie A; Dyer, Thomas D; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John

    2011-02-01

    Elevated arterial pulse pressure and blood pressure (BP) can lead to atrophy of cerebral white matter (WM), potentially attributable to shared genetic factors. We calculated the magnitude of shared genetic variance between BP and fractional anisotropy of water diffusion, a sensitive measurement of WM integrity in a well-characterized population of Mexican Americans. The patterns of whole-brain and regional genetic overlap between BP and fractional anisotropy were interpreted in the context the pulse-wave encephalopathy theory. We also tested whether regional pattern in genetic pleiotropy is modulated by the phylogeny of WM development. BP and high-resolution (1.7 × 1.7 × 3 mm; 55 directions) diffusion tensor imaging data were analyzed for 332 (202 females; mean age 47.9 ± 13.3 years) members of the San Antonio Family Heart Study. Bivariate genetic correlation analysis was used to calculate the genetic overlap between several BP measurements (pulse pressure, systolic BP, and diastolic BP) and fractional anisotropy (whole-brain and regional values). Intersubject variance in pulse pressure and systolic BP exhibited a significant genetic overlap with variance in whole-brain fractional anisotropy values, sharing 36% and 22% of genetic variance, respectively. Regionally, shared genetic variance was significantly influenced by rates of WM development (r=-0.75; P=0.01). The pattern of genetic overlap between BP and WM integrity was generally in agreement with the pulse-wave encephalopathy theory. Our study provides evidence that a set of pleiotropically acting genetic factors jointly influence phenotypic variation in BP and WM integrity. The magnitude of this overlap appears to be influenced by phylogeny of WM development, suggesting a possible role for genotype-by-age interactions.

  14. [Genetic diversity revealed by ISSR molecular marker in common wheat, spelt, compactum and progeny of recurrent selection].

    PubMed

    Du, Jin-Kun; Yao, Ying-Yin; Ni, Zhong-Fu; Peng, Hui-Ru; Sun, Qi-Xin

    2002-05-01

    It is important to estimate the genetic diversity between the parents for improving the heterosis of hybrid wheat. In this study, ISSR(inter-simple sequence repeat) marker was used to measure the genetic diversity within and among common wheat (Triticum aestivum L.), spelt (Triticum spelta L.), compactum (Triticum compactum Host.) and progeny of foreign wheat-based recurrent selection, and the possibility of establishing the new heterotic group was also assessed. Forty seven genotypes were used for ISSR analysis, which included 14 common wheat, 10 spelt wheat, 11 compactum and 12 progeny of recurrent selection. Eleven of 33 ISSR primers that can produce distinguishable bands were selected for PCR amplification. A total of 238 bands were amplified, among which 207 (87%) bands were polymorphic. The polymorphic bands amplified by each primer ranged from 11 to 38, with an averaged of 18.8. The percentage of polymorphic band (80.3%) in common wheat was higher than that in progeny of recurrent selection (78.7%), spelt (75.0%) and compactum (74.9%). The 238 polymorphic products were used to calculate Nei's similarity index (GS) and the genetic distance (GD). It was found that the mean genetic distance between different wheat types (0.3115-0.3442) was obviously higher than that within common wheat (0.2743), spelt (0.2351), compactum (0.2622). In addition, progeny of recurrent selection also showed much higher genetic distance with other three wheat types (0.3217, 0.3256, 0.3198). The cluster analysis was performed based on the genetic distance (GD) matrix by using UPGMA method. Common wheat, spelt, compactum and progeny of recurrent selection were classified into four different groups. In this study, ISSR marker was firstly used to assess genetic diversity among common wheat, spelt, compactum and progeny of recurrent selection, and can differentiate the wheat cultivars (lines) that selected from the same cross combination. It was concluded that spelt, compactum and progeny

  15. [Microsatellite data verify low genetic differentiation between western and eastern subspecies of the common crane Grusgrus L. (Gruidae, Aves)].

    PubMed

    Mudrik, E A; Kashentseva, T A; Redchuk, P S; Politov, D V

    2015-01-01

    Using a set of 10 microsatellite loci (Gram-22, Gram-30, Gpa-12, Gpa-38, Gpa-39, Gj-M15, Gj-M34, Gj-4066, Gj-8077, Gj-2298) a high level of genetic variability (N(A) = 10.2, H(O) = = 0.684, H(E) = 0.728) and low genetic differentiation (F(ST) = 0.011) in the Common crane (Grus grus L.) was detected throughout its range. Genetic diversity in disputed western (G. g. grus) and eastern (G. g. lilfordi) sub- species was shown to be similar. Spatial distribution of multi-locus individual genotypes has not been revealed (R(XY) = 0.017). Despite low differentiation, subspecies and local populations of the Common crane should be considered as separate conservational units. Organization of programs for gene pool conservation and monitor- ing requires more detailed analysis based on combined analysis of various molecular markers.

  16. Common Genetic and Nonshared Environmental Factors Contribute to the Association between Socioemotional Dispositions and the Externalizing Factor in Children

    ERIC Educational Resources Information Center

    Taylor, Jeanette; Allan, Nicholas; Mikolajewski, Amy J.; Hart, Sara A.

    2013-01-01

    Background: Childhood behavioral disorders including conduct disorder (CD), oppositional defiant disorder (ODD), and attention-deficit/hyperactivity disorder (ADHD) often co-occur. Prior twin research shows that common sets of genetic and environmental factors are associated with these various disorders and they form a latent factor called…

  17. Common Genetic and Nonshared Environmental Factors Contribute to the Association between Socioemotional Dispositions and the Externalizing Factor in Children

    ERIC Educational Resources Information Center

    Taylor, Jeanette; Allan, Nicholas; Mikolajewski, Amy J.; Hart, Sara A.

    2013-01-01

    Background: Childhood behavioral disorders including conduct disorder (CD), oppositional defiant disorder (ODD), and attention-deficit/hyperactivity disorder (ADHD) often co-occur. Prior twin research shows that common sets of genetic and environmental factors are associated with these various disorders and they form a latent factor called…

  18. Constraints on Biological Mechanism from Disease Comorbidity Using Electronic Medical Records and Database of Genetic Variants

    PubMed Central

    Bagley, Steven C.; Sirota, Marina; Chen, Richard; Butte, Atul J.; Altman, Russ B.

    2016-01-01

    Patterns of disease co-occurrence that deviate from statistical independence may represent important constraints on biological mechanism, which sometimes can be explained by shared genetics. In this work we study the relationship between disease co-occurrence and commonly shared genetic architecture of disease. Records of pairs of diseases were combined from two different electronic medical systems (Columbia, Stanford), and compared to a large database of published disease-associated genetic variants (VARIMED); data on 35 disorders were available across all three sources, which include medical records for over 1.2 million patients and variants from over 17,000 publications. Based on the sources in which they appeared, disease pairs were categorized as having predominant clinical, genetic, or both kinds of manifestations. Confounding effects of age on disease incidence were controlled for by only comparing diseases when they fall in the same cluster of similarly shaped incidence patterns. We find that disease pairs that are overrepresented in both electronic medical record systems and in VARIMED come from two main disease classes, autoimmune and neuropsychiatric. We furthermore identify specific genes that are shared within these disease groups. PMID:27115429

  19. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    PubMed

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ

  20. Genetic Variability and Geographic Diversity of the Common Bed Bug (Hemiptera: Cimicidae) Populations from the Midwest Using Microsatellite Markers.

    PubMed

    Narain, Ralph B; Lalithambika, Sreedevi; Kamble, Shripat T

    2015-07-01

    With the recent global resurgence of the bed bugs (Cimex lectularius L.), there is a need to better understand its biology, ecology, and ability to establish populations. Bed bugs are domestic pests that feed mainly on mammalian blood. Although bed bugs have not been implicated as vectors of pathogens, their biting activity inflicts severe insomnia and allergic reactions. Moreover, they have recently developed resistance to various insecticides, which requires further molecular research to determine genetic variation and appropriate interventions. Population dynamics, including genetic differentiation and genetic distance of 10 populations from the Midwest were analyzed in this study. The bed bug samples collected by pest control companies were genotyped using eight species-specific microsatellite markers. Results showed all eight markers were polymorphic, with 8-16 alleles per locus, suggesting high genetic diversity. The FST values were >0.25, signifying pronounced genetic differentiation. The G-test results also indicated high genetic differentiation among populations. The frequency of the most common allele across all eight loci was 0.42. The coefficient of relatedness between each of the populations was >0.5, indicative of sibling or parent-offspring relationships, while the FIS and its confidence interval values were statistically insignificant within the populations tested. The populations departed from Hardy-Weinberg equilibrium, possibly because of high heterozygosity. The genetic distance analysis using a neighbor-joining tree showed that the populations from Kansas City, MO, were genetically separate from most of those from Nebraska, indicating a geographic pattern of genetic structure. Our study demonstrated the effectiveness of using microsatellite markers to study bed bugs population structure, thereby improving our understanding of bed bug population dynamics in the Midwest. Overall, this study showed a high genetic diversity and identified several

  1. Common Variants of KCNJ10 Are Associated with Susceptibility and Anti-Epileptic Drug Resistance in Chinese Genetic Generalized Epilepsies

    PubMed Central

    Guo, Yong; Yan, Kui Po; Qu, Qiang; Qu, Jian; Chen, Zi Gui; Song, Tao; Luo, Xiang-Ying; Sun, Zhong-Yi; Bi, Chang-Long; Liu, Jin-Fang

    2015-01-01

    To explore genetic mechanism of genetic generalized epilepsies (GGEs) is challenging because of their complex heritance pattern and genetic heterogeneity. KCNJ10 gene encodes Kir4.1 channels and plays a major role in modulating resting membrane potentials in excitable cells. It may cause GGEs if mutated. The purpose of this study was to investigate the possible association between KCNJ10 common variants and the susceptibility and drug resistance of GGEs in Chinese population. The allele-specific MALDI–TOF mass spectrometry method was used to assess 8 single nucleotide polymorphisms (SNPs) of KCNJ10 in 284 healthy controls and 483 Chinese GGEs patients including 279 anti-epileptic drug responsive patients and 204 drug resistant patients. We found the rs6690889 TC+TT genotypes were lower frequency in the GGEs group than that in the healthy controls (6.7% vs 9.5%, p = 0.01, OR = 0.50[0.29–0.86]). The frequency of rs1053074 G allele was lower in the childhood absence epilepsy (CAE) group than that in the healthy controls (28.4% vs 36.2%, p = 0.01, OR = 0.70[0.53–0.93]). The frequency of rs12729701 G allele and AG+GG genotypes was lower in the CAE group than that in the healthy controls (21.2% vs 28.4%, p = 0.01, OR = 0.74[0.59–0.94] and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). The frequency of rs12402969 C allele and the CC+CT genotypes were higher in the GGEs drug responsive patients than that in the drug resistant patients (9.3% vs 5.6%, OR = 1.73[1.06–2.85], p = 0.026 and 36.3% vs 48.1%, p = 0.01, OR = 0.83[0.72–0.96], respectively). This study identifies potential SNPs of KCNJ10 gene that may contribute to seizure susceptibility and anti-epileptic drug resistance. PMID:25874548

  2. [Genetics and epigenetics. Explanatory approaches for (gender-specific) mechanisms of disease development].

    PubMed

    Zerres, K; Eggermann, T

    2014-09-01

    Whereas the central role of DNA as the carrier of genetic information has long been well known, the impact of epigenetic mechanisms as mediators between genes and environment is now becoming increasingly clear. Epigenetics helps explain the partially reversible interplay between gene function and environment and even permits observation of the transgenerational transmission of epigenetic modifications. Of special interest are gender-specific mechanisms of gene regulation which, among others, offer an explanation for gender differences in human diseases. Since the study of epigenetic mechanisms and their impact on the etiology of common diseases is in its infancy, it is too early to draw general conclusions from the current state of knowledge. Moreover, completely new strategies are needed to research these effects. In addition to molecular findings, definitions of specific phenotypes are required, including biographic data of affected individuals and their ancestors. Epigenetics needs to be viewed in the context of the theory of evolution, classical genetics, and environmental research. Its aim is not to substitute the knowledge in these disciplines, but rather to provide a key to link their findings, thereby opening up new possibilities in terms of interpretation and understanding of gender differences in medicine. If these epigenetic mechanisms are better understood, particularly in terms of specific diseases, it is conceivable that these disorders could be influenced and treated in a more targeted manner in the future.

  3. Irinotecan-Induced Gastrointestinal Dysfunction and Pain Are Mediated by Common TLR4-Dependent Mechanisms.

    PubMed

    Wardill, Hannah R; Gibson, Rachel J; Van Sebille, Ysabella Z A; Secombe, Kate R; Coller, Janet K; White, Imogen A; Manavis, Jim; Hutchinson, Mark R; Staikopoulos, Vasiliki; Logan, Richard M; Bowen, Joanne M

    2016-06-01

    Strong epidemiological data indicate that chemotherapy-induced gut toxicity and pain occur in parallel, indicating common underlying mechanisms. We have recently outlined evidence suggesting that TLR4 signaling may contribute to both side effects. We therefore aimed to determine if genetic deletion of TLR4 improves chemotherapy-induced gut toxicity and pain. Forty-two female wild-type (WT) and 42 Tlr4 null (-/-) BALB/c mice weighing between 18 and 25 g (10-13 weeks) received a single 270 mg/kg (i.p.) dose of irinotecan hydrochloride or vehicle control and were killed at 6, 24, 48, 72, and 96 hours. Bacterial sequencing was conducted on cecal samples of control animals to determine the gut microbiome profile. Gut toxicity was assessed using validated clinical and histopathologic markers, permeability assays, and inflammatory markers. Chemotherapy-induced pain was assessed using the validated rodent facial grimace criteria, as well as immunologic markers of glial activation in the lumbar spinal cord. TLR4 deletion attenuated irinotecan-induced gut toxicity, with improvements in weight loss (P = 0.0003) and diarrhea (P < 0.0001). Crypt apoptosis was significantly decreased in BALB/c-Tlr4(-/-billy) mice (P < 0.0001), correlating with lower mucosal injury scores (P < 0.005). Intestinal permeability to FITC-dextran (4 kDa) and LPS translocation was greater in WT mice than in BALB/c-Tlr4(-/-billy) (P = 0.01 and P < 0.0001, respectively). GFAP staining in the lumbar spinal cord, indicative of astrocytic activation, was increased at 6 and 72 hours in WT mice compared with BALB/c-Tlr4(-/-billy) mice (P = 0.008, P = 0.01). These data indicate that TLR4 is uniquely positioned to mediate irinotecan-induced gut toxicity and pain, highlighting the possibility of a targetable gut/CNS axis for improved toxicity outcomes. Mol Cancer Ther; 15(6); 1376-86. ©2016 AACR.

  4. Phylogeography and Conservation Genetics of the Common Wall Lizard, Podarcis muralis, on Islands at Its Northern Range

    PubMed Central

    Michaelides, Sozos; Cornish, Nina; Griffiths, Richard; Groombridge, Jim; Zajac, Natalia; Walters, Graham J.; Aubret, Fabien; While, Geoffrey M.; Uller, Tobias

    2015-01-01

    Populations at range limits are often characterized by lower genetic diversity, increased genetic isolation and differentiation relative to populations at the core of geographical ranges. Furthermore, it is increasingly recognized that populations situated at range limits might be the result of human introductions rather than natural dispersal. It is therefore important to document the origin and genetic diversity of marginal populations to establish conservation priorities. In this study, we investigate the phylogeography and genetic structure of peripheral populations of the common European wall lizard, Podarcis muralis, on Jersey (Channel Islands, UK) and in the Chausey archipelago. We sequenced a fragment of the mitochondrial cytochrome b gene in 200 individuals of P. muralis to infer the phylogeography of the island populations using Bayesian approaches. We also genotyped 484 individuals from 21 populations at 10 polymorphic microsatellite loci to evaluate the genetic structure and diversity of island and mainland (Western France) populations. We detected four unique haplotypes in the island populations that formed a sub-clade within the Western France clade. There was a significant reduction in genetic diversity (HO, HE and AR) of the island populations in relation to the mainland. The small fragmented island populations at the northern range margin of the common wall lizard distribution are most likely native, with genetic differentiation reflecting isolation following sea level increase approximately 7000 BP. Genetic diversity is lower on islands than in marginal populations on the mainland, potentially as a result of early founder effects or long-term isolation. The combination of restriction to specific localities and an inability to expand their range into adjacent suitable locations might make the island populations more vulnerable to extinction. PMID:25659074

  5. Phylogeography and conservation genetics of the common wall lizard, Podarcis muralis, on islands at its northern range.

    PubMed

    Michaelides, Sozos; Cornish, Nina; Griffiths, Richard; Groombridge, Jim; Zajac, Natalia; Walters, Graham J; Aubret, Fabien; While, Geoffrey M; Uller, Tobias

    2015-01-01

    Populations at range limits are often characterized by lower genetic diversity, increased genetic isolation and differentiation relative to populations at the core of geographical ranges. Furthermore, it is increasingly recognized that populations situated at range limits might be the result of human introductions rather than natural dispersal. It is therefore important to document the origin and genetic diversity of marginal populations to establish conservation priorities. In this study, we investigate the phylogeography and genetic structure of peripheral populations of the common European wall lizard, Podarcis muralis, on Jersey (Channel Islands, UK) and in the Chausey archipelago. We sequenced a fragment of the mitochondrial cytochrome b gene in 200 individuals of P. muralis to infer the phylogeography of the island populations using Bayesian approaches. We also genotyped 484 individuals from 21 populations at 10 polymorphic microsatellite loci to evaluate the genetic structure and diversity of island and mainland (Western France) populations. We detected four unique haplotypes in the island populations that formed a sub-clade within the Western France clade. There was a significant reduction in genetic diversity (HO, HE and AR) of the island populations in relation to the mainland. The small fragmented island populations at the northern range margin of the common wall lizard distribution are most likely native, with genetic differentiation reflecting isolation following sea level increase approximately 7000 BP. Genetic diversity is lower on islands than in marginal populations on the mainland, potentially as a result of early founder effects or long-term isolation. The combination of restriction to specific localities and an inability to expand their range into adjacent suitable locations might make the island populations more vulnerable to extinction.

  6. Genome-wide Comparative Analysis of Atopic Dermatitis and Psoriasis Gives Insight into Opposing Genetic Mechanisms

    PubMed Central

    Baurecht, Hansjörg; Hotze, Melanie; Brand, Stephan; Büning, Carsten; Cormican, Paul; Corvin, Aiden; Ellinghaus, David; Ellinghaus, Eva; Esparza-Gordillo, Jorge; Fölster-Holst, Regina; Franke, Andre; Gieger, Christian; Hubner, Norbert; Illig, Thomas; Irvine, Alan D.; Kabesch, Michael; Lee, Young A.E.; Lieb, Wolfgang; Marenholz, Ingo; McLean, W.H. Irwin; Morris, Derek W.; Mrowietz, Ulrich; Nair, Rajan; Nöthen, Markus M.; Novak, Natalija; O’Regan, Grainne M.; Schreiber, Stefan; Smith, Catherine; Strauch, Konstantin; Stuart, Philip E.; Trembath, Richard; Tsoi, Lam C.; Weichenthal, Michael; Barker, Jonathan; Elder, James T.; Weidinger, Stephan; Cordell, Heather J.; Brown, Sara J.

    2015-01-01

    Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21–22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features. PMID:25574825

  7. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms.

    PubMed

    Baurecht, Hansjörg; Hotze, Melanie; Brand, Stephan; Büning, Carsten; Cormican, Paul; Corvin, Aiden; Ellinghaus, David; Ellinghaus, Eva; Esparza-Gordillo, Jorge; Fölster-Holst, Regina; Franke, Andre; Gieger, Christian; Hubner, Norbert; Illig, Thomas; Irvine, Alan D; Kabesch, Michael; Lee, Young A E; Lieb, Wolfgang; Marenholz, Ingo; McLean, W H Irwin; Morris, Derek W; Mrowietz, Ulrich; Nair, Rajan; Nöthen, Markus M; Novak, Natalija; O'Regan, Grainne M; Schreiber, Stefan; Smith, Catherine; Strauch, Konstantin; Stuart, Philip E; Trembath, Richard; Tsoi, Lam C; Weichenthal, Michael; Barker, Jonathan; Elder, James T; Weidinger, Stephan; Cordell, Heather J; Brown, Sara J

    2015-01-08

    Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21-22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Mechanical Testing of Common-Use Polymeric Materials with an In-House-Built Apparatus

    ERIC Educational Resources Information Center

    Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D.

    2006-01-01

    A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…

  9. Mechanical Testing of Common-Use Polymeric Materials with an In-House-Built Apparatus

    ERIC Educational Resources Information Center

    Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D.

    2006-01-01

    A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…

  10. Epidemiology and genetics of common mental disorders in the general population: the PEGASUS-Murcia project.

    PubMed

    Navarro-Mateu, Fernando; Tormo, Mj; Vilagut, G; Alonso, J; Ruíz-Merino, G; Escámez, T; Salmerón, D; Júdez, J; Martínez, S; Navarro, C

    2013-12-03

    Multidisciplinary collaboration between clinicians, epidemiologists, neurogeneticists and statisticians on research projects has been encouraged to improve our knowledge of the complex mechanisms underlying the aetiology and burden of mental disorders. The PEGASUS-Murcia (Psychiatric Enquiry to General Population in Southeast Spain-Murcia) project was designed to assess the prevalence of common mental disorders and to identify the risk and protective factors, and it also included the collection of biological samples to study the gene-environmental interactions in the context of the World Mental Health Survey Initiative. The PEGASUS-Murcia project is a new cross-sectional face-to-face interview survey based on a representative sample of non-institutionalised adults in the Region of Murcia (Mediterranean Southeast, Spain). Trained lay interviewers used the latest version of the computer-assisted personal interview of the Composite International Diagnostic Interview (CIDI 3.0) for use in Spain, specifically adapted for the project. Two biological samples of buccal mucosal epithelium will be collected from each interviewed participant, one for DNA extraction for genomic and epigenomic analyses and the other to obtain mRNA for gene expression quantification. Several quality control procedures will be implemented to assure the highest reliability and validity of the data. This article describes the rationale, sampling methods and questionnaire content as well as the laboratory methodology. Informed consent will be obtained from all participants and a Regional Ethics Research Committee has approved the protocol. Results will be disseminated in peer-reviewed publications and presented at the national and the international conferences. Cross-sectional studies, which combine detailed personal information with biological data, offer new and exciting opportunities to study the gene-environmental interactions in the aetiology of common mental disorders in representative

  11. First genetic characterization of Toxoplasma gondii infection in common quails (Coturnix coturnix) intended for human consumption in China.

    PubMed

    Cong, Wei; Ju, Hong-Liang; Zhang, Xiao-Xuan; Meng, Qing-Feng; Ma, Jian-Gang; Qian, Ai-Dong; Zhu, Xing-Quan

    2017-04-01

    Toxoplasma gondii is widely distributed in humans and other animals including birds throughout the world. However, little is known of the molecular epidemiology and genotypes of T. gondii infecting quails in China. Therefore, the present study was conducted to characterize T. gondii genotypes in common quails in China. During December 2014 to October 2015, a total of 390 muscle tissue samples of common quails were collected and the T. gondii B1 gene was amplified using a nested PCR, and the positive samples were genotyped at 11 genetic markers (SAG1, 5'-and 3'-SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, c22-8, c29-2, and Apico) using multilocus polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technology. Twenty-five of the 390 common quails (6.41%) were tested positive by nested PCR. Three DNA samples from the 25 positive samples were typed completely and were identified as ToxoDB Genotype #9 (http://toxodb.org/toxo/). The results of the present study indicated that T. gondii infection in common quails was common in China, which provided the information of T. gondii genetic diversity in this host species. This is the first genetic characterization of T. gondii isolates from quails in China, which is useful for monitoring and controlling the T. gondii infection in quails, other animals and humans.

  12. Lumbosacral lordosis in fetal spine: genetic or mechanic parameter.

    PubMed

    Choufani, Elie; Jouve, Jean-Luc; Pomero, Vincent; Adalian, Pascal; Chaumoitre, Kathia; Panuel, Michel

    2009-09-01

    genetics and by erect posture. A visual lumbosacral lordosis was noted in 60% of cases with mean radius of -18.6691 mm. This lordosis was not correlated statistically to gestational age which means that it is not related to growth and might be genetically determined. Mechanical factors may play a major role in the determination of the shape of the growing pelvis. One can ask if the pelvis morphology is genetically determined or if it is mechanically determined under muscular and ligamentous stresses. This study shows that the sacrum of human fetuses is oriented posteriorly mathematically in 100% of cases, and in 60% of cases based on the morphologic appearance of the lumbosacral junction. So beside the effect of progressive acquisition of erect posture and bipedalism in determining the formation of lumbosacral angle, we believe that genetics play an important role in the formation of the lumbosacral angle.

  13. Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale).

    PubMed

    Keane, Brian; Collier, Matthew H; Rogstad, Steven H

    2005-06-01

    Assessing the genetic structure of natural populations differentially impacted by anthropogenic contaminants can be a useful tool for evaluating the population genetic consequences of exposure to pollution. In this study, measures of genetic diversity at variable-number-tandem-repeat loci in six dandelion populations (3 urban and 3 rural) showed patterns that may have been influenced by exposure to environmental contaminants. Mean genetic similarity among individuals within a population was significantly and positively correlated with increasing levels of airborne particulate matter (< or = 10 microm, PM10) and soil concentrations of four metals (Cd, Fe, Ni and Pb). In addition, mean genetic similarity was always significantly higher at the urban sites compared to rural sites. There was a significant negative correlation between the number of genotypes at a site and increasing amounts of PM10, concentrations of five soil metals (Cd, Cu, Fe, Ni and Pb), leaf tissue levels of Fe and a significant positive correlation between the extent of clonality at a site and levels of PM10 and soil concentrations of five metals (Cd, Cu, Fe, Ni and Pb). Although, this study does not directly establish a causal link between the specific contaminants detected at the study sites and differences in genetic diversity, our data are consistent with the hypothesis that pollution-induced selection has contributed in some fashion to the lower genetic diversity found at the urban sites.

  14. Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks

    PubMed Central

    Artemenko, Yulia; Axiotakis, Lucas; Borleis, Jane; Iglesias, Pablo A.; Devreotes, Peter N.

    2016-01-01

    Signal transduction pathways activated by chemoattractants have been extensively studied, but little is known about the events mediating responses to mechanical stimuli. We discovered that acute mechanical perturbation of cells triggered transient activation of all tested components of the chemotactic signal transduction network, as well as actin polymerization. Similarly to chemoattractants, the shear flow-induced signal transduction events displayed features of excitability, including the ability to mount a full response irrespective of the length of the stimulation and a refractory period that is shared with that generated by chemoattractants. Loss of G protein subunits, inhibition of multiple signal transduction events, or disruption of calcium signaling attenuated the response to acute mechanical stimulation. Unlike the response to chemoattractants, an intact actin cytoskeleton was essential for reacting to mechanical perturbation. These results taken together suggest that chemotactic and mechanical stimuli trigger activation of a common signal transduction network that integrates external cues to regulate cytoskeletal activity and drive cell migration. PMID:27821730

  15. Chemical and mechanical stimuli act on common signal transduction and cytoskeletal networks.

    PubMed

    Artemenko, Yulia; Axiotakis, Lucas; Borleis, Jane; Iglesias, Pablo A; Devreotes, Peter N

    2016-11-22

    Signal transduction pathways activated by chemoattractants have been extensively studied, but little is known about the events mediating responses to mechanical stimuli. We discovered that acute mechanical perturbation of cells triggered transient activation of all tested components of the chemotactic signal transduction network, as well as actin polymerization. Similarly to chemoattractants, the shear flow-induced signal transduction events displayed features of excitability, including the ability to mount a full response irrespective of the length of the stimulation and a refractory period that is shared with that generated by chemoattractants. Loss of G protein subunits, inhibition of multiple signal transduction events, or disruption of calcium signaling attenuated the response to acute mechanical stimulation. Unlike the response to chemoattractants, an intact actin cytoskeleton was essential for reacting to mechanical perturbation. These results taken together suggest that chemotactic and mechanical stimuli trigger activation of a common signal transduction network that integrates external cues to regulate cytoskeletal activity and drive cell migration.

  16. [Advance on genetic mechanism of adolescent idiopathic scoliosis and genetic relationship map].

    PubMed

    Wang, Wei; Ma, Jun; Li, Shu-yuan; Wu, Xian; Hu, Bin; Wang, Xiao-feng; Zhou, Xu-hui

    2015-09-01

    Identification of genetic risk factors is the hotspot of adolescent idiopathic scoliosis (AIS). Through candidate gene approach and genome-wide association studies (GWAS), some genes were preliminary identified. To review AIS related genes,and construct the gene network map of AIS gene. We searched on NCBI PubMed and Web of Science database using search terms "adolescent idiopathic scoliosis" and "gene", to classify induction genes. We then constructed gene diagram using string-db. We found 35 AIS genes relating to connective tissue, nervous system active substances, melatonin synthesis and metabolism, puberty and growth, and genes whose function is unknown. Gene diagram shows that a network relationship between gene and other genes,in which IL6, ESR1, ESR2, VDR, TGFB1, IGF1 gene may as the key gene about AIS' genetic mechanism. Two sites of 3 GWAS results outside the network, it is suggesting new pathway that need to be explored. The study about AIS susceptibility gene is still preliminary, requiring in-depth research to identify the new networks.

  17. Common psychiatric disorders and caffeine use, tolerance, and withdrawal: an examination of shared genetic and environmental effects.

    PubMed

    Bergin, Jocilyn E; Kendler, Kenneth S

    2012-08-01

    Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation=0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes.

  18. Common Psychiatric Disorders and Caffeine Use, Tolerance, and Withdrawal: An Examination of Shared Genetic and Environmental Effects

    PubMed Central

    Bergin, Jocilyn E.; Kendler, Kenneth S.

    2012-01-01

    Background Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Method Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. Results GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation = 0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. Conclusions There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes. PMID:22854069

  19. Heme Oxygenase-1 and 2 Common Genetic Variants and Risk for Multiple Sclerosis.

    PubMed

    Agúndez, José A G; García-Martín, Elena; Martínez, Carmen; Benito-León, Julián; Millán-Pascual, Jorge; Díaz-Sánchez, María; Calleja, Patricia; Pisa, Diana; Turpín-Fenoll, Laura; Alonso-Navarro, Hortensia; Pastor, Pau; Ortega-Cubero, Sara; Ayuso-Peralta, Lucía; Torrecillas, Dolores; García-Albea, Esteban; Plaza-Nieto, José Francisco; Jiménez-Jiménez, Félix Javier

    2016-02-12

    Several neurochemical, neuropathological, and experimental data suggest a possible role of oxidative stress in the ethiopathogenesis of multiple sclerosis(MS). Heme-oxygenases(HMOX) are an important defensive mechanism against oxidative stress, and HMOX1 is overexpressed in the brain and spinal cord of MS patients and in experimental autoimmune encephalomyelitis(EAE). We analyzed whether common polymorphisms affecting the HMOX1 and HMOX2 genes are related with the risk to develop MS. We analyzed the distribution of genotypes and allelic frequencies of the HMOX1 rs2071746, HMOX1 rs2071747, HMOX2 rs2270363, and HMOX2 rs1051308 SNPs, as well as the presence of Copy number variations(CNVs) of these genes in 292 subjects MS and 533 healthy controls, using TaqMan assays. The frequencies of HMOX2 rs1051308AA genotype and HMOX2 rs1051308A and HMOX1 rs2071746A alleles were higher in MS patients than in controls, although only that of the SNP HMOX2 rs1051308 in men remained as significant after correction for multiple comparisons. None of the studied polymorphisms was related to the age at disease onset or with the MS phenotype. The present study suggests a weak association between HMOX2 rs1051308 polymorphism and the risk to develop MS in Spanish Caucasian men and a trend towards association between the HMOX1 rs2071746A and MS risk.

  20. Association of common genetic variants with risperidone adverse events in a Spanish schizophrenic population.

    PubMed

    Almoguera, B; Riveiro-Alvarez, R; Lopez-Castroman, J; Dorado, P; Vaquero-Lorenzo, C; Fernandez-Piqueras, J; Llerena, A; Abad-Santos, F; Baca-García, E; Dal-Ré, R; Ayuso, C

    2013-04-01

    Risperidone non-compliance is often high due to undesirable side effects, whose development is in part genetically determined. Studies with genetic variants involved in the pharmacokinetics and pharmacodynamics of risperidone have yielded inconsistent results. Thus, the aim of this study was to investigate the putative association of genetic markers with the occurrence of four frequently observed adverse events secondary to risperidone treatment: sleepiness, weight gain, extrapyramidal symptoms and sexual adverse events. A series of 111 schizophrenia inpatients were genotyped for genetic variants previously associated with or potentially involved in risperidone response. Presence of adverse events was the main variable and potential confounding factors were considered. Allele 16Gly of ADRB2 was significantly associated with a higher risk of sexual adverse events. There were other non-significant trends for DRD3 9Gly and SLC6A4 S alleles. Our results, although preliminary, provide new candidate variants of potential use in risperidone safety prediction.

  1. Temporal changes in genetic diversity of common bean (Phaseolus vulgaris L.) accessions cultivated between 1800 and 2000.

    PubMed

    Maras, M; Susnik, S; Sustar-Vozlic, J; Meglic, V

    2006-07-01

    Fourteen microsatellite markers were used to describe genetic diversity in a sample of 128 common bean (Phaseolus vulgaris L.) accessions cultivated within the territory of Slovenia and its nearby regions between 1800 and 2000. The accessions were grouped into three periods, Period I comprising accessions from the beginning of the 19th century, while the other two periods included accessions from the middle (Period II) and the end of the 20th century (Period III). Seven control accessions of known Mesoamerican and Andean origin were also included in the study. A total of 130 alleles were generated. Allelic richness, in terms of number of alleles per locus, was 6.07 for Period I, 6.71 for Period II and 6.07 for Period III. In the UPGMA dendrogram, all studied accessions were intermixed in three main clusters, indicating that the diversity in the time periods overlapped. Two clusters consisted of accessions of Andean and Mesoamerican origin, while the third represents additional variation, which existed in this area already 200 years ago. The analysis of molecular variance showed that a great part of genetic diversity has been preserved till today, confirming the results of cluster analysis. The calculation of number of alleles per locus revealed no significant quantitative change in genetic diversity over the last 200 years of common bean cultivation. However, the calculation of genetic distances indicated slight qualitative shifts in genetic diversity of common bean germplasm over time, while the calculations of allelic frequency variation and polymorphic information content revealed recent decline of some alleles' frequencies. These findings should stress the need for establishing an appropriate strategy of genetic resources management.

  2. Commonalities and distinctions among mechanisms of addiction to alcohol and other drugs

    PubMed Central

    Ozburn, Angela R.; Janowsky, Aaron J.; Crabbe, John C.

    2015-01-01

    Alcohol abuse is comorbid with abuse of many other drugs, some with similar pharmacology and others quite different. This leads to the hypothesis of an underlying, unitary dysfunctional neurobiological basis for substance abuse risk and consequences. In this review, we discuss commonalities and distinctions of addiction to alcohol and other drugs. We focus on recent advances in pre-clinical studies using rodent models of drug self-administration. While there are specific behavioral and molecular manifestations common to alcohol, psychostimulant, opioid, and nicotine dependence, attempts to propose a unifying theory of the addictions inevitably face details where distinctions are found among classes of drugs. For alcohol, versus other drugs of abuse, we discuss and compare advances in: 1) neurocircuitry important for the different stages of drug dependence; 2) transcriptomics and genetical genomics; and 3) enduring effects. We note in particular the contributions of behavioral genetics and animal models: discussions of progress specifically relevant to treatment development can be found in the accompanying review (Karoly et al, this issue). PMID:26431116

  3. Ethanol Withdrawal-Associated Drinking and Drinking in the Dark: Common and Discrete Genetic Contributions

    PubMed Central

    Crabbe, John C.; Metten, Pamela; Huang, Lawrence C.; Schlumbohm, Jason P.; Spence, Stephanie E.; Barkley-Levenson, Amanda M.; Finn, Deborah A.; Rhodes, Justin S.; Cameron, Andy J.

    2014-01-01

    Individual mice differ in the dose of ethanol they will ingest voluntarily when it is offered during limited access periods in the circadian dark, a phenotype called drinking in the dark (DID). Substantial genetic variation in DID has been reported across a few standard inbred mouse strains, and a line of High Drinking in the Dark (HDID) mice has been established through selective breeding on the blood ethanol concentration (BEC) they attain at the end of a drinking session. Here, we report ethanol DID data for 23 inbred mouse strains, including 11 not previously reported, corroborating the genetic contributions to this trait. We also report data on a different ethanol drinking trait, the increased intake seen after multiple cycles of chronic intermittent exposure to ethanol vapor (CIE). Drinking escalated significantly during ethanol withdrawal. However, HDID mice and their HS controls showed equivalent escalation during withdrawal, demonstrating that withdrawal-associated drinking escalation is not a clear genetic correlate of selection on DID. Across inbred strains, DID is substantially genetically correlated with previously-published two-bottle ethanol preference drinking data assessed under conditions of continuous ethanol access. Although inbred strain data for withdrawal-associated drinking are not available, the current pattern of results suggests that withdrawal-associated drinking is genetically distinct from DID, while genetic contributions to DID and two-bottle preference drinking are substantially similar. PMID:24533180

  4. Common genetic and nonshared environmental factors contribute to the association between socioemotional dispositions and the externalizing factor in children.

    PubMed

    Taylor, Jeanette; Allan, Nicholas; Mikolajewski, Amy J; Hart, Sara A

    2013-01-01

    Childhood behavioral disorders including conduct disorder (CD), oppositional defiant disorder (ODD), and attention-deficit/hyperactivity disorder (ADHD) often co-occur. Prior twin research shows that common sets of genetic and environmental factors are associated with these various disorders and they form a latent factor called Externalizing. The developmental propensity model posits that CD develops in part from socioemotional dispositions of prosociality, negative emotionality, and daring; and recent research has supported the expected genetic and environmental associations between these dispositions and CD. This study examined the developmental propensity model in relation to the broader Externalizing factor that represents the covariance among behavior disorders in children. Parents of 686 six- to twelve-year-old twin pairs rated them on symptoms of CD, ADHD, and ODD using the disruptive behavior disorder scale and on prosociality, negative emotionality, and daring using the child and adolescent dispositions scale. A latent factor multivariate Cholesky model was used with each disposition latent factor comprised of respective questionnaire items and the Externalizing factor comprised of symptom dimensions of CD, ADHD inattention, ADHD hyperactivity/impulsivity, and ODD. Results supported the hypothesis that the socioemotional dispositions and the Externalizing factor have genetic factors in common, but there was not a single genetic factor associated with all of the constructs. As expected, nonshared environment factors were shared by the dispositions and externalizing factor but, again, no single nonshared environmental factor was common to all constructs. A shared environmental factor was associated with both negative emotionality and externalizing. The developmental propensity model was supported and appears to extend to the broader externalizing spectrum of childhood disorders. Socioemotional dispositions of prosociality, negative emotionality, and (to a

  5. Developing germplasm resources to identify the genetic basis of resistance to common scab in potato

    USDA-ARS?s Scientific Manuscript database

    Common scab, caused mainly by the soil-borne bacterium Streptomyces scabies, produces lesions on potato tubers, reducing tuber quality and profitability. Methods to manage common scab are often expensive, impractical, and can be ineffective. Therefore, creating cultivars that are resistant to common...

  6. High genetic diversity of common toad (Bufo bufo) populations under strong natural fragmentation on a Northern archipelago.

    PubMed

    Roth, Steffen; Jehle, Robert

    2016-03-01

    The last decades have shown a surge in studies focusing on the interplay between fragmented habitats, genetic variation, and conservation. In the present study, we consider the case of a temperate pond-breeding anuran (the common toad Bufo bufo) inhabiting a naturally strongly fragmented habitat at the Northern fringe of the species' range: islands offshore the Norwegian coast. A total of 475 individuals from 19 populations (three mainland populations and 16 populations on seven adjacent islands) were genetically characterized using nine microsatellite markers. As expected for a highly fragmented habitat, genetic distances between populations were high (pairwise F st values ranging between 0.06 and 0.33), with however little differences between populations separated by ocean and populations separated by terrestrial habitat (mainland and on islands). Despite a distinct cline in genetic variation from mainland populations to peripheral islands, the study populations were characterized by overall high genetic variation, in line with effective population sizes derived from single-sample estimators which were on average about 20 individuals. Taken together, our results reinforce the notion that spatial and temporal scales of fragmentation need to be considered when studying the interplay between landscape fragmentation and genetic erosion.

  7. Epidemiology and genetics of common mental disorders in the general population: the PEGASUS-Murcia project

    PubMed Central

    Navarro-Mateu, Fernando; Tormo, MJ; Vilagut, G; Alonso, J; Ruíz-Merino, G; Escámez, T; Salmerón, D; Júdez, J; Martínez, S; Navarro, C

    2013-01-01

    Background Multidisciplinary collaboration between clinicians, epidemiologists, neurogeneticists and statisticians on research projects has been encouraged to improve our knowledge of the complex mechanisms underlying the aetiology and burden of mental disorders. The PEGASUS-Murcia (Psychiatric Enquiry to General Population in Southeast Spain-Murcia) project was designed to assess the prevalence of common mental disorders and to identify the risk and protective factors, and it also included the collection of biological samples to study the gene–environmental interactions in the context of the World Mental Health Survey Initiative. Methods and analysis The PEGASUS-Murcia project is a new cross-sectional face-to-face interview survey based on a representative sample of non-institutionalised adults in the Region of Murcia (Mediterranean Southeast, Spain). Trained lay interviewers used the latest version of the computer-assisted personal interview of the Composite International Diagnostic Interview (CIDI 3.0) for use in Spain, specifically adapted for the project. Two biological samples of buccal mucosal epithelium will be collected from each interviewed participant, one for DNA extraction for genomic and epigenomic analyses and the other to obtain mRNA for gene expression quantification. Several quality control procedures will be implemented to assure the highest reliability and validity of the data. This article describes the rationale, sampling methods and questionnaire content as well as the laboratory methodology. Ethics and dissemination Informed consent will be obtained from all participants and a Regional Ethics Research Committee has approved the protocol. Results will be disseminated in peer-reviewed publications and presented at the national and the international conferences. Discussion Cross-sectional studies, which combine detailed personal information with biological data, offer new and exciting opportunities to study the gene

  8. Differences in Common Genetic Predisposition to Ischemic Stroke by Age and Sex

    PubMed Central

    Rutten-Jacobs, Loes C.A.; Holliday, Elizabeth G.; Malik, Rainer; Sudlow, Cathie; Rothwell, Peter M.; Maguire, Jane M.; Koblar, Simon A.; Bevan, Steve; Boncoraglio, Giorgio; Dichgans, Martin; Levi, Chris; Lewis, Cathryn M.; Markus, Hugh S.

    2015-01-01

    Background and Purpose— Evidence from epidemiological studies points to differences in factors predisposing to stroke by age and sex. Whether these arise because of different genetic influences remained untested. Here, we use data from 4 genome-wide association data sets to study the relationship between genetic influence on stroke with both age and sex. Methods—