Sample records for common host plants

  1. Does chemical aposematic (warning) signaling occur between host plants and their potential parasitic plants?

    PubMed

    Lev-Yadun, Simcha

    2013-07-01

    Aposematism (warning) signaling is a common defensive mechanism toward predatory or herbivorous animals, i.e., interactions between different trophic levels. I propose that it should be considered at least as a working hypothesis that chemical aposematism operates between certain host plants and their plant predators, parasitic plants, and that although they are also plants, they belong to a higher trophic level. Specific host plant genotypes emit known repelling chemical signals toward parasitic plants, which reduce the level of, slow the directional parasite growth (attack) toward the signaling hosts, or even cause parasitic plants to grow away from them in response to these chemicals. Chemical host aposematism toward parasitic plants may be a common but overlooked defense from parasitic plants.

  2. Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants.

    PubMed

    Tasin, Marco; Bäckman, Anna-Carin; Anfora, Gianfranco; Carlin, Silvia; Ioriatti, Claudio; Witzgall, Peter

    2010-01-01

    In herbivorous insects with more than 1 host plant, attraction to host odor could conceptually be mediated by common compounds, by specific compounds released by each plant or by combinations of common and specific compounds. We have compared the attraction of female grapevine moth, Lobesia botrana, with specific and common (shared) odors from 2 different plants: a wild host (Daphne gnidium) and a recently colonized host (Vitis vinifera). Odor blends eliciting female attraction to V. vinifera have previously been identified. In this study, olfactory cues from D. gnidium were identified by electroantennographic detection and chemical analysis. The attraction of mated females to synthetic odor blends was then tested in a wind tunnel bioassay. Female attraction was elicited by a blend of compounds released by both from D. gnidium and V. vinifera and by 2 blends with the compounds released specifically from each host. However, more complete odor blends of the 2 plants elicited stronger attraction. The common compounds in combination with the specific compounds of D. gnidium were the most attractive blend. This blend was tested with the common compounds presented both in the ratio emitted by D. gnidium and by V. vinifera, but there was no difference in female attraction. Our findings suggest that specific as well as common plant odor cues play a role in L. botrana host recognition and that there is plasticity in attraction to partial blends. The results are discussed in relation to mechanisms behind host odor recognition and the evolution of insect-plant associations.

  3. Interspecies hormonal control of host root morphology by parasitic plants.

    PubMed

    Spallek, Thomas; Melnyk, Charles W; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi; Shirasu, Ken

    2017-05-16

    Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant-host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum -induced host hypertrophy required cytokinin signaling genes ( AHK3,4 ) but not cytokinin biosynthesis genes ( IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants.

  4. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants

    USDA-ARS?s Scientific Manuscript database

    • The common mycorrhizal networks (CMN) of arbuscular mycorrhizal (AM) fungi in the soil provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled, are currently unknown. • We followed by radioactive and st...

  5. Competition between feeding guilds on cotton plants is species specific and likely plant-mediated.

    USDA-ARS?s Scientific Manuscript database

    Interspecific competition among herbivorous insects is often mediated by a common host plant. Changes in the common host plant induced by one herbivore species may make the plant less preferred or nutritious to another herbivore. We suggest that these interactions can be quite specific. We examine...

  6. Interspecies hormonal control of host root morphology by parasitic plants

    PubMed Central

    Melnyk, Charles W.; Wakatake, Takanori; Zhang, Jing; Sakamoto, Yuki; Kiba, Takatoshi; Yoshida, Satoko; Matsunaga, Sachihiro; Sakakibara, Hitoshi

    2017-01-01

    Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana. Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant–host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum-induced host hypertrophy required cytokinin signaling genes (AHK3,4) but not cytokinin biosynthesis genes (IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants. PMID:28461500

  7. Complete Host Range Testing on Common Reed with Potential Biological Control Agents and Investigation into Biological Control for Flowering Rush

    DTIC Science & Technology

    2016-07-01

    ER D C/ EL C R- 16 -5 Aquatic Plant Control Research Program Complete Host Range Testing on Common Reed with Potential Biological...client/default. Aquatic Plant Control Research Program ERDC/EL CR-16-5 July 2016 Complete Host Range Testing on Common Reed with Potential...and started with sequential no-choice oviposition tests. So far, no eggs were found on any of the 22 test plants offered. The authors also found the

  8. A Global Phylogeny of Leafmining Ectoedemia Moths (Lepidoptera: Nepticulidae): Exploring Host Plant Family Shifts and Allopatry as Drivers of Speciation

    PubMed Central

    Doorenweerd, Camiel; van Nieukerken, Erik J.; Menken, Steph B. J.

    2015-01-01

    Background Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia. Methodology Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects. Significance We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different clades. PMID:25785630

  9. Response of host plants to periodical cicada oviposition damage.

    PubMed

    Flory, S Luke; Mattingly, W Brett

    2008-06-01

    Insect oviposition on plants is widespread across many systems, but studies on the response of host plants to oviposition damage are lacking. Although patterns of oviposition vary spatially and temporally, ovipositing insects that exhibit outbreak characteristics may have strong effects on host plants during peak abundance. Periodical cicadas (Magicicada spp.), in particular, may reduce the performance of host plants when they synchronously emerge in massive numbers to mate and oviposit on host plants. Here we provide the first experimental manipulation of host plant use by periodical cicadas to evaluate the impact of cicada oviposition on plant performance across a diversity of host species within an ecologically relevant setting. Using a randomized block design, we established a plantation of three native and three exotic host plant species common to the successional forests in which cicadas occur. During the emergence of Brood X in 2004, we employed a highly effective cicada exclusion treatment by netting half of the host plants within each block. We assessed multiple measures of host plant performance, including overall plant growth and the growth and reproduction of individual branches, across three growing seasons. Despite our thorough assessment of potential host plant responses to oviposition damage, cicada oviposition did not generally inhibit host plant performance. Oviposition densities on unnetted host plants were comparable to levels documented in other studies, reinforcing the ecological relevance of our results, which indicate that cicada oviposition damage did not generally reduce the performance of native or exotic host plants.

  10. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    PubMed

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  11. Global pattern of plant utilization across different organisms: Does plant apparency or plant phylogeny matter?

    PubMed

    Dai, Xiaohua; Zhang, Wei; Xu, Jiasheng; Duffy, Kevin J; Guo, Qingyun

    2017-04-01

    The present study is the first to consider human and nonhuman consumers together to reveal several general patterns of plant utilization. We provide evidence that at a global scale, plant apparency and phylogenetic isolation can be important predictors of plant utilization and consumer diversity. Using the number of species or genera or the distribution area of each plant family as the island "area" and the minimum phylogenetic distance to common plant families as the island "distance", we fitted presence-area relationships and presence-distance relationships with a binomial GLM (generalized linear model) with a logit link. The presence-absence of consumers among each plant family strongly depended on plant apparency (family size and distribution area); the diversity of consumers increased with plant apparency but decreased with phylogenetic isolation. When consumers extended their host breadth, unapparent plants became more likely to be used. Common uses occurred more often on common plants and their relatives, showing higher host phylogenetic clustering than uncommon uses. On the contrary, highly specialized uses might be related to the rarity of plant chemicals and were therefore very species-specific. In summary, our results provide a global illustration of plant-consumer combinations and reveal several general patterns of plant utilization across humans, insects and microbes. First, plant apparency and plant phylogenetic isolation generally govern plant utilization value, with uncommon and isolated plants suffering fewer parasites. Second, extension of the breadth of utilized hosts helps explain the presence of consumers on unapparent plants. Finally, the phylogenetic clustering structure of host plants is different between common uses and uncommon uses. The strength of such consistent plant utilization patterns across a diverse set of usage types suggests that the persistence and accumulation of consumer diversity and use value for plant species are determined by similar ecological and evolutionary processes.

  12. Seasonal Alterations in Host Range and Fidelity in the Polyphagous Mirid Bug, Apolygus lucorum (Heteroptera: Miridae)

    PubMed Central

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Wyckhuys, Kris A. G.

    2015-01-01

    In herbivorous insects, host plant switching is commonly observed and plays an important role in their annual life cycle. However, much remains to be learned about seasonal host switching of various pestiferous arthropods under natural conditions. From 2006 until 2012, we assessed Apolygus lucorum (Meyer-Dür) host plant use in successive spring, summer and winter seasons at one single location (Langfang, China). Data were used to quantify changes in host plant breadth and host fidelity between seasons. Host fidelity of A. lucorum differed between seasons, with 87.9% of spring hosts also used in the summer and 36.1% of summer hosts used in winter. In contrast, as little as 25.6% host plant species were shared between winter and spring. Annual herbaceous plants are most often used for overwintering, while perennial woody plants are relatively important for initial population build-up in the spring. Our study contributes to an improved understanding of evolutionary interactions between A. lucorum and its host plants and lays the groundwork for the design of population management strategies for this important pest in myriad crops. PMID:25692969

  13. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway

    PubMed Central

    López-Ráez, Juan A.; Verhage, Adriaan; Fernández, Iván; García, Juan M.; Azcón-Aguilar, Concepción; Flors, Victor; Pozo, María J.

    2010-01-01

    Arbuscular mycorrhizal (AM) symbioses are mutualistic associations between soil fungi and most vascular plants. The symbiosis significantly affects the host physiology in terms of nutrition and stress resistance. Despite the lack of host range specificity of the interaction, functional diversity between AM fungal species exists. The interaction is finely regulated according to plant and fungal characters, and plant hormones are believed to orchestrate the modifications in the host plant. Using tomato as a model, an integrative analysis of the host response to different mycorrhizal fungi was performed combining multiple hormone determination and transcriptional profiling. Analysis of ethylene-, abscisic acid-, salicylic acid-, and jasmonate-related compounds evidenced common and divergent responses of tomato roots to Glomus mosseae and Glomus intraradices, two fungi differing in their colonization abilities and impact on the host. Both hormonal and transcriptional analyses revealed, among others, regulation of the oxylipin pathway during the AM symbiosis and point to a key regulatory role for jasmonates. In addition, the results suggest that specific responses to particular fungi underlie the differential impact of individual AM fungi on plant physiology, and particularly on its ability to cope with biotic stresses. PMID:20378666

  14. Comparative Large-Scale Analysis of Interactions between Several Crop Species and the Effector Repertoires from Multiple Pathovars of Pseudomonas and Ralstonia1[W][OA

    PubMed Central

    Wroblewski, Tadeusz; Caldwell, Katherine S.; Piskurewicz, Urszula; Cavanaugh, Keri A.; Xu, Huaqin; Kozik, Alexander; Ochoa, Oswaldo; McHale, Leah K.; Lahre, Kirsten; Jelenska, Joanna; Castillo, Jose A.; Blumenthal, Daniel; Vinatzer, Boris A.; Greenberg, Jean T.; Michelmore, Richard W.

    2009-01-01

    Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell. PMID:19571308

  15. Where are you sucking from? Using Stable Isotopes to understand Host Specificity in two Hemiparasitic plants above the tree line in Northern Sweden

    NASA Astrophysics Data System (ADS)

    Macias Sevde, A. S.

    2012-12-01

    By Alejandro Macias, Erik Hobbie, Ruth Varner, Kaitlyn Steele Hemiparasites are known to suck nutrients from nearby plants but their host specificity is not well understood. Hemiparasites are ecosystem engineers, limiting surrounding plant's growth, and decreasing local biodiversity. To better understand this phenomenon, the host specificities of two hemiparasitic angiosperms, Bartsia alpina , and Pedicularis lapponica were studied above the tree line along an elevational gradient in Sweden. B. alpina specialized in wetter environments, as indicated by their higher δ13C signature, and their growth among Salixsp.Betula nana, Bistorta vivipara, Viola biflora, Geranium sp., and Trollious europaeus. P. lapponica was common in drier, less species rich environments, known as heaths, where B. nana, Empetrum negrum, Phyllodoce coeruela, Vaccinium myrtillus and Vaccinium vitis-idaea are the most common species. P. lapponica had higher foliage δ13C due to its better water-use efficiency in a dry environment. Field survey data and δN15 values of both the foliage of the parasitic plants and their potential hosts were used to determine host specificity. Since the δN15 value of the hemiparasitic plant and its host are similar due to parasitism, it was determined that P. lapponica had a preference for plants with an ericoid mycorrhizal association, such as Vaccinium sp, and E. negrum, but not for the common P. coeruela. This does not support the idea found in the literature that P. lapponica has a preference for grasses. B. alpina was less host specific, associating with non-mycorrhizal, ericoid, and ectomycorhizal plants, such as Carex sp, Vaccinium sp., and S. lapponum. The ectomycorrhizal species, Salix sp., and B. nana, were both potential hosts for B. alpina and P. lapponica due to their presence among them. However, the isotopic data revealed that B. alpina had a preference for Salix sp., and P. lapponica had a preference for B. nana.

  16. Modulation of host cell biology by plant pathogenic microbes.

    PubMed

    Le Fevre, Ruth; Evangelisti, Edouard; Rey, Thomas; Schornack, Sebastian

    2015-01-01

    Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.

  17. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants

    PubMed Central

    Kamel, Laurent; Tang, Nianwu; Malbreil, Mathilde; San Clemente, Hélène; Le Marquer, Morgane; Roux, Christophe; Frei dit Frey, Nicolas

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants—a monocot, a dicot and a liverwort—in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts. PMID:28223991

  18. Arabidopsis non-host resistance to powdery mildews.

    PubMed

    Lipka, Ulrike; Fuchs, Rene; Lipka, Volker

    2008-08-01

    Immunity of an entire plant species against all genetic variants of a particular parasite is referred to as non-host resistance. Although non-host resistance represents the most common and durable form of plant resistance in nature, it has thus far been poorly understood at the molecular level. Recently, novel model systems have established the first mechanistic insights. The genetic dissection of Arabidopsis non-host resistance to non-adapted biotrophic powdery mildew fungi provided evidence for functionally redundant but operationally distinct pre- and post-invasion immune responses. Conceptually, these complex and successive defence mechanisms explain the durable and robust nature of non-host resistance. Pathogen lifestyle and infection biology, ecological parameters and the evolutionary relationship of the interaction partners determine differences and commonalities in other model systems.

  19. Feeding guild of non-host community members affects host-foraging efficiency of a parasitic wasp.

    PubMed

    De Rijk, Marjolein; Yang, Daowei; Engel, Bas; Dicke, Marcel; Poelman, Erik H

    2016-06-01

    Interactions between predator and prey, or parasitoid and host, are shaped by trait- and density-mediated processes involving other community members. Parasitoids that lay their eggs in herbivorous insects locate their hosts through infochemicals such as herbivore-induced plant volatiles (HIPVs) and host-produced kairomones. Hosts are frequently accompanied by non-host herbivores that are unsuitable for the parasitoid. These non-hosts may interfere with host location primarily through trait-mediated processes, by their own infochemicals, and their induction of the emission of plant volatiles. Although it is known that single non-hosts can interfere with parasitoid host location, it is still unknown whether the observed effects are due to species specific characteristics or to the feeding habits of the non-host herbivores. Here we addressed whether the feeding guild of non-host herbivores differentially affects foraging of the parasitoid Cotesia glomerata for its common host, caterpillars of Pieris brassicae feeding on Brassica oleracea plants. We used different phloem-feeding and leaf-chewing non-hosts to study their effects on host location by the parasitoid when searching for host-infested plants based on HIPVs and when searching for hosts on the plant using infochemicals. To evaluate the ultimate effect of these two phases in host location, we studied parasitism efficiency of parasitoids in small plant communities under field-tent conditions. We show that leaf-chewing non-hosts primarily affected host location through trait-mediated effects via plant volatiles, whereas phloem-feeding non-hosts exerted trait-mediated effects by affecting foraging efficiency of the parasitoid on the plant. These trait-mediated effects resulted in associational susceptibility of hosts in environments with phloem feeders and associational resistance in environments with non-host leaf chewers.

  20. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

    PubMed

    Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B

    2016-08-11

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.

  1. Network Analysis Reveals a Common Host-Pathogen Interaction Pattern in Arabidopsis Immune Responses.

    PubMed

    Li, Hong; Zhou, Yuan; Zhang, Ziding

    2017-01-01

    Many plant pathogens secrete virulence effectors into host cells to target important proteins in host cellular network. However, the dynamic interactions between effectors and host cellular network have not been fully understood. Here, an integrative network analysis was conducted by combining Arabidopsis thaliana protein-protein interaction network, known targets of Pseudomonas syringae and Hyaloperonospora arabidopsidis effectors, and gene expression profiles in the immune response. In particular, we focused on the characteristic network topology of the effector targets and differentially expressed genes (DEGs). We found that effectors tended to manipulate key network positions with higher betweenness centrality. The effector targets, especially those that are common targets of an individual effector, tended to be clustered together in the network. Moreover, the distances between the effector targets and DEGs increased over time during infection. In line with this observation, pathogen-susceptible mutants tended to have more DEGs surrounding the effector targets compared with resistant mutants. Our results suggest a common plant-pathogen interaction pattern at the cellular network level, where pathogens employ potent local impact mode to interfere with key positions in the host network, and plant organizes an in-depth defense by sequentially activating genes distal to the effector targets.

  2. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    PubMed Central

    Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.

    2016-01-01

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855

  3. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions.

    PubMed

    Dietzgen, Ralf G; Mann, Krin S; Johnson, Karyn N

    2016-11-09

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.

  4. Performances of survival, feeding behavior, and gene expression in aphids reveal their different fitness to host alteration

    PubMed Central

    Lu, Hong; Yang, Pengcheng; Xu, Yongyu; Luo, Lan; Zhu, Junjie; Cui, Na; Kang, Le; Cui, Feng

    2016-01-01

    Insect populations feeding on different plant species are under selection pressure to adapt to these differences. A study integrating elements of the ecology, behavior, and gene expression of aphids on different host plants has not yet been well-explored. The present study explores the relationship between host fitness and survival, feeding behavior, and salivary gland gene expression of a pea (Pisum sativum) host race of Acyrthosiphon pisum feeding on a common host Vicia faba and on three genetically-related hosts (Vicia villosa, Medicago truncatula, and Medicago sativa). Life table data indicated that aphids on non-favored hosts exhibited small size, low reproduction rate, slow population increase and individual development, and long lifespan. Electrical penetration graph results showed that the aphids spent significantly less time in passive ingestion of phloem sap on all non-preferred host plants before acclimation. After a period of acclimation on M. truncatula and V. villosa, pea host race individuals showed improved feeding behavior. No individuals of the pea host race completed its life history on M. sativa. Interestingly, the number of host-specific differentially-expressed salivary gland genes was negatively correlated with the fitness of aphids on this host plant. This study provided important cues in host plant specialization in aphids. PMID:26758247

  5. Evolutionary history of aphid-plant associations and their role in aphid diversification.

    PubMed

    Peccoud, Jean; Simon, Jean-Christophe; von Dohlen, Carol; Coeur d'acier, Armelle; Plantegenest, Manuel; Vanlerberghe-Masutti, Flavie; Jousselin, Emmanuelle

    2010-01-01

    Aphids are intimately linked with their host plants that constitute their only food resource and habitat, and thus impose considerable selective pressure on their evolution. It is therefore commonly assumed that host plants have greatly influenced the diversification of aphids. Here, we review what is known about the role of host plant association on aphid speciation by examining both macroevolutionary and population-level studies. Phylogenetic studies conducted at different taxonomic levels show that, as in many phytophagous insect groups, the radiation of angiosperms has probably favoured the major Tertiary diversification of aphids. These studies also highlight many aphid lineages constrained to sets of related host plants, suggesting strong evolutionary commitment in aphids' host plant choice, but they fail to document cospeciation events between aphid and host lineages. Instead, phylogenies of several aphid genera reveal that divergence events are often accompanied by host shifts, and suggest, without constituting a formal demonstration, that aphid speciation could be a consequence of adaptation to new hosts. Experimental and field studies below the species level support reproductive isolation between host races as partly due to divergent selection by their host plants. Selected traits are mainly feeding performances and life cycle adaptations to plant phenology. Combined with behavioural preference for favourable host species, these divergent adaptations can induce pre- and post-zygotic barriers between host-specialized aphid populations. However, the hypothesis of host-driven speciation is seldom tested formally and must be weighed against overlooked explanations involving geographic isolation and non-ecological reproductive barriers in the process of speciation. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. Aphid specialization on different summer hosts is associated with strong genetic differentiation and unequal symbiont communities despite a common mating habitat.

    PubMed

    Vorburger, C; Herzog, J; Rouchet, R

    2017-04-01

    Specialization on different host plants can promote evolutionary diversification of herbivorous insects. Work on pea aphids (Acyrthosiphon pisum) has contributed significantly to the understanding of this process, demonstrating that populations associated with different host plants exhibit performance trade-offs across hosts, show adaptive host choice and genetic differentiation and possess different communities of bacterial endosymbionts. Populations specialized on different secondary host plants during the parthenogenetic summer generations are also described for the black bean aphid (Aphis fabae complex) and are usually treated as different (morphologically cryptic) subspecies. In contrast to pea aphids, however, host choice and mate choice are decoupled in black bean aphids, because populations from different summer hosts return to the same primary host plant to mate and lay overwintering eggs. This could counteract evolutionary divergence, and it is currently unknown to what extent black bean aphids using different summer hosts are indeed differentiated. We addressed this question by microsatellite genotyping and endosymbiont screening of black bean aphids collected in summer from the goosefoot Chenopodium album (subspecies A. f. fabae) and from thistles of the genus Cirsium (subspecies A. f. cirsiiacanthoides) across numerous sites in Switzerland and France. Our results show clearly that aphids from Cirsium and Chenopodium exhibit strong and geographically consistent genetic differentiation and that they differ in their frequencies of infection with particular endosymbionts. The dependence on a joint winter host has thus not prevented the evolutionary divergence into summer host-adapted populations that appear to have evolved mechanisms of reproductive isolation within a common mating habitat. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  7. Characterization of two biologically distinct variants of Tomato spotted wilt virus

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses result on a wide range of crops due to infection with Tomato spotted wilt virus (TSWV). In this study, two TSWV isolates, one from basil and a second from tomato, were established in a common plant host. Viral proteins were monitored over time, plant host ranges were comp...

  8. An Exploration of Hypotheses that Explain Herbivore and Pathogen Attack in Restored Plant Communities

    PubMed Central

    Blaisdell, G. Kai; Roy, Bitty A.; Pfeifer-Meister, Laurel; Bridgham, Scott D.

    2015-01-01

    Many hypotheses address the associations of plant community composition with natural enemies, including: (i) plant species diversity may reduce enemy attack, (ii) attack may increase as host abundance increases, (iii) enemy spillover may lead to increased attack on one host species due to transmission from another host species, or enemy dilution may lead to reduced attack on a host that would otherwise have more attack, (iv) physical characteristics of the plant community may influence attack, and (v) plant vigor may affect attack. Restoration experiments with replicated plant communities provide an exceptional opportunity to explore these hypotheses. To explore the relative predictive strengths of these related hypotheses and to investigate the potential effect of several restoration site preparation techniques, we surveyed arthropod herbivore and fungal pathogen attack on the six most common native plant species in a restoration experiment. Multi-model inference revealed a weak but consistent negative correlation with pathogen attack and host diversity across the plant community, and no correlation between herbivory and host diversity. Our analyses also revealed host species-specific relationships between attack and abundance of the target host species, other native plant species, introduced plant species, and physical community characteristics. We found no relationship between enemy attack and plant vigor. We found minimal differences in plant community composition among several diverse site preparation techniques, and limited effects of site preparation techniques on attack. The strongest associations of community characteristics with attack varied among plant species with no community-wide patterns, suggesting that no single hypothesis successfully predicts the dominant community-wide trends in enemy attack. PMID:25699672

  9. Olfactory Response and Host Plant Feeding of the Central American Locust Schistocerca piceifrons piceifrons Walker to Common Plants in a Gregarious Zone.

    PubMed

    Poot-Pech, M A; Ruiz-Sánchez, E; Ballina-Gómez, H S; Gamboa-Angulo, M M; Reyes-Ramírez, A

    2016-08-01

    The Central American locust (CAL) Schistocerca piceifrons piceifrons Walker is one of the most harmful plant pests in the Yucatan Peninsula, where an important gregarious zone is located. The olfactory response and host plant acceptance by the CAL have not been studied in detail thus far. In this work, the olfactory response of the CAL to odor of various plant species was evaluated using an olfactometer test system. In addition, the host plant acceptance was assessed by the consumption of leaf area. Results showed that the CAL was highly attracted to odor of Pisonia aculeata. Evaluation of host plant acceptance showed that the CAL fed on Leucaena glauca and Waltheria americana, but not on P. aculeata or Guazuma ulmifolia. Analysis of leaf thickness, and leaf content of nitrogen (N) and carbon (C) showed that the CAL was attracted to plant species with low leaf C content.

  10. Biology and occurrence of Inga Busk species (Lepidoptera: Oecophoridae) on Cerrado host plants.

    PubMed

    Diniz, Ivone R; Bernardes, Carolina; Rodovalho, Sheila; Morais, Helena C

    2007-01-01

    We sampled Inga Busk species caterpillars weekly in the cerrado on 15 plants of Diospyros burchellii Hern. (Ebenaceae) from January 2002 to December 2003, on 30 plants of Caryocar brasiliense (Caryocaraceae) from July 2003 to June 2004, and since 1991 on several other plant species. In total we found 15 species of Inga on cerrado host plants. Nine species were very rare, with only one to five adults reared. The other six species occurred throughout the year, with higher abundance during the dry season, from May to July, coinciding with overall peaks of caterpillar abundance in the cerrado. Caterpillars of the genus Inga build shelters by tying and lining two mature or old leaves with silk and frass, where they rest and develop (a common habit found in Oecophorinae). The final instar builds a special envelope inside the leaf shelter, where it will complete the larval stage and pupate. The species are very difficult to distinguish in the immature stages. External features were useful in identifying only four species: I. haemataula (Meyrick), I. phaecrossa (Meyrick), I. ancorata (Walsingham), and I. corystes (Meyrick). These four species are polyphagous and have wide geographical distributions. In this paper we provide information on the natural history and host plants of six Inga species common on cerrado host plants, for which there are no reports in the literature.

  11. New Raffaelea species (Ophiostomatales) from the USA and Taiwan associated with ambrosia beetles and plant hosts

    Treesearch

    D. Rabern Simmons; Z. Wilhelm de Beer; Yin-Tse Huang; Craig Bateman; Alina S. Campbell; Tyler J. Dreaden; You Li; Randy C. Ploetz; Adam Black; Hou-Feng Li; Chi-Yu Chen; Michael J. Wingfield; Jiri Hulcr

    2016-01-01

    Raffaelea (Ophiostomatales) is a genus of more than 20 ophiostomatoid fungi commonly occurring in symbioses with wood-boring ambrosia beetles. We examined ambrosia beetles and plant hosts in the USA and Taiwan for the presence of these mycosymbionts and found 22 isolates representing known and undescribed lineages in ...

  12. Unravelling the role of host plant expansion in the diversification of a Neotropical butterfly genus.

    PubMed

    McClure, Melanie; Elias, Marianne

    2016-06-16

    Understanding the processes underlying diversification is a central question in evolutionary biology. For butterflies, access to new host plants provides opportunities for adaptive speciation. On the one hand, locally abundant host species can generate ecologically significant selection pressure. But a diversity of host plant species within the geographic range of each population and/or species might also eliminate any advantage conferred by specialization. This paper focuses on four Melinaea species, which are oligophagous on the family Solanaceae: M. menophilus, M. satevis, M. marsaeus, and finally, M. mothone. We examined both female preference and larval performance on two host plant species that commonly occur in this butterfly's native range, Juanulloa parasitica and Trianaea speciosa, to determine whether the different Melinaea species show evidence of local adaptation. In choice experiments, M. mothone females used both host plants for oviposition, whereas all other species used J. parasitica almost exclusively. In no choice experiment, M. mothone was the only species that readily accepted T. speciosa as a larval host plant. Larval survival was highest on J. parasitica (82.0 % vs. 60.9 %) and development took longer on T. speciosa (14.12 days vs. 13.35 days), except for M. mothone, which did equally well on both host plants. For all species, average pupal weight was highest on J. parasitica (450.66 mg vs. 420.01 mg), although this difference was least apparent in M. mothone. We did not find that coexisting species of Melinaea partition host plant resources as expected if speciation is primarily driven by host plant divergence. Although M. mothone shows evidence of local adaptation to a novel host plant, T. speciosa, which co-occurs, it does not preferentially lay more eggs on or perform better on this host plant than on host plants used by other Melinaea species and not present in its distributional range. It is likely that diversification in this genus is driven by co-occurring Müllerian mimics and the resulting predation pressure, although this is also likely made possible by greater niche diversity as a consequence of plasticity for potential hosts.

  13. Host Range and Selectivity of the Hemiparasitic Plant Thesium chinense (Santalaceae)

    PubMed Central

    Suetsugu, Kenji; Kawakita, Atsushi; Kato, Makoto

    2008-01-01

    Background and Aims Thesium chinense is a hemiparasitic plant that is common in grassland habitats of eastern Asia. Although the physiology of Thesium has been well studied in attempts to control its weedy habit, there have been few ecological investigations of its parasitic life history. Thesium chinense is thought to parasitize species of Poaceae, but evidence remains circumstantial. Methods A vegetation survey was conducted to test whether any plant species occurs significantly more often in plots with T. chinense than expected. In addition, haustorial connections were examined directly by excavating the roots and post-attachment host selectivity was evaluated by comparing the observed numbers of haustoria on different hosts against those expected according to the relative below-ground biomass. Haustorium sizes were also compared among host species. Key Results Only two of the 38 species recorded, Lespedeza juncea and Eragrostis curvula, occurred more often in plots with Thesium than expected. In contrast to this, T. chinense parasitized 22 plant species in 11 families, corresponding to 57·9 % of plant species found at the study site. Haustoria were non-randomly distributed among host species, suggesting that there is some post-attachment host selectivity. Thesium chinense generally preferred the Poaceae, although haustoria formed on the Fabaceae were larger than those on other hosts. Conclusions This is the first quantitative investigation of the host range and selectivity of hemiparasitic plants of the Santalales. The preference for Fabaceae as hosts may be linked to the greater nutrient availability in these nitrogen-fixing plants. PMID:18492736

  14. Population abundance of Frankliniella occidentalis (Thysanoptera: Thripidae) and natural enemies on plant hosts in central Chile.

    PubMed

    Ripa, Renato; Funderburk, Joe; Rodriguez, Fernando; Espinoza, Fernanda; Mound, Laurence

    2009-04-01

    Populations of the invasive Frankliniella occidentalis (Pergande) are serious pests of agricultural crops in the Aconcagua Valley of central Chile. An extensive survey was conducted of 55 plant species in 24 families to identify plant hosts of F. occidentalis and to determine its relative abundance on each host during each season. A more intensive study was conducted on selected plant species serving as reproductive hosts to determine the population dynamics of F. occidentalis and to evaluate the potential importance of Orius species and other natural enemies for controlling F. occidentalis. Adults of F. occidentalis were active during each season of the year inhabiting the flowers of 91% of the sampled plant species in 22 families, and 86% of these plant species in 19 families served as reproductive hosts. The number of host plant species used was greatest in the spring and least in the winter. All of the hosts except Medicago sativa L. were used only when flowering. Populations of F. occidentalis were significantly aggregated in M. sativa in the terminal buds over the leaves when the host was not flowering, and in the flowers, followed by the terminal buds, followed by the leaves when the host was flowering. Larvae were 1.3-2.3 times more abundant on dates when M. sativa was flowering. There were no identifiable patterns in plant hosts based on endemicity or plant family. Most of the plant species used by F. occidentalis were inferior quality hosts where populations either declined or were stable. Populations of F. occidentalis on low-quality hosts generally escaped predation by Orius species and competition by other species of thrips. Only 25% of the food hosts and 28% of the reproductive hosts for F. occidentalis in the extensive survey, respectively, were host plants for Orius. Parasitoids and other predators were not found to be important in suppressing thrips on any of the plant hosts. Populations of F. occidentalis increased on only a few hosts, including M. sativa and Sisymbrium officinale L. Scop. These apparently are major sources of F. occidentalis adults invading crops. We conclude that F. occidentalis is established in central Chile and that it has replaced and possibly displaced the native Frankliniella australis (Morgan) as the most common thrips species.

  15. Parasitic nematode interactions with mammals and plants.

    PubMed

    Jasmer, Douglas P; Goverse, Aska; Smant, Geert

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.

  16. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants.

    PubMed

    Weremijewicz, Joanna; Sternberg, Leonel da Silveira Lobo O'Reilly; Janos, David P

    2016-10-01

    Arbuscular mycorrhizal (AM) fungi interconnect plants in common mycorrhizal networks (CMNs) which can amplify competition among neighbors. Amplified competition might result from the fungi supplying mineral nutrients preferentially to hosts that abundantly provide fixed carbon, as suggested by research with organ-cultured roots. We examined whether CMNs supplied (15) N preferentially to large, nonshaded, whole plants. We conducted an intraspecific target-neighbor pot experiment with Andropogon gerardii and several AM fungi in intact, severed or prevented CMNs. Neighbors were supplied (15) N, and half of the target plants were shaded. Intact CMNs increased target dry weight (DW), intensified competition and increased size inequality. Shading decreased target weight, but shaded plants in intact CMNs had mycorrhizal colonization similar to that of sunlit plants. AM fungi in intact CMNs acquired (15) N from the substrate of neighbors and preferentially allocated it to sunlit, large, target plants. Sunlit, intact CMN, target plants acquired as much as 27% of their nitrogen from the vicinity of their neighbors, but shaded targets did not. These results suggest that AM fungi in CMNs preferentially provide mineral nutrients to those conspecific host individuals best able to provide them with fixed carbon or representing the strongest sinks, thereby potentially amplifying asymmetric competition below ground. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Delayed colonisation of Acacia by thrips and the timing of host-conservatism and behavioural specialisation.

    PubMed

    McLeish, Michael J; Miller, Joseph T; Mound, Laurence A

    2013-09-09

    Repeated colonisation of novel host-plants is believed to be an essential component of the evolutionary success of phytophagous insects. The relative timing between the origin of an insect lineage and the plant clade they eat or reproduce on is important for understanding how host-range expansion can lead to resource specialisation and speciation. Path and stepping-stone sampling are used in a Bayesian approach to test divergence timing between the origin of Acacia and colonisation by thrips. The evolution of host-plant conservatism and ecological specialisation is discussed. Results indicated very strong support for a model describing the origin of the common ancestor of Acacia thrips subsequent to that of Acacia. A current estimate puts the origin of Acacia at approximately 6 million years before the common ancestor of Acacia thrips, and 15 million years before the origin of a gall-inducing clade. The evolution of host conservatism and resource specialisation resulted in a phylogenetically under-dispersed pattern of host-use by several thrips lineages. Thrips colonised a diversity of Acacia species over a protracted period as Australia experienced aridification. Host conservatism evolved on phenotypically and environmentally suitable host lineages. Ecological specialisation resulted from habitat selection and selection on thrips behavior that promoted primary and secondary host associations. These findings suggest that delayed and repeated colonisation is characterised by cycles of oligo- or poly-phagy. This results in a cumulation of lineages that each evolve host conservatism on different and potentially transient host-related traits, and facilitates both ecological and resource specialisation.

  18. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    PubMed Central

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591

  19. Evaluation of roadside greenbelt trees damage caused by strangler plants in Bogor

    NASA Astrophysics Data System (ADS)

    Danniswari, Dibyanti; Nasrullah, Nizar

    2017-10-01

    Certain plants are called stranglers (hemiepiphyte) because they grow on host trees and slowly choking the host, which often results in the host’s death. The existence of strangler plants on roadside greenbelt trees is quite common in Bogor, but they may cause tree’s failure and threaten users’ safety. To prevent such hazard, evaluation of roadside greenbelt trees damage caused by strangler plants is important. This study was directed to analyse the vegetation of strangler plants in Bogor, to assess the damage caused by stranglers, and to compose strangled trees maintenance recommendations. This study was conducted in March to May 2014 by doing survey at five major roads in Bogor, which were Jalan Ahmad Yani, Jalan Sudirman, Jalan Pemuda, Jalan Semeru, and Jalan Juanda. The results showed that strangler species found in Bogor are Ficus benjamina, Ficus glauca, Ficus elastica, and Schefflera actinophylla. The most common species in Bogor is F. benjamina. Host trees that tend to be preferred by strangler plants are trees with large trunk, many branches, and medium to high height. The maintenance for every strangled tree is different according to the damage level, mild to severe damage could be treated by strangler root cutting to tree logging, respectively.

  20. Odour maps in the brain of butterflies with divergent host-plant preferences.

    PubMed

    Carlsson, Mikael A; Bisch-Knaden, Sonja; Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S; Janz, Niklas

    2011-01-01

    Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca(2+) activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.

  1. Odour Maps in the Brain of Butterflies with Divergent Host-Plant Preferences

    PubMed Central

    Schäpers, Alexander; Mozuraitis, Raimondas; Hansson, Bill S.; Janz, Niklas

    2011-01-01

    Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants. PMID:21901154

  2. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts.

    PubMed

    Guiguet, Antoine; Dubreuil, Géraldine; Harris, Marion O; Appel, Heidi M; Schultz, Jack C; Pereira, Marcos H; Giron, David

    2016-01-01

    Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Subtropical Interactions: Comparing Galling Insect and Host Plant Diversity in Southern Brazil and Florida.

    PubMed

    D S Mendonça, M; Stiling, P

    2017-11-22

    Gall-inducing insects seem to have a diversity pattern distinct from the usual latitudinal decrease in species, with more species occurring in xeric environments instead. Many questions regarding galler diversity over geographical scales remain unanswered: for example, little is known about beta diversity, and the role super host plants play in local/regional richness. Our aim was to compare galling insect and host plant diversity in different biogeographical regions, but under similar environmental conditions. We sampled short stature coastal woodlands on sandy soils of the Atlantic coast in both USA (Florida) and Brazil (Rio Grande do Sul, RS), between 25° and 30° latitude. Little-used 200-m long trails were searched during 90 min for galls; there were four trails in USA and five in Brazil. Gall functional traits (galled plant organ, gall shape and colour) proportions were not different between Florida and RS. Local galling and host plant species richness also did not differ, and neither did regional galling diversity. The beta diversity pattern, however, was distinct: sites in Florida have more similar galling faunas than sites in RS. Common diversity patterns indicate common environmental biotic (plant diversity, vegetation structure) and abiotic (climate, soil) factors might be contributing to these similar responses. As Brazilian sites are in the Atlantic forest hotspot, a high galling insect beta diversity might be caused by a higher heterogeneity at larger scales-sample-based rarefaction curves were ascending for Brazil, but not for USA. Myrtaceans were super hosts in Brazil, but not in Florida, where oaks take up this role.

  4. Novel multitrophic interactions among an exotic, generalist herbivore, its host plants and resident enemies in California.

    PubMed

    Hopper, Julie V; Mills, Nicholas J

    2016-12-01

    What happens when an exotic herbivore invades and encounters novel host plants and enemies? Here, we investigate the impacts of host plant quality and plant architecture on an exotic generalist herbivore, Epiphyas postvittana (Lepidoptera: Tortricidae) and its interactions with resident parasitoids in California. Using artificial diet and five plant species, we found significant effects of diet on the fitness of E. postvittana under laboratory conditions. In the field, based on a common garden experiment with host plants of nine species, we found that larval parasitism varied among plant species by a factor of 2.1 with a higher risk of parasitism on shorter than taller plants. Parasitism of egg masses varied by a factor of 4.7 among plant species with a higher risk of parasitism on taller than shorter plants. In the laboratory, the foraging time of a resident egg parasitoid on excised leaves varied among plant species, but did not correspond to observed egg parasitism rates on these same plants in the field. On leaves of Plantago lanceolata, the probability of egg parasitism decreased with trichome density. Overall, there was a significant effect of host plant on the intrinsic rate of increase of E. postvittana and on the extent of parasitism by resident parasitoids, but no correlation existed between these two effects. The recent decline of E. postvittana in California may be due to the low quality of some host plants and to the many resident enemies that readily attack it, perhaps due to its phylogenetic relatedness to resident tortricids.

  5. Descriptions of the immature stages and new host plant records of Notozulia entreriana (Berg) (Hemiptera: Cercopidae) pests of grasses in subtropical areas of the Americas.

    PubMed

    Foieri, Alvaro; Lenicov, Ana M Marino De Remes; Virla, Eduardo G

    2016-04-11

    Notozulia entreriana (Berg) (Hemiptera: Cercopidae) is one of the most common spittlebugs inhabiting the subtropical region of the America, inflicting important economic damage to grass crops. The immature stages are described and illustrated; the main characteristics that distinguish instars are the body size, color, number of flagellomeres, and number of tibial and metatarsomere spines. A key for identification of nymphs is provided as a tool to develop field studies.  Nine host plants, all belonging to Poaceae, are recorded as breeding and feeding host plants from different localities in northern Argentina.

  6. Early-Season Host Switching in Adelphocoris spp. (Hemiptera: Miridae) of Differing Host Breadth

    PubMed Central

    Pan, Hongsheng; Lu, Yanhui; Wyckhuys, Kris A. G.

    2013-01-01

    The mirid bugs Adelphocoris suturalis (Jakovlev), Adelphocoris lineolatus (Goeze) and Adelphocoris fasciaticollis (Reuter) (Hemiptera: Miridae) are common pests of several agricultural crops. These three species have vastly different geographical distributions, phenologies and abundances, all of which are linked to their reliance on local plants. Previous work has shown notable differences in Adelphocoris spp. host use for overwintering. In this study, we assessed the extent to which each of the Adelphocoris spp. relies on some of its major overwinter hosts for spring development. Over the course of four consecutive years (2009–2012), we conducted population surveys on 77 different plant species from 39 families. During the spring, A. fasciaticollis used the broadest range of hosts, as it was found on 35 plant species, followed by A. suturalis (15 species) and A. lineolatus (7 species). Abundances of the species greatly differed between host plants, with A. fasciaticollis reaching the highest abundance on Chinese date (Ziziphus jujuba Mill.), whereas both A. suturalis and A. lineolatus preferred alfalfa (Medicago sativa L.). The host breadths of the three Adelphocoris spp. differed greatly between subsequent spring and winter seasons. The generalist species exhibited the least host fidelity, with A. suturalis and A. lineolatus using 8 of 22 and 4 of 12 overwinter host species for spring development, respectively. By contrast, the comparative specialist A. fasciaticollis relied on 9 of its 11 overwinter plants as early-season hosts. We highlight important seasonal changes in host breadth and interspecific differences in the extent of host switching behavior between the winter and spring seasons. These findings benefit our understanding of the evolutionary interactions between mirid bugs and their host plants and can be used to guide early-season population management. PMID:23527069

  7. Mechanisms of host seeking by parasitic nematodes.

    PubMed

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Host plants of Carambola fruit fly, Bactrocera carambolae Drew & Hancock(Diptera:Tephritidae);and provisional list of suitable host plants of Carambola fruit fly,(Bactrocera(Bactrocera) carambolae Drew & Hancock(Diptera:Tep

    USDA-ARS?s Scientific Manuscript database

    Bactrocera carambolae Drew & Hancock (Diptera: Tephritidae), commonly known as the carambola fruit fly, is native to Southeast Asia, but has extended its geographic range to several countries in South America. As with other tephritid fruit fly species, establishment of B.carambolae in areas where it...

  9. Meloidogyne partityla on Pecan Isozyme Phenotypes and Other Host.

    PubMed

    Starr, J L; Tomaszewski, E K; Mundo-Ocampo, M; Baldwin, J G

    1996-12-01

    Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica.

  10. Host status of own-rooted Vitis vinifera varieties to Meloidogyne hapla

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic nematodes are microscopic soil worms that attack the roots of grape plants and cause yield loss. One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla, the northern root-knot nematode. The selection of plant...

  11. The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins.

    PubMed

    Koskimäki, Janne J; Pirttilä, Anna Maria; Ihantola, Emmi-Leena; Halonen, Outi; Frank, A Carolin

    2015-03-24

    Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont's activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture. Copyright © 2015 Koskimäki et al.

  12. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    PubMed

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  13. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    PubMed

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  14. Analysis of Cryptic, Systemic Botrytis Infections in Symptomless Hosts

    PubMed Central

    Shaw, Michael W.; Emmanuel, Christy J.; Emilda, Deni; Terhem, Razak B.; Shafia, Aminath; Tsamaidi, Dimitra; Emblow, Mark; van Kan, Jan A. L.

    2016-01-01

    Botrytis species are generally considered to be aggressive, necrotrophic plant pathogens. By contrast to this general perception, however, Botrytis species could frequently be isolated from the interior of multiple tissues in apparently healthy hosts of many species. Infection frequencies reached 50% of samples or more, but were commonly less, and cryptic infections were rare or absent in some plant species. Prevalence varied substantially from year to year and from tissue to tissue, but some host species routinely had high prevalence. The same genotype was found to occur throughout a host, representing mycelial spread. Botrytis cinerea and Botrytis pseudocinerea are the species that most commonly occur as cryptic infections, but phylogenetically distant isolates of Botrytis were also detected, one of which does not correspond to previously described species. Sporulation and visible damage occurred only when infected tissues were stressed, or became mature or senescent. There was no evidence of cryptic infection having a deleterious effect on growth of the host, and prevalence was probably greater in plants grown in high light conditions. Isolates from cryptic infections were often capable of causing disease (to varying extents) when spore suspensions were inoculated onto their own host as well as on distinct host species, arguing against co-adaptation between cryptic isolates and their hosts. These data collectively suggest that several Botrytis species, including the most notorious pathogenic species, exist frequently in cryptic form to an extent that has thus far largely been neglected, and do not need to cause disease on healthy hosts in order to complete their life-cycles. PMID:27242829

  15. Light brown apple moth in California: a diversity of host plants and indigenous parasitoids.

    PubMed

    Wang, Xin-Geng; Levy, Karmit; Mills, Nicholas J; Daane, Kent M

    2012-02-01

    The light brown apple moth, Epiphyas postvittana (Walker), an Australia native tortricid, was found in California in 2006. A field survey of host plants used by E. postvittana was conducted in an urban region of the San Francisco Bay Area. An inspection of 152 plant species (66 families), within a 23-ha residential community, found E. postvittana on 75 species (36 families). Most (69 species) host plants were not Australian natives, but had a wide geographic origin; 34 species were new host records for E. postvittana. Heavily infested species were the ornamental shrubs Myrtus communis L., Pittosporum tobira (Thunb.) W.T. Aiton, Euonymus japonicus Thunb., and Sollya heterophylla Lindl. To survey for parasitoids, four urban locations were sampled, with E. postvittana collected from five commonly infested plants [M. communis, P. tobira, E. japonicus, Rosmarinus officinalis L., and Genista monspessulana (L.) L.A.S. Johnson]. Twelve primary parasitoid species and two hyperparasitoids were reared; the most common were the egg parasitoid Trichogramma fasciatum (Perkins), the larval parasitoids Meteorus ictericus Nees, and Enytus eureka (Ashmead), and the pupal parasitoid Pediobius ni Peck. Meteorus ictericus accounted for >80% of the larval parasitoids, and was recovered from larvae collected on 39 plant species. Across all samples, mean parasitism was 84.4% for eggs, 43.6% for larvae, and 57.5% for pupae. The results are discussed with respect to the potential for resident parasitoid species to suppress E. postvittana populations.

  16. Host lignin composition affects haustorium induction in the parasitic plants Phtheirospermum japonicum and Striga hermonthica.

    PubMed

    Cui, Songkui; Wada, Syogo; Tobimatsu, Yuki; Takeda, Yuri; Saucet, Simon B; Takano, Toshiyuki; Umezawa, Toshiaki; Shirasu, Ken; Yoshida, Satoko

    2018-04-01

    Parasitic plants in the family Orobanchaceae are destructive weeds of agriculture worldwide. The haustorium, an essential parasitic organ used by these plants to penetrate host tissues, is induced by host-derived phenolic compounds called haustorium-inducing factors (HIFs). The origin of HIFs remains unknown, although the structures of lignin monomers resemble that of HIFs. Lignin is a natural phenylpropanoid polymer, commonly found in secondary cell walls of vascular plants. We therefore investigated the possibility that HIFs are derived from host lignin. Various lignin-related phenolics, quinones and lignin polymers, together with nonhost and host plants that have different lignin compositions, were tested for their haustorium-inducing activity in two Orobanchaceae species, a facultative parasite, Phtheirospermum japonicum, and an obligate parasite, Striga hermonthica. Lignin-related compounds induced haustoria in P. japonicum and S. hermonthica with different specificities. High concentrations of lignin polymers induced haustorium formation. Treatment with laccase, a lignin degradation enzyme, promoted haustorium formation at low concentrations. The distinct lignin compositions of the host and nonhost plants affected haustorium induction, correlating with the response of the different parasitic plants to specific types of lignin-related compounds. Our study provides valuable insights into the important roles of lignin biosynthesis and degradation in the production of HIFs. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Meloidogyne partityla on Pecan Isozyme Phenotypes and Other Host

    PubMed Central

    Starr, J. L.; Tomaszewski, E. K.; Mundo-Ocampo, M.; Baldwin, J. G.

    1996-01-01

    Meloidogyne sp. from five pecan (Carya illinoensis) orchards in Texas were distinctive in host range and iszoyme profiles from common species of Meloidogyne but were morphologically congruent with Meloidogyne partityla Kleynhans, a species previously known only in South Africa. In addition to pecan, species of walnut (Juglans hindsii and J. regia) and hickory (C. ovata) also were hosts. No reproduction was observed on 15 other plant species from nine families, including several common hosts of other Meloidogyne spp. Three esterase phenotypes and two malate dehydrogenase phenotypes of M. partityla were identified by polyacrylamide gel electrophoresis. Each of these isozyme phenotypes was distinct from those of the more common species M. arenaria, M. hapla, M. incognita, and M. javanica. PMID:19277175

  18. Effects of Cucumber mosaic virus infection on vector and non-vector herbivores of squash.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-11-01

    Plant chemicals mediating interactions with insect herbivores seem a likely target for manipulation by insectvectored plant pathogens. Yet, little is currently known about the chemical ecology of insect-vectored diseases or their effects on the ecology of vector and nonvector insects. We recently reported that a widespread plant pathogen, Cucumber mosaic virus (CMV), greatly reduces the quality of host-plants (squash) for aphid vectors, but that aphids are nevertheless attracted to the odors of infected plants-which exhibit elevated emissions of a volatile blend otherwise similar to the odor of healthy plants. This finding suggests that exaggerating existing host-location cues can be a viable vector attraction strategy for pathogens that otherwise reduce host quality for vectors. Here we report additional data regarding the effects of CMV infection on plant interactions with a common nonvector herbivore, the squash bug, Anasa tristis, which is a pest in this system. We found that adult A. tristis females preferred to oviposit on healthy plants in the field, and that healthy plants supported higher populations of nymphs. Collectively, our recent findings suggest that CMV-induced changes in host plant chemistry influence the behavior of both vector and non-vector herbivores, with significant implications both for disease spread and for broader community-level interactions.

  19. Apoplastic interactions between plants and plant root intruders.

    PubMed

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  20. Apoplastic interactions between plants and plant root intruders

    PubMed Central

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059

  1. A review of the endemic Hawaiian Drosophilidae and their host plants

    USGS Publications Warehouse

    Magnacca, K.N.; Foote, D.; O'Grady, P. M.

    2008-01-01

    The Hawaiian Drosophilidae is one of the best examples of rapid speciation in nature. Nearly 1,000 species of endemic drosophilids have evolved in situ in Hawaii since a single colonist arrived over 25 million years ago. A number of mechanisms, including ecological adaptation, sexual selection, and geographic isolation, have been proposed to explain the evolution of this hyperdiverse group of species. Here, we examine the known ecological associations of 326 species of endemic Hawaiian Drosophilidae in light of the phylogenetic relationships of these species. Our analysis suggests that the long-accepted belief of strict ecological specialization in this group does not hold for all taxa. While many species have a primary host plant family, females will also oviposit on non-preferred host plant taxa. Host shifting is fairly common in some groups, especially the grimshawi and modified mouthparts species groups of Drosophila, and the Scaptomyza subgenus Elmomyza. Associations with types of substrates (bark, leaves, flowers) are more evolutionarily conserved than associations with host plant families. These data not only give us insight into the role ecology has played in the evolution of this large group, but can help in making decisions about the management of rare and endangered host plants and the insects that rely upon them for survival. Copyright ?? 2008 Magnolia Press.

  2. Metatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus

    PubMed Central

    Liao, Hui-Ling; Chen, Yuan; Vilgalys, Rytas

    2016-01-01

    Ectomycorrhizal fungi (EMF) represent one of the major guilds of symbiotic fungi associated with roots of forest trees, where they function to improve plant nutrition and fitness in exchange for plant carbon. Many groups of EMF exhibit preference or specificity for different plant host genera; a good example is the genus Suillus, which grows in association with the conifer family Pinaceae. We investigated genetics of EMF host-specificity by cross-inoculating basidiospores of five species of Suillus onto ten species of Pinus, and screened them for their ability to form ectomycorrhizae. Several Suillus spp. including S. granulatus, S. spraguei, and S. americanus readily formed ectomycorrhizae (compatible reaction) with white pine hosts (subgenus Strobus), but were incompatible with other pine hosts (subgenus Pinus). Metatranscriptomic analysis of inoculated roots reveals that plant and fungus each express unique gene sets during incompatible vs. compatible pairings. The Suillus-Pinus metatranscriptomes utilize highly conserved gene regulatory pathways, including fungal G-protein signaling, secretory pathways, leucine-rich repeat and pathogen resistance proteins that are similar to those associated with host-pathogen interactions in other plant-fungal systems. Metatranscriptomic study of the combined Suillus-Pinus transcriptome has provided new insight into mechanisms of adaptation and coevolution of forest trees with their microbial community, and revealed that genetic regulation of ectomycorrhizal symbiosis utilizes universal gene regulatory pathways used by other types of fungal-plant interactions including pathogenic fungal-host interactions. PMID:27736883

  3. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    PubMed Central

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants. PMID:29033963

  4. Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis.

    PubMed

    Bücking, Heike; Mensah, Jerry A; Fellbaum, Carl R

    2016-01-01

    Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority of land plants, including some of the most important crop species. The fungus takes up nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the root, where these nutrients are exchanged against carbon from the host. AM fungi form extensive hyphal networks in the soil and connect with their network multiple host plants. These common mycorrhizal networks (CMNs) play a critical role in the long-distance transport of nutrients through soil ecosystems and allow the exchange of signals between the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the fungal and plant species that interact via these networks, but how the resource transport within these CMNs is controlled is largely unknown. We discuss the significance of CMNs for plant communities and for the bargaining power of the fungal partner in the AM symbiosis.

  5. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    PubMed

    Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  6. Effects of host-plant population size and plant sex on a specialist leaf-miner

    NASA Astrophysics Data System (ADS)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  7. Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels

    PubMed Central

    Ferrer-Paris, José R.; Sánchez-Mercado, Ada; Viloria, Ángel L.; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages. PMID:23717448

  8. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.

    PubMed

    García-Guzmán, Graciela; Heil, Martin

    2014-03-01

    Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.

    PubMed

    Silva, Claudia; Calva, Edmundo; Maloy, Stanley

    2014-02-01

    There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.

  10. Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae).

    PubMed

    Feng, Yi; Wratten, Steve; Sandhu, Harpinder; Keller, Michael

    2015-01-01

    The light brown apple moth, Epiphyas postvittana is a key pest of wine grapes in Australia. Two parasitoids, Dolichogenidea tasmanica and Therophilus unimaculatus, attack the larval stage of this pest. D. tasmanica is dominant in vineyards, whereas T. unimaculatus is mainly active in native vegetation. We sought to understand why they differ in their use of habitats. Plants are a major component of habitats of parasitoids, and herbivore-infested plants influence parasitoid foraging efficiency by their architecture and emission of volatile chemicals. We investigated how different plant species infested by E. postvittana could affect the foraging success of the two parasitoid species in both laboratory and field experiments. Four common host-plant species were selected for this study. In paired-choice experiments to determine the innate foraging preferences for plants, both parasitoid species showed differences in innate search preferences among plant species. The plant preference of D. tasmanica was altered by oviposition experience with hosts that were feeding on other plant species. In a behavioral assay, the two parasitoid species allocated their times engaged in various types of behavior differently when foraging on different plant species. For both parasitoids, parasitism on Hardenbergia violacea was the highest of the four plant species. Significantly more larvae dropped from Myoporum insulare when attacked than from the other three host-plant species, which indicates that parasitism is also affected by interactions between plants and host insects. In vineyards, parasitism by D. tasmanica was significantly lower on M. insulare than on the other three host-plant species, but the parasitism rates were similar among the other three plant species. Our results indicate that plants play a role in the habitat preferences of these two parasitoid species by influencing their foraging behavior, and are likely to contribute to their distributions among habitats.

  11. Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth.

    PubMed

    Koch, Alexander M; Antunes, Pedro M; Maherali, Hafiz; Hart, Miranda M; Klironomos, John N

    2017-05-01

    Although arbuscular mycorrhizal (AM) fungi are obligate symbionts that can influence plant growth, the magnitude and direction of these effects are highly variable within fungal genera and even among isolates within species, as well as among plant taxa. To determine whether variability in AM fungal morphology and growth is correlated with AM fungal effects on plant growth, we established a common garden experiment with 56 AM fungal isolates comprising 17 genera and six families growing with three plant host species. Arbuscular mycorrhizal fungal morphology and growth was highly conserved among isolates of the same species and among species within a family. By contrast, plant growth response to fungal inoculation was highly variable, with the majority of variation occurring among different isolates of the same AM fungal species. Our findings show that host performance cannot be predicted from AM fungal morphology and growth traits. Divergent effects on plant growth among isolates within an AM fungal species may be caused by coevolution between co-occurring fungal and plant populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Independent Effects of a Herbivore's Bacterial Symbionts on Its Performance and Induced Plant Defences.

    PubMed

    Staudacher, Heike; Schimmel, Bernardus C J; Lamers, Mart M; Wybouw, Nicky; Groot, Astrid T; Kant, Merijn R

    2017-01-18

    It is well known that microbial pathogens and herbivores elicit defence responses in plants. Moreover, microorganisms associated with herbivores, such as bacteria or viruses, can modulate the plant's response to herbivores. Herbivorous spider mites can harbour different species of bacterial symbionts and exert a broad range of effects on host-plant defences. Hence, we tested the extent to which such symbionts affect the plant's defences induced by their mite host and assessed if this translates into changes in plant resistance. We assessed the bacterial communities of two strains of the common mite pest Tetranychus urticae . We found that these strains harboured distinct symbiotic bacteria and removed these using antibiotics. Subsequently, we tested to which extent mites with and without symbiotic bacteria induce plant defences in terms of phytohormone accumulation and defence gene expression, and assessed mite oviposition and survival as a measure for plant resistance. We observed that the absence/presence of these bacteria altered distinct plant defence parameters and affected mite performance but we did not find indications for a causal link between the two. We argue that although bacteria-related effects on host-induced plant defences may occur, these do not necessarily affect plant resistance concomitantly.

  13. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    PubMed

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  14. Perspectives of Spatial Scale in a Wildland Forest Epidemic

    Treesearch

    W.W. Dillon; S.E. Haas; D.M. Rizzo; R.K. Meentemeyer

    2014-01-01

    The challenge of observing interactions between plant pathogens, their hosts, and environmental heterogeneity across multiple spatial scales commonly limits our ability to understand and manage wildland forest epidemics. Using the forest pathogen Phytophthora ramorum as a case study, we established 20 multiscale field sites to analyze how host-...

  15. Impact of Vector Dispersal and Host-Plant Fidelity on the Dissemination of an Emerging Plant Pathogen

    PubMed Central

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector. PMID:23284774

  16. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    PubMed

    Johannesen, Jes; Foissac, Xavier; Kehrli, Patrik; Maixner, Michael

    2012-01-01

    Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a) and its vector (Hyalesthes obsoletus: Cixiidae) affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  17. US Department of Agriculture/Corps of Engineers Cooperative Aquatic Plant Control Research. Annual Report for FY 1982. Biological and Chemical Control Technologies.

    DTIC Science & Technology

    1984-08-01

    Habeck (1975) says that it is the most common nymphuline in Florida. He lists 32 species of host plants in the genera Azolla, Bacopa , Brasenia...Common salvinia 100 2 A 0 Lemna minor Common duckweed 100 2 A 0 Bacopa caroliniana Bacopa 179 4 A, H 0 *Azolla caroliniana Waterfern 150 4 A, B 0...Royle Hygrophila Hygrophila polyaperma (Roxb.) Anderson Lemon bacopa Bacopa caroliniana (Walt.) Robins. Sago pondweed Potamogetonpectinatus L. Southern

  18. RNA-Seq reveals virus–virus and virus–plant interactions in nature

    PubMed Central

    Kamitani, Mari; Nagano, Atsushi J.; Honjo, Mie N.; Kudoh, Hiroshi

    2016-01-01

    Abstract As research on plant viruses has focused mainly on crop diseases, little is known about these viruses in natural environments. To understand the ecology of viruses in natural systems, comprehensive information on virus–virus and virus–host interactions is required. We applied RNA-Seq to plants from a natural population of Arabidopsis halleri subsp. gemmifera to simultaneously determine the presence/absence of all sequence-reported viruses, identify novel viruses and quantify the host transcriptome. By introducing the criteria of read number and genome coverage, we detected infections by Turnip mosaic virus (TuMV), Cucumber mosaic virus and Brassica yellows virus. Active TuMV replication was observed by ultramicroscopy. De novo assembly further identified a novel partitivirus, Arabidopsis halleri partitivirus 1. Interestingly, virus reads reached a maximum level that was equivalent to that of the host's total mRNA, although asymptomatic infection was common. AhgAGO2, a key gene in host defence systems, was upregulated in TuMV-infected plants. Multiple infection was frequent in TuMV-infected leaves, suggesting that TuMV facilitates multiple infection, probably by suppressing host RNA silencing. Revealing hidden plant–virus interactions in nature can enhance our understanding of biological interactions and may have agricultural applications. PMID:27549115

  19. Association and Host Selectivity in Multi-Host Pathogens

    PubMed Central

    Malpica, José M.; Sacristán, Soledad; Fraile, Aurora; García-Arenal, Fernando

    2006-01-01

    The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens. PMID:17183670

  20. Host plant effects on Halyomorpha halys (Hemiptera: Pentatomidae) nymphal development and survivorship

    USDA-ARS?s Scientific Manuscript database

    Halyomorpha halys Stål (Hemiptera: Pentatomidae) is a highly polyphagous invasive species and an important pest of orchard crops in the US. In the Mid-Atlantic region, wild hosts of H. halys are common in woodlands that often border orchards, and H. halys movement from them into orchards poses ongo...

  1. An Endoparasitoid Avoids Hyperparasitism by Manipulating Immobile Host Herbivore to Modify Host Plant Morphology

    PubMed Central

    Fujii, Tomohisa; Matsuo, Kazunori; Abe, Yoshihisa; Yukawa, Junichi; Tokuda, Makoto

    2014-01-01

    Many parasitic organisms have an ability to manipulate their hosts to increase their own fitness. In parasitoids, behavioral changes of mobile hosts to avoid or protect against predation and hyperparasitism have been intensively studied, but host manipulation by parasitoids associated with endophytic or immobile hosts has seldom been investigated. We examined the interactions between a gall inducer Masakimyia pustulae (Diptera: Cecidomyiidae) and its parasitoids. This gall midge induces dimorphic leaf galls, thick and thin types, on Euonymus japonicus (Celastraceae). Platygaster sp. was the most common primary parasitoid of M. pustulae. In galls attacked by Platygaster sp., whole gall thickness as well as thicknesses of upper and lower gall wall was significantly larger than unparasitized galls, regardless of the gall types, in many localities. In addition, localities and tree individuals significantly affected the thickness of gall. Galls attacked by Platygaster sp. were seldom hyperparasitized in the two gall types. These results strongly suggest that Platygaster sp. manipulates the host plant's development to avoid hyperparasitism by thickening galls. PMID:25033216

  2. Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change.

    PubMed

    Bridle, Jon R; Buckley, James; Bodsworth, Edward J; Thomas, Chris D

    2014-02-07

    Generalist species and phenotypes are expected to perform best under rapid environmental change. In contrast to this view that generalists will inherit the Earth, we find that increased use of a single host plant is associated with the recent climate-driven range expansion of the UK brown argus butterfly. Field assays of female host plant preference across the UK reveal a diversity of adaptations to host plants in long-established parts of the range, whereas butterflies in recently colonized areas are more specialized, consistently preferring to lay eggs on one host plant species that is geographically widespread throughout the region of expansion, despite being locally rare. By common-garden rearing of females' offspring, we also show an increase in dispersal propensity associated with the colonization of new sites. Range expansion is therefore associated with an increase in the spatial scale of adaptation as dispersive specialists selectively spread into new regions. Major restructuring of patterns of local adaptation is likely to occur across many taxa with climate change, as lineages suited to regional colonization rather than local success emerge and expand.

  3. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    PubMed Central

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  4. First report of Orobanche ludoviciana parasitizing sunflowers

    USDA-ARS?s Scientific Manuscript database

    Broomrape is the common name given to a group of flowering plants belonging to the genus Orobanche that parasitize the roots of higher dicotyledonous plants. More than 100 species of Orobanche have been identified, all of which are obligate parasites that lack chlorophyll and depend upon their host ...

  5. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.)

    USDA-ARS?s Scientific Manuscript database

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. Here, we report the transcriptional respo...

  6. Looking inside phytoplasma-infected sieve elements: A combined microscopy approach using Arabidopsis thaliana as a model plant.

    PubMed

    Pagliari, Laura; Martini, Marta; Loschi, Alberto; Musetti, Rita

    2016-10-01

    Phytoplasmas are phloem-inhabiting plant pathogens that affect over one thousand plant species, representing a severe threat to agriculture. The absence of an effective curative strategy and the economic importance of many affected crops make a priority of studying how plants respond to phytoplasma infection. Nevertheless, the study of phytoplasmas has been hindered by the extreme difficulty of culturing them in vitro and by impediments to natural host plant surveys such as low phytoplasma titre, long plant life cycle and poor knowledge of natural host-plant biology. Stating correspondence between macroscopic symptoms of phytoplasma infected Arabidopsis thaliana and those observed in natural host plants, over the last decade some authors have started to use this plant as a model for studying phytoplasma-plant interactions. Nevertheless, the morphological and ultrastructural modifications occurring in A. thaliana tissues following phytoplasma infection have never been described in detail. In this work, we adopted a combined-microscopy approach to verify if A. thaliana can be considered a reliable model for the study of phytoplasma-plant interactions at the microscopical level. The consistent presence of phytoplasma in infected phloem allowed detailed study of the infection process and the relationship established by phytoplasmas with different components of the sieve elements. In infected A. thaliana, phytoplasmas induced strong disturbances of host plant development that were mainly due to phloem disorganization and impairment. Light microscopy showed collapse, necrosis and hyperplasia of phloem cells. TEM observations of sieve elements identified two common plant-responses to phytoplasma infection: phloem protein agglutination and callose deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Biological nitrogen fixation in non-legume plants.

    PubMed

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  8. Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors

    PubMed Central

    Ruhe, Jonas; Agler, Matthew T.; Placzek, Aleksandra; Kramer, Katharina; Finkemeier, Iris; Kemen, Eric M.

    2016-01-01

    Recent research suggested that plants behave differently under combined versus single abiotic and biotic stress conditions in controlled environments. While this work has provided a glimpse into how plants might behave under complex natural conditions, it also highlights the need for field experiments using established model systems. In nature, diverse microbes colonize the phyllosphere of Arabidopsis thaliana, including the obligate biotroph oomycete genus Albugo, causal agent of the common disease white rust. Biotrophic, as well as hemibiotrophic plant pathogens are characterized by efficient suppression of host defense responses. Lab experiments have even shown that Albugo sp. can suppress non-host resistance, thereby enabling otherwise avirulent pathogen growth. We asked how a pathogen that is vitally dependent on a living host can compete in nature for limited niche space while paradoxically enabling colonization of its host plant for competitors? To address this question, we used a proteomics approach to identify differences and similarities between lab and field samples of Albugo sp.-infected and -uninfected A. thaliana plants. We could identify highly similar apoplastic proteomic profiles in both infected and uninfected plants. In wild plants, however, a broad range of defense-related proteins were detected in the apoplast regardless of infection status, while no or low levels of defense-related proteins were detected in lab samples. These results indicate that Albugo sp. do not strongly affect immune responses and leave distinct branches of the immune signaling network intact. To validate our findings and to get mechanistic insights, we tested a panel of A. thaliana mutant plants with induced or compromised immunity for susceptibility to different biotrophic pathogens. Our findings suggest that the biotroph pathogen Albugo selectively interferes with host defense under different environmental and competitive pressures to maintain its ecological niche dominance. Adaptation to host immune responses while maintaining a partially active host immunity seems advantageous against competitors. We suggest a model for future research that considers not only host–microbe but in addition microbe–microbe and microbe–host environment factors. PMID:27379119

  9. Plant defences against ants provide a pathway to social parasitism in butterflies.

    PubMed

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M; Bonelli, Simona; Casacci, Luca P; Zebelo, Simon A; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E; Thomas, Jeremy A; Balletto, Emilio

    2015-07-22

    Understanding the chemical cues and gene expressions that mediate herbivore-host-plant and parasite-host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous-predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host.

  10. Plant defences against ants provide a pathway to social parasitism in butterflies

    PubMed Central

    Patricelli, Dario; Barbero, Francesca; Occhipinti, Andrea; Bertea, Cinzia M.; Bonelli, Simona; Casacci, Luca P.; Zebelo, Simon A.; Crocoll, Christoph; Gershenzon, Jonathan; Maffei, Massimo E.; Thomas, Jeremy A.; Balletto, Emilio

    2015-01-01

    Understanding the chemical cues and gene expressions that mediate herbivore–host-plant and parasite–host interactions can elucidate the ecological costs and benefits accruing to different partners in tight-knit community modules, and may reveal unexpected complexities. We investigated the exploitation of sequential hosts by the phytophagous–predaceous butterfly Maculinea arion, whose larvae initially feed on Origanum vulgare flowerheads before switching to parasitize Myrmica ant colonies for their main period of growth. Gravid female butterflies were attracted to Origanum plants that emitted high levels of the monoterpenoid volatile carvacrol, a condition that occurred when ants disturbed their roots: we also found that Origanum expressed four genes involved in monoterpene formation when ants were present, accompanied by a significant induction of jasmonates. When exposed to carvacrol, Myrmica workers upregulated five genes whose products bind and detoxify this biocide, and their colonies were more tolerant of it than other common ant genera, consistent with an observed ability to occupy the competitor-free spaces surrounding Origanum. A cost is potential colony destruction by Ma. arion, which in turn may benefit infested Origanum plants by relieving their roots of further damage. Our results suggest a new pathway, whereby social parasites can detect successive resources by employing plant volatiles to simultaneously select their initial plant food and a suitable sequential host. PMID:26156773

  11. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Abdul Kadir, Habsah

    2013-01-01

    Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus. PMID:24109490

  12. Experimental Infection of Plants with an Herbivore-Associated Bacterial Endosymbiont Influences Herbivore Host Selection Behavior

    PubMed Central

    Davis, Thomas Seth; Horton, David R.; Munyaneza, Joseph E.; Landolt, Peter J.

    2012-01-01

    Although bacterial endosymbioses are common among phloeophagous herbivores, little is known regarding the effects of symbionts on herbivore host selection and population dynamics. We tested the hypothesis that plant selection and reproductive performance by a phloem-feeding herbivore (potato psyllid, Bactericera cockerelli) is mediated by infection of plants with a bacterial endosymbiont. We controlled for the effects of herbivory and endosymbiont infection by exposing potato plants (Solanum tuberosum) to psyllids infected with “Candidatus Liberibacter solanacearum” or to uninfected psyllids. We used these treatments as a basis to experimentally test plant volatile emissions, herbivore settling and oviposition preferences, and herbivore population growth. Three important findings emerged: (1) plant volatile profiles differed with respect to both herbivory and herbivory plus endosymbiont infection when compared to undamaged control plants; (2) herbivores initially settled on plants exposed to endosymbiont-infected psyllids but later defected and oviposited primarily on plants exposed only to uninfected psyllids; and (3) plant infection status had little effect on herbivore reproduction, though plant flowering was associated with a 39% reduction in herbivore density on average. Our experiments support the hypothesis that plant infection with endosymbionts alters plant volatile profiles, and infected plants initially recruited herbivores but later repelled them. Also, our findings suggest that the endosymbiont may not place negative selection pressure on its host herbivore in this system, but plant flowering phenology appears correlated with psyllid population performance. PMID:23166641

  13. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    PubMed

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  14. Ecological Factors Affecting Infection Risk and Population Genetic Diversity of a Novel Potyvirus in Its Native Wild Ecosystem.

    PubMed

    Rodríguez-Nevado, Cristina; Montes, Nuria; Pagán, Israel

    2017-01-01

    Increasing evidence indicates that there is ample diversity of plant virus species in wild ecosystems. The vast majority of this diversity, however, remains uncharacterized. Moreover, in these ecosystems the factors affecting plant virus infection risk and population genetic diversity, two traits intrinsically linked to virus emergence, are largely unknown. Along 3 years, we have analyzed the prevalence and diversity of plant virus species from the genus Potyvirus in evergreen oak forests of the Iberian Peninsula, the main wild ecosystem in this geographic region and in the entire Mediterranean basin. During this period, we have also measured plant species diversity, host density, plant biomass, temperature, relative humidity, and rainfall. Results indicated that potyviruses were always present in evergreen oak forests, with a novel virus species explaining the largest fraction of potyvirus-infected plants. We determined the genomic sequence of this novel virus and we explored its host range in natural and greenhouse conditions. Natural host range was limited to the perennial plant mountain rue ( Ruta montana ), commonly found in evergreen oak forests of the Iberian Peninsula. In this host, the virus was highly prevalent and was therefore provisionally named mediterranean ruda virus (MeRV). Focusing in this natural host-virus interaction, we analyzed the ecological factors affecting MeRV infection risk and population genetic diversity in its native wild ecosystem. The main predictor of virus infection risk was the host density. MeRV prevalence was the major factor determining genetic diversity and selection pressures in the virus populations. This observation supports theoretical predictions assigning these two traits a key role in parasite epidemiology and evolution. Thus, our analyses contribute both to characterize viral diversity and to understand the ecological determinants of virus population dynamics in wild ecosystems.

  15. Variation within and between Frankliniella Thrips Species in Host Plant Utilization

    PubMed Central

    Baez, Ignacio; Reitz, Stuart R.; Funderburk, Joseph E.; Olson, Steve M.

    2011-01-01

    Anthophilous flower thrips in the genus Frankliniella (Thysanoptera: Thripidae) exploit ephemeral plant resources and therefore must be capable of successfully locating appropriate hosts on a repeated basis, yet little is known of interspecific and intraspecific variation in responses to host plant type and nutritional quality. Field trials were conducted over two seasons to determine if the abundance of males and females of three common Frankliniella species, F. occidentalis (Pergande), F. tritici (Fitch) and F. bispinosa (Morgan), their larvae, and a key predator, Orius insidiosus (Say) (Hemiptera: Anthocoridae) were affected by host plant type and plant nutritional quality. Two host plants, pepper, Capsicum annuum L. (Solanales: Solanaceae) and tomato, Solanum lycopersicum L. that vary in suitability for these species were examined, and their nutritional quality was manipulated by applying three levels of nitrogen fertilization (101 kg/ha, 202 kg/ha, 404 kg/ha). F. occidentalis females were more abundant in pepper than in tomato, but males did not show a differential response. Both sexes of F. tritici and F. bispinosa were more abundant in tomato than in pepper. Larval thrips were more abundant in pepper than in tomato. Likewise, O. insidiosus females and nymphs were more abundant in pepper than in tomato. Only F. occidentalis females showed a distinct response to nitrogen fertilization, with abundance increasing with fertilization. These results show that host plant utilization patterns vary among Frankliniella spp. and should not be generalized from results of the intensively studied F. occidentalis. Given the different pest status of these species and their differential abundance in pepper and tomato, it is critical that scouting programs include species identifications for proper management. PMID:21539418

  16. Is the pathogenic ergot fungus a conditional defensive mutualist for its host grass?

    PubMed

    Wäli, Pauliina P; Wäli, Piippa R; Saikkonen, Kari; Tuomi, Juha

    2013-01-01

    It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough. According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to mutualistic depending on the situation.

  17. Is the Pathogenic Ergot Fungus a Conditional Defensive Mutualist for Its Host Grass?

    PubMed Central

    Wäli, Pauliina P.; Wäli, Piippa R.; Saikkonen, Kari; Tuomi, Juha

    2013-01-01

    It is well recognized, that outcomes of mutualistic plant-microorganism interactions are often context dependent and can range from mutualistic to antagonistic depending on conditions. Instead, seemingly pathogenic associations are generally considered only harmful to plants. The ergot fungus (Claviceps purpurea) is a common seed pathogen of grasses and cereals. Ergot sclerotia contain alkaloids which can cause severe toxicity in mammals when ingested, and thus the fungal infection might provide protection for the host plant against mammalian herbivores. Theoretically, the net effect of ergot infection would positively affect host seed set if the cost is not too high and the defensive effect is strong enough. According to our empirical data, this situation is plausible. First, we found no statistically significant seed loss in wild red fescue (Festuca rubra) inflorescences due to ergot infection, but the seed succession decreased along increasing number of sclerotia. Second, in a food choice experiment, sheep showed avoidance against forage containing ergot. Third, the frequency of ergot-infected inflorescences was higher in sheep pastures than surrounding ungrazed areas, indicating a protective effect against mammalian grazing. We conclude that, although ergot can primarily be categorized as a plant pathogen, ergot infection may sometimes represent indirect beneficial effects for the host plant. Ergot may thus serve as a conditional defensive mutualist for its host grass, and the pathogenic interaction may range from antagonistic to mutualistic depending on the situation. PMID:23874924

  18. The weed Sorghum almum is a putative alternative host of sugarcane infecting viruses in Florida

    USDA-ARS?s Scientific Manuscript database

    Sorghum almum or Columbus grass is a common weed growing in the Everglades Agricultural Area (EAA). In recent surveys for alternative hosts of sugarcane yellow leaf virus (SCYLV), 123 out of 141 (87%) plants of S. almum tested positive for this virus by tissue blot immunoassay (TBIA) using polyclona...

  19. Population differences in host use by a seed-beetle: local adaptation, phenotypic plasticity and maternal effects.

    PubMed

    Amarillo-Suárez, Angela R; Fox, Charles W

    2006-11-01

    For insects that develop inside discrete hosts, both host size and host quality constrain offspring growth, influencing the evolution of body size and life history traits. Using a two-generation common garden experiment, we quantified the contribution of maternal and rearing hosts to differences in growth and life history traits between populations of the seed-feeding beetle Stator limbatus that use a large-seeded host, Acacia greggii, and a small-seeded host, Pseudosamanea guachapele. Populations differed genetically for all traits when beetles were raised in a common garden. Contrary to expectations from the local adaptation hypothesis, beetles from all populations were larger, developed faster and had higher survivorship when reared on seeds of A. greggii (the larger host), irrespective of their native host. We observed two host plant-mediated maternal effects: offspring matured sooner, regardless of their rearing host, when their mothers were reared on P. guachapele (this was not caused by an effect of rearing host on egg size), and females laid larger eggs on P. guachapele. This is the first study to document plasticity by S. limbatus in response to P. guachapele, suggesting that plasticity is an ancestral trait in S. limbatus that likely plays an important role in diet expansion. Although differences between populations in growth and life history traits are likely adaptations to their host plants, host-associated maternal effects, partly mediated by maternal egg size plasticity, influence growth and life history traits and likely play an important role in the evolution of the breadth of S. limbatus' diet. More generally, phenotypic plasticity mediates the fitness consequences of using novel hosts, likely facilitating colonization of new hosts, but also buffering herbivores from selection post-colonization. Plasticity in response to novel versus normal hosts varied among our study populations such that disentangling the historical role of plasticity in mediating diet evolution requires the consideration of evolutionary history.

  20. Evolution of specialization: a phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus).

    PubMed

    Rasmann, Sergio; Agrawal, Anurag A

    2011-06-01

    Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.

  1. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation. PMID:25558092

  2. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation.

    PubMed

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-11-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning.We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species.Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species.We detected four and five fungal species on T. cordata and Q. petraea , respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis . For the first time, we experimentally demonstrated that for two common forestry tree species, foliar fungal pathogen richness and infestation depend on local biodiversity. Thus, local tree diversity can have positive impacts on ecosystem functioning in managed forests by decreasing the level of fungal pathogen infestation.

  3. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.

    PubMed

    Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim

    2013-01-01

    Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.

  4. The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Wit, Pierre J. G. M.; van der Burgt, Ate; Okmen, Bilal

    2012-05-04

    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70percent of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2percent in Cfumore » versus 3.2percent in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.« less

  5. Independent Effects of a Herbivore’s Bacterial Symbionts on Its Performance and Induced Plant Defences

    PubMed Central

    Staudacher, Heike; Schimmel, Bernardus C. J.; Lamers, Mart M.; Wybouw, Nicky; Groot, Astrid T.; Kant, Merijn R.

    2017-01-01

    It is well known that microbial pathogens and herbivores elicit defence responses in plants. Moreover, microorganisms associated with herbivores, such as bacteria or viruses, can modulate the plant’s response to herbivores. Herbivorous spider mites can harbour different species of bacterial symbionts and exert a broad range of effects on host-plant defences. Hence, we tested the extent to which such symbionts affect the plant’s defences induced by their mite host and assessed if this translates into changes in plant resistance. We assessed the bacterial communities of two strains of the common mite pest Tetranychus urticae. We found that these strains harboured distinct symbiotic bacteria and removed these using antibiotics. Subsequently, we tested to which extent mites with and without symbiotic bacteria induce plant defences in terms of phytohormone accumulation and defence gene expression, and assessed mite oviposition and survival as a measure for plant resistance. We observed that the absence/presence of these bacteria altered distinct plant defence parameters and affected mite performance but we did not find indications for a causal link between the two. We argue that although bacteria-related effects on host-induced plant defences may occur, these do not necessarily affect plant resistance concomitantly. PMID:28106771

  6. Assessment of Attractiveness of Plants as Roosting Sites for the Melon Fly, Bactrocera cucurbitae, and Oriental Fruit Fly, Bactrocera dorsalis

    PubMed Central

    McQuate, Grant T.; Vargas, Roger I.

    2007-01-01

    The use of toxic protein bait sprays to suppress melon fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), populations typically involves application to vegetation bordering agricultural host areas where the adults seek shelter (“roost”). Although bait spray applications for suppression of oriental fruit fly, Bactrocera dorsalis (Hendel), populations have traditionally been applied to the host crop, rather than to crop borders, roosting by oriental fruit flies in borders of some crop species, such as papaya, Carica papaya L. (Brassicales: Caricaceae), suggests that bait spray applications to crop borders could also help in suppression of B. dorsalis populations. In order to develop improved recommendations for application of bait sprays to border plants for suppression of melon fly and oriental fruit fly populations, the relative attractiveness of a range of plant species, in a vegetative (non-flowering) stage, was tested to wild melon fly and oriental fruit fly populations established in a papaya orchard in Hawaii. A total of 20 plant species were evaluated, divided into four categories: 1) border plants, including corn, Zea mays L. (Poales: Poaceae), windbreaks and broad-leaved ornamentals, 7 species; 2) weed plants commonly found in agricultural fields in Hawaii, 6 species; 3) host crop plants, 1 species- zucchini, Cucurbita pepo L. (Violales: Curcurbitaceae), and 4) locally grown fruit trees, 6 species. Plants were established in pots and placed in an open field, in clusters encircling protein bait traps, 20 m away from the papaya orchard. Castor bean, Ricinus communis L. (Euphorbiales: Euphorbiaceae), panax, Polyscias guilfoylei (Bull) Bailey (Apiales: Araliaceae), tiger's claw, Erythnna variegata L. (Fabales: Fabaceae), and guava, Psidium guajava L. (Myrtales: Myrtaceae) were identified as preferred roosting hosts for the melon fly, and tiger's claw, panax, castor bean, Canada cocklebur, Xanthium strumarium L. (Asterales: Asteraceae), Brazilian pepper tree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), ti plant, Cordyline terminate (L.) Chev.(Liliales: Liliaceae), guava and several Citrus spp. were identified as preferred roosting hosts for oriental fruit fly. Guava had not previously been identified as a preferred roosting host for melon fly. Other than for the use of panax as a roosting host, there has previously been little attention to roosting hosts for oriental fruit fly. Establishment of preferred roosting hosts as crop borders may help to improve suppression of both fruit fly species by providing sites for bait spray applications. Further research is needed to assess the use of vegetation bordering other host crops as roosting hosts, especially for oriental fruit fly. PMID:20334596

  7. Contrasting amino acid profiles among permissive and non-permissive hosts of Candidatus Liberibacter asiaticus, putative causal agent of Huanglongbing

    PubMed Central

    Alabi, Olufemi J.; Simpson, Catherine R.; Jifon, John L.

    2017-01-01

    Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA) in four permissive host plants of Candidatus Liberibacter asiaticus (CLas) and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs. PMID:29236706

  8. Pyrosequencing analyses of endophytic bacterial populations in tomato leaves infected by ‘Candidatus Liberibacter solanacearum’

    USDA-ARS?s Scientific Manuscript database

    ‘Candidatus Liberibacter solanacearum’ (CLso) is associated with zebra Chip (ZC) disease of potato. The bacterium is currently not culturable and commonly maintained in plant hosts for characterization. In this study, CLso was graft-transmitted to tomato plants. A maximum of over 200-fold increase i...

  9. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies.

    PubMed

    Merrill, R M; Naisbit, R E; Mallet, J; Jiggins, C D

    2013-09-01

    Shifts in host-plant use by phytophagous insects have played a central role in their diversification. Evolving host-use strategies will reflect a trade-off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host-plant use. We investigate the selection pressures and genetic basis underlying host-use differences in these two species. Host-plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed-forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host-plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  10. Heritability of and strong single gene (Pgi) effects on life-history traits in the Glanville fritillary butterfly.

    PubMed

    Klemme, I; Hanski, I

    2009-09-01

    We estimated broad-sense heritabilities (H(2)) of 13 female and seven male life-history traits of the Glanville fritillary butterfly (Melitaea cinxia) under semi-natural conditions in a large outdoor population cage. The analysis was based on full-sib families collected as young larvae in the field and reared under common garden conditions. We found significant genetic variance in female lifespan, fecundity, number of matings and host-plant preference as well as in male body mass and mobility. Apart from host-plant preference, female traits that were more strongly correlated with lifetime reproductive success (LRS; measured as total number of eggs laid) had higher H(2). LRS itself exhibited significant heritability. Host-plant preference had very high H(2), consistent with a previously reported genetically determined geographical cline in host-plant preference in the study area. Lifespan and egg hatching rate were significantly associated with a SNP in the coding region of the Pgi gene, for which there is previous evidence for balancing selection. Selection on Pgi, which furthermore shows spatial and temporal variation, may maintain genetic variance in fitness-related life-history traits. In contrast, we found no strong evidence for life-history trade-offs.

  11. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply.

    PubMed

    Püschel, David; Janoušková, Martina; Hujslová, Martina; Slavíková, Renata; Gryndlerová, Hana; Jansa, Jan

    2016-07-01

    Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)-limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient-poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N-uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the R. irregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non-mycorrhizal plants across the entire range of nutrient supplies.

  12. Incidence of Facultative Bacterial Endosymbionts in Spider Mites Associated with Local Environments and Host Plants.

    PubMed

    Zhu, Yu-Xi; Song, Yue-Ling; Zhang, Yan-Kai; Hoffmann, Ary A; Zhou, Jin-Cheng; Sun, Jing-Tao; Hong, Xiao-Yue

    2018-03-15

    Spider mites are frequently associated with multiple endosymbionts whose infection patterns often exhibit spatial and temporal variation. However, the association between endosymbiont prevalence and environmental factors remains unclear. Here, we surveyed endosymbionts in natural populations of the spider mite, Tetranychus truncatus , in China, screening 935 spider mites from 21 localities and 12 host plant species. Three facultative endosymbiont lineages, Wolbachia , Cardinium , and Spiroplasma , were detected at different infection frequencies (52.5%, 26.3%, and 8.6%, respectively). Multiple endosymbiont infections were observed in most local populations, and the incidence of individuals with the Wolbachia - Spiroplasma coinfection was higher than expected from the frequency of each infection within a population. Endosymbiont infection frequencies exhibited associations with environmental factors: Wolbachia infection rates increased at localities with higher annual mean temperatures, while Cardinium and Spiroplasma infection rates increased at localities from higher altitudes. Wolbachia was more common in mites from Lycopersicon esculentum and Glycine max compared to those from Zea mays This study highlights that host-endosymbiont interactions may be associated with environmental factors, including climate and other geographically linked factors, as well as the host's food plant. IMPORTANCE The aim of this study was to examine the incidence of endosymbiont distribution and the infection patterns in spider mites. The main findings are that multiple endosymbiont infections were more common than expected and that endosymbiont infection frequencies were associated with environmental factors. This work highlights that host-endosymbiont interactions need to be studied within an environmental and geographic context. Copyright © 2018 American Society for Microbiology.

  13. Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico

    Treesearch

    P. Bayman; D. J. Lodge; P. Angulo-Sandoval; Z. Baez-Ortiz

    1998-01-01

    Xylaria species are common endophytes in tropical plants. It is not known, however, whether transmission of Xylaria occurs horizontally or vertically, whether individual Xylaria strains have wide host ranges or are host-specific, or how they are dispersed. We compared frequency of Xylaria endophytes in leaves and seeds of two tree species in Puerto Rico, Casuarina...

  14. D-Pinitol in Fabaceae: an Oviposition Stimulant for the Common Grass Yellow Butterfly, Eurema mandarina.

    PubMed

    Mukae, Shin-Ya; Ohashi, Toshiki; Matsumoto, Yuika; Ohta, Shinji; Ômura, Hisashi

    2016-11-01

    The common grass yellow butterfly, Eurema mandarina (formerly Eurema hecabe mandarina) (Lepidoptera, Pieridae), recently has been separated taxonomically from a subtropical population of Eurema hecabe in Japan. This species is widely distributed in the temperate region of Japan, and feeds mainly on various ligneous plants within the Fabaceae. We attempted to identify an oviposition stimulant for E. mandarina from its primary hosts, Albizia julibrissin and Lespedeza cuneata. In both hosts, crude extract and an aqueous fraction elicited oviposition responses from gravid females. A polar subfraction of the aqueous fraction also stimulated high oviposition-stimulatory activity, comparable to the original aqueous fraction, suggesting that E. mandarina females use water-soluble compounds for host recognition. Subsequent activity-directed fractionation by ion exchange chromatography indicated that one of the key substances was contained in the neutral/amphoteric fraction. Chemical analyses revealed that the active fractions of both hosts contained D-(+)-pinitol as the major component. We examined female responses to authentic D-pinitol and found that it induced oviposition responses at concentrations greater than 0.1 %. Since this cyclitol is omnipresent in Fabaceae, we conclude that D-pinitol plays a role in mediating oviposition of E. mandarina on fabaceous plants.

  15. Biological nitrogen fixation in non-legume plants

    PubMed Central

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-01-01

    Background Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Scope Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Conclusions Understanding the molecular mechanism of BNF outside the legume–rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops. PMID:23478942

  16. Preferences of the peripheral olfactory system of Western Flower Thrips, Frankliniella occidentalis towards stereoisomers of common plant volatiles.

    PubMed

    Abdullah, Zayed S; Butt, Tariq M

    Stereochemistry plays a significant role in structure-activity relationships of messenger chemicals. The ability to distinguish between enantiomers and geometric isomers, however, may be limited to certain stereoisomeric substances, depending on the receiver. In this study, we assessed the preference of the peripheral olfactometry system of Western Flower Thrips, F. occidentalis towards ubiquitously expressed host compounds, with a goal of establishing whether particular stereoisomers enhance host odour recognition. We demonstrate that the peripheral olfactory system of a highly polyphagous thysanopteran insect has evolved to become highly sensitive to a type of green leaf volatile, which is highly ubiquitous in the plant kingdom. We show that there is a significantly greater antennal response to the cis isomer, more so than the isomerisation by-product trans -3-hexen-1-ol. We demonstrate that the antennae of a highly polyphagous insect are capable of detecting common plant secondary metabolites in both enantiomeric forms.

  17. Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis.

    PubMed

    Lin, Yu-Mei; Chou, I-Chun; Wang, Jaw-Fen; Ho, Fang-I; Chu, Yu-Ju; Huang, Pei-Cheng; Lu, Der-Kang; Shen, Hwei-Ling; Elbaz, Mounira; Huang, Shu-Mei; Cheng, Chiu-Ping

    2008-09-01

    Ralstonia solanacearum causes a deadly wilting disease on a wide range of crops. To elucidate pathogenesis of this bacterium in different host plants, we set out to identify R. solanacearum genes involved in pathogenesis by screening random transposon insertion mutants of a highly virulent strain, Pss190, on tomato and Arabidopsis thaliana. Mutants exhibiting various decreased virulence levels on these two hosts were identified. Sequence analysis showed that most, but not all, of the identified pathogenesis genes are conserved among distinct R. solanacearum strains. A few of the disrupted loci were not reported previously as being involved in R. solanacearum pathogenesis. Notably, a group of mutants exhibited differential pathogenesis on tomato and Arabidopsis. These results were confirmed by characterizing allelic mutants in one other R. solanacearum strain of the same phylotype. The significantly decreased mutants' colonization in Arabidopsis was found to be correlated with differential pathogenesis on these two plants. Differential requirement of virulence genes suggests adaptation of this bacterium in different host environments. Together, this study reveals commonalities and differences of R. solanacearum pathogenesis on single solanaceous and nonsolanaceous hosts, and provides important new insights into interactions between R. solanacearum and different host plants.

  18. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    PubMed

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments.

    PubMed

    Cloyd, Raymond A; Bethke, James A

    2011-01-01

    The neonicotinoid insecticides imidacloprid, acetamiprid, dinotefuran, thiamethoxam and clothianidin are commonly used in greenhouses and/or interiorscapes (plant interiorscapes and conservatories) to manage a wide range of plant-feeding insects such as aphids, mealybugs and whiteflies. However, these systemic insecticides may also be harmful to natural enemies, including predators and parasitoids. Predatory insects and mites may be adversely affected by neonicotinoid systemic insecticides when they: (1) feed on pollen, nectar or plant tissue contaminated with the active ingredient; (2) consume the active ingredient of neonicotinoid insecticides while ingesting plant fluids; (3) feed on hosts (prey) that have consumed leaves contaminated with the active ingredient. Parasitoids may be affected negatively by neonicotinoid insecticides because foliar, drench or granular applications may decrease host population levels so that there are not enough hosts to attack and thus sustain parasitoid populations. Furthermore, host quality may be unacceptable for egg laying by parasitoid females. In addition, female parasitoids that host feed may inadvertently ingest a lethal concentration of the active ingredient or a sublethal dose that inhibits foraging or egg laying. There are, however, issues that require further consideration, such as: the types of plant and flower that accumulate active ingredients, and the concentrations in which they are accumulated; the influence of flower age on the level of exposure of natural enemies to the active ingredient; the effect of neonicotinoid metabolites produced within the plant. As such, the application of neonicotinoid insecticides in conjunction with natural enemies in protected culture and interiorscape environments needs further investigation. Copyright © 2010 Society of Chemical Industry.

  20. The risk of exotic and native plants as hosts for four pest thrips (Thysanoptera: Thripinae).

    PubMed

    Schellhorn, N A; Glatz, R V; Wood, G M

    2010-10-01

    Interactions among insect pests, crops and weeds are well recognised. In fact, the elimination of weed hosts outside of the crop is a common practice to control many insect-vectored viruses. However, little is known about interactions among insect pests, crops and native vegetation, and whether native plants may be used to revegetate areas where weed hosts have been eliminated as part of horticultural management regimes. We used the Northern Adelaide Plains horticultural region (South Australia, Australia) as a model system to study the potential of various plant taxa in hosting four pest thrips (three exotic, one native; Frankliniella occidentalis, F. schultzei, Thrips tabaci and T. imaginis) when located adjacent to, and distant from, horticultural crops. Flower funnels were used for standardised sampling of thrips on flowers from 19 exotic weed and 12 native plant species, representing 13 and three families, respectively. Flowers were sampled monthly over a year, and statistical analyses were performed to identify significant determinants of probability of thrips occurrence and density. Plant family was found to significantly influence both measures for each thrips species. In addition, crop proximity influenced the probability of occurrence for the two Frankliniella species (but only influenced density of the key pest F. occidentalis), and season influenced density of all four pest thrips. All native plant species tested had a low likelihood of hosting the three exotic thrips species. Overall, results suggest that judicious choice of surrounding vegetation has potential to be an important component of integrated pest management (IPM) while increasing biodiversity conservation.

  1. The Microbe-Free Plant: Fact or Artifact?

    PubMed Central

    Partida-Martínez, Laila P.; Heil, Martin

    2011-01-01

    Plant–microbe interactions are ubiquitous. Plants are threatened by pathogens, but they are even more commonly engaged in neutral or mutualistic interactions with microbes: belowground microbial plant associates are mycorrhizal fungi, Rhizobia, and plant-growth promoting rhizosphere bacteria, aboveground plant parts are colonized by internally living bacteria and fungi (endophytes) and by microbes in the phyllosphere (epiphytes). We emphasize here that a completely microbe-free plant is an exotic exception rather than the biologically relevant rule. The complex interplay of such microbial communities with the host–plant affects multiple vital parameters such as plant nutrition, growth rate, resistance to biotic and abiotic stressors, and plant survival and distribution. The mechanisms involved reach from direct ones such as nutrient acquisition, the production of plant hormones, or direct antibiosis, to indirect ones that are mediated by effects on host resistance genes or via interactions at higher trophic levels. Plant-associated microbes are heterotrophic and cause costs to their host plant, whereas the benefits depend on the current environment. Thus, the outcome of the interaction for the plant host is highly context dependent. We argue that considering the microbe-free plant as the “normal” or control stage significantly impairs research into important phenomena such as (1) phenotypic and epigenetic plasticity, (2) the “normal” ecological outcome of a given interaction, and (3) the evolution of plants. For the future, we suggest cultivation-independent screening methods using direct PCR from plant tissue of more than one fungal and bacterial gene to collect data on the true microbial diversity in wild plants. The patterns found could be correlated to host species and environmental conditions, in order to formulate testable hypotheses on the biological roles of plant endophytes in nature. Experimental approaches should compare different host–endophyte combinations under various relevant environmental conditions and study at the genetic, epigenetic, transcriptional, and physiological level the parameters that cause the interaction to shift along the mutualism–parasitism continuum. PMID:22639622

  2. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant.

    PubMed

    Rottstock, Tanja; Joshi, Jasmin; Kummer, Volker; Fischer, Markus

    2014-07-01

    Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen ("pathogens" hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.

  3. Experience-induced habituation and preference towards non-host plant odors in ovipositing females of a moth.

    PubMed

    Wang, Hua; Guo, Wen-Fei; Zhang, Peng-Jun; Wu, Zhi-Yi; Liu, Shu-Sheng

    2008-03-01

    In phytophagous insects, experience can increase positive responses towards non-host plant extracts or induce oviposition on non-host plants, but the underlying chemical and behavioral mechanisms are poorly understood. By using the diamondback moth, Plutella xylostella, its host plant Chinese cabbage, and a non-host plant Chrysanthemum morifolium, as a model system, we observed the experience-altered olfactory responses of ovipositing females towards volatiles of the non-host plant, volatiles of pure chemicals (p-cymene and alpha-terpinene) found in the non-host plant, and volatiles of host plants treated with these chemicals. We assessed the experience-altered oviposition preference towards host plants treated with p-cymene. Naive females showed aversion to the odors of the non-host plant, the pure chemicals, and the pure chemical-treated host plants. In contrast, experienced females either became attracted by these non-host odors or were no longer repelled by these odors. Similarly, naive females laid a significantly lower proportion of eggs on pure chemical-treated host plants than on untreated host plants, but experienced females laid a similar or higher proportion of eggs on pure chemical-treated host plants compared to untreated host plants. Chemical analysis indicated that application of the non-host pure chemicals on Chinese cabbage induced emissions of volatiles by this host plant. We conclude that induced preference for previously repellent compounds is a major mechanism that leads to behavioral changes of this moth towards non-host plants or their extracts.

  4. [Effect of an introgression from Aegilops cylindrica host on manifestation of productivity traits in winter common wheat F2 plants].

    PubMed

    Kozub, N A; Sozinov, I A; sozinov, A A

    2004-12-01

    The effect of introgression of a chromosome 1D segment from Aegilops cylindrica to winter common wheat on productivity traits in F2 plants was studied using storage protein loci as genetic markers. An allele of the gliadin-coding Gli-D1 locus served as a marker of the introgression. Using of two- and three-locus interaction models, it was shown that the introgression tagged with Gli-D1 affected the manifestation of productivity traits (productive tillering, grain weight per plant and grain number per plant) through interaction with other marker storage protein loci: Glu-B1, Glu-D1, and Gli-B2.

  5. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses.

    PubMed

    Song, Junqi; Bent, Andrew F

    2014-04-01

    Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs) in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS) is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues.

  6. Galls and gall makers in plants from the Pé-de-Gigante Cerrado Reserve, Santa Rita do Passa Quatro, SP, Brazil.

    PubMed

    Urso-Guimarães, M V; Scareli-Santos, C

    2006-02-01

    Thirty-six morphologically different types of galls were obtained in leaves, leaflets, veins, petioles, stems, tendrils and flower buds from twenty-five species of plants in the Pé-de-Gigante Reserve, municipality of Santa Rita do Passa Quatro, state of São Paulo, Brazil. The host plant species belong to the closely related families Anacardiaceae, Annonaceae, Asteraceae, Bignoniaceae, Caryocaraceae, Erythroxylaceae, Fabaceae, Malpighiaceae, Melastomataceae, Myrtaceae, Ochnaceae, Polygalaceae, Sapindaceae, Sapotaceae, and Smilacaceae. The most common gall makers included Cecidomyiidae (Diptera), Pteromalidae (Hymenoptera) and Diaspididae (Sternorrhyncha-Hemiptera). This is the first report of galls found in the following plant genera: Gochnatia (Asteraceae), Distictela (Bignoniaceae), Banisteriopsis (Malpighiaceae), Ouratea (Ochnaceae), and Bredemeyera (Polygalaceae). The results of this work contribute to the body of knowledge about the relationship among host plants, gall makers, and the gall morphology of Pé-de-Gigante Cerrado Reserve.

  7. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat.

    PubMed

    Koizumi, Takahiko; Nara, Kazuhide

    2017-06-24

    Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R 2 =0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R 2 =0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions.

  8. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat

    PubMed Central

    Koizumi, Takahiko; Nara, Kazuhide

    2017-01-01

    Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R2=0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R2=0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions. PMID:28529264

  9. Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    PubMed Central

    García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-01-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627

  10. A review of recorded host plants of Oriental Fruit Fly, Bactrocera (Bactrocera)dorsalis(Hendel)(Diptera: Tephritidae), version 3.0

    USDA-ARS?s Scientific Manuscript database

    Bactrocera (Bactrocera) dorsalis (Hendel)(Diptera: Tephritidae), commonly known as the Oriental fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Presented herein is a compre...

  11. Variation in the nutritional physiology of tree-feeding swallowtail caterpillars

    Treesearch

    Matthew P. Ayres; Janice L. Bossart; J. Mark Scriber

    1991-01-01

    A key problem in addressing patterns of interaction between forest insects and their host trees is determining the level at which important ecological and evolutionary interactions occur. We commonly view plant-herbivore relations as herbivore species interacting with plant species, tacitly assuming that variation among members of either species is small and one can...

  12. Ceratapion basicorne (Illiger) (Coleoptera: Curculionidae): laboratory and open field trials to assess its specificity as biocontrol agent of Centaurea solstitialis (Asteraceae: Cardueae)

    USDA-ARS?s Scientific Manuscript database

    Prospective biological control agents generally must be demonstrated to not pose risks to non-target plants. Laboratory experiments evaluating host plant specificity are the most common method of evaluating such risk; however, they are constrained by limitations of space and number of replicates, gi...

  13. Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.

    This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…

  14. Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences

    PubMed Central

    Kant, Merijn R; Sabelis, Maurice W; Haring, Michel A; Schuurink, Robert C

    2007-01-01

    Plants and herbivores are thought to be engaged in a coevolutionary arms race: rising frequencies of plants with anti-herbivore defences exert pressure on herbivores to resist or circumvent these defences and vice versa. Owing to its frequency-dependent character, the arms race hypothesis predicts that herbivores exhibit genetic variation for traits that determine how they deal with the defences of a given host plant phenotype. Here, we show the existence of distinct variation within a single herbivore species, the spider mite Tetranychus urticae, in traits that lead to resistance or susceptibility to jasmonate (JA)-dependent defences of a host plant but also in traits responsible for induction or repression of JA defences. We characterized three distinct lines of T. urticae that differentially induced JA-related defence genes and metabolites while feeding on tomato plants (Solanum lycopersicum). These lines were also differently affected by induced JA defences. The first line, which induced JA-dependent tomato defences, was susceptible to those defences; the second line also induced JA defences but was resistant to them; and the third, although susceptible to JA defences, repressed induction. We hypothesize that such intraspecific variation is common among herbivores living in environments with a diversity of plants that impose diverse selection pressure. PMID:18055390

  15. An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi to new hosts.

    PubMed

    Koyama, Akihiro; Pietrangelo, Olivia; Sanderson, Laura; Antunes, Pedro M

    2017-08-01

    Little is known about the adaptive capacity of arbuscular mycorrhizal (AM) fungi to novel hosts. Here we assessed the possibility of two heterospecific AM fungal isolates to adaptively change, in terms of host biomass response, as a function of host plant identity, over the course of a growing season. First, we produced pure inocula of Rhizophagus clarus and Rhizophagus intraradices, each starting from a single spore. Second, we "trained" each isolate individually in a community with two plants, sudangrass (Sorgum bicolour subsp. drummondii) and leek (Aliium ampeloprasum var. porrum), using a dual-compartment system to allow the establishment of a common mycorrhizal network between the two hosts. Third, we conducted a greenhouse experiment to reciprocally test each "trained" clone, obtained from each compartment, either with the same (home), or the other host (away) under two contrasting phosphorus levels. Overall, results did not support adaptive responses of the AM fungi to their hosts (i.e., greater host biomass under "home" relative to "away" conditions), but the opposite (i.e., greater host biomass under "away" relative to "home" conditions) was more frequently observed. These changes in AM fungal symbiotic functioning open the possibility for relatively rapid genetic change of arbuscular mycorrhizal fungi in response to new hosts, which represents one step forward from in vitro experiments.

  16. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae

    PubMed Central

    Laue, Bridget E.; Sharp, Paul M.; Green, Sarah

    2016-01-01

    Summary The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae. PMID:27145446

  17. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont.

    PubMed

    Warshan, Denis; Liaimer, Anton; Pederson, Eric; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; Altermark, Bjørn; Pawlowski, Katharina; Weyman, Philip D; Dupont, Christopher L; Rasmussen, Ulla

    2018-05-01

    Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts.

  18. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont

    PubMed Central

    Liaimer, Anton; Pederson, Eric; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; Altermark, Bjørn; Pawlowski, Katharina; Weyman, Philip D; Dupont, Christopher L

    2018-01-01

    Abstract Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts. PMID:29554291

  19. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  20. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.

    PubMed

    Shan, Libo; He, Ping; Li, Jianming; Heese, Antje; Peck, Scott C; Nürnberger, Thorsten; Martin, Gregory B; Sheen, Jen

    2008-07-17

    Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.

  1. A fungal root symbiont modifies plant resistance to an insect herbivore.

    PubMed

    Borowicz, Victoria A

    1997-11-01

    Vesicular-arbuscular mycorrhizal (VAM) fungi are common root-colonizing symbionts that affect nutrient uptake by plants and can alter plant susceptibility to herbivores. I conducted a factorial experiment to test the hypotheses that colonization by VAM fungi (1) improves soybean (Glycine max) tolerance to grazing by folivorous Mexican bean beetle (Epilachna varivestis), and (2) indirectly affects herbivores by increasing host resistance. Soybean seedlings were inoculated with the VAM fungus Glomus etunicatum or VAM-free filtrate and fertilized with high-[P] or low-[P] fertilizer. After plants had grown for 7 weeks first-instar beetle larvae were placed on bagged leaves. Growth of soybean was little affected by grazing larvae, and no effects of treatments on tolerance of soybeans to herbivores were evident. Colonization by VAM fungus doubled the size of phosphorus-stressed plants but these plants were still half the size of plants given adequate phosphorus. High-[P] fertilizer increased levels of phosphorus and soluble carbohydrates, and decreased levels of soluble proteins in leaves of grazed plants. Colonization of grazed plants by VAM fungus had no significant effect on plant soluble carbohydrates, but increased concentration of phosphorus and decreased levels of proteins in phosphorus-stressed plants to concentrations similar to those of plants given adequate phosphorus. Mexican bean beetle mass at pupation, pupation rate, and survival to eclosion were greatest for beetles reared on phosphorus-stressed, VAM-colonized plants, refuting the hypothesis that VAM colonization improves host plant resistance. VAM colonization indirectly affected performance of Mexician bean beetle larvae by improving growth and nutrition of the host plant.

  2. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae).

    PubMed

    Lozier, Jeffrey D; Roderick, George K; Mills, Nicholas J

    2007-06-01

    Over the past several decades biologists' fascination with plant-herbivore interactions has generated intensive research into the implications of these interactions for insect diversification. The study of closely related phytophagous insect species or populations from an evolutionary perspective can help illuminate ecological and selective forces that drive these interactions. Here we present such an analysis for aphids in the genus Hyalopterus (Hemiptera: Aphididae), a cosmopolitan group that feeds on plants in the genus Prunus (Rosaceae). Hyalopterus currently contains two recognized species associated with different Prunus species, although the taxonomy and evolutionary history of the group is poorly understood. Using mitochondrial COI sequences, 16S rDNA sequences from the aphid endosymbiont Buchnera aphidicola, and nine microsatellite loci we investigated population structure in Hyalopterus from the most commonly used Prunus host species throughout the Mediterranean as well as in California, where the species H. pruni is an invasive pest. We found three deeply divergent lineages structured in large part by specific associations with plum, almond, and peach trees. There was no evidence that geographic or temporal barriers could explain the overall diversity in the genus. Levels of genetic differentiation are consistent with that typically attributed to aphid species and indicate divergence times older than the domestication of Prunus for agriculture. Interestingly, in addition to their typical hosts, aphids from each of the three lineages were frequently found on apricot trees. Apricot also appears to act as a resource mediated hybrid zone for plum and almond associated lineages. Together, results suggest that host plants have played a role in maintaining host-associated differentiation in Hyalopterus for as long as several million years, despite worldwide movement of host plants and the potential for ongoing hybridization.

  3. Host Suitability of Eight Prunus spp. and One Pyrus communis Rootstocks to Pratylenchus vulnus, P. neglectus, and P. thornei

    PubMed Central

    Pinochet, J.; Verdejo-Lucas, S.; Marull, J.

    1991-01-01

    The effects of Pratylenchus vulnus on rootstocks of eight commonly used Prunus spp. and one Pyrus communis were evaluated under greenhouse conditions during a 15-month period. In a first experiment, two almonds (Moncayo and Garrigues), one peach (GF-305), and two peach-almond hybrids (GF-677 and Adafuel) inoculated with 2,000 nematodes per plant proved to be good hosts of P. vulnus. Highest (P < 0.05) numbers of nematodes per gram of fresh root weight were recovered from Adafuel and GF-677. Root weights were higher in uninoculated compared to inoculated plants of all rootstocks, whereas top weights of uninoculated Garrigues, GF-305, and GF-677 differed (P < 0.05) from those of inoculated plants. In a second experiment, three plum (Marianna 2624, Myrobalan 605, and San Julian 655-2) and one pear (OHF-333) rootstocks were also found to be good hosts of P. vulnus, although significantly fewer nematodes were recovered from Myrohalan 605 roots than from the other three materials. Inoculated OHF-333 and San Julian 655-2 differed (P < 0.05) in root weights over uninoculated plants. Only inoculated San Julian 655-2 showed differences in top weights over uninoculated treatments. Rootstocks were poor or non-hosts for P. neglectus and P. thornei. PMID:19283165

  4. Host plant records of the Mango Fruit Fly, Bactrocera (Bactrocera) frauenfeldi (Schiner) (Diptera: Tephritidae), version 1.0

    USDA-ARS?s Scientific Manuscript database

    Bactrocera (Bactrocera) frauenfeldi (Schiner, 1868), commonly known as the mango fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). Although, to date, the USDA PestID has no i...

  5. Host plant records of the White Striped Fruit Fly, Bactrocera (Bactrocera) albistrigata(de Meijere,1911)(Diptera: Tephritidae), Version 1.0

    USDA-ARS?s Scientific Manuscript database

    Bactrocera (Bactrocera) albistrigata (de Meijere, 1911), commonly known as the white striped fruit fly, is regulated through the Plant Protection Act of 2000 (7 U.S.C. 7701-7772) and relevant Parts and Subparts of the Code of Federal Regulations (7 CFR – Agriculture). While considered an obscure min...

  6. Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles.

    PubMed

    Fraser, Ann M; Mechaber, Wendy L; Hildebrand, John G

    2003-08-01

    Coupled gas chromatography with electroantennographic detection (GC-EAD) using antennae of adult female Manduca sexta was employed to screen for olfactory stimulants present in headspace collections from four species of larval host plants belonging to two families: Solanaceae--Lycopersicon esculentum (tomato), Capiscum annuum (bell pepper), and Datura wrightii; and Martyniaceae--Pronboscideaparviflora. Headspace volatiles were collected from undamaged foliage of potted, living plants. GC-EAD revealed 23 EAD-active compounds, of which 15 were identified by GC-mass spectrometry. Identified compounds included aliphatic, aromatic, and terpenoid compounds bearing a range of functional groups. Nine EAD-active compounds were common to all four host plant species: (Z)-3-hexenyl acetate, nonanal, decanal, phenylacetaldehyde, methyl salicylate, benzyl alcohol, geranyl acetone, (E)-nerolidol, and one unidentified compound. Behavioral responses of female moths to an eight-component synthetic blend of selected tomato headspace volatiles were tested in a laboratory wind tunnel. Females were attracted to the blend. A comparison of responses from antennae of males and females to bell pepper headspace volatiles revealed that males responded to the same suite of volatiles as females, except for (Z)-3-hexenyl benzoate. EAD responses of males also were lower for (Z)-and (E)-nerolidol and one unidentified compound. Electroantennogram EAG dose-response curves for the 15 identified EAD-active volatiles were recorded. At the higher test doses (10-100 microg), female antennae yielded larger EAG responses to terpenoids and to aliphatic and aromatic esters. Male antennae did respond to the higher doses of (Z)-3-hexenyl benzoate, indicating that they can detect this compound. On the basis of ubiquity of the EAD-active volatiles identified to date in host plant headspace collections, we suggest that M. sexta uses a suite of volatiles to locate and identify appropriate host plants.

  7. Recent insights into plant-virus interactions through proteomic analysis.

    PubMed

    Di Carli, Mariasole; Benvenuto, Eugenio; Donini, Marcello

    2012-10-05

    Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This "omic" approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies.

  8. Na+/K+-ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae)

    PubMed Central

    Bramer, Christiane; Dobler, Susanne; Deckert, Jürgen; Stemmer, Michael; Petschenka, Georg

    2015-01-01

    Despite sequestration of toxins being a common coevolutionary response to plant defence in phytophagous insects, the macroevolution of the traits involved is largely unaddressed. Using a phylogenetic approach comprising species from four continents, we analysed the ability to sequester toxic cardenolides in the hemipteran subfamily Lygaeinae, which is widely associated with cardenolide-producing Apocynaceae. In addition, we analysed cardenolide resistance of their Na+/K+-ATPases, the molecular target of cardenolides. Our data indicate that cardenolide sequestration and cardenolide-resistant Na+/K+-ATPase are basal adaptations in the Lygaeinae. In two species that shifted to non-apocynaceous hosts, the ability to sequester was secondarily reduced, yet Na+/K+-ATPase resistance was maintained. We suggest that both traits evolved together and represent major coevolutionary adaptations responsible for the evolutionary success of lygaeine bugs. Moreover, specialization on cardenolides was not an evolutionary dead end, but enabled this insect lineage to host shift to cardenolide-producing plants from distantly related families. PMID:25808891

  9. Sex-linked inheritance of host-plant specialization in a polyphagous butterfly

    PubMed Central

    Janz, N.

    1998-01-01

    I investigated the genetic background of intraspecific variation in oviposition specificity in the generalist butterfly Polygonia c-album. Using reciprocal crosses between two populations that differ in their degree of specialization, I show that specificity is strongly sex-linked. This indicates that genes determining this difference are located primarily on the paternally inherited X-chromosome. The results suggest that intraspecific differences in specificity are caused by the same genetic mechanisms that have been shown to determine interspecific differences in host-plant ranking in other butterflies. Accordingly, the common assumption that specialization and ranking are determined by fundamentally different mechanisms was not supported.

  10. Barberry as alternate host is important for Puccinia graminis f. sp. tritici, but not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    Common barberry (Berberis vulgaris) has been known to serve as an alternate host for the wheat stem rust pathogen, Puccinia graminis f. sp. tritici (Pgt), under natural conditions in the U. S. Pacific Northwest for a long time. The plant has been recently shown to be infected by basidiospores of th...

  11. Mechanisms and evolution of plant resistance to aphids.

    PubMed

    Züst, Tobias; Agrawal, Anurag A

    2016-01-06

    Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions.

  12. Interrelated effects of mycorrhiza and free-living nitrogen fixers cascade up to aboveground herbivores.

    PubMed

    Khaitov, Botir; Patiño-Ruiz, José David; Pina, Tatiana; Schausberger, Peter

    2015-09-01

    Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen-fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co-occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant-associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free-living nitrogen-fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two-spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co-occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground-aboveground research by providing first insights into the fitness implications of plant-mediated interactions between interrelated belowground fungi-bacteria and aboveground herbivores.

  13. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity.

    PubMed

    Fischer, Gregory J; Keller, Nancy P

    2016-03-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.

  14. Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming

    PubMed Central

    Voll, Lars Matthias; Horst, Robin Jonathan; Voitsik, Anna-Maria; Zajic, Doreen; Samans, Birgit; Pons-Kühnemann, Jörn; Doehlemann, Gunther; Münch, Steffen; Wahl, Ramon; Molitor, Alexandra; Hofmann, Jörg; Schmiedl, Alfred; Waller, Frank; Deising, Holger Bruno; Kahmann, Regine; Kämper, Jörg; Kogel, Karl-Heinz; Sonnewald, Uwe

    2011-01-01

    During compatible interactions with their host plants, biotrophic plant–pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism toward colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei), the corn smut fungus Ustilago maydis, and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment. Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. However, increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during early biotrophy for the three investigated interactions. PMID:22645534

  15. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    PubMed

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  16. Apoplastic Venom Allergen-like Proteins of Cyst Nematodes Modulate the Activation of Basal Plant Innate Immunity by Cell Surface Receptors

    PubMed Central

    Lozano-Torres, Jose L.; Wilbers, Ruud H. P.; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C.; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-01-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue. PMID:25500833

  17. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors.

    PubMed

    Lozano-Torres, Jose L; Wilbers, Ruud H P; Warmerdam, Sonja; Finkers-Tomczak, Anna; Diaz-Granados, Amalia; van Schaik, Casper C; Helder, Johannes; Bakker, Jaap; Goverse, Aska; Schots, Arjen; Smant, Geert

    2014-12-01

    Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.

  18. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    PubMed Central

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., < 0.005) turned non-significant after the application of a multiple comparison method. However, our overall results imply that the community structures of ectomycorrhizal and endophytic fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150

  19. One Shroom to Rule Them All: Identifying the mechanisms employed in ectomycorrhizal mutualisms for the generalist fungus Thelephora terrestris and seven genetically diverse host tree species

    NASA Astrophysics Data System (ADS)

    Francis, N.; Laura, B.; Peay, K.

    2016-12-01

    This summer, through the Stanford EARTH Young Investigators Internship, I worked in the Peay fungal ecology lab to set up an experiment to identify what fungal mechanisms are at work in ectomycorrhizal mutualisms between seven phylogenetically distinct tree species and the generalist fungus Thelephora terrestris. Ectomycorrhizal fungi occupy an important niche in terrestrial ecology through their symbiotic mutualisms with plant hosts that allow for the exchange of carbon and nitrogen. However, very little is known about what determines partner choice for ectomycorrhizal fungal mutualists. Among pathogenic fungi, specialization on particular hosts is common, likely because the pathogen must work in specialized ways with the host's immune system. Ectomycorrhizal mutualists, however, tend to be generalists, even though their associations with plants are physically intimate and chemically complex. In order to understand how ectomycorrhizal fungi maintain a broad host range, I grew and planted seedlings and cuttings of Pinus muricata (bishop pine), Pseudotsuga menziesii (Douglas fir), Salix lasiolepis (arroyo willow), Populus trichocarpa (black cottonwood), Quercus agrifolia (coastal live oak), Eucalyptus globulus (blue gum), and Arbutus menziesii (Pacific madrone). Within each pot, the seven seedlings was planted around a previously planted donor bishop pine in potting mixture inoculated with Thelephora terrestris so that the fungus could spread from the donor pine to the others. I also helped analyze the extent of Thelephora terrestris growth on the plant roots from a preliminary round of the experiment in order to refine the data collection protocol for the coming experiment. Several months from now, my research mentor will label the carbon and nitrogen moving between the fungus and the plant to find out how well the symbiosis is working for each partner, and will sequence the RNA from the fungus to see if it uses different genes to communicate and associate with each host. The work I did growing and planting seedlings under sterile conditions ultimately emphasizes the importance of combining ecological and physiological experimental design with molecular data collection in order to better understand how molecular function influences the ecology of ectomycorrhizal fungi.

  20. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

    PubMed

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang

    2017-08-08

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta , and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta -connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

  1. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants

    PubMed Central

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T.

    2017-01-01

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta, and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta-connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts. PMID:28739895

  2. Chitosan-induced antiviral activity and innate immunity in plants.

    PubMed

    Iriti, Marcello; Varoni, Elena Maria

    2015-02-01

    Immunity represents a trait common to all living organisms, and animals and plants share some similarities. Therefore, in susceptible host plants, complex defence machinery may be stimulated by elicitors. Among these, chitosan deserves particular attention because of its proved efficacy. This survey deals with the antiviral activity of chitosan, focusing on its perception by the plant cell and mechanism of action. Emphasis has been paid to benefits and limitations of this strategy in crop protection, as well as to the potential of chitosan as a promising agent in virus disease control.

  3. Caterpillar mimicry by plant galls as a visual defense against herbivores.

    PubMed

    Yamazaki, Kazuo

    2016-09-07

    Plant galls, induced by arthropods and various other organisms have an intimate relationship with host plants, and gall-inducers have limited mobility. In addition to their own photosynthesis, galls are resource sinks rich with nutrients, with neighboring plant organs commonly serving as external photosynthate sources. Galls, if not well defended, may therefore be attractive food sources for herbivores. Galls produced by some aphids, jumping plant lice, thrips, and gall midges in Japan, Palearctic region and in the Middle East visually resemble lepidopteran caterpillars. I propose that such visual resemblance may reduce herbivory of galls and surrounding plant tissues, resulting in an increase in galler survival due to reduced gall damage and in enhanced galler growth due to improved nutrient inflow to the galls, when herbivores avoid colonizing or consuming plant parts that look as if they have been occupied by other herbivores. Potential predators and parasitoids of caterpillars may be attracted to the caterpillar-like galls and then attack real caterpillars and other invertebrate herbivores, which would also be beneficial for both gallers and their hosts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    USGS Publications Warehouse

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  5. Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    PubMed Central

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703

  6. Host jumps shaped the diversity of extant rust fungi (Pucciniales).

    PubMed

    McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J

    2016-02-01

    The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Testing Two Methods that Relate Herbivorous Insects to Host Plants

    PubMed Central

    White, Peter J. T.

    2013-01-01

    Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830

  8. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants

    PubMed Central

    Perilla-Henao, Laura M.; Casteel, Clare L.

    2016-01-01

    Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855

  9. A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Leroy, Céline; Corbara, Bruno; Céréghino, Régis; Roux, Olivier; Hérault, Bruno; Rossi, Vivien; Guerrero, Roberto J.; Delabie, Jacques H. C.; Orivel, Jérôme; Boulay, Raphaël

    2010-10-01

    Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia ( Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca- Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees’ fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non- Cecropia tree.

  10. Playback interference of glassy-winged sharp shooter communication

    USDA-ARS?s Scientific Manuscript database

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  11. Consequences of interspecific variation in defenses and herbivore host choice for the ecology and evolution of Inga, a speciose rainforest tree.

    PubMed

    Coley, Phyllis D; Endara, María-José; Kursar, Thomas A

    2018-06-01

    We summarize work on a speciose Neotropical tree genus, Inga (Fabaceae), examining how interspecific variation in anti-herbivore defenses may have evolved, how defenses shape host choice by herbivores and how they might regulate community composition and influence species radiations. Defenses of expanding leaves include secondary metabolites, extrafloral nectaries, rapid leaf expansion, trichomes, and synchrony and timing of leaf production. These six classes of defenses are orthogonal, supporting independent evolutionary trajectories. Moreover, only trichomes show a phylogenetic signature, suggesting evolutionary lability in nearly all defenses. The interspecific diversity in secondary metabolite profiles does not arise from the evolution of novel compounds, but from novel combinations of common compounds, presumably due to changes in gene regulation. Herbivore host choice is determined by plant defensive traits, not host phylogeny. Neighboring plants escape each other's pests if their defenses differ enough, thereby enforcing the high local diversity typical of tropical forests. Related herbivores feed on hosts with similar defenses, implying that there are phylogenetic constraints placed on the herbivore traits that are associated with host use. Divergence in defensive traits among Inga appears to be driven by herbivore pressure. However, the lack of congruence between herbivore and host phylogeny suggests that herbivores are tracking defenses, choosing hosts based on traits for which they already have adaptations. There is, therefore, an asymmetry in the host-herbivore evolutionary arms race.

  12. Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species

    PubMed Central

    Renner, Kurra; Cole, Ellen; Seabloom, Eric W.; Borer, Elizabeth T.; Malmstrom, Carolyn M.

    2016-01-01

    Ecological understanding of disease risk, emergence, and dynamics and of the efficacy of control strategies relies heavily on efficient tools for microorganism identification and characterization. Misdetection, such as the misclassification of infected hosts as healthy, can strongly bias estimates of disease prevalence and lead to inaccurate conclusions. In natural plant ecosystems, interest in assessing microbial dynamics is increasing exponentially, but guidelines for detection of microorganisms in wild plants remain limited, particularly so for plant viruses. To address this gap, we explored issues and solutions associated with virus detection by serological and molecular methods in noncrop plant species as applied to the globally important Barley yellow dwarf virus PAV (Luteoviridae), which infects wild native plants as well as crops. With enzyme-linked immunosorbent assays (ELISA), we demonstrate how virus detection in a perennial wild plant species may be much greater in stems than in leaves, although leaves are most commonly sampled, and may also vary among tillers within an individual, thereby highlighting the importance of designing effective sampling strategies. With reverse transcription-PCR (RT-PCR), we demonstrate how inhibitors in tissues of perennial wild hosts can suppress virus detection but can be overcome with methods and products that improve isolation and amplification of nucleic acids. These examples demonstrate the paramount importance of testing and validating survey designs and virus detection methods for noncrop plant communities to ensure accurate ecological surveys and reliable assumptions about virus dynamics in wild hosts. PMID:26773088

  13. Methodological Guidelines for Accurate Detection of Viruses in Wild Plant Species.

    PubMed

    Lacroix, Christelle; Renner, Kurra; Cole, Ellen; Seabloom, Eric W; Borer, Elizabeth T; Malmstrom, Carolyn M

    2016-01-15

    Ecological understanding of disease risk, emergence, and dynamics and of the efficacy of control strategies relies heavily on efficient tools for microorganism identification and characterization. Misdetection, such as the misclassification of infected hosts as healthy, can strongly bias estimates of disease prevalence and lead to inaccurate conclusions. In natural plant ecosystems, interest in assessing microbial dynamics is increasing exponentially, but guidelines for detection of microorganisms in wild plants remain limited, particularly so for plant viruses. To address this gap, we explored issues and solutions associated with virus detection by serological and molecular methods in noncrop plant species as applied to the globally important Barley yellow dwarf virus PAV (Luteoviridae), which infects wild native plants as well as crops. With enzyme-linked immunosorbent assays (ELISA), we demonstrate how virus detection in a perennial wild plant species may be much greater in stems than in leaves, although leaves are most commonly sampled, and may also vary among tillers within an individual, thereby highlighting the importance of designing effective sampling strategies. With reverse transcription-PCR (RT-PCR), we demonstrate how inhibitors in tissues of perennial wild hosts can suppress virus detection but can be overcome with methods and products that improve isolation and amplification of nucleic acids. These examples demonstrate the paramount importance of testing and validating survey designs and virus detection methods for noncrop plant communities to ensure accurate ecological surveys and reliable assumptions about virus dynamics in wild hosts. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Host Plant-Herbivore-Predator Interactions in Chrysoperla carnea (Neuroptera: Chrysopidae) and Myzus persicae (Homoptera: Aphididae) on Four Plant Species Under Laboratory Conditions.

    PubMed

    Farrokhi, Milad; Gharekhani, Gholamhossein; Iranipour, Shahzad; Hassanpour, Mahdi

    2017-12-05

    The common green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), is a well-known biocontrol agent. The current study examined host plant-herbivore-predator interactions with C. carnea and Myzus persicae on four host plants (peach, almond, pepper, and potato). The experiments were carried out at 25 ± 1°C and 65 ± 5% RH at a photoperiod of 16:8 (L:D) h). Duration of the preadult growth period, adult longevity, fecundity, and population growth parameters were analyzed based on the age-stage, two-sex life table theory. The shortest and longest preadult developmental times of the predator were observed on the peach and potato, respectively. The highest and lowest predation rate, oviposition period, and male and female longevity of predator were also observed on the peach and potato, respectively. The lowest intrinsic rate of increase (r) and finite rate of increase (λ) were observed on the potato (0.1087 and 1.11 d-1, respectively) and the highest on the peach (0.1460 and 1.15 d-1, respectively). The maximum and minimum mean generation times (T) were 41.84 and 35.59 d in the potato and peach, respectively. Overall, peach was found to be a more appropriate host than the other host plants for development and predation fitness of C. carnea. These findings reveal that information on tritrophic interactions and subsequent life table evaluation of natural enemies improves integrated pest management programs. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Genetics of host plant use and life history in the comma butterfly across Europe: varying modes of inheritance as a potential reproductive barrier.

    PubMed

    Nygren, G H; Nylin, S; Stefanescu, C

    2006-11-01

    Comma butterflies (Nymphalidae: Polygonia c-album L.) from one Belgian site and three Spanish sites were crossed with butterflies from a Swedish population in order to investigate inheritance of female host plant choice, egg mass and larval growth rate. We found three different modes of inheritance for the three investigated traits. In line with earlier results from crosses between Swedish and English populations, the results regarding female oviposition preference (choice between Urtica dioica and Salix caprea) showed X-linked inheritance to be of importance for the variation between Sweden and the other sites. Egg mass and growth rate did not show any sex-linked inheritance. Egg mass differences between populations seem to be controlled mainly by additive autosomal genes, as hybrids showed intermediate values. The growth rates of both hybrid types following reciprocal crossings were similar to each other but consistently higher than for the two source populations, suggesting a nonadditive mode of inheritance which is not sex-linked. The different modes of inheritance for host plant preference vs. important life history traits are likely to result in hybrids with unfit combinations of traits. This type of potential reproductive barrier based on multiple ecologically important traits deserves more attention, as it should be a common situation for instance in the early stages of population divergence in host plant usage, facilitating ecological speciation.

  16. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity

    PubMed Central

    Fischer, Gregory J.; Keller, Nancy P.

    2016-01-01

    Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived non-enzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions. PMID:26920885

  17. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    PubMed Central

    Chung, Seung Ho; Scully, Erin D.; Peiffer, Michelle; Geib, Scott M.; Rosa, Cristina; Hoover, Kelli; Felton, Gary W.

    2017-01-01

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore’s ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants. PMID:28045052

  18. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.

    PubMed

    Chung, Seung Ho; Scully, Erin D; Peiffer, Michelle; Geib, Scott M; Rosa, Cristina; Hoover, Kelli; Felton, Gary W

    2017-01-03

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We previously showed that symbiotic gut bacteria from CPB larvae suppressed jasmonate (JA)-induced defenses in tomato. However, little is known about how changes in the bacterial community may be involved in the manipulation of induced defenses in wild and cultivated Solanum plants of CPB. Here, we examined suppression of JA-mediated defense in wild and cultivated hosts of CPB by chemical elicitors and their symbiotic bacteria. Furthermore, we investigated associations between the gut bacterial community and suppression of plant defenses using 16 S rRNA amplicon sequencing. Symbiotic bacteria decreased plant defenses in all Solanum hosts and there were different gut bacterial communities in CPB fed on different host plants. When larvae were reared on different hosts, defense suppression differed among host plants. These results demonstrate that host plants influence herbivore gut bacterial communities and consequently affect the herbivore's ability to manipulate JA-mediated plant defenses. Thus, the presence of symbiotic bacteria that suppress plant defenses might help CPB adapt to host plants.

  19. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment.

    PubMed

    Lovelock, Catherine E; Andersen, Kelly; Morton, Joseph B

    2003-04-01

    Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.

  20. The activation and suppression of plant innate immunity by parasitic nematodes.

    PubMed

    Goverse, Aska; Smant, Geert

    2014-01-01

    Plant-parasitic nematodes engage in prolonged and intimate relationships with their host plants, often involving complex alterations in host cell morphology and function. It is puzzling how nematodes can achieve this, seemingly without activating the innate immune system of their hosts. Secretions released by infective juvenile nematodes are thought to be crucial for host invasion, for nematode migration inside plants, and for feeding on host cells. In the past, much of the research focused on the manipulation of developmental pathways in host plants by plant-parasitic nematodes. However, recent findings demonstrate that plant-parasitic nematodes also deliver effectors into the apoplast and cytoplasm of host cells to suppress plant defense responses. In this review, we describe the current insights in the molecular and cellular mechanisms underlying the activation and suppression of host innate immunity by plant-parasitic nematodes along seven critical evolutionary and developmental transitions in plant parasitism.

  1. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem.

    PubMed

    Kuhn, Hannah; Kwaaitaal, Mark; Kusch, Stefan; Acevedo-Garcia, Johanna; Wu, Hongpo; Panstruga, Ralph

    2016-01-01

    It is generally accepted in plant-microbe interactions research that disease is the exception rather than a common outcome of pathogen attack. However, in nature, plants with symptoms that signify colonization by obligate biotrophic powdery mildew fungi are omnipresent. The pervasiveness of the disease and the fact that many economically important plants are prone to infection by powdery mildew fungi drives research on this interaction. The competence of powdery mildew fungi to establish and maintain true biotrophic relationships renders the interaction a paramount example of a pathogenic plant-microbe biotrophy. However, molecular details underlying the interaction are in many respects still a mystery. Since its introduction in 1990, the Arabidopsis-powdery mildew pathosystem has become a popular model to study molecular processes governing powdery mildew infection. Due to the many advantages that the host Arabidopsis offers in terms of molecular and genetic tools this pathosystem has great capacity to answer some of the questions of how biotrophic pathogens overcome plant defense and establish a persistent interaction that nourishes the invader while in parallel maintaining viability of the plant host.

  2. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem

    PubMed Central

    Kuhn, Hannah; Kwaaitaal, Mark; Kusch, Stefan; Acevedo-Garcia, Johanna; Wu, Hongpo; Panstruga, Ralph

    2016-01-01

    It is generally accepted in plant-microbe interactions research that disease is the exception rather than a common outcome of pathogen attack. However, in nature, plants with symptoms that signify colonization by obligate biotrophic powdery mildew fungi are omnipresent. The pervasiveness of the disease and the fact that many economically important plants are prone to infection by powdery mildew fungi drives research on this interaction. The competence of powdery mildew fungi to establish and maintain true biotrophic relationships renders the interaction a paramount example of a pathogenic plant-microbe biotrophy. However, molecular details underlying the interaction are in many respects still a mystery. Since its introduction in 1990, the Arabidopsis-powdery mildew pathosystem has become a popular model to study molecular processes governing powdery mildew infection. Due to the many advantages that the host Arabidopsis offers in terms of molecular and genetic tools this pathosystem has great capacity to answer some of the questions of how biotrophic pathogens overcome plant defense and establish a persistent interaction that nourishes the invader while in parallel maintaining viability of the plant host. PMID:27489521

  3. The genome of the of the generalist plant pathogenic fungus Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism

    USDA-ARS?s Scientific Manuscript database

    Fusarium avenaceum is a fungus commonly isolated from soil and with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The physical sizes of the three genomes range from 41.6-43.2 MB...

  4. Lepidoptera outbreaks in response to successional changes after the passage of Hurricane Hugo in Puerto Rico Rico

    Treesearch

    J.A. Torres

    1992-01-01

    Fifteen species of Lepidoptera occurred in large numbers in spring and early summer after the passage of Hurricane Hugo over the north-east of Puerto Rico. Spodoptera eridania (Noctuidae) was the most common of the larvae and fed on 56 plant species belonging to 31 families. All the Lepidoptera fed on early successional vegetation. Some of the plants represent new host...

  5. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    PubMed Central

    Knudsen, Geir K.; Norli, Hans R.; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system. PMID:29312430

  6. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth.

    PubMed

    Knudsen, Geir K; Norli, Hans R; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1,3,7-nonatriene ((E)-DMNT) and (Z)-3-hexenyl acetate was found in the rowan-apple and rowan-pear but not in the rowan-spruce headspace. A higher ratio between the abundance of each field attractive component and that of (E)-DMNT and (Z)-3-hexenyl acetate was measured for rowan and rowan-spruce in contrast to rowan-pear and rowan-apple headspaces. Our result suggests that the ratio between field attractive and background antennaly active volatiles encodes host-plant recognition in our study system.

  7. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor

    DOE PAGES

    Zhang, Li; Yao, Jian; Withers, John; ...

    2015-11-02

    In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. In this paper, we show that host target modification could be a promising new approach to “protect” the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae,more » for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Finally, our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.« less

  8. Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers.

    PubMed

    Daub, Margaret E; Herrero, Sonia; Chung, Kuang-Ren

    2013-09-20

    Reactive oxygen species (ROS) play multiple roles in interactions between plants and microbes, both as host defense mechanisms and as mediators of pathogenic and symbiotic associations. One source of ROS in these interactions are photoactivated, ROS-generating perylenequinone pigments produced via polyketide metabolic pathways in plant-associated fungi. These natural products, including cercosporin, elsinochromes, hypocrellins, and calphostin C, are being utilized as medicinal agents, enzyme inhibitors, and in tumor therapy, but in nature, they play a role in the establishment of pathogenic associations between fungi and their plant hosts. Photoactivated perylenequinones are photosensitizers that use light energy to form singlet oxygen (¹O₂) and free radical oxygen species which damage cellular components based on localization of the perylenequinone molecule. Production of perylenequinones during infection commonly results in lipid peroxidation and membrane damage, leading to leakage of nutrients from cells into the intercellular spaces colonized by the pathogen. Perylenequinones show almost universal toxicity against organisms, including plants, mice, bacteria, and most fungi. The producing fungi are resistant, however, and serve as models for understanding resistance mechanisms. Studies of resistance mechanisms by perylenequinone-producing fungi such as Cercospora species are leading to an understanding of cellular resistance to ¹O₂ and oxidative stress. Recent studies show commonalities between resistance mechanisms in these fungi with extensive studies of ¹O₂ and oxidative stress responses in photosynthetic organisms. Such studies hold promise both for improved medical use and for engineering crop plants for disease resistance.

  9. Thrips species (Insecta: Thysanoptera) associated with flowers in a restinga fragment in northeastern Brazil.

    PubMed

    Lima, I M B; Almeida-Filho, M A; Lima, M G A; Bonilla, O H; Lima, E F B

    2018-03-22

    With the growing volume of research involving Thysanoptera in Brazil, studies were carried out to improve our understanding of the diversity of thrips in areas where the fauna has historically been neglected. Accordingly, we recorded the diversity of thrips (Insecta: Thysanoptera) associated with a restinga fragment located on the campus of the State University of Ceará (UECE), Fortaleza, Ceará state, and computed the estimated richness and diversity indices. Samples were collected from 2011 through 2013 from flowers of 86 plant species. The material was taken to the Laboratory of Insect-Plant Interaction, where thrips were screened under stereomicroscope. We collected 456 adults and 58 immatures, representing 14 species, in addition to one unidentified species of Treherniella. Microcephalothrips abdominalis was found on a large number of host plants, and Frankliniella insularis was the most common species. About two-thirds of the total richness of thrips species was associated with three plant families (Amaranthaceae, Caesalpiniaceae and Poaceae); six thrips species were each associated with only one plant species. The richness of the species collected was close to that estimated by Bootstrap and Jackknife 1 analysis. The Shannon-Wiener (H') and Simpson (D) diversity indexes were 1,7607 and 0.7769, respectively. Although the species are common, 46 new associations between plant species and thrips were established, 13 of which are true host associations, which demonstrates the importance of coastal vegetation in maintaining populations of thrips.

  10. Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts

    PubMed Central

    Gardiner, Donald M.; McDonald, Megan C.; Covarelli, Lorenzo; Solomon, Peter S.; Rusu, Anca G.; Marshall, Mhairi; Kazan, Kemal; Chakraborty, Sukumar; McDonald, Bruce A.; Manners, John M.

    2012-01-01

    Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens. PMID:23028337

  11. Members of the Meloidogyne avirulence protein family contain multiple plant ligand-like motifs.

    PubMed

    Rutter, William B; Hewezi, Tarek; Maier, Tom R; Mitchum, Melissa G; Davis, Eric L; Hussey, Richard S; Baum, Thomas J

    2014-08-01

    Sedentary plant-parasitic nematodes engage in complex interactions with their host plants by secreting effector proteins. Some effectors of both root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera and Globodera spp.) mimic plant ligand proteins. Most prominently, cyst nematodes secrete effectors that mimic plant CLAVATA3/ESR-related (CLE) ligand proteins. However, only cyst nematodes have been shown to secrete such effectors and to utilize CLE ligand mimicry in their interactions with host plants. Here, we document the presence of ligand-like motifs in bona fide root-knot nematode effectors that are most similar to CLE peptides from plants and cyst nematodes. We have identified multiple tandem CLE-like motifs conserved within the previously identified Meloidogyne avirulence protein (MAP) family that are secreted from root-knot nematodes and have been shown to function in planta. By searching all 12 MAP family members from multiple Meloidogyne spp., we identified 43 repetitive CLE-like motifs composing 14 unique variants. At least one CLE-like motif was conserved in each MAP family member. Furthermore, we documented the presence of other conserved sequences that resemble the variable domains described in Heterodera and Globodera CLE effectors. These findings document that root-knot nematodes appear to use CLE ligand mimicry and point toward a common host node targeted by two evolutionarily diverse groups of nematodes. As a consequence, it is likely that CLE signaling pathways are important in other phytonematode pathosystems as well.

  12. Host-specific effects of soil microbial filtrates prevail over those of arbuscular mycorrhizae in a fragmented landscape.

    PubMed

    Pizano, Camila; Mangan, Scott A; Graham, James H; Kitajima, Kaoru

    2017-09-01

    Plant-soil interactions have been shown to determine plant community composition in a wide range of environments. However, how plants distinctly interact with beneficial and detrimental organisms across mosaic landscapes containing fragmented habitats is still poorly understood. We experimentally tested feedback responses between plants and soil microbial communities from adjacent habitats across a disturbance gradient within a human-modified tropical montane landscape. In a greenhouse experiment, two components of soil microbial communities were amplified; arbuscular mycorrhizal fungi (AMF) and a filtrate excluding AMF spores from the soils of pastures (high disturbance), coffee plantations (intermediate disturbance), and forest fragments (low disturbance), using potted seedlings of 11 plant species common in these habitats (pasture grass, coffee, and nine native species). We then examined their effects on growth of these same 11 host species with reciprocal habitat inoculation. Most plant species received a similar benefit from AMF, but differed in their response to the filtrates from the three habitats. Soil filtrate from pastures had a net negative effect on plant growth, while filtrates from coffee plantations and forests had a net positive effect on plant growth. Pasture grass, coffee, and five pioneer tree species performed better with the filtrate from "away" (where these species rarely occur) compared to "home" (where these species typically occur) habitat soils, while four shade-tolerant tree species grew similarly with filtrates from different habitats. These results suggest that pastures accumulate species-specific soil enemies, while coffee plantations and forests accumulate beneficial soil microbes that benefit pioneer native plants and coffee, respectively. Thus, compared to AMF, soil filtrates exerted stronger habitat and host-specific effects on plants, being more important mediators of plant-soil feedbacks across contrasting habitats. © 2017 by the Ecological Society of America.

  13. Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect.

    PubMed

    Oshima, Kenro; Ishii, Yoshiko; Kakizawa, Shigeyuki; Sugawara, Kyoko; Neriya, Yutaro; Himeno, Misako; Minato, Nami; Miura, Chihiro; Shiraishi, Takuya; Yamaji, Yasuyuki; Namba, Shigetou

    2011-01-01

    Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the "host switching" between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to "host switching" between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of "host switching" mechanism may contribute to the development of novel pest controls.

  14. Factors Influencing Host Plant Choice and Larval Performance in Bactericera cockerelli

    PubMed Central

    Prager, Sean M.; Esquivel, Isaac; Trumble, John T.

    2014-01-01

    Among the many topics of interest to ecologists studying associations between phytophagous insects and their host plants are the influence of natal host plant on future oviposition decisions and the mechanisms of generalist versus specialist host selection behavior. In this study, we examined the oviposition preferences, behavior and larval development of the tomato/potato psyllid, Bactericera cockerelli. By rearing psyllids with two distinct geographically-linked haplotypes on different host plants, we were able to examine the role of natal host plant and potential local adaptation on host plant usage. Choice bioassays among three host species demonstrated that psyllids from California had clear preferences that were influenced by natal plant. We further found that patterns in choice bioassays corresponded to observed feeding and movement responses. No-choice bioassays demonstrated that there is little to no association between development and host-plant choice for oviposition, while also indicating that host choice varies between haplotypes. These findings support the concept that mothers do not always choose oviposition sites optimally and also add support for the controversial Hopkins' host selection principle. PMID:24710468

  15. Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla).

    PubMed

    Howland, Amanda D; Skinkis, Patricia A; Wilson, John H; Riga, Ekaterini; Pinkerton, John N; Schreiner, R Paul; Zasada, Inga A

    2015-06-01

    One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varieties/clones predominantly grown in Washington to M. hapla. In a microplot experiment, Chardonnay and Cabernet Sauvignon vines were planted into soil inoculated with different densities of M. hapla; population dynamics of M. hapla and vine performance were monitored over 3 yr. In greenhouse experiments, several clones representing five V. vinifera varieties, Chardonnay, Riesling, Cabernet Sauvignon, Merlot, and Syrah, were evaluated as hosts for M. hapla. In both microplot and greenhouse experiments, white varieties were significantly better hosts than red varieties. In the greenhouse experiments, Chardonnay and Riesling had 40% higher reproduction factor values than Syrah and Merlot, however, all varieties/clones screened were good hosts for M. hapla (reproduction factors > 3). In the microplot experiment, M. hapla eggs/g root were 4.5 times greater in Chardonnay compared to Cabernet Sauvignon 3 yr after planting but there was no evident impact of M. hapla on vine establishment.

  16. Impact of Grapevine (Vitis vinifera) Varieties on Reproduction of the Northern Root-Knot Nematode (Meloidogyne hapla)

    PubMed Central

    Howland, Amanda D.; Skinkis, Patricia A.; Wilson, John H.; Riga, Ekaterini; Pinkerton, John N.; Schreiner, R. Paul; Zasada, Inga A.

    2015-01-01

    One of the most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards is Meloidogyne hapla; however, limited research exists on the impact of this nematode on V. vinifera. The objectives of this research were to determine the impact of M. hapla on Chardonnay and Cabernet Sauvignon vine establishment and to determine the host status of V. vinifera varieties/clones predominantly grown in Washington to M. hapla. In a microplot experiment, Chardonnay and Cabernet Sauvignon vines were planted into soil inoculated with different densities of M. hapla; population dynamics of M. hapla and vine performance were monitored over 3 yr. In greenhouse experiments, several clones representing five V. vinifera varieties, Chardonnay, Riesling, Cabernet Sauvignon, Merlot, and Syrah, were evaluated as hosts for M. hapla. In both microplot and greenhouse experiments, white varieties were significantly better hosts than red varieties. In the greenhouse experiments, Chardonnay and Riesling had 40% higher reproduction factor values than Syrah and Merlot, however, all varieties/clones screened were good hosts for M. hapla (reproduction factors > 3). In the microplot experiment, M. hapla eggs/g root were 4.5 times greater in Chardonnay compared to Cabernet Sauvignon 3 yr after planting but there was no evident impact of M. hapla on vine establishment. PMID:26170476

  17. Analysis of Globodera rostochiensis effectors reveals conserved functions of SPRYSEC proteins in suppressing and eliciting plant immune responses.

    PubMed

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    Potato cyst nematodes (PCNs), including Globodera rostochiensis (Woll.), are important pests of potato. Plant parasitic nematodes produce multiple effector proteins, secreted from their stylets, to successfully infect their hosts. These include proteins delivered to the apoplast and to the host cytoplasm. A number of effectors from G. rostochiensis predicted to be delivered to the host cytoplasm have been identified, including several belonging to the secreted SPRY domain (SPRYSEC) family. SPRYSEC proteins are unique to members of the genus Globodera and have been implicated in both the induction and the repression of host defense responses. We have tested the properties of six different G. rostochiensis SPRYSEC proteins by expressing them in Nicotiana benthamiana and N. tabacum. We have found that all SPRYSEC proteins tested are able to suppress defense responses induced by NB-LRR proteins as well as cell death induced by elicitors, suggesting that defense repression is a common characteristic of members of this effector protein family. At the same time, GrSPRYSEC-15 elicited a defense responses in N. tabacum, which was found to be resistant to a virus expressing GrSPRYSEC-15. These results suggest that SPRYSEC proteins may possess characteristics that allow them to be recognized by the plant immune system.

  18. Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics

    PubMed Central

    2011-01-01

    Background The rhizosphere is the microbe-rich zone around plant roots and is a key determinant of the biosphere's productivity. Comparative transcriptomics was used to investigate general and plant-specific adaptations during rhizosphere colonization. Rhizobium leguminosarum biovar viciae was grown in the rhizospheres of pea (its legume nodulation host), alfalfa (a non-host legume) and sugar beet (non-legume). Gene expression data were compared to metabolic and transportome maps to understand adaptation to the rhizosphere. Results Carbon metabolism was dominated by organic acids, with a strong bias towards aromatic amino acids, C1 and C2 compounds. This was confirmed by induction of the glyoxylate cycle required for C2 metabolism and gluconeogenesis in all rhizospheres. Gluconeogenesis is repressed in R. leguminosarum by sugars, suggesting that although numerous sugar and putative complex carbohydrate transport systems are induced in the rhizosphere, they are less important carbon sources than organic acids. A common core of rhizosphere-induced genes was identified, of which 66% are of unknown function. Many genes were induced in the rhizosphere of the legumes, but not sugar beet, and several were plant specific. The plasmid pRL8 can be considered pea rhizosphere specific, enabling adaptation of R. leguminosarum to its host. Mutation of many of the up-regulated genes reduced competitiveness for pea rhizosphere colonization, while two genes specifically up-regulated in the pea rhizosphere reduced colonization of the pea but not alfalfa rhizosphere. Conclusions Comparative transcriptome analysis has enabled differentiation between factors conserved across plants for rhizosphere colonization as well as identification of exquisite specific adaptation to host plants. PMID:22018401

  19. The Host Plant Metabolite Glucose Is the Precursor of Diffusible Signal Factor (DSF) Family Signals in Xanthomonas campestris

    PubMed Central

    Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan

    2015-01-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. 13C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. PMID:25681189

  20. Taxonomic and functional diversity of cultured seed associated microbes of the cucurbit family.

    PubMed

    Khalaf, Eman M; Raizada, Manish N

    2016-06-27

    Endophytes are microbes that colonize plant internal tissues without causing disease. In particular, seed-associated endophytes may be vectors for founder microbes that establish the plant microbiome, which may subsequently contribute beneficial functions to their host plants including nutrient acquisition and promotion of plant growth. The Cucurbitaceae family of gourds (e.g., cucumbers, melons, pumpkin, squash), including its fruits and seeds, is widely consumed by humans. However, there is limited data concerning the taxonomy and functions of seed-associated endophytes across the Cucurbitaceae family. Here, bacteria from surface-sterilized seeds of 21 curcurbit varieties belonging to seven economically important species were cultured, classified using 16S rRNA gene sequencing, and subjected to eight in vitro functional tests. In total, 169 unique seed-associated bacterial strains were cultured from selected cucurbit seeds. Interestingly, nearly all strains belonged to only two phyla (Firmicutes, Proteobacteria) and only one class within each phyla (Bacilli, γ-proteobacteria, respectively). Bacillus constituted 50 % of all strains and spanned all tested cucurbit species. Paenibacillus was the next most common genus, while strains of Enterobacteriaceae and lactic acid bacteria were also cultured. Phylogenetic trees showed limited taxonomic clustering of strains by host species. Surprisingly, 33 % of strains produced the plant hormone, indole-3-acetic acid (auxin), known to stimulate the growth of fruits/gourds and nutrient-acquiring roots. The next most common nutrient acquisition traits in vitro were (in rank order): nitrogen fixation/N-scavenging, phosphate solubilisation, siderophore secretion, and production of ACC deaminase. Secretion of extracellular enzymes required for nutrient acquisition, endophyte colonization and/or community establishment were observed. Bacillus strains had the potential to contribute all tested functional traits to their hosts. The seeds of economically important cucurbits tested in this study have a culturable core microbiota consisting of Bacillus species with potential to contribute diverse nutrient acquisition and growth promotion activities to their hosts. These microbes may lead to novel seed inoculants to assist sustainable food production. Given that cucurbit seeds are consumed by traditional societies as a source of tryptophan, the precursor for auxin, we discuss the possibility that human selection inadvertently facilitated auxin-mediated increases in gourd size.

  1. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini.

    PubMed

    Janz, N; Nyblom, K; Nylin, S

    2001-04-01

    Two general patterns that have emerged from the intense studies on insect-host plant associations are a predominance of specialists over generalists and a taxonomic conservatism in host-plant use. In most insect-host plant systems, explanations for these patterns must be based on biases in the processes of host colonizations, host shifts, and specialization, rather than cospeciation. In the present paper, we investigate changes in host range in the nymphalid butterfly tribe Nymphalini, using parsimony optimizations of host-plant data on the butterfly phylogeny. In addition, we performed larval establishment tests to search for larval capacity to feed and survive on plants that have been lost from the female egg-laying repertoire. Optimizations suggested an ancestral association with Urticaceae, and most of the tested species showed a capacity to feed on Urtica dioica regardless of actual host-plant use. In addition, there was a bias among the successful establishments on nonhosts toward plants that are used as hosts by other species in the Nymphalini. An increased likelihood of colonizing ancestral or related plants could also provide an alternative explanation for the observed pattern that some plant families appear to have been colonized independently several times in the tribe. We also show that there is no directionality in host range evolution toward increased specialization, that is, specialization is not a dead end. Instead, changes in host range show a very dynamic pattern.

  2. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    PubMed Central

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  3. Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia c-album)

    PubMed Central

    Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören

    2009-01-01

    Background The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. Results In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Conclusion Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies. PMID:19878603

  4. Phylogenetic relatedness and host plant growth form influence gene expression of the polyphagous comma butterfly (Polygonia c-album).

    PubMed

    Heidel-Fischer, Hanna M; Freitak, Dalial; Janz, Niklas; Söderlind, Lina; Vogel, Heiko; Nylin, Sören

    2009-10-31

    The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies.

  5. A novel mutualism between an ant-plant and its resident pollinator

    NASA Astrophysics Data System (ADS)

    Shenoy, Megha; Borges, Renee M.

    2008-01-01

    Pollination systems in which the host plant provides breeding sites for pollinators, invariably within flowers, are usually highly specialized mutualisms. We found that the pollinating bee Braunsapis puangensis breeds within the caulinary domatia of the semi-myrmecophyte Humboldtia brunonis (Fabaceae), an unusual ant-plant that is polymorphic for the presence of domatia and harbours a diverse invertebrate fauna including protective and non-protective ants in its domatia. B. puangensis is the most common flower visitor that carries the highest proportion of H. brunonis pollen. This myrmecophyte is pollen limited and cross-pollinated by bees in the daytime. Hence, the symbiotic pollinator could provide a benefit to trees bearing domatia by alleviating this limitation. We therefore report for the first time an unspecialised mutualism in which a pollinator is housed in a plant structure other than flowers. Here, the cost to the plant is lower than for conventional brood-site pollination mutualisms where the pollinator develops at the expense of plant reproductive structures. Myrmecophytes housing resident pollinators are unusual, as ants are known to be enemies of pollinators, and housing them together may decrease the benefits that these residents could individually provide to the host plant.

  6. Plant-parasite coevolution: bridging the gap between genetics and ecology.

    PubMed

    Brown, James K M; Tellier, Aurélien

    2011-01-01

    We review current ideas about coevolution of plants and parasites, particularly processes that generate genetic diversity. Frequencies of host resistance and parasite virulence alleles that interact in gene-for-gene (GFG) relationships coevolve in the familiar boom-and-bust cycle, in which resistance is selected when virulence is rare, and virulence is selected when resistance is common. The cycle can result in stable polymorphism when diverse ecological and epidemiological factors cause negative direct frequency-dependent selection (ndFDS) on host resistance, parasite virulence, or both, such that the benefit of a trait to fitness declines as its frequency increases. Polymorphism can also be stabilized by overdominance, when heterozygous hosts have greater resistance than homozygotes to diverse pathogens. Genetic diversity can also persist in the form of statistical polymorphism, sustained by random processes acting on gene frequencies and population size. Stable polymorphism allows alleles to be long-lived and genetic variation to be detectable in natural populations. In agriculture, many of the factors promoting stability in host-parasite interactions have been lost, leading to arms races of host defenses and parasite effectors. Copyright © 2011 by Annual Reviews. All rights reserved.

  7. Evaluating Weeds as Hosts of Tomato yellow leaf curl virus.

    PubMed

    Smith, Hugh A; Seijo, Teresa E; Vallad, Gary E; Peres, Natalia A; Druffel, Keri L

    2015-08-01

    Bemisia tabaci (Gennadius) biotype B transmits Tomato yellow leaf curl virus (TYLCV), which affects tomato production globally. Prompt destruction of virus reservoirs is a key component of virus management. Identification of weed hosts of TYLCV will be useful for reducing such reservoirs. The status of weeds as alternate hosts of TYLCV in Florida remains unclear. In greenhouse studies, B. tabaci adults from a colony reared on TYLCV-infected tomato were established in cages containing one of four weeds common to horticultural fields in central and south Florida. Cages containing tomato and cotton were also infested with viruliferous whiteflies as a positive control and negative control, respectively. Whitefly adults and plant tissue were tested periodically over 10 wk for the presence of TYLCV using PCR. After 10 wk, virus-susceptible tomato plants were placed in each cage to determine if whiteflies descended from the original adults were still infective. Results indicate that Bidens alba, Emilia fosbergii, and Raphanus raphanistrum are not hosts of TYLCV, and that Amaranthus retroflexus is a host. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Survey on medicinal plants traditionally used in Senegal for the treatment of tuberculosis (TB) and assessment of their antimycobacterial activity.

    PubMed

    Diop, ElHadji Assane; Queiroz, Emerson Ferreira; Kicka, Sébastien; Rudaz, Serge; Diop, Tahir; Soldati, Thierry; Wolfender, Jean-Luc

    2018-04-24

    In West Africa, populations are used to taking traditional medicine as a first aid against common health problems. In this aspect, many plants are claimed to be effective in the treatment of Tuberculosis (TB), which according to the World Health Organization (WHO) remains one of the world's deadliest communicable diseases. The main aim of this study was to identify plants used to treat TB-symptoms by the population of Senegal and to evaluate their possible concomitant use with clinically approved TB-drugs. This approach allowed the selection of plants effectively used in traditional medicine. In order to verify if the usage of some of these plants can be rationalized, the activity of their traditional preparations was assessed with both an intracellular and extracellular antimycobacterial host-pathogen assays. An ethnopharmacological survey conducted on 117 TB-patients and 30 healers in Senegal from March to May 2014. The questionnaires were focused on the use of medicinal plants to treat common TB -symptoms (cough longer than 2 weeks, fever, night sweats, weight loss and bloody sputum). Local plant names, utilized organs (herbal drugs) and traditional formulations of the plants were recorded. Extracts were prepared by mimicking the traditional decoction in boiling water and screened for their antimycobacterial activity using Mycobacterium marinum, as a validated TB surrogate, and an Acanthamoeba castellanii - M. marinum whole-cell based host-pathogen assay, to detect anti-infective activities. By the end of the survey, nearly 30 plants were cited and the 12 most cited herbal drugs were collected and their usage documented by extensive literature search. Extracts of the chosen herbs were screened with the described assays; with a main focus on traditional formulas (mainly herbal decoctions). Two of the water extracts from Combretum aculeatum and Guiera senegalensis showed significant antimycobacterial activities when compared to the positive control drug (rifampin). These extracts showed no observable toxicity against amoeba host cells (Acanthamoeba castellanii). This study demonstrates that most of the patients do not concomitantly use plants and TB drugs (~90% of informants) but, instead, most are treated with medicinal plants before they are admitted to a hospital (41%). Interestingly, among the aqueous extracts assayed, two extracts (Combretum aculeatum (Combretaceae) and Guiera senegalensis (Combretaceae)) collected within this survey demonstrate antimycobacterial activities on the validated whole-cell based host-pathogen assay. Both extracts showed significant activities against intracellular and extracellular - M. marinum growth presenting IC 50 lower than 0.5mg/ml compared to the reference drug Rifampin (IC 50 of 0.4 and 7µg/ml). No toxicity was observed for amoebae cells at concentration until 0.8mg/ml. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Checklist of host plants of insect galls in the state of Goiás in the Midwest Region of Brazil

    PubMed Central

    Porfírio Júnior, Eder Dasdoriano; Ribeiro, Bárbara Araújo; Silva, Taiza Moura; Silva, Elienai Cândida e; Guilherme, Frederico Augusto Guimarães; Scareli-Santos, Claudia; dos Santos, Benedito Baptista

    2015-01-01

    Abstract Background Surveys of host plants of insect galls have been performed in different regions of Brazil. The knowledge of species of host plants of insect galls is fundamental to further studies of plant-galling insect interactions. However, a list of host plant species of gall-inducing insects has not yet been compiled for the flora of the Midwest Region of Brazil. New information We provide a compilation of the plant species reported to host insect galls in the Cerrado of the state of Goiás in the Midwest Region of Brazil. Altogether we found records for 181 species of 47 families of host plants, which hosted 365 distinct gall morphotypes. PMID:26696767

  10. Checklist of host plants of insect galls in the state of Goiás in the Midwest Region of Brazil.

    PubMed

    de Araújo, Walter Santos; Porfírio Júnior, Eder Dasdoriano; Ribeiro, Bárbara Araújo; Silva, Taiza Moura; Silva, Elienai Cândida E; Guilherme, Frederico Augusto Guimarães; Scareli-Santos, Claudia; Dos Santos, Benedito Baptista

    2015-01-01

    Surveys of host plants of insect galls have been performed in different regions of Brazil. The knowledge of species of host plants of insect galls is fundamental to further studies of plant-galling insect interactions. However, a list of host plant species of gall-inducing insects has not yet been compiled for the flora of the Midwest Region of Brazil. We provide a compilation of the plant species reported to host insect galls in the Cerrado of the state of Goiás in the Midwest Region of Brazil. Altogether we found records for 181 species of 47 families of host plants, which hosted 365 distinct gall morphotypes.

  11. Dramatic Transcriptional Changes in an Intracellular Parasite Enable Host Switching between Plant and Insect

    PubMed Central

    Oshima, Kenro; Ishii, Yoshiko; Kakizawa, Shigeyuki; Sugawara, Kyoko; Neriya, Yutaro; Himeno, Misako; Minato, Nami; Miura, Chihiro; Shiraishi, Takuya; Yamaji, Yasuyuki; Namba, Shigetou

    2011-01-01

    Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the “host switching” between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to “host switching” between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of “host switching” mechanism may contribute to the development of novel pest controls. PMID:21858041

  12. The sentinel tree nursery as an early warning system for pathway risk assessment: Fungal pathogens associated with Chinese woody plants commonly shipped to Europe

    PubMed Central

    Vettraino, Anna Maria; Li, Hong-Mei; Eschen, Rene; Morales-Rodriguez, Carmen

    2017-01-01

    Introduction of and invasion by alien plant pathogens represents the main cause of emerging infectious diseases affecting domesticated and wild plant species worldwide. The trade in living plants is the most common pathway of introduction. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists. To help determine the potential risk of pest introduction through trading of ornamental plants, a sentinel nursery was established in Beijing, China in 2008. The sentinel nursery planting included four of the most common ornamental woody species shipped to Europe including Ilex cornuta var. fortunae, Zelkova schneideriana, Fraxinus chinensis and Buxus microphylla. Symptoms developing on these species within the sentinel nursery were detected in 2013 and consisted of necrotic spots on leaves, canker and stem necrosis, shoot blight and shoot necrosis. Fungi associated with the trees and their symptoms included Alternaria alternata detected from all hosts; Diaporthe liquidambaris and Diaporthe capsici from bark and leaf necrosis of Zelkova schneideriana; Botryosphaeria dothidea and Nothophoma quercina from stem cankers on Fraxinus chinensis and leaf necrosis on Ilex cornuta; and Pseudonectria foliicola from leaf necrosis on Buxus microphylla. Next generation sequencing analysis from asymptomatic tissues detected eighteen OTU’s at species level among which some taxa had not been previously recorded in Europe. These results clearly demonstrate that looking at trees of internationally traded species in the region of origin can reveal the presence of potentially harmful organisms of major forestry, landscape or crop trees. Results of this study also provide an indication as to how some disease agents can be introduced using pathways other than the co-generic hosts. Hence, sentinel nurseries represent one potential mechanism to address the current lack of knowledge about pests in the countries from where live plants are shipped and the threats they represent to native flora and crops in importing countries. PMID:29186190

  13. The sentinel tree nursery as an early warning system for pathway risk assessment: Fungal pathogens associated with Chinese woody plants commonly shipped to Europe.

    PubMed

    Vettraino, Anna Maria; Li, Hong-Mei; Eschen, Rene; Morales-Rodriguez, Carmen; Vannini, Andrea

    2017-01-01

    Introduction of and invasion by alien plant pathogens represents the main cause of emerging infectious diseases affecting domesticated and wild plant species worldwide. The trade in living plants is the most common pathway of introduction. Many of the alien tree pathogens recently introduced into Europe were not previously included on any quarantine lists. To help determine the potential risk of pest introduction through trading of ornamental plants, a sentinel nursery was established in Beijing, China in 2008. The sentinel nursery planting included four of the most common ornamental woody species shipped to Europe including Ilex cornuta var. fortunae, Zelkova schneideriana, Fraxinus chinensis and Buxus microphylla. Symptoms developing on these species within the sentinel nursery were detected in 2013 and consisted of necrotic spots on leaves, canker and stem necrosis, shoot blight and shoot necrosis. Fungi associated with the trees and their symptoms included Alternaria alternata detected from all hosts; Diaporthe liquidambaris and Diaporthe capsici from bark and leaf necrosis of Zelkova schneideriana; Botryosphaeria dothidea and Nothophoma quercina from stem cankers on Fraxinus chinensis and leaf necrosis on Ilex cornuta; and Pseudonectria foliicola from leaf necrosis on Buxus microphylla. Next generation sequencing analysis from asymptomatic tissues detected eighteen OTU's at species level among which some taxa had not been previously recorded in Europe. These results clearly demonstrate that looking at trees of internationally traded species in the region of origin can reveal the presence of potentially harmful organisms of major forestry, landscape or crop trees. Results of this study also provide an indication as to how some disease agents can be introduced using pathways other than the co-generic hosts. Hence, sentinel nurseries represent one potential mechanism to address the current lack of knowledge about pests in the countries from where live plants are shipped and the threats they represent to native flora and crops in importing countries.

  14. Impact of Endophytic Microorganisms on Plants, Environment and Humans

    PubMed Central

    Nair, Dhanya N.; Padmavathy, S.

    2014-01-01

    Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment. PMID:24587715

  15. Host specificity, phenotype matching and the evolution of reproductive isolation in a coevolved plant-pollinator mutualism.

    PubMed

    Himler, Anna G; Machado, Carlos A

    2009-12-01

    Coevolutionary interactions between plants and their associated pollinators and seed dispersers are thought to have promoted the diversification of flowering plants (Raven 1977; Regal 1977; Stebbins 1981). The actual mechanisms by which pollinators could drive species diversification in plants are not fully understood. However, it is thought that pollinator host specialization can influence the evolution of reproductive isolation among plant populations because the pollinator's choice of host is what determines patterns of gene flow in its host plant, and host choice may also have important consequences on pollinator and host fitness (Grant 1949; Bawa 1992). In this issue of Molecular Ecology, Smith et al. (2009) present a very interesting study that addresses how host specialization affects pollinator fitness and patterns of gene flow in a plant host. Several aspects of this study match elements of a seminal mathematical model of plant-pollinator codivergence (Kiester et al. 1984) suggesting that reciprocal selection for matched plant and pollinator reproductive traits may lead to speciation in the host and its pollinator when there is strong host specialization and a pattern of geographic subdivision. Smith et al.'s study represents an important step to fill the gap in our understanding of how reciprocal selection may lead to speciation in coevolved plant-pollinator mutualisms.

  16. The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts

    PubMed Central

    Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.

    2002-01-01

    Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205

  17. Influence of halophytic hosts on their parasites—the case of Plicosepalus acaciae

    PubMed Central

    Veste, Maik; Todt, Henning; Breckle, Siegmar-W.

    2015-01-01

    Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicosepalus acaciae is a common parasite north of Eilat to the Dead Sea area and in the Jordan Valley. Morphological and physiological responses of P. acaciae to salinity were investigated by comparison of plants on halophytic with those on non-halophytic hosts. Ion patterns of different host–parasite associations were determined as was the development of leaf succulence at different growth stages. The leaf water content of P. acaciae increased and leaves developed succulence when growing on halophytic hosts, especially on Tamarix species, where leaf water content was three times higher than that on non-halophytic hosts and the leaf volume increased four to five times. The reason for increased succulence was a higher ion concentration of, and osmotic adjustment with, Na+ and Cl−. Plicosepalus acaciae showed a high morphological and ecophysiological plasticity, enabling it to cope with salt stress, and can be classified as a facultative eu-halophyte, which increases its halo-succulence according to the host. Host–parasite associations are a model system for the investigation of halophytes under different salt stress conditions. PMID:25515726

  18. Micro- and Macroevolutionary Trade-Offs in Plant-Feeding Insects.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Normark, Benjamin B

    2016-12-01

    A long-standing hypothesis asserts that plant-feeding insects specialize on particular host plants because of negative interactions (trade-offs) between adaptations to alternative hosts, yet empirical evidence for such trade-offs is scarce. Most studies have looked for microevolutionary performance trade-offs within insect species, but host use could also be constrained by macroevolutionary trade-offs caused by epistasis and historical contingency. Here we used a phylogenetic approach to estimate the micro- and macroevolutionary correlations between use of alternative host-plant taxa within two major orders of plant-feeding insects: Lepidoptera (caterpillars) and Hemiptera (true bugs). Across 1,604 caterpillar species, we found both positive and negative pairwise correlations between use of 11 host-plant orders, with overall network patterns suggesting that different host-use constraints act over micro- and macroevolutionary timescales. In contrast, host-use patterns of 955 true bug species revealed uniformly positive correlations between use of the same 11 host plant orders over both timescales. The lack of consistent patterns across timescales and insect orders indicates that host-use trade-offs are historically contingent rather than universal constraints. Moreover, we observed few negative correlations overall despite the wide taxonomic and ecological diversity of the focal host-plant orders, suggesting that positive interactions between host-use adaptations, not trade-offs, dominate the long-term evolution of host use in plant-feeding insects.

  19. Urban land use decouples plant-herbivore-parasitoid interactions at multiple spatial scales.

    PubMed

    Nelson, Amanda E; Forbes, Andrew A

    2014-01-01

    Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.

  20. Urban Land Use Decouples Plant-Herbivore-Parasitoid Interactions at Multiple Spatial Scales

    PubMed Central

    Nelson, Amanda E.; Forbes, Andrew A.

    2014-01-01

    Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor. PMID:25019962

  1. Microbial mitigation-exacerbation continuum: a novel framework for microbiome effects on hosts in the face of stress.

    PubMed

    David, Aaron S; Thapa-Magar, Khum B; Afkhami, Michelle E

    2018-03-01

    A key challenge to understanding microbiomes and their role in ecological processes is contextualizing their effects on host organisms, particularly when faced with environmental stress. One influential theory, the Stress Gradient Hypothesis, might predict that the frequency of positive interactions increases with stressful conditions such that microbial taxa would mitigate harmful effects on host performance. Yet, equally plausible is that microbial taxa could exacerbate these effects. Here, we introduce the Mitigation-Exacerbation Continuum as a novel framework to conceptualize microbial mediation of stress. We (1) use this continuum to quantify microbial mediation of stress for six plant species and (2) test the association between these continuum values and natural species' abundance. We factorially manipulated a common stress (allelopathy) and the presence of soil microbes to quantify microbial effects in benign and stressed environments for two critical early life-history metrics, seed germination and seedling biomass. Although we found evidence of both mitigation and exacerbation among the six species, exacerbation was more common. Across species, the degree of microbial-mediated effects on germination explained >80% of the variation of natural field abundances. Our results suggest a critical role of soil microbes in mediating plant stress responses, and a potential microbial mechanism underlying species abundance. © 2018 by the Ecological Society of America.

  2. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    PubMed

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  3. Total Bee Dependence on One Flower Species Despite Available Congeners of Similar Floral Shape

    PubMed Central

    González-Varo, Juan P.; Ortiz-Sánchez, F. Javier; Vilà, Montserrat

    2016-01-01

    Extreme specialization is a common phenomenon in antagonistic biotic interactions but it is quite rare in mutualistic ones. Indeed, bee specialization on a single flower species (monolecty) is a questioned fact. Here, we provide multiple lines of evidence on true monolecty in a solitary bee (Flavipanurgus venustus, Andrenidae), which is consistent across space (18 sites in SW Iberian Peninsula) and time (three years) despite the presence of closely related congeneric plant species whose flowers are morphologically similar. The host flower (Cistus crispus, Cistaceae) is in turn a supergeneralist, visited by at least 85 insect species. We uncover ultraviolet light reflectance as a distinctive visual cue of the host flower, which can be a key mechanism because bee specialization has an innate basis to recognize specific signals. Moreover, we hypothesized that a total dependence on an ephemeral resource (i.e. one flower species) must lead to spatiotemporal matching with it. Accordingly, we prove that the bee’s flight phenology is synchronized with the blooming period of the host flower, and that the densities of bee populations mirror the local densities of the host flower. This case supports the ‘predictable plethora’ hypothesis, that is, that host-specialization in bees is fostered by plant species providing predictably abundant floral resources. Our findings, along with available phylogenetic information on the genus Cistus, suggest the importance of historical processes and cognitive constraints as drivers of specialization in bee-plant interactions. PMID:27658205

  4. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri

    PubMed Central

    Stockton, Dara G.; Martini, Xavier; Patt, Joseph M.; Stelinski, Lukasz L.

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24–48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored. PMID:26930355

  5. The Influence of Learning on Host Plant Preference in a Significant Phytopathogen Vector, Diaphorina citri.

    PubMed

    Stockton, Dara G; Martini, Xavier; Patt, Joseph M; Stelinski, Lukasz L

    2016-01-01

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri; vector of the causal agent of citrus greening disease or huanglongbing. We investigated: a) whether development on specific host plant species influenced host plant preference in mature D. citri; and b) the extent of associative learning in D. citri in the form of simple and compound conditioning. Learning was measured by cue selection in a 2-choice behavioral assay and compared to naïve controls. Our results showed that learned responses in D. citri are complex and diverse. The developmental host plant species influenced adult host plant preference, with female psyllids preferring the species on which they were reared. However, such preferences were subject to change with the introduction of an alternative host plant within 24-48 hrs, indicating a large degree of experience-dependent response plasticity. Additionally, learning occurred for multiple sensory modalities where novel olfactory and visual environmental cues were associated with the host plant. However, males and females displayed differing discriminatory abilities. In compound conditioning tasks, males exhibited recognition of a compound stimulus alone while females were capable of learning the individual components. These findings suggest D. citri are dynamic animals that demonstrate host plant preference based on developmental and adult experience and can learn to recognize olfactory and visual host plant stimuli in ways that may be sex specific. These experience-based associations are likely used by adults to locate and select suitable host plants for feeding and reproduction and may suggest the need for more tailored lures and traps, which reflect region-specific cultivars or predominate Rutaceae in the area being monitored.

  6. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-02-23

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality-aphids performed poorly on infected plants and rapidly emigrated from them-but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues.

  7. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts

    PubMed Central

    Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.

    2010-01-01

    Previous studies have shown that vector-borne pathogens can alter the phenotypes of their hosts and vectors in ways that influence the frequency and nature of interactions between them, with significant implications for the transmission and spread of disease. For insect-borne pathogens, host odors are particularly likely targets for manipulation, because both plant- and animal-feeding insects use volatile compounds derived from their hosts as key foraging cues. Here, we document the effects of a widespread plant pathogen, Cucumber mosaic virus (CMV), on the quality and attractiveness of one of its host plants (Cucurbita pepo cv. Dixie) for two aphid vectors, Myzus persicae and Aphis gossypii. Our results indicate that CMV greatly reduces host-plant quality—aphids performed poorly on infected plants and rapidly emigrated from them—but increases the attractiveness of infected plants to aphids by inducing elevated emissions of a plant volatile blend otherwise similar to that emitted by healthy plants. Thus, CMV appears to attract vectors deceptively to infected plants from which they then disperse rapidly, a pattern highly conducive to the nonpersistent transmission mechanism employed by CMV and very different from the pattern previously reported for persistently transmitted viruses that require sustained aphid feeding for transmission. In addition to providing a documented example of a pathogen inducing a deceptive signal of host-plant quality to vectors, our results suggest that the transmission mechanism is a major factor shaping pathogen-induced changes in host-plant phenotypes. Furthermore, our findings yield a general hypothesis that, when vector-borne plant or animal pathogens reduce host quality for vectors, pathogen-induced changes in host phenotypes that enhance vector attraction frequently will involve the exaggeration of existing host-location cues. PMID:20133719

  8. Parasite biodiversity: an Arctic context in a changing world

    USDA-ARS?s Scientific Manuscript database

    Parasites are among the most common organisms on the planet, abundant and diverse members of all biological communities. Often cryptic, these generally miniscule organisms represent 40-50% of all animals on Earth, inhabiting animal and plant hosts from the equatorial regions to the poles and to the ...

  9. Tall fescue-Epichloë coenophiala associations affect belowground fungi and host, symbiont response to climate change

    USDA-ARS?s Scientific Manuscript database

    Plants interact with myriad microorganisms, which influence ecosystem processes and can regulate ecosystem response to global change. One important symbiosis occurs between the grass, tall fescue (Schedonorus arundinaceus), and the asexual fungal endophyte Epichloë coenophiala. Because the common to...

  10. Long‑term ungulate exclusion reduces fungal symbiont prevalence in native grasslands

    Treesearch

    Jennifer A. Rudgers; Rebecca A. Fletcher; Eric Olivas; Carolyn A. Young; Nikki D. Charlton; Dean E. Pearson; John L. Maron

    2016-01-01

    When symbionts are inherited by offspring, they can have substantial ecological and evolutionary consequences because they occur in all host life stages. Although natural frequencies of inherited symbionts are commonly <100 %, few studies investigate the ecological drivers of variation in symbiont prevalence. In plants, inherited fungal endophytes can...

  11. Host Plants of the Mediterranean Fruit Fly, Ceratitis capitata (Wiedemann), version 3.5

    USDA-ARS?s Scientific Manuscript database

    Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), commonly known as the Mediterranean fruit fly, is a tephritid fruit fly species native to Africa but now found in every country surrounding the Mediterranean Sea, in Central and South America, in Australia, in Hawaii and in other oceanic islands...

  12. Transgenerational acclimatization in an herbivore–host plant relationship

    PubMed Central

    Cahenzli, Fabian; Erhardt, Andreas

    2013-01-01

    Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore–host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F1) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore–host plant interaction. PMID:23407834

  13. Transgenerational acclimatization in an herbivore-host plant relationship.

    PubMed

    Cahenzli, Fabian; Erhardt, Andreas

    2013-04-07

    Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore-host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F(1)) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny's phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore-host plant interaction.

  14. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects

    PubMed Central

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule’s nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule’s megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism. PMID:26441311

  15. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects.

    PubMed

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.

  16. Intersections between immune responses and morphological regulation in plants.

    PubMed

    Uchida, Naoyuki; Tasaka, Masao

    2010-06-01

    Successful plant pathogens have developed strategies to interfere with the defence mechanisms of their host plants through evolution. Conversely, host plants have evolved systems to counteract pathogen attack. Some pathogens induce pathogenic symptoms on plants that include morphological changes in addition to interference with plant growth. Recent studies, based on molecular biology and genetics using Arabidopsis thaliana, have revealed that factors derived from pathogens can modulate host systems and/or host factors that play important roles in the morphological regulation of host plants. Other reports, meanwhile, have shown that factors known to have roles in plant morphology also function in plant immune responses. Evolutionary conservation of these factors and systems implies that host-pathogen interactions and the evolution they drive have yielded tight links between morphological processes and immune responses. In this review, recent findings about these topics are introduced and discussed.

  17. Adaptation to different host plant ages facilitates insect divergence without a host shift

    PubMed Central

    Zhang, Bin; Segraves, Kari A.; Xue, Huai-Jun; Nie, Rui-E; Li, Wen-Zhu; Yang, Xing-Ke

    2015-01-01

    Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts. PMID:26378220

  18. The developmental race between maturing host plants and their butterfly herbivore - the influence of phenological matching and temperature.

    PubMed

    Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-11-01

    Interactions between herbivorous insects and their host plants that are limited in time are widespread. Therefore, many insect-plant interactions result in a developmental race, where herbivores need to complete their development before plants become unsuitable, while plants strive to minimize damage from herbivores by outgrowing them. When spring phenologies of interacting species change asymmetrically in response to climate warming, there will be a change in the developmental state of host plants at the time of insect herbivore emergence. In combination with altered temperatures during the subsequent developmental period, this is likely to affect interaction strength as well as fitness of interacting species. Here, we experimentally explore whether the combined effect of phenological matching and thermal conditions influence the outcome of an insect-host interaction. We manipulated both developmental stages of the host plants at the start of the interaction and temperature during the subsequent developmental period in a model system of a herbivorous butterfly, Anthocharis cardamines, and five of its Brassicaceae host plant species. Larval performance characteristics were favoured by earlier stages of host plants at oviposition as well as by higher developmental temperatures on most of the host species. The probability of a larva needing a second host plant covered the full range from no influence of either phenological matching or temperature to strong effects of both factors, and complex interactions between them. The probability of a plant outgrowing a larva was dependent only on the species identity. This study demonstrates that climatic variation can influence the outcome of consumer-resource interactions in multiple ways and that its effects differ among host plant species. Therefore, climate warming is likely to change the temporal match between larval and plant development in some plant species, but not in the others. This is likely to have important implications for host plant use and possibly influence competitive relationships. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  19. The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris.

    PubMed

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-04-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. (13)C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Phylogenetic congruence of parasitic smut fungi (Anthracoidea, Anthracoideaceae) and their host plants (Carex, Cyperaceae): Cospeciation or host-shift speciation?

    PubMed

    Escudero, Marcial

    2015-07-01

    • Fahrenholz's rule states that common ancestors of extant parasites were parasites of the common ancestors of extant hosts. Consequently, parasite phylogeny should mirror host phylogeny. The smut fungi genus Anthracoidea (Anthracoideaceae) is mainly hosted by species of the genus Carex (Cyperaceae). Whether smut fungi phylogeny mirrors sedge phylogeny is still under debate.• The nuclear large subunit DNA region (LSU; 57 accessions) from 31 Anthracoidea species and the ITS, ETS, and trnL-F spacer-trnL intron complex from 41 Carex species were used to infer the phylogenetic history of parasites and their hosts using a maximum likelihood approach. Event-based and distance-based cophylogenetic methods were used to test the hypothesis of whether the phylogeny of smut fungi from the genus Anthracoidea matches the phylogeny of the sedge Carex species they host.• Cophylogenetic reconstructions taking into account phylogenetic uncertainties based on event-based analyses demonstrated that the Anthracoidea phylogeny has significant topological congruence with the phylogeny of their Carex hosts. A distance-based test was also significant; therefore, the phylogenies of Anthracoide and Carex are partially congruent.• The phylogenetic congruence of Anthracoidea and Carex is partially based on smut fungi species being preferentially hosted by closely related sedges (host conservatism). In addition, many different events rather than only codivergence events are inferred. All of this evidence suggests that host-shift speciation rather than cospeciation seems to explain the cophylogenetic patterns of Anthracoidea and Carex. © 2015 Botanical Society of America, Inc.

  1. Phylogenetic composition of host plant communities drives plant-herbivore food web structure.

    PubMed

    Volf, Martin; Pyszko, Petr; Abe, Tomokazu; Libra, Martin; Kotásková, Nela; Šigut, Martin; Kumar, Rajesh; Kaman, Ondřej; Butterill, Philip T; Šipoš, Jan; Abe, Haruka; Fukushima, Hiroaki; Drozd, Pavel; Kamata, Naoto; Murakami, Masashi; Novotny, Vojtech

    2017-05-01

    Insects tend to feed on related hosts. The phylogenetic composition of host plant communities thus plays a prominent role in determining insect specialization, food web structure, and diversity. Previous studies showed a high preference of insect herbivores for congeneric and confamilial hosts suggesting that some levels of host plant relationships may play more prominent role that others. We aim to quantify the effects of host phylogeny on the structure of quantitative plant-herbivore food webs. Further, we identify specific patterns in three insect guilds with different life histories and discuss the role of host plant phylogeny in maintaining their diversity. We studied herbivore assemblages in three temperate forests in Japan and the Czech Republic. Sampling from a canopy crane, a cherry picker and felled trees allowed a complete census of plant-herbivore interactions within three 0·1 ha plots for leaf chewing larvae, miners, and gallers. We analyzed the effects of host phylogeny by comparing the observed food webs with randomized models of host selection. Larval leaf chewers exhibited high generality at all three sites, whereas gallers and miners were almost exclusively monophagous. Leaf chewer generality dropped rapidly when older host lineages (5-80 myr) were collated into a single lineage but only decreased slightly when the most closely related congeneric hosts were collated. This shows that leaf chewer generality has been maintained by feeding on confamilial hosts while only a few herbivores were shared between more distant plant lineages and, surprisingly, between some congeneric hosts. In contrast, miner and galler generality was maintained mainly by the terminal nodes of the host phylogeny and dropped immediately after collating congeneric hosts into single lineages. We show that not all levels of host plant phylogeny are equal in their effect on structuring plant-herbivore food webs. In the case of generalist guilds, it is the phylogeny of deeper plant lineages that drives the food web structure whereas the terminal relationships play minor roles. In contrast, the specialization and abundance of monophagous guilds are affected mainly by the terminal parts of the plant phylogeny and do not generally reflect deeper host phylogeny. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  2. Root-associated fungal community response to drought-associated changes in vegetation community.

    PubMed

    Dean, Sarah L; Warnock, Daniel D; Litvak, Marcy E; Porras-Alfaro, Andrea; Sinsabaugh, Robert

    2015-01-01

    Recent droughts in southwestern USA have led to large-scale mortality of piñon (Pinus edulis) in piñon-juniper woodlands. Piñon mortality alters soil moisture, nutrient and carbon availability, which could affect the root-associated fungal (RAF) communities and therefore the fitness of the remaining plants. We collected fine root samples at a piñon-juniper woodland and a juniper savannah site in central New Mexico. Roots were collected from piñon and juniper (Juniperus monosperma) trees whose nearest neighbors were live piñon, live juniper or dead piñon. RAF communities were analyzed by 454 pyrosequencing of the universal fungal ITS region. The most common taxa were Hypocreales and Chaetothyriales. More than 10% of ITS sequences could not be assigned taxonomy at the phylum level. Two of the unclassified OTUs significantly differed between savanna and woodland, had few like sequences in GenBank and formed new fungal clades with other unclassified RAF from arid plants, highlighting how little study has been done on the RAF of arid ecosystems. Plant host or neighbor did not affect RAF community composition. However, there was a significant difference between RAF communities from woodland vs. savanna, indicating that abiotic factors such as temperature and aridity might be more important in structuring these RAF communities than biotic factors such as plant host or neighbor identity. Ectomycorrhizal fungi (EM) were present in juniper as well as piñon in the woodland site, in contrast with previous research, but did not occur in juniper savanna, suggesting a potential shared EM network with juniper. RAF richness was lower in hosts that were neighbors of the opposite host. This may indicate competitive exclusion between fungi from different hosts. Characterizing these communities and their responses to environment and plant neighborhood is a step toward understanding the effects of drought on a biome that spans 19,000,000 ha of southwestern USA. © 2015 by The Mycological Society of America.

  3. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants.

    PubMed

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus

    2015-01-01

    By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.

  4. Host Plant Effects on Alkaline Phosphatase Activity in the Whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum

    PubMed Central

    Yan, Ying; Peng, Lu; Liu, Wan-Xue; Wan, Fang-Hao; Harris, Marvin K.

    2011-01-01

    Bemisia tabaci (Gennadius) B-biotype and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) often coexist on greenhouse-grown vegetable crops in northern China. The recent spread of B. tabaci B-biotype has largely replaced T. vaporariorum, and B-biotype now overlaps with T. vaporariorum where common hosts occur in most invaded areas. The impact of the B-biotype on the agro eco system appears to be widespread, and involves the ability to compete with and perhaps replace other phytophages like T. vaporariorum. An emerging hypothesis is that the B-biotype is physiologically superior due at least in part to an improved ability to metabolically utilize the alkaline phosphatase pathway. To test this hypothesis, alkaline phosphatase activity was studied in the B-biotype and T. vaporariorum after feeding on a number of different hosts for a range of durations, with and without host switching. Alkaline phosphatase activity in T. vaporariorum was 1.45 to 2.53-fold higher than that of the B-biotype when fed on tomato for 4 and 24 h, or switched from tomato to cotton and cabbage for the same durations. However, alkaline phosphatase activity in the B-biotype was 1.40 to 3.35-fold higher than that of T. vaporariorum when the host switching time was ∼72 and ∼120 h on the same plant. Both short-term (4 h) and long-term (72 h) switching of plant hosts can significantly affect the alkaline phosphatase activity in the two species. After ∼120 h, feeding on tomato and cotton alkaline phosphatase activity in the B-biotype was significantly higher than that of T. vaporariorum. It was shown that alkaline phosphatase aids the species feeding on different plant species, and that the B-biotype is physiologically superior to T. vaporariorum in utilizing the enzyme compared to T. vaporariorum over longer periods of feeding. PMID:21521136

  5. The influence of learning on host plant preference in a significant phytopathogen vector, Diaphorina citri

    USDA-ARS?s Scientific Manuscript database

    Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri, vector ...

  6. The Effects of Bean Leafroll Virus on Life History Traits and Host Selection Behavior of Specialized Pea Aphid (Acyrthosiphon pisum, Hemiptera: Aphididae) Genotypes.

    PubMed

    Davis, T S; Wu, Y; Eigenbrode, S D

    2017-02-01

    Intraspecific specialization by insect herbivores on different host plant species contributes to the formation of genetically distinct "host races," but the effects of plant virus infection on interactions between specialized herbivores and their host plants have barely been investigated. Using three genetically and phenotypically divergent pea aphid clones (Acyrthosiphon pisum L.) adapted to either pea (Pisum sativum L.) or alfalfa (Medicago sativa L.), we tested how infection of these hosts by an insect-borne phytovirus (Bean leafroll virus; BLRV) affects aphid performance and preference. Four important findings emerged: 1) mean aphid survival rate and intrinsic rate of population growth (Rm) were increased by 15% and 14%, respectively, for aphids feeding on plants infected with BLRV; 2) 34% of variance in survival rate was attributable to clone × host plant interactions; 3) a three-way aphid clone × host plant species × virus treatment significantly affected intrinsic rates of population growth; and 4) each clone exhibited a preference for either pea or alfalfa when choosing between noninfected host plants, but for two of the three clones tested these preferences were modestly reduced when selecting among virus-infected host plants. Our studies show that colonizing BLRV-infected hosts increased A. pisum survival and rates of population growth, confirming that the virus benefits A. pisum. BLRV transmission affected aphid discrimination of host plant species in a genotype-specific fashion, and we detected three unique "virus-association phenotypes," with potential consequences for patterns of host plant use by aphid populations and crop virus epidemiology. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and 31 P NMR spectroscopy study.

    PubMed

    Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude

    2017-02-01

    Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used 32 P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced 32 P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots. © 2016 John Wiley & Sons Ltd.

  8. Evolution of larval host plant associations and adaptive radiation in pierid butterflies.

    PubMed

    Braby, M F; Trueman, J W H

    2006-09-01

    Butterflies in the family Pieridae (Lepidoptera: Papilionoidea) feed as larvae on plants belonging primarily to three distantly related angiosperm orders: Fabales (legumes and allied plants), Brassicales (crucifers and related plants containing mustard oil glucosides), and Santalales ('mistletoes'). However, some utilize plants from 13 other families in a further eight orders. We investigated the evolutionary history of host plant use of the Pieridae in the context of a recent phylogenetic hypothesis of the family, using simple character optimization. Although there is a close association between host plant and butterfly higher classification, we find no evidence for cospeciation but a pattern of repeated colonization and specialization. The ancestral host of the family appears to be Fabaceae or Fabales, with multiple independent shifts to other orders, including three to Santalales. The shift to Brassicales, which contain secondary compounds (glucosinolates), promoted diversification and adaptive radiation within the subfamily Pierinae. Subsequent shifts from crucifers to mistletoes (aerial-stem hemiparasites) facilitated further diversification, and more recent shifts from mistletoes to mistletoe host trees led to exploitation of novel host plants outside the conventional three orders. Possible mechanisms underlying these host shifts are briefly discussed. In the Pierinae, a striking association between host plant, larval and adult behaviour, adult phenotype, and mimicry calls for further research into possible relationships between host specialization, plant chemistry and butterfly palatability.

  9. Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network

    PubMed Central

    Sáyago, Roberto; Lopezaraiza-Mikel, Martha; Quesada, Mauricio; Álvarez-Añorve, Mariana Yolotl; Cascante-Marín, Alfredo; Bastida, Jesus Ma.

    2013-01-01

    A central issue in ecology is the understanding of the establishment of biotic interactions. We studied the factors that affect the assembly of the commensalistic interactions between vascular epiphytes and their host plants. We used an analytical approach that considers all individuals and species of epiphytic bromeliads and woody hosts and non-hosts at study plots. We built models of interaction probabilities among species to assess if host traits and abundance and spatial overlap of species predict the quantitative epiphyte–host network. Species abundance, species spatial overlap and host size largely predicted pairwise interactions and several network metrics. Wood density and bark texture of hosts also contributed to explain network structure. Epiphytes were more common on large hosts, on abundant woody species, with denser wood and/or rougher bark. The network had a low level of specialization, although several interactions were more frequent than expected by the models. We did not detect a phylogenetic signal on the network structure. The effect of host size on the establishment of epiphytes indicates that mature forests are necessary to preserve diverse bromeliad communities. PMID:23407832

  10. Visual and Olfactory Floral Cues of Campanula (Campanulaceae) and Their Significance for Host Recognition by an Oligolectic Bee Pollinator

    PubMed Central

    Milet-Pinheiro, Paulo; Ayasse, Manfred; Dötterl, Stefan

    2015-01-01

    Oligolectic bees collect pollen from a few plants within a genus or family to rear their offspring, and are known to rely on visual and olfactory floral cues to recognize host plants. However, studies investigating whether oligolectic bees recognize distinct host plants by using shared floral cues are scarce. In the present study, we investigated in a comparative approach the visual and olfactory floral cues of six Campanula species, of which only Campanula lactiflora has never been reported as a pollen source of the oligolectic bee Ch. rapunculi. We hypothesized that the flowers of Campanula species visited by Ch. rapunculi share visual (i.e. color) and/or olfactory cues (scents) that give them a host-specific signature. To test this hypothesis, floral color and scent were studied by spectrophotometric and chemical analyses, respectively. Additionally, we performed bioassays within a flight cage to test the innate color preference of Ch. rapunculi. Our results show that Campanula flowers reflect the light predominantly in the UV-blue/blue bee-color space and that Ch. rapunculi displays a strong innate preference for these two colors. Furthermore, we recorded spiroacetals in the floral scent of all Campanula species, but Ca. lactiflora. Spiroacetals, rarely found as floral scent constituents but quite common among Campanula species, were recently shown to play a key function for host-flower recognition by Ch. rapunculi. We conclude that Campanula species share some visual and olfactory floral cues, and that neurological adaptations (i.e. vision and olfaction) of Ch. rapunculi innately drive their foraging flights toward host flowers. The significance of our findings for the evolution of pollen diet breadth in bees is discussed. PMID:26060994

  11. A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees

    PubMed Central

    Shakya, Migun; Gottel, Neil; Castro, Hector; Yang, Zamin K.; Gunter, Lee; Labbé, Jessy; Muchero, Wellington; Bonito, Gregory; Vilgalys, Rytas; Tuskan, Gerald; Podar, Mircea; Schadt, Christopher W.

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host health, survival and growth. However, a robust understanding of the root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watersheds to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to its associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall host genotypic distances did not have a significant effect on corresponding communities that could be separated from other measured effects. PMID:24146861

  12. Influence of leaf color in a dry bean mapping population on Empoasca sp. populations and host plant resistance.

    USDA-ARS?s Scientific Manuscript database

    Visual cues may be the first line of host plant recognition and an important determining factor when selecting host plants for feeding and oviposition, especially for highly polyphagous insects, such as leafhoppers, which have a broad range of potential host plants. Temperate Empoasca fabae and trop...

  13. Chemical and Mechanical Defenses Vary among Maternal Lines and Leaf Ages in Verbascum thapsus L. (Scrophulariaceae) and Reduce Palatability to a Generalist Insect

    PubMed Central

    Alba, Christina; Bowers, M. Deane; Blumenthal, Dana; Hufbauer, Ruth A.

    2014-01-01

    Intra-specific variation in host-plant quality affects herbivore foraging decisions and, in turn, herbivore foraging decisions mediate plant fitness. In particular, variation in defenses against herbivores, both among and within plants, shapes herbivore behavior. If variation in defenses is genetically based, it can respond to natural selection by herbivores. We quantified intra-specific variation in iridoid glycosides, trichome length, and leaf strength in common mullein (Verbascum thapsus L, Scrophulariaceae) among maternal lines within a population and among leaves within plants, and related this variation to feeding preferences of a generalist herbivore, Trichopulsia ni Hübner. We found significant variation in all three defenses among maternal lines, with T. ni preferring plants with lower investment in chemical, but not mechanical, defense. Within plants, old leaves had lower levels of all defenses than young leaves, and were strongly preferred by T. ni. Caterpillars also preferred leaves with trichomes removed to leaves with trichomes intact. Differences among maternal lines indicate that phenotypic variation in defenses likely has a genetic basis. Furthermore, these results reveal that the feeding behaviors of T. ni map onto variation in plant defense in a predictable way. This work highlights the importance of variation in host-plant quality in driving interactions between plants and their herbivores. PMID:25127229

  14. Candidatus Liberibacter asiaticus is present in orange jasmine and Asian citrus psyllid reared from jasmine at low titers

    USDA-ARS?s Scientific Manuscript database

    Orange jasmine, Murraya paniculata, is a common horticultural plant in Florida, and an alternate host of the Asian citrus psyllid, Diaphorina citri Kuwayama. Orange jasmine has also been reported to harbor the bacteria Candidatus Liberibacter asiaticus, the causal agent of huanglongbing disease. We ...

  15. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses

    USDA-ARS?s Scientific Manuscript database

    Herbivore associated bacteria are vital mediators of plant and insect interactions. Host plants play an important role in shaping the gut bacterial community of insects. Colorado potato beetles (CPB; Leptinotarsa decemlineata) use several Solanum plants as hosts in their natural environment. We prev...

  16. Volatile chemical cues guide host location and host selection by parasitic plants

    Treesearch

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2006-01-01

    The importance of plant volatiles in mediating interactions between plant species is much debated. Here, we demonstrate that the parasitic plant Cuscuta pentagona (dodder) uses volatile cues for host location. Cuscuta pentagona seedlings exhibit directed growth toward nearby tomato plants (Lycopersicon esculentum...

  17. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest

    PubMed Central

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal (Chamaecyparis obtusa) and ectomycorrhizal (Pinus densiflora) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as “generalists,” which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium, and Mortierella. Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula) or Pinus (e.g., Neolecta). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere. PMID:29593682

  18. Root-Associated Fungi Shared Between Arbuscular Mycorrhizal and Ectomycorrhizal Conifers in a Temperate Forest.

    PubMed

    Toju, Hirokazu; Sato, Hirotoshi

    2018-01-01

    Arbuscular mycorrhizal and ectomycorrhizal symbioses are among the most important drivers of terrestrial ecosystem dynamics. Historically, the two types of symbioses have been investigated separately because arbuscular mycorrhizal and ectomycorrhizal plant species are considered to host discrete sets of fungal symbionts (i.e., arbuscular mycorrhizal and ectomycorrhizal fungi, respectively). Nonetheless, recent studies based on high-throughput DNA sequencing technologies have suggested that diverse non-mycorrhizal fungi (e.g., endophytic fungi) with broad host ranges play roles in relationships between arbuscular mycorrhizal and ectomycorrhizal plant species in forest ecosystems. By analyzing an Illumina sequencing dataset of root-associated fungi in a temperate forest in Japan, we statistically examined whether co-occurring arbuscular mycorrhizal ( Chamaecyparis obtusa ) and ectomycorrhizal ( Pinus densiflora ) plant species could share non-mycorrhizal fungal communities. Among the 919 fungal operational taxonomic units (OTUs) detected, OTUs in various taxonomic lineages were statistically designated as "generalists," which associated commonly with both coniferous species. The list of the generalists included fungi in the genera Meliniomyces, Oidiodendron, Cladophialophora, Rhizodermea, Penicillium , and Mortierella . Meanwhile, our statistical analysis also detected fungi preferentially associated with Chamaecyparis (e.g., Pezicula ) or Pinus (e.g., Neolecta ). Overall, this study provides a basis for future studies on how arbuscular mycorrhizal and ectomycorrhizal plant species interactively drive community- or ecosystem-scale processes. The physiological functions of the fungi highlighted in our host-preference analysis deserve intensive investigations for understanding their roles in plant endosphere and rhizosphere.

  19. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough.

    PubMed

    Conchou, Lucie; Anderson, Peter; Birgersson, Göran

    2017-08-01

    Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.

  20. Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest.

    PubMed

    de Oliveira Freitas, Rejane; Buscardo, Erika; Nagy, Laszlo; dos Santos Maciel, Alex Bruno; Carrenho, Rosilaine; Luizão, Regina C C

    2014-01-01

    Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a 'terra firme forest' in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species.

  1. Messages from the Other Side: Parasites Receive Damage Cues from their Host Plants.

    PubMed

    Tjiurutue, Muvari Connie; Stevenson, Philip C; Adler, Lynn S

    2016-08-01

    As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here, we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids that act as defenses against herbivores that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses by using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels.

  2. Phytoplasmas–The “Crouching Tiger” Threat of Australian Plant Pathology

    PubMed Central

    Liu, Jian; Gopurenko, David; Fletcher, Murray J.; Johnson, Anne C.; Gurr, Geoff M.

    2017-01-01

    Phytoplasmas are insect-vectored bacteria that cause disease in a wide range of plant species. The increasing availability of molecular DNA analyses, expertise and additional methods in recent years has led to a proliferation of discoveries of phytoplasma-plant host associations and in the numbers of taxonomic groupings for phytoplasmas. The widespread use of common names based on the diseases with which they are associated, as well as separate phenetic and taxonomic systems for classifying phytoplasmas based on variation at the 16S rRNA-encoding gene, complicates interpretation of the literature. We explore this issue and related trends through a focus on Australian pathosystems, providing the first comprehensive compilation of information for this continent, covering the phytoplasmas, host plants, vectors and diseases. Of the 33 16Sr groups reported internationally, only groups I, II, III, X, XI and XII have been recorded in Australia and this highlights the need for ongoing biosecurity measures to prevent the introduction of additional pathogen groups. Many of the phytoplasmas reported in Australia have not been sufficiently well studied to assign them to 16Sr groups so it is likely that unrecognized groups and sub-groups are present. Wide host plant ranges are apparent among well studied phytoplasmas, with multiple crop and non-crop species infected by some. Disease management is further complicated by the fact that putative vectors have been identified for few phytoplasmas, especially in Australia. Despite rapid progress in recent years using molecular approaches, phytoplasmas remain the least well studied group of plant pathogens, making them a “crouching tiger” disease threat. PMID:28491068

  3. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    PubMed

    Xi, Zhenxiang; Wang, Yuguo; Bradley, Robert K; Sugumaran, M; Marx, Christopher J; Rest, Joshua S; Davis, Charles C

    2013-01-01

    Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  4. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts

    PubMed Central

    Grandez-Rios, Julio Miguel; Lima Bergamini, Leonardo; Santos de Araújo, Walter; Villalobos, Fabricio; Almeida-Neto, Mário

    2015-01-01

    Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic) on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin. PMID:26379159

  5. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    PubMed Central

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B.; Albert, Markus

    2015-01-01

    By comparison with plant–microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant–plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato. PMID:25699071

  6. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts.

    PubMed

    Kamiya, Tsukushi; O'Dwyer, Katie; Nakagawa, Shinichi; Poulin, Robert

    2014-02-01

    Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta-analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta-analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time-lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying processes of parasite diversification fundamentally different from those controlling the diversity of free-living organisms. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.

  7. Attraction of Cerambycid Beetles to Their Aggregation-Sex Pheromones Is Influenced by Volatiles From Host Plants of Their Larvae.

    PubMed

    Wong, J C H; Zou, Y; Millar, J G; Hanks, L M

    2017-06-01

    Here, we describe a field experiment that tested for attraction of cerambycid beetles to odors from angiosperm hosts, and whether plant volatiles also serve to enhance attraction of beetles to their aggregation-sex pheromones. Traps were baited with a blend of synthesized chemicals that are common pheromone components of species in the subfamilies Cerambycinae and Lamiinae. The source of plant volatiles was chipped wood from trees of three angiosperm species, as well as from one nonhost, gymnosperm species. Bioassays were conducted in wooded areas of east-central Illinois. Traps were baited with the pheromone blend alone, the blend + wood chips from one tree species, wood chips alone, or a solvent control lure. Seven species of cerambycids were significantly attracted to the pheromone blend, with or without wood chips. In two cases, wood chips from angiosperms appeared to enhance attraction to pheromones, whereas they inhibited attraction in another three cases. Pine chips did not strongly influence attraction of any species. Overall, our results suggest that host plant volatiles from wood chips may improve trap catch with synthesized pheromones for some cerambycid species, but the effect is not general, necessitating case-by-case testing to determine how individual target species are affected. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    PubMed

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  9. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps).

    PubMed

    Píchová, Kamila; Pažoutová, Sylvie; Kostovčík, Martin; Chudíčková, Milada; Stodůlková, Eva; Novák, Petr; Flieger, Miroslav; van der Linde, Elna; Kolařík, Miroslav

    2018-06-01

    The ergot, genus Claviceps, comprises approximately 60 species of specialised ovarial grass parasites famous for the production of food toxins and pharmaceutics. Although the ergot has been known for centuries, its evolution have not been resolved yet. Our approach combining multilocus phylogeny, molecular dating and the study of ecological, morphological and metabolic features shows that Claviceps originated in South America in the Palaeocene on a common ancestor of BEP (subfamilies Bambusoideae, Ehrhartoideae, Pooideae) and PACMAD (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) grasses. Four clades described here as sections diverged during the Paleocene and Eocene. Since Claviceps are parasitic fungi with a close relationship with their host plants, their evolution is influenced by interactions with the new hosts, either by the spread to a new continent or the radiation of the host plants. Three of the sections possess very narrow host ranges and biogeographical distributions and have relatively low toxicity. On the contrary, the section Claviceps, comprising the rye ergot, C. purpurea, is unique in all aspects. Fungi in this section of North American origin have spread all over the world and infect grasses in all subfamilies as well as sedges, and it is the only section synthesising toxic ergopeptines and secalonic acids. The evolutionary success of the Claviceps section members can be explained by high toxin presence, serving as feeding deterrents and playing a role in their protective mutualism with host plants. Closely related taxa Neoclaviceps monostipa and Cepsiclava phalaridis were combined into the genus Aciculosporium. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands.

    PubMed

    Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson

    2018-01-01

    This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.

  11. Efficiency of vibrational sounding in parasitoid host location depends on substrate density.

    PubMed

    Fischer, S; Samietz, J; Dorn, S

    2003-10-01

    Parasitoids of concealed hosts have to drill through a substrate with their ovipositor for successful parasitization. Hymenopteran species in this drill-and-sting guild locate immobile pupal hosts by vibrational sounding, i.e., echolocation on solid substrate. Although this host location strategy is assumed to be common among the Orussidae and Ichneumonidae there is no information yet whether it is adapted to characteristics of the host microhabitat. This study examined the effect of substrate density on responsiveness and host location efficiency in two pupal parasitoids, Pimpla turionellae and Xanthopimpla stemmator (Hymenoptera: Ichneumonidae), with different host-niche specialization and corresponding ovipositor morphology. Location and frequency of ovipositor insertions were scored on cylindrical plant stem models of various densities. Substrate density had a significant negative effect on responsiveness, number of ovipositor insertions, and host location precision in both species. The more niche-specific species X. stemmator showed a higher host location precision and insertion activity. We could show that vibrational sounding is obviously adapted to the host microhabitat of the parasitoid species using this host location strategy. We suggest the attenuation of pulses during vibrational sounding as the energetically costly limiting factor for this adaptation.

  12. DNA barcoding insect–host plant associations

    PubMed Central

    Jurado-Rivera, José A.; Vogler, Alfried P.; Reid, Chris A.M.; Petitpierre, Eduard; Gómez-Zurita, Jesús

    2008-01-01

    Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions. PMID:19004756

  13. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.

    PubMed

    Oliveira, D C; Isaias, R M S; Fernandes, G W; Ferreira, B G; Carneiro, R G S; Fuzaro, L

    2016-01-01

    Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals

    PubMed Central

    Theilmann, Mia C.; Nielsen, Kristian Fog; Klaenhammer, Todd R.

    2017-01-01

    ABSTRACT Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. PMID:29162708

  15. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race.

    PubMed

    Ramesh, Shunmugiah V; Sahu, Pranav P; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R

    2017-09-15

    Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.

  16. Data integration aids understanding of butterfly-host plant networks

    NASA Astrophysics Data System (ADS)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  17. Various chemical strategies to deceive ants in three Arhopala species (lepidoptera: Lycaenidae) exploiting Macaranga myrmecophytes.

    PubMed

    Inui, Yoko; Shimizu-Kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao

    2015-01-01

    Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies.

  18. Various Chemical Strategies to Deceive Ants in Three Arhopala Species (Lepidoptera: Lycaenidae) Exploiting Macaranga Myrmecophytes

    PubMed Central

    Inui, Yoko; Shimizu-kaya, Usun; Okubo, Tadahiro; Yamsaki, Eri; Itioka, Takao

    2015-01-01

    Macaranga myrmecophytes (ant-plants) are generally well protected from herbivore attacks by their symbiotic ants (plant-ants). However, larvae of Arhopala (Lepidoptera: Lycaenidae) species survive and develop on specific Macaranga ant-plant species without being attacked by the plant-ants of their host species. We hypothesized that Arhopala larvae chemically mimic or camouflage themselves with the ants on their host plant so that the larvae are accepted by the plant-ant species of their host. Chemical analyses of cuticular hydrocarbons showed that chemical congruency varied among Arhopala species; A. dajagaka matched well the host plant-ants, A. amphimuta did not match, and unexpectedly, A. zylda lacked hydrocarbons. Behaviorally, the larvae and dummies coated with cuticular chemicals of A. dajagaka were well attended by the plant-ants, especially by those of the host. A. amphimuta was often attacked by all plant-ants except for the host plant-ants toward the larvae, and those of A. zylda were ignored by all plant-ants. Our results suggested that conspicuous variations exist in the chemical strategies used by the myrmecophilous butterflies that allow them to avoid ant attack and be accepted by the plant-ant colonies. PMID:25853675

  19. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life

    PubMed Central

    Weßling, Ralf; Epple, Petra; Altmann, Stefan; He, Yijian; Yang, Li; Henz, Stefan R.; McDonald, Nathan; Wiley, Kristin; Bader, Kai Christian; Gläßer, Christine; Mukhtar, M. Shahid; Haigis, Sabine; Ghamsari, Lila; Stephens, Amber E.; Ecker, Joseph R.; Vidal, Marc; Jones, Jonathan D. G.; Mayer, Klaus F. X.; van Themaat, Emiel Ver Loren; Weigel, Detlef; Schulze-Lefert, Paul; Dangl, Jeffery L.; Panstruga, Ralph; Braun, Pascal

    2014-01-01

    SUMMARY While conceptual principles governing plant immunity are becoming clear, its systems-level organization and the evolutionary dynamic of the host-pathogen interface are still obscure. We generated a systematic protein-protein interaction network of virulence effectors from the ascomycete pathogen Golovinomyces orontii and Arabidopsis thaliana host proteins. We combined this dataset with corresponding data for the eubacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. The resulting network identifies host proteins onto which intraspecies and interspecies pathogen effectors converge. Phenotyping of 124 Arabidopsis effector-interactor mutants revealed a correlation between intra- and interspecies convergence and several altered immune response phenotypes. The effectors and most heavily targeted host protein co-localized in sub-nuclear foci. Products of adaptively selected Arabidopsis genes are enriched for interactions with effector targets. Our data suggest the existence of a molecular host-pathogen interface that is conserved across Arabidopsis accessions, while evolutionary adaptation occurs in the immediate network neighborhood of effector targets. PMID:25211078

  20. Climate change, phenology, and butterfly host plant utilization.

    PubMed

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  1. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil

    PubMed Central

    Battenberg, Kai; Wren, Jannah A.; Hillman, Janell; Edwards, Joseph; Huang, Liujing

    2016-01-01

    ABSTRACT The actinobacterial genus Frankia establishes nitrogen-fixing root nodule symbioses with specific hosts within the nitrogen-fixing plant clade. Of four genetically distinct subgroups of Frankia, cluster I, II, and III strains are capable of forming effective nitrogen-fixing symbiotic associations, while cluster IV strains generally do not. Cluster II Frankia strains have rarely been detected in soil devoid of host plants, unlike cluster I or III strains, suggesting a stronger association with their host. To investigate the degree of host influence, we characterized the cluster II Frankia strain distribution in rhizosphere soil in three locations in northern California. The presence/absence of cluster II Frankia strains at a given site correlated significantly with the presence/absence of host plants on the site, as determined by glutamine synthetase (glnA) gene sequence analysis, and by microbiome analysis (16S rRNA gene) of a subset of host/nonhost rhizosphere soils. However, the distribution of cluster II Frankia strains was not significantly affected by other potential determinants such as host-plant species, geographical location, climate, soil pH, or soil type. Rhizosphere soil microbiome analysis showed that cluster II Frankia strains occupied only a minute fraction of the microbiome even in the host-plant-present site and further revealed no statistically significant difference in the α-diversity or in the microbiome composition between the host-plant-present or -absent sites. Taken together, these data suggest that host plants provide a factor that is specific for cluster II Frankia strains, not a general growth-promoting factor. Further, the factor accumulates or is transported at the site level, i.e., beyond the host rhizosphere. IMPORTANCE Biological nitrogen fixation is a bacterial process that accounts for a major fraction of net new nitrogen input in terrestrial ecosystems. Transfer of fixed nitrogen to plant biomass is especially efficient via root nodule symbioses, which represent evolutionarily and ecologically specialized mutualistic associations. Frankia spp. (Actinobacteria), especially cluster II Frankia spp., have an extremely broad host range, yet comparatively little is known about the soil ecology of these organisms in relation to the host plants and their rhizosphere microbiomes. This study reveals a strong influence of the host plant on soil distribution of cluster II Frankia spp. PMID:27795313

  2. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  3. Leaf mimicry in a climbing plant protects against herbivory.

    PubMed

    Gianoli, Ernesto; Carrasco-Urra, Fernando

    2014-05-05

    Mimicry refers to adaptive similarity between a mimic organism and a model. Mimicry in animals is rather common, whereas documented cases in plants are rare, and the associated benefits are seldom elucidated [1, 2]. We show the occurrence of leaf mimicry in a climbing plant endemic to a temperate rainforest. The woody vine Boquila trifoliolata mimics the leaves of its supporting trees in terms of size, shape, color, orientation, petiole length, and/or tip spininess. Moreover, sequential leaf mimicry occurs when a single individual vine is associated with different tree species. Leaves of unsupported vines differed from leaves of climbing plants closely associated with tree foliage but did not differ from those of vines climbing onto leafless trunks. Consistent with an herbivory-avoidance hypothesis, leaf herbivory on unsupported vines was greater than that on vines climbing on trees but was greatest on vines climbing onto leafless trunks. Thus, B. trifoliolata gains protection against herbivory not merely by climbing and thus avoiding ground herbivores [3] but also by climbing onto trees whose leaves are mimicked. Unlike earlier cases of plant mimicry or crypsis, in which the plant roughly resembles a background or color pattern [4-7] or mimics a single host [8, 9], B. trifoliolata is able to mimic several hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (Neodiprion lecontei).

    PubMed

    Bagley, Robin K; Sousa, Vitor C; Niemiller, Matthew L; Linnen, Catherine R

    2017-02-01

    Divergent host use has long been suspected to drive population differentiation and speciation in plant-feeding insects. Evaluating the contribution of divergent host use to genetic differentiation can be difficult, however, as dispersal limitation and population structure may also influence patterns of genetic variation. In this study, we use double-digest restriction-associated DNA (ddRAD) sequencing to test the hypothesis that divergent host use contributes to genetic differentiation among populations of the redheaded pine sawfly (Neodiprion lecontei), a widespread pest that uses multiple Pinus hosts throughout its range in eastern North America. Because this species has a broad range and specializes on host plants known to have migrated extensively during the Pleistocene, we first assess overall genetic structure using model-based and model-free clustering methods and identify three geographically distinct genetic clusters. Next, using a composite-likelihood approach based on the site frequency spectrum and a novel strategy for maximizing the utility of linked RAD markers, we infer the population topology and date divergence to the Pleistocene. Based on existing knowledge of Pinus refugia, estimated demographic parameters and patterns of diversity among sawfly populations, we propose a Pleistocene divergence scenario for N. lecontei. Finally, using Mantel and partial Mantel tests, we identify a significant relationship between genetic distance and geography in all clusters, and between genetic distance and host use in two of three clusters. Overall, our results indicate that Pleistocene isolation, dispersal limitation and ecological divergence all contribute to genomewide differentiation in this species and support the hypothesis that host use is a common driver of population divergence in host-specialized insects. © 2016 John Wiley & Sons Ltd.

  5. Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores.

    PubMed

    Poelman, Erik H; Zheng, Si-Jun; Zhang, Zhao; Heemskerk, Nanda M; Cortesero, Anne-Marie; Dicke, Marcel

    2011-12-06

    Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.

  6. Island phytophagy: explaining the remarkable diversity of plant-feeding insects

    PubMed Central

    Joy, Jeffrey B.; Crespi, Bernard J.

    2012-01-01

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa. PMID:22553094

  7. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    PubMed

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  8. Plant immunity in plant–aphid interactions

    PubMed Central

    Jaouannet, Maëlle; Rodriguez, Patricia A.; Lenoir, Camille J. G.; MacLeod, Ruari; Escudero-Martinez, Carmen; Bos, Jorunn I.B.

    2014-01-01

    Aphids are economically important pests that cause extensive feeding damage and transmit viruses. While some species have a broad host range and cause damage to a variety of crops, others are restricted to only closely related plant species. While probing and feeding aphids secrete saliva, containing effectors, into their hosts to manipulate host cell processes and promote infestation. Aphid effector discovery studies pointed out parallels between infection and infestation strategies of plant pathogens and aphids. Interestingly, resistance to some aphid species is known to involve plant resistance proteins with a typical NB-LRR domain structure. Whether these resistance proteins indeed recognize aphid effectors to trigger ETI remains to be elucidated. In addition, it was recently shown that unknown aphid derived elicitors can initiate reactive oxygen species (ROS) production and callose deposition and that these responses were dependent on BAK1 (BRASSINOSTERIOD INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1) which is a key component of the plant immune system. In addition, BAK-1 contributes to non-host resistance to aphids pointing to another parallel between plant-pathogen and – aphid interactions. Understanding the role of plant immunity and non-host resistance to aphids is essential to generate durable and sustainable aphid control strategies. Although insect behavior plays a role in host selection and non-host resistance, an important observation is that aphids interact with non-host plants by probing the leaf surface, but are unable to feed or establish colonization. Therefore, we hypothesize that aphids interact with non-host plants at the molecular level, but are potentially not successful in suppressing plant defenses and/or releasing nutrients. PMID:25520727

  9. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    PubMed Central

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  10. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    PubMed

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  11. Female butterflies adapt and allocate their progeny to the host-plant quality of their own larval experience.

    PubMed

    Cahenzli, Fabian; Wenk, Barbara A; Erhardt, Andreas

    2015-07-01

    Recent studies with diverse taxa have shown that parents can utilize their experience of the environment to adapt their offspring's phenotype to the same environmental conditions. Thus, offspring would then perform best under environmental conditions experienced by their parents due to transgenerational phenotypic plasticity. Such an effect has been dubbed transgenerational acclimatization. However, evidence that parents can subsequently ensure the appropriate environmental conditions in order that offspring benefit from transgenerational acclimatization has never been demonstrated. We reared Pieris rapae larvae in the parental generation on high-nitrogen and low-nitrogen host plants, and reared the offspring (F1) of both treatments again on high- and low-nitrogen plants. Furthermore, we tested if females prefer to oviposit on high- or low-nitrogen host plants in two-way choice tests. We here show not only that females adapt their offspring's phenotype to the host-plant quality that they themselves experienced, but that females also mainly oviposit on the host quality to which they adapt their offspring. Moreover, effects of larval host plant on oviposition preference of females increased across two generations in F1-females acclimatized to low-nitrogen host plants, showing an adaptive host shift from one generation to the next. These findings may have profound implications for host-race formation and sympatric speciation.

  12. Evaluations and modifications of semi-selective media for improved isolation of Agrobacterium tumefaciens biovar 1 from cultivated walnut

    USDA-ARS?s Scientific Manuscript database

    Agrobacterium tumefaciens, the causal agent of crown gall of walnut, is an aerobic, Gram negative bacterium belonging to the family Rhizobiaceae. Like many in this group, A. tumefaciens is a common inhabitant of soil and plant host tissue. Isolation from these complex environments is difficult even ...

  13. HOW to and Control Diplodia Shoot Blight, Collar Rot, and Canker of Conifers

    Treesearch

    Marguerita A. Palmer; Thomas H. Nicholls

    1983-01-01

    The fungus Diplodia pinea is worldwide in distribution and importance. In North America, Diplodia causes shoot blight and stem canker of conifers in plantations, windbreaks, and ornamental plantings. Most conifers are susceptible to infection, especially exotic species such as Austrian pine. In the north-central United States, the most common hosts are red, jack,...

  14. Optimizing EPG settings to record blue-green sharpshooter X waves for future studies of grape host plant resistance to Xf inoculation

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of the research reported in this review is to develop methodology for assessment of grapevine resistant to sharpshooter inoculation of Xylella fastidiosa(Xf)into healthy grapevines, thereby preventing Xf infection. Such a trait would be quite different from the more common mechani...

  15. Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change

    NASA Astrophysics Data System (ADS)

    Ramirez-Cabral, Nadiezhda Yakovleva Zitz; Kumar, Lalit; Shabani, Farzin

    2018-01-01

    Worldwide, crop pests (CPs) such as pathogens and insects affect agricultural production detrimentally. Species distribution models can be used for projecting current and future suitability of CPs and host crop localities. Our study overlays the distribution of two CPs (Asian soybean rust and beet armyworm) and common bean, a potential host of them, in order to determine their current and future levels of coexistence. This kind of modeling approach has rarely been performed previously in climate change studies. The soybean rust and beet armyworm model projections herein show a reduction of the worldwide area with high and medium suitability of both CPs and a movement of them away from the Equator, in 2100 more pronounced than in 2050. Most likely, heat and dry stress will be responsible for these changes. Heat and dry stress will greatly reduce and shift the future suitable cultivation area of common bean as well, in a similar manner. The most relevant findings of this study were the reduction of the suitable areas for the CPs, the reduction of the risk under future scenarios, and the similarity of trends for the CPs and host. The current results highlight the relation between and the coevolution of host and pathogens.

  16. Coffee Berry Borer Joins Bark Beetles in Coffee Klatch

    PubMed Central

    Jaramillo, Juliana; Torto, Baldwyn; Mwenda, Dickson; Troeger, Armin; Borgemeister, Christian; Poehling, Hans-Michael; Francke, Wittko

    2013-01-01

    Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms. PMID:24073204

  17. Coffee berry borer joins bark beetles in coffee klatch.

    PubMed

    Jaramillo, Juliana; Torto, Baldwyn; Mwenda, Dickson; Troeger, Armin; Borgemeister, Christian; Poehling, Hans-Michael; Francke, Wittko

    2013-01-01

    Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms.

  18. Cranberry Resistance to Dodder Parasitism: Induced Chemical Defenses and Behavior of a Parasitic Plant.

    PubMed

    Tjiurutue, Muvari Connie; Sandler, Hilary A; Kersch-Becker, Monica F; Theis, Nina; Adler, Lynn A

    2016-02-01

    Parasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches. Despite their ecological and economic importance, remarkably little is known about how parasitic plants affect, or are affected by, host chemistry. To examine chemically-mediated interactions between dodder and its cranberry host, we conducted a greenhouse experiment asking whether: (1) dodder performance varies with cranberry cultivar; (2) cultivars differ in levels of phytohormones, volatiles, or phenolics, and whether such variation correlates with dodder parasitism; (3) dodder parasitism induced changes in phytohormones, volatiles, or phenolics, and whether the level of inducible response varied among cultivars. We used five cranberry cultivars to assess host attractiveness to dodder and dodder performance. Dodder performance did not differ across cultivars, but there were marginally significant differences in host attractiveness to dodder, with fewer dodder attaching to Early Black than to any other cultivar. Dodder parasitism induced higher levels of salicylic acid (SA) across cultivars. Cultivars differed in overall levels of flavonols and volatile profiles, but not phenolic acids or proanthocyanidins, and dodder attachment induced changes in several flavonols and volatiles. While cultivars differed slightly in resistance to dodder attachment, we did not find evidence of chemical defenses that mediate these interactions. However, induction of several defenses indicates that parasitism alters traits that could influence subsequent interactions with other species, thus shaping community dynamics.

  19. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula.

    PubMed

    Nars, Amaury; Lafitte, Claude; Chabaud, Mireille; Drouillard, Sophie; Mélida, Hugo; Danoun, Saïda; Le Costaouëc, Tinaig; Rey, Thomas; Benedetti, Julie; Bulone, Vincent; Barker, David George; Bono, Jean-Jacques; Dumas, Bernard; Jacquet, Christophe; Heux, Laurent; Fliegmann, Judith; Bottin, Arnaud

    2013-01-01

    N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes.

  20. Aphanomyces euteiches Cell Wall Fractions Containing Novel Glucan-Chitosaccharides Induce Defense Genes and Nuclear Calcium Oscillations in the Plant Host Medicago truncatula

    PubMed Central

    Nars, Amaury; Lafitte, Claude; Chabaud, Mireille; Drouillard, Sophie; Mélida, Hugo; Danoun, Saïda; Le Costaouëc, Tinaig; Rey, Thomas; Benedetti, Julie; Bulone, Vincent; Barker, David George; Bono, Jean-Jacques; Dumas, Bernard; Jacquet, Christophe; Heux, Laurent; Fliegmann, Judith; Bottin, Arnaud

    2013-01-01

    N-acetylglucosamine-based saccharides (chitosaccharides) are components of microbial cell walls and act as molecular signals during host-microbe interactions. In the legume plant Medicago truncatula, the perception of lipochitooligosaccharide signals produced by symbiotic rhizobia and arbuscular mycorrhizal fungi involves the Nod Factor Perception (NFP) lysin motif receptor-like protein and leads to the activation of the so-called common symbiotic pathway. In rice and Arabidopsis, lysin motif receptors are involved in the perception of chitooligosaccharides released by pathogenic fungi, resulting in the activation of plant immunity. Here we report the structural characterization of atypical chitosaccharides from the oomycete pathogen Aphanomyces euteiches, and their biological activity on the host Medicago truncatula. Using a combination of biochemical and biophysical approaches, we show that these chitosaccharides are linked to β-1,6-glucans, and contain a β-(1,3;1,4)-glucan backbone whose β-1,3-linked glucose units are substituted on their C-6 carbon by either glucose or N-acetylglucosamine residues. This is the first description of this type of structural motif in eukaryotic cell walls. Glucan-chitosaccharide fractions of A. euteiches induced the expression of defense marker genes in Medicago truncatula seedlings independently from the presence of a functional Nod Factor Perception protein. Furthermore, one of the glucan-chitosaccharide fractions elicited calcium oscillations in the nucleus of root cells. In contrast to the asymmetric oscillatory calcium spiking induced by symbiotic lipochitooligosaccharides, this response depends neither on the Nod Factor Perception protein nor on the common symbiotic pathway. These findings open new perspectives in oomycete cell wall biology and elicitor recognition and signaling in legumes. PMID:24086432

  1. Asymmetric consequences of host plant occupation on the competition between the whiteflies Bemisia tabaci cryptic species MEAM1 and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).

    PubMed

    Zhang, Gui-Fen; Lövei, Gábor L; Hu, Man; Wan, Fang-Hao

    2014-12-01

    The two common whitefly species, Bemisia tabaci (Gennadius) MEAM1 and Trialeurodes vaporariorum (Westwood), often co-occur on their host plants. The effect of host plant occupation by one species on later-arriving conspecific individuals or on the other competing species was examined. Resource preoccupied by T. vaporariorum had mostly negative effects on the life history parameters of later-arriving conspecifics. Red-eyed nymph and immature survival of T. vaporariorum decreased when resource was preoccupied by conspecifics, irrespective of the previous occupation scenario. However, resource preoccupied by T. vaporariorum had only minor detrimental effects on the performance of later-arriving B. tabaci MEAM1. In the opposite colonisation sequence, previous occupation by B. tabaci MEAM1 had no significant effects on the life history parameters of later-arriving conspecifics, but severe detrimental effects were observed on the performance of later-arriving T. vaporariorum. Total immature survival of T. vaporariorum decreased in both weak and strong previous occupation situations by B. tabaci MEAM1. The interspecific interactions between B. tabaci MEAM1 and T. vaporariorum were asymmetric, with B. tabaci MEAM1 being the superior competitor. This superiority could partially explain the rapid spread of B. tabaci MEAM1 in China. © 2013 Society of Chemical Industry.

  2. Protection via parasitism: Datura odors attract parasitoid flies, which inhibit Manduca larvae from feeding and growing but may not help plants.

    PubMed

    Wilson, J K; Woods, H A

    2015-12-01

    Insect carnivores frequently use olfactory cues from plants to find prey or hosts. For plants, the benefits of attracting parasitoids have been controversial, partly because parasitoids often do not kill their host insect immediately. Furthermore, most research has focused on the effects of solitary parasitoids on growth and feeding of hosts, even though many parasitoids are gregarious (multiple siblings inhabit the same host). Here, we examine how a gregarious parasitoid, the tachinid fly Drino rhoeo, uses olfactory cues from the host plant Datura wrightii to find the sphingid herbivore Manduca sexta, and how parasitism affects growth and feeding of host larvae. In behavioral trials using a Y-olfactometer, female flies were attracted to olfactory cues emitted by attacked plants and by cues emitted from the frass produced by larval Manduca sexta. M. sexta caterpillars that were parasitized by D. rhoeo grew to lower maximum weights, grew more slowly, and ate less of their host plant. We also present an analytical model to predict how tri-trophic interactions change with varying herbivory levels, parasitization rates and plant sizes. This model predicted that smaller plants gain a relatively greater benefit compared to large plants in attracting D. rhoeo. By assessing the behavior, the effects of host performance, and the variation in ecological parameters of the system, we can better understand the complex interactions between herbivorous insects, the plants they live on and the third trophic level members that attack them.

  3. Host plants of Melon Fly, Bactrocera cucurbitae(Coquillett)(Diptera:Tephritidae); and provisional list of suitable host plants of the Melon Fly, Bactrocera(Zeugodacus)cucurbitae(Coquillett)(Diptera:Tephritidae),Version 2.0

    USDA-ARS?s Scientific Manuscript database

    The melon fly, Bactrocera cucurbitae (Coquillett), is a widespread, economically important tephritid fruit fly (Diptera: Tephritidae) species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with...

  4. The importance of pollen chemistry in evolutionary host shifts of bees

    PubMed Central

    Vanderplanck, Maryse; Vereecken, Nicolas J.; Grumiau, Laurent; Esposito, Fabiana; Lognay, Georges; Wattiez, Ruddy; Michez, Denis

    2017-01-01

    Although bee-plant associations are generally maintained through speciation processes, host shifts have occurred during evolution. Understanding shifts between both phylogenetically and morphologically unrelated plants (i.e., host-saltation) is especially important since they could have been key processes in the origin and radiation of bees. Probably far from being a random process, such host-saltation might be driven by hidden constraints associated with plant traits. We selected two clades of oligolectic bees (i.e., Colletes succinctus group and Melitta leporina group) foraging on co-flowering but unrelated host-plants to test this hypothesis. We analyzed floral scent, floral color and chemical composition of pollen from host and non-host plants of these two clades. We did not find evidence for host-plant evolution in the Melitta leporina group driven by one of the assayed floral traits. On the contrary, hosts of the C. succinctus group display similar primary nutritive content of pollen (i.e., amino acids and sterols) but not similar floral scent or color, suggesting that shared pollen chemistry probably mediates saltation in this clade. Our study revealed that constraints shaping floral associations are diverse and clearly depend on species life-history traits, but evidence suggests that pollen chemistry may act as a major floral filter and guide evolutionary host-shifts. PMID:28216663

  5. Suitability of two root-mining weevils for the biological control of scentless chamomile, Tripleurospermum perforatum, with special regard to potential non-target effects.

    PubMed

    Hinz, H L; Müller-Schärer, H

    2000-12-01

    The biology and host range of the two root-mining weevils Diplapion confluens Kirby and Coryssomerus capucinus (Beck), two potential agents for the biological control of scentless chamomile Tripleurospermum perforatum (Mérat) Laínz, were studied in the field in southern Germany and eastern Austria, and in a common garden and under laboratory conditions in Delémont, Switzerland from 1993 to 1999. Both weevils were univoltine, and females started to lay eggs in early spring. Diplapion confluens had three and C. capucinus five instars. Larvae of both species were found in the field from mid-April until the end of July; later instars preferentially fed in the vascular cylinder of the shoot base, root crown or root. Although larvae of both species occupy the same temporal and spatial niche within their host plants, they occurred at all investigated field sites together, and showed a similar distribution within sites. No negative or positive interspecific association was detected. Host-specificity tests including no-choice, single-choice, and multiple-choice tests under confined conditions, as well as tests under field conditions with natural and augmented insect densities revealed that both herbivores were specific to plant species in the tribe Anthemideae. However, their development to mature larva or adult on several cultivated plants, as well as on one plant species native to North America, rendered them unsuitable for field release in North America. It was concluded that to investigate non-target effects reliably, host-specificity tests with biological control agents should be carried out under a variety of conditions, particularly with augmented insect densities, as are expected to occur naturally after release.

  6. Host Shifts from Lamiales to Brassicaceae in the Sawfly Genus Athalia

    PubMed Central

    Opitz, Sebastian E. W.; Boevé, Jean-Luc; Nagy, Zoltán Tamás; Sonet, Gontran; Koch, Frank; Müller, Caroline

    2012-01-01

    Plant chemistry can be a key driver of host shifts in herbivores. Several species in the sawfly genus Athalia are important economic pests on Brassicaceae, whereas other Athalia species are specialized on Lamiales. These host plants have glucosides in common, which are sequestered by larvae. To disentangle the possible direction of host shifts in this genus, we examined the sequestration specificity and feeding deterrence of iridoid glucosides (IGs) and glucosinolates (GSs) in larvae of five species which either naturally sequester IGs from their hosts within the Plantaginaceae (Lamiales) or GSs from Brassicaceae, respectively. Furthermore, adults were tested for feeding stimulation by a neo-clerodane diterpenoid which occurs in Lamiales. Larvae of the Plantaginaceae-feeders did not sequester artificially administered p-hydroxybenzylGS and were more deterred by GSs than Brassicaceae-feeders were by IGs. In contrast, larvae of Brassicaceae-feeders were able to sequester artificially administered catalpol (IG), which points to an ancestral association with Lamiales. In line with this finding, adults of all tested species were stimulated by the neo-clerodane diterpenoid. Finally, in a phylogenetic tree inferred from genetic marker sequences of 21 Athalia species, the sister species of all remaining 20 Athalia species also turned out to be a Lamiales-feeder. Fundamental physiological pre-adaptations, such as the establishment of a glucoside transporter, and mechanisms to circumvent activation of glucosides by glucosidases are therefore necessary prerequisites for successful host shifts between Lamiales and Brassicaceae. PMID:22485146

  7. Mistletoe Infection in an Oak Forest Is Influenced by Competition and Host Size

    PubMed Central

    Matula, Radim; Svátek, Martin; Pálková, Marcela; Volařík, Daniel; Vrška, Tomáš

    2015-01-01

    Host size and distance from an infected plant have been previously found to affect mistletoe occurrence in woody vegetation but the effect of host plant competition on mistletoe infection has not been empirically tested. For an individual tree, increasing competition from neighbouring trees decreases its resource availability, and resource availability is also known to affect the establishment of mistletoes on host trees. Therefore, competition is likely to affect mistletoe infection but evidence for such a mechanism is lacking. Based on this, we hypothesised that the probability of occurrence as well as the abundance of mistletoes on a tree would increase not only with increasing host size and decreasing distance from an infected tree but also with decreasing competition by neighbouring trees. Our hypothesis was tested using generalized linear models (GLMs) with data on Loranthus europaeus Jacq., one of the two most common mistletoes in Europe, on 1015 potential host stems collected in a large fully mapped plot in the Czech Republic. Because many trees were multi-stemmed, we ran the analyses for both individual stems and whole trees. We found that the probability of mistletoe occurrence on individual stems was affected mostly by stem size, whereas competition had the most important effects on the probability of mistletoe occurrence on whole trees as well as on mistletoe abundance. Therefore, we confirmed our hypothesis that competition among trees has a negative effect on mistletoe occurrence. PMID:25992920

  8. Correlations between adult mimicry and larval host plants in ithomiine butterflies.

    PubMed

    Willmott, Keith R; Mallet, James

    2004-08-07

    The apparent paradox of multiple coexisting wing pattern mimicry 'rings' in tropical butterflies has been explained as a result of microhabitat partitioning in adults. However, very few studies have tested this hypothesis. In neotropical forests, ithomiine butterflies dominate and display the richest diversity of mimicry rings. We show that co-mimetic species occupy the same larval host-plant species significantly more often than expected in two out of five communities that we surveyed; in one of these, the effect remains significant after phylogenetic correction. This relationship is most probably a result of a third correlated variable, such as microhabitat. Host-plant microhabitat may constrain adult movement, or host-plant choice may depend on butterfly microhabitat preferences and mimicry associations. This link between mimicry and host plant could help explain some host-plant and mimicry shifts, which have been important in the radiation of this speciose tropical group.

  9. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race

    PubMed Central

    Ramesh, Shunmugiah V.; Sahu, Pranav P.; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R.

    2017-01-01

    Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant’s defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions. PMID:28914771

  10. Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae).

    PubMed

    Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A

    2017-04-01

    Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Bergamot versus beetle: evidence for intraspecific chemical specialization

    PubMed Central

    Keefover-Ring, Ken

    2015-01-01

    A large proportion of phytophagous insects show host plant specificity (monophagy or oligophagy), often determined by host secondary chemistry. Yet, even specialists can be negatively affected by host chemistry at high levels or with novel compounds, which may manifest itself if their host species is chemically variable. This study tested for reciprocal effects of a specialist tortoise beetle (Physonota unipunctata) feeding on a host plant (Monarda fistulosa) with two monoterpene chemotypes [thymol (T) and carvacrol (C)] using a controlled field experiment where larvae fed on caged plants of both chemotypes, haphazardly collected natural plants with and without beetle damage, and growth chamber experiments where larvae that hatched and briefly fed on one chemotype were reared on either chemotype. In the field experiment, plant chemotype did not affect larval weight or length, but did influence larval survival with almost 8.3 % more surviving on T plants. Herbivores reduced seed head area (86.5 % decrease), stem mass (41.2 %) and stem height (21.1 %) of caged plants, but this was independent of host chemotype. Natural plants experienced similar reductions in these variables (74.0, 41.4 and 8.7 %) and T chemotypes were more frequently damaged. In the growth chamber, larval relative growth rate (RGR) differed for both feeding history and year. Larvae from T natal plants reared on T hosts grew at almost twice the rate of those from C and reared on T. Larvae from either T or C natal plants reared on C plants showed intermediate growth rates. Additional analyses revealed natal plant chemotype as the most important factor, with the RGR of larvae from T natal plants almost one-third higher than that of those from C natal plants. These cumulative results demonstrate intraspecific variation in plant resistance that may lead to herbivore specialization on distinct host chemistry, which has implications for the evolutionary trajectory of both the insect and plant species. PMID:26578745

  12. Bergamot versus beetle: evidence for intraspecific chemical specialization.

    PubMed

    Keefover-Ring, Ken

    2015-11-16

    A large proportion of phytophagous insects show host plant specificity (monophagy or oligophagy), often determined by host secondary chemistry. Yet, even specialists can be negatively affected by host chemistry at high levels or with novel compounds, which may manifest itself if their host species is chemically variable. This study tested for reciprocal effects of a specialist tortoise beetle (Physonota unipunctata) feeding on a host plant (Monarda fistulosa) with two monoterpene chemotypes [thymol (T) and carvacrol (C)] using a controlled field experiment where larvae fed on caged plants of both chemotypes, haphazardly collected natural plants with and without beetle damage, and growth chamber experiments where larvae that hatched and briefly fed on one chemotype were reared on either chemotype. In the field experiment, plant chemotype did not affect larval weight or length, but did influence larval survival with almost 8.3 % more surviving on T plants. Herbivores reduced seed head area (86.5 % decrease), stem mass (41.2 %) and stem height (21.1 %) of caged plants, but this was independent of host chemotype. Natural plants experienced similar reductions in these variables (74.0, 41.4 and 8.7 %) and T chemotypes were more frequently damaged. In the growth chamber, larval relative growth rate (RGR) differed for both feeding history and year. Larvae from T natal plants reared on T hosts grew at almost twice the rate of those from C and reared on T. Larvae from either T or C natal plants reared on C plants showed intermediate growth rates. Additional analyses revealed natal plant chemotype as the most important factor, with the RGR of larvae from T natal plants almost one-third higher than that of those from C natal plants. These cumulative results demonstrate intraspecific variation in plant resistance that may lead to herbivore specialization on distinct host chemistry, which has implications for the evolutionary trajectory of both the insect and plant species. Published by Oxford University Press on behalf of the Annals of Botany Company.

  13. Effects of herbicide-treated host plants on the development of Mamestra brassicae L. caterpillars.

    PubMed

    Hahn, Melanie; Geisthardt, Martin; Brühl, Carsten A

    2014-11-01

    Herbicides are widely used pesticides that affect plants by changing their chemistry. In doing so, herbicides might also influence the quality of plants as food for herbivores. To study the effects of herbicides on host plant quality, 3 plant species (Plantago lanceolata L., P. major L., and Ranunculus acris L.) were treated with sublethal rates of either a sulfonylurea (Atlantis WG, Bayer CropScience) or a glyphosate (Roundup LB Plus, Monsanto) herbicide, and the development of caterpillars of the cabbage moth Mamestra brassicae L. that fed on these plants was observed. Of the 6 tested plant-herbicide combinations, 1 combination (R. acris + sulfonylurea herbicide) resulted in significantly lower caterpillar weight, increased time to pupation, and increased overall development time compared with larvae that were fed unsprayed plants. These results might be caused by a lower nutritional value of these host plants or increased concentrations of secondary metabolites that are involved in plant defense. The results of the present and other studies suggest potential risks to herbivores that feed on host plants treated with sublethal rates of herbicides. However, as the effects of herbicides on host plant quality appear to be species-specific and as there are numerous plant-herbicide-herbivore relationships in agricultural landscapes, a general reduction in herbicide contamination of nontarget habitats (e.g., field margins) might mitigate the negative effects of herbicides on host plant quality. © 2014 SETAC.

  14. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing Hemiptera in carbohydrate transfer across trophic levels.

    PubMed

    Helms, Ken R; Vinson, S Bradleigh

    2008-04-01

    Studies have suggested that plant-based nutritional resources are important in promoting high densities of omnivorous and invasive ants, but there have been no direct tests of the effects of these resources on colony productivity. We conducted an experiment designed to determine the relative importance of plants and honeydew-producing insects feeding on plants to the growth of colonies of the invasive ant Solenopsis invicta (Buren). We found that colonies of S. invicta grew substantially when they only had access to unlimited insect prey; however, colonies that also had access to plants colonized by honeydew-producing Hemiptera grew significantly and substantially ( approximately 50%) larger. Our experiment also showed that S. invicta was unable to acquire significant nutritional resources directly from the Hemiptera host plant but acquired them indirectly from honeydew. Honeydew alone is unlikely to be sufficient for colony growth, however, and both carbohydrates abundant in plants and proteins abundant in animals are likely to be necessary for optimal growth. Our experiment provides important insight into the effects of a common tritrophic interaction among an invasive mealybug, Antonina graminis (Maskell), an invasive host grass, Cynodon dactylon L. Pers., and S. invicta in the southeastern United States, suggesting that interactions among these species can be important in promoting extremely high population densities of S. invicta.

  15. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies.

    PubMed

    Ramírez-Viga, Thai Khan; Aguilar, Ramiro; Castillo-Argüero, Silvia; Chiappa-Carrara, Xavier; Guadarrama, Patricia; Ramos-Zapata, José

    2018-06-04

    The presence of arbuscular mycorrhizal fungi (AMF) in wetlands is widespread. Wetlands are transition ecosystems between aquatic and terrestrial systems, where shallow water stands or moves over the land surface. The presence of AMF in wetlands suggests that they are ecologically significant; however, their function is not yet clearly understood. With the aim of determining the overall magnitude and direction of AMF effect on wetland plants associated with them in pot assays, we conducted a meta-analysis of data extracted from 48 published studies. The AMF effect on their wetland hosts was estimated through different plant attributes reported in the studies including nutrient acquisition, photosynthetic activity, biomass production, and saline stress reduction. As the common metric, we calculated the standardized unbiased mean difference (Hedges' d) of wetland plant performance attributes in AMF-inoculated plants versus non-AMF-inoculated plants. Also, we examined a series of moderator variables regarding symbiont identity and experimental procedures that could influence the magnitude and direction of an AMF effect. Response patterns indicate that wetland plants significantly benefit from their association with AMF, even under flooded conditions. The beneficial AMF effect differed in magnitude depending on the plant attribute selected to estimate it in the published studies. The nature of these benefits depends on the identity of the host plant, phosphorus addition, and water availability in the soil where both symbionts develop. Our meta-analysis synthetizes the relationship of AMF with wetland plants in pot assays and suggests that AMF may be of comparable importance to wetland plants as to terrestrial plants.

  16. Abiotic Stresses Shift Belowground Populus-Associated Bacteria Toward a Core Stress Microbiome

    PubMed Central

    Carter, Kelsey R.; Carrell, Alyssa A.; Jun, Se-Ran; Jawdy, Sara S.; Vélez, Jessica M.; Gunter, Lee E.; Yang, Zamin; Nookaew, Intawat; Engle, Nancy L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Pelletier, Dale A.; Weston, David J.

    2018-01-01

    ABSTRACT Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome of Populus deltoides changes in response to diverse environmental conditions, including water limitation, light limitation (shading), and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress. IMPORTANCE The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth. PMID:29404422

  17. Abiotic Stresses Shift Belowground Populus -Associated Bacteria Toward a Core Stress Microbiome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timm, Collin M.; Carter, Kelsey R.; Carrell, Alyssa A.

    Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome ofPopulus deltoideschanges in response to diverse environmental conditions, including water limitation, light limitation (shading),more » and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress.The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.« less

  18. Abiotic Stresses Shift Belowground Populus -Associated Bacteria Toward a Core Stress Microbiome

    DOE PAGES

    Timm, Collin M.; Carter, Kelsey R.; Carrell, Alyssa A.; ...

    2018-01-23

    Adverse growth conditions can lead to decreased plant growth, productivity, and survival, resulting in poor yields or failure of crops and biofeedstocks. In some cases, the microbial community associated with plants has been shown to alleviate plant stress and increase plant growth under suboptimal growing conditions. A systematic understanding of how the microbial community changes under these conditions is required to understand the contribution of the microbiome to water utilization, nutrient uptake, and ultimately yield. Using a microbiome inoculation strategy, we studied how the belowground microbiome ofPopulus deltoideschanges in response to diverse environmental conditions, including water limitation, light limitation (shading),more » and metal toxicity. While plant responses to treatments in terms of growth, photosynthesis, gene expression and metabolite profiles were varied, we identified a core set of bacterial genera that change in abundance in response to host stress. The results of this study indicate substantial structure in the plant microbiome community and identify potential drivers of the phytobiome response to stress.The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.« less

  19. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium

    PubMed Central

    Grewe, Felix; Zhu, Andan; Mower, Jeffrey P.

    2016-01-01

    The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches. PMID:27664178

  20. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars

    PubMed Central

    von Mérey, Georg E.; Veyrat, Nathalie; D'Alessandro, Marco; Turlings, Ted C. J.

    2013-01-01

    Plants under herbivore attack emit volatile organic compounds (VOCs) that can serve as foraging cues for natural enemies. Adult females of Lepidoptera, when foraging for host plants to deposit eggs, are commonly repelled by herbivore-induced VOCs, probably to avoid competition and natural enemies. Their larval stages, on the other hand, have been shown to be attracted to inducible VOCs. We speculate that this contradicting behavior of lepidopteran larvae is due to a need to quickly find a new suitable host plant if they have fallen to the ground. However, once they are on a plant they might avoid the sites with fresh damage to limit competition and risk of cannibalism by conspecifics, as well as exposure to natural enemies. To test this we studied the effect of herbivore-induced VOCs on the attraction of larvae of the moth Spodoptera littoralis and on their feeding behavior. The experiments further considered the importance of previous feeding experience on the responses of the larvae. It was confirmed that herbivore-induced VOCs emitted by maize plants are attractive to the larvae, but exposure to the volatiles decreased the growth rate of caterpillars at early developmental stages. Larvae that had fed on maize previously were more attracted by VOCs of induced maize than larvae that had fed on artificial diet. At relatively high concentrations synthetic green leaf volatiles, indicative of fresh damage, also negatively affected the growth rate of caterpillars, but not at low concentrations. In all cases, feeding by the later stages of the larvae was not affected by the VOCs. The results are discussed in the context of larval foraging behavior under natural conditions, where there may be a trade-off between using available host plant signals and avoiding competitors and natural enemies. PMID:23825475

  1. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies

    PubMed Central

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-01-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44–0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (rPIC = −0.77) and thicker root diameter (rPIC = −0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (rPIC = 0.85, −0.87), suggesting constraints on colonization linked to the evolution of root morphology. PMID:25247056

  2. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies.

    PubMed

    Comas, Louise H; Callahan, Hilary S; Midford, Peter E

    2014-08-01

    Root traits vary enormously among plant species but we have little understanding of how this variation affects their functioning. Of central interest is how root traits are related to plant resource acquisition strategies from soil. We examined root traits of 33 woody species from northeastern US forests that form two of the most common types of mutualisms with fungi, arbuscular mycorrhizas (AM) and ectomycorrhizas (EM). We examined root trait distribution with respect to plant phylogeny, quantifying the phylogenetic signal (K statistic) in fine root morphology and architecture, and used phylogenetically independent contrasts (PICs) to test whether taxa forming different mycorrhizal associations had different root traits. We found a pattern of species forming roots with thinner diameters as species diversified across time. Given moderate phylogenetic signals (K = 0.44-0.68), we used PICs to examine traits variation among taxa forming AM or EM, revealing that hosts of AM were associated with lower branching intensity (r PIC = -0.77) and thicker root diameter (r PIC = -0.41). Because EM evolved relatively more recently and intermittently across plant phylogenies, significant differences in root traits and colonization between plants forming AM and EM imply linkages between the evolution of these biotic interactions and root traits and suggest a history of selection pressures, with trade-offs for supporting different types of associations. Finally, across plant hosts of both EM and AM, species with thinner root diameters and longer specific root length (SRL) had less colonization (r PIC = 0.85, -0.87), suggesting constraints on colonization linked to the evolution of root morphology.

  3. Interspecific variation in resistance of Asian, European, and North American birches (Betula spp.) to bronze birch borer (Coleoptera: Buprestidae).

    PubMed

    Nielsen, David G; Muilenburg, Vanessa L; Herms, Daniel A

    2011-06-01

    Bronze birch borer (Agrilus anxius Gory) is the key pest of birches (Betula spp.) in North America, several of which have been recommended for ornamental landscapes based on anecdotal reports of borer resistance that had not been confirmed experimentally. In a 20-yr common garden experiment initiated in 1979 in Ohio, North American birch species, including paper birch (Betula papyrifera Marshall), 'Whitespire' gray birch (Betula populifolia Marshall), and river birch (Betula nigra L.), were much more resistant to bronze birch borer than species indigenous to Europe and Asia, including European white birch (Betula pendula Roth), downy birch (Betula pubescens Ehrh.), monarch birch (Betula maximowicziana Regel), and Szechuan white birch (Betula szechuanica Jansson). Within 8 yr of planting, every European white, downy, and Szechuan birch had been colonized and killed, although 100% of monarch birch had been colonized and 88% of these plants were killed after nine years. Conversely, 97% of river birch, 76% of paper birch, and 73% Whitespire gray birch were alive 20 yr after planting, and river birch showed no evidence of colonization. This pattern is consistent with biogeographic theory of plant defense: North American birch species that share a coevolutionary history with bronze birch borer were much more resistant than naïve hosts endemic to Europe and Asia, possibly by virtue of evolution of targeted defenses. This information suggests that if bronze birch borer were introduced to Europe or Asia, it could threaten its hosts there on a continental scale. This study also exposed limitations of anecdotal observation as evidence of host plant resistance.

  4. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.

    PubMed

    Endara, María-José; Coley, Phyllis D; Ghabash, Gabrielle; Nicholls, James A; Dexter, Kyle G; Donoso, David A; Stone, Graham N; Pennington, R Toby; Kursar, Thomas A

    2017-09-05

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore-host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead "chase" hosts based on the herbivore's own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution.

  5. Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system

    PubMed Central

    Coley, Phyllis D.; Ghabash, Gabrielle; Nicholls, James A.; Donoso, David A.; Stone, Graham N.; Pennington, R. Toby; Kursar, Thomas A.

    2017-01-01

    Coevolutionary models suggest that herbivores drive diversification and community composition in plants. For herbivores, many questions remain regarding how plant defenses shape host choice and community structure. We addressed these questions using the tree genus Inga and its lepidopteran herbivores in the Amazon. We constructed phylogenies for both plants and insects and quantified host associations and plant defenses. We found that similarity in herbivore assemblages between Inga species was correlated with similarity in defenses. There was no correlation with phylogeny, a result consistent with our observations that the expression of defenses in Inga is independent of phylogeny. Furthermore, host defensive traits explained 40% of herbivore community similarity. Analyses at finer taxonomic scales showed that different lepidopteran clades select hosts based on different defenses, suggesting taxon-specific histories of herbivore–host plant interactions. Finally, we compared the phylogeny and defenses of Inga to phylogenies for the major lepidopteran clades. We found that closely related herbivores fed on Inga with similar defenses rather than on closely related plants. Together, these results suggest that plant defenses might be more evolutionarily labile than the herbivore traits related to host association. Hence, there is an apparent asymmetry in the evolutionary interactions between Inga and its herbivores. Although plants may evolve under selection by herbivores, we hypothesize that herbivores may not show coevolutionary adaptations, but instead “chase” hosts based on the herbivore’s own traits at the time that they encounter a new host, a pattern more consistent with resource tracking than with the arms race model of coevolution. PMID:28827317

  6. Impact of host plant connectivity, crop border and patch size on adult Colorado potato beetle retention

    USDA-ARS?s Scientific Manuscript database

    Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant...

  7. Ozone impedes the ability of a herbivore to find its host

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Roulston, T.'ai H.; Zenker, John

    2013-03-01

    Plant-emitted hydrocarbons mediate several key interactions between plants and insects. They enhance the ability of pollinators and herbivores to locate suitable host plants, and parasitoids to locate herbivores. While plant volatiles provide strong chemical signals, these signals are potentially degraded by exposure to pollutants such as ozone, which has increased in the troposphere and is projected to continue to increase over the coming decades. Despite the potential broad ecological significance of reduced plant signaling effectiveness, few studies have examined behavioral responses of insects to their hosts in polluted environments. Here, we use a laboratory study to test the effect of ozone concentration gradients on the ability of the striped cucumber beetle (Acalymma vittatum) to locate flowers of its host plant, Cucurbita foetidissima. Y-tube experiments showed that ozone mixing ratios below 80 parts per billion (ppb) resulted in beetles moving toward their host plant, but levels above 80 ppb resulted in beetles moving randomly with respect to host location. There was no evidence that beetles avoided polluted air directly. The results show that ozone pollution has great potential to perniciously alter key interactions between plants and animals.

  8. Infection of host plants by Cucumber mosaic virus increases the susceptibility of Myzus persicae aphids to the parasitoid Aphidius colemani

    PubMed Central

    Mauck, Kerry E.; De Moraes, Consuelo M.; Mescher, Mark C.

    2015-01-01

    Plant viruses can profoundly alter the phenotypes of their host plants, with potentially far-reaching implications for ecology. Yet few studies have explored the indirect, host-mediated, effects of plant viruses on non-vector insects. We examined how infection of Cucurbita pepo plants by Cucumber mosaic virus (CMV) impacted the susceptibility of aphids (Myzus persicae) to attack by the parasitoid wasp Aphidius colemani. In semi-natural foraging assays, we observed higher rates of aphid parasitism on infected plants compared to healthy plants. Subsequent experiments revealed that this difference is not explained by different attack rates on plants differing in infection status, but rather by the fact that parasitoid larvae successfully complete their development more often when aphid hosts feed on infected plants. This suggests that the reduced nutritional quality of infected plants as host for aphids—documented in previous studies—compromises their ability to mount effective defenses against parasitism. Furthermore, our current findings indicate that the aphid diet during parasitoid development (rather than prior to wasp oviposition) is a key factor influencing resistance. These findings complement our previous work showing that CMV-induced changes in host plant chemistry alter patterns of aphid recruitment and dispersal in ways conducive to virus transmission. PMID:26043237

  9. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts.

    PubMed

    Ammar, El-Desouky; Tsai, Chi-Wei; Whitfield, Anna E; Redinbaugh, Margaret G; Hogenhout, Saskia A

    2009-01-01

    The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.

  10. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts.

    PubMed

    Albert, Markus; Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf

    2010-09-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca(2+)) release is the major second messenger during signal transduction. Therefore, we have studied Ca(2+) spiking in tomato and tobacco during infection with C. reflexa. In our recently published study Ca(2+) signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca(2+) release in the host plant was closely linked to the parasite's haustoria.

  11. Calcium signaling during the plant-plant interaction of parasitic Cuscuta reflexa with its hosts

    PubMed Central

    Kaiser, Bettina; van der Krol, Sander; Kaldenhoff, Ralf

    2010-01-01

    The plant parasite Cuscuta reflexa induces various responses in compatible and incompatible host plants. The visual reactions of both types of host plants including obvious morphological changes require the recognition of Cuscuta ssp. A consequently initiated signaling cascade is triggered which leads to a tolerance of the infection or, in the case of some incompatible host plants, to resistance. Calcium (Ca2+) release is the major second messenger during signal transduction. Therefore, we have studied Ca2+ spiking in tomato and tobacco during infection with C. reflexa. In our recently published study1 Ca2+ signals were monitored as bioluminescence in aequorin-expressing tomato plants after the onset of C. reflexa infestation. Signals at the attachment sites were observed from 30 to 48 h after infection. In an assay with leaf disks of aequorin-expressing tomato which were treated with different C. reflexa plant extracts it turned out that the substance that induced Ca2+ release in the host plant was closely linked to the parasite's haustoria. PMID:20818172

  12. A multifactor analysis of fungal and bacterial community structure of the root microbiome of mature Populus deltoides trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakya, Migun; Gottel, Neil R; Castro Gonzalez, Hector F

    2013-01-01

    Bacterial and fungal communities associated with plant roots are central to the host- health, survival and growth. However, a robust understanding of root-microbiome and the factors that drive host associated microbial community structure have remained elusive, especially in mature perennial plants from natural settings. Here, we investigated relationships of bacterial and fungal communities in the rhizosphere and root endosphere of the riparian tree species Populus deltoides, and the influence of soil parameters, environmental properties (host phenotype and aboveground environmental settings), host plant genotype (Simple Sequence Repeat (SSR) markers), season (Spring vs. Fall) and geographic setting (at scales from regional watershedsmore » to local riparian zones) on microbial community structure. Each of the trees sampled displayed unique aspects to it s associated community structure with high numbers of Operational Taxonomic Units (OTUs) specific to an individual trees (bacteria >90%, fungi >60%). Over the diverse conditions surveyed only a small number of OTUs were common to all samples within rhizosphere (35 bacterial and 4 fungal) and endosphere (1 bacterial and 1 fungal) microbiomes. As expected, Proteobacteria and Ascomycota were dominant in root communities (>50%) while other higher-level phylogenetic groups (Chytridiomycota, Acidobacteria) displayed greatly reduced abundance in endosphere compared to the rhizosphere. Variance partitioning partially explained differences in microbiome composition between all sampled roots on the basis of seasonal and soil properties (4% to 23%). While most variation remains unattributed, we observed significant differences in the microbiota between watersheds (Tennessee vs. North Carolina) and seasons (Spring vs. Fall). SSR markers clearly delineated two host populations associated with the samples taken in TN vs. NC, but overall genotypic distances did not have a significant effect on corresponding communities that could be separated from other measured effects.« less

  13. Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers.

    PubMed

    Aly, Radi; Hamamouch, Noureddine; Abu-Nassar, Jacklin; Wolf, Shmuel; Joel, Daniel M; Eizenberg, Hanan; Kaisler, Efrat; Cramer, Carole; Gal-On, Amit; Westwood, James H

    2011-12-01

    Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite. Accumulation of GFP was observed in the central vascular bundle of leaves and in the root phloem of transgenic tomato plants expressing GFP under the regulation of AtSUC2 promoter. When transgenic tomato plants expressing GFP were parasitized with P. aegyptiaca, extensive GFP was translocated from the host phloem to the parasite phloem and accumulated in both Phelipanche tubercles and shoots. No movement of GFP to the parasite was observed when tobacco plants expressing GFP targeted to the ER were parasitized with P. aegyptiaca. Experiments using fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite demonstrated that Phelipanche absorbs dextrans up to 70 kDa in size from the host and that this movement can be bi-directional. In the present study, we prove for the first time delivery of proteins from host to the parasitic weed P. aegyptiaca via phloem connections, providing information for developing parasite resistance strategies.

  14. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions?

    PubMed

    Genre, Andrea; Russo, Giulia

    2016-01-01

    Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.

  15. Evaluation of a Bead-Free Coimmunoprecipitation Technique for Identification of Virus-Host Protein Interactions Using High-Resolution Mass Spectrometry.

    PubMed

    DeBlasio, Stacy L; Bereman, Michael S; Mahoney, Jaclyn; Thannhauser, Theodore W; Gray, Stewart M; MacCoss, Michael J; Cilia Heck, Michelle

    2017-09-01

    Protein interactions between virus and host are essential for viral propagation and movement, as viruses lack most of the proteins required to thrive on their own. Precision methods aimed at disrupting virus-host interactions represent new approaches to disease management but require in-depth knowledge of the identity and binding specificity of host proteins within these interaction networks. Protein coimmunoprecipitation (co-IP) coupled with mass spectrometry (MS) provides a high-throughput way to characterize virus-host interactomes in a single experiment. Common co-IP methods use antibodies immobilized on agarose or magnetic beads to isolate virus-host complexes in solutions of host tissue homogenate. Although these workflows are well established, they can be fairly laborious and expensive. Therefore, we evaluated the feasibility of using antibody-coated microtiter plates coupled with MS analysis as an easy, less expensive way to identify host proteins that interact with Potato leafroll virus (PLRV), an insect-borne RNA virus that infects potatoes. With the use of the bead-free platform, we were able to detect 36 plant and 1 nonstructural viral protein significantly coimmunoprecipitating with PLRV. Two of these proteins, a 14-3-3 signal transduction protein and malate dehydrogenase 2 (mMDH2), were detected as having a weakened or lost association with a structural mutant of the virus, demonstrating that the bead-free method is sensitive enough to detect quantitative differences that can be used to pin-point domains of interaction. Collectively, our analysis shows that the bead-free platform is a low-cost alternative that can be used by core facilities and other investigators to identify plant and viral proteins interacting with virions and/or the viral structural proteins.

  16. Key Transport and Ammonia Recycling Genes Involved in Aphid Symbiosis Respond to Host-Plant Specialization.

    PubMed

    Kim, Dohyup; Minhas, Bushra F; Li-Byarlay, Hongmei; Hansen, Allison K

    2018-05-25

    Microbes are known to influence insect-plant interactions; however, it is unclear if host-plant diet influences the regulation of nutritional insect symbioses. The pea aphid, Acyrthosiphon pisum , requires its nutritional endosymbiont, Buchnera , for the production of essential amino acids. We hypothesize that key aphid genes that regulate the nutritional symbioses respond to host-plant diet when aphids feed on a specialized (alfalfa) compared to a universal host-plant diet (fava), which vary in amino acid profiles. Using RNA-Seq and whole genome bisulfite sequencing, we measured gene expression and DNA methylation profiles for such genes when aphids fed on either their specialized or universal host-plant diets. Our results reveal that when aphids feed on their specialized host-plant they significantly up-regulate and/or hypo-methylate key aphid genes in bacteriocytes related to the amino acid metabolism, including glutamine synthetase in the GOGAT cycle that recycles ammonia into glutamine and the glutamine transporter ApGLNT1 Moreover, regardless of what host-plant aphids feed on we observed significant up-regulation and differential methylation of key genes involved in the amino acid metabolism and the glycine/serine metabolism, a metabolic program observed in proliferating cancer cells potentially to combat oxidative stress. Based on our results, we suggest that this regulatory response of key symbiosis genes in bacteriocytes allows aphids to feed on a suboptimal host-plant that they specialize on. Copyright © 2018, G3: Genes, Genomes, Genetics.

  17. Insights into animal and plant lectins with antimicrobial activities.

    PubMed

    Dias, Renata de Oliveira; Machado, Leandro Dos Santos; Migliolo, Ludovico; Franco, Octavio Luiz

    2015-01-05

    Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.

  18. Plant defences on land and in water: why are they so different?

    PubMed Central

    2016-01-01

    Background Plants (attached photosynthesizing organisms) are eaten by a wide variety of herbivorous animals. Despite a vast literature on plant defence, contrasting patterns of antiherbivore adaptation among marine, freshwater and land plants have been little noticed, documented or understood. Scope Here I show how the surrounding medium (water or air) affects not only the plants themselves, but also the sensory and locomotor capacities of herbivores and their predators, and I discuss patterns of defence and host specialization of plants and herbivores on land and in water. I analysed the literature on herbivory with special reference to mechanical defences and sensory cues emitted by plants. Spines, hairs, asymmetrically oriented features on plant surfaces, and visual and olfactory signals that confuse or repel herbivores are common in land plants but rare or absent in water-dwelling plants. Small terrestrial herbivores are more often host-specific than their aquatic counterparts. I propose that patterns of selection on terrestrial herbivores and plants differ from those on aquatic species. Land plants must often attract animal dispersers and pollinators that, like their herbivorous counterparts, require sophisticated locomotor and sensory abilities. Plants counter their attractiveness to animal helpers by evolving effective contact defences and long-distance cues that mislead or warn herbivores. The locomotor and sensory world of small aquatic herbivores is more limited. These characteristics result from the lower viscosity and density of air compared with water as well as from limitations on plant physiology and signal transmission in water. Evolutionary innovations have not eliminated the contrasts in the conditions of life between water and land. Conclusion Plant defence can be understood fully when herbivores and their victims are considered in the broader context of other interactions among coexisting species and of the medium in which these interactions occur. PMID:27091505

  19. The targeting of plant cellular systems by injected type III effector proteins.

    PubMed

    Lewis, Jennifer D; Guttman, David S; Desveaux, Darrell

    2009-12-01

    The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector-host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.

  20. Evidence for a Common Toolbox Based on Necrotrophy in a Fungal Lineage Spanning Necrotrophs, Biotrophs, Endophytes, Host Generalists and Specialists

    PubMed Central

    Andrew, Marion; Barua, Reeta; Short, Steven M.; Kohn, Linda M.

    2012-01-01

    The Sclerotiniaceae (Ascomycotina, Leotiomycetes) is a relatively recently evolved lineage of necrotrophic host generalists, and necrotrophic or biotrophic host specialists, some latent or symptomless. We hypothesized that they inherited a basic toolbox of genes for plant symbiosis from their common ancestor. Maintenance and evolutionary diversification of symbiosis could require selection on toolbox genes or on timing and magnitude of gene expression. The genes studied were chosen because their products have been previously investigated as pathogenicity factors in the Sclerotiniaceae. They encode proteins associated with cell wall degradation: acid protease 1 (acp1), aspartyl protease (asps), and polygalacturonases (pg1, pg3, pg5, pg6), and the oxalic acid (OA) pathway: a zinc finger transcription factor (pac1), and oxaloacetate acetylhydrolase (oah), catalyst in OA production, essential for full symptom production in Sclerotinia sclerotiorum. Site-specific likelihood analyses provided evidence for purifying selection in all 8 pathogenicity-related genes. Consistent with an evolutionary arms race model, positive selection was detected in 5 of 8 genes. Only generalists produced large, proliferating disease lesions on excised Arabidopsis thaliana leaves and oxalic acid by 72 hours in vitro. In planta expression of oah was 10–300 times greater among the necrotrophic host generalists than necrotrophic and biotrophic host specialists; pac1 was not differentially expressed. Ability to amplify 6/8 pathogenicity related genes and produce oxalic acid in all genera are consistent with the common toolbox hypothesis for this gene sample. That our data did not distinguish biotrophs from necrotrophs is consistent with 1) a common toolbox based on necrotrophy and 2) the most conservative interpretation of the 3-locus housekeeping gene phylogeny – a baseline of necrotrophy from which forms of biotrophy emerged at least twice. Early oah overexpression likely expands the host range of necrotrophic generalists in the Sclerotiniaceae, while specialists and biotrophs deploy oah, or other as-yet-unknown toolbox genes, differently. PMID:22253834

  1. Only a Few Fungal Species Dominate Highly Diverse Mycofloras Associated with the Common Reed

    PubMed Central

    Neubert, Karin; Mendgen, Kurt; Brinkmann, Henner; Wirsel, Stefan G. R.

    2006-01-01

    Plants are naturally colonized by many fungal species that produce effects ranging from beneficial to pathogenic. However, how many of these fungi are linked with a single host plant has not been determined. Furthermore, the composition of plant-associated fungal communities has not been rigorously determined. We investigated these essential issues by employing the perennial wetland reed Phragmites australis as a model. DNA extracted from roots, rhizomes, stems, and leaves was used for amplification and cloning of internal transcribed spacer rRNA gene fragments originating from reed-associated fungi. A total of 1,991 clones from 15 clone libraries were differentiated by restriction fragment length polymorphism analyses into 345 operational taxonomical units (OTUs). Nonparametric estimators for total richness (Chao1 and ACE) and also a parametric log normal model predicted a total of about 750 OTUs if the libraries were infinite. Sixty-two percent of the OTUs sequenced were novel at a threshold of 3%. Several of these OTUs represented undocumented fungal species, which also included higher taxonomic levels. In spite of the high diversity of the OTUs, the mycofloras of vegetative organs were dominated by just a few typical fungi, which suggested that competition and niche differentiation influence the composition of plant-associated fungal communities. This suggestion was independently supported by the results of nested PCR assays specifically monitoring two OTUs over 3 years, which revealed significant preferences for host habitat and host organ. PMID:16461657

  2. Effects of bacterial secondary symbionts on host plant use in pea aphids

    PubMed Central

    McLean, A. H. C.; van Asch, M.; Ferrari, J.; Godfray, H. C. J.

    2011-01-01

    Aphids possess several facultative bacterial symbionts that have important effects on their hosts' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species. PMID:20843842

  3. Host plant utilization in the comma butterfly: sources of variation and evolutionary implications.

    PubMed

    Janz, Niklas; Nylin, Sören; Wedell, Nina

    1994-09-01

    A major challenge in the study of insect-host plant interactions is to understand how the different aspects of offspring performance interact to produce a preference hierarchy in the ovipositing females. In this paper we investigate host plant preference of the polyphagous butterfly Polygonia c-album (Lepidoptera: Nymphalidae) and compare it with several aspects of the life history of its offspring (growth rate, development time, adult size, survival and female fecundity). Females and offspring were tested on four naturally used host plants (Urtica dioica, Ulmus glabra, Salix caprea, and Betula pubescens). There was substantial individual variation in host plant preference, including reversals in rank order, but the differences were largely confined to differences in the ranking of Urtica dioica and S. caprea. Different aspects of performance on these two plants gave conflicting and complementary results, implying a trade-off between short development time on U. dioica, and larger size and higher fecundity on S. caprea. As all performance components showed low individual variation the large variation in host plant preference was interpreted as due to alternative oviposition strategies on the basis of similar 'performance hierarchies'. This indicates that the larval performance component of host-plant utilization may be more conservative to evolutionary change than the preference of ovipositing females. Possible macro-evolutionary implications of this are discussed.

  4. Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species

    PubMed Central

    Legeai, Fabrice; Gonzalez-Gonzalez, Angelica; Lavandero, Blas; Simon, Jean-Christophe

    2017-01-01

    The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes of a certain aphid host species (A. pisum) are reared on the same host plant. This difference seems to persist even after the different wasp populations were reared on the same aphid host in the laboratory for more than 50 generations. This indicates that either the imprinting process is very persistent or there is enough genetic/allelic variation between A. ervi populations. The role of distinct molecular mechanisms is discussed in terms of the formation of host fidelity. PMID:28852588

  5. Transcriptional profile and differential fitness in a specialist milkweed insect across host plants varying in toxicity.

    PubMed

    Birnbaum, Stephanie S L; Rinker, David C; Gerardo, Nicole M; Abbot, Patrick

    2017-12-01

    Interactions between plants and herbivorous insects have been models for theories of specialization and co-evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed-specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole-body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP-glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths. © 2017 John Wiley & Sons Ltd.

  6. The host range and impact of Bikasha collaris (Coleoptera: Chrysomelidae), a promising candidate agent for biological control of Chinese tallow, Triadica sebifera (Euphorbiaceae) in the United States

    USDA-ARS?s Scientific Manuscript database

    Native to China, the Chinese tallow, Triadica sebifera (Euphorbiaceae) is an aggressive woody invader in the southeastern United States. The flea beetle, Bikasha collaris (Coleoptera: Chrysomelidae), is a common herbivore attacking this plant in China. To evaluate its potential as a biological contr...

  7. Secondary Defense Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, Danaus plexippus.

    PubMed

    Gowler, Camden D; Leon, Kristoffer E; Hunter, Mark D; de Roode, Jacobus C

    2015-06-01

    In tri-trophic systems, herbivores may benefit from their host plants in fighting parasitic infections. Plants can provide parasite resistance in two contrasting ways: either directly, by interfering with the parasite, or indirectly, by increasing herbivore immunity or health. In monarch butterflies, the larval diet of milkweed strongly influences the fitness of a common protozoan parasite. Toxic secondary plant chemicals known as cardenolides correlate strongly with parasite resistance of the host, with greater cardenolide concentrations in the larval diet leading to lower parasite growth. However, milkweed cardenolides may covary with other indices of plant quality including nutrients, and a direct experimental link between cardenolides and parasite performance has not been established. To determine if the anti-parasitic activity of milkweeds is indeed due to secondary chemicals, as opposed to nutrition, we supplemented the diet of infected and uninfected monarch larvae with milkweed latex, which contains cardenolides but no nutrients. Across three experiments, increased dietary cardenolide concentrations reduced parasite growth in infected monarchs, which consequently had longer lifespans. However, uninfected monarchs showed no differences in lifespan across treatments, confirming that cardenolide-containing latex does not increase general health. Our results suggest that cardenolides are a driving force behind plant-derived resistance in this system.

  8. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495

  9. A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts.

    PubMed

    Huang, Renyan; Hui, Shugang; Zhang, Meng; Li, Pei; Xiao, Jinghua; Li, Xianghua; Yuan, Meng; Wang, Shiping

    2017-01-01

    Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility ( S ) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas -caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri ( Xcc ) causing canker in citrus and Xanthomonas campestris pv. vesicatoria ( Xcv ) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5 V 39E , CsTFIIAγ V 39E , pepper CaTFIIAγ V 39E , and tomato SlTFIIAγ V 39E also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγ V 39E -type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops.

  10. Companion Plants for Aphid Pest Management

    PubMed Central

    Ben-Issa, Refka; Gomez, Laurent; Gautier, Hélène

    2017-01-01

    A potential strategy for controlling pests is through the use of “companion plants” within a crop system. This strategy has been used in several trials to fight against a major crop insect pest: the aphid. We reviewed the literature to highlight the major mechanisms by which a companion plant may act. Trials carried out under laboratory or field conditions revealed that companion plants operate through several mechanisms. A companion plant may be associated with a target crop for various reasons. Firstly, it can attract aphids and draw them away from their host plants. Secondly, it can alter the recognition of the host plant. This effect is mostly attributed to companion plant volatiles since they disturb the aphid host plant location, and additionally they may react chemically and physiologically with the host plant, making it an unsuitable host for aphids. Thirdly, it can attract natural enemies by providing shelter and food resources. In this review, the feasibility of using companion plants is discussed. We conclude that many factors need to be taken into account for a successful companion plant strategy. For the best long-term results, companion plant strategies have to be combined with other alternative approaches against aphids. PMID:29053585

  11. Feeding Behaviour on Host Plants May Influence Potential Exposure to Bt Maize Pollen of Aglais Urticae Larvae (Lepidoptera, Nymphalidae).

    PubMed

    Lang, Andreas; Otto, Mathias

    2015-08-31

    Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles.

  12. Common mycelial networks impact competition in an invasive grass.

    PubMed

    Workman, Rachael E; Cruzan, Mitchell B

    2016-06-01

    Mycorrhizal hyphal complexes can connect multiple host plants to form common mycelial networks (CMNs) that may affect plant competitive outcomes and community composition through differential resource allocation. The impacts of CMN interactions on invasive plants are not well understood and could be crucial to the understanding of invasive plant establishment and success. We grew the invasive grass Brachypodium sylvaticum in intra- and interspecific pairings with native grass Bromus vulgaris in a greenhouse and controlled for the effects of CMN and root interactions by manipulating the belowground separation between competitors. Comparison of plant growth in pots that allowed CMN interactions and excluded root competition and vice versa, or both, allowed us to delineate the effects of network formation and root competition on invasive plant establishment and performance. Brachypodium sylvaticum grown in pots allowing for only hyphal interactions, but no root competition, displayed superior growth compared with conspecifics in other treatments. Invasive performance was poorest when pairs were not separated by a barrier. Shoot nitrogen content in B. sylvaticum was higher in mycorrhizal plants only when connections were allowed between competitors. Our results indicate that the presence of CMN networks can have positive effects on B. sylvaticum establishment and nutrient status, which may affect plant competition and invasion success. © 2016 Botanical Society of America.

  13. Host Plant-Associated Population Variation in the Carob Moth Ectomyelois ceratoniae in Iran: A Geometric Morphometric Analysis Suggests a Nutritional Basis.

    PubMed Central

    Mozaffarian, Fariba; Sarafrazi, Alimorad; Ganbalani, Gadir Nouri

    2007-01-01

    The carob moth, Ectomyelois ceratoniae (Zeller, 1839) (Lepidoptera: Pyralidae), is the most important pest of pomegranate in Iran. As it has been rarely recorded on other host plants, control methods have mostly been focused on its populations on pomegranate. In this study, shapes and sizes of wings were compared in populations on 4 host plants (pomegranate, fig, pistachio and walnut) using a landmark-based geometric morphometric method, and analysis of partial warp scores and centroid sizes. The results showed significantly smaller wing size in populations on pomegranate and a significant host plant-associated shape difference among populations as a consequence of allometric growth. This suggests that the wing size and shape differences among test populations may not have a genetic basis and could happen because of differences in the nutritional content of host plants. The results of the analysis suggest that the female carob moth lays her eggs on host plants that provide suitable conditions for hatching. The larger size of moths on hosts other than pomegranate showed that some host plants such as fig, pistachio and walnut can provide for increased stored nutritional reserves by larvae that may result in more successful over-wintering and higher fecundity in adults. This suggests that in spite of the more extensive activity of carob moth on pomegranate in Iran, populations on other host plants can have an important effect on expanding pest population sizes in following years which should be considered in control methods. PMID:20337550

  14. Data integration aids understanding of butterfly–host plant networks

    PubMed Central

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  15. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss.

    PubMed

    Schauer, S; Kutschera, U

    2011-04-01

    Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis, and an average DNA-DNA hybridization value of 8,4 %, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of "primitive" land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source.

  16. Host-choice reduces, but does not eliminate, the negative effects of a multi-species diet for an herbivorous beetle.

    PubMed

    Wetzel, William C; Thaler, Jennifer S

    2018-02-01

    A consequence of plant diversity is that it can allow or force herbivores to consume multiple plant species, which studies indicate can have major effects on herbivore fitness. An underappreciated but potentially important factor modulating the consequences of multi-species diets is the extent to which herbivores can choose their diets versus being forced to consume specific host-plant sequences. We examined how host-selection behavior alters the effects of multi-species diets using the Colorado potato beetle (Leptinotarsa decemlineata) and diets of potato plants (Solanum tuberosum), tomato plants (S. lycopersicum), or both. When we gave beetles simultaneous access to both plants, allowing them to choose their diets, their final mass was within 0.1% of the average mass across both monocultures and 43.6% lower than mass on potato, the superior host in monoculture. This result indicates these beetles do not benefit from a mixed diet, and that the presence of tomato, an inferior but suitable host, makes it difficult to use potato. In contrast, when we forced beetles to switch between host species, their final mass was 37.8% less than the average of beetles fed constant diets of either host species and within 3.5% of the mass on tomato even though they also fed on potato. This indicates preventing host-selection behavior magnified the negative effects of this multi-species diet. Our results imply that ecological contexts that constrain host-selection or force host-switches, such as communities with competition or predation, will lead plant species diversity to reduce the performance of insect herbivores.

  17. Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae?

    PubMed

    Duhamel, Marie; Pel, Roel; Ooms, Astra; Bücking, Heike; Jansa, Jan; Ellers, Jacintha; van Straalen, Nico M; Wouda, Tjalf; Vandenkoornhuyse, Philippe; Kiers, E Toby

    2013-09-01

    A key objective in ecology is to understand how cooperative strategies evolve and are maintained in species networks. Here, we focus on the tri-trophic relationship between arbuscular mycorrhizal (AM) fungi, host plants, and fungivores to ask if host plants are able to protect their mutualistic mycorrhizal partners from being grazed. Specifically, we test whether secondary metabolites are transferred from hosts to fungal partners to increase their defense against fungivores. We grew Plantago lanceolata hosts with and without mycorrhizal inoculum, and in the presence or absence of fungivorous springtails. We then measured fungivore effects on host biomass and mycorrhizal abundance (using quantitative PCR) in roots and soil. We used high-performance liquid chromatography to measure host metabolites in roots, shoots, and hyphae, focusing on catalpol, aucubin, and verbascoside. Our most striking result was that the metabolite catalpol was consistently found in AM fungal hyphae in host plants exposed to fungivores. When fungivores were absent, catalpol was undetectable in hyphae. Our results highlight the potential for plant-mediated protection of the mycorrhizal hyphal network.

  18. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Treesearch

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  19. Implications of a temperature increase for host plant range: predictions for a butterfly

    PubMed Central

    Audusseau, Hélène; Nylin, Sören; Janz, Niklas

    2013-01-01

    Although changes in phenology and species associations are relatively well-documented responses to global warming, the potential interactions between these phenomena are less well understood. In this study, we investigate the interactions between temperature, phenology (in terms of seasonal timing of larval growth) and host plant use in the polyphagous butterfly Polygonia c-album. We found that the hierarchy of larval performance on three natural host plants was not modified by a temperature increase as such. However, larval performance on each host plant and temperature treatment was affected by rearing season. Even though larvae performed better at the higher temperature regardless of the time of the rearing, relative differences between host plants changed with the season. For larvae reared late in the season, performance was always better on the herbaceous plant than on the woody plants. In this species, it is likely that a prolonged warming will lead to a shift from univoltinism to bivoltinism. The demonstrated interaction between host plant suitability and season means that such a shift is likely to lead to a shift in selective regime, favoring specialization on the herbaceous host. Based on our result, we suggest that host range evolution in response to temperature increase would in this species be highly contingent on whether the population undergoes a predicted shift from one to two generations. We discuss the effect of global warming on species associations and the outcome of asynchrony in rates of phenological change. PMID:24101991

  20. Host Plant Record for the Fruit Flies, Anastrepha fumipennis and A. nascimentoi (Diptera, Tephritidae)

    PubMed Central

    Uramoto, Keiko; Martins, David S.; Lima, Rita C. A.; Zucchi, Roberto A.

    2008-01-01

    The first host plant record for Anastrepha fumipennis Lima (Diptera: Tephritidae) in Geissospermum laeve (Vell.) Baill (Apocynaceae) and for A. nascimentoi Zucchi found in Cathedra bahiensis Sleumer (Olacaceae) was determined in a host plant survey of fruit flies undertaken at the “Reserva Natural da Companhia Vale do Rio Doce”. This reserve is located in an Atlantic Rain Forest remnant area, in Linhares county, state of Espírito Santo, Brazil. The phylogenetic relationships of Anastrepha species and their hosts are discussed. The occurrence of these fruit fly species in relation to the distribution range of their host plants is also discussed. PMID:20302458

  1. Pollination niche overlap between a parasitic plant and its host.

    PubMed

    Ollerton, Jeff; Stott, Adrian; Allnutt, Emma; Shove, Sam; Taylor, Chloe; Lamborn, Ellen

    2007-03-01

    Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.

  2. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding.

    PubMed

    Smith, Jason D; Woldemariam, Melkamu G; Mescher, Mark C; Jander, Georg; De Moraes, Consuelo M

    2016-09-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. © 2016 American Society of Plant Biologists. All rights reserved.

  3. Natal Host Plants Can Alter Herbivore Competition.

    PubMed

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  4. Diversity and distribution of Wolbachia in relation to geography, host plant affiliation and life cycle of a heterogonic gall wasp.

    PubMed

    Schuler, Hannes; Egan, Scott P; Hood, Glen R; Busbee, Robert W; Driscoe, Amanda L; Ott, James R

    2018-03-27

    The maternally inherited endosymbiont Wolbachia is widespread in arthropods and nematodes and can play an important role in the ecology and evolution of its host through reproductive manipulation. Here, we survey Wolbachia in Belonocnema treatae, a widely distributed North American cynipid gall forming wasp that exhibits regional host specialization on three species of oaks and alternation of sexually and asexually reproducing generations. We investigated whether patterns of Wolbachia infection and diversity in B. treatae are associated with the insect's geographic distribution, host plant association, life cycle, and mitochondrial evolutionary history. Screening of 463 individuals from 23 populations including sexual and asexual generations from all three host plants across the southern U.S. showed an average infection rate of 56% with three common Wolbachia strains: wTre1-3 and an additional rare variant wTre4. Phylogenetic analysis based on wsp showed that these strains are unrelated and likely independently inherited. We found no difference in Wolbachia infection frequency among host plant associated populations or between the asexual and sexual generations, or between males and females of the sexual generation. Partially incomplete Wolbachia transmission rates might explain the occurrence of uninfected individuals. A parallel analysis of the mitochondrial cytochrome oxidase I gene in B. treatae showed high mtDNA haplotype diversity in both infected and uninfected populations suggesting an ancestral infection by Wolbachia as well as a clear split between eastern and western B. treatae mtDNA clades with a sequence divergence of > 6%. The strain wTre1 was present almost exclusively in the western clade while wTre2 and wTre3 occur almost exclusively in eastern populations. In contrast, the same strains co-occur as double-infections in Georgia and triple-infections in two populations in central Florida. The diversity of Wolbachia across geographically and genetically distinct populations of B. treatae and the co-occurrence of the same strains within three populations highlights the complex infection dynamics in this system. Moreover, the association of distinct Wolbachia strains with mitochondrial haplotypes of its host in populations infected by different Wolbachia strains suggests a potential role of the endosymbiont in reproductive isolation in B. treatae.

  5. The Cotesia sesamiae story: insight into host-range evolution in a Hymenoptera parasitoid and implication for its use in biological control programs.

    PubMed

    Kaiser, L; Dupas, S; Branca, A; Herniou, E A; Clarke, C W; Capdevielle Dulac, C; Obonyo, J; Benoist, R; Gauthier, J; Calatayud, P A; Silvain, J F; Le Ru, B P

    2017-12-01

    This review covers nearly 20 years of studies on the ecology, physiology and genetics of the Hymenoptera Cotesia sesamiae, an African parasitoid of Lepidoptera that reduces populations of common maize borers in East and South Africa. The first part of the review presents studies based on sampling of C. sesamiae from maize crops in Kenya. From this agrosystem including one host plant and three main host borer species, studies revealed two genetically differentiated populations of C. sesamiae species adapted to their local host community, and showed that their differentiation involved the joint evolution of virulence genes and sensory mechanisms of host acceptance, reinforced by reproductive incompatibility due to Wolbachia infection status and natural inbreeding. In the second part, we consider the larger ecosystem of wild Poales plant species hosting many Lepidoptera stem borer species that are potential hosts for C. sesamiae. The hypothesis of other host-adapted C. sesamiae populations was investigated based on a large sampling of stem borer larvae on various Poales across sub-Saharan Africa. The sampling provided information on the respective contribution of local hosts, biogeography and Wolbachia in the genetic structure of C. sesamiae populations. Molecular evolution analyses highlighted that several bracovirus genes were under positive selection, some of them being under different selection pressure in C. sesamiae populations adapted to different hosts. This suggests that C. sesamiae host races result from co-evolution acting at the local scale on different bracovirus genes. The third part considers the mechanisms driving specialization. C. sesamiae host races are more or less host-specialized. This character is crucial for efficient and environmentally-safe use of natural enemies for biological control of pests. One method to get an insight in the evolutionary stability of host-parasite associations is to characterize the phylogenetic relationships between the so-called host-races. Based on the construction of a phylogeny of C. sesamiae samples from various host- and plant species, we revealed three main lineages. Mechanisms of differentiation are discussed with regard to the geography and ecology of the samples. One of the lineage presented all the hallmarks of a distinct species, which has been morphologically described and is now studied in the perspective of being used as biological control agent against Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), a major maize pest in West Africa and Mediterranean countries (see Benoist et al. 2017). The fourth part reviews past and present use of C. sesamiae in biological control, and points out the interest of such molecular ecology studies to reconcile biodiversity and food security stakes in future biological control.

  6. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader?

    USGS Publications Warehouse

    Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J.

    2001-01-01

    Plant symbiotic fungi are generally thought to express a single lifestyle that might increase (mutualism), decrease (parasitism), or have no influence (commensalism) on host fitness. However, data are presented here demonstrating that plant pathogenic Colletotrichum species are able to asymptomatically colonize plants and express nonpathogenic lifestyles. Experiments were conducted in growth chambers and plant colonization was assessed by emergence of fungi from surface sterilized plant tissues. Expression of symbiotic lifestyles was assessed by monitoring the ability of fungi to confer disease resistance, drought tolerance and growth enhancement. Several pathogenic Colletotrichum species expressed either mutualistic or commensal lifestyles in plants not known to be hosts. Mutualists conferred disease resistance, drought tolerance, and/or growth enhancement to host plants. Lifestyle-altered mutants expressing nonpathogenic lifestyles had greater host ranges than the parental wildtype isolate. Successive colonization studies indicated that the ability of a symbiont to colonize a plant was dependent on previous colonization events and the lifestyles expressed by the initial colonizing fungus. The results indicate that the outcome of symbiosis is controlled by the plant's physiology. ?? New Phytologist.

  7. Rhizosphere pseudomonads as probiotics improving plant health.

    PubMed

    Kim, Young Cheol; Anderson, Anne J

    2018-04-20

    Many root-colonizing microbes are multifaceted in traits that improve plant health. Although isolates designated as biological control agents directly reduce pathogen growth, many exert additional beneficial features that parallel changes induced in animal and other hosts by health-promoting microbes termed probiotics. Both animal and plant probiotics cause direct antagonism of pathogens and induce systemic immunity in the host to pathogens and other stresses. They also alter host development, and improve host nutrition. The probiotic root-colonizing pseudomonads are generalists in terms of plant hosts, soil habitats and the array of stress responses that are ameliorated in the plant. This review illustrates how the probiotic pseudomonads, nurtured by the C and N sources released by the plant in root exudates, form protective biofilms on the root surface and produce the metabolites or enzymes to boost plant health. The findings reveal the multifunctional nature of many of the microbial metabolites in the plant-probiotic interplay. The beneficial effects of probiotics on plant function can contribute to sustainable yield and quality in agricultural production. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  8. Losing a battle but winning the war: moving past preference-performance to understand native herbivore-novel host plant interactions.

    PubMed

    Brown, Leone M; Breed, Greg A; Severns, Paul M; Crone, Elizabeth E

    2017-02-01

    Introduced plants can positively affect population viability by augmenting the diet of native herbivores, but can negatively affect populations if they are subpar or toxic resources. In organisms with complex life histories, such as insects specializing on host plants, the impacts of a novel host may differ across life stages, with divergent effects on population persistence. Most research on effects of novel hosts has focused on adult oviposition preference and larval performance, but adult preference may not optimize offspring performance, nor be indicative of host quality from a demographic perspective. We compared population growth rates of the Baltimore checkerspot butterfly, Euphydryas phaeton, on an introduced host, Plantago lanceolata (English plantain), and the native host Chelone glabra (white turtlehead). Contrary to the previous findings suggesting that P. lanceolata could be a population sink, we found higher population growth rates (λ) on the introduced than the native host, even though some component parameters of λ were higher on the native host. Our findings illustrate the importance of moving beyond preference-performance studies to integrate vital rates across all life stages for evaluating herbivore-host plant relationships. Single measures of preference or performance are not sufficient proxies for overall host quality nor do they provide insights into longer term consequences of novel host plant use. In our system, in particular, P. lanceolata may buffer checkerspot populations when the native host is limiting, but high growth rates could lead to crashes over longer time scales.

  9. Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems.

    PubMed

    Bell, T L; Adams, M A

    2011-01-01

    This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association.

  10. Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.

    PubMed

    Gardner, Allison M; Muturi, Ephantus J; Overmier, Leah D; Allan, Brian F

    2017-12-01

    Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.

  11. Evolution of Gustatory Receptor Gene Family Provides Insights into Adaptation to Diverse Host Plants in Nymphalid Butterflies.

    PubMed

    Suzuki, Hiromu C; Ozaki, Katsuhisa; Makino, Takashi; Uchiyama, Hironobu; Yajima, Shunsuke; Kawata, Masakado

    2018-06-01

    The host plant range of herbivorous insects is a major aspect of insect-plant interaction, but the genetic basis of host range expansion in insects is poorly understood. In butterflies, gustatory receptor genes (GRs) play important roles in host plant selection by ovipositing females. Since several studies have shown associations between the repertoire sizes of chemosensory gene families and the diversity of resource use, we hypothesized that the increase in the number of genes in the GR family is associated with host range expansion in butterflies. Here, we analyzed the evolutionary dynamics of GRs among related species, including the host generalist Vanessa cardui and three specialists. Although the increase of the GR repertoire itself was not observed, we found that the gene birth rate of GRs was the highest in the lineage leading to V. cardui compared with other specialist lineages. We also identified two taxon-specific subfamilies of GRs, characterized by frequent lineage-specific duplications and higher non-synonymous substitution rates. Together, our results suggest that frequent gene duplications in GRs, which might be involved in the detection of plant secondary metabolites, were associated with host range expansion in the V. cardui lineage. These evolutionary patterns imply that the capability to perceive various compounds during host selection was favored during adaptation to diverse host plants.

  12. Cross-Species Translocation of mRNA from Host Plants into the Parasitic Plant Dodder1[OA

    PubMed Central

    Roney, Jeannine K.; Khatibi, Piyum A.; Westwood, James H.

    2007-01-01

    An intriguing new paradigm in plant biology is that systemically mobile mRNAs play a role in coordinating development. In this process, specific mRNAs are loaded into the phloem transport stream for translocation to distant tissues, where they may impact on developmental processes. However, despite its potential significance for plant growth regulation, mRNA trafficking remains poorly understood and challenging to study. Here, we show that phloem-mobile mRNAs can also traffic between widely divergent species from a host to the plant parasite lespedeza dodder (Cuscuta pentagona Engelm.). Reverse transcription-polymerase chain reaction and microarray analysis were used to detect specific tomato (Lycopersicon esculentum Mill.) transcripts in dodder grown on tomato that were not present in control dodder grown on other host species. Foreign transcripts included LeGAI, which has previously been shown to be translocated in the phloem, as well as nine other transcripts not reported to be mobile. Dodders are parasitic plants that obtain resources by drawing from the phloem of a host plant and have joint plasmodesmata with host cortical cells. Although viruses are known to move between dodder and its hosts, translocation of endogenous plant mRNA has not been reported. These results point to a potentially new level of interspecies communication, and raise questions about the ability of parasites to recognize, use, and respond to transcripts acquired from their hosts. PMID:17189329

  13. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline

    PubMed Central

    Trdá, Lucie; Boutrot, Freddy; Claverie, Justine; Brulé, Daphnée; Dorey, Stephan; Poinssot, Benoit

    2015-01-01

    Plants are continuously monitoring the presence of microorganisms to establish an adapted response. Plants commonly use pattern recognition receptors (PRRs) to perceive microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs) which are microorganism molecular signatures. Located at the plant plasma membrane, the PRRs are generally receptor-like kinases (RLKs) or receptor-like proteins (RLPs). MAMP detection will lead to the establishment of a plant defense program called MAMP-triggered immunity (MTI). In this review, we overview the RLKs and RLPs that assure early recognition and control of pathogenic or beneficial bacteria. We also highlight the crucial function of PRRs during plant-microbe interactions, with a special emphasis on the receptors of the bacterial flagellin and peptidoglycan. In addition, we discuss the multiple strategies used by bacteria to evade PRR-mediated recognition. PMID:25904927

  14. Identification of novel sources of host plant resistance to the soybean aphid biotypes

    USDA-ARS?s Scientific Manuscript database

    While soybean cultivars with resistance to the soybean aphid (Aphis glycines Matsumura) have been commercially released, the presence of virulent biotypes capable of overcoming plant resistance threatens the durability of host-plant resistance as a stable management tactic. Novel sources of host pla...

  15. Genomic dissection of host-microbe and microbe-microbe interactions for advanced plant breeding.

    PubMed

    Kroll, Samuel; Agler, Matthew T; Kemen, Eric

    2017-04-01

    Agriculture faces many emerging challenges to sustainability, including limited nutrient resources, losses from diseases caused by current and emerging pathogens and environmental degradation. Microorganisms have great importance for plant growth and performance, including the potential to increase yields, nutrient uptake and pathogen resistance. An urgent need is therefore to understand and engineer plants and their associated microbial communities. Recent massive genomic sequencing of host plants and associated microbes offers resources to identify novel mechanisms of communal assembly mediated by the host. For example, host-microbe and microbe-microbe interactions are involved in niche formation, thereby contributing to colonization. By leveraging genomic resources, genetic traits underlying those mechanisms will become important resources to design plants selecting and hosting beneficial microbial communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes.

  17. Orientation of Anopheles gambiae (Diptera: Culicidae) to Plant-Host Volatiles in a Novel Diffusion-Cage Olfactometer

    PubMed Central

    Otienoburu, Philip E.; Nikbakhtzadeh, Mahmood R.; Foster, Woodbridge A.

    2016-01-01

    A novel diffusion-cage olfactometer tested the responses of Anopheles gambiae Giles to plant volatiles. Green-leaf volatiles are often released from cut or injured plant tissue and may alter the headspace of plants used in olfactometer assays. The diffusion-cage olfactometer is designed for use with whole, intact plants, hence giving a more realistic behavioral assay. Its simple plastic construction, ease of assembly, and accommodation to whole plants makes it a useful tool for measuring mosquito orientation to plant volatiles within large enclosures. We compared its performance to that of the more commonly used T-tube wind-tunnel olfactometer, by testing the orientation of mosquitoes to volatiles of a few prevalent plants of eastern Africa reportedly utilized by An. gambiae for sugar: Parthenium hysterophorus (Asteraceae), Ricinus communis (Euphorbiaceae), Lantana camara (Verbenaceae), and Senna occidentalis (Fabaceae). Results indicate that the diffusion-cage olfactometer is an effective alternative to conventional wind-tunnel olfactometers, to test mosquito orientation to plant volatiles under seminatural conditions. PMID:26502752

  18. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field

    PubMed Central

    Karimi Dorcheh, Elham; Li, Ran; Rameshkumar, Natarajan; Baldwin, Ian T

    2018-01-01

    Plant-microbe associations are thought to be beneficial for plant growth and resistance against biotic or abiotic stresses, but for natural ecosystems, the ecological analysis of microbiome function remains in its infancy. We used transformed wild tobacco plants (Nicotiana attenuata) which constitutively express an antimicrobial peptide (Mc-AMP1) of the common ice plant, to establish an ecological tool for plant-microbe studies in the field. Transgenic plants showed in planta activity against plant-beneficial bacteria and were phenotyped within the plants´ natural habitat regarding growth, fitness and the resistance against herbivores. Multiple field experiments, conducted over 3 years, indicated no differences compared to isogenic controls. Pyrosequencing analysis of the root-associated microbial communities showed no major alterations but marginal effects at the genus level. Experimental infiltrations revealed a high heterogeneity in peptide tolerance among native isolates and suggests that the diversity of natural microbial communities can be a major obstacle for microbiome manipulations in nature. PMID:29661271

  19. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field.

    PubMed

    Weinhold, Arne; Karimi Dorcheh, Elham; Li, Ran; Rameshkumar, Natarajan; Baldwin, Ian T

    2018-04-17

    Plant-microbe associations are thought to be beneficial for plant growth and resistance against biotic or abiotic stresses, but for natural ecosystems, the ecological analysis of microbiome function remains in its infancy. We used transformed wild tobacco plants ( Nicotiana attenuata ) which constitutively express an antimicrobial peptide (Mc-AMP1) of the common ice plant, to establish an ecological tool for plant-microbe studies in the field. Transgenic plants showed in planta activity against plant-beneficial bacteria and were phenotyped within the plants´ natural habitat regarding growth, fitness and the resistance against herbivores. Multiple field experiments, conducted over 3 years, indicated no differences compared to isogenic controls. Pyrosequencing analysis of the root-associated microbial communities showed no major alterations but marginal effects at the genus level. Experimental infiltrations revealed a high heterogeneity in peptide tolerance among native isolates and suggests that the diversity of natural microbial communities can be a major obstacle for microbiome manipulations in nature. © 2018, Weinhold et al.

  20. Plant feeding promotes diversification in the Crustacea.

    PubMed

    Poore, Alistair G B; Ahyong, Shane T; Lowry, James K; Sotka, Erik E

    2017-08-15

    About half of the world's animal species are arthropods associated with plants, and the ability to consume plant material has been proposed to be an important trait associated with the spectacular diversification of terrestrial insects. We review the phylogenetic distribution of plant feeding in the Crustacea, the other major group of arthropods that commonly consume plants, to estimate how often plant feeding has arisen and to test whether this dietary transition is associated with higher species numbers in extant clades. We present evidence that at least 31 lineages of marine, freshwater, and terrestrial crustaceans (including 64 families and 185 genera) have independently overcome the challenges of consuming plant material. These plant-feeding clades are, on average, 21-fold more speciose than their sister taxa, indicating that a shift in diet is associated with increased net rates of diversification. In contrast to herbivorous insects, most crustaceans have very broad diets, and the increased richness of taxa that include plants in their diet likely results from access to a novel resource base rather than host-associated divergence.

  1. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system.

    PubMed

    Pagán, Israel; González-Jara, Pablo; Moreno-Letelier, Alejandra; Rodelo-Urrego, Manuel; Fraile, Aurora; Piñero, Daniel; García-Arenal, Fernando

    2012-01-01

    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species.

  2. Multifaceted effects of host plants on entomopathogenic nematodes.

    PubMed

    Hazir, Selcuk; Shapiro-Ilan, David I; Hazir, Canan; Leite, Luis G; Cakmak, Ibrahim; Olson, Dawn

    2016-03-01

    The success of parasites can be impacted by multi-trophic interactions. Tritrophic interactions have been observed in parasite-herbivore-host plant systems. Here we investigate aspects of multi-trophic interactions in a system involving an entomopathogenic nematode (EPN), its insect host, and host plant. Novel issues investigated include the impact of tritrophic interactions on nematode foraging behavior, the ability of EPNs to overcome negative tritrophic effects through genetic selection, and interactions with a fourth trophic level (nematode predators). We tested infectivity of the nematode, Steinernema riobrave, to corn earworm larvae (Helicoverpa zea) in three host plants, tobacco, eggplant and tomato. Tobacco reduced nematode virulence and reproduction relative to tomato and eggplant. However, successive selection (5 passages) overcame the deficiency; selected nematodes no longer exhibited reductions in phenotypic traits. Despite the loss in virulence and reproduction nematodes, first passage S. riobrave was more attracted to frass from insects fed tobacco than insects fed on other host plants. Therefore, we hypothesized the reduced virulence and reproduction in S. riobrave infecting tobacco fed insects would be based on a self-medicating tradeoff, such as deterring predation. We tested this hypothesis by assessing predatory success of the mite Sancassania polyphyllae and the springtail Sinella curviseta on nematodes reared on tobacco-fed larvae versus those fed on greater wax moth, Galleria mellonella, tomato fed larvae, or eggplant fed larvae. No advantage was observed in nematodes derived from tobacco fed larvae. In conclusion, our results indicated that insect-host plant diet has an important effect on nematode foraging, infectivity and reproduction. However, negative host plant effects, might be overcome through directed selection. We propose that host plant species should be considered when designing biocontrol programs using EPNs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones.

    PubMed

    Geiselhardt, Sven; Otte, Tobias; Hilker, Monika

    2012-09-01

    The role of phenotypical plasticity in ecological speciation and the evolution of sexual isolation remains largely unknown. We investigated whether or not divergent host plant use in an herbivorous insect causes assortative mating by phenotypically altering traits involved in mate recognition. We found that males of the mustard leaf beetle Phaedon cochleariae preferred to mate with females that were reared on the same plant species to females provided with a different plant species, based on divergent cuticular hydrocarbon profiles that serve as contact pheromones. The cuticular hydrocarbon phenotypes of the beetles were host plant specific and changed within 2 weeks after a shift to a novel host plant species. We suggest that plant-induced phenotypic divergence in mate recognition cues may act as an early barrier to gene flow between herbivorous insect populations on alternative host species, preceding genetic divergence and thus, promoting ecological speciation. © 2012 Blackwell Publishing Ltd/CNRS.

  4. Evolution of Parasitism in Insect-transmitted Plant Nematodes

    PubMed Central

    Giblin-Davis, R. M.; Davies, K. A.; Morris, K.; Thomas, W. K.

    2003-01-01

    Nematode-insect associations have evolved many times in the phylum Nematoda, but these lineages involve plant parasitism only in the Secernentean orders Aphelenchida and Tylenchida. In the Aphelenchida (Aphelenchoidoidea), Bursaphelenchus xylophilus (Pine wood nematode), B. cocophilus (Red ring or Coconut palm nematode) (Parasitaphelenchidae), and the many potential host-specific species of Schistonchus (fig nematodes) (Aphelenchoididae) nematode-insect interactions probably evolved independently from dauer-forming, mycophagous ancestors that were phoretically transmitted to breeding sites of their insect hosts in plants. Mycophagy probably gave rise to facultative or obligate plant-parasitism because of opportunities due to insect host switches or peculiarities in host behavior. In the Tylenchida, there is one significant radiation of insect-associated plant parasites involving Fergusobia nematodes (Fergusobiinae: Neotylenchidae) and Fergusonina (Fergusoninidae) flies as mutualists that gall myrtaceous plant buds or leaves. These dicyclic nematodes have different phases that are parasitic in either the insect or the plant hosts. The evolutionary origin of this association is unclear. PMID:19265987

  5. ‘Fungicide application method’ and the interpretation of mycorrhizal fungus insect indirect effects

    NASA Astrophysics Data System (ADS)

    Laird, Robert A.; Addicott, John F.

    2008-09-01

    Mycorrhizal fungi, by altering their host plant's physiology, can have indirect effects on insect herbivores. The 'fungicide application method' is a common approach used to investigate the indirect effects of mycorrhizal fungi on insects. This approach works by using initially mycorrhizal plants, and then generating a subset of these plants that are free of mycorrhizal fungi by applying fungicide to their roots. When insect feeding-bioassays are conducted using the resulting mycorrhizal and non-mycorrhizal plants, differences in insect performance are typically attributed to differences in mycorrhizal colonization per se, rather than the application of the fungicide. Thus, the fungicide application method relies on the assumption that there is no direct toxicity of the fungicide on the focal insect species, and no indirect effects on the focal insect resulting from effects of the fungicide on the host plant or on non-target soil micro-organisms. We tested this critical assumption by feeding Zygogramma exclamationis (Chrysomelidae) larvae on non-mycorrhizal Helianthus annuus (Asteraceae) plants whose roots were treated with a solution of the fungicide benomyl or with a distilled water control. Larvae fed on benomyl-treated plants had reduced survival, lower relative growth rate, and lower food conversion efficiency, compared to larvae fed on control plants. Hence, fungicides applied to roots can affect herbivorous insect performance even in the absence of the possibility of mycorrhizal fungi-mediated effects. We recommend caution when using fungicide application and suggest that selective inoculation is a preferable method of generating mycorrhizal and non-mycorrhizal plants when studying mycorrhizal fungi-insect indirect effects.

  6. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin.

    PubMed

    Qin, Xiaoqiong; Yang, Seung Hwan; Kepsel, Andrea C; Schwartz, Steven H; Zeevaart, Jan A D

    2008-06-01

    Abscisic acid (ABA) is a plant hormone found in all higher plants; it plays an important role in seed dormancy, embryo development, and adaptation to environmental stresses, most notably drought. The regulatory step in ABA synthesis is the cleavage reaction of a 9-cis-epoxy-carotenoid catalyzed by the 9-cis-epoxy-carotenoid dioxygenases (NCEDs). The parasitic angiosperm Cuscuta reflexa lacks neoxanthin, one of the common precursors of ABA in all higher plants. Thus, is C. reflexa capable of synthesizing ABA, or does it acquire ABA from its host plants? Stem tips of C. reflexa were cultured in vitro and found to accumulate ABA in the absence of host plants. This demonstrates that this parasitic plant is capable of synthesizing ABA. Dehydration of detached stem tips caused a big rise in ABA content. During dehydration, 18O was incorporated into ABA from 18O2, indicating that ABA was synthesized de novo in C. reflexa. Two NCED genes, CrNCED1 and CrNCED2, were cloned from C. reflexa. Expression of CrNCEDs was up-regulated significantly by dehydration. In vitro enzyme assays with recombinant CrNCED1 protein showed that the protein is able to cleave both 9-cis-violaxanthin and 9'-cis-neoxanthin to give xanthoxin. Thus, despite the absence of neoxanthin in C. reflexa, the biochemical activity of CrNCED1 is similar to that of NCEDs from other higher plants. These results provide evidence for conservation of the ABA biosynthesis pathway among members of the plant kingdom.

  7. Evidence for Abscisic Acid Biosynthesis in Cuscuta reflexa, a Parasitic Plant Lacking Neoxanthin1[W][OA

    PubMed Central

    Qin, Xiaoqiong; Yang, Seung Hwan; Kepsel, Andrea C.; Schwartz, Steven H.; Zeevaart, Jan A.D.

    2008-01-01

    Abscisic acid (ABA) is a plant hormone found in all higher plants; it plays an important role in seed dormancy, embryo development, and adaptation to environmental stresses, most notably drought. The regulatory step in ABA synthesis is the cleavage reaction of a 9-cis-epoxy-carotenoid catalyzed by the 9-cis-epoxy-carotenoid dioxygenases (NCEDs). The parasitic angiosperm Cuscuta reflexa lacks neoxanthin, one of the common precursors of ABA in all higher plants. Thus, is C. reflexa capable of synthesizing ABA, or does it acquire ABA from its host plants? Stem tips of C. reflexa were cultured in vitro and found to accumulate ABA in the absence of host plants. This demonstrates that this parasitic plant is capable of synthesizing ABA. Dehydration of detached stem tips caused a big rise in ABA content. During dehydration, 18O was incorporated into ABA from 18O2, indicating that ABA was synthesized de novo in C. reflexa. Two NCED genes, CrNCED1 and CrNCED2, were cloned from C. reflexa. Expression of CrNCEDs was up-regulated significantly by dehydration. In vitro enzyme assays with recombinant CrNCED1 protein showed that the protein is able to cleave both 9-cis-violaxanthin and 9′-cis-neoxanthin to give xanthoxin. Thus, despite the absence of neoxanthin in C. reflexa, the biochemical activity of CrNCED1 is similar to that of NCEDs from other higher plants. These results provide evidence for conservation of the ABA biosynthesis pathway among members of the plant kingdom. PMID:18441226

  8. Molecular Profiling of Pierce’s Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection

    PubMed Central

    Zaini, Paulo A.; Nascimento, Rafael; Gouran, Hossein; Cantu, Dario; Chakraborty, Sandeep; Phu, My; Goulart, Luiz R.; Dandekar, Abhaya M.

    2018-01-01

    Pierce’s disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa. Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels’ secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

  9. Molecular Profiling of Pierce's Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection.

    PubMed

    Zaini, Paulo A; Nascimento, Rafael; Gouran, Hossein; Cantu, Dario; Chakraborty, Sandeep; Phu, My; Goulart, Luiz R; Dandekar, Abhaya M

    2018-01-01

    Pierce's disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa . Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels' secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

  10. Genome-wide association study uncovers a novel QTL allele of AtS40-3 that affects the sex ratio of cyst nematodes in Arabidopsis.

    PubMed

    Anwer, Muhammad Arslan; Anjam, Muhammad Shahzad; Shah, Syed Jehangir; Hasan, M Shamim; Naz, Ali A; Grundler, Florian M W; Siddique, Shahid

    2018-03-24

    Plant-parasitic cyst nematodes are obligate sedentary parasites that infect the roots of a broad range of host plants. Cyst nematodes are sexually dimorphic, but differentiation into male or female is strongly influenced by interactions with the host environment. Female populations typically predominate under favorable conditions, whereas male populations predominate under adverse conditions. Here, we performed a genome-wide association study (GWAS) in an Arabidopsis diversity panel to identify host loci underlying variation in susceptibility to cyst nematode infection. Three different susceptibility parameters were examined, with the aim of providing insights into the infection process, the number of females and males present in the infected plant, and the female-to-male sex ratio. GWAS results suggested that variation in sex ratio is associated with a novel quantitative trait locus allele on chromosome 4. Subsequent candidate genes and functional analyses revealed that a senescence-associated transcription factor, AtS40-3, and PPR may act in combination to influence nematode sex ratio. A detailed molecular characterization revealed that variation in nematode sex ratio was due to the disturbed common promoter of AtS40-3 and PPR genes. Additionally, single nucleotide polymorphisms in the coding sequence of AtS40-3 might contribute to the natural variation in nematode sex ratio.

  11. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection.

    PubMed

    Miozzi, Laura; Napoli, Chiara; Sardo, Luca; Accotto, Gian Paolo

    2014-01-01

    Tomato yellow leaf curl Sardinia virus (TYLCSV), a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.

  12. Fundamental host range of Pseudophilothrips ichini s.l. (Thysanoptera: Phlaeothripidae): a candidate biological control agent of Schinus terebinthifolius (Sapindales: Anacardiaceae) in the United States.

    PubMed

    Cuda, J P; Medal, J C; Gillmore, J L; Habeck, D H; Pedrosa-Macedo, J H

    2009-12-01

    Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) is a non-native perennial woody plant that is one of the most invasive weeds in Florida, Hawaii, and more recently California and Texas. This plant was introduced into Florida from South America as a landscape ornamental in the late 19th century, eventually escaped cultivation, and now dominates entire ecosystems in south-central Florida. Recent DNA studies have confirmed two separate introductions of S. terebinthifolius in Florida, and there is evidence of hybridization. A thrips, Pseudophilothrips ichini s.l. (Hood) (Thysanoptera: Phlaeothripidae), is commonly found attacking shoots and flowers of S. terebinthifolius in Brazil. Immatures and occasionally adults form large aggregations on young terminal growth (stems and leaves) of the plant. Feeding damage by P. ichini s.l. frequently kills new shoots, which reduces vigor and restricts growth of S. terebinthifolius. Greenhouse and laboratory host range tests with 46 plant species in 18 families and 10 orders were conducted in Paraná, Brazil, and Florida. Results of no-choice, paired-choice, and multiple-choice tests indicated that P. ichini s.l. is capable of reproducing only on S. terebinthifolius and possibly Schinus molle L., an ornamental introduced into California from Peru that has escaped cultivation and is considered invasive. Our results showed that P. ichini s.l. posed minimal risk to mature S. molle plants or the Florida native Metopium toxiferum L. Krug and Urb. In May 2007, the federal interagency Technical Advisory Group for Biological Control Agents of Weeds (TAG) concluded P. ichini s.l. was sufficiently host specific to recommend its release from quarantine.

  13. Divergent host-plant use promotes reproductive isolation among cynipid gall wasp populations

    PubMed Central

    Egan, Scott P.; Hood, Glen R.; Feder, Jeff L.; Ott, James R.

    2012-01-01

    Ecological speciation occurs when reproductive isolation evolves as a consequence of divergent natural selection among environments. A direct prediction of this process is that ecologically divergent pairs of populations will exhibit greater reproductive isolation than ecologically similar pairs of populations. By comparing allopatric populations of the cynipid gall wasp Belonocnema treatae infesting Quercus virginiana and Quercus geminata, we tested the role that divergent host use plays in generating ecological divergence and sexual isolation. We found differences in body size and gall structure associated with divergent host use, but no difference in neutral genetic divergence between populations on the same or different host plant. We observed significant assortative mating between populations from alternative host plants but not between allopatric populations on the same host plant. Thus, we provide evidence that divergent host use promotes speciation among gall wasp populations. PMID:22337505

  14. Bacterial effectors target the plant cell nucleus to subvert host transcription.

    PubMed

    Canonne, Joanne; Rivas, Susana

    2012-02-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells.

  15. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.

    PubMed

    Braschler, Brigitte; Hill, Jane K

    2007-05-01

    1. Some species have expanded their ranges during recent climate warming and the availability of breeding habitat and species' dispersal ability are two important factors determining expansions. The exploitation of a wide range of larval host plants should increase an herbivorous insect species' ability to track climate by increasing habitat availability. Therefore we investigated whether the performance of a species on different host plants changed towards its range boundary, and under warmer temperatures. 2. We studied the polyphagous butterfly Polygonia c-album, which is currently expanding its range in Britain and apparently has altered its host plant preference from Humulus lupulus to include other hosts (particularly Ulmus glabra and Urtica dioica). We investigated insect performance (development time, larval growth rate, adult size, survival) and adult flight morphology on these host plants under four rearing temperatures (18-28.5 degrees C) in populations from core and range margin sites. 3. In general, differences between core and margin populations were small compared with effects of rearing temperature and host plant. In terms of insect performance, host plants were generally ranked U. glabra > or = U. dioica > H. lupulus at all temperatures. Adult P. c-album can either enter diapause or develop directly and higher temperatures resulted in more directly developing adults, but lower survival rates (particularly on the original host H. lupulus) and smaller adult size. 4. Adult flight morphology of wild-caught individuals from range margin populations appeared to be related to increased dispersal potential relative to core populations. However, there was no difference in laboratory reared individuals, and conflicting results were obtained for different measures of flight morphology in relation to larval host plant and temperature effects, making conclusions about dispersal potential difficult. 5. Current range expansion of P. c-album is associated with the exploitation of more widespread host plants on which performance is improved. This study demonstrates how polyphagy may enhance the ability of species to track climate change. Our findings suggest that observed differences in climate-driven range shifts of generalist vs. specialist species may increase in the future and are likely to lead to greatly altered community composition.

  16. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree

    PubMed Central

    Mejía, Luis C.; Herre, Edward A.; Sparks, Jed P.; Winter, Klaus; García, Milton N.; Van Bael, Sunshine A.; Stitt, Joseph; Shi, Zi; Zhang, Yufan; Guiltinan, Mark J.; Maximova, Siela N.

    2014-01-01

    It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic and phenotypic studies of plants. PMID:25309519

  17. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.

    PubMed

    Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R

    2018-06-01

    Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host specialization; rather they exhibit plasticity in utilizing several hosts. In this scenario, it is unlikely that host-associated A. gossypii populations would evolve into host-specific biotypes.

  18. Toxicity of Pseudomonas fluorescens strain Pf-5 to Drosophila larvae is due to downstream gene targets of the GacA/GacS signal transduction system

    USDA-ARS?s Scientific Manuscript database

    Given the vast number of microorganisms in the environment, surprisingly, only a few are lethal or cause morbidity to host organisms. Pseudomonas spp are a diverse genus of Gram-negative bacteria commonly found in soil, water, or in association with plants and animals. Pseudomonas fluorescens has be...

  19. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore

    PubMed Central

    Cunha, Beatriz P.; Solferini, Vera N.

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense. PMID:26517873

  20. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    PubMed

    Martins, Carlos H Z; Cunha, Beatriz P; Solferini, Vera N; Trigo, José R

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.

  1. Transcriptional analysis of sweet orange trees co-infected with 'Candidatus Liberibacter asiaticus' and mild or severe strains of Citrus tristeza virus.

    PubMed

    Fu, Shimin; Shao, Jonathan; Paul, Cristina; Zhou, Changyong; Hartung, John S

    2017-10-31

    Citrus worldwide is threatened by huanglongbing (HLB) and tristeza diseases caused by 'Candidatus Liberibacter asiaticus' (CaLas) and Citrus tristeza virus (CTV). Although the pathogens are members of the α-proteobacteria and Closteroviridae, respectively, both are restricted to phloem cells in infected citrus and are transmitted by insect vectors. The response of sweet orange to single infection by either of these two pathogens has been characterized previously by global gene expression analysis. But because of the ubiquity of these pathogens where the diseases occur, co-infection by both pathogens is very common and could lead to increased disease severity based on synergism. We therefore co-inoculated sweet orange trees with CaLas and either a mild or a severe strain of CTV, and measured changes of gene expression in host plants. In plants infected with CaLas-B232, the overall alteration in gene expression was much greater in plants co-inoculated with the severe strain of CTV, B6, than when co-infected with the mild strain of CTV, B2. Plants co-infected with CaLas-B232 and either strain of CTV died but trees co-infected with CTV-B2 survived much longer than those co-infected with CTV-B6. Many important pathways were perturbed by both CTV-B2/CaLas-B232 and/or CTV-B6/CaLas-B232, but always more severely by CTV-B6/CaLas-B232. Genes related to cell wall modification and metal transport responded differently to infection by the pathogens in combination than by the same pathogens singly. The expressions of genes encoding phloem proteins and sucrose loading proteins were also differentially altered in response to CTV-B2 or CTV-B6 in combination with CaLas-B232, leading to different phloem environments in plants co-infected by CaLas and mild or severe CTV. Many host genes were expressed differently in response to dual infection as compared to single infections with the same pathogens. Interactions of the pathogens within the host may lead to a better or worse result for the host plant. CTV-B6 may exert a synergistic effect with CaLas-B232 in weakening the plant; on the other hand, the responses activated by the mild strain CTV-B2 may provide some beneficial effects against CaLas-B232 by increasing the defense response of the host.

  2. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    PubMed Central

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  3. Feeding Behaviour on Host Plants May Influence Potential Exposure to Bt Maize Pollen of Aglais Urticae Larvae (Lepidoptera, Nymphalidae)

    PubMed Central

    Lang, Andreas; Otto, Mathias

    2015-01-01

    Non-target butterfly larvae may be harmed by feeding on host plants dusted with Bt maize pollen. Feeding patterns of larvae and their utilization of host plants can affect the adverse Bt impact because the maize pollen is distributed unequally on the plant. In a field study, we investigated the feeding of larvae of the Small Tortoiseshell, Aglais urticae, on nettles, Urtica dioica. Young larvae used smaller host plants than older larvae. In general, the position of the larvae was in the top part of the host plant, but older larvae showed a broader vertical distribution on the nettles. Leaf blades and leaf tips were the plant parts most often consumed. Leaf veins were consumed but midribs were fed on to a lesser extent than other plant veins, particularly by young larvae. The feeding behavior of the larvae may increase possible exposure to Bt maize pollen because pollen densities are expected to be higher on the top parts and along leaf veins of nettles. PMID:26463415

  4. Palaeosymbiosis Revealed by Genomic Fossils of Wolbachia in a Strongyloidean Nematode

    PubMed Central

    Koutsovoulos, Georgios; Makepeace, Benjamin; Tanya, Vincent N.; Blaxter, Mark

    2014-01-01

    Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections. PMID:24901418

  5. Relationships of host plant phylogeny, chemistry and host plant specificity of several agents of yellow starthistle

    USDA-ARS?s Scientific Manuscript database

    Plant species used for host specificity testing are usually chosen based on the assumption that the risk of attack by a prospective biological control agent decreases with increasing phylogenetic distance from the target weed. Molecular genetics methods have greatly improved our ability to measure ...

  6. Genetic differentiation associated with host plants and geography among six widespread lineages of South American Blepharoneura fruit flies (Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Tropical herbivorous insects are astonishingly diverse and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host-plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most lineages of herbivorous fruit f...

  7. Adults of the Waterfern Weevil, Stenopelmus rufinasus Gyllenhal (Coleoptera: Curculionidae) feed on a Non-Host Plant Salvinia minima Baker, in Louisiana

    USDA-ARS?s Scientific Manuscript database

    The waterfern weevil, Stenopelmus refinasus Gyllenhal, has previously been reported as host-specific, only feeding on plants in the genus Azolla. We report the first observations of S. rufinasus feeding on a non-host plant, Salvinia minima Baker, within the United States....

  8. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.

    PubMed

    Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A

    2016-07-01

    Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.

  9. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector

    PubMed Central

    Maixner, Michael; Albert, Andreas; Johannesen, Jes

    2014-01-01

    Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan–Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains. PMID:25247065

  10. Survival relative to new and ancestral host plants, phytoplasma infection, and genetic constitution in host races of a polyphagous insect disease vector.

    PubMed

    Maixner, Michael; Albert, Andreas; Johannesen, Jes

    2014-08-01

    Dissemination of vectorborne diseases depends strongly on the vector's host range and the pathogen's reservoir range. Because vectors interact with pathogens, the direction and strength of a vector's host shift is vital for understanding epidemiology and is embedded in the framework of ecological specialization. This study investigates survival in host-race evolution of a polyphagous insect disease vector, Hyalesthes obsoletus, whether survival is related to the direction of the host shift (from field bindweed to stinging nettle), the interaction with plant-specific strains of obligate vectored pathogens/symbionts (stolbur phytoplasma), and whether survival is related to genetic differentiation between the host races. We used a twice repeated, identical nested experimental design to study survival of the vector on alternative hosts and relative to infection status. Survival was tested with Kaplan-Meier analyses, while genetic differentiation between vector populations was quantified with microsatellite allele frequencies. We found significant direct effects of host plant (reduced survival on wrong hosts) and sex (males survive longer than females) in both host races and relative effects of host (nettle animals more affected than bindweed animals) and sex (males more affected than females). Survival of bindweed animals was significantly higher on symptomatic than nonsymptomatic field bindweed, but in the second experiment only. Infection potentially had a positive effect on survival in nettle animals but due to low infection rates the results remain suggestive. Genetic differentiation was not related to survival. Greater negative plant-transfer effect but no negative effect of stolbur in the derived host race suggests preadaptation to the new pathogen/symbiont strain before strong diversifying selection during the specialization process. Physiological maladaptation or failure to accept the ancestral plant will have similar consequences, namely positive assortative mating within host races and a reduction in the likelihood of oviposition on the alternative plant and thus the acquisition of alternative stolbur strains.

  11. Advances in plant virus evolution: translating evolutionary insights into better disease management.

    PubMed

    Acosta-Leal, R; Duffy, S; Xiong, Z; Hammond, R W; Elena, S F

    2011-10-01

    Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.

  12. Activity of xyloglucan endotransglucosylases/hydrolases suggests a role during host invasion by the parasitic plant Cuscuta reflexa

    PubMed Central

    2017-01-01

    The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue. PMID:28448560

  13. Activity of xyloglucan endotransglucosylases/hydrolases suggests a role during host invasion by the parasitic plant Cuscuta reflexa.

    PubMed

    Olsen, Stian; Krause, Kirsten

    2017-01-01

    The parasitic vines of the genus Cuscuta form haustoria that grow into other plants and connect with their vascular system, thus allowing the parasite to feed on its host. A major obstacle that meets the infection organ as it penetrates the host tissue is the rigid plant cell wall. In the present study, we examined the activity of xyloglucan endotransglucosylases/hydrolases (XTHs) during the host-invasive growth of the haustorium. The level of xyloglucan endotransglucosylation (XET) activity was found to peak at the penetrating stage of Cuscuta reflexa on its host Pelargonium zonale. In vivo colocalization of XET activity and donor substrate demonstrated XET activity at the border between host and parasite. A test for secretion of XET-active enzymes from haustoria of C. reflexa corroborated this and further indicated that the xyloglucan-modifying enzymes originated from the parasite. A known inhibitor of XET, Coomassie Brilliant Blue R250, was shown to reduce the level of XET in penetrating haustoria of C. reflexa. Moreover, the coating of P. zonale petioles with the inhibitor compound lowered the number of successful haustorial invasions of this otherwise compatible host plant. The presented data indicate that the activity of Cuscuta XTHs at the host-parasite interface is essential to penetration of host plant tissue.

  14. Host- and stage-dependent secretome of the arbuscular mycorrhizal fungus Rhizophagus irregularis.

    PubMed

    Zeng, Tian; Holmer, Rens; Hontelez, Jan; Te Lintel-Hekkert, Bas; Marufu, Lucky; de Zeeuw, Thijs; Wu, Fangyuan; Schijlen, Elio; Bisseling, Ton; Limpens, Erik

    2018-05-01

    Arbuscular mycorrhizal fungi form the most wide-spread endosymbiosis with plants. There is very little host specificity in this interaction, however host preferences as well as varying symbiotic efficiencies have been observed. We hypothesize that secreted proteins (SPs) may act as fungal effectors to control symbiotic efficiency in a host-dependent manner. Therefore, we studied whether arbuscular mycorrhizal (AM) fungi adjust their secretome in a host- and stage-dependent manner to contribute to their extremely wide host range. We investigated the expression of SP-encoding genes of Rhizophagus irregularis in three evolutionary distantly related plant species, Medicago truncatula, Nicotiana benthamiana and Allium schoenoprasum. In addition we used laser microdissection in combination with RNA-seq to study SP expression at different stages of the interaction in Medicago. Our data indicate that most expressed SPs show roughly equal expression levels in the interaction with all three host plants. In addition, a subset shows significant differential expression depending on the host plant. Furthermore, SP expression is controlled locally in the hyphal network in response to host-dependent cues. Overall, this study presents a comprehensive analysis of the R. irregularis secretome, which now offers a solid basis to direct functional studies on the role of fungal SPs in AM symbiosis. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  15. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda)

    PubMed Central

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-01-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS–LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. PMID:26399186

  16. Natal Host Plants Can Alter Herbivore Competition

    PubMed Central

    Pan, Huipeng; Preisser, Evan L.; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore’s natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems. PMID:28030636

  17. Trafficking arms: oomycete effectors enter host plant cells.

    PubMed

    Birch, Paul R J; Rehmany, Anne P; Pritchard, Leighton; Kamoun, Sophien; Beynon, Jim L

    2006-01-01

    Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.

  18. RNA mobility in parasitic plant - host interactions.

    PubMed

    Westwood, James H; Kim, Gunjune

    2017-04-03

    The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication.

  19. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    PubMed

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  20. Molecular biology of viroid-host interactions and disease control strategies.

    PubMed

    Kovalskaya, Natalia; Hammond, Rosemarie W

    2014-11-01

    Viroids are single-stranded, covalently closed, circular, highly structured noncoding RNAs that cause disease in several economically important crop plants. They replicate autonomously and move systemically in host plants with the aid of the host machinery. In addition to symptomatic infections, viroids also cause latent infections where there is no visual evidence of infection in the host; however, transfer to a susceptible host can result in devastating disease. While there are non-hosts for viroids, no naturally occurring durable resistance has been observed in most host species. Current effective control methods for viroid diseases include detection and eradication, and cultural controls. In addition, heat or cold therapy combined with meristem tip culture has been shown to be effective for elimination of viroids for some viroid-host combinations. An understanding of viroid-host interactions, host susceptibility, and non-host resistance could provide guidance for the design of viroid-resistant plants. Efforts to engineer viroid resistance into host species have been underway for several years, and include the use of antisense RNA, antisense RNA plus ribozymes, a dsRNase, and siRNAs, among others. The results of those efforts and the challenges associated with creating viroid resistant plants are summarized in this review. Published by Elsevier Ireland Ltd.

  1. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species

    PubMed Central

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J.; Wang, Baohua; Wang, Zonghua

    2016-01-01

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494

  2. Geography and major host evolutionary transitions shape the resource use of plant parasites

    PubMed Central

    Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á.; Magalhães, Sara; Hortal, Joaquín

    2016-01-01

    The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore–plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites. PMID:27535932

  3. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells.

    PubMed

    Quentin, Michaëel; Abad, Pierre; Favery, Bruno

    2013-01-01

    Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells (FCs). Effectors synthesized in the esophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized FCs requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defense responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalized within FC nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesized roles in the unique feeding behavior of these pests.

  4. Geography and major host evolutionary transitions shape the resource use of plant parasites.

    PubMed

    Calatayud, Joaquín; Hórreo, José Luis; Madrigal-González, Jaime; Migeon, Alain; Rodríguez, Miguel Á; Magalhães, Sara; Hortal, Joaquín

    2016-08-30

    The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites.

  5. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    PubMed

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  6. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system.

    PubMed

    Lin, Borong; Zhuo, Kan; Chen, Shiyan; Hu, Lili; Sun, Longhua; Wang, Xiaohong; Zhang, Lian-Hui; Liao, Jinling

    2016-02-01

    Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs.

    PubMed

    Cagnolo, Luciano; Salvo, Adriana; Valladares, Graciela

    2011-03-01

    1. Biological communities are organized in complex interaction networks such as food webs, which topology appears to be non-random. Gradients, compartments, nested subsets and even combinations of these structures have been shown in bipartite networks. However, in most studies only one pattern is tested against randomness and mechanistic hypotheses are generally lacking. 2. Here we examined the topology of regional, coexisting plant-herbivore and host-parasitoid food webs to discriminate between the mentioned network patterns. We also evaluated the role of species body size, local abundance, regional frequency and phylogeny as determinants of network topology. 3. We found both food webs to be compartmented, with interaction range boundaries imposed by host phylogeny. Species degree within compartments was mostly related to their regional frequency and local abundance. Only one compartment showed an internal nested structure in the distribution of interactions between species, but species position within this compartment was unrelated to species size or abundance. 4. These results suggest that compartmentalization may be more common than previously considered, and that network structure is a result of multiple, hierarchical, non-exclusive processes. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.

  8. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest

    PubMed Central

    Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.

    2014-01-01

    The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376

  9. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence.

    PubMed

    Rodriguez, Patricia A; Escudero-Martinez, Carmen; Bos, Jorunn I B

    2017-03-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M persicae -host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Host conservatism or host specialization? Patterns of fungal diversification are influenced by host specificity in Ophiognomonia (Gnomoniaceae, Diaporthales)

    USDA-ARS?s Scientific Manuscript database

    Species of Ophiognomonia (Gnomoniaceae) are perithecial fungi that occur as endophytes, pathogens, and latent saprobes on leaf and stem tissue of plants in the Betulaceae, Fagaceae, Juglandaceae, Lauraceae, Malvaceae, Platanaceae, Rosaceae, Salicaceae, and Sapindaceae. In this study host plant patte...

  11. Interspecific competition between Diadegma semiclausum Hellen and Diadegma mollipla (Holmgren), parasitoids of the diamondback moth, Plutella xylostella (L), feeding on a new host plant.

    PubMed

    Rossbach, A; Löhr, B; Vidal, S

    2008-04-01

    Interspecific competition between an introduced parasitoid species aimed at controlling a herbivorous pest species and a native parasitoid parasitising the same host may influence the success of classical biological control programmes. In Kenya, interspecific competition between an introduced and a local parasitoid on two diamondback moth populations (DBM, Plutella xylostella) was investigated on two different host plants. We tested simultaneous and delayed competition of the local parasitoid Diadegma mollipla Holmgren and its exotic congenus D. semiclausum Hellen on a newly aquired DBM host plant (snowpea) in the laboratory. Under simultaneous competition, D. mollipla produced more progeny than D. semiclausum on snowpea. A head start of D. Mollipla, of four and eight hours before its congenus was introduced, resulted in a similar number of progeny of both species. In delayed competition (time intervals of 24 h, 48 h and 72 h), progeny production was similar for both parasitoids when the time interval was 24 h, irrespective of which species parasitized first. More progeny was produced by the species which attacked first, when the time interval was greater than 24 h, although it was only significant at 72 h. Competitive abilites of both parasitoids on the new host plant differed largely between laboratory and semi-field conditions. The influence of two host plants (snowpea and cabbage) on competition was studied in the greenhouse with different host and parasitoid densities. Parasitism levels of D. semiclausum were significantly higher than those of D. mollipla, regardless of host plant, host and parasitoid densities, but progeny production of D. mollipla on snowpea was still slightly higher than on cabbage. As compared to the confinement of parasitoids and larvae to small containers, D. mollipla parasitized very few larvae in the cages. Competitive ability of the two parasitoid species tested was influenced both by the density of the searching females and by parameters related to either the host plant and/or the herbivorous hosts.

  12. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato.

    PubMed

    Jacobs, Jonathan M; Babujee, Lavanya; Meng, Fanhong; Milling, Annett; Allen, Caitilyn

    2012-01-01

    Plant xylem fluid is considered a nutrient-poor environment, but the bacterial wilt pathogen Ralstonia solanacearum is well adapted to it, growing to 10(8) to 10(9) CFU/g tomato stem. To better understand how R. solanacearum succeeds in this habitat, we analyzed the transcriptomes of two phylogenetically distinct R. solanacearum strains that both wilt tomato, strains UW551 (phylotype II) and GMI1000 (phylotype I). We profiled bacterial gene expression at ~6 × 10(8) CFU/ml in culture or in plant xylem during early tomato bacterial wilt pathogenesis. Despite phylogenetic differences, these two strains expressed their 3,477 common orthologous genes in generally similar patterns, with about 12% of their transcriptomes significantly altered in planta versus in rich medium. Several primary metabolic pathways were highly expressed during pathogenesis. These pathways included sucrose uptake and catabolism, and components of these pathways were encoded by genes in the scrABY cluster. A UW551 scrA mutant was significantly reduced in virulence on resistant and susceptible tomato as well as on potato and the epidemiologically important weed host Solanum dulcamara. Functional scrA contributed to pathogen competitive fitness during colonization of tomato xylem, which contained ~300 µM sucrose. scrA expression was induced by sucrose, but to a much greater degree by growth in planta. Unexpectedly, 45% of the genes directly regulated by HrpB, the transcriptional activator of the type 3 secretion system (T3SS), were upregulated in planta at high cell densities. This result modifies a regulatory model based on bacterial behavior in culture, where this key virulence factor is repressed at high cell densities. The active transcription of these genes in wilting plants suggests that T3SS has a biological role throughout the disease cycle. IMPORTANCE Ralstonia solanacearum is a widespread plant pathogen that causes bacterial wilt disease. It inflicts serious crop losses on tropical farmers, with major economic and human consequences. It is also a model for the many destructive microbes that colonize the water-conducting plant xylem tissue, which is low in nutrients and oxygen. We extracted bacteria from infected tomato plants and globally identified the biological functions that R. solanacearum expresses during plant pathogenesis. This revealed the unexpected presence of sucrose in tomato xylem fluid and the pathogen's dependence on host sucrose for virulence on tomato, potato, and the common weed bittersweet nightshade. Further, R. solanacearum was highly responsive to the plant environment, expressing several metabolic and virulence functions quite differently in the plant than in pure culture. These results reinforce the utility of studying pathogens in interaction with hosts and suggest that selecting for reduced sucrose levels could generate wilt-resistant crops.

  13. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.

    PubMed

    Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong

    2015-08-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Can plant resistance to specialist herbivores be explained by plant chemistry or resource use strategy?

    PubMed

    Kirk, Heather; Vrieling, Klaas; Pelser, Pieter B; Schaffner, Urs

    2012-04-01

    At both a macro- and micro-evolutionary level, selection of and performance on host plants by specialist herbivores are thought to be governed partially by host plant chemistry. Thus far, there is little evidence to suggest that specialists can detect small structural differences in secondary metabolites of their hosts, or that such differences affect host choice or performance of specialists. We tested whether phytochemical differences between closely related plant species are correlated with specialist host choice. We conducted no-choice feeding trials using 17 plant species of three genera of tribe Senecioneae (Jacobaea, Packera, and Senecio; Asteraceae) and a more distantly related species (Cynoglossum officinale; Boraginaceae) containing pyrrolizidine alkaloids (PAs), and four PA-sequestering specialist herbivores of the genus Longitarsus (Chrysomelidae). We also assessed whether variation in feeding by specialist herbivores is attributable to different resource use strategies of the tested plant species. Plant resource use strategy was quantified by measuring leaf dry matter content, which is related to both plant nutritive value and to plant investment in quantitative defences. We found no evidence that intra-generic differences in PA profiles affect feeding by specialist herbivores. Instead, our results indicate that decisions to begin feeding are related to plant resource use strategy, while decisions to continue feeding are not based on any plant characteristics measured in this study. These findings imply that PA composition does not significantly affect host choice by these specialist herbivores. Leaf dry matter content is somewhat phylogenetically conserved, indicating that plants may have difficulty altering resource use strategy in response to selection pressure by herbivores and other environmental factors on an evolutionary time scale.

  15. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review

    PubMed Central

    Jia, Min; Chen, Ling; Xin, Hai-Liang; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping

    2016-01-01

    Endophytic fungi or endophytes exist widely inside the healthy tissues of living plants, and are important components of plant micro-ecosystems. Over the long period of evolution, some co-existing endophytes and their host plants have established a special relationship with one and another, which can significantly influence the formation of metabolic products in plants, then affect quality and quantity of crude drugs derived from medicinal plants. This paper will focus on the increasing knowledge of relationships between endophytic fungi and medicinal plants through reviewing of published research data obtained from the last 30 years. The analytical results indicate that the distribution and population structure of endophytes can be considerably affected by factors, such as the genetic background, age, and environmental conditions of their hosts. On the other hand, the endophytic fungi can also confer profound impacts on their host plants by enhancing their growth, increasing their fitness, strengthening their tolerances to abiotic and biotic stresses, and promoting their accumulation of secondary metabolites. All the changes are very important for the production of bioactive components in their hosts. Hence, it is essential to understand such relationships between endophytic fungi and their host medicinal plants. Such knowledge can be well exploited and applied for the production of better and more drugs from medicinal plants. PMID:27375610

  16. The defensive role of foliar endophytic fungi for a South American tree

    PubMed Central

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum. Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046

  17. Widespread plant specialization in the polyphagous planthopper Hyalesthes obsoletus (Cixiidae), a major vector of stolbur phytoplasma: Evidence of cryptic speciation

    PubMed Central

    Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Cvrković, Tatjana; Toševski, Ivo

    2018-01-01

    The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno’s ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1–1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1–3.3%). PMID:29738577

  18. Genetic Differentiation among Maruca vitrata F. (Lepidoptera: Crambidae) Populations on Cultivated Cowpea and Wild Host Plants: Implications for Insect Resistance Management and Biological Control Strategies

    PubMed Central

    Agunbiade, Tolulope A.; Coates, Brad S.; Datinon, Benjamin; Djouaka, Rousseau; Sun, Weilin; Tamò, Manuele; Pittendrigh, Barry R.

    2014-01-01

    Maruca vitrata Fabricius (Lepidoptera: Crambidae) is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1) sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp.), and alternative host plants Pueraria phaseoloides (Roxb.) Benth. var. javanica (Benth.) Baker, Loncocarpus sericeus (Poir), and Tephrosia candida (Roxb.). Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001). The program STRUCTURE estimated 2 genotypic clusters (co-ancestries) on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation −0.68%) or F-statistics (F ST Loc = −0.01; P = 0.62). These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92). In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (F ST Host = 0.04; P = 0.01), which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27). Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM) for M. vitrata in West Africa. PMID:24647356

  19. Widespread plant specialization in the polyphagous planthopper Hyalesthes obsoletus (Cixiidae), a major vector of stolbur phytoplasma: Evidence of cryptic speciation.

    PubMed

    Kosovac, Andrea; Johannesen, Jes; Krstić, Oliver; Mitrović, Milana; Cvrković, Tatjana; Toševski, Ivo; Jović, Jelena

    2018-01-01

    The stolbur phytoplasma vector Hyalesthes obsoletus is generally considered as a polyphagous species associated with numerous wild and cultivated plants. However, recent research in southeastern Europe, the distribution centre of H. obsoletus and the area of most stolbur-inflicted crop diseases, points toward specific host-plant associations of the vector, indicating specific vector-based transmission routes. Here, we study the specificity of populations associated with four host-plants using mitochondrial and nuclear genetic markers, and we evaluate the evolution of host-shifts in H. obsoletus. Host-plant use was confirmed for Convolvulus arvensis, Urtica dioica, Vitex agnus-castus and Crepis foetida. Mitochondrial genetic analysis showed sympatric occurrence of three phylogenetic lineages that were ecologically delineated by host-plant preference, but were morphologically inseparable. Nuclear data supported the existence of three genetic groups (Evanno's ΔK(3) = 803.72) with average genetic membership probabilities > 90%. While populations associated with C. arvensis and U. dioica form a homogenous group, populations affiliated with V. agnus-castus and C. foetida constitute two independent plant-associated lineages. The geographical signal permeating the surveyed populations indicated complex diversification processes associated with host-plant selection and likely derived from post-glacial refugia in the eastern Mediterranean. This study provides evidence for cryptic species diversification within H. obsoletus sensu lato: i) consistent mitochondrial differentiation (1.1-1.5%) among host-associated populations in syntopy and in geographically distant areas, ii) nuclear genetic variance supporting mitochondrial data, and iii) average mitochondrial genetic distances among host-associated meta-populations are comparable to the most closely related, morphologically distinguishable species, i.e., Hyalesthes thracicus (2.1-3.3%).

  20. The potential of host plants for biological control of Tuta absoluta by the predator Dicyphus errans.

    PubMed

    Ingegno, B L; Candian, V; Psomadelis, I; Bodino, N; Tavella, L

    2017-06-01

    Dicyphus errans (Wolff) has been shown to be a suitable biocontrol agent for Tuta absoluta (Meyrick). This generalist predator shares various host plants with the exotic pest, and these interactions could be exploited to enhance pest control. Therefore, host preference, survival rate and development times of the predator and prey were investigated on crop and non-crop plant species. Among the tested plants, the favourite hosts were Solanum species for T. absoluta, and herb Robert, European black nightshade, courgette and tomato for D. errans. Tuta absoluta accepted the same plant species as hosts for oviposition, but it never developed on herb Robert and courgette in all the experiments. Based on our results, we would suggest the use of courgette and herb Robert in consociation with tomato and as a companion plant, respectively, which may keep pest densities below the economic threshold. Moreover, the omnivorous and widespread D. errans could be a key predator of this exotic pest, allowing a high encounter probability on several cultivated and non-cultivated plant species.

  1. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest.

    PubMed

    Sarmiento, Carolina; Zalamea, Paul-Camilo; Dalling, James W; Davis, Adam S; Stump, Simon M; U'Ren, Jana M; Arnold, A Elizabeth

    2017-10-24

    The Janzen-Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet-that recruits experience high mortality near conspecifics and at high densities-assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1-12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests.

  2. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest

    PubMed Central

    Dalling, James W.; Stump, Simon M.; U’Ren, Jana M.; Arnold, A. Elizabeth

    2017-01-01

    The Janzen–Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet—that recruits experience high mortality near conspecifics and at high densities—assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1–12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests. PMID:28973927

  3. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Fire creates host plant patches for monarch butterflies

    PubMed Central

    Baum, Kristen A.; Sharber, Wyatt V.

    2012-01-01

    Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas. PMID:22859559

  5. RNA mobility in parasitic plant – host interactions

    PubMed Central

    Kim, Gunjune

    2017-01-01

    ABSTRACT The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication. PMID:28277936

  6. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss

    PubMed Central

    Schauer, S

    2011-01-01

    Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis and an average DNA-DNA hybridization value of 8.4%, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of “primitive” land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source. PMID:21673511

  7. Insecticide use and competition shape the genetic diversity of the aphid Aphis gossypii in a cotton-growing landscape.

    PubMed

    Brévault, T; Carletto, J; Tribot, J; Vanlerberghe-Masutti, F

    2011-08-01

    Field populations of the cotton aphid, Aphis gossypii Glover, are structured into geographically widespread host races. In the cotton-producing regions of West and Central Africa (WCA), two genotypes have been repeatedly detected within the cotton host race, one of which (Burk1) is prevalent (>90%) and resistant to several insecticides, as opposed to the second one (Ivo). Here, we conducted whole plant and field cage experiments to test hypotheses for such low genetic diversity, including selection from insecticide treatments, interclonal competition and adaptation to host plant, or climatic conditions. To assess the genetic diversity of immigrant aphids, alatae were trapped and collected on cotton and relay host plants (okra and roselle) in the early cropping season. Individuals were genotyped at eight specific microsatellite loci and characterized by a multilocus genotype (MLG). When independently transferred from cotton (Gossypium hirustum L.) leaf discs to whole plants (G. hirsutum and G. arboreum, roselle and okra), Ivo and Burk1 performed equally well. When concurrently transferred from cotton leaf discs to the same plant species, Ivo performed better than Burk1, indicating that competition favoured Ivo. This was also the case on G. hirsutum growing outdoors. Conversely, Burk1 prevailed when cotton plants were sprayed with insecticides. In experiments where aphids were allowed to move to neighbouring plants, Burk1 was better represented than Ivo on low-populated plants, suggesting that dispersal may be a way to avoid competition on crowded plants. Most cotton aphids collected on cotton or relay host plants in the early cropping season were Burk1 (>90%), indicating high dispersal ability and, probably reflecting high frequency on host plants from which they dispersed. In the agricultural landscape of WCA, the use of broad-range insecticides on both cotton and relay host plants has led to the prevalence of one genotype of A. gossypii resistant to different classes of insecticides. Deployment of widespread and integrated pest management strategies are needed to restore cotton aphid control.

  8. Host-Mediated Effects of Semipersistently Transmitted Squash Vein Yellowing Virus on Sweetpotato Whitefly (Hemiptera: Aleyrodidae) Behavior and Fitness.

    PubMed

    Shrestha, Deepak; McAuslane, Heather J; Adkins, Scott T; Smith, Hugh A; Dufault, Nicholas; Colee, James; Webb, Susan E

    2017-08-01

    Plant viruses may indirectly affect insect vector behavior and fitness via a shared host plant. Here, we evaluated the host-mediated effects of Squash vein yellowing virus (SqVYV) on the behavior and fitness of its whitefly vector, Bemisia tabaci (Gennadius) Middle East-Asia Minor 1, formerly biotype B. Alighting, settling, and oviposition behavioral assays were conducted on infected and mock-inoculated squash (Cucurbita pepo L.) and watermelon [Citrullus lanatus (Thunb) Matsum and Nakai] plants. Developmental time of immature stages, adult longevity, and fecundity were measured on infected and mock-inoculated squash plants. For adult longevity and fecundity, whiteflies were reared on infected and mock-inoculated squash plants to determine the effects of nymphal rearing host on the adult stage. More whiteflies alighted and remained settled on infected squash than on mock-inoculated squash 0.25, 1, 8, and 24 h after release. No such initial preference was observed on watermelon plants, but by 8 h after release, more whiteflies were found on mock-inoculated watermelon plants than on infected plants. Whiteflies laid approximately six times more eggs on mock-inoculated watermelon than on infected watermelon; however, no differences were observed on squash. Development from egg to adult emergence was 3 d shorter on infected than mock-inoculated squash plants. Females lived 25% longer and had higher fecundity on infected squash plants than on mock-inoculated plants, regardless of infection status of the rearing host. The host-mediated effects of SqVYV infection on whitefly behavior differ on two cucurbit host plants, suggesting the potential for more rapid spread of the virus within watermelon fields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Plant-based insect repellents: a review of their efficacy, development and testing

    PubMed Central

    2011-01-01

    Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as “safe” in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field. PMID:21411012

  10. Chloroplast in Plant-Virus Interaction

    PubMed Central

    Zhao, Jinping; Zhang, Xian; Hong, Yiguo; Liu, Yule

    2016-01-01

    In plants, the chloroplast is the organelle that conducts photosynthesis. It has been known that chloroplast is involved in virus infection of plants for approximate 70 years. Recently, the subject of chloroplast-virus interplay is getting more and more attention. In this article we discuss the different aspects of chloroplast-virus interaction into three sections: the effect of virus infection on the structure and function of chloroplast, the role of chloroplast in virus infection cycle, and the function of chloroplast in host defense against viruses. In particular, we focus on the characterization of chloroplast protein-viral protein interactions that underlie the interplay between chloroplast and virus. It can be summarized that chloroplast is a common target of plant viruses for viral pathogenesis or propagation; and conversely, chloroplast and its components also can play active roles in plant defense against viruses. Chloroplast photosynthesis-related genes/proteins (CPRGs/CPRPs) are suggested to play a central role during the complex chloroplast-virus interaction. PMID:27757106

  11. Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle.

    PubMed

    Blair, Catherine P; Abrahamson, Warren G; Jackman, John A; Tyrrell, Lynn

    2005-02-01

    Host-race formation remains controversial as a source of herbivorous insect diversity, and examples of host races are still fairly scarce. In this study, analysis of five enzyme loci in the ostensibly generalist tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae) revealed hidden host-plant and plant-organ related genetic differentiation. Mordellistena convicta turned out to be a complex of cryptomorphic species, each with fewer hosts than the nominal species. These cryptic species, in turn, were divided into taxa that showed host-race characteristics: samples from different host plants and organs exhibited (1) genetic indications of partial reproductive isolation, (2) differences in size and emergence timing that suggested divergent host-related selection, and (3) among-host selective differences in mortality from parasitoids. Host-race formation in M. convicta, which has a somewhat different life history from the well-studied host races, enlarges the group of insects considered likely to undergo this process. The widespread sympatry of the M. convicta species complex, along with its spectrum of host-correlated genetic differentiation, suggests that these host specialist taxa developed in sympatry.

  12. Glucosinolates from Host Plants Influence Growth of the Parasitic Plant Cuscuta gronovii and Its Susceptibility to Aphid Feeding1[OPEN

    PubMed Central

    2016-01-01

    Parasitic plants acquire diverse secondary metabolites from their hosts, including defense compounds that target insect herbivores. However, the ecological implications of this phenomenon, including the potential enhancement of parasite defenses, remain largely unexplored. We studied the translocation of glucosinolates from the brassicaceous host plant Arabidopsis (Arabidopsis thaliana) into parasitic dodder vines (Convolvulaceae; Cuscuta gronovii) and its effects on the parasite itself and on dodder-aphid interactions. Aliphatic and indole glucosinolates reached concentrations in parasite tissues higher than those observed in corresponding host tissues. Dodder growth was enhanced on cyp79B2 cyp79B3 hosts (without indole glucosinolates) but inhibited on atr1D hosts (with elevated indole glucosinolates) relative to wild-type hosts, which responded to parasitism with localized elevation of indole and aliphatic glucosinolates. These findings implicate indole glucosinolates in defense against parasitic plants. Rates of settling and survival on dodder vines by pea aphids (Acyrthosiphon pisum) were reduced significantly when dodder parasitized glucosinolate-producing hosts (wild type and atr1D) compared with glucosinolate-free hosts (cyp79B2 cyp79B3 myb28 myb29). However, settling and survival of green peach aphids (Myzus persicae) were not affected. M. persicae population growth was actually reduced on dodder parasitizing glucosinolate-free hosts compared with wild-type or atr1D hosts, even though stems of the former contain less glucosinolates and more amino acids. Strikingly, this effect was reversed when the aphids fed directly upon Arabidopsis, which indicates an interactive effect of parasite and host genotype on M. persicae that stems from host effects on dodder. Thus, our findings indicate that glucosinolates may have both direct and indirect effects on dodder-feeding herbivores. PMID:27482077

  13. Genomes of three facultatively symbiotic Frankia sp. strainsreflect host plant biogeography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.

    2006-02-01

    Filamentous actinobacteria from the genus Frankia anddiverse woody trees and shrubs together form N2-fixing actinorhizal rootnodule symbioses that are a major source of new soil nitrogen in widelydiverse biomes 1. Three major clades of Frankia sp. strains are defined;each clade is associated with a defined subset of plants from among theeight actinorhizal plant families 2,3. The evolution arytrajectoriesfollowed by the ancestors of both symbionts leading to current patternsof symbiont compatibility are unknown. Here we show that the competingprocesses of genome expansion and contraction have operated in differentgroups of Frankia strains in a manner that can be related to thespeciation ofmore » the plant hosts and their geographic distribution. Wesequenced and compared the genomes from three Frankia sp. strains havingdifferent host plant specificities. The sizes of their genomes variedfrom 5.38 Mbp for a narrow host range strain (HFPCcI3) to 7.50Mbp for amedium host range strain (ACN14a) to 9.08 Mbp for a broad host rangestrain (EAN1pec.) This size divergence is the largest yet reported forsuch closely related bacteria. Since the order of divergence of thestrains is known, the extent of gene deletion, duplication andacquisition could be estimated and was found to be inconcert with thebiogeographic history of the symbioses. Host plant isolation favoredgenome contraction, whereas host plant diversification favored genomeexpansion. The results support the idea that major genome reductions aswell as expansions can occur in facultatively symbiotic soil bacteria asthey respond to new environments in the context of theirsymbioses.« less

  14. Genetic variation in horizontally transmitted fungal endophytes of pine needles reveals population structure in cryptic species.

    PubMed

    Oono, Ryoko; Lutzoni, François; Arnold, A Elizabeth; Kaye, Laurel; U'Ren, Jana M; May, Georgiana; Carbone, Ignazio

    2014-08-01

    • Fungal endophytes comprise one of the most ubiquitous groups of plant symbionts, inhabiting healthy leaves and stems of all major lineages of plants. Together, they comprise immense species richness, but little is known about the fundamental processes that generate their diversity. Exploration of their population structure is needed, especially with regard to geographic distributions and host affiliations.• We take a multilocus approach to examine genetic variation within and among populations of Lophodermium australe, an endophytic fungus commonly associated with healthy foliage of pines in the southeastern United States. Sampling focused on two pine species ranging from montane to coastal regions of North Carolina and Virginia.• Our sampling revealed two genetically distinct groups within Lophodermium australe. Our analysis detected less than one migrant per generation between them, indicating that they are distinct species. The species comprising the majority of isolates (major species) demonstrated a panmictic structure, whereas the species comprising the minority of isolates (cryptic species) demonstrated isolation by distance. Distantly related pine species hosted the same Lophodermium species, and host species did not influence genetic structure.• We present the first evidence for isolation by distance in a foliar fungal endophyte that is horizontally transmitted. Cryptic species may be common among microbial symbionts and are important to delimit when exploring their genetic structure and microevolutionary processes. The hyperdiversity of endophytic fungi may be explained in part by cryptic species without apparent ecological and morphological differences as well as genetic diversification within rare fungal species across large spatial scales. © 2014 Botanical Society of America, Inc.

  15. Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession.

    PubMed

    Sikes, Benjamin A; Maherali, Hafiz; Klironomos, John N

    2014-04-01

    Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.

  16. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    USGS Publications Warehouse

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  17. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins.

    PubMed

    Hewezi, Tarek

    2015-10-01

    Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    PubMed

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  19. Ancient class of translocated oomycete effectors targets the host nucleus.

    PubMed

    Schornack, Sebastian; van Damme, Mireille; Bozkurt, Tolga O; Cano, Liliana M; Smoker, Matthew; Thines, Marco; Gaulin, Elodie; Kamoun, Sophien; Huitema, Edgar

    2010-10-05

    Pathogens use specialized secretion systems and targeting signals to translocate effector proteins inside host cells, a process that is essential for promoting disease and parasitism. However, the amino acid sequences that determine host delivery of eukaryotic pathogen effectors remain mostly unknown. The Crinkler (CRN) proteins of oomycete plant pathogens, such as the Irish potato famine organism Phytophthora infestans, are modular proteins with predicted secretion signals and conserved N-terminal sequence motifs. Here, we provide direct evidence that CRN N termini mediate protein transport into plant cells. CRN host translocation requires a conserved motif that is present in all examined plant pathogenic oomycetes, including the phylogenetically divergent species Aphanomyces euteiches that does not form haustoria, specialized infection structures that have been implicated previously in delivery of effectors. Several distinct CRN C termini localized to plant nuclei and, in the case of CRN8, required nuclear accumulation to induce plant cell death. These results reveal a large family of ubiquitous oomycete effector proteins that target the host nucleus. Oomycetes appear to have acquired the ability to translocate effector proteins inside plant cells relatively early in their evolution and before the emergence of haustoria. Finally, this work further implicates the host nucleus as an important cellular compartment where the fate of plant-microbe interactions is determined.

  20. The global distribution of diet breadth in insect herbivores

    PubMed Central

    Forister, Matthew L.; Novotny, Vojtech; Panorska, Anna K.; Baje, Leontine; Basset, Yves; Butterill, Philip T.; Cizek, Lukas; Coley, Phyllis D.; Dem, Francesca; Diniz, Ivone R.; Drozd, Pavel; Fox, Mark; Glassmire, Andrea E.; Hazen, Rebecca; Hrcek, Jan; Jahner, Joshua P.; Kaman, Ondrej; Kozubowski, Tomasz J.; Kursar, Thomas A.; Lewis, Owen T.; Lill, John; Marquis, Robert J.; Miller, Scott E.; Morais, Helena C.; Murakami, Masashi; Nickel, Herbert; Pardikes, Nicholas A.; Ricklefs, Robert E.; Singer, Michael S.; Smilanich, Angela M.; Stireman, John O.; Villamarín-Cortez, Santiago; Vodka, Stepan; Volf, Martin; Wagner, David L.; Walla, Thomas; Weiblen, George D.; Dyer, Lee A.

    2015-01-01

    Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization. PMID:25548168

  1. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola.

    PubMed

    Newcombe, George; Campbell, Jason; Griffith, David; Baynes, Melissa; Launchbaugh, Karen; Pendleton, Rosemary

    2016-01-01

    Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung.

  2. Revisiting the Life Cycle of Dung Fungi, Including Sordaria fimicola

    PubMed Central

    Newcombe, George; Campbell, Jason; Griffith, David; Baynes, Melissa; Launchbaugh, Karen; Pendleton, Rosemary

    2016-01-01

    Dung fungi, such as Sordaria fimicola, generally reproduce sexually with ascospores discharged from mammalian dung after passage through herbivores. Their life cycle is thought to be obligate to dung, and thus their ascospores in Quaternary sediments have been interpreted as evidence of past mammalian herbivore activity. Reports of dung fungi as endophytes would seem to challenge the view that they are obligate to dung. However, endophyte status is controversial because surface-sterilization protocols could fail to kill dung fungus ascospores stuck to the plant surface. Thus, we first tested the ability of representative isolates of three common genera of dung fungi to affect plant growth and fecundity given that significant effects on plant fitness could not result from ascospores merely stuck to the plant surface. Isolates of S. fimicola, Preussia sp., and Sporormiella sp. reduced growth and fecundity of two of three populations of Bromus tectorum, the host from which they had been isolated. In further work with S. fimicola we showed that inoculations of roots of B. tectorum led to some colonization of aboveground tissues. The same isolate of S. fimicola reproduced sexually on inoculated host plant tissues as well as in dung after passage through sheep, thus demonstrating a facultative rather than an obligate life cycle. Finally, plants inoculated with S. fimicola were not preferred by sheep; preference had been expected if the fungus were obligate to dung. Overall, these findings make us question the assumption that these fungi are obligate to dung. PMID:26839959

  3. Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range.

    PubMed

    Wangeline, Ami L; Valdez, J Rodolfo; Lindblom, Stormy Dawn; Bowling, Keri L; Reeves, F Brent; Pilon-Smits, Elizabeth A H

    2011-07-01

    Selenium-hyperaccumulator plants can store over 1% (dry mass) Se in their tissues, despite the toxicity of this element at high concentrations across eukaryotes. These levels of Se can have widespread effects on the plant's ecological partners, including herbivores and pathogens. Still other partners seem to have coevolved Se tolerance. This is the first known study addressing the rhizosphere mycoflora of Se hyperaccumulators and aims to evaluate the rhizospheric fungal diversity and Se tolerance to further the knowledge of how these organisms interact with their host plants and survive in these extreme habitats. Rhizosphere fungi were isolated from Se-hyperaccumulator and nonaccumulator plant species collected from five sites in Colorado and Wyoming; four seleniferous sites and one nonseleniferous site. 259 isolates were identified to genus or species and evaluated for Se tolerance. Among the 24 represented genera, 11 comprised 86% of the isolates. The majority of isolates from the seleniferous sites were unaffected by 10 mg·L(-1) Se, irrespective of host plant (hyperaccumulator vs. nonaccumulator), while rhizosphere fungi from a control, nonseleniferous site were highly sensitive to Se at 10 mg·L(-1) and as a group were significantly less (α = 0.05) tolerant than the isolates from the seleniferous sites. Even though Se is a commonly used antifungal agent, these results suggest that rhizosphere fungi from seleniferous habitats have widespread Se tolerance, likely an adaptive advantage in their Se-rich habitat.

  4. Patterns of host-plant choice in bees of the genus Chelostoma: the constraint hypothesis of host-range evolution in bees.

    PubMed

    Sedivy, Claudio; Praz, Christophe J; Müller, Andreas; Widmer, Alex; Dorn, Silvia

    2008-10-01

    To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.

  5. Medhost: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann),Version 2.0

    USDA-ARS?s Scientific Manuscript database

    MEDHOST,Version 2.0 is the second revision of:"MEDHOST: An encyclopedic bibliography of the host plants of the Mediterranean fruit fly,Ceratitis capitata(Wiedemann),Version 1.0," which was released in 1998 as a Windows-based executable database and listed all plant species reported as hosts of Medit...

  6. Novel synthetic compounds enhance the attractiveness of host-plant volatiles: An opportunity to boost detection and monitoring of Asian citrus psyllid?

    USDA-ARS?s Scientific Manuscript database

    In the absence of pheromone attractants, host-plant volatiles offer the most likely means of improving capture levels of Asian citrus psyllid (ACP) with sticky cards and other types of visual traps. However, developing scent lures that can compete with the attractiveness of actual host-plants, espe...

  7. Plant-bacterial pathogen interactions mediated by type III effectors.

    PubMed

    Feng, Feng; Zhou, Jian-Min

    2012-08-01

    Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Influence of Multiple Infection and Relatedness on Virulence: Disease Dynamics in an Experimental Plant Population and Its Castrating Parasite

    PubMed Central

    Buono, Lorenza; López-Villavicencio, Manuela; Shykoff, Jacqui A.; Snirc, Alodie; Giraud, Tatiana

    2014-01-01

    The level of parasite virulence, i.e., the decrease in host's fitness due to a pathogen, is expected to depend on several parameters, such as the type of the disease (e.g., castrating or host-killing) and the prevalence of multiple infections. Although these parameters have been extensively studied theoretically, few empirical data are available to validate theoretical predictions. Using the anther smut castrating disease on Silene latifolia caused by Microbotryum lychnidis-dioicae, we studied the dynamics of multiple infections and of different components of virulence (host death, non-recovery and percentage of castrated stems) during the entire lifespan of the host in an experimental population. We monitored the number of fungal genotypes within plants and their relatedness across five years, using microsatellite markers, as well as the rates of recovery and host death in the population. The mean relatedness among genotypes within plants remained at a high level throughout the entire host lifespan despite the dynamics of the disease, with recurrent new infections. Recovery was lower for plants with multiple infections compared to plants infected by a single genotype. As expected for castrating parasites, M. lychnidis-dioicae did not increase host mortality. Mortality varied across years but was generally lower for plants that had been diseased the preceding year. This is one of the few studies to have empirically verified theoretical expectations for castrating parasites, and to show particularly i) that castrated hosts live longer, suggesting that parasites can redirect resources normally used in reproduction to increase host lifespan, lengthening their transmission phase, and ii) that multiple infections increase virulence, here in terms of non-recovery and host castration. PMID:24892951

  9. Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant-soil feedback.

    PubMed

    Mangan, Scott A; Herre, Edward A; Bever, James D

    2010-09-01

    A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant-soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF-host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant-soil feedback.

  10. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by compatible/incompatible/null-interacting bacteria to higher populations; however, the level of colonization differed significantly depending on the type of bacterial species used. PMID:24936863

  11. Cellular and Molecular Interactions of Rhabdoviruses with their Insect and Plant Hosts

    USDA-ARS?s Scientific Manuscript database

    The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are about 75 plant-infecting rhabdoviruses described, several of which are economically important pathogens that are persistently transmitted to their plant ho...

  12. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    PubMed

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  13. Plant defences on land and in water: why are they so different?

    PubMed

    Vermeij, Geerat J

    2016-06-01

    Plants (attached photosynthesizing organisms) are eaten by a wide variety of herbivorous animals. Despite a vast literature on plant defence, contrasting patterns of antiherbivore adaptation among marine, freshwater and land plants have been little noticed, documented or understood. Here I show how the surrounding medium (water or air) affects not only the plants themselves, but also the sensory and locomotor capacities of herbivores and their predators, and I discuss patterns of defence and host specialization of plants and herbivores on land and in water. I analysed the literature on herbivory with special reference to mechanical defences and sensory cues emitted by plants. Spines, hairs, asymmetrically oriented features on plant surfaces, and visual and olfactory signals that confuse or repel herbivores are common in land plants but rare or absent in water-dwelling plants. Small terrestrial herbivores are more often host-specific than their aquatic counterparts. I propose that patterns of selection on terrestrial herbivores and plants differ from those on aquatic species. Land plants must often attract animal dispersers and pollinators that, like their herbivorous counterparts, require sophisticated locomotor and sensory abilities. Plants counter their attractiveness to animal helpers by evolving effective contact defences and long-distance cues that mislead or warn herbivores. The locomotor and sensory world of small aquatic herbivores is more limited. These characteristics result from the lower viscosity and density of air compared with water as well as from limitations on plant physiology and signal transmission in water. Evolutionary innovations have not eliminated the contrasts in the conditions of life between water and land. Plant defence can be understood fully when herbivores and their victims are considered in the broader context of other interactions among coexisting species and of the medium in which these interactions occur. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Host-Plant Selectivity of Rhizobacteria in a Crop/Weed Model System

    PubMed Central

    Zeller, Simon L.; Brandl, Helmut; Schmid, Bernhard

    2007-01-01

    Belowground microorganisms are known to influence plants' performance by altering the soil environment. Plant pathogens such as cyanide-producing strains of the rhizobacterium Pseudomonas may show strong host-plant selectivity. We analyzed interactions between different host plants and Pseudomonas strains and tested if these can be linked to the cyanide sensitivity of host plants, the cyanide production of bacterial strains or the plant identity from which strains had been isolated. Eight strains (four cyanide producing) were isolated from roots of four weed species and then re-inoculated on the four weed and two additional crop species. Bacterial strain composition varied strongly among the four weed species. Although all six plant species showed different reductions in root growth when cyanide was artificially applied to seedlings, they were generally not negatively affected by inoculation with cyanide-producing bacterial strains. We found a highly significant plant species x bacterial strain interaction. Partitioning this interaction into contrasts showed that it was entirely due to a strongly negative effect of a bacterial strain (Pseudomonas kilonensis/brassicacearum, isolated from Galium mollugo) on Echinochloa crus-galli. This exotic weed may not have become adapted to the bacterial strain isolated from a native weed. Our findings suggest that host-specific rhizobacteria hold some promise as biological weed-control agents. PMID:17786217

  15. An Aphid Effector Targets Trafficking Protein VPS52 in a Host-Specific Manner to Promote Virulence1[OPEN

    PubMed Central

    2017-01-01

    Plant- and animal-feeding insects secrete saliva inside their hosts, containing effectors, which may promote nutrient release and suppress immunity. Although for plant pathogenic microbes it is well established that effectors target host proteins to modulate host cell processes and promote disease, the host cell targets of herbivorous insects remain elusive. Here, we show that the existing plant pathogenic microbe effector paradigm can be extended to herbivorous insects in that effector-target interactions inside host cells modify critical host processes to promote plant susceptibility. We showed that the effector Mp1 from Myzus persicae associates with the host Vacuolar Protein Sorting Associated Protein52 (VPS52). Using natural variants, we provide a strong link between effector virulence activity and association with VPS52, and show that the association is highly specific to M. persicae-host interactions. Also, coexpression of Mp1, but not Mp1-like variants, specifically with host VPS52s resulted in effector relocalization to vesicle-like structures that associate with prevacuolar compartments. We show that high VPS52 levels negatively impact virulence, and that aphids are able to reduce VPS52 levels during infestation, indicating that VPS52 is an important virulence target. Our work is an important step forward in understanding, at the molecular level, how a major agricultural pest promotes susceptibility during infestation of crop plants. We give evidence that an herbivorous insect employs effectors that interact with host proteins as part of an effective virulence strategy, and that these effectors likely function in a species-specific manner. PMID:28100451

  16. Environmental Nutrient Supply Directly Alters Plant Traits but Indirectly Determines Virus Growth Rate

    PubMed Central

    Lacroix, Christelle; Seabloom, Eric W.; Borer, Elizabeth T.

    2017-01-01

    Ecological stoichiometry and resource competition theory both predict that nutrient rates and ratios can alter infectious disease dynamics. Pathogens such as viruses hijack nutrient rich host metabolites to complete multiple steps of their epidemiological cycle. As the synthesis of these molecules requires nitrogen (N) and phosphorus (P), environmental supply rates, and ratios of N and P to hosts can directly limit disease dynamics. Environmental nutrient supplies also may alter virus epidemiology indirectly by changing host phenotype or the dynamics of coinfecting pathogens. We tested whether host nutrient supplies and coinfection control pathogen growth within hosts and transmission to new hosts, either directly or through modifications of plant tissue chemistry (i.e., content and stoichiometric ratios of nutrients), host phenotypic traits, or among-pathogen interactions. We examined two widespread plant viruses (BYDV-PAV and CYDV-RPV) in cultivated oats (Avena sativa) grown along a range of N and of P supply rates. N and P supply rates altered plant tissue chemistry and phenotypic traits; however, environmental nutrient supplies and plant tissue content and ratios of nutrients did not directly alter virus titer. Infection with CYDV-RPV altered plant traits and resulted in thicker plant leaves (i.e., higher leaf mass per area) and there was a positive correlation between CYDV-RPV titer and leaf mass per area. CYDV-RPV titer was reduced by the presence of a competitor, BYDV-PAV, and higher CYDV-RPV titer led to more severe chlorotic symptoms. In our experimental conditions, virus transmission was unaffected by nutrient supply rates, co-infection, plant stoichiometry, or plant traits, although nutrient supply rates have been shown to increase infection and coinfection rates. This work provides a robust test of the role of plant nutrient content and ratios in the dynamics of globally important pathogens and reveals a more complex relationship between within-host virus growth and alterations of plant traits. A deeper understanding of the differential effects of environmental nutrient supplies on virus epidemiology and ecology is particularly relevant given the rapid increase of nutrients flowing into Earth's ecosystems as a result of human activities. PMID:29163408

  17. Repeat-containing protein effectors of plant-associated organisms

    PubMed Central

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  18. Repeat-containing protein effectors of plant-associated organisms.

    PubMed

    Mesarich, Carl H; Bowen, Joanna K; Hamiaux, Cyril; Templeton, Matthew D

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  19. Sympatric diversification vs. immigration: deciphering host-plant specialization in a polyphagous insect, the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae).

    PubMed

    Imo, Miriam; Maixner, Michael; Johannesen, Jes

    2013-04-01

    The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host-plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle-specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host-race evolution in the northern range: Host-plant associated populations were significantly differentiated among syntopic sites (0.054 < F(HT) < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host-race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host-race diversification but suggests the introduction of a stinging nettle-specific phytoplasma strain by plant-unspecific vectors. The evolution of host races in the northern range has led to specific vector-based bois noir disease cycles. © 2013 Blackwell Publishing Ltd.

  20. Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States

    PubMed Central

    Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard

    2013-01-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698

  1. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States.

    PubMed

    Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard

    2013-04-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.

  2. Does a shift in host plants trigger speciation in the Alpine leaf beetle Oreina speciosissima (Coleoptera, Chrysomelidae)?

    PubMed

    Borer, Matthias; van Noort, Tom; Arrigo, Nils; Buerki, Sven; Alvarez, Nadir

    2011-10-20

    Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle. While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework. The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.

  3. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato

    PubMed Central

    Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Adler, Lynn S.

    2016-01-01

    Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp.) preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum). In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua) and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics. PMID:27529694

  4. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.

    PubMed

    Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel

    2010-10-01

    Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that ultramafic ecotypes of P. albus could play an important role in the adaptation of tree species to soils containing high concentrations of heavy metals and aid in strategies for ecological restoration.

  5. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata.

    PubMed

    Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin

    2012-04-12

    Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.

  6. Avoidance of nonhost plants by a bark beetle, Pityogenes bidentatus, in a forest of odors

    NASA Astrophysics Data System (ADS)

    Byers, John A.; Zhang, Qing-He; Birgersson, Göran

    The bark beetle, Pityogenes bidentatus (Coleoptera: Scolytidae), searches in mixed conifer and deciduous forests of northern Europe for suitable branches of its host, Scots pine (Pinus sylvestris). We tested whether odors from several diverse nonhost trees and plants common in the habitat (e.g., mountain ash, Sorbus aucuparia; oak, Quercus robur; alder buckthorn, Frangula alnus; blueberry, Vaccinium myrtillus; raspberry, Rubus idaeus; and grass, Deschampsia flexuosa) would reduce the attraction of the bark beetle to traps releasing its aggregation pheromone components in the field. Volatiles from the leaves or bark of each of these plants significantly reduced the attraction of the beetles to their pheromone. Odors collected from these nonhosts and analyzed by GC/MS contained monoterpenes, sesquiterpenes, and ``green-leaf'' alcohols, several of which (e.g., 1-octene-3-ol and β-caryophyllene) reduced the attraction to pheromone in the field and elicited electroantennographic responses. In the laboratory, reproduction by the beetle was marginal in nonhost Norway spruce, Picea abies, and was absent in the other nonhost trees. Olfactory avoidance of unsuitable nonhosts may have evolved due to advantages in avoiding mistakes during host selection.

  7. Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review.

    PubMed

    Negreiros de Carvalho, Patrícia Lunardelli; Silva, Eliane de Oliveira; Chagas-Paula, Daniela Aparecida; Hortolan Luiz, Jaine Honorata; Ikegaki, Masaharu

    2016-01-01

    In the natural products research, a valuable approach is the prospection of uncommon sources and unexplored habitat. Special attention has been given to endophytic fungi because of their ability to produce new and interesting secondary metabolites, which have several biological applications. The endophytes establish exclusive symbiotic relationships with plants and the metabolic interactions may support the synthesis of some similar valuables compounds. Among secondary metabolites, phenol-derived structures are responsible for several bioactivities such as antioxidant, cytotoxic, antimicrobial, among others. Phenolic compounds might be biosynthesized from the shikimate pathway. Although shikimic acid is a common precursor in plants, it is described as rare in microorganisms. To the best of our knowledge, this is the first review about phenolic compounds produced by endophytic fungi and a comparison has been made with those produced by the plant host. This review covers 124 phenolic secondary metabolites produced by endophytic fungi. Considering the data analyzed by us, only seven of such compounds were isolated from fungi and from their hosts. These observations claim for more attention to phenolic compounds produced by endophytic fungi with a view to understand the real importance of these compounds to endophytes survival.

  8. Extreme convergence in egg-laying strategy across insect orders

    PubMed Central

    Goldberg, Julia; Bresseel, Joachim; Constant, Jerome; Kneubühler, Bruno; Leubner, Fanny; Michalik, Peter; Bradler, Sven

    2015-01-01

    The eggs of stick and leaf insects (Phasmatodea) bear strong resemblance to plant seeds and are commonly dispersed by females dropping them to the litter. Here we report a novel egg-deposition mode for Phasmatodea performed by an undescribed Vietnamese species of the enigmatic subfamily Korinninae that produces a complex egg case (ootheca), containing numerous eggs in a highly ordered arrangement. This novel egg-deposition mode is most reminiscent of egg cases produced by members of unrelated insect orders, e.g. by praying mantises (Mantodea) and tortoise beetles (Coleoptera: Cassidinae). Ootheca production constitutes a striking convergence and major transition in reproductive strategy among stick insects, viz. a shift from dispersal of individual eggs to elaborate egg concentration. Adaptive advantages of ootheca formation on arboreal substrate are likely related to protection against parasitoids and desiccation and to allocation of specific host plants. Our phylogenetic analysis of nuclear (28S, H3) and mitochondrial (COI, COII) genes recovered Korinninae as a subordinate taxon among the species-rich Necrosciinae with Asceles as sister taxon, thus suggesting that placement of single eggs on leaves by host plant specialists might be the evolutionary precursor of ootheca formation within stick insects. PMID:25592976

  9. Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains.

    PubMed Central

    Vázquez, M; Dávalos, A; de las Peñas, A; Sánchez, F; Quinto, C

    1991-01-01

    Nodulation by Rhizobium, Bradyrhizobium, and Azorhizobium species in the roots of legumes and nonlegumes requires the proper expression of plant genes and of both common and specific bacterial nodulation genes. The common nodABC genes form an operon or are physically mapped together in all species studied thus far. Rhizobium leguminosarum bv. phaseoli strains are classified in two groups. The type I group has reiterated nifHDK genes and a narrow host range of nodulation. The type II group has a single copy of the nifHDK genes and a wide host range of nodulation. We have found by genetic and nucleotide sequence analysis that in type I strain CE-3, the functional common nodA gene is separated from the nodBC genes by 20 kb and thus is transcriptionally separated from the latter genes. This novel organization could be the result of a complex rearrangement, as we found zones of identity between the two separated nodA and nodBC regions. Moreover, this novel organization of the common nodABC genes seems to be a general characteristic of R. leguminosarum bv. phaseoli type I strains. Despite the separation, the coordination of the expression of these genes seems not to be altered. PMID:1991718

  10. Characterization of a Viral Synergism in the Monocot Brachypodium distachyon Reveals Distinctly Altered Host Molecular Processes Associated with Disease1[C][W][OA

    PubMed Central

    Mandadi, Kranthi K.; Scholthof, Karen-Beth G.

    2012-01-01

    Panicum mosaic virus (PMV) and its satellite virus (SPMV) together infect several small grain crops, biofuel, and forage and turf grasses. Here, we establish the emerging monocot model Brachypodium (Brachypodium distachyon) as an alternate host to study PMV- and SPMV-host interactions and viral synergism. Infection of Brachypodium with PMV+SPMV induced chlorosis and necrosis of leaves, reduced seed set, caused stunting, and lowered biomass, more than PMV alone. Toward gaining a molecular understanding of PMV- and SPMV-affected host processes, we used a custom-designed microarray and analyzed global changes in gene expression of PMV- and PMV+SPMV-infected plants. PMV infection by itself modulated expression of putative genes functioning in carbon metabolism, photosynthesis, metabolite transport, protein modification, cell wall remodeling, and cell death. Many of these genes were additively altered in a coinfection with PMV+SPMV and correlated to the exacerbated symptoms of PMV+SPMV coinfected plants. PMV+SPMV coinfection also uniquely altered expression of certain genes, including transcription and splicing factors. Among the host defenses commonly affected in PMV and PMV+SPMV coinfections, expression of an antiviral RNA silencing component, SILENCING DEFECTIVE3, was suppressed. Several salicylic acid signaling components, such as pathogenesis-related genes and WRKY transcription factors, were up-regulated. By contrast, several genes in jasmonic acid and ethylene responses were down-regulated. Strikingly, numerous protein kinases, including several classes of receptor-like kinases, were misexpressed. Taken together, our results identified distinctly altered immune responses in monocot antiviral defenses and provide insights into monocot viral synergism. PMID:22961132

  11. A Multiple Decrement Life Table Reveals That Host Plant Resistance and Parasitism Are Major Causes of Mortality for the Wheat Stem Sawfly.

    PubMed

    Buteler, Micaela; Peterson, Robert K D; Hofland, Megan L; Weaver, David K

    2015-12-01

    This study investigated the dynamics of parasitism, host plant resistance, pathogens, and predation on the demography of wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), developing in susceptible (hollow stem) and resistant (solid stem) wheat hosts. This study is also the first to investigate the prevalence and impact of cannibalism on wheat stem sawfly mortality. Wheat stem sawflies were sampled in two commercial wheat fields over 4 yr from the egg stage through adult emergence, and multiple decrement life tables were constructed and analyzed. Cannibalism, host plant resistance, or unknown factors were the most prevalent factors causing egg mortality. Summer mortality of prediapause larvae ranged from 28 to 84%, mainly due to parasitism by Bracon cephi (Gahan) and Bracon lissogaster Muesebeck, cannibalism, and host plant resistance. Winter mortality ranged from 6 to 54% of the overwintering larvae, mainly due to unknown factors or pathogens. Cannibalism is a major cause of irreplaceable mortality because it is absolute, with only a single survivor in every multiple infested stem. Subsequent to obligate cannibalism, mortality of feeding larvae due to host plant resistance was lower in hollow stem wheat than in solid stem wheat. Mortality from host plant resistance was largely irreplaceable. Irreplaceable mortality due to parasitoids was greater in hollow stem wheat than in solid stem wheat. Host plant resistance due to stem solidness and parasitism in hollow stems cause substantial mortality in populations of actively feeding larvae responsible for all crop losses. Therefore, enhancing these mortality factors is vital to effective integrated pest management of wheat stem sawfly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Host specificity in parasitic plants-perspectives from mistletoes.

    PubMed

    Okubamichael, Desale Y; Griffiths, Megan E; Ward, David

    2016-01-01

    Host specificity has been investigated for centuries in mistletoes, viruses, insects, parasitoids, lice and flukes, yet it is poorly understood. Reviewing the numerous studies on mistletoe host specificity may contribute to our understanding of these plants and put into context the dynamics at work in root parasitic plants and animal parasites. The mechanisms that determine host specificity in mistletoes are not as well documented and understood as those in other groups of parasites. To rectify this, we synthesized the available literature and analyzed data compiled from herbaria, published monographs and our own field studies in South Africa. As for other groups of parasites, multiple factors influence mistletoe host specificity. Initially, pollination affects gene flow. Subsequently, seed dispersal vectors (birds and marsupials), host abundance and compatibility (genetic, morphological, physiological and chemical), history and environmental conditions affect the interaction of mistletoes and their hosts and determine host specificity. Mistletoe-host network analyses and a geographic mosaic approach combined with long-term monitoring of reciprocal transplant experiments, genetic analyses of confined mistletoe populations and comparative phylogenetic studies could provide further insights to our understanding of host specificity. Some of these approaches have been used to study animal-plant interactions and could be adopted to test and evaluate host specificity in mistletoes at local and larger geographic scales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  13. Implications of bioactive solute transfer from hosts to parasitic plants.

    PubMed

    Smith, Jason D; Mescher, Mark C; De Moraes, Consuelo M

    2013-08-01

    Parasitic plants--which make their living by extracting nutrients and other resources from other plants--are important components of many natural ecosystems; and some parasitic species are also devastating agricultural pests. To date, most research on plant parasitism has focused on nutrient transfer from host to parasite and the impacts of parasites on host plants. Far less work has addressed potential effects of the translocation of bioactive non-nutrient solutes-such as phytohormones, secondary metabolites, RNAs, and proteins-on the development and physiology of parasitic plants and on their subsequent interactions with other organisms such as insect herbivores. A growing number of recent studies document the transfer of such molecules from hosts to parasites and suggest that they may have significant impacts on parasite physiology and ecology. We review this literature and discuss potential implications for management and priorities for future research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Host plant associated genetic divergence of two Diatraea spp. (Lepidoptera: Crambidae) stemborers on novel crop plants

    USDA-ARS?s Scientific Manuscript database

    Diatraea lineolata and Diatraea saccharalis (Lepidoptera: Crambidae) are moths with stemboring larvae that feed and develop on economically important grasses. This study investigated whether these moths have diverged from a native host plant, corn, onto introduced crop plants including sorghum, suga...

  15. Jack of all trades masters novel host plants: positive genetic correlations in specialist and generalist insect herbivores expanding their diets to novel hosts

    PubMed Central

    GARCÍA-ROBLEDO, CARLOS; HORVITZ, CAROL C.

    2011-01-01

    One explanation for the widespread host specialization of insect herbivores is the “Jack of all trades-master of none” principle, which states that genotypes with high performance on one host will perform poorly on other hosts. This principle predicts that cross-host correlation in performance of genotypes will be negative. In this study we experimentally explored cross-host correlations and performance among families in four species (two generalist and two specialist) of leaf beetles (Cephaloleia spp.) that are currently expanding their diets from native to exotic plants. All four species displayed similar responses in body size, developmental rates and mortality rates to experimentally controlled diets. When raised on novel hosts, body size of larvae, pupae and adults were reduced. Development times were longer and larval mortality was higher on novel hosts. Genotype × host plant interactions were not detected for most traits. All significant cross-host correlations were positive. These results indicate very different ecological and evolutionary dynamics than those predicted by the “Jack of all trades-master of none” principle. PMID:22022877

  16. Plant feeding promotes diversification in the Crustacea

    PubMed Central

    Poore, Alistair G. B.; Ahyong, Shane T.; Lowry, James K.; Sotka, Erik E.

    2017-01-01

    About half of the world’s animal species are arthropods associated with plants, and the ability to consume plant material has been proposed to be an important trait associated with the spectacular diversification of terrestrial insects. We review the phylogenetic distribution of plant feeding in the Crustacea, the other major group of arthropods that commonly consume plants, to estimate how often plant feeding has arisen and to test whether this dietary transition is associated with higher species numbers in extant clades. We present evidence that at least 31 lineages of marine, freshwater, and terrestrial crustaceans (including 64 families and 185 genera) have independently overcome the challenges of consuming plant material. These plant-feeding clades are, on average, 21-fold more speciose than their sister taxa, indicating that a shift in diet is associated with increased net rates of diversification. In contrast to herbivorous insects, most crustaceans have very broad diets, and the increased richness of taxa that include plants in their diet likely results from access to a novel resource base rather than host-associated divergence. PMID:28760973

  17. Comparative host selection responses of specialist (Helicoverpa assulta) and generalist (Helicoverpa armigera) moths in complex plant environments

    PubMed Central

    Li, Wei-zheng; Teng, Xiao-hui; Zhang, Hong-fei; Liu, Ting; Wang, Qiong; Guo, Xian-ru

    2017-01-01

    We tested the behavioral responses of ovipositing females and natal larvae of two sibling species, a generalist Helicoverpa armigera (Hübner) and a specialist Helicoverpa assulta (Guenée), to odor sources emitted from different combinations of six plant species (tobacco, Nicotiana tabacum; hot pepper, Capsicum annuum; tomato, Solanum esculentum; cotton, Gossypium hirsutum; peanut, Arachis hypogaea; maize, Zea mays). Under the conditions of plant materials versus corresponding controls, both stages of both species could find their corresponding host plants. However, H. assulta females and larvae exhibited a supersensitive and an insensitive response, respectively. Under the conditions of tobacco paired with each plant species, H. assulta females exhibited more specialized ovipositional response to tobacco than its sibling. When each plant species were combined with tobacco and tested against tobacco reference, peanut played an opposite role in the two species in their ovipositional responses to tobacco, and cotton can enhance the approaching response of H. armigera larvae when combined with tobacco. It seems that two attractive host plants also can act antagonistically with respect to host selection of the generalist via volatile exchange. Tomato should better be excluded from host list of H. assulta. PMID:28182679

  18. Effect of mechanical damage on emission of volatile organic compounds from plant leaves and implications for evaluation of host plant specificity of prospective biological control agents of weeds

    USDA-ARS?s Scientific Manuscript database

    Assessment of host plant specificity is a critical step in the evaluation of classical biological control agents of weeds, which is necessary for avoiding possible damage to nontarget plants. Volatile organic compounds (VOC) emitted by plants likely play an important role in determining which plant...

  19. Host plants of Solanum fruit fly, Bactrocera latifrons(Hendel)(Diptera: Tephritidae); and provisional list of suitable host plants of Bactrocera(Bactrocera)latifrons(Hendel)(Diptera: Tephritidae), Version 1.0

    USDA-ARS?s Scientific Manuscript database

    Bactrocera latifrons (Hendel)(Diptera: Tephritidae) infests many solanaceous plant species, some of which are important horticultural crop species. It has also been found to infest a number of cucurbitaceous plant species as well as a few plant species in other plant families. Bactrocera latifrons i...

  20. Towards a new paradigm for species association dynamics

    USDA-ARS?s Scientific Manuscript database

    Parasite-host and insect-plant research have very divergent traditions despite the fact that many phytophagous insects live parasitically on their host plants. In parasitology it is a traditional assumption that parasites are typically highly specialized. Cospeciation between parasites and hosts is ...

Top