NASA Technical Reports Server (NTRS)
1993-01-01
The purpose is to describe at a high level the common interface provisions and constraints placed on the NOAA-2000 instruments and the interfacing spacecraft elements in the following areas: electrical interface, mechanical interface, thermal interface, magnetic interface, electromagnetic compatibility, structural/mechanical environmental interface, contamination control, and the ionizing radiation environment. The requirements reflect the fact that these instruments must be compatible with a number of different polar orbiting satellite vehicles including the NOAA-OPQ satellites and the EUMETSAT METOP satellites.
Virtual Sensor Test Instrumentation
NASA Technical Reports Server (NTRS)
Wang, Roy
2011-01-01
Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of functions. The sensor data is processed in a distributed fashion across the network, providing a large pool of resources in real time to meet stringent latency requirements.
Simultaneous control of multiple instruments at the Advanced Technology Solar Telescope
NASA Astrophysics Data System (ADS)
Johansson, Erik M.; Goodrich, Bret
2012-09-01
The Advanced Technology Solar Telescope (ATST) is a 4-meter solar observatory under construction at Haleakala, Hawaii. The simultaneous use of multiple instruments is one of the unique capabilities that makes the ATST a premier ground based solar observatory. Control of the instrument suite is accomplished by the Instrument Control System (ICS), a layer of software between the Observatory Control System (OCS) and the instruments. The ICS presents a single narrow interface to the OCS and provides a standard interface for the instruments to be controlled. It is built upon the ATST Common Services Framework (CSF), an infrastructure for the implementation of a distributed control system. The ICS responds to OCS commands and events, coordinating and distributing them to the various instruments while monitoring their progress and reporting the status back to the OCS. The ICS requires no specific knowledge about the instruments. All information about the instruments used in an experiment is passed by the OCS to the ICS, which extracts and forwards the parameters to the appropriate instrument controllers. The instruments participating in an experiment define the active instrument set. A subset of those instruments must complete their observing activities in order for the experiment to be considered complete and are referred to as the must-complete instrument set. In addition, instruments may participate in eavesdrop mode, outside of the control of the ICS. All instrument controllers use the same standard narrow interface, which allows new instruments to be added without having to modify the interface or any existing instrument controllers.
A Microcomputer Interface for External Circuit Control.
ERIC Educational Resources Information Center
Gorham, D. A.
1983-01-01
Describes an interface designed to meet the requirements of an instrumentation teaching laboratory, particularly to develop computer-controlled digital circuitry while exploiting electrical drive properties of common transistor-transistor logic (TTL) devices, minimizing cost/number of components. Discusses decoding for Pet, switches, lights, and…
Software for Classroom Music Making.
ERIC Educational Resources Information Center
Ely, Mark C.
1992-01-01
Describes musical instrument digital interface (MIDI), a communication system that uses digital data to enable MIDI-equipped instruments to communicate with each other. Includes discussion of music editors, sequencers, compositional software, and commonly used computers. Suggests uses for the technology for students and teachers. Urges further…
Performance analysis of a proposed tightly-coupled medical instrument network based on CAN protocol.
Mujumdar, Shantanu; Thongpithoonrat, Pongnarin; Gurkan, D; McKneely, Paul K; Chapman, Frank M; Merchant, Fatima
2010-01-01
Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN™ technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. The instruments are in turn becoming more sophisticated; however, the operation of an instrument is still expected to be locally done by authorized medical personnel. Unfortunately, each medical instrument has its unique proprietary API (application programming interface - if any) to provide automated and electronic access to monitoring data. Integration of these APIs requires an agreement with the manufacturers towards realization of interoperable health care networking. As long as the interoperability of instruments with a network is not possible, ubiquitous access to patient status is limited only to manual entry based systems. This paper demonstrates an attempt to realize an interoperable medical instrument interface for networking using MediCAN technology suite as an open standard.
A cross-platform GUI to control instruments compliant with SCPI through VISA
NASA Astrophysics Data System (ADS)
Roach, Eric; Liu, Jing
2015-10-01
In nuclear physics experiments, it is necessary and important to control instruments from a PC, which automates many tasks that require human operations otherwise. Not only does this make long term measurements possible, but it also makes repetitive operations less error-prone. We created a graphical user interface (GUI) to control instruments connected to a PC through RS232, USB, LAN, etc. The GUI is developed using Qt Creator, a cross-platform integrated development environment, which makes it portable to various operating systems, including those commonly used in mobile devices. NI-VISA library is used in the back end so that the GUI can be used to control instruments connected through various I/O interfaces without any modification. Commonly used SCPI commands can be sent to different instruments using buttons, sliders, knobs, and other various widgets provided by Qt Creator. As an example, we demonstrate how we set and fetch parameters and how to retrieve and display data from an Agilent Digital Storage Oscilloscope X3034A with the GUI. Our GUI can be easily used for other instruments compliant with SCPI and VISA with little or no modification.
Medical instrument data exchange.
Gumudavelli, Suman; McKneely, Paul K; Thongpithoonrat, Pongnarin; Gurkan, D; Chapman, Frank M
2008-01-01
Advances in medical devices and health care has been phenomenal during the recent years. Although medical device manufacturers have been improving their instruments, network connection of these instruments still rely on proprietary technologies. Even if the interface has been provided by the manufacturer (e.g., RS-232, USB, or Ethernet coupled with a proprietary API), there is no widely-accepted uniform data model to access data of various bedside instruments. There is a need for a common standard which allows for internetworking with the medical devices from different manufacturers. ISO/IEEE 11073 (X73) is a standard attempting to unify the interfaces of all medical devices. X73 defines a client access mechanism that would be implemented into the communication controllers (residing between an instrument and the network) in order to access/network patient data. On the other hand, MediCAN technology suite has been demonstrated with various medical instruments to achieve interfacing and networking with a similar goal in its open standardization approach. However, it provides a more generic definition for medical data to achieve flexibility for networking and client access mechanisms. In this paper, a comparison between the data model of X73 and MediCAN will be presented to encourage interoperability demonstrations of medical instruments.
Telescience Testbed Program: A study of software for SIRTF instrument control
NASA Technical Reports Server (NTRS)
Young, Erick T.
1992-01-01
As a continued element in the Telescience Testbed Program (TTP), the University of Arizona Steward Observatory and the Electrical and Computer Engineering Department (ECE) jointly developed a testbed to evaluate the Operations and Science Instrument System (OASIS) software package for remote control of an instrument for the Space Infrared Telescope Facility (SIRTF). SIRTF is a cryogenically-cooled telescope with three focal plane instruments that will be the infrared element of NASA's Great Observatory series. The anticipated launch date for SIRTF is currently 2001. Because of the complexity of the SIRTF mission, it was not expected that the OASIS package would be suitable for instrument control in the flight situation, however, its possible use as a common interface during the early development and ground test phases of the project was considered. The OASIS package, developed at the University of Colorado for control of the Solar Mesosphere Explorer (SME) satellite, serves as an interface between the operator and the remote instrument which is connected via a network. OASIS provides a rudimentary windowing system as well as support for standard spacecraft communications protocols. The experiment performed all of the functions required of the MIPS simulation program. Remote control of the instrument was demonstrated but found to be inappropriate for SIRTF at this time for the following reasons: (1) programming interface is too difficult; (2) significant computer resources were required to run OASIS; (3) the communications interface is too complicated; (4) response time was slow; and (5) quicklook of image data was not possible.
NASA Astrophysics Data System (ADS)
Zhao, Xiaosong; Zhao, Xiaofeng; Yin, Liang
2018-03-01
This paper presents a interface circuit for nano-polysilicon thin films pressure sensor. The interface circuit includes consist of instrument amplifier and Analog-to-Digital converter (ADC). The instrumentation amplifier with a high common mode rejection ratio (CMRR) is implemented by three stages current feedback structure. At the same time, in order to satisfy the high precision requirements of pressure sensor measure system, the 1/f noise corner of 26.5 mHz can be achieved through chopping technology at a noise density of 38.2 nV/sqrt(Hz).Ripple introduced by chopping technology adopt continuous ripple reduce circuit (RRL), which achieves the output ripple level is lower than noise. The ADC achieves 16 bits significant digit by adopting sigma-delta modulator with fourth-order single-bit structure and digital decimation filter, and finally achieves high precision integrated pressure sensor interface circuit.
TELICS—A Telescope Instrument Control System for Small/Medium Sized Astronomical Observatories
NASA Astrophysics Data System (ADS)
Srivastava, Mudit K.; Ramaprakash, A. N.; Burse, Mahesh P.; Chordia, Pravin A.; Chillal, Kalpesh S.; Mestry, Vilas B.; Das, Hillol K.; Kohok, Abhay A.
2009-10-01
For any modern astronomical observatory, it is essential to have an efficient interface between the telescope and its back-end instruments. However, for small and medium-sized observatories, this requirement is often limited by tight financial constraints. Therefore a simple yet versatile and low-cost control system is required for such observatories to minimize cost and effort. Here we report the development of a modern, multipurpose instrument control system TELICS (Telescope Instrument Control System) to integrate the controls of various instruments and devices mounted on the telescope. TELICS consists of an embedded hardware unit known as a common control unit (CCU) in combination with Linux-based data acquisition and user interface. The hardware of the CCU is built around the ATmega 128 microcontroller (Atmel Corp.) and is designed with a backplane, master-slave architecture. A Qt-based graphical user interface (GUI) has been developed and the back-end application software is based on C/C++. TELICS provides feedback mechanisms that give the operator good visibility and a quick-look display of the status and modes of instruments as well as data. TELICS has been used for regular science observations since 2008 March on the 2 m, f/10 IUCAA Telescope located at Girawali in Pune, India.
Al-Fakih, Ebrahim; Arifin, Nooranida; Pirouzi, Gholamhossein; Mahamd Adikan, Faisal Rafiq; Shasmin, Hanie Nadia; Abu Osman, Noor Azuan
2017-08-01
This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Conrad, A. R.; Lupton, W. F.
1992-01-01
Each Keck instrument presents a consistent software view to the user interface programmer. The view consists of a small library of functions, which are identical for all instruments, and a large set of keywords, that vary from instrument to instrument. All knowledge of the underlying task structure is hidden from the application programmer by the keyword layer. Image capture software uses the same function library to collect data for the image header. Because the image capture software and the instrument control software are built on top of the same keyword layer, a given observation can be 'replayed' by extracting keyword-value pairs from the image header and passing them back to the control system. The keyword layer features non-blocking as well as blocking I/O. A non-blocking keyword write operation (such as setting a filter position) specifies a callback to be invoked when the operation is complete. A non-blocking keyword read operation specifies a callback to be invoked whenever the keyword changes state. The keyword-callback style meshes well with the widget-callback style commonly used in X window programs. The first keyword library was built for the two Keck optical instruments. More recently, keyword libraries have been developed for the infrared instruments and for telescope control. Although the underlying mechanisms used for inter-process communication by each of these systems vary widely (Lick MUSIC, Sun RPC, and direct socket I/O, respectively), a basic user interface has been written that can be used with any of these systems. Since the keyword libraries are bound to user interface programs dynamically at run time, only a single set of user interface executables is needed. For example, the same program, 'xshow', can be used to display continuously the telescope's position, the time left in an instrument's exposure, or both values simultaneously. Less generic tools that operate on specific keywords, for example an X display that controls optical instrument exposures, have also been written using the keyword layer.
A validated methodology for determination of laboratory instrument computer interface efficacy
NASA Astrophysics Data System (ADS)
1984-12-01
This report is intended to provide a methodology for determining when, and for which instruments, direct interfacing of laboratory instrument and laboratory computers is beneficial. This methodology has been developed to assist the Tri-Service Medical Information Systems Program Office in making future decisions regarding laboratory instrument interfaces. We have calculated the time savings required to reach a break-even point for a range of instrument interface prices and corresponding average annual costs. The break-even analyses used empirical data to estimate the number of data points run per day that are required to meet the break-even point. The results indicate, for example, that at a purchase price of $3,000, an instrument interface will be cost-effective if the instrument is utilized for at least 154 data points per day if operated in the continuous mode, or 216 points per day if operated in the discrete mode. Although this model can help to ensure that instrument interfaces are cost effective, additional information should be considered in making the interface decisions. A reduction in results transcription errors may be a major benefit of instrument interfacing.
NASA Astrophysics Data System (ADS)
Pozna, E.; Ramirez, A.; Mérand, A.; Mueller, A.; Abuter, R.; Frahm, R.; Morel, S.; Schmid, C.; Duc, T. Phan; Delplancke-Ströbele, F.
2014-07-01
The quality of data obtained by VLTI instruments may be refined by analyzing the continuous data supplied by the Reflective Memory Network (RMN). Based on 5 years experience providing VLTI instruments (PACMAN, AMBER, MIDI) with RMN data, the procedure has been generalized to make the synchronization with observation trouble-free. The present software interface saves not only months of efforts for each instrument but also provides the benefits of software frameworks. Recent applications (GRAVITY, MATISSE) supply feedback for the software to evolve. The paper highlights the way common features been identified to be able to offer reusable code in due course.
Earth Observatory Satellite system definition study. Report 2: Instrument constraints and interfaces
NASA Technical Reports Server (NTRS)
1974-01-01
The instrument constraints and interface specifications for the Earth Observatory Satellite (EOS) are discussed. The Land Use Classification Mission using a 7 band Thematic Mapper and a 4 band High Resolution Pointable Imager is stressed. The mission and performance of the instruments were reviewed and expanded to reflect the instrument as a part of the total remote sensing system. A preliminary EOS interface handbook is provided to describe the mission and system, to specify the spacecraft interfaces to potential instrument contractors, and to describe the instrument interface data required by the system integration contractor.
NASA Astrophysics Data System (ADS)
Al-Fakih, Ebrahim; Arifin, Nooranida; Pirouzi, Gholamhossein; Mahamd Adikan, Faisal Rafiq; Shasmin, Hanie Nadia; Abu Osman, Noor Azuan
2017-08-01
This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
Integrated circuits and electrode interfaces for noninvasive physiological monitoring.
Ha, Sohmyung; Kim, Chul; Chi, Yu M; Akinin, Abraham; Maier, Christoph; Ueno, Akinori; Cauwenberghs, Gert
2014-05-01
This paper presents an overview of the fundamentals and state of the-art in noninvasive physiological monitoring instrumentation with a focus on electrode and optrode interfaces to the body, and micropower-integrated circuit design for unobtrusive wearable applications. Since the electrode/optrode-body interface is a performance limiting factor in noninvasive monitoring systems, practical interface configurations are offered for biopotential acquisition, electrode-tissue impedance measurement, and optical biosignal sensing. A systematic approach to instrumentation amplifier (IA) design using CMOS transistors operating in weak inversion is shown to offer high energy and noise efficiency. Practical methodologies to obviate 1/f noise, counteract electrode offset drift, improve common-mode rejection ratio, and obtain subhertz high-pass cutoff are illustrated with a survey of the state-of-the-art IAs. Furthermore, fundamental principles and state-of-the-art technologies for electrode-tissue impedance measurement, photoplethysmography, functional near-infrared spectroscopy, and signal coding and quantization are reviewed, with additional guidelines for overall power management including wireless transmission. Examples are presented of practical dry-contact and noncontact cardiac, respiratory, muscle and brain monitoring systems, and their clinical applications.
NASA Technical Reports Server (NTRS)
Ballester, P.
1992-01-01
MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives.
NASA Astrophysics Data System (ADS)
Schaefer, R. K.; Paxton, L. J.; Romeo, G.; Wolven, B. C.; Zhang, Y.; Comberiate, J.
2014-12-01
With it's high inclination orbit, GUVI provides global coverage of the ionosphere/thermosphere system, revisiting each polar region 15 times a day. The GUVI instrument has long been a resource for the ITM community with a panoply of data products available from the GUVI website (http://guvi.jhuapl.edu). GUVI is in a high inclination orbit and so provides coverage of both hemispheres. With the release last year of the data products from the DMSO/SSUSI instrument, particularly more detailed auroral zone products (Q, E0, Hemispheric Power, discrete auroral arcs, proton precipitation regions), new equatorial ionospheric products (3D electron densities, bubbles), a whole new set of UV data products has become available. SSUSI are available from http://ssusi.jhuapl.edu. To leverage the experience and knowledge gained from running all of these instruments we have adapted the SSUSI products so they can be made from GUVI telemetry. There are now updated versions of GUVI legacy products as well as brand new products. In addition, better on-orbit calibration techniques developed for SSUSI have now been applied to the GUVI instrument calibration - there is now a common set of software for calibrating both instruments. With a common data format, calibration, and product definition, the data from all SSUSI and GUVI instruments can now be easily combined to get multiple instruments to cover the hemispheres to do a variety of global studies. In addition, the GUVI spectrographic mode data provides great detail about spectrographic features (e.g. O/N2 ratios, NO band emission) that are important for understanding dynamical processes in the thermosphere. A new version of the GUVI website (with the same interface as the SSUSI website) has been launched from guvi.jhuapl.edu to showcase the legacy products made with the new calibration and also highlight the newly developed products for the GUVI imaging and spectrographic modes.
Mathur, Gagan; Haugen, Thomas H; Davis, Scott L; Krasowski, Matthew D
2014-01-01
Interfacing of clinical laboratory instruments with the laboratory information system (LIS) via "middleware" software is increasingly common. Our clinical laboratory implemented capillary electrophoresis using a Sebia(®) Capillarys-2™ (Norcross, GA, USA) instrument for serum and urine protein electrophoresis. Using Data Innovations Instrument Manager, an interface was established with the LIS (Cerner) that allowed for bi-directional transmission of numeric data. However, the text of the interpretive pathology report was not properly transferred. To reduce manual effort and possibility for error in text data transfer, we developed scripts in AutoHotkey, a free, open-source macro-creation and automation software utility. Scripts were written to create macros that automated mouse and key strokes. The scripts retrieve the specimen accession number, capture user input text, and insert the text interpretation in the correct patient record in the desired format. The scripts accurately and precisely transfer narrative interpretation into the LIS. Combined with bar-code reading by the electrophoresis instrument, the scripts transfer data efficiently to the correct patient record. In addition, the AutoHotKey script automated repetitive key strokes required for manual entry into the LIS, making protein electrophoresis sign-out easier to learn and faster to use by the pathology residents. Scripts allow for either preliminary verification by residents or final sign-out by the attending pathologist. Using the open-source AutoHotKey software, we successfully improved the transfer of text data between capillary electrophoresis software and the LIS. The use of open-source software tools should not be overlooked as tools to improve interfacing of laboratory instruments.
LC-IM-TOF Instrument Control & Data Visualization Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
2011-05-12
Liquid Chromatography-Ion Mobility-time of Flight Instrument Control and Data Visualization software is designed to control instrument voltages for the Ion Mobility drift tube. It collects and stores information collected from the Agilent TOF instrument and analyses/displays the ion intensity information acquired. The software interface can be split into 3 categories -- Instrument Settings/Controls, Data Acquisition, and Viewer. The Instrument Settings/Controls prepares the instrument for Data Acquisition. The Viewer contains common objects that are used by Instrument Settings/Controls and Data Acquisition. Intensity information is collected in 1 nanosec bins and separated by TOF pulses called scans. A collection of scans aremore » stored side by side making up an accumulation. In order for the computer to keep up with the stream of data, 30-50 accumulations are commonly summed into a single frame. A collection of frames makes up an experiment. The Viewer software then takes the experiment and presents the data in several possible ways, each frame can be viewed in TOF bins or m/z (mass to charge ratio). The experiment can be viewed frame by frame, merging several frames, or by viewing the peak chromatogram. The user can zoom into the data, export data, and/or animate frames. Additional features include calibration of the data and even post-processing multiplexed data.« less
The HERSCHEL/PACS early Data Products
NASA Astrophysics Data System (ADS)
Wieprecht, E.; Wetzstein, M.; Huygen, R.; Vandenbussche, B.; De Meester, W.
2006-07-01
ESA's Herschel Space Observatory to be launched in 2007, is the first space observatory covering the full far-infrared and submillimeter wavelength range (60 - 670 microns). The Photodetector Array Camera & Spectrometer (PACS) is one of the three science instruments. It contains two Ge:Ga photoconductor arrays and two bolometer arrays to perform imaging line spectroscopy and imaging photometry in the 60 - 210 micron wavelength band. The HERSCHEL ground segment (Herschel Common Science System - HCSS) is implemented using JAVA technology and written in a common effort by the HERSCHEL Science Center and the three instrument teams. The PACS Common Software System (PCSS) is based on the HCSS and used for the online and offline analysis of PACS data. For telemetry bandwidth reasons PACS science data are partially processed on board, compressed, cut into telemetry packets and transmitted to the ground. These steps are instrument mode dependent. We will present the software model which allows to reverse the discrete on board processing steps and evaluate the data. After decompression and reconstruction the detector data and instrument status information are organized in two main PACS Products. The design of these JAVA classes considers the individual sampling rates, data formats, memory and performance optimization aspects and comfortable user interfaces.
ERIC Educational Resources Information Center
Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.
2009-01-01
A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…
French, Deborah; Terrazas, Enrique
2013-01-01
Interfacing complex laboratory equipment to laboratory information systems (LIS) has become a more commonly encountered problem in clinical laboratories, especially for instruments that do not have an interface provided by the vendor. Liquid chromatography-tandem mass spectrometry is a great example of such complex equipment, and has become a frequent addition to clinical laboratories. As the testing volume on such instruments can be significant, manual data entry will also be considerable and the potential for concomitant transcription errors arises. Due to this potential issue, our aim was to interface an AB SCIEX™ mass spectrometer to our Sunquest(®) LIS. WE LICENSED SOFTWARE FOR THE DATA MANAGEMENT INTERFACE FROM THE UNIVERSITY OF PITTSBURGH, BUT EXTENDED THIS WORK AS FOLLOWS: The interface was designed so that it would accept a text file exported from the AB SCIEX™ × 5500 QTrap(®) mass spectrometer, pre-process the file (using newly written code) into the correct format and upload it into Sunquest(®) via file transfer protocol. The licensed software handled the majority of the interface tasks with the exception of converting the output from the Analyst(®) software to the required Sunquest(®) import format. This required writing of a "pre-processor" by one of the authors which was easily integrated with the supplied software. We successfully implemented the data management interface licensed from the University of Pittsburgh. Given the coding that was required to write the pre-processor, and alterations to the source code that were performed when debugging the software, we would suggest that before a laboratory decides to implement such an interface, it would be necessary to have a competent computer programmer available.
An improved maximum permissible exposure meter for safety assessments of laser radiation
NASA Astrophysics Data System (ADS)
Corder, D. A.; Evans, D. R.; Tyrer, J. R.
1997-12-01
Current interest in laser radiation safety requires demonstration that a laser system has been designed to prevent exposure to levels of laser radiation exceeding the Maximum Permissible Exposure. In some simple systems it is possible to prove this by calculation, but in most cases it is preferable to confirm calculated results with a measurement. This measurement may be made with commercially available equipment, but there are limitations with this approach. A custom designed instrument is presented in which the full range of measurement issues have been addressed. Important features of the instrument are the design and optimisation of detector heads for the measurement task, and consideration of user interface requirements. Three designs for detector head are presented, these cover the majority of common laser types. Detector heads are designed to optimise the performance of relatively low cost detector elements for this measurement task. The three detector head designs are suitable for interfacing to photodiodes, low power thermopiles and pyroelectric detectors. Design of the user interface was an important aspect of the work. A user interface which is designed for the specific application minimises the risk of user error or misinterpretation of the measurement results. A palmtop computer was used to provide an advanced user interface. User requirements were considered in order that the final implement was well matched to the task of laser radiation hazard audits.
Interactive Webmap-Based Science Planning for BepiColombo
NASA Astrophysics Data System (ADS)
McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.
2015-10-01
For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.
THOR Field and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek
2016-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
Bootstrapped two-electrode biosignal amplifier.
Dobrev, Dobromir Petkov; Neycheva, Tatyana; Mudrov, Nikolay
2008-06-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation. Low-voltage and low-power tendencies prevail. A two-electrode biopotential amplifier, designed for low-supply voltage (2.7-5.5 V), is presented. This biomedical amplifier design has high differential and sufficiently low common mode input impedances achieved by means of positive feedback, implemented with an original interface stage. The presented circuit makes use of passive components of popular values and tolerances. The amplifier is intended for use in various two-electrode applications, such as Holter monitors, external defibrillators, ECG monitors and other heart beat sensing biomedical devices.
User interfaces in space science instrumentation
NASA Astrophysics Data System (ADS)
McCalden, Alec John
This thesis examines user interaction with instrumentation in the specific context of space science. It gathers together existing practice in machine interfaces with a look at potential future usage and recommends a new approach to space science projects with the intention of maximising their science return. It first takes a historical perspective on user interfaces and ways of defining and measuring the science return of a space instrument. Choices of research methodology are considered. Implementation details such as the concepts of usability, mental models, affordance and presentation of information are described, and examples of existing interfaces in space science are given. A set of parameters for use in analysing and synthesizing a user interface is derived by using a set of case studies of diverse failures and from previous work. A general space science user analysis is made by looking at typical practice, and an interview plus persona technique is used to group users with interface designs. An examination is made of designs in the field of astronomical instrumentation interfaces, showing the evolution of current concepts and including ideas capable of sustaining progress in the future. The parameters developed earlier are then tested against several established interfaces in the space science context to give a degree of confidence in their use. The concept of a simulator that is used to guide the development of an instrument over the whole lifecycle is described, and the idea is proposed that better instrumentation would result from more efficient use of the resources available. The previous ideas in this thesis are then brought together to describe a proposed new approach to a typical development programme, with an emphasis on user interaction. The conclusion shows that there is significant room for improvement in the science return from space instrumentation by attention to the user interface.
Microprocessor-based interface for oceanography
NASA Technical Reports Server (NTRS)
Hansen, G. R.
1979-01-01
Ocean floor imaging system incorporates five identical microprocessor-based interface units each assigned to specific sonar instrument to simplify system. Central control module based on same microprocessor eliminates need for custom tailoring hardware interfaces for each instrument.
A Standardized Interface for Obtaining Digital Planetary and Heliophysics Time Series Data
NASA Astrophysics Data System (ADS)
Vandegriff, Jon; Weigel, Robert; Faden, Jeremy; King, Todd; Candey, Robert
2016-10-01
We describe a low level interface for accessing digital Planetary and Heliophysics data, focusing primarily on time-series data from in-situ instruments. As the volume and variety of planetary data has increased, it has become harder to merge diverse datasets into a common analysis environment. Thus we are building low-level computer-to-computer infrastructure to enable data from different missions or archives to be able to interoperate. The key to enabling interoperability is a simple access interface that standardizes the common capabilities available from any data server: 1. identify the data resources that can be accessed; 2. describe each resource; and 3. get the data from a resource. We have created a standardized way for data servers to perform each of these three activities. We are also developing a standard streaming data format for the actual data content to be returned (i.e., the result of item 3). Our proposed standard access interface is simple enough that it could be implemented on top of or beside existing data services, or it could even be fully implemented by a small data provider as a way to ensure that the provider's holdings can participate in larger data systems or joint analysis with other datasets. We present details of the interface and of the streaming format, including a sample server designed to illustrate the data request and streaming capabilities.
An Automated Safe-to-Mate (ASTM) Tester
NASA Technical Reports Server (NTRS)
Nguyen, Phuc; Scott, Michelle; Leung, Alan; Lin, Michael; Johnson, Thomas
2013-01-01
Safe-to-mate testing is a common hardware safety practice where impedance measurements are made on unpowered hardware to verify isolation, continuity, or impedance between pins of an interface connector. A computer-based instrumentation solution has been developed to resolve issues. The ASTM is connected to the circuit under test, and can then quickly, safely, and reliably safe-to-mate the entire connector, or even multiple connectors, at the same time.
Eyler, E E
2011-01-01
A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.
Standard design for National Ignition Facility x-ray streak and framing cameras.
Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S
2010-10-01
The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.
Clarity: An Open Source Manager for Laboratory Automation
Delaney, Nigel F.; Echenique, José Rojas; Marx, Christopher J.
2013-01-01
Software to manage automated laboratories interfaces with hardware instruments, gives users a way to specify experimental protocols, and schedules activities to avoid hardware conflicts. In addition to these basics, modern laboratories need software that can run multiple different protocols in parallel and that can be easily extended to interface with a constantly growing diversity of techniques and instruments. We present Clarity: a laboratory automation manager that is hardware agnostic, portable, extensible and open source. Clarity provides critical features including remote monitoring, robust error reporting by phone or email, and full state recovery in the event of a system crash. We discuss the basic organization of Clarity; demonstrate an example of its implementation for the automated analysis of bacterial growth; and describe how the program can be extended to manage new hardware. Clarity is mature; well documented; actively developed; written in C# for the Common Language Infrastructure; and is free and open source software. These advantages set Clarity apart from currently available laboratory automation programs. PMID:23032169
NASA Technical Reports Server (NTRS)
1974-01-01
The instruments to be flown on the Earth Observatory Satellite (EOS) system are defined. The instruments will be used to support the Land Resources Management (LRM) mission of the EOS. Program planning information and suggested acquisition activities for obtaining the instruments are presented. The subjects considered are as follows: (1) the performance and interface of the Thematic Mapper (TM) and the High Resolution Pointing Imager (HRPI), (2) procedure for interfacing the TM and HRPI with the EOS satellite, (3) a space vehicle integration plan suggesting the steps and sequence of events required to carry out the interface activities, and (4) suggested agreements between the contractors for providing timely and equitable solution of problems at minimum cost.
NASA Astrophysics Data System (ADS)
Guzman, J. C.; Bennett, T.
2008-08-01
The Convergent Radio Astronomy Demonstrator (CONRAD) is a collaboration between the computing teams of two SKA pathfinder instruments, MeerKAT (South Africa) and ASKAP (Australia). Our goal is to produce the required common software to operate, process and store the data from the two instruments. Both instruments are synthesis arrays composed of a large number of antennas (40 - 100) operating at centimeter wavelengths with wide-field capabilities. Key challenges are the processing of high volume of data in real-time as well as the remote mode of operations. Here we present the software architecture for CONRAD. Our design approach is to maximize the use of open solutions and third-party software widely deployed in commercial applications, such as SNMP and LDAP, and to utilize modern web-based technologies for the user interfaces, such as AJAX.
Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter
2014-04-01
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. Copyright © 2013 Elsevier B.V. All rights reserved.
ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
YENG,YHOFF,L.
2003-10-13
Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which canmore » complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.« less
An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments
Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...
2015-09-18
Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less
First Prototype of a Web Map Interface for ESA's Planetary Science Archive (PSA)
NASA Astrophysics Data System (ADS)
Manaud, N.; Gonzalez, J.
2014-04-01
We present a first prototype of a Web Map Interface that will serve as a proof of concept and design for ESA's future fully web-based Planetary Science Archive (PSA) User Interface. The PSA is ESA's planetary science archiving authority and central repository for all scientific and engineering data returned by ESA's Solar System missions [1]. All data are compliant with NASA's Planetary Data System (PDS) Standards and are accessible through several interfaces [2]: in addition to serving all public data via FTP and the Planetary Data Access Protocol (PDAP), a Java-based User Interface provides advanced search, preview, download, notification and delivery-basket functionality. It allows the user to query and visualise instrument observations footprints using a map-based interface (currently only available for Mars Express HRSC and OMEGA instruments). During the last decade, the planetary mapping science community has increasingly been adopting Geographic Information System (GIS) tools and standards, originally developed for and used in Earth science. There is an ongoing effort to produce and share cartographic products through Open Geospatial Consortium (OGC) Web Services, or as standalone data sets, so that they can be readily used in existing GIS applications [3,4,5]. Previous studies conducted at ESAC [6,7] have helped identify the needs of Planetary GIS users, and define key areas of improvement for the future Web PSA User Interface. Its web map interface shall will provide access to the full geospatial content of the PSA, including (1) observation geometry footprints of all remote sensing instruments, and (2) all georeferenced cartographic products, such as HRSC map-projected data or OMEGA global maps from Mars Express. It shall aim to provide a rich user experience for search and visualisation of this content using modern and interactive web mapping technology. A comprehensive set of built-in context maps from external sources, such as MOLA topography, TES infrared maps or planetary surface nomenclature, provided in both simple cylindrical and polar stereographic projections, shall enhance this user experience. In addition, users should be able to import and export data in commonly used open- GIS formats. It is also intended to serve all PSA geospatial data through OGC-compliant Web Services so that they can be captured, visualised and analysed directly from GIS software, along with data from other sources. The following figure illustrates how the PSA web map interface and services shall fit in a typical Planetary GIS user working environment.
Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft
NASA Technical Reports Server (NTRS)
Barry, R. C.
1980-01-01
Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.
NASA Technical Reports Server (NTRS)
1976-01-01
General physical, functional, and operational interface control requirements for instruments on the first AMPS payload are presented. Interface specifications are included to satisfy ground handling, prelaunch, launch, stowage, operation, and landing activities. Applicable supporting documentation to implement the information is also given.
A 3D metrology system for the GMT
NASA Astrophysics Data System (ADS)
Rakich, A.; Dettmann, Lee; Leveque, S.; Guisard, S.
2016-08-01
The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m "unit telescopes", on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system and two segment edge-sensing systems2. An analysis of the capture range of the wavefront sensing system indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3. The project is developing a Telescope Metrology System (TMS) which incorporates a large number of absolute distance measuring interferometers. The system will align optical components of the telescope to the instrument interface to (well) within the capture range of the active optics wavefront sensing systems. The advantages offered by this technological approach to a TMS, over a network of laser trackers, are discussed. Initial investigations of the Etalon Absolute Multiline Technology™ by Etalon Ag4 show that a metrology network based on this product is capable of meeting requirements. A conceptual design of the system is presented and expected performance is discussed.
Zhang, Yi; Monsen, Karen A; Adam, Terrence J; Pieczkiewicz, David S; Daman, Megan; Melton, Genevieve B
2011-01-01
Time and motion (T&M) studies provide an objective method to measure the expenditure of time by clinicians. While some instruments for T&M studies have been designed to evaluate health information technology (HIT), these instruments have not been designed for nursing workflow. We took an existing open source HIT T&M study application designed to evaluate physicians in the ambulatory setting and rationally adapted it through empiric observations to record nursing activities in the inpatient setting and linked this instrument to an existing interface terminology, the Omaha System. Nursing activities involved several dimensions and could include multiple activities occurring simultaneously, requiring significant instrument redesign. 94% of the activities from the study instrument mapped adequately to the Omaha System. T&M study instruments require customization in design optimize them for different environments, such as inpatient nursing, to enable optimal data collection. Interface terminologies show promise as a framework for recording and analyzing T&M study data. PMID:22195228
Software design for the VIS instrument onboard the Euclid mission: a multilayer approach
NASA Astrophysics Data System (ADS)
Galli, E.; Di Giorgio, A. M.; Pezzuto, S.; Liu, S. J.; Giusi, G.; Li Causi, G.; Farina, M.; Cropper, M.; Denniston, J.; Niemi, S.
2014-07-01
The Euclid mission scientific payload is composed of two instruments: a VISible Imaging Instrument (VIS) and a Near Infrared Spectrometer and Photometer instrument (NISP). Each instrument has its own control unit. The Instrument Command and Data Processing Unit (VI-CDPU) is the control unit of the VIS instrument. The VI-CDPU is connected directly to the spacecraft by means of a MIL-STD-1553B bus and to the satellite Mass Memory Unit via a SpaceWire link. All the internal interfaces are implemented via SpaceWire links and include 12 high speed lines for the data provided by the 36 focal plane CCDs readout electronics (ROEs) and one link to the Power and Mechanisms Control Unit (VI-PMCU). VI-CDPU is in charge of distributing commands to the instrument sub-systems, collecting their housekeeping parameters and monitoring their health status. Moreover, the unit has the task of acquiring, reordering, compressing and transferring the science data to the satellite Mass Memory. This last feature is probably the most challenging one for the VI-CDPU, since stringent constraints about the minimum lossless compression ratio, the maximum time for the compression execution and the maximum power consumption have to be satisfied. Therefore, an accurate performance analysis at hardware layer is necessary, which could delay too much the design and development of software. In order to mitigate this risk, in the multilayered design of software we decided to design a middleware layer that provides a set of APIs with the aim of hiding the implementation of the HW connected layer to the application one. The middleware is built on top of the Operating System layer (which includes the Real-Time OS that will be adopted) and the onboard Computer Hardware. The middleware itself has a multi-layer architecture composed of 4 layers: the Abstract RTOS Adapter Layer (AOSAL), the Speci_c RTOS Adapter Layer (SOSAL), the Common Patterns Layer (CPL), the Service Layer composed of two subgroups which are the Common Service (CSL) and the Specific Service layer (SSL). The middleware design is made using the UML 2.0 standard. The AOSAL includes the abstraction of services provided by a generic RTOS (e.g Thread/Task, Time Management, Mutex and Semaphores) as well as an abstraction of SpaceWire and 1553-B bus Interface. The SOSAL is the implementation of AOSAL for the adopted RTOS. The CPL provides a set of patterns that are a general solution for common problems related to embedded hard Real Time systems. This set includes patterns for memory management, homogenous redundancy channels, pipes and filters for data exchange, proxies for slow memories, watchdog and reactive objects. The CPL is designed using a soft-metamodeling approach, so as to be as general as possible. Finally, the SL provides a set of services that are common to space applications. The testing of this middleware can be done both during the design using appropriate tools of analysis and in the implementation phase by means of unit testing tools.
Chronic swine instrumentation techniques utilizing the GOR-REX peritoneal catheter
NASA Astrophysics Data System (ADS)
Gray, C. C.; White, F. C.; Crisman, R. P.; Wisniewski, J.; McKirnan, D.
1985-05-01
The GORE-TEX peritoneal catheter interface is an effective skin interface device for many types of instrumentation in the swine. When properly utilized, the interface allows the development of a stable and effective biological seal which will reduce or eliminate sinus tract formation and resultant systemic infection. The interface is suitable for running any wire or catheter (up to about 2.5mm diameter) through the integument of the animal, thus increasing the possibilities for chronic instrumentation while maintaining a healthy animal. The lack of evidence of any growth phenomenon acting to extrude the interface segment, similar to that observed using other synthetic materials, and the superior biological seal which the interface develops, may allow many chronic studies which were previously not feasible. Using special catheter adapter stubs and an intermittent infusion plug, a sterile, sealed catheter system has decreased the possibilities for introducing pathogens while allowing ready access to the blood stream. Detailed descriptions of surgical implantation techniques and catheter set up and maintenance techniques are included.
Next Generation Space Telescope Integrated Science Module Data System
NASA Technical Reports Server (NTRS)
Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.
1999-01-01
The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.
NASA Technical Reports Server (NTRS)
Hansen, G. R.
1983-01-01
Sonars are usually designed and constructed as stand alone instruments. That is, all elements or subsystems of the sonar are provided: power conditioning, displays, intercommunications, control, receiver, transmitter, and transducer. The sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP) represent a departure from this manner of implementation and are configured more like an instrumentation system. Only the transducer, transmitter, and receiver which are unique to a particular sonar function; Up, Down, Side Scan, exist as separable subsystems. The remaining functions are reserved to the AOTDP and serve all sonars and other instrumentation in a shared manner. The organization and functions of the common AOTDP elements were described and then the interface with the sonars discussed. The techniques for software control of the sonar parameters were explained followed by the details of the realization of the sonar functions and some discussion of the performance of the side scan sonars.
NASA Technical Reports Server (NTRS)
Macdonald, G.
1983-01-01
A prototype Air Traffic Control facility and multiman flight simulator facility was designed and one of the component simulators fabricated as a proof of concept. The facility was designed to provide a number of independent simple simulator cabs that would have the capability of some local, stand alone processing that would in turn interface with a larger host computer. The system can accommodate up to eight flight simulators (commercially available instrument trainers) which could be operated stand alone if no graphics were required or could operate in a common simulated airspace if connected to the host computer. A proposed addition to the original design is the capability of inputing pilot inputs and quantities displayed on the flight and navigation instruments to the microcomputer when the simulator operates in the stand alone mode to allow independent use of these commercially available instrument trainers for research. The conceptual design of the system and progress made to date on its implementation are described.
Study of an astronomical extreme ultraviolet rocket spectrometer for use on shuttle missions
NASA Technical Reports Server (NTRS)
Bowyer, C. S.
1977-01-01
The adaptation of an extreme ultraviolet astronomy rocket payload for flight on the shuttle was studied. A sample payload for determining integration and flight procedures for experiments which may typically be flown on shuttle missions was provided. The electrical, mechanical, thermal, and operational interface requirements between the payload and the orbiter were examined. Of particular concern was establishing a baseline payload accommodation which utilizes proven common hardware for electrical, data, command, and possibly real time monitoring functions. The instrument integration and checkout procedures necessary to assure satisfactory in-orbit instrument performance were defined and those procedures which can be implemented in such a way as to minimize their impact on orbiter integration schedules were identified.
Development of hermetic electrical connectors for SSC spool pieces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kountanis, B.; Kalny, L.
1993-05-01
The Superconducting Super Collider ring is about 54 miles (87 km circumference) and primarily includes a series of magnets. Spool piece assemblies are interspaced in the ring at predetermined intervals to provide specific functions such as cryogenic interfaces, vacuum interface, magnet power, magnet power dump, quench heater power, and special instrumentation. Electrical connectors serve as interfaces for instrumentation and quench heater circuits. These connectors have to meet stringent requirements.
A Common DPU Platform for ESA JUICE Mission Instruments
NASA Astrophysics Data System (ADS)
Aberg, Martin; Hellstrom, Daniel; Samuelsson, Arne; Torelli, Felice
2016-08-01
This paper describes the resulting hardware and software platform based on GR712RC [1] LEON3-FT that Cobham Gaisler developed in accordance with the common system requirements of the ten scientific instruments on-board the ESA JUICE spacecraft destined the Jupiter system [8].The radiation hardened DPU platform features EDAC protected boot, application memory and working memory of configurable sizes and SpaceWire, FPGA I/O-32/16/8, GPIO, UART and SPI I/O interfaces. The design has undergone PSA, Risk, WCA, Radiation analyses etc. to justify component and design choices resulting in a robust design that can be used in spacecrafts requiring a total dose up to 100krad(Si). The prototype board manufactured uses engineering models of the flight components to ensure that development is representative.Validated boot, standby and driver software accommodates the various DPU platform configurations. The boot performs low-level DPU initialization, standby handles OBC SpaceWire communication and finally the loading and executing of application images typically stored in the non-volatile application memory.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.
Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models
NASA Technical Reports Server (NTRS)
Gagnier, Don; Hayner, Rick; Roza, Michael; Nosek, Thomas; Razzaghi, Andrea
2004-01-01
This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric science instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments that will be flown on the Aura s p a c m and of the Aura spacecraft bus electronics. Aura is one of NASA's Earth Observing System @OS) Program missions managed by the Goddard Space Flight Center. The test was designed to evaluate the complex interfaces in the spacecraft and instrument command and data handling (C&DH) subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during (and not before) the flight hardware integration phase can cause significant cost and schedule impacts. The testing successfully surfaced problems and led to their resolution before the full-up integration phase, saving significant cost and schedule time. This approach could be used on future environmental satellite programs involving multiple, complex scientific instruments being integrated onto a bus.
A Braille Interface to the Texas Instruments SR-52 Programmable Calculator.
1976-09-21
F / _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ AD—A039 US PENNSYLVANIA STATE UNIV JNIVtRSITY PARK APPLIED RESE——ETc F/G 9/2 * BRAILLE INTERFACE to PC TEXAS...UNCLASSiFIED A BRAILLE INTERFACE TO THE TEXAS INSTRUMENTS SR-52 PR0CRA)*~ABLE CALCULATOR C. P~ JANOTA Technical Memorandum D D C File No. TM 76-244 i...SUPPLEMENTARY NOTES ~~~~ ~ 15. KEY WORDS (ConUnti. on ,.v.ra• .Id. If nøc....ry and td~n t tf y by block ntanb.r) AIDS TO HANDICAPPED BRAILLE INTERFACE
NASA Astrophysics Data System (ADS)
van Gend, Carel; Lombaard, Briehan; Sickafoose, Amanda; Whittal, Hamish
2016-07-01
Until recently, software for instruments on the smaller telescopes at the South African Astronomical Observatory (SAAO) has not been designed for remote accessibility and frequently has not been developed using modern software best-practice. We describe a software architecture we have implemented for use with new and upgraded instruments at the SAAO. The architecture was designed to allow for multiple components and to be fast, reliable, remotely- operable, support different user interfaces, employ as much non-proprietary software as possible, and to take future-proofing into consideration. Individual component drivers exist as standalone processes, communicating over a network. A controller layer coordinates the various components, and allows a variety of user interfaces to be used. The Sutherland High-speed Optical Cameras (SHOC) instruments incorporate an Andor electron-multiplying CCD camera, a GPS unit for accurate timing and a pair of filter wheels. We have applied the new architecture to the SHOC instruments, with the camera driver developed using Andor's software development kit. We have used this to develop an innovative web-based user-interface to the instrument.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.
2014-01-01
This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.
Research and realization of signal simulation on virtual instrument
NASA Astrophysics Data System (ADS)
Zhao, Qi; He, Wenting; Guan, Xiumei
2010-02-01
In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.
Challenge '89: Interfacing of Chemical Instruments to Computers.
ERIC Educational Resources Information Center
Lyons, Jim; Lamarre, Colin
This project involved interfacing of microcomputers with three chemical instruments--Nuclear Magnetic Resonance (NMR), Infrared Spectroscopy (IR), and the spectrophotometer. A Pascal program called "Spectrum" allows data from the NMR to be read and graphed, a specific area of the graph zoomed, ratios of specified areas of the graph…
NASA Astrophysics Data System (ADS)
Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.
2003-09-01
A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development and comparisons of limits of detection. These instrumental methods are being optimized in order to detect the same target odor chemicals used by detector dogs to reliably locate explosives and ignitable liquids.
Friction characteristics of trocars in laparoscopic surgery.
Alazmani, Ali; Roshan, Rupesh; Jayne, David G; Neville, Anne; Culmer, Peter
2015-04-01
This article investigates the friction characteristics of the instrument-trocar interface in laparoscopic surgery for varying linear instrument velocities, trocar seal design and material, and trocar tilt. Furthermore, the effect of applying lubrication at the instrument-trocar seal interface on friction was studied. A friction testing apparatus was designed and built to characterise the resistance force at the instrument-trocar interface as a function of the instrument's linear movement in the 12-mm trocar (at constant velocity) for different design, seal material, and angle of tilt. The resistance force depended on the trocar seal design and material properties, specifically surface roughness, elasticity, hardness, the direction of movement, and the instrument linear velocity, and varied between 0.25 and 8 N. Lubricating the shaft with silicone oil reduced the peak resistance force by 75% for all trocars and eliminated the stick-slip phenomenon evident in non-lubricated cases. The magnitude of fluctuation in resistance force depends on the trocar design and is attributed to stick-slip of the sealing mechanism and is generally higher during retraction in comparison to insertion. Trocars that have an inlet seal made of rubber/polyurethane showed higher resistance forces during retraction. Use of a lubricant significantly reduced frictional effects. Comparisons of the investigated trocars indicate that a low friction port, providing the surgeon with improved haptic feedback, can be designed by improving the tribological properties of the trocar seal interface. © IMechE 2015.
NASA Astrophysics Data System (ADS)
Valentic, T. A.
2012-12-01
The Data Transport Network is designed for the delivery of data from scientific instruments located at remote field sites with limited or unreliable communications. Originally deployed at the Sondrestrom Research Facility in Greenland over a decade ago, the system supports the real-time collection and processing of data from large instruments such as incoherent scatter radars and lidars. In recent years, the Data Transport Network has been adapted to small, low-power embedded systems controlling remote instrumentation platforms deployed throughout the Arctic. These projects include multiple buoys from the O-Buoy, IceLander and IceGoat programs, renewable energy monitoring at the Imnavait Creek and Ivotuk field sites in Alaska and remote weather observation stations in Alaska and Greenland. This presentation will discuss the common communications controller developed for these projects. Although varied in their application, each of these systems share a number of common features. Multiple instruments are attached, each of which needs to be power controlled, data sampled and files transmitted offsite. In addition, the power usage of the overall system must be minimized to handle the limited energy available from sources such as solar, wind and fuel cells. The communications links are satellite based. The buoys and weather stations utilize Iridium, necessitating the need to handle the common drop outs and high-latency, low-bandwidth nature of the link. The communications controller is an off-the-shelf, low-power, single board computer running a customized version of the Linux operating system. The Data Transport Network provides a Python-based software framework for writing individual data collection programs and supplies a number of common services for configuration, scheduling, logging, data transmission and resource management. Adding a new instrument involves writing only the necessary code for interfacing to the hardware. Individual programs communicate with the system services using XML-RPC. The scheduling algorithms have access the current position and power levels, allowing for instruments such as cameras to only be run during daylight hours or when sufficient power is available. The resource manager monitors the use of common devices such as the USB bus or Ethernet ports, and can power them down when they are not being used. This management lets us drop the power consumption from an average of 1W to 250mW.
Marine Profiles for OGC Sensor Web Enablement Standards
NASA Astrophysics Data System (ADS)
Jirka, Simon
2016-04-01
The use of OGC Sensor Web Enablement (SWE) standards in oceanology is increasing. Several projects are developing SWE-based infrastructures to ease the sharing of marine sensor data. This work ranges from developments on sensor level to efforts addressing interoperability of data flows between observatories and organisations. The broad range of activities using SWE standards leads to a risk of diverging approaches how the SWE specifications are applied. Because the SWE standards are designed in a domain independent manner, they intentionally offer a high degree of flexibility enabling implementation across different domains and usage scenarios. At the same time this flexibility allows one to achieve similar goals in different ways. To avoid interoperability issues, an agreement is needed on how to apply SWE concepts and how to use vocabularies in a common way that will be shared by different projects, implementations, and users. To address this need, partners from several projects and initiatives (AODN, BRIDGES, envri+, EUROFLEETS/EUROFLEETS2, FixO3, FRAM, IOOS, Jerico/Jerico-Next, NeXOS, ODIP/ODIP II, RITMARE, SeaDataNet, SenseOcean, X-DOMES) have teamed up to develop marine profiles of OGC SWE standards that can serve as a common basis for developments in multiple projects and organisations. The following aspects will be especially considered: 1.) Provision of metadata: For discovering sensors/instruments as well as observation data, to facilitate the interpretation of observations, and to integrate instruments in sensor platforms, the provision of metadata is crucial. Thus, a marine profile of the OGC Sensor Model Language 2.0 (SensorML 2.0) will be developed allowing to provide metadata for different levels (e.g. observatory, instrument, and detector) and sensor types. The latter will enable metadata of a specific type to be automatically inherited by all devices/sensors of the same type. The application of further standards such as OGC PUCK will benefit from this encoding, too, by facilitating the communication with instruments. 2.) Encoding and modelling of observation data: For delivering observation data, the ISO/OGC Observations and Measurements 2.0 (O&M 2.0) standard serves as a good basis. Within an O&M profile, recommendations will be given on needed observation types that cover different aspects of marine sensing (trajectory, stationary, or profile measurements, etc.). Besides XML, further O&M encodings (e.g. JSON-based) will be considered. 3.) Data access: A profile of the OGC Sensor Observation Service 2.0 (SOS 2.0) standard will be specified to offer a common way on how this web service interface can be used for requesting marine observations and metadata. At the same time this will offer a common interface to cross-domain applications based upon tools such as the GEOSS DAB. Lightweight approaches such as REST will be considered as further bindings for the SOS interface. 4.) Backward compatibility: The profile will consider the existing observation systems so that migration paths towards the specified profiles can be offered. We will present the current state of the profile development. In particular, a comparative analysis of SWE usage in different projects, an outline of the requirements, and fundamental aspects of profiles of SWE standards will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Cetiner, Sacit M.; Fugate, David L.
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environmentmore » and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
Using SDI-12 with ST microelectronics MCU's
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saari, Alexandra; Hinzey, Shawn Adrian; Frigo, Janette Rose
2015-09-03
ST Microelectronics microcontrollers and processors are readily available, capable and economical processors. Unfortunately they lack a broad user base like similar offerings from Texas Instrument, Atmel, or Microchip. All of these devices could be useful in economical devices for remote sensing applications used with environmental sensing. With the increased need for environmental studies, and limited budgets, flexibility in hardware is very important. To that end, and in an effort to increase open support of ST devices, I am sharing my teams' experience in interfacing a common environmental sensor communication protocol (SDI-12) with ST devices.
Project SUN (Students Understanding Nature)
NASA Technical Reports Server (NTRS)
Curley, T.; Yanow, G.
1995-01-01
Project SUN is part of NASA's 'Mission to Planet Earth' education outreach effort. It is based on development of low cost, scientifi- cally accurate instrumentation and computer interfacing, coupled with Apple II computers as dedicated data loggers. The project is com- prised of: instruments, interfacing, software, curriculum, a detailed operating manual, and a system of training at the school sites.
NASA Astrophysics Data System (ADS)
Eyler, E. E.
2013-10-01
Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.
Usability Evaluation Methods for Gesture-Based Games: A Systematic Review.
Simor, Fernando Winckler; Brum, Manoela Rogofski; Schmidt, Jaison Dairon Ebertz; Rieder, Rafael; De Marchi, Ana Carolina Bertoletti
2016-10-04
Gestural interaction systems are increasingly being used, mainly in games, expanding the idea of entertainment and providing experiences with the purpose of promoting better physical and/or mental health. Therefore, it is necessary to establish mechanisms for evaluating the usability of these interfaces, which make gestures the basis of interaction, to achieve a balance between functionality and ease of use. This study aims to present the results of a systematic review focused on usability evaluation methods for gesture-based games, considering devices with motion-sensing capability. We considered the usability methods used, the common interface issues, and the strategies adopted to build good gesture-based games. The research was centered on four electronic databases: IEEE, Association for Computing Machinery (ACM), Springer, and Science Direct from September 4 to 21, 2015. Within 1427 studies evaluated, 10 matched the eligibility criteria. As a requirement, we considered studies about gesture-based games, Kinect and/or Wii as devices, and the use of a usability method to evaluate the user interface. In the 10 studies found, there was no standardization in the methods because they considered diverse analysis variables. Heterogeneously, authors used different instruments to evaluate gesture-based interfaces and no default approach was proposed. Questionnaires were the most used instruments (70%, 7/10), followed by interviews (30%, 3/10), and observation and video recording (20%, 2/10). Moreover, 60% (6/10) of the studies used gesture-based serious games to evaluate the performance of elderly participants in rehabilitation tasks. This highlights the need for creating an evaluation protocol for older adults to provide a user-friendly interface according to the user's age and limitations. Through this study, we conclude this field is in need of a usability evaluation method for serious games, especially games for older adults, and that the definition of a methodology and a test protocol may offer the user more comfort, welfare, and confidence.
Usability Evaluation Methods for Gesture-Based Games: A Systematic Review
Simor, Fernando Winckler; Brum, Manoela Rogofski; Schmidt, Jaison Dairon Ebertz; De Marchi, Ana Carolina Bertoletti
2016-01-01
Background Gestural interaction systems are increasingly being used, mainly in games, expanding the idea of entertainment and providing experiences with the purpose of promoting better physical and/or mental health. Therefore, it is necessary to establish mechanisms for evaluating the usability of these interfaces, which make gestures the basis of interaction, to achieve a balance between functionality and ease of use. Objective This study aims to present the results of a systematic review focused on usability evaluation methods for gesture-based games, considering devices with motion-sensing capability. We considered the usability methods used, the common interface issues, and the strategies adopted to build good gesture-based games. Methods The research was centered on four electronic databases: IEEE, Association for Computing Machinery (ACM), Springer, and Science Direct from September 4 to 21, 2015. Within 1427 studies evaluated, 10 matched the eligibility criteria. As a requirement, we considered studies about gesture-based games, Kinect and/or Wii as devices, and the use of a usability method to evaluate the user interface. Results In the 10 studies found, there was no standardization in the methods because they considered diverse analysis variables. Heterogeneously, authors used different instruments to evaluate gesture-based interfaces and no default approach was proposed. Questionnaires were the most used instruments (70%, 7/10), followed by interviews (30%, 3/10), and observation and video recording (20%, 2/10). Moreover, 60% (6/10) of the studies used gesture-based serious games to evaluate the performance of elderly participants in rehabilitation tasks. This highlights the need for creating an evaluation protocol for older adults to provide a user-friendly interface according to the user’s age and limitations. Conclusions Through this study, we conclude this field is in need of a usability evaluation method for serious games, especially games for older adults, and that the definition of a methodology and a test protocol may offer the user more comfort, welfare, and confidence. PMID:27702737
QCloud: A cloud-based quality control system for mass spectrometry-based proteomics laboratories
Chiva, Cristina; Olivella, Roger; Borràs, Eva; Espadas, Guadalupe; Pastor, Olga; Solé, Amanda
2018-01-01
The increasing number of biomedical and translational applications in mass spectrometry-based proteomics poses new analytical challenges and raises the need for automated quality control systems. Despite previous efforts to set standard file formats, data processing workflows and key evaluation parameters for quality control, automated quality control systems are not yet widespread among proteomics laboratories, which limits the acquisition of high-quality results, inter-laboratory comparisons and the assessment of variability of instrumental platforms. Here we present QCloud, a cloud-based system to support proteomics laboratories in daily quality assessment using a user-friendly interface, easy setup, automated data processing and archiving, and unbiased instrument evaluation. QCloud supports the most common targeted and untargeted proteomics workflows, it accepts data formats from different vendors and it enables the annotation of acquired data and reporting incidences. A complete version of the QCloud system has successfully been developed and it is now open to the proteomics community (http://qcloud.crg.eu). QCloud system is an open source project, publicly available under a Creative Commons License Attribution-ShareAlike 4.0. PMID:29324744
Update on ORNL TRANSFORM Tool: Simulating Multi-Module Advanced Reactor with End-to-End I&C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, Richard Edward; Fugate, David L.; Cetiner, Sacit M.
2015-05-01
The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the fourth year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled reactor) concepts, including the use of multiple coupled reactors at a single site. The focus of this report is the development of a steam generator and drum system model that includes the complex dynamics of typical steam drum systems, the development of instrumentation and controls for the steam generator with drum system model, and the development of multi-reactor module models that reflect the full power reactormore » innovative small module design concept. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor models; ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface technical area; and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the TRANSFORM tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the Advanced Reactors Technology program; (2) developing a library of baseline component modules that can be assembled into full plant models using available geometry, design, and thermal-hydraulic data; (3) defining modeling conventions for interconnecting component models; and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
High precision silicon piezo resistive SMART pressure sensor
NASA Astrophysics Data System (ADS)
Brown, Rod
2005-01-01
Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure `module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the `in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures.
A PC program for estimating measurement uncertainty for aeronautics test instrumentation
NASA Technical Reports Server (NTRS)
Blumenthal, Philip Z.
1995-01-01
A personal computer program was developed which provides aeronautics and operations engineers at Lewis Research Center with a uniform method to quickly provide values for the uncertainty in test measurements and research results. The software package used for performing the calculations is Mathcad 4.0, a Windows version of a program which provides an interactive user interface for entering values directly into equations with immediate display of results. The error contribution from each component of the system is identified individually in terms of the parameter measured. The final result is given in common units, SI units, and percent of full scale range. The program also lists the specifications for all instrumentation and calibration equipment used for the analysis. It provides a presentation-quality printed output which can be used directly for reports and documents.
An instrumental electrode model for solving EIT forward problems.
Zhang, Weida; Li, David
2014-10-01
An instrumental electrode model (IEM) capable of describing the performance of electrical impedance tomography (EIT) systems in the MHz frequency range has been proposed. Compared with the commonly used Complete Electrode Model (CEM), which assumes ideal front-end interfaces, the proposed model considers the effects of non-ideal components in the front-end circuits. This introduces an extra boundary condition in the forward model and offers a more accurate modelling for EIT systems. We have demonstrated its performance using simple geometry structures and compared the results with the CEM and full Maxwell methods. The IEM can provide a significantly more accurate approximation than the CEM in the MHz frequency range, where the full Maxwell methods are favoured over the quasi-static approximation. The improved electrode model will facilitate the future characterization and front-end design of real-world EIT systems.
NASA Technical Reports Server (NTRS)
Newsom, B. D.
1978-01-01
A biological system proposed to restrain a monkey in the Spacelab was tested under operational conditions using typical metabolic and telemetered cardiovascular instrumentation. Instrumentation, interfaced with other electronics, and data gathering during a very active operational mission were analyzed for adequacy of procedure and success of data handling by the onboard computer.
Alexander, William M; Ficarro, Scott B; Adelmant, Guillaume; Marto, Jarrod A
2017-08-01
The continued evolution of modern mass spectrometry instrumentation and associated methods represents a critical component in efforts to decipher the molecular mechanisms which underlie normal physiology and understand how dysregulation of biological pathways contributes to human disease. The increasing scale of these experiments combined with the technological diversity of mass spectrometers presents several challenges for community-wide data access, analysis, and distribution. Here we detail a redesigned version of multiplierz, our Python software library which leverages our common application programming interface (mzAPI) for analysis and distribution of proteomic data. New features include support for a wider range of native mass spectrometry file types, interfaces to additional database search engines, compatibility with new reporting formats, and high-level tools to perform post-search proteomic analyses. A GUI desktop environment, mzDesktop, provides access to multiplierz functionality through a user friendly interface. multiplierz is available for download from: https://github.com/BlaisProteomics/multiplierz; and mzDesktop is available for download from: https://sourceforge.net/projects/multiplierz/. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Open | SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis
Schulz, Martin; Galarowicz, Jim; Maghrak, Don; ...
2008-01-01
Over the last decades a large number of performance tools has been developed to analyze and optimize high performance applications. Their acceptance by end users, however, has been slow: each tool alone is often limited in scope and comes with widely varying interfaces and workflow constraints, requiring different changes in the often complex build and execution infrastructure of the target application. We started the Open | SpeedShop project about 3 years ago to overcome these limitations and provide efficient, easy to apply, and integrated performance analysis for parallel systems. Open | SpeedShop has two different faces: it provides an interoperable tool set covering themore » most common analysis steps as well as a comprehensive plugin infrastructure for building new tools. In both cases, the tools can be deployed to large scale parallel applications using DPCL/Dyninst for distributed binary instrumentation. Further, all tools developed within or on top of Open | SpeedShop are accessible through multiple fully equivalent interfaces including an easy-to-use GUI as well as an interactive command line interface reducing the usage threshold for those tools.« less
Bishop, David P; Blanes, Lucas; Wilson, Alexander B; Wilbanks, Thor; Killeen, Kevin; Grimm, Rudolf; Wenzel, Ross; Major, Derek; Macka, Mirek; Clarke, David; Schmid, Robin; Cole, Nerida; Doble, Philip A
2017-05-12
The Agilent Chip Cube Interface is a microfluidic chip-based technology originally designed for nanospray molecular mass spectrometry in which the sample enrichment, nano-column, tubing, connectors and spray tip were integrated into a single biocompatible chip. Here we describe the hyphenation of the Chip Cube Interface to ICP-MS via modification of the standard HPLC chip design and a new total consumption nebuliser suitable for flow rates as low as 300nLmin -1 . The potential of the instrument to eliminate common nanoLC - ICP-MS shortcomings such as leaks, blockages and band-broadening was demonstrated via analysis of cyanocobalamin in equine plasma. The method was linear over three orders of magnitude with an r 2 of 0.9999, the peak area repeatability was 1.9% (n=7), and the detection limit was 14ngmL -1 . This novel configuration of the Chip Cube Interface coupled to ICP-MS is a suitable platform for the analysis of biomolecules associated with trace metals and speciation applications. Copyright © 2017 Elsevier B.V. All rights reserved.
A FPGA embedded web server for remote monitoring and control of smart sensors networks.
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2013-12-27
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.
A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks
Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique
2014-01-01
This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047
ERIC Educational Resources Information Center
Neese, Charles Glen
This practicum report describes an instructional program designed to increase teacher awareness of the technological applications of musical instrument digital interface (MIDI) in the classroom. The primary goal of the study was to assist music teachers in becoming more informed about MIDI, and to enable them to effectively select the appropriate…
ESO Reflex: A Graphical Workflow Engine for Data Reduction
NASA Astrophysics Data System (ADS)
Hook, R.; Romaniello, M.; Péron, M.; Ballester, P.; Gabasch, A.; Izzo, C.; Ullgrén, M.; Maisala, S.; Oittinen, T.; Solin, O.; Savolainen, V.; Järveläinen, P.; Tyynelä, J.
2008-08-01
Sampo {http://www.eso.org/sampo} (Hook et al. 2005) is a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal is to assess the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Those prototypes will not only be used to validate concepts and understand requirements but will also be tools of immediate value for the community. Most of the raw data produced by ESO instruments can be reduced using CPL {http://www.eso.org/cpl} recipes: compiled C programs following an ESO standard and utilizing routines provided by the Common Pipeline Library. Currently reduction recipes are run in batch mode as part of the data flow system to generate the input to the ESO VLT/VLTI quality control process and are also made public for external users. Sampo has developed a prototype application called ESO Reflex {http://www.eso.org/sampo/reflex/} that integrates a graphical user interface and existing data reduction algorithms. ESO Reflex can invoke CPL-based recipes in a flexible way through a dedicated interface. ESO Reflex is based on the graphical workflow engine Taverna {http://taverna.sourceforge.net} that was originally developed by the UK eScience community, mostly for work in the life sciences. Workflows have been created so far for three VLT/VLTI instrument modes ( VIMOS/IFU {http://www.eso.org/instruments/vimos/}, FORS spectroscopy {http://www.eso.org/instruments/fors/} and AMBER {http://www.eso.org/instruments/amber/}), and the easy-to-use GUI allows the user to make changes to these or create workflows of their own. Python scripts and IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available.
Drawing of STS-34 SSBUV orbiter interface and command and status monitoring
NASA Technical Reports Server (NTRS)
1989-01-01
Line drawing titled SSBUV ORBITER INTERFACE FOR COMMAND AND STATUS MONITORING shows how the shuttle solar backscatter ultraviolet (UV) (SSBUV) will be operated by crewmembers on the aft flight deck using a autonomous payload controller (APC). SSBUV instrument will calibrate ozone measuring space-based instruments on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites NOAA-9 and NOAA-11. During STS-34, SSBUV instruments mounted in get away special (GAS) canisters in Atlantis', Orbiter Vehicle (OV) 104's, payload bay will use the Space Shuttle's orbital flight path to assess instrument performance by directly comparing data from identical instruments aboard the TIROS satellite, as OV-104 and the satellite pass over the same Earth location within a one-hour window. SSBUV is managed by NASA's Goddard Space Flight Center (GSFC).
New hydrologic instrumentation in the U.S. Geological Survey
Latkovich, V.J.; Shope, W.G.; ,
1991-01-01
New water-level sensing and recording instrumentation is being used by the U.S. Geological Survey for monitoring water levels, stream velocities, and water-quality characteristics. Several of these instruments are briefly described. The Basic Data Recorder (BDR) is an electronic data logger, that interfaces to sensor systems through a serial-digital interface standard (SDI-12), which was proposed by the data-logger industry; the Incremental Shaft Encoder is an intelligent water-level sensor, which interfaces to the BDR through the SDI-12; the Pressure Sensor is an intelligent, nonsubmersible pressure sensor, which interfaces to the BDR through the SDI-12 and monitors water levels from 0 to 50 feet; the Ultrasonic Velocity Meter is an intelligent, water-velocity sensor, which interfaces to the BDR through the SDI-12 and measures the velocity across a stream up to 500 feet in width; the Collapsible Hand Sampler can be collapsed for insertion through holes in the ice and opened under the ice to collect a water sample; the Lighweight Ice Auger, weighing only 32 pounds, can auger 6- and 8-inch holes through approximately 3.5 feet of ice; and the Ice Chisel has a specially hardened steel blade and 6-foot long, hickory D-handle.
User's manual for the model interface and plugboard cabinets in the 14- by 22-foot subsonic tunnel
NASA Technical Reports Server (NTRS)
Askew, Robert B.; Quinto, P. Frank
1994-01-01
The primary method of connection between the wind tunnel model instrumentation and the data acquisition system in the 14- by 22-Foot Subsonic Tunnel is through the Model Interface (MIF) and Plugboard cabinets. The MIF and Plugboard cabinets allow versatility in the connection of the instrumentation to the different data systems in the facility. The User's Manual describes the components inside the MIF cabinet, the input and output of the MIF, and the MIF patchboard, and the Plugboard cabinets. There are examples of standard connections for most of the instrumentation used in the facility.
NASA Technical Reports Server (NTRS)
1994-01-01
This Interface Control Document (ICD) defines the specific details of the complete accomodation information between the Earth Observing System (EOS) PM Spacecraft and the Advanced Microwave Sounding Unit (AMSU-A)Instrument. This is the first submittal of the ICN: it will be updated periodically throughout the life of the program. The next update is planned prior to Critical Design Review (CDR).
Alppay, Cem; Bayazit, Nigan
2015-11-01
In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
User interaction with the LUCIFER control software
NASA Astrophysics Data System (ADS)
Knierim, Volker; Jütte, Marcus; Polsterer, Kai; Schimmelmann, Jan
2006-06-01
We present the concept and design of the interaction between users and the LUCIFER Control Software Package. The necessary functionality that must be provided to a user depends on and differs greatly for the different user types (i.e., engineers and observers). While engineers want total control over every service provided by the software system, observers are typically only interested in a fault tolerant and efficient user interface that helps them to carry out their observations in the best possible way during the night. To provide the functionality engineers need, direct access to a service is necessary. This may harbor a possible threat to the instrument in the case of a faulty operation by the engineer, but is the only way to test every unit during integration and commissioning of the instrument, and for service time later on. The observer on the other hand should only have indirect access to the instrument, controlled by an instrument manager service that ensures the necessary safety checks so that no harm can be done to the instrument. Our design of the user interaction provides such an approach on a level that is transparent to any interaction component regardless of interface type (i.e., textual or graphical). Using the interface and inheritance concepts of the Java Programming Language and its tools to create graphical user interfaces, it is possible to provide the necessary level of flexibility for the different user types on one side, while ensuring maximum reusability of code on the other side.
Interface contributions to peak broadening in CE-ESI-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udseth, H.R.; Barinaga, C.J.; Smith, R.D.
1991-06-01
The applications of capillary electrophoresis (CE) are expanding, and a number of commercial CE instruments are now available. Combining CE with mass spectroscopy (MS), first done with an electrospray ionization (ESI) interface, yields additional advantages. Other interfaces have been proposed, but CE-ESI-MS offers better sensitivity, reduced background, applicability to higher molecular weight (MW) compounds and a better interface design. Our aim has been to exploit the advantages of automated CE coupled to MS for separation of biological materials. Details of our instrument design are provided. Samples used for these studies were a mixture of myoglobin proteins (MW {approximately}17 kilodaltons) andmore » a tryptic digest of tuna cytochrome c. The results show the ESI-MS interface does not broaden bands, and ion dissociation in the mass spectrometer permits the unambiguous identification of fragments in cases where mass alone is insufficient. 2 refs., 2 figs. (MHB)« less
THOR Fields and Wave Processor - FWP
NASA Astrophysics Data System (ADS)
Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud
2017-04-01
If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the particle instrument data processing unit (PPU) via a dedicated digital link. This information will help particle instruments to optimize energy and angular sweeps and calculate on-board moments. FWP will also coordinate the acquisition of high resolution waveform snapshots with very high time resolution electron data from the TEA instrument. This combined wave/particle measurement will provide the ultimate dataset for investigation of wave-particle interactions on electron scales. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.
HDL Based FPGA Interface Library for Data Acquisition and Multipurpose Real Time Algorithms
NASA Astrophysics Data System (ADS)
Fernandes, Ana M.; Pereira, R. C.; Sousa, J.; Batista, A. J. N.; Combo, A.; Carvalho, B. B.; Correia, C. M. B. A.; Varandas, C. A. F.
2011-08-01
The inherent parallelism of the logic resources, the flexibility in its configuration and the performance at high processing frequencies makes the field programmable gate array (FPGA) the most suitable device to be used both for real time algorithm processing and data transfer in instrumentation modules. Moreover, the reconfigurability of these FPGA based modules enables exploiting different applications on the same module. When using a reconfigurable module for various applications, the availability of a common interface library for easier implementation of the algorithms on the FPGA leads to more efficient development. The FPGA configuration is usually specified in a hardware description language (HDL) or other higher level descriptive language. The critical paths, such as the management of internal hardware clocks that require deep knowledge of the module behavior shall be implemented in HDL to optimize the timing constraints. The common interface library should include these critical paths, freeing the application designer from hardware complexity and able to choose any of the available high-level abstraction languages for the algorithm implementation. With this purpose a modular Verilog code was developed for the Virtex 4 FPGA of the in-house Transient Recorder and Processor (TRP) hardware module, based on the Advanced Telecommunications Computing Architecture (ATCA), with eight channels sampling at up to 400 MSamples/s (MSPS). The TRP was designed to perform real time Pulse Height Analysis (PHA), Pulse Shape Discrimination (PSD) and Pile-Up Rejection (PUR) algorithms at a high count rate (few Mevent/s). A brief description of this modular code is presented and examples of its use as an interface with end user algorithms, including a PHA with PUR, are described.
A simulation evaluation of a pilot interface with an automatic terminal approach system
NASA Technical Reports Server (NTRS)
Hinton, David A.
1987-01-01
The pilot-machine interface with cockpit automation is a critical factor in achieving the benefits of automation and reducing pilot blunders. To improve this interface, an automatic terminal approach system (ATAS) was conceived that can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane radios and control an airplane autopilot and autothrottle. The emphasis in the ATAS concept is a reduction in pilot blunders and work load by improving the pilot-automation interface. A research prototype of an ATAS was developed and installed in the Langley General Aviation Simulator. A piloted simulation study of the ATAS concept showed fewer pilot blunders, but no significant change in work load, when compared with a baseline heading-select autopilot mode. With the baseline autopilot, pilot blunders tended to involve loss of navigational situational awareness or instrument misinterpretation. With the ATAS, pilot blunders tended to involve a lack of awareness of the current ATAS mode state or deficiencies in the pilots' mental model of how the system operated. The ATAS display provided adequate approach status data to maintain situational awareness.
Signorini, Giulia; Singh, Swaran P; Marsanic, Vlatka Boricevic; Dieleman, Gwen; Dodig-Ćurković, Katarina; Franic, Tomislav; Gerritsen, Suzanne E; Griffin, James; Maras, Athanasios; McNicholas, Fiona; O'Hara, Lesley; Purper-Ouakil, Diane; Paul, Moli; Russet, Frederick; Santosh, Paramala; Schulze, Ulrike; Street, Cathy; Tremmery, Sabine; Tuomainen, Helena; Verhulst, Frank; Warwick, Jane; de Girolamo, Giovanni
2018-04-01
Transition-related discontinuity of care is a major socioeconomic and societal challenge for the EU. The current service configuration, with distinct Child and Adolescent Mental Health (CAMHS) and Adult Mental Health Services (AMHS), is considered a weak link where the care pathway needs to be most robust. Our aim was to delineate transitional policies and care across Europe and to highlight current gaps in care provision at the service interface. An online mapping survey was conducted across all 28 European Countries using a bespoke instrument: The Standardized Assessment Tool for Mental Health Transition (SATMEHT). The survey was directed at expert(s) in each of the 28 EU countries. The response rate was 100%. Country experts commonly (12/28) reported that between 25 and 49% of CAMHS service users will need transitioning to AMHS. Estimates of the percentage of AMHS users aged under 30 years who had has previous contact with CAMHS were most commonly in the region 20-30% (33% on average).Written policies for managing the interface were available in only four countries and half (14/28) indicated that no transition support services were available. This is the first survey of CAMHS transitional policies and care carried out at a European level. Policymaking on transitional care clearly needs special attention and further elaboration. The Milestone Study on transition should provide much needed data on transition processes and outcomes that could form the basis for improving policy and practice in transitional care.
NASA Technical Reports Server (NTRS)
Paliwoda, L.
1998-01-01
This document contains the procedure and the test results of the Advanced Microwave Sounding Unit-A (AMSU-A) Earth Observing System (EOS) Project, assembly part number 1356008-1, serial number 202, Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMC) qualification test. The test was conducted in accordance with the approved EMI/EMC Test Plan/Procedure, Specification number AE-26151/8B, dated 10 September 1998. Aerojet intends that the presentation and submittal of this document, prepared in accordance with the objectives established by the aforementioned Test Plan/Procedure, document number AE-26151/8B, will satisfy the data requirement with respect to the AMSU-A/EOS instrument operational compliance of the EMI/EMC test requirement. Test for the AMSU-A/EOS instrument have been completed and all the requirements per General Interface Requirement Document (GIRD), GSFC 422-11-12-01, for EOS Common Spacecraft/Instruments, paragraph 10.11, were met with the exceptions of the test methods CE03, RE01, and RE02, as described in this document.
NASA Technical Reports Server (NTRS)
1976-01-01
The interfaces between the scientific instruments and the Spacelab/Labcraft equipment are described. The characteristics of the Spacelab/Labcraft equipment pertinent to the scientific instruments and the requirements placed on the scientific instruments by the Spacelab/Labcraft equipment are described.
GISMO: A MATLAB toolbox for seismic research, monitoring, & education
NASA Astrophysics Data System (ADS)
Thompson, G.; Reyes, C. G.; Kempler, L. A.
2017-12-01
GISMO is an open-source MATLAB toolbox which provides an object-oriented framework to build workflows and applications that read, process, visualize and write seismic waveform, catalog and instrument response data. GISMO can retrieve data from a variety of sources (e.g. FDSN web services, Earthworm/Winston servers) and data formats (SAC, Seisan, etc.). It can handle waveform data that crosses file boundaries. All this alleviates one of the most time consuming part for scientists developing their own codes. GISMO simplifies seismic data analysis by providing a common interface for your data, regardless of its source. Several common plots are built-in to GISMO, such as record section plots, spectrograms, depth-time sections, event count per unit time, energy release per unit time, etc. Other visualizations include map views and cross-sections of hypocentral data. Several common processing methods are also included, such as an extensive set of tools for correlation analysis. Support is being added to interface GISMO with ObsPy. GISMO encourages community development of an integrated set of codes and accompanying documentation, eliminating the need for seismologists to "reinvent the wheel". By sharing code the consistency and repeatability of results can be enhanced. GISMO is hosted on GitHub with documentation both within the source code and in the project wiki. GISMO has been used at the University of South Florida and University of Alaska Fairbanks in graduate-level courses including Seismic Data Analysis, Time Series Analysis and Computational Seismology. GISMO has also been tailored to interface with the common seismic monitoring software and data formats used by volcano observatories in the US and elsewhere. As an example, toolbox training was delivered to researchers at INETER (Nicaragua). Applications built on GISMO include IceWeb (e.g. web-based spectrograms), which has been used by Alaska Volcano Observatory since 1998 and became the prototype for the USGS Pensive system.
Installation summary report : GRS instrumentation I-70 over Smith Road.
DOT National Transportation Integrated Search
2016-07-04
This report presents a summary of the I-70 over Smith Road GRS Instrumentation Project (the project) in Aurora, Colorado. The report summarizes the instruments used, installation means and methods, and a discussion on the web-based data interface. CD...
Strauss, G; Winkler, D; Jacobs, S; Trantakis, C; Dietz, A; Bootz, F; Meixensberger, J; Falk, V
2005-07-01
This study examines the advantages and disadvantages of a commercial telemanipulator system (daVinci, Intuitive Surgical, USA) with computer-guided instruments in functional endoscopic sinus surgery (FESS). We performed five different surgical FESS steps on 14 anatomical preparation and compared them with conventional FESS. A total of 140 procedures were examined taking into account the following parameters: degrees of freedom (DOF), duration , learning curve, force feedback, human-machine-interface. Telemanipulatory instruments have more DOF available then conventional instrumentation in FESS. The average time consumed by configuration of the telemanipulator is around 9+/-2 min. Missing force feedback is evaluated mainly as a disadvantage of the telemanipulator. Scaling was evaluated as helpful. The ergonomic concept seems to be better than the conventional solution. Computer guided instruments showed better results for the available DOF of the instruments. The human-machine-interface is more adaptable and variable then in conventional instrumentation. Motion scaling and indexing are characteristics of the telemanipulator concept which are helpful for FESS in our study.
Ultrasonic interface level analyzer shop test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
STAEHR, T.W.
1999-05-24
The Royce Instrument Corporation Model 2511 Interface Level Analyzer (URSILLA) system uses an ultrasonic ranging technique (SONAR) to measure sludge depths in holding tanks. Three URSILLA instrument assemblies provided by the W-151 project are planned to be used during mixer pump testing to provide data for determining sludge mobilization effectiveness of the mixer pumps and sludge settling rates. The purpose of this test is to provide a documented means of verifying that the functional components of the three URSILLA instruments operate properly. Successful completion of this Shop Test Procedure (STP) is a prerequisite for installation in the AZ-101 tank. Themore » objective of the test is to verify the operation of the URSILLA instruments and to verify data collection using a stand alone software program.« less
Test method research on weakening interface strength of steel - concrete under cyclic loading
NASA Astrophysics Data System (ADS)
Liu, Ming-wei; Zhang, Fang-hua; Su, Guang-quan
2018-02-01
The mechanical properties of steel - concrete interface under cyclic loading are the key factors affecting the rule of horizontal load transfer, the calculation of bearing capacity and cumulative horizontal deformation. Cyclic shear test is an effective method to study the strength reduction of steel - concrete interface. A test system composed of large repeated direct shear test instrument, hydraulic servo system, data acquisition system, test control software system and so on is independently designed, and a set of test method, including the specimen preparation, the instrument preparation, the loading method and so on, is put forward. By listing a set of test results, the validity of the test method is verified. The test system and the test method based on it provide a reference for the experimental study on mechanical properties of steel - concrete interface.
WinTICS-24 --- A Telescope Control Interface for MS Windows
NASA Astrophysics Data System (ADS)
Hawkins, R. Lee
1995-12-01
WinTICS-24 is a telescope control system interface and observing assistant written in Visual Basic for MS Windows. It provides the ability to control a telescope and up to 3 other instruments via the serial ports on an IBM-PC compatible computer, all from one consistent user interface. In addition to telescope control, WinTICS contains an observing logbook, trouble log (which can automatically email its entries to a responsible person), lunar phase display, object database (which allows the observer to type in the name of an object and automatically slew to it), a time of minimum calculator for eclipsing binary stars, and an interface to the Guide CD-ROM for bringing up finder charts of the current telescope coordinates. Currently WinTICS supports control of DFM telescopes, but is easily adaptable to other telescopes and instrumentation.
Instrumentation System Diagnoses a Thermocouple
NASA Technical Reports Server (NTRS)
Perotti, Jose; Santiago, Josephine; Mata, Carlos; Vokrot, Peter; Zavala, Carlos; Burns, Bradley
2008-01-01
An improved self-validating thermocouple (SVT) instrumentation system not only acquires readings from a thermocouple but is also capable of detecting deterioration and a variety of discrete faults in the thermocouple and its lead wires. Prime examples of detectable discrete faults and deterioration include open- and short-circuit conditions and debonding of the thermocouple junction from the object, the temperature of which one seeks to measure. Debonding is the most common cause of errors in thermocouple measurements, but most prior SVT instrumentation systems have not been capable of detecting debonding. The improved SVT instrumentation system includes power circuitry, a cold-junction compensator, signal-conditioning circuitry, pulse-width-modulation (PWM) thermocouple-excitation circuitry, an analog-to-digital converter (ADC), a digital data processor, and a universal serial bus (USB) interface. The system can operate in any of the following three modes: temperature measurement, thermocouple validation, and bonding/debonding detection. The software running in the processor includes components that implement statistical algorithms to evaluate the state of the thermocouple and the instrumentation system. When the power is first turned on, the user can elect to start a diagnosis/ monitoring sequence, in which the PWM is used to estimate the characteristic times corresponding to the correct configuration. The user also has the option of using previous diagnostic values, which are stored in an electrically erasable, programmable read-only memory so that they are available every time the power is turned on.
CARMENES. IV: instrument control software
NASA Astrophysics Data System (ADS)
Guàrdia, Josep; Colomé, Josep; Ribas, Ignasi; Hagen, Hans-Jürgen; Morales, Rafael; Abril, Miguel; Galadí-Enríquez, David; Seifert, Walter; Sánchez Carrasco, Miguel A.; Quirrenbach, Andreas; Amado, Pedro J.; Caballero, Jose A.; Mandel, Holger
2012-09-01
The overall purpose of the CARMENES instrument is to perform high-precision measurements of radial velocities of late-type stars with long-term stability. CARMENES will be installed in 2014 at the 3.5 m telescope in the German- Spanish Astronomical Center at Calar Alto observatory (CAHA, Spain) and will be equipped with two spectrographs in the near-infrared and visible windows. The technology involved in such instrument represents a challenge at all levels. The instrument coordination and management is handled by the Instrument Control System (ICS), which is responsible of carrying out the operations of the different subsystems and providing a tool to operate the instrument from low to high user interaction level. The main goal of the ICS and the CARMENES control layer architecture is to maximize the instrument efficiency by reducing time overheads and by operating it in an integrated manner. The ICS implements the CARMENES operational design. A description of the ICS architecture and the application programming interfaces for low- and high-level communication is given. Internet Communications Engine is the technology selected to implement most of the interface protocols.
Flexible software architecture for user-interface and machine control in laboratory automation.
Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E
1998-10-01
We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.
Guidelines for mission integration, a summary report
NASA Technical Reports Server (NTRS)
1979-01-01
Guidelines are presented for instrument/experiment developers concerning hardware design, flight verification, and operations and mission implementation requirements. Interface requirements between the STS and instruments/experiments are defined. Interface constraints and design guidelines are presented along with integrated payload requirements for Spacelab Missions 1, 2, and 3. Interim data are suggested for use during hardware development until more detailed information is developed when a complete mission and an integrated payload system are defined. Safety requirements, flight verification requirements, and operations procedures are defined.
NASA Technical Reports Server (NTRS)
Boyle, R.; James, E.; Miller, P.; Arillo, V.; Sparr, L.; Castles, S.
1991-01-01
Integration of a Stirling cycle cryocooler into a flight system will require careful attention to the thermal, structural, and electrical interfaces between the cryocooler, the instrument and the spacecraft. These issues are currently under investigation by National Aeronautics and Space Administration/Goddard Space Flight Center personnel in laboratory tests of representative longlife cryocoolers. An 80 K cryocooler has been instrumented as a testbed for vibration control systems characterization. Initial vibration data using a new six-DOF force dynamometer is presented in this report.
Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko
2007-04-15
This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.
NASA Technical Reports Server (NTRS)
Smith, Kevin
2011-01-01
This tutorial will explain the concepts and steps for interfacing a National Instruments LabView virtual instrument (VI) running on a Windows platform with another computer via the Object Management Group (OMG) Data Distribution Service (DDS) as implemented by the Twin Oaks Computing CoreDX. This paper is for educational purposes only and therefore, the referenced source code will be simplistic and void of all error checking. Implementation will be accomplished using the C programming language.
Interfacing laboratory instruments to multiuser, virtual memory computers
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Stang, David B.; Roth, Don J.
1989-01-01
Incentives, problems and solutions associated with interfacing laboratory equipment with multiuser, virtual memory computers are presented. The major difficulty concerns how to utilize these computers effectively in a medium sized research group. This entails optimization of hardware interconnections and software to facilitate multiple instrument control, data acquisition and processing. The architecture of the system that was devised, and associated programming and subroutines are described. An example program involving computer controlled hardware for ultrasonic scan imaging is provided to illustrate the operational features.
Modular Approach to Instrumental Analysis.
ERIC Educational Resources Information Center
Deming, Richard L.; And Others
1982-01-01
To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)
The nuMOIRCS project: detector upgrade overview and early commissioning results
NASA Astrophysics Data System (ADS)
Walawender, Josh; Wung, Matthew; Fabricius, Maximilian; Tanaka, Ichi; Arimoto, Nobuo; Cook, David; Elms, Brian; Hashiba, Yasuhito; Hu, Yen-Sang; Iwata, Ikuru; Nishimura, Tetsuo; Omata, Koji; Takato, Naruhisa; Wang, Shiang-Yu; Weber, Mark
2016-08-01
In 2014 and 2015 the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) instrument at the Subaru Telescope on Maunakea is underwent a significant modernization and upgrade project. We upgraded the two Hawaii2 detectors to Hawaii2-RG models, modernized the cryogenic temperature control system, and rewrote much of the instrument control software. The detector upgrade replaced the Hawaii2 detectors which use the Tohoku University Focal Plane Array Controller (TUFPAC) electronics with Hawaii2-RG detectors using SIDECAR ASIC (a fully integrated FPA controller system-on-a-chip) and a SAM interface card. We achieved an improvement in read noise by a factor of about 2 with this detector and electronics upgrade. The cryogenic temperature control upgrade focused on modernizing the components and making the procedures for warm up and cool down of the instrument safer. We have moved PID control loops out of the instrument control software and into Lakeshore model 336 cryogenic temperature controllers and have added interlocks on the warming systems to prevent overheating of the instrument. Much of the instrument control software has also been re-written. This was necessitated by the different interface to the detector electronics (ASIC and SAM vs. TUFPAC) and by the desire to modernize the interface to the telescope control software which has been updated to Subaru's "Gen2" system since the time of MOIRCS construction and first light. The new software is also designed to increase reliability of operation of the instrument, decrease overheads, and be easier for night time operators and support astronomers to use.
Oates, R P; Mcmanus, Michelle; Subbiah, Seenivasan; Klein, David M; Kobelski, Robert
2017-07-14
Internal standards are essential in electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS) to correct for systematic error associated with ionization suppression and/or enhancement. A wide array of instrument setups and interfaces has created difficulty in comparing the quantitation of absolute analyte response across laboratories. This communication demonstrates the use of primary standards as operational qualification standards for LC-MS instruments and their comparison with commonly accepted internal standards. In monitoring the performance of internal standards for perfluorinated compounds, potassium hydrogen phthalate (KHP) presented lower inter-day variability in instrument response than a commonly accepted deuterated perfluorinated internal standard (d3-PFOS), with percent relative standard deviations less than or equal to 6%. The inter-day precision of KHP was greater than d3-PFOS over a 28-day monitoring of perfluorooctanesulfonic acid (PFOS), across concentrations ranging from 0 to 100μg/L. The primary standard trometamol (Trizma) performed as well as known internal standards simeton and tris (2-chloroisopropyl) phosphate (TCPP), with intra-day precision of Trizma response as low as 7% RSD on day 28. The inter-day precision of Trizma response was found to be greater than simeton and TCPP, across concentrations of neonicotinoids ranging from 1 to 100μg/L. This study explores the potential of primary standards to be incorporated into LC-MS/MS methodology to improve the quantitative accuracy in environmental contaminant analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Instrumentino: An Open-Source Software for Scientific Instruments.
Koenka, Israel Joel; Sáiz, Jorge; Hauser, Peter C
2015-01-01
Scientists often need to build dedicated computer-controlled experimental systems. For this purpose, it is becoming common to employ open-source microcontroller platforms, such as the Arduino. These boards and associated integrated software development environments provide affordable yet powerful solutions for the implementation of hardware control of transducers and acquisition of signals from detectors and sensors. It is, however, a challenge to write programs that allow interactive use of such arrangements from a personal computer. This task is particularly complex if some of the included hardware components are connected directly to the computer and not via the microcontroller. A graphical user interface framework, Instrumentino, was therefore developed to allow the creation of control programs for complex systems with minimal programming effort. By writing a single code file, a powerful custom user interface is generated, which enables the automatic running of elaborate operation sequences and observation of acquired experimental data in real time. The framework, which is written in Python, allows extension by users, and is made available as an open source project.
Techniques for active passivation
Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.
2016-12-20
In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.
Rugged, Low Cost, Environmental Sensors for a Turbulent World
NASA Astrophysics Data System (ADS)
Schulz, B.; Sandell, C. T.; Wickert, A. D.
2017-12-01
Ongoing scientific research and resource management require a diverse range of high-quality and low-cost sensors to maximize the number and type of measurements that can be obtained. To accomplish this, we have developed a series of diversified sensors for common environmental applications. The TP-DownHole is an ultra-compact temperature and pressure sensor designed for use in CMT (Continuous Multi-channel Tubing) multi-level wells. Its 1 mm water depth resolution, 30 cm altitude resolution, and rugged design make it ideal for both water level measurements and monitoring barometric pressure and associated temperature changes. The TP-DownHole sensor has also been incorporated into a self-contained, fully independent data recorder for extreme and remote environments. This device (the TP-Solo) is based around the TP-DownHole design, but has self-contained power and data storage and is designed to collect data independently for up to 6 months (logging at once an hour), creating a specialized tool for extreme environment data collection. To gather spectral information, we have also developed a very low cost photodiode-based Lux sensor to measure spectral irradiance; while this does not measure the entire solar radiation spectrum, simple modeling to rescale the remainder of the solar spectrum makes this a cost-effective alternative to a thermopile pyranometer. Lastly, we have developed an instrumentation amplifier which is designed to interface a wide range of sensitive instruments to common data logging systems, such as thermopile pyranometers, thermocouples, and many other analog output sensors. These three instruments are the first in a diverse family aimed to give researchers a set of powerful and low-cost tools for environmental instrumentation.
Development of sensitized pick coal interface detector system
NASA Technical Reports Server (NTRS)
Burchill, R. F.
1982-01-01
One approach for detection of the coal interface is measurement of pick cutting loads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telemetry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder. The design of components in the test data system were finalized, the required instruments were assembled, the instrument system was evaluated in an above-ground simulation test, and an underground test series to obtain tape recorded sensor data was conducted.
The development of an airborne instrumentation computer system for flight test
NASA Technical Reports Server (NTRS)
Bever, G. A.
1984-01-01
Instrumentation interfacing frequently requires the linking of intelligent systems together, as well as requiring the link itself to be intelligent. The airborne instrumentation computer system (AICS) was developed to address this requirement. Its small size, approximately 254 by 133 by 140 mm (10 by 51/4 by 51/2 in), standard bus, and modular board configuration give it the ability to solve instrumentation interfacing and computation problems without forcing a redesign of the entire unit. This system has been used on the F-15 aircraft digital electronic engine control (DEEC) and its follow on engine model derivative (EMD) project and in an OV-1C Mohawk aircraft stall speed warning system. The AICS is presently undergoing configuration for use on an F-104 pace aircraft and on the advanced fighter technology integration (AFTI) F-111 aircraft.
The MANIFEST prototyping design study
NASA Astrophysics Data System (ADS)
Lawrence, Jonathan S.; Ben-Ami, Sagi; Brown, David M.; Brown, Rebecca A.; Case, Scott; Chapman, Steve; Churilov, Vladimir; Colless, Matthew; Content, Robert; Depoy, Darren; Evans, Ian; Farrell, Tony; Goodwin, Michael; Jacoby, George; Klauser, Urs; Kuehn, Kyler; Lorente, Nuria P. F.; Mali, Slavko; Marshall, Jennifer; Muller, Rolf; Nichani, Vijay; Pai, Naveen; Prochaska, Travis; Saunders, Will; Schmidt, Luke; Shortridge, Keith; Staszak, Nicholas F.; Szentgyorgyi, Andrew; Tims, Julia; Vuong, Minh V.; Waller, Lewis G.; Zhelem, Ross
2016-08-01
MANIFEST is a facility multi-object fibre system for the Giant Magellan Telescope, which uses `Starbug' fibre positioning robots. MANIFEST, when coupled to the telescope's planned seeing-limited instruments, GMACS, and G-CLEF, offers access to: larger fields of view; higher multiplex gains; versatile reformatting of the focal plane via IFUs; image-slicers; and in some cases higher spatial and spectral resolution. The Prototyping Design Study phase for MANIFEST, nearing completion, has focused on developing a working prototype of a Starbugs system, called TAIPAN, for the UK Schmidt Telescope, which will conduct a stellar and galaxy survey of the Southern sky. The Prototyping Design Study has also included work on the GMT instrument interfaces. In this paper, we outline the instrument design features of TAIPAN, highlight the modifications that will be necessary for the MANIFEST implementation, and provide an update on the MANIFEST/instrument interfaces.
MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB.
Egert, U; Knott, Th; Schwarz, C; Nawrot, M; Brandt, A; Rotter, S; Diesmann, M
2002-05-30
Recent advances in electrophysiological techniques have created new tools for the acquisition and storage of neuronal activity recorded simultaneously with numerous electrodes. These techniques support the analysis of the function as well as the structure of individual electrogenic cells in the context of surrounding neuronal or cardiac network. Commercially available tools for the analysis of such data, however, cannot be easily adapted to newly emerging requirements for data analysis and visualization, and cross compatibility between them is limited. In this report we introduce a free open source toolbox called microelectrode array tools (MEA-Tools) for the analysis of multi-electrode data based on the common data analysis environment MATLAB (version 5.3-6.1, The Mathworks, Natick, MA). The toolbox itself is platform independent. The file interface currently supports files recorded with MCRack (Multi Channel Systems, Reutlingen, Germany) under Microsoft Windows 95, 98, NT, and 2000, but can be adapted to other data acquisition systems. Functions are controlled via command line input and graphical user interfaces, and support common requirements for the analysis of local field potentials, extracellular spike activity, and continuous recordings, in addition to supplementary data acquired by additional instruments, e.g. intracellular amplifiers. Data may be processed as continuous recordings or time windows triggered to some event.
Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C
2013-05-01
During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.
NASA Astrophysics Data System (ADS)
Robichaud, Guillaume; Garrard, Kenneth P.; Barry, Jeremy A.; Muddiman, David C.
2013-05-01
During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.
Giansanti, Daniele; Morelli, Sandra; Maccioni, Giovanni; Brocco, Monica
2013-10-01
When designing a complete system of daily-telerehabilitation it should be borne in mind that properly designed methodologies should be furnished for patients to execute specific motion tasks and for care givers to assess the relevant parameters. Whether in hospital or at home, the system should feature two basic elements: (a) instrumented and walking aids or supports, (b) equipment for the assessment of parameters. Being gait the focus, the idea was to design, construct and validate - as an alternative to the complex and expensive instruments currently used - a simple, portable kit that may be easily interfaced/integrated with the most common mechanical tools used in motion rehabilitation (instrumented walkways, aids, supports), with feedback to both patient for self-monitoring and trainer/therapist (present or remote) for clinical reporting. The proposed system consists of: one step-counter, three couples of photo-emitter detectors, one central unit for collecting and processing the telemetrically transmitted data; a software interface on a dedicated PC and a network adapter. The system has been successfully validated in a clinical application on two groups of 16 subjects at the 1st and 2nd level of the Tinetti test. The degree of acceptance by subjects and care-givers was high. The system was also successfully compared with an Inertial Measurement Unit, a de facto standard. The portable kit can be used with different rehabilitation tools and different ground rugosity. The advantages are: (a) very low costs when compared with optoelectronic solutions and other portable solutions; (b) very high accuracy, also for subjects with imbalance problems; (c) good compatibility with any rehabilitative tool. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Portable kit for the assessment of gait parameters in daily telerehabilitation.
Giansanti, Daniele; Morelli, Sandra; Maccioni, Giovanni; Grigioni, Mauro
2013-03-01
When designing a complete process of daily telerehabilitation, it should be borne in mind that patients should be furnished with properly designed methodologies for executing specific motion tasks and the assessment of the relevant parameters. In general, such a process should comprehend three basic elements in both the hospital and the home: (a) instrumented walkways, (b) walking aids or supports, and (c) equipment for the assessment of parameters. The objective, with gait being the focus, of this study was thus to design a simple, portable kit-as an alternative to the complex and expensive instruments currently used-to be easily interfaced or integrated with the instrumented walkways and aids/supports both for self-monitoring while patients are exercising with their own aids and for clinical reporting. The proposed system is a portable kit that furnishes useful parameters with feedback to both the patient and the trainer/therapist. Capable of being integrated with the most common mechanical tools used in motion rehabilitation (handrail, scales, walkways, etc.), it constantly monitors and quantitatively assesses progress in rehabilitation care. It is composed of one step counter, photo-emitter detectors, one central unit for collecting and processing the telemetrically transmitted data, and a software interface. The system has been successfully validated on 16 subjects at the second level of the Tinetti test in a clinical application for both home and the hospital. The portable kit can be used with different rehabilitation tools and on varying ground rugosity. Advantages include (a) very low cost, when compared with optoelectronic solutions or other portable devices, (b) very high accuracy, also for subjects with imbalance problems, compared with other commercial solutions, and (c) integration (compatibility) with any rehabilitative tool.
GPS User-Interface Design Problems
DOT National Transportation Integrated Search
1999-04-01
This paper is a review of human factors problems associated with the user-interface design of a set of Global Positioning : System (GPS) receivers, certified for use in aircraft for instrument non-precision approaches. The paper focuses on : design p...
NASA Astrophysics Data System (ADS)
Lee, Michael; Freed, Adrian; Wessel, David
1992-08-01
In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.
ODISEES: A New Paradigm in Data Access
NASA Astrophysics Data System (ADS)
Huffer, E.; Little, M. M.; Kusterer, J.
2013-12-01
As part of its ongoing efforts to improve access to data, the Atmospheric Science Data Center has developed a high-precision Earth Science domain ontology (the 'ES Ontology') implemented in a graph database ('the Semantic Metadata Repository') that is used to store detailed, semantically-enhanced, parameter-level metadata for ASDC data products. The ES Ontology provides the semantic infrastructure needed to drive the ASDC's Ontology-Driven Interactive Search Environment for Earth Science ('ODISEES'), a data discovery and access tool, and will support additional data services such as analytics and visualization. The ES ontology is designed on the premise that naming conventions alone are not adequate to provide the information needed by prospective data consumers to assess the suitability of a given dataset for their research requirements; nor are current metadata conventions adequate to support seamless machine-to-machine interactions between file servers and end-user applications. Data consumers need information not only about what two data elements have in common, but also about how they are different. End-user applications need consistent, detailed metadata to support real-time data interoperability. The ES ontology is a highly precise, bottom-up, queriable model of the Earth Science domain that focuses on critical details about the measurable phenomena, instrument techniques, data processing methods, and data file structures. Earth Science parameters are described in detail in the ES Ontology and mapped to the corresponding variables that occur in ASDC datasets. Variables are in turn mapped to well-annotated representations of the datasets that they occur in, the instrument(s) used to create them, the instrument platforms, the processing methods, etc., creating a linked-data structure that allows both human and machine users to access a wealth of information critical to understanding and manipulating the data. The mappings are recorded in the Semantic Metadata Repository as RDF-triples. An off-the-shelf Ontology Development Environment and a custom Metadata Conversion Tool comprise a human-machine/machine-machine hybrid tool that partially automates the creation of metadata as RDF-triples by interfacing with existing metadata repositories and providing a user interface that solicits input from a human user, when needed. RDF-triples are pushed to the Ontology Development Environment, where a reasoning engine executes a series of inference rules whose antecedent conditions can be satisfied by the initial set of RDF-triples, thereby generating the additional detailed metadata that is missing in existing repositories. A SPARQL Endpoint, a web-based query service and a Graphical User Interface allow prospective data consumers - even those with no familiarity with NASA data products - to search the metadata repository to find and order data products that meet their exact specifications. A web-based API will provide an interface for machine-to-machine transactions.
The Ocean Observatories Initiative: Data Access and Visualization via the Graphical User Interface
NASA Astrophysics Data System (ADS)
Garzio, L. M.; Belabbassi, L.; Knuth, F.; Smith, M. J.; Crowley, M. F.; Vardaro, M.; Kerfoot, J.
2016-02-01
The Ocean Observatories Initiative (OOI), funded by the National Science Foundation, is a broad-scale, multidisciplinary effort to transform oceanographic research by providing users with real-time access to long-term datasets from a variety of deployed physical, chemical, biological, and geological sensors. The global array component of the OOI includes four high latitude sites: Irminger Sea off Greenland, Station Papa in the Gulf of Alaska, Argentine Basin off the coast of Argentina, and Southern Ocean near coordinates 55°S and 90°W. Each site is composed of fixed moorings, hybrid profiler moorings and mobile assets, with a total of approximately 110 instruments at each site. Near real-time (telemetered) and recovered data from these instruments can be visualized and downloaded via the OOI Graphical User Interface. In this Interface, the user can visualize scientific parameters via six different plotting functions with options to specify time ranges and apply various QA/QC tests. Data streams from all instruments can also be downloaded in different formats (CSV, JSON, and NetCDF) for further data processing, visualization, and comparison to supplementary datasets. In addition, users can view alerts and alarms in the system, access relevant metadata and deployment information for specific instruments, and find infrastructure specifics for each array including location, sampling strategies, deployment schedules, and technical drawings. These datasets from the OOI provide an unprecedented opportunity to transform oceanographic research and education, and will be readily accessible to the general public via the OOI's Graphical User Interface.
Fiber optic interferometry for industrial process monitoring and control applications
NASA Astrophysics Data System (ADS)
Marcus, Michael A.
2002-02-01
Over the past few years we have been developing applications for a high-resolution (sub-micron accuracy) fiber optic coupled dual Michelson interferometer-based instrument. It is being utilized in a variety of applications including monitoring liquid layer thickness uniformity on coating hoppers, film base thickness uniformity measurement, digital camera focus assessment, optical cell path length assessment and imager and wafer surface profile mapping. The instrument includes both coherent and non-coherent light sources, custom application dependent optical probes and sample interfaces, a Michelson interferometer, custom electronics, a Pentium-based PC with data acquisition cards and LabWindows CVI or LabView based application specific software. This paper describes the development evolution of this instrument platform and applications highlighting robust instrument design, hardware, software, and user interfaces development. The talk concludes with a discussion of a new high-speed instrument configuration, which can be utilized for high speed surface profiling and as an on-line web thickness gauge.
Physical Fitness of U.S. Navy Special Forces Team Members and Trainees
1989-07-07
Resting Heart Rate and Blood Pressure. At the completion of a 12-lead resting EKG (VS4S, Cambridge Instrument Co., Ossining , NY), heart rate (bpm) of...Cambridge Instrument Co., Ossining , NY). Instruments were interfaced with a MINC-23 computer (Digital Equipment Corp., Marlboro, MA) for on-line
Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S
2013-02-12
The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and nanomechanics. Limitations and opportunities for further development are also described.
The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems
NASA Astrophysics Data System (ADS)
Choi, Edward
Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the applications above is evaluated. The viability of this approach is not limited to the examples listed in this work, and innovative new methodologies beyond those included here may be developed in the future for other systems which would benefit from the versatility of chip-scale platforms.
Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springston, S. R.
The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers throughmore » the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in G a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn G . Without going into details here, G incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the perfect environment in which to teach computer-based research skills. With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Eric D.
1999-06-17
In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW tomore » create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in "G" a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn "G". Without going into details here, "G" incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the "perfect environment in which to teach computer-based research skills." With this goal in mind, he has succeeded admirably. Advanced LabVIEW Labs presents a series of chapters devoted to not only introducing the reader to LabVIEW, but also to the concepts necessary for writing a successful computer pro- gram. Each chapter is an assignment for the student and is suitable for a ten week course. The first topic introduces the while loop and waveform chart VI'S. After learning how to launch LabVIEW, the student then leans how to use LabVIEW functions such as sine and cosine. The beauty of thk and subsequent chapters, the student is introduced immediately to computer-based instruction by learning how to display the results in graph form on the screen. At each point along the way, the student is not only introduced to another LabVIEW operation, but also to such subjects as spread sheets for data storage, numerical integration, Fourier transformations', curve fitting algorithms, etc. The last few chapters conclude with the purpose of the learning module, and that is, com- puter-based instrumentation. Computer-based laboratory projects such as analog-to-digital con- version, digitizing oscilloscopes treated. Advanced Lab VIEW Labs finishes with a treatment on GPIB interfacing and finally, the student is asked to create an operating VI for temperature con- trol. This is an excellent text, not only as an treatise on LabVIEW but also as an introduction to computer programming logic. All programmers, who are struggling to not only learning how interface computers to instruments, but also trying understand top down programming and other programming language techniques, should add Advanced Lab-VIEW Labs to their computer library.« less
CCD Camera Lens Interface for Real-Time Theodolite Alignment
NASA Technical Reports Server (NTRS)
Wake, Shane; Scott, V. Stanley, III
2012-01-01
Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.
Gayle, Andrew J.; Cook, Robert F.
2016-01-01
An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes. PMID:27563168
An automated high throughput tribometer for adhesion, wear, and friction measurements
NASA Astrophysics Data System (ADS)
Kalihari, Vivek; Timpe, Shannon J.; McCarty, Lyle; Ninke, Matthew; Whitehead, Jim
2013-03-01
Understanding the origin and correlation of different surface properties under a multitude of operating conditions is critical in tribology. Diverse tribological properties and a lack of a single instrument to measure all make it difficult to compare and correlate properties, particularly in light of the wide range of interfaces commonly investigated. In the current work, a novel automated tribometer has been designed and validated, providing a unique experimental platform capable of high throughput adhesion, wear, kinetic friction, and static friction measurements. The innovative design aspects are discussed that allow for a variety of probes, sample surfaces, and testing conditions. Critical components of the instrument and their design criteria are described along with examples of data collection schemes. A case study is presented with multiple surface measurements performed on a set of characteristic substrates. Adhesion, wear, kinetic friction, and static friction are analyzed and compared across surfaces, highlighting the comprehensive nature of the surface data that can be generated using the automated high throughput tribometer.
Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung
2017-02-01
A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.
Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory
NASA Astrophysics Data System (ADS)
Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.
2004-04-01
A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.
The Open Perimetry Interface: an enabling tool for clinical visual psychophysics.
Turpin, Andrew; Artes, Paul H; McKendrick, Allison M
2012-01-01
Perimeters are commercially available instruments for measuring various attributes of the visual field in a clinical setting. They have several advantages over traditional lab-based systems for conducting vision experiments, including built-in gaze tracking and calibration, polished appearance, and attributes to increase participant comfort. Prior to this work, there was no standard to control such instruments, making it difficult and time consuming to use them for novel psychophysical experiments. This paper introduces the Open Perimetry Interface (OPI), a standard set of functions that can be used to control perimeters. Currently the standard is partially implemented in the open-source programming language R on two commercially available instruments: the Octopus 900 (a projection-based bowl perimeter produced by Haag-Streit, Switzerland) and the Heidelberg Edge Perimeter (a CRT-based system produced by Heidelberg Engineering, Germany), allowing these instruments to be used as a platform for psychophysical experimentation.
Development of a canopy Solar-induced chlorophyll fluorescence measurement instrument
NASA Astrophysics Data System (ADS)
Sun, G.; Wang, X.; Niu, Zh; Chen, F.
2014-02-01
A portable solar-induced chlorophyll fluorescence detecting instrument based on Fraunhofer line principle was designed and tested. The instrument has a valid survey area of 1.3 × 1.3 meter when the height was fixed to 1.3 meter. The instrument uses sunlight as its light source. The instrument is quipped with two sets of special photoelectrical detectors with the centre wavelength at 760 nm and 771 nm respectively and bandwidth less than 1nm. Both sets of detectors are composed of an upper detector which are used for detecting incidence sunlight and a bottom detector which are used for detecting reflex light from the canopy of crop. This instrument includes photoelectric detector module, signal process module, A/D convert module, the data storage and upload module and human-machine interface module. The microprocessor calculates solar-induced fluorescence value based on the A/D values get from detectors. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's serial interface. The prototype was tested in the crop field and the results demonstrate that the instrument can measure the solar-induced chlorophyll value exactly with the correlation coefficients was 0.9 compared to the values got from Analytical Spectral Devices FieldSpec Pro spectrometer. This instrument can diagnose the plant growth status by the acquired spectral response.
EPICS Channel Access Server for LabVIEW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, Alexander P.
It can be challenging to interface National Instruments LabVIEW (http://www.ni.com/labview/) with EPICS (http://www.aps.anl.gov/epics/). Such interface is required when an instrument control program was developed in LabVIEW but it also has to be part of global control system. This is frequently useful in big accelerator facilities. The Channel Access Server is written in LabVIEW, so it works on any hardware/software platform where LabVIEW is available. It provides full server functionality, so any EPICS client can communicate with it.
Physics through the 1990s: Scientific interfaces and technological applications
NASA Technical Reports Server (NTRS)
1986-01-01
The volume examines the scientific interfaces and technological applications of physics. Twelve areas are dealt with: biological physics-biophysics, the brain, and theoretical biology; the physics-chemistry interface-instrumentation, surfaces, neutron and synchrotron radiation, polymers, organic electronic materials; materials science; geophysics-tectonics, the atmosphere and oceans, planets, drilling and seismic exploration, and remote sensing; computational physics-complex systems and applications in basic research; mathematics-field theory and chaos; microelectronics-integrated circuits, miniaturization, future trends; optical information technologies-fiber optics and photonics; instrumentation; physics applications to energy needs and the environment; national security-devices, weapons, and arms control; medical physics-radiology, ultrasonics, MNR, and photonics. An executive summary and many chapters contain recommendations regarding funding, education, industry participation, small-group university research and large facility programs, government agency programs, and computer database needs.
XML in an Adaptive Framework for Instrument Control
NASA Technical Reports Server (NTRS)
Ames, Troy J.
2004-01-01
NASA Goddard Space Flight Center is developing an extensible framework for instrument command and control, known as Instrument Remote Control (IRC), that combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms.
Device USB interface and software development for electric parameter measuring instrument
NASA Astrophysics Data System (ADS)
Li, Deshi; Chen, Jian; Wu, Yadong
2003-09-01
Aimed at general devices development, this paper discussed the development of USB interface and software development. With an example, using PDIUSBD12 which support parallel interface, the paper analyzed its technical characteristics. Designed different interface circuit with 80C52 singlechip microcomputer and TMS320C54 series digital signal processor, analyzed the address allocation, register access. According to USB1.1 standard protocol, designed the device software and application layer protocol. The paper designed the data exchange protocol, and carried out system functions.
Evolution of the VLT instrument control system toward industry standards
NASA Astrophysics Data System (ADS)
Kiekebusch, Mario J.; Chiozzi, Gianluca; Knudstrup, Jens; Popovic, Dan; Zins, Gerard
2010-07-01
The VLT control system is a large distributed system consisting of Linux Workstations providing the high level coordination and interfaces to the users, and VME-based Local Control Units (LCU's) running the VxWorks real-time operating system with commercial and proprietary boards acting as the interface to the instrument functions. After more than 10 years of VLT operations, some of the applied technologies used by the astronomical instruments are being discontinued making it difficult to find adequate hardware for future projects. In order to deal with this obsolescence, the VLT Instrumentation Framework is being extended to adopt well established Commercial Off The Shelf (COTS) components connected through industry standard fieldbuses. This ensures a flexible state of the art hardware configuration for the next generation VLT instruments allowing the access to instrument devices via more compact and simpler control units like PC-based Programmable Logical Controllers (PLC's). It also makes it possible to control devices directly from the Instrument Workstation through a normal Ethernet connection. This paper outlines the requirements that motivated this work, as well as the architecture and the design of the framework extension. In addition, it describes the preliminary results on a use case which is a VLTI visitor instrument used as a pilot project to validate the concepts and the suitability of some COTS products like a PC-based PLCs, EtherCAT8 and OPC UA6 as solutions for instrument control.
Adaptation of the Camera Link Interface for Flight-Instrument Applications
NASA Technical Reports Server (NTRS)
Randall, David P.; Mahoney, John C.
2010-01-01
COTS (commercial-off-the-shelf) hard ware using an industry-standard Camera Link interface is proposed to accomplish the task of designing, building, assembling, and testing electronics for an airborne spectrometer that would be low-cost, but sustain the required data speed and volume. The focal plane electronics were designed to support that hardware standard. Analysis was done to determine how these COTS electronics could be interfaced with space-qualified camera electronics. Interfaces available for spaceflight application do not support the industry standard Camera Link interface, but with careful design, COTS EGSE (electronics ground support equipment), including camera interfaces and camera simulators, can still be used.
A programmable ISA to USB interface
NASA Astrophysics Data System (ADS)
Ribas, R. V.
2013-05-01
A programmable device to access and control ISA-standard camac instrumentation and interfacing it to the USB port of computers, is described in this article. With local processing capabilities and event buffering before sending data to the computer, the new acquisition system become much more efficient.
Hydraulophones: Acoustic musical instruments and expressive user interfaces
NASA Astrophysics Data System (ADS)
Janzen, Ryan E.
Fluid flow creates an expansive range of acoustic possibilities, particularly in the case of water, which has unique turbulence and vortex shedding properties as compared with the air of ordinary wind instruments. Sound from water flow is explained with reference to a new class of musical instruments, hydraulophones, in which oscillation originates directly from matter in its liquid state. Several hydraulophones which were realized in practical form are described. A unique user-interface consisting of a row of water jets is presented, in terms of its expressiveness, tactility, responsiveness to derivatives and integrals of displacement, and in terms of the direct physical interaction between a user and the physical process of sound production. Signal processing algorithms are introduced, which extract further information from turbulent water flow, for industrial applications as well as musical applications.
Basic research needs and opportunities on interfaces in solar materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czanderna, A. W.; Gottschall, R. J.
1981-04-01
The workshop on research needs and recommended research programs on interfaces in solar energy conversion devices was held June 30-July 3, 1980. The papers deal mainly with solid-solid, solid-liquid, and solid-gas interfaces, sometimes involving multilayer solid-solid interfaces. They deal mainly with instrumental techniques of studying these interfaces so they can be optimized, so they can be fabricated with quality control and so changes with time can be forecast. The latter is required because a long lifetime (20 yrs is suggested) is necessary for economic reasons. Fifteen papers have been entered individually into EDB and ERA. (LTN)
NASA Astrophysics Data System (ADS)
Beauducel, François; Bosson, Alexis; Randriamora, Frédéric; Anténor-Habazac, Christian; Lemarchand, Arnaud; Saurel, Jean-Marie; Nercessian, Alexandre; Bouin, Marie-Paule; de Chabalier, Jean-Bernard; Clouard, Valérie
2010-05-01
Seismological and Volcanological observatories have common needs and often common practical problems for multi disciplinary data monitoring applications. In fact, access to integrated data in real-time and estimation of measurements uncertainties are keys for an efficient interpretation, but instruments variety, heterogeneity of data sampling and acquisition systems lead to difficulties that may hinder crisis management. In Guadeloupe observatory, we have developed in the last years an operational system that attempts to answer the questions in the context of a pluri-instrumental observatory. Based on a single computer server, open source scripts (Matlab, Perl, Bash, Nagios) and a Web interface, the system proposes: an extended database for networks management, stations and sensors (maps, station file with log history, technical characteristics, meta-data, photos and associated documents); a web-form interfaces for manual data input/editing and export (like geochemical analysis, some of the deformation measurements, ...); routine data processing with dedicated automatic scripts for each technique, production of validated data outputs, static graphs on preset moving time intervals, and possible e-mail alarms; computers, acquisition processes, stations and individual sensors status automatic check with simple criteria (files update and signal quality), displayed as synthetic pages for technical control. In the special case of seismology, WebObs includes a digital stripchart multichannel continuous seismogram associated with EarthWorm acquisition chain (see companion paper Part 1), event classification database, location scripts, automatic shakemaps and regional catalog with associated hypocenter maps accessed through a user request form. This system leads to a real-time Internet access for integrated monitoring and becomes a strong support for scientists and technicians exchange, and is widely open to interdisciplinary real-time modeling. It has been set up at Martinique observatory and installation is planned this year at Montserrat Volcanological Observatory. It also in production at the geomagnetic observatory of Addis Abeba in Ethiopia.
Microfabricated field calibration assembly for analytical instruments
Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM; Rodacy, Philip J [Albuquerque, NM; Simonson, Robert J [Cedar Crest, NM
2011-03-29
A microfabricated field calibration assembly for use in calibrating analytical instruments and sensor systems. The assembly comprises a circuit board comprising one or more resistively heatable microbridge elements, an interface device that enables addressable heating of the microbridge elements, and, in some embodiments, a means for positioning the circuit board within an inlet structure of an analytical instrument or sensor system.
Anthro-Centric Multisensory Interfaces for Sensory Augmentation of Telesurgery
2011-06-01
compares favorably to standing astride an operating table using laparoscopic instruments, the most favorable ergonomics would facilitate free movement...either through direct contact with the tissues or indirect contact via rigid laparoscopic instruments), opportunities now exist to utilize other...tele-surgical methods. Laparoscopic instruments were initially developed as extended versions of their counterparts used in open procedures (e.g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springston, Stephen R.
The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO 2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO 2 + hυ1 →SO 2 *→SO 2 + hυ2 The emitted light is proportional to the concentration of SO 2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed tomore » interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. Brookhaven National Laboratory (BNL) has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.« less
Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
VanCampen, Julie
2004-01-01
The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.
Development of sensitized pick coal interface detector system
NASA Technical Reports Server (NTRS)
Burchill, R. F.
1979-01-01
One approach for detection of the coal interface is measurement of the pick cutting hoads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telementry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder.
Laser velocimeter (autocovariance) buffer interface
NASA Technical Reports Server (NTRS)
Clemmons, J. I., Jr.
1981-01-01
A laser velocimeter (autocovariance) buffer interface (LVABI) was developed to serve as the interface between three laser velocimeter high speed burst counters and a minicomputer. A functional description is presented of the instrument and its unique features which allow the studies of flow velocity vector analysis, turbulence power spectra, and conditional sampling of other phenomena. Typical applications of the laser velocimeter using the LVABI are presented to illustrate its various capabilities.
ERIC Educational Resources Information Center
Batt, Russell H., Ed.
1990-01-01
Four applications of microcomputers in the chemical laboratory are presented. Included are "Mass Spectrometer Interface with an Apple II Computer,""Interfacing the Spectronic 20 to a Computer,""A pH-Monitoring and Control System for Teaching Laboratories," and "A Computer-Aided Optical Melting Point Device." Software, instrumentation, and uses are…
Starting Over: Current Issues in Online Catalog User Interface Design.
ERIC Educational Resources Information Center
Crawford, Walt
1992-01-01
Discussion of online catalogs focuses on issues in interface design. Issues addressed include understanding the user base; common user access (CUA) with personal computers; common command language (CCL); hyperlinks; screen design issues; differences from card catalogs; indexes; graphic user interfaces (GUIs); color; online help; and remote users.…
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe.
Gurevich, A S; Kochereshko, V P; Bleuse, J; Mariette, H; Waag, A; Akimoto, R
2011-09-07
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Observation of interface carrier states in no-common-atom heterostructures ZnSe/BeTe
NASA Astrophysics Data System (ADS)
Gurevich, A. S.; Kochereshko, V. P.; Bleuse, J.; Mariette, H.; Waag, A.; Akimoto, R.
2011-09-01
The existence of intrinsic carrier interface states in heterostructures with no common atom at the interface (such as ZnSe/BeTe) is shown experimentally by ellipsometry and photoluminescence spectroscopy. These states are located on interfaces and lie inside the effective bandgap of the structure; they are characterized by a high density and a long lifetime. A tight binding model confirms theoretically the existence of these states in ZnSe/BeTe heterostructures for a ZnTe-type interface, in contrast to the case of the BeSe-type interface for which they do not exist.
Labview Interface Concepts Used in NASA Scientific Investigations and Virtual Instruments
NASA Technical Reports Server (NTRS)
Roth, Don J.; Parker, Bradford H.; Rapchun, David A.; Jones, Hollis H.; Cao, Wei
2001-01-01
This article provides an overview of several software control applications developed for NASA using LabVIEW. The applications covered here include (1) an Ultrasonic Measurement System for nondestructive evaluation of advanced structural materials, an Xray Spectral Mapping System for characterizing the quality and uniformity of developing photon detector materials, (2) a Life Testing System for these same materials, (3) and the instrument panel for an aircraft mounted Cloud Absorption Radiometer that measures the light scattered by clouds in multiple spectral bands. Many of the software interface concepts employed are explained. Panel layout and block diagram (code) strategies for each application are described. In particular, some of the more unique features of the applications' interfaces and source code are highlighted. This article assumes that the reader has a beginner-to-intermediate understanding of LabVIEW methods.
OZCAR: the French network of Critical Zone Observatories: principles and scientific objectives
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Gaillardet, Jérôme; Hankard, Fatim; Le Borgne, Tanguy; Nord, Guillaume; Six, Delphine; Galy, Catherine; Laggoun-Défarge, Fatima; Tallec, Tiphaine; Pauwels, Hélène
2017-04-01
This contribution aims at presenting the principles that underlined the creation of the OZCAR research infrastructure, gathering various Critical Zone Observatories in France, and the scientific questions that drives the observation settings. The Critical Zone includes the fine zone between the lower atmosphere at the top of the canopy down to the bedrock-soil interface. This lithosphere-atmosphere boundary is critical for the availability of life-sustaining resources and critical for humanity because this is the zone where we live, where we build our cities, from which we extract our food and our water and where we release most of our wastes. This is the fragile zone on which the natural ecosystem relies because this is where nutrients are being released from the rocks. OZCAR is a distributed research infrastructure gathering instrumented sites and catchments on continental surfaces all dedicated to the observation and monitoring of the different compartments of the Critical Zone at the national scale. All these observatories (more that 40) were all built up on specific questions (acid deposition, flood prediction, urban hydrology…), some of them more than 50 years ago, but they have all in common to be highly instrumented, permanently funded as infrastructures. They all share the same overarching goal of understanding and predicting the Critical Zone in a changing world. OZCAR gathers instrumented catchments, hydrogeological sites, peatlands, glacier and permafrost regions and a spatial observatory under the common umbrella of understanding water and biogeochemical cycles and the associated fluxes of energy by using natural gradients and experimentation. Based on the collaboration with Southern Countries, OZCAR's sites have a global coverage including tropical areas and high mountainous regions in the Andes and the Himalaya. OZCAR benefits from a French investments project called CRITEX (Innovative equipment for the critical zone, https://www.critex.fr/critex-3/observatories/ ) that is centered on the development and deployment of innovative instrumentation in the sites. OZCAR was launched in 2016 under the leadership of the French Ministry in charge of Higher Education and Research, assembling all French Research Institutions involved in environmental studies and with the ambition of facilitating interdisciplinary research in terrestrial surfaces, stimulating instrumental development and being visible at the international level. The paper will presents the main common scientific questions, challenges in terms of instrumentation and experimentation deployment, in particular in terms of co-location of sites, data base and modelling activities that the OZCAR network plan to address in the next years.
WFIRST: Data/Instrument Simulation Support at IPAC
NASA Astrophysics Data System (ADS)
Laine, Seppo; Akeson, Rachel; Armus, Lee; Bennett, Lee; Colbert, James; Helou, George; Kirkpatrick, J. Davy; Meshkat, Tiffany; Paladini, Roberta; Ramirez, Solange; Wang, Yun; Xie, Joan; Yan, Lin
2018-01-01
As part of WFIRST Science Center preparations, the IPAC Science Operations Center (ISOC) maintains a repository of 1) WFIRST data and instrument simulations, 2) tools to facilitate scientific performance and feasibility studies using the WFIRST, and 3) parameters summarizing the current design and predicted performance of the WFIRST telescope and instruments. The simulation repository provides access for the science community to simulation code, tools, and resulting analyses. Examples of simulation code with ISOC-built web-based interfaces include EXOSIMS (for estimating exoplanet yields in CGI surveys) and the Galaxy Survey Exposure Time Calculator. In the future the repository will provide an interface for users to run custom simulations of a wide range of coronagraph instrument (CGI) observations and sophisticated tools for designing microlensing experiments. We encourage those who are generating simulations or writing tools for exoplanet observations with WFIRST to contact the ISOC team so we can work with you to bring these to the attention of the broader astronomical community as we prepare for the exciting science that will be enabled by WFIRST.
NASA Astrophysics Data System (ADS)
Nelson, Andrew
2010-11-01
The efficient use of complex neutron scattering instruments is often hindered by the complex nature of their operating software. This complexity exists at each experimental step: data acquisition, reduction and analysis, with each step being as important as the previous. For example, whilst command line interfaces are powerful at automated acquisition they often reduce accessibility by novice users and sometimes reduce the efficiency for advanced users. One solution to this is the development of a graphical user interface which allows the user to operate the instrument by a simple and intuitive "push button" approach. This approach was taken by the Motofit software package for analysis of multiple contrast reflectometry data. Here we describe the extension of this package to cover the data acquisition and reduction steps for the Platypus time-of-flight neutron reflectometer. Consequently, the complete operation of an instrument is integrated into a single, easy to use, program, leading to efficient instrument usage.
40 CFR 63.1046 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be checked. Potential leak... 60, appendix A. (7) Each potential leak interface shall be checked by traversing the instrument probe...
40 CFR 63.1046 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be checked. Potential leak... 60, appendix A. (7) Each potential leak interface shall be checked by traversing the instrument probe...
40 CFR 63.1046 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Method 21 of 40 CFR part 60, appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover and associated closure devices shall be checked. Potential leak... 60, appendix A. (7) Each potential leak interface shall be checked by traversing the instrument probe...
A Laboratory Application of Microcomputer Graphics.
ERIC Educational Resources Information Center
Gehring, Kalle B.; Moore, John W.
1983-01-01
A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…
ERIC Educational Resources Information Center
Beatty, Jim
1985-01-01
Suggests purchasing a digital multimer (DMM) with an IEEE-488 option to interface an instrument to a microcomputer, indicating that a DMM is well protected from overloads and is easy to connect. An example of its use in an experiment involving hydrolysis of tertiary butyl alcohol (with program listing) is given. (JN)
ERIC Educational Resources Information Center
Martinez, L. M.; Videa, M.; Mederos, F.; Mesquita, J.
2007-01-01
The construction of a new highly-sensitive, computer-interfaced, differential thermal analysis (DTA) device, used for gathering different information about the chemical reactions, is described. The instrument provides a better understanding about the phase transitions, phase diagrams and many more concepts to the students.
GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses.
Markovic, Marko; Karnal, Hemanth; Graimann, Bernhard; Farina, Dario; Dosen, Strahinja
2017-06-01
Providing sensory feedback to the user of the prosthesis is an important challenge. The common approach is to use tactile stimulation, which is easy to implement but requires training and has limited information bandwidth. In this study, we propose an alternative approach based on augmented reality. We have developed the GLIMPSE, a Google Glass application which connects to the prosthesis via a Bluetooth interface and renders the prosthesis states (EMG signals, aperture, force and contact) using augmented reality (see-through display) and sound (bone conduction transducer). The interface was tested in healthy subjects that used the prosthesis with (FB group) and without (NFB group) feedback during a modified clothespins test that allowed us to vary the difficulty of the task. The outcome measures were the number of unsuccessful trials, the time to accomplish the task, and the subjective ratings of the relevance of the feedback. There was no difference in performance between FB and NFB groups in the case of a simple task (basic, same-color clothespins test), but the feedback significantly improved the performance in a more complex task (pins of different resistances). Importantly, the GLIMPSE feedback did not increase the time to accomplish the task. Therefore, the supplemental feedback might be useful in the tasks which are more demanding, and thereby less likely to benefit from learning and feedforward control. The subjects integrated the supplemental feedback with the intrinsic sources (vision and muscle proprioception), developing their own idiosyncratic strategies to accomplish the task. The present study demonstrates a novel self-contained, ready-to-deploy, wearable feedback interface. The interface was successfully tested and was proven to be feasible and functionally beneficial. The GLIMPSE can be used as a practical solution but also as a general and flexible instrument to investigate closed-loop prosthesis control.
NASA Technical Reports Server (NTRS)
1974-01-01
The equipment specifications for the thematic mapper and high resolution pointable imager for use on the Earth Observatory Satellite (EOS) are presented. The interface requirements of the systems are defined. The interface requirements are extracted from the equipment specifications and are intended as a summary to be used by the system and spacecraft designer. The appropriate documentation from which the specifications of the equipment are established are identified.
A haptic device for guide wire in interventional radiology procedures.
Moix, Thomas; Ilic, Dejan; Bleuler, Hannes; Zoethout, Jurjen
2006-01-01
Interventional Radiology (IR) is a minimally invasive procedure where thin tubular instruments, guide wires and catheters, are steered through the patient's vascular system under X-ray imaging. In order to perform these procedures, a radiologist has to be trained to master hand-eye coordination, instrument manipulation and procedure protocols. The existing simulation systems all have major drawbacks: the use of modified instruments, unrealistic insertion lengths, high inertia of the haptic device that creates a noticeably degraded dynamic behavior or excessive friction that is not properly compensated for. In this paper we propose a quality training environment dedicated to IR. The system is composed of a virtual reality (VR) simulation of the patient's anatomy linked to a robotic interface providing haptic force feedback. This paper focuses on the requirements, design and prototyping of a specific haptic interface for guide wires.
Mid Infrared Instrument cooler subsystem test facility overview
NASA Astrophysics Data System (ADS)
Moore, B.; Zan, J.; Hannah, B.; Chui, T.; Penanen, K.; Weilert, M.
2017-12-01
The Cryocooler for the Mid Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST) provides cooling at 6.2K on the instrument interface. The cooler system design has been incrementally documented in previous publications [1][2][3][4][5]. It has components that traverse three primary thermal regions on JWST: Region 1, approximated by 40K; Region 2, approximated by 100K; and Region 3, which is at the allowable flight temperatures for the spacecraft bus. However, there are several sub-regions that exist in the transition between primary regions and at the heat reject interfaces of the Cooler Compressor Assembly (CCA) and Cooler Control Electronics Assembly (CCEA). The design and performance of the test facility to provide a flight representative thermal environment for acceptance testing and characterization of the complete MIRI cooler subsystem are presented.
New developments in the McStas neutron instrument simulation package
NASA Astrophysics Data System (ADS)
Willendrup, P. K.; Knudsen, E. B.; Klinkby, E.; Nielsen, T.; Farhi, E.; Filges, U.; Lefmann, K.
2014-07-01
The McStas neutron ray-tracing software package is a versatile tool for building accurate simulators of neutron scattering instruments at reactors, short- and long-pulsed spallation sources such as the European Spallation Source. McStas is extensively used for design and optimization of instruments, virtual experiments, data analysis and user training. McStas was founded as a scientific, open-source collaborative code in 1997. This contribution presents the project at its current state and gives an overview of the main new developments in McStas 2.0 (December 2012) and McStas 2.1 (expected fall 2013), including many new components, component parameter uniformisation, partial loss of backward compatibility, updated source brilliance descriptions, developments toward new tools and user interfaces, web interfaces and a new method for estimating beam losses and background from neutron optics.
NASA Astrophysics Data System (ADS)
Beach, A. L., III; Early, A. B.; Chen, G.; Parker, L.
2014-12-01
NASA has conducted airborne tropospheric chemistry studies for about three decades. These field campaigns have generated a great wealth of observations, which are characterized by a wide range of trace gases and aerosol properties. The airborne observational data have often been used in assessment and validation of models and satellite instruments. The ASDC Toolset for Airborne Data (TAD) is being designed to meet the user community needs for manipulating aircraft data for scientific research on climate change and air quality relevant issues. Given the sheer volume of data variables across field campaigns and instruments reporting data on different time scales, this data is often difficult and time-intensive for researchers to analyze. The TAD web application is designed to provide an intuitive user interface (UI) to facilitate quick and efficient discovery from a vast number of airborne variables and data. Users are given the option to search based on high-level parameter groups, individual common names, mission and platform, as well as date ranges. Experienced users can immediately filter by keyword using the global search option. Once the user has chosen their required variables, they are given the option to either request PI data files based on their search criteria or create merged data, i.e. geo-located data from one or more measurement PIs. The purpose of the merged data feature is to allow users to compare data from one flight, as not all data from each flight is taken on the same time scale. Time bases can be continuous or based on the time base from one of the measurement time scales and intervals. After an order is submitted and processed, an ASDC email is sent to the user with a link for data download. The TAD user interface design, application architecture, and proposed future enhancements will be presented.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rapchun, David A.; Jones, Hollis H.
2001-01-01
The Cloud Absorption Radiometer (CAR) instrument has been the most frequently used airborne instrument built in-house at NASA Goddard Space Flight Center, having flown scientific research missions on-board various aircraft to many locations in the United States, Azores, Brazil, and Kuwait since 1983. The CAR instrument is capable of measuring scattered light by clouds in fourteen spectral bands in UV, visible and near-infrared region. This document describes the control, data acquisition, display, and file storage software for the new version of CAR. This software completely replaces the prior CAR Data System and Control Panel with a compact and robust virtual instrument computer interface. Additionally, the instrument is now usable for the first time for taking data in an off-aircraft mode. The new instrument is controlled via a LabVIEW v5. 1.1-developed software interface that utilizes, (1) serial port writes to write commands to the controller module of the instrument, and (2) serial port reads to acquire data from the controller module of the instrument. Step-by-step operational procedures are provided in this document. A suite of other software programs has been developed to complement the actual CAR virtual instrument. These programs include: (1) a simulator mode that allows pretesting of new features that might be added in the future, as well as demonstrations to CAR customers, and development at times when the instrument/hardware is off-location, and (2) a post-experiment data viewer that can be used to view all segments of individual data cycles and to locate positions where 'start' and stop' byte sequences were incorrectly formulated by the instrument controller. The CAR software described here is expected to be the basis for CAR operation for many missions and many years to come.
Development and application of a novel crop stress and quality instrument
NASA Astrophysics Data System (ADS)
Huang, Wengjiang; Sun, Gang; Wang, Jihua; Liu, Liangyun; Zheng, Wengang
2005-12-01
In this paper, a portable diagnostic instrument for crop quality analysis was designed and tested, which can measure the normalized difference vegetation index (PRI) and structure insensitive pigment index (NRI) of crop canopy in the field. The instrument have a valid survey area of 1m×1m when the height between instrument and the ground was fixed to 1.3 meter. The crop quality can be assessed based on their PRI and NRI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field. Such simple instruments can diagnose the plant growth status by the acquired spectral response.
Two Undergraduate Projects for Data Acquisition and Control
NASA Astrophysics Data System (ADS)
Hiersche, Kelly; Pena, Tara; Grogan, Tanner; Wright, Matthew
We are designing two separate instruments for use in our undergraduate laboratory. In the first project, a Raspberry Pi is used to simultaneously monitor a large number of current and voltage readings and store them in a database. In our second project, we are constructing our own microcontrollers to work as a general-purpose interface based off work carried out in Review of Scientific Instruments 84, 103101 (2013). It was designed for low cost and simple construction, making it ideal for undergraduate level work. This circuit has room for two interchangeable daughter boards, giving it the capability to work as a general lab interface, lock-in detector, or waveform generator.
SAGE III on ISS Lessons Learned on Thermal Interface Design
NASA Technical Reports Server (NTRS)
Davis, Warren
2015-01-01
The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.
NASA Technical Reports Server (NTRS)
Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.
2014-01-01
The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.
NASA Astrophysics Data System (ADS)
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Compact Dual Ion Composition Experiment for space plasmas—CoDICE
NASA Astrophysics Data System (ADS)
Desai, M. I.; Ogasawara, K.; Ebert, R. W.; Allegrini, F.; McComas, D. J.; Livi, S.; Weidner, S. E.
2016-07-01
The Compact Dual Ion Composition Experiment—CoDICE—simultaneously provides high-quality plasma and energetic ion composition measurements over six decades in energy in a wide variety of space plasma environments. CoDICE measures two critical ion populations in space plasmas: (1) Elemental and charge state composition, and 3-D velocity distributions of <10 eV/q-40 keV/q plasma ions; and (2) Elemental composition, energy spectra, and angular distributions of ˜30 keV->10 MeV energetic ions. CoDICE uses a novel, integrated, common time-of-flight subsystem that provides several advantages over the commonly used separate plasma and energetic ion sensors currently flying on several space missions. These advantages include reduced mass and volume compared to two separate instruments, reduced shielding in high-radiation environments, and simplified spacecraft interface and accommodation requirements. This paper describes the operation principles, electro-optic simulation results and applies the CoDICE concept for measuring plasma and energetic ion populations in Jupiter's magnetosphere.
Dynamics explorer: Interface definition study, volume 1
NASA Technical Reports Server (NTRS)
1978-01-01
Work done in response to the work statement wherein a specific deliverable was not identified but where design and analysis tasks were identified is reported. The summary and baseline change list is included along with design notes for the spacecraft system, thermal subsystem, power subsystem, communications subsystem, plasma wave instrument interface definition, and the structure.
40 CFR 63.925 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover... secured in the closed position. (3) The detection instrument shall meet the performance criteria of Method... in the unit, not for each individual organic constituent. (4) The detection instrument shall be...
40 CFR 63.945 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., appendix A. Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the... devices shall be secured in the closed position. (3) The detection instrument shall meet the performance... material placed in the unit, not for each individual organic constituent. (4) The detection instrument...
40 CFR 63.905 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Each potential leak interface (i.e., a location where organic vapor leakage could occur) on the cover... secured in the closed position. (3) The detection instrument shall meet the performance criteria of Method... in the unit, not for each individual organic constituent. (4) The detection instrument shall be...
Universal MOSFET parameter analyzer
NASA Astrophysics Data System (ADS)
Klekachev, A. V.; Kuznetsov, S. N.; Pikulev, V. B.; Gurtov, V. A.
2006-05-01
MOSFET analyzer is developed to extract most important parameters of transistors. Instead of routine DC transfer and output characteristics, analyzer provides an evaluation of interface states density by applying charge pumping technique. There are two features that outperform the analyzer among similar products of other vendors. It is compact (100 × 80 × 50 mm 3 in dimensions) and lightweight (< 200 gram) instrument with ultra low power supply (< 2.5 W). The analyzer operates under control of IBM PC by means of USB interface that simultaneously provides power supply. Owing to the USB-compatible microcontroller as the basic element, designed analyzer offers cost-effective solution for diverse applications. The enclosed software runs under Windows 98/2000/XP operating systems, it has convenient graphical interface simplifying measurements for untrained user. Operational characteristics of analyzer are as follows: gate and drain output voltage within limits of +/-10V measuring current range of 1pA ÷ 10 mA; lowest limit of interface states density characterization of ~10 9 cm -2 • eV -1. The instrument was designed on the base of component parts from CYPRESS and ANALOG DEVICES (USA).
ACS experiment for atmospheric studies on "ExoMars-2016" Orbiter
NASA Astrophysics Data System (ADS)
Korablev, O. I.; Montmessin, F.; Fedorova, A. A.; Ignatiev, N. I.; Shakun, A. V.; Trokhimovskiy, A. V.; Grigoriev, A. V.; Anufreichik, K. A.; Kozlova, T. O.
2015-12-01
ACS is a set of spectrometers for atmospheric studies (Atmospheric Chemistry Suite). It is one of the Russian instruments for the Trace Gas Orbiter (TGO) of the Russian-European "ExoMars" program. The purpose of the experiment is to study the Martian atmosphere by means of two observations regimes: sensitive trace gases measurements in solar occultations and by monitoring the atmospheric state during nadir observations. The experiment will allow us to approach global problems of Mars research such as current volcanism, and the modern climate status and its evolution. Also, the experiment is intended to solve the mystery of methane presence in the Martian atmosphere. Spectrometers of the ACS set cover the spectral range from the near IR-range (0.7 μm) to the thermal IR-range (17 μm) with spectral resolution λ/Δλ reaching 50000. The ACS instrument consists of three independent IR spectrometers and an electronics module, all integrated in a single unit with common mechanical, electrical and thermal interfaces. The article gives an overview of scientific tasks and presents the concept of the experiment.
Simulating Responses of Gravitational-Wave Instrumentation
NASA Technical Reports Server (NTRS)
Armstrong, John; Edlund, Jeffrey; Vallisneri. Michele
2006-01-01
Synthetic LISA is a computer program for simulating the responses of the instrumentation of the NASA/ESA Laser Interferometer Space Antenna (LISA) mission, the purpose of which is to detect and study gravitational waves. Synthetic LISA generates synthetic time series of the LISA fundamental noises, as filtered through all the time-delay-interferometry (TDI) observables. (TDI is a method of canceling phase noise in temporally varying unequal-arm interferometers.) Synthetic LISA provides a streamlined module to compute the TDI responses to gravitational waves, according to a full model of TDI (including the motion of the LISA array and the temporal and directional dependence of the arm lengths). Synthetic LISA is written in the C++ programming language as a modular package that accommodates the addition of code for specific gravitational wave sources or for new noise models. In addition, time series for waves and noises can be easily loaded from disk storage or electronic memory. The package includes a Python-language interface for easy, interactive steering and scripting. Through Python, Synthetic LISA can read and write data files in Flexible Image Transport System (FITS), which is a commonly used astronomical data format.
An expert system for fault management assistance on a space sleep experiment
NASA Technical Reports Server (NTRS)
Atamer, A.; Delaney, M.; Young, L. R.
2002-01-01
The expert system, Principal Investigator-in-a-box, or [PI], was designed to assist astronauts or other operators in performing experiments outside their expertise. Currently, the software helps astronauts calibrate instruments for a Sleep and Respiration Experiment without contact with the investigator on the ground. It flew on the Space Shuttle missions STS-90 and STS-95. [PI] displays electrophysiological signals in real time, alerts astronauts via the indicator lights when a poor signal quality is detected, and advises astronauts how to restore good signal quality. Thirty subjects received training on the sleep instrumentation and the [PI] interface. A beneficial effects of [PI] and training reduced troubleshooting time. [PI] benefited subjects on the most difficult scenarios, even though its lights were not 100% accurate. Further, questionnaires showed that most subjects preferred monitoring waveforms with [PI] assistance rather than monitoring waveforms alone. This study addresses problems of complex troubleshooting and the extended time between training and execution that is common to many human operator situations on earth such as in power plant operation, and marine exploration.
NASA Astrophysics Data System (ADS)
Margaritondo, G.
1994-07-01
Experimental breakthroughs are having a big impact on surface and interface science. We review two series of results: first, photoemission experiments performed with high (0.1 micron) lateral resolution on the scanning instrument MAXIMUM at Wisconsin. These experiments revealed, in particular, core-level shifts from place to place on cleaved semiconductor surfaces, raising serious questions about a whole class of interface formation experiments. The second series of results applied for the first time a free-electron laser (the world's brightest Vanderbilt University infrared facility) to surface and interface physics. Using the FELIPE (FEL Internal PhotoEmission) technique, we measured heterojunction band discontinuities with a few meV accuracy. Much of the progress in surface and interface research has been both stimulated and made possible by parallel progress in instrumentation. From this point of view, I believe that we are witnessing a truly extraordinary period. Many of the experimental techniques in this field are based on synchrotron radiation: and we are seeing an increase in brightness of 4-5 orders of magnitude in this kind of sources, over a period of a few years! In a different spectral range, the free-electron laser is finally finding its way to applications, and with its unmprecedented infrared intensity opens up new research oppurtunities, complementary to those of synchrotron radiation. These developments have been analyzed by several recent reviews as far as instrumentation and potential applications are concerned.[1-3] It is now time to show that one can go beyond promises; my short review concentrates on real results, to show that the promises of the past are fast becoming reality. This is important, in particular, in light of the recent initial commissioning of the Advanced Light Source (ALS) in Berkeley, and of the forthcoming commissioning of ELETTRA in Trieste.
Remotely Accessible Testbed for Software Defined Radio Development
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2012-01-01
Previous development testbeds have assumed that the developer was physically present in front of the hardware being used. No provision for remote operation of basic functions (power on/off or reset) was made, because the developer/operator was sitting in front of the hardware, and could just push the button manually. In this innovation, a completely remotely accessible testbed has been created, with all diagnostic equipment and tools set up for remote access, and using standardized interfaces so that failed equipment can be quickly replaced. In this testbed, over 95% of the operating hours were used for testing without the developer being physically present. The testbed includes a pair of personal computers, one running Linux and one running Windows. A variety of peripherals is connected via Ethernet and USB (universal serial bus) interfaces. A private internal Ethernet is used to connect to test instruments and other devices, so that the sole connection to the outside world is via the two PCs. An important design consideration was that all of the instruments and interfaces used stable, long-lived industry standards, such as Ethernet, USB, and GPIB (general purpose interface bus). There are no plug-in cards for the two PCs, so there are no problems with finding replacement computers with matching interfaces, device drivers, and installation. The only thing unique to the two PCs is the locally developed software, which is not specific to computer or operating system version. If a device (including one of the computers) were to fail or become unavailable (e.g., a test instrument needed to be recalibrated), replacing it is a straightforward process with a standard, off-the-shelf device.
Handheld spectrometers: the state of the art
NASA Astrophysics Data System (ADS)
Crocombe, Richard A.
2013-05-01
"Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.
Kids with disabilities inspire a musical instrument
Daily, Dan; Pfeifer, Kent
2018-02-14
The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.
Kids with disabilities inspire a musical instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Dan; Pfeifer, Kent
The Midiwing is a musical instrument that unites music and computer technology for those who lack the experience, physical ability, or maturity to play music with traditional instruments. To create the instrument, Dan Daily, Director of Musicode Innovations, reworked and recoded Musical Instrument Digital Interface (MIDI) technology and introduced ergonomic design. He applied to the New Mexico Small Business Assistance (NMSBA) Program to receive help when he discovered the microcontroller he used was being phased out. Daily and Kent Pfeifer, an engineer at Sandia National Laboratories and musician himself, partnered to create a new state-of-the-art design.
Astronomical Instrumentation System Markup Language
NASA Astrophysics Data System (ADS)
Goldbaum, Jesse M.
2016-05-01
The Astronomical Instrumentation System Markup Language (AISML) is an Extensible Markup Language (XML) based file format for maintaining and exchanging information about astronomical instrumentation. The factors behind the need for an AISML are first discussed followed by the reasons why XML was chosen as the format. Next it's shown how XML also provides the framework for a more precise definition of an astronomical instrument and how these instruments can be combined to form an Astronomical Instrumentation System (AIS). AISML files for several instruments as well as one for a sample AIS are provided. The files demonstrate how AISML can be utilized for various tasks from web page generation and programming interface to instrument maintenance and quality management. The advantages of widespread adoption of AISML are discussed.
A novel X-ray diffractometer for studies of liquid-liquid interfaces.
Murphy, Bridget M; Greve, Matthais; Runge, Benjamin; Koops, Christian T; Elsen, Annika; Stettner, Jochim; Seeck, Oliver H; Magnussen, Olaf M
2014-01-01
The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.
Biomimetic approaches with smart interfaces for bone regeneration.
Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K
2016-11-05
A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.
The Effects of Metaphorical Interface on Germane Cognitive Load in Web-Based Instruction
ERIC Educational Resources Information Center
Cheon, Jongpil; Grant, Michael M.
2012-01-01
The purpose of this study was to examine the effects of a metaphorical interface on germane cognitive load in Web-based instruction. Based on cognitive load theory, germane cognitive load is a cognitive investment for schema construction and automation. A new instrument developed in a previous study was used to measure students' mental activities…
ERIC Educational Resources Information Center
Cheon, Jongpil; Grant, Michael
2012-01-01
This study proposes a new instrument to measure cognitive load types related to user interface and demonstrates theoretical assumptions about different load types. In reconsidering established cognitive load theory, the inadequacies of the theory are criticized in terms of the adaption of learning efficiency score and distinction of cognitive load…
Remote Instrumentation for Teaching Laboratory
ERIC Educational Resources Information Center
Baran, Jit; Currie, Ron; Kennepohl, Dietmar
2004-01-01
The feasibility of using current software, such as PC-Duo, PCAnywhere or LabVIEW, in training students in instrumental analysis from a remote location is investigated. Findings show that creation of online features is crucial to the use and learning by students and the development of a suitable Web site, which provides an easy-to-use interface to…
Advanced instrumentation concepts for environmental control subsystems
NASA Technical Reports Server (NTRS)
Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.
1978-01-01
Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.
NASA Technical Reports Server (NTRS)
Acton, Charles H., Jr.; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.
2010-01-01
The Navigation Ancillary Infor ma tion Facility (NAIF) at JPL, acting under the direction of NASA s Office of Space Science, has built a data system named SPICE (Spacecraft Planet Instrument Cmatrix Events) to assist scientists in planning and interpreting scientific observations (see figure). SPICE provides geometric and some other ancillary information needed to recover the full value of science instrument data, including correlation of individual instrument data sets with data from other instruments on the same or other spacecraft. This data system is used to produce space mission observation geometry data sets known as SPICE kernels. It is also used to read SPICE kernels and to compute derived quantities such as positions, orientations, lighting angles, etc. The SPICE toolkit consists of a subroutine/ function library, executable programs (both large applications and simple utilities that focus on kernel management), and simple examples of using SPICE toolkit subroutines. This software is very accurate, thoroughly tested, and portable to all computers. It is extremely stable and reusable on all missions. Since the previous version, three significant capabilities have been added: Interactive Data Language (IDL) interface, MATLAB interface, and a geometric event finder subsystem.
Techniques for Embedding Instrumentation in Pressure Vessel Test Articles
NASA Technical Reports Server (NTRS)
Cornelius, Michael
2006-01-01
Many interesting structural and thermal events occur in materials that are housed within a surrounding pressure vessel. In order to measure the environment during these events and explore their causes instrumentation must be installed on or in the material. Transducers can be selected that are small enough to be embedded within the test material but these instruments must interface with an external system in order to apply excitation voltages and output the desired data. The methods for installing the instrumentation and creating an interface are complicated when the material is located in a case or housing containing high pressures and hot gases. Installation techniques for overcoming some of these difficulties were developed while testing a series of small-scale solid propellant and hybrid rocket motors at Marshall Space Flight Center. These techniques have potential applications in other test articles where data are acquired from materials that require containment due to the severe environment encountered during the test process. This severe environment could include high pressure, hot gases, or ionized atmospheres. The development of these techniques, problems encountered, and the lessons learned from the ongoing testing process are summarized.
Operational Support for Instrument Stability through ODI-PPA Metadata Visualization and Analysis
NASA Astrophysics Data System (ADS)
Young, M. D.; Hayashi, S.; Gopu, A.; Kotulla, R.; Harbeck, D.; Liu, W.
2015-09-01
Over long time scales, quality assurance metrics taken from calibration and calibrated data products can aid observatory operations in quantifying the performance and stability of the instrument, and identify potential areas of concern or guide troubleshooting and engineering efforts. Such methods traditionally require manual SQL entries, assuming the requisite metadata has even been ingested into a database. With the ODI-PPA system, QA metadata has been harvested and indexed for all data products produced over the life of the instrument. In this paper we will describe how, utilizing the industry standard Highcharts Javascript charting package with a customized AngularJS-driven user interface, we have made the process of visualizing the long-term behavior of these QA metadata simple and easily replicated. Operators can easily craft a custom query using the powerful and flexible ODI-PPA search interface and visualize the associated metadata in a variety of ways. These customized visualizations can be bookmarked, shared, or embedded externally, and will be dynamically updated as new data products enter the system, enabling operators to monitor the long-term health of their instrument with ease.
Modular Software Interfaces for Revolutionary Flexibility in Space Operations
NASA Technical Reports Server (NTRS)
Glass, Brian; Braham, Stephen; Pollack, Jay
2005-01-01
To make revolutionary improvements in exploration, space systems need to be flexible, realtime reconfigurable, and able to trade data transparently among themselves and mission operations. Onboard operations systems, space assembly coordination and EVA systems in exploration and construction all require real-time modular reconfigurability and data sharing. But NASA's current exploration systems are still largely legacies from hastily-developed, one-off Apollo-era practices. Today's rovers, vehicles, spacesuits, space stations, and instruments are not able to plug-and-play, Lego-like: into different combinations. Point-to-point dominates - individual suit to individual vehicle, individual instrument to rover. All are locally optimized, all unique, each of the data interfaces has been recoded for each possible combination. This will be an operations and maintenance nightmare in the much larger Project Constellation system of systems. This legacy approach does not scale to the hundreds of networked space components needed for space construction and for new, space-based approaches to Earth-Moon operations. By comparison, battlefield information management systems, which are considered critical to military force projection, have long since abandoned a point-to-point approach to systems integration. From a system-of-systems viewpoint, a clean-sheet redesign of the interfaces of all exploration systems is a necessary prerequisite before designing the interfaces of the individual exploration systems. Existing communications and Global Information Grid and middleware technologies are probably sufficient for command and control and information interfaces, with some hardware and time-delay modifications for space environments. NASA's future advanced space operations must also be information and data compatible with aerospace operations and surveillance systems being developed by other US Government agencies such as the Department of Homeland Security, Federal Aviation Administration and Department of Defense. This paper discusses fundamental system-of-systems infrastructure: approaches and architectures for modular plug-and-play software interfaces for revolutionary improvements in flexibility, modularity, robustness, ease of maintenance, reconfigurability, safety and productivity. Starting with middleware, databases, and mobile communications technologies, our technical challenges will be to apply these ideas to the requirements of constellations of space systems and to implement them initially on prototype space hardware. This is necessary to demonstrate an integrated information sharing architecture and services. It is a bottom-up approach, one that solves the problem of space operations data integration. Exploration demands uniform software mechanisms for application information interchange, and the corresponding uniformly available software services to enhance these mechanisms. We will examine the issues in plug-and-play, real-time-configurable systems, including common definition and management and tracking of data and information among many different space systems. Different field test approaches are discussed, including the use of the International Space Station and terrestrial analog mission operations at field sites.
Advanced system on a chip microelectronics for spacecraft and science instruments
NASA Astrophysics Data System (ADS)
Paschalidis, Nikolaos P.
2003-01-01
The explosive growth of the modern microelectronics field opens new horizons for the development of new lightweight, low power, and smart spacecraft and science instrumentation systems in the new millennium explorations. Although this growth is mostly driven by the commercial need for low power, portable and computationally intensive products, the applicability is obvious in the space sector. The additional difficulties needed to be overcome for applicability in space include radiation hardness for total ionizing dose and single event effects (SEE), and reliability. Additionally, this new capability introduces a whole new philosophy of design and R&D, with strong implications in organizational and inter-agency program management. One key component specifically developed towards low power, small size, highly autonomous spacecraft systems, is the smart sensor remote input/output (TRIO) chip. TRIO can interface to 32 transducers with current sources/sinks and voltage sensing. It includes front-end analog signal processing, a 10-bit ADC, memory, and standard serial and parallel I/Os. These functions are very useful for spacecraft and subsystems health and status monitoring, and control actions. The key contributions of the TRIO are feasibility of modular architectures, elimination of several miles of wire harnessing, and power savings by orders of magnitude. TRIO freely operates from a single power supply 2.5- 5.5 V with power dissipation <10 mW. This system on a chip device rapidly becomes a NASA and Commercial Space standard as it is already selected by thousands in several new millennium missions, including Europa Orbiter, Mars Surveyor Program, Solar Probe, Pluto Express, Stereo, Contour, Messenger, etc. In the Science Instrumentation field common instruments that can greatly take advantage of the new technologies are: energetic-particle/plasma and wave instruments, imagers, mass spectrometers, X-ray and UV spectrographs, magnetometers, laser rangefinding instruments, etc. Common measurements that apply to many of these instruments are precise time interval measurement and high resolution read-out of solid state detectors. A precise time interval measurement chip was specially developed that achieves ˜100 ps (×10 improvement) time resolution at a power dissipation ˜20 mW (×50 improvement), dead time ˜1.5 μs (×20 improvement), and chip die size 5 mm×5 mm versus two 20 cm×20 cm doubled sided boards. This device is selected as a key enabling technology for several NASA particle, delay line imaging, and laser range finding instruments onboard (NASA Image, Messenger, etc. missions). Another device with universal application is radiation energy read-out from solid state detectors. Multi-channel low-power and end-to-end sensor input—digital output is key for the new generation instruments. The readout channel comprises of a Charge Sensitive Preamplifier with a target sensitivity of ˜1 KeV FWHM at 20 pf detector capacitance, a Shaper Amplifier with programmable time constant/gain, and an ADC. The read-out chip together with the precise time interval chip comprises the essential elements of a common particle spectroscopy instrument. To mention some more applications fast-signal acquisition—and digitization is a very useful function for a category of instrument such as mass spectroscopy and profile laser rangefinding. The single chip approach includes a high bandwidth preamplifier, fast sampling ˜5 ns, analog memory ˜10K locations, 12-bit ADC and serial/parallel I/Os. The wealth of the applications proves the advanced microelectronics field as a key enabling technology for the new millennium space exploration.
Novel Diffusivity Measurement Technique
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser
2001-01-01
A common-path interferometer (CPI) system was developed to measure the diffusivity of liquid pairs. The CPI is an optical technique that can be used to measure changes in the gradient of the refraction index of transparent materials. This system uses a shearing interferometer that shares the same optical path from a laser light source to the final imaging plane. Hence, the molecular diffusion coefficient of liquids can be determined using the physical relations between changes in the optical path length and the liquid phase properties. The data obtained with this interferometer were compared with similar results from other techniques and demonstrated that the instrument is superior in measuring the diffusivity of miscible liquids while keeping the system very compact and robust. CPI can also be used for studies in interface dynamics and other diffusion-dominated-process applications.
In vitro investigation of friction at the interface between bone and a surgical instrument.
Parekh, Jugal; Shepherd, Duncan E T; Hukins, David W L; Hingley, Carl; Maffulli, Nicola
2013-06-01
This study investigated the friction between surgical instruments and bone to aid improvements to instrument design. The bases of orthopaedic surgical instruments are usually made of metal, especially stainless steel. Silicone elastomer was chosen as an alternate biocompatible material, which would be compliant on the bone surface when used as the base of an instrument. The coefficient of static friction was calculated at the bone/material interface in the presence of a synthetic solution that had a comparable viscosity to that of blood, to assess the friction provided by each base material. Three types of silicone elastomers with different hardnesses (Shore A hardness 23, 50 and 77) and three distinct stainless steel surfaces (obtained by spark erosion, sand blasting and surface grinding) were used to assess the friction provided by the materials on slippery bone. The bone specimens were taken from the flattest region of the femoral shaft of a bovine femur; the outer surfaces of the specimens were kept intact. In general, the stainless steel surfaces exhibited higher values of coefficient of static friction, compared to the silicone elastomer samples. The stainless steel surface finished by spark erosion (surface roughness Ra = 8.9 ± 1.6 µm) had the highest coefficient value of 0.74 ± 0.04. The coefficient values for the silicone elastomer sample with the highest hardness (Dow Corning Silastic Q7-4780, Shore A hardness 77) was not significantly different to values provided by the stainless steel surface finished by sand blasting (surface roughness Ra = 2.2 ± 0.1 µm) or surface grinding (surface roughness Ra = 0.1 ± 0.0 µm). Based on the results of this study, it is concluded that silicone could be a potentially useful material for the design of bases of orthopaedic instruments that interface with bone.
van Ballegooijen, Wouter; Riper, Heleen; Cuijpers, Pim; van Oppen, Patricia; Smit, Johannes H
2016-02-25
Online questionnaires for measuring common mental health disorders such as depression and anxiety disorders are increasingly used. The psychometrics of several pen-and-paper questionnaires have been re-examined for online use and new online instruments have been developed and tested for validity as well. This study aims to review and synthesise the literature on this subject and provide a framework for future research. We searched Medline and PsycINFO for psychometric studies on online instruments for common mental health disorders and extracted the psychometric data. Studies were coded and assessed for quality by independent raters. We included 56 studies on 62 online instruments. For common instruments such as the CES-D, MADRS-S and HADS there is mounting evidence for adequate psychometric properties. Further results are scattered over different instruments and different psychometric characteristics. Few studies included patient populations. We found at least one online measure for each of the included mental health disorders and symptoms. A small number of online questionnaires have been studied thoroughly. This study provides an overview of online instruments to refer to when choosing an instrument for assessing common mental health disorders online, and can structure future psychometric research.
Physics in perspective, volume 2. Part B: The interfaces
NASA Technical Reports Server (NTRS)
1973-01-01
Detailed information of physics subfields and interface areas are presented. Topics discussed include: astrophysics and relativity, earth and planetary physics, physics in chemistry, physics in biology, instrumentation, education, and dissemination and use of the information of physics. For Vol. 1, see N72-28706; for excerpt from Vol. 1, see N72-29689; for Vol. 2, Pt. A, see N73-15706.
A Macintosh based data system for array spectrometers (Poster)
NASA Astrophysics Data System (ADS)
Bregman, J.; Moss, N.
An interactive data aquisition and reduction system has been assembled by combining a Macintosh computer with an instrument controller (an Apple II computer) via an RS-232 interface. The data system provides flexibility for operating different linear array spectrometers. The standard Macintosh interface is used to provide ease of operation and to allow transferring the reduced data to commercial graphics software.
NASA Astrophysics Data System (ADS)
Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.
2014-12-01
A reliable method of sample introduction is presented for online gas chromatography with a special application to in situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a valveless sample introduction interface that offers the advantage of long-term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing this pressure-switching-based device for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient-pressure detector and 15% accurate when applied to a vacuum-based detector. Laboratory comparisons made between the two methods of sample introduction using a thermal desorption aerosol gas chromatograph (TAG) show that the new interface has approximately 3 times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in situ instrument demonstrate typically less than 2% week-1 response trending and a zero failure rate during field deployments ranging up to 4 weeks of continuous sampling. Extension of the valveless interface to dual collection cells is presented with less than 3% cell-to-cell carryover.
Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; ...
2014-12-12
A reliable method of sample introduction is presented for online gas chromatography with a special application to in situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a valveless sample introduction interface that offers the advantage of long-term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing this pressure-switching-based device for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient-pressure detector and 15% accurate when applied to a vacuum-based detector. Laboratory comparisons made between the two methods of sample introductionmore » using a thermal desorption aerosol gas chromatograph (TAG) show that the new interface has approximately 3 times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in situ instrument demonstrate typically less than 2% week -1 response trending and a zero failure rate during field deployments ranging up to 4 weeks of continuous sampling. Extension of the valveless interface to dual collection cells is presented with less than 3% cell-to-cell carryover.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreisberg, N. M.; Worton, D. R.; Zhao, Y.
A reliable method of sample introduction is presented for online gas chromatography with a special application to in situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a valveless sample introduction interface that offers the advantage of long-term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing this pressure-switching-based device for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient-pressure detector and 15% accurate when applied to a vacuum-based detector. Laboratory comparisons made between the two methods of sample introductionmore » using a thermal desorption aerosol gas chromatograph (TAG) show that the new interface has approximately 3 times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in situ instrument demonstrate typically less than 2% week -1 response trending and a zero failure rate during field deployments ranging up to 4 weeks of continuous sampling. Extension of the valveless interface to dual collection cells is presented with less than 3% cell-to-cell carryover.« less
In-Situ Focusing Inside a Thermal Vacuum Chamber
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Hannah, Brett; Bartman, Randall; Radulescu, Costin; Rud, Mayer; Sarkissian, Edwin; Ho, Timothy; {p; Esposito, Joseph; Sutin, Brian;
2010-01-01
Traditionally, infrared (IR) space instruments have been focused by iterating with a number of different thickness shim rings in a thermal vacuum chamber until the focus meets requirements. This has required a number of thermal cycles that are very expensive as they tie up many integration and test (I&T)/ environmental technicians/engi neers work ing three shifts for weeks. Rather than creating a test shim for each iteration, this innovation replaces the test shim and can focus the instrument while in the thermal vacuum chamber. The focus tool consists of three small, piezo-actuated motors that drive two sets of mechanical interface flanges between the instrument optics and the focal- plane assembly, and three optical-displacement metrology sensors that can be read from outside the thermal vacuum chamber. The motors are used to drive the focal planes to different focal distances and acquire images, from which it is possible to determine the best focus. At the best focus position, the three optical displacement metrology sensors are used to determine the shim thickness needed. After the instrument leaves the thermal vacuum chamber, the focus tool is replaced with the precision-ground shim ring. The focus tool consists of two sets of collars, one that mounts to the backside of the interface flange of the instrument optics, and one that mounts to the backside of the interface flange of the focal plane modules. The collars on the instrument optics side have the three small piezo-actuated motors and the three optical displacement metrology systems. Before the instrument is focused, there is no shim ring in place and, therefore, no fasteners holding the focal plane modules to the cameras. Two focus tooling collars are held together by three strong springs. The Orbiting Carbon Observatory (OCO) mission spectrometer was focused this way (see figure). The motor described here had to be moved five times to reach an acceptable focus, all during the same thermal cycle, which was verified using pupil slicing techniques. A focus accuracy of .20.100 microns was achieved.
Instrumented Pick Detects Coal/Rock Interface
NASA Technical Reports Server (NTRS)
Wu, T.; Erkes, J. W.
1983-01-01
Instrumented pick installed on cutting drum of coal shearer for longwall mining measures cutting force with strain-gage-bridge load cell. Force signal transmitted to remote recorder. Transmitter located in base of pick assembly. Antenna located in shadow of rotating pick. Changes in characteristics of force signals from pick used to determine whether pick is cutting coal or rock.
ERIC Educational Resources Information Center
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang
2016-01-01
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…
Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2015-01-01
Light propagation models often simplify the interface between the optical fiber probe tip and tissue to a laterally uniform boundary with mismatched refractive indices. Such simplification neglects the precise optical properties of the commonly used probe tip materials, e.g. stainless steel or black epoxy. In this paper, we investigate the limitations of the laterally uniform probe-tissue interface in Monte Carlo simulations of diffuse reflectance. In comparison to a realistic probe-tissue interface that accounts for the layout and properties of the probe tip materials, the simplified laterally uniform interface is shown to introduce significant errors into the simulated diffuse reflectance. PMID:26504647
Hooked differential mobility spectrometry apparatus and method therefore
Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Ibrahim, Yehia M [Richland, WA; Smith, Richard D [Richland, WA
2009-02-17
Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.
The GLAS Standard Data Products Specification-Level 1, Version 9
NASA Technical Reports Server (NTRS)
Lee, Jeffrey E.
2013-01-01
The Geoscience Laser Altimeter System (GLAS) is the primary instrument for the ICESat (Ice, Cloud and Land Elevation Satellite) laser altimetry mission. ICESat was the benchmark Earth Observing System (EOS) mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. From 2003 to 2009, the ICESat mission provided multi-year elevation data needed to determine ice sheet mass balance as well as cloud property information, especially for stratospheric clouds common over polar areas. It also provided topography and vegetation data around the globe, in addition to the polar-specific coverage over the Greenland and Antarctic ice sheets.This document defines the Level-1 GLAS standard data products. This document addresses the data flow, interfaces, record and data formats associated with the GLAS Level 1 standard data products. GLAS Level 1 standard data products are composed of Level 1A and Level 1B data products. The term standard data products refers to those EOS instrument data that are routinely generated for public distribution. The National Snow and Ice Data Center (NSDIC) distribute these products. Each data product has a unique Product Identification code assigned by the Senior Project Scientist. GLAS Level 1A and Level 1B Data Products are composed from those Level 0 data that have been reformatted or transformed to corrected and calibrated data in physical units at the full instrument rate and resolution.
Introduction to optical methods for characterizing liquid crystals at interfaces.
Miller, Daniel S; Carlton, Rebecca J; Mushenheim, Peter C; Abbott, Nicholas L
2013-03-12
This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and nonplanar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically functionalized, and biomolecular interfaces, are described in this Instructional Review on a level that can be easily understood by a nonexpert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories.
Population-based metaheuristic optimization in neutron optics and shielding design
NASA Astrophysics Data System (ADS)
DiJulio, D. D.; Björgvinsdóttir, H.; Zendler, C.; Bentley, P. M.
2016-11-01
Population-based metaheuristic algorithms are powerful tools in the design of neutron scattering instruments and the use of these types of algorithms for this purpose is becoming more and more commonplace. Today there exists a wide range of algorithms to choose from when designing an instrument and it is not always initially clear which may provide the best performance. Furthermore, due to the nature of these types of algorithms, the final solution found for a specific design scenario cannot always be guaranteed to be the global optimum. Therefore, to explore the potential benefits and differences between the varieties of these algorithms available, when applied to such design scenarios, we have carried out a detailed study of some commonly used algorithms. For this purpose, we have developed a new general optimization software package which combines a number of common metaheuristic algorithms within a single user interface and is designed specifically with neutronic calculations in mind. The algorithms included in the software are implementations of Particle-Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and a Genetic Algorithm (GA). The software has been used to optimize the design of several problems in neutron optics and shielding, coupled with Monte-Carlo simulations, in order to evaluate the performance of the various algorithms. Generally, the performance of the algorithms depended on the specific scenarios, however it was found that DE provided the best average solutions in all scenarios investigated in this work.
An ultrasonic technique to measure the depth of burn wounds in humans
NASA Astrophysics Data System (ADS)
Yost, William T.; Cantrell, John H.; Hanna, Pamela D.
1991-06-01
Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.
A new open-source Python-based Space Weather data access, visualization, and analysis toolkit
NASA Astrophysics Data System (ADS)
de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.
2013-12-01
Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.
An ultrasonic technique to measure the depth of burn wounds in humans
NASA Technical Reports Server (NTRS)
Yost, William T.; Cantrell, John H.; Hanna, Pamela D.
1991-01-01
Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.
NASA Technical Reports Server (NTRS)
1974-01-01
The charactertistics and performance capability of the current Viking '75 Gas Chromatograph/Mass Spectrometer Instrument are reviewed and documented for the purpose of possible integration with a wet chemistry instrument. Interface, high mass discrimination, and vacuum requirements were determined in a simulated flight investigation. Suggestions for future investigations, tradeoff studies, and design modifications are presented, along with the results of column bleed measurements. A preliminary design of an integrated Wet Chemistry/Mass Spectrometer instrument for amino acid analysis is shown, including estimates of additional weight, volume, and power requirements.
Sensors with centroid-based common sensing scheme and their multiplexing
NASA Astrophysics Data System (ADS)
Berkcan, Ertugrul; Tiemann, Jerome J.; Brooksby, Glen W.
1993-03-01
The ability to multiplex sensors with different measurands but with a common sensing scheme is of importance in aircraft and aircraft engine applications; this unification of the sensors into a common interface has major implications for weight, cost, and reliability. A new class of sensors based on a common sensing scheme and their E/O Interface has been developed. The approach detects the location of the centroid of a beam of light; the set of fiber optic sensors with this sensing scheme include linear and rotary position, temperature, pressure, as well as duct Mach number. The sensing scheme provides immunity to intensity variations of the source or due to environmental effects on the fiber. A detector spatially multiplexed common electro-optic interface for the sensors has been demonstrated with a position and a temperature sensor.
International Instrumentation Symposium, 32nd, Seattle, WA, May 5-8, 1986, Proceedings
NASA Astrophysics Data System (ADS)
The conference presents papers on blast, shock, and vibration instrumentation; wind tunnel instrumentation and controls; electrooptic and fiber optic instrumentation; special test facilities; reentry vehicle testing; and nondestructive test and acoustic test instrumentation. Other topic include real time systems, flight test and avionics instrumentation, data aquisition and analysis systems, thermal measurements, and advances in measurement technology. Particular attention is given to an automated fringe counting laser interferometer for low frequency vibration measurements, dynamic pressure measurements in pneumatic lines, optically interfaced sensor system for aerospace applications, the picobalance for single microparticle measurements, ellipsometric film thickness, nanometer wear measurement by ultrathin surface layer activation, a rugged electronic scanner designed for turbine test, failure mechanism characterization of platinum alloy, and the thick film strain gage.
[Evaluation of digital educational student-technology interaction in neonatal nursing].
Castro, Fernanda Salim Ferreira de; Dias, Danielle Monteiro Vilela; Higarashi, Ieda Harumi; Scochi, Carmen Gracinda Silvan; Fonseca, Luciana Mara Monti
2015-02-01
To assess the digital educational technology interface Caring for the sensory environment in the neonatal unit: noise, lighting and handling based on ergonomic criteria. Descriptive study, in which we used the guidelines and ergonomic criteria established by ISO 9241-11 and an online Likert scale instrument to identify problems and interface qualities. The instrument was built based on Ergolist, which follows the criteria of ISO 9141-11. There were 58 undergraduate study participants from the School of Nursing of Ribeirao Preto, University of Sao Paulo, who attended the classes about neonatal nursing content. All items were positively evaluated by more than 70% of the sample. Educational technology is appropriate according to the ergonomic criteria and can be made available for teaching nursing students.
A Computer-Based Instrument That Identifies Common Science Misconceptions
ERIC Educational Resources Information Center
Larrabee, Timothy G.; Stein, Mary; Barman, Charles
2006-01-01
This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…
Synchrotron Imaging Computations on the Grid without the Computing Element
NASA Astrophysics Data System (ADS)
Curri, A.; Pugliese, R.; Borghes, R.; Kourousias, G.
2011-12-01
Besides the heavy use of the Grid in the Synchrotron Radiation Facility (SRF) Elettra, additional special requirements from the beamlines had to be satisfied through a novel solution that we present in this work. In the traditional Grid Computing paradigm the computations are performed on the Worker Nodes of the grid element known as the Computing Element. A Grid middleware extension that our team has been working on, is that of the Instrument Element. In general it is used to Grid-enable instrumentation; and it can be seen as a neighbouring concept to that of the traditional Control Systems. As a further extension we demonstrate the Instrument Element as the steering mechanism for a series of computations. In our deployment it interfaces a Control System that manages a series of computational demanding Scientific Imaging tasks in an online manner. The instrument control in Elettra is done through a suitable Distributed Control System, a common approach in the SRF community. The applications that we present are for a beamline working in medical imaging. The solution resulted to a substantial improvement of a Computed Tomography workflow. The near-real-time requirements could not have been easily satisfied from our Grid's middleware (gLite) due to the various latencies often occurred during the job submission and queuing phases. Moreover the required deployment of a set of TANGO devices could not have been done in a standard gLite WN. Besides the avoidance of certain core Grid components, the Grid Security infrastructure has been utilised in the final solution.
Using XML and Java for Astronomical Instrument Control
NASA Astrophysics Data System (ADS)
Koons, L.; Ames, T.; Evans, R.; Warsaw, C.; Sall, K.
1999-12-01
Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests. Instrument description is too tightly coupled with details of implementation. NASA/Goddard Space Flight Center and AppNet, Inc. are developing a very general and highly extensible framework that applies to virtually any kind of instrument that can be controlled by a computer (e.g., telescopes, microscopes and printers). A key aspect of the object-oriented architecture, implemented in Java, involves software that is driven by an instrument description. The Astronomical Instrument Markup Language (AIML) is a domain-specific implementation of the more generalized Instrument Markup Language (IML). The software architecture combines the platform-independent processing capabilities of Java with the vendor-independent data description syntax of Extensible Markup Language (XML), a human-readable and machine-understandable way to describe structured data. IML is used to describe command sets (including parameters, datatypes, and constraints) and their associated formats, telemetry, and communication mechanisms. The software uses this description to present graphical user interfaces to control and monitor the instrument. Recent efforts have extended to command procedures (scripting) and representation of data pipeline inputs, outputs, and connections. Near future efforts are likely to include an XML description of data visualizations, as well as the potential use of XSL (Extensible Stylesheet Language) to permit astronomers to customize the user interface on several levels: per user, instrument, subsystem, or observatory-wide. Our initial prototyping effort was targeted for HAWC (High-resolution Airborne Wideband Camera), a first-light instrument of SOFIA (the Stratospheric Observatory for Infrared Astronomy). A production-level application of this technology is for one of the three candidate detectors of SPIRE (Spectral and Photometric Imaging REceiver), a focal plane instrument proposed for the European Space Agency's Far Infrared Space Telescope. The detectors are being developed by the Infrared Astrophysics Branch of NASA/GSFC.
Ground Support Software for Spaceborne Instrumentation
NASA Technical Reports Server (NTRS)
Anicich, Vincent; Thorpe, rob; Fletcher, Greg; Waite, Hunter; Xu, Hykua; Walter, Erin; Frick, Kristie; Farris, Greg; Gell, Dave; Furman, Jufy;
2004-01-01
ION is a system of ground support software for the ion and neutral mass spectrometer (INMS) instrument aboard the Cassini spacecraft. By incorporating commercial off-the-shelf database, Web server, and Java application components, ION offers considerably more ground-support-service capability than was available previously. A member of the team that operates the INMS or a scientist who uses the data collected by the INMS can gain access to most of the services provided by ION via a standard pointand click hyperlink interface generated by almost any Web-browser program running in almost any operating system on almost any computer. Data are stored in one central location in a relational database in a non-proprietary format, are accessible in many combinations and formats, and can be combined with data from other instruments and spacecraft. The use of the Java programming language as a system-interface language offers numerous capabilities for object-oriented programming and for making the database accessible to participants using a variety of computer hardware and software.
Reconfigurable modular computer networks for spacecraft on-board processing
NASA Technical Reports Server (NTRS)
Rennels, D. A.
1978-01-01
The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.
Tejwani, Rohit; Wang, Hsin-Hsiao S; Lloyd, Jessica C; Kokorowski, Paul J; Nelson, Caleb P; Routh, Jonathan C
2017-03-01
The advent of online task distribution has opened a new avenue for efficiently gathering community perspectives needed for utility estimation. Methodological consensus for estimating pediatric utilities is lacking, with disagreement over whom to sample, what perspective to use (patient vs parent) and whether instrument induced anchoring bias is significant. We evaluated what methodological factors potentially impact utility estimates for vesicoureteral reflux. Cross-sectional surveys using a time trade-off instrument were conducted via the Amazon Mechanical Turk® (https://www.mturk.com) online interface. Respondents were randomized to answer questions from child, parent or dyad perspectives on the utility of a vesicoureteral reflux health state and 1 of 3 "warm-up" scenarios (paralysis, common cold, none) before a vesicoureteral reflux scenario. Utility estimates and potential predictors were fitted to a generalized linear model to determine what factors most impacted utilities. A total of 1,627 responses were obtained. Mean respondent age was 34.9 years. Of the respondents 48% were female, 38% were married and 44% had children. Utility values were uninfluenced by child/personal vesicoureteral reflux/urinary tract infection history, income or race. Utilities were affected by perspective and were higher in the child group (34% lower in parent vs child, p <0.001, and 13% lower in dyad vs child, p <0.001). Vesicoureteral reflux utility was not significantly affected by the presence or type of time trade-off warm-up scenario (p = 0.17). Time trade-off perspective affects utilities when estimated via an online interface. However, utilities are unaffected by the presence, type or absence of warm-up scenarios. These findings could have significant methodological implications for future utility elicitations regarding other pediatric conditions. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Zero-G life support for Space Station Freedom
NASA Technical Reports Server (NTRS)
Kolodney, Matthew; Dall-Bauman, L.
1992-01-01
Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.
Computer-enhanced laparoscopic training system (CELTS): bridging the gap.
Stylopoulos, N; Cotin, S; Maithel, S K; Ottensmeye, M; Jackson, P G; Bardsley, R S; Neumann, P F; Rattner, D W; Dawson, S L
2004-05-01
There is a large and growing gap between the need for better surgical training methodologies and the systems currently available for such training. In an effort to bridge this gap and overcome the disadvantages of the training simulators now in use, we developed the Computer-Enhanced Laparoscopic Training System (CELTS). CELTS is a computer-based system capable of tracking the motion of laparoscopic instruments and providing feedback about performance in real time. CELTS consists of a mechanical interface, a customizable set of tasks, and an Internet-based software interface. The special cognitive and psychomotor skills a laparoscopic surgeon should master were explicitly defined and transformed into quantitative metrics based on kinematics analysis theory. A single global standardized and task-independent scoring system utilizing a z-score statistic was developed. Validation exercises were performed. The scoring system clearly revealed a gap between experts and trainees, irrespective of the task performed; none of the trainees obtained a score above the threshold that distinguishes the two groups. Moreover, CELTS provided educational feedback by identifying the key factors that contributed to the overall score. Among the defined metrics, depth perception, smoothness of motion, instrument orientation, and the outcome of the task are major indicators of performance and key parameters that distinguish experts from trainees. Time and path length alone, which are the most commonly used metrics in currently available systems, are not considered good indicators of performance. CELTS is a novel and standardized skills trainer that combines the advantages of computer simulation with the features of the traditional and popular training boxes. CELTS can easily be used with a wide array of tasks and ensures comparability across different training conditions. This report further shows that a set of appropriate and clinically relevant performance metrics can be defined and a standardized scoring system can be designed.
ARO Research Instrumentation Program - IR Spectrometer Procurement
2015-11-01
supercapacitors ). The Nicolet iS50R spectrometer has been synchronized with a potentiostat to 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...interfaces. This information is important for the development of enhanced energy conversion processes and devices (e.g., supercapacitors ). The Nicolet iS50R...electrode interfaces. This information is important for the development of enhanced energy conversion processes and devices (e.g., supercapacitors
Rotary Joints With Electrical Connections
NASA Technical Reports Server (NTRS)
Osborn, F. W.
1986-01-01
Power and data transmitted on many channels. Two different rotary joints equipped with electrical connections between rotating and stationary parts. One joint transmits axial thrust and serves as interface between spinning and nonspinning parts of Galileo spacecraft. Other is scanning (limitedrotation) joint that aims scientific instruments from nonspinning part. Selected features of both useful to designers of robots, advanced production equipment, and remotely controlled instruments.
Controlling CAMAC instrumentation through the USB port
NASA Astrophysics Data System (ADS)
Ribas, R. V.
2012-02-01
A programmable device to interface CAMAC instrumentation to the USB port of computers, without the need of heavy, noisy and expensive CAMAC crates is described in this article. Up to four single-width modules can be used. Also, all software necessary for a multi-parametric data acquisition system was developed. A standard crate-controller based on the same project is being designed.
New paradigms for musical control-A decade of development at the MIT Media Lab
NASA Astrophysics Data System (ADS)
Paradiso, Joseph A.
2004-05-01
As electronic musical instruments liberate the action and energy of control from physical sound production, they are free to mutate into many different forms-the constraints on instrument design have shifted from physics to ergonomics, applications, and aesthetics. Low-cost sensors enable stimuli of all types to act as input, and with a computer interposed between action and sound production, essentially any sonic or musical dynamic can be mapped onto any gesture or activity with an increasingly high degree of interpretation or ``mapping,'' Accordingly, the notion of a musical instrument is being redefined, and as possibilities broaden, some researchers and artists are striving to break boundaries while others work to quantify and understand expanded metrics for musical interaction. Over the past decade, the author and his colleagues have adapted a wealth of sensor technologies and developed many interaction paradigms to scratch away at the evolving frontier of electronic musical instruments [J. Paradiso, ``Electronic music interfaces: new ways to play,'' IEEE Spectrum 34(12), 18-30 (1997)]. This presentation will review the status of electronic music controllers, provide a snapshot of current issues that the field is facing, and present various examples of new musical interfaces developed at the MIT Media Lab.
Implementation of High Speed Distributed Data Acquisition System
NASA Astrophysics Data System (ADS)
Raju, Anju P.; Sekhar, Ambika
2012-09-01
This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.
GLIMPSE: Google Glass interface for sensory feedback in myoelectric hand prostheses
NASA Astrophysics Data System (ADS)
Markovic, Marko; Karnal, Hemanth; Graimann, Bernhard; Farina, Dario; Dosen, Strahinja
2017-06-01
Objective. Providing sensory feedback to the user of the prosthesis is an important challenge. The common approach is to use tactile stimulation, which is easy to implement but requires training and has limited information bandwidth. In this study, we propose an alternative approach based on augmented reality. Approach. We have developed the GLIMPSE, a Google Glass application which connects to the prosthesis via a Bluetooth interface and renders the prosthesis states (EMG signals, aperture, force and contact) using augmented reality (see-through display) and sound (bone conduction transducer). The interface was tested in healthy subjects that used the prosthesis with (FB group) and without (NFB group) feedback during a modified clothespins test that allowed us to vary the difficulty of the task. The outcome measures were the number of unsuccessful trials, the time to accomplish the task, and the subjective ratings of the relevance of the feedback. Main results. There was no difference in performance between FB and NFB groups in the case of a simple task (basic, same-color clothespins test), but the feedback significantly improved the performance in a more complex task (pins of different resistances). Importantly, the GLIMPSE feedback did not increase the time to accomplish the task. Therefore, the supplemental feedback might be useful in the tasks which are more demanding, and thereby less likely to benefit from learning and feedforward control. The subjects integrated the supplemental feedback with the intrinsic sources (vision and muscle proprioception), developing their own idiosyncratic strategies to accomplish the task. Significance. The present study demonstrates a novel self-contained, ready-to-deploy, wearable feedback interface. The interface was successfully tested and was proven to be feasible and functionally beneficial. The GLIMPSE can be used as a practical solution but also as a general and flexible instrument to investigate closed-loop prosthesis control.
NASA Technical Reports Server (NTRS)
1976-01-01
The AMPS to Spacelab Interface Control Document which is to be used as a guide for format and information content in generating specific AMPS Mission ICDs is presented. This document is meant to supplement the Spacelab Payload Accommodations Handbook in that it only defines interfaces which are not discussed in the handbook to the level required for design purposes. The AMPS Top Level Requirements Tree, illustrates this ICD by a shaded area and its relationship to the other AMPS technical documents. Other interface documents shown are the Level II, AMPS to Space Shuttle Vehicle ICD and the Level III, AMPS to Instruments ICD.
Testing Microshutter Arrays Using Commercial FPGA Hardware
NASA Technical Reports Server (NTRS)
Rapchun, David
2008-01-01
NASA is developing micro-shutter arrays for the Near Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST). These micro-shutter arrays allow NIRspec to do Multi Object Spectroscopy, a key part of the mission. Each array consists of 62414 individual 100 x 200 micron shutters. These shutters are magnetically opened and held electrostatically. Individual shutters are then programmatically closed using a simple row/column addressing technique. A common approach to provide these data/clock patterns is to use a Field Programmable Gate Array (FPGA). Such devices require complex VHSIC Hardware Description Language (VHDL) programming and custom electronic hardware. Due to JWST's rapid schedule on the development of the micro-shutters, rapid changes were required to the FPGA code to facilitate new approaches being discovered to optimize the array performance. Such rapid changes simply could not be made using conventional VHDL programming. Subsequently, National Instruments introduced an FPGA product that could be programmed through a Labview interface. Because Labview programming is considerably easier than VHDL programming, this method was adopted and brought success. The software/hardware allowed the rapid change the FPGA code and timely results of new micro-shutter array performance data. As a result, numerous labor hours and money to the project were conserved.
Portable Raman instrument for rapid biological agent detection and identification
NASA Astrophysics Data System (ADS)
Lesaicherre, Marie L.; Paxon, Tracy L.; Mondello, Frank J.; Burrell, Michael C.; Linsebigler, Amy
2009-05-01
The rapid and sensitive identification of biological species is a critical need for the 1st responder and military communities. Raman spectroscopy is a powerful tool for substance identification that has gained popularity with the respective communities due to the increasing availability of portable Raman spectrometers. Attempts to use Raman spectroscopy for the direct identification of biological pathogens has been hindered by the complexity of the generated Raman spectrum. We report here the use of a sandwich immunoassay containing antibody modified magnetic beads to capture and concentrate target analytes in solution and Surface Enhanced Raman Spectroscopy (SERS) tags conjugated with these same antibodies for specific detection. Using this approach, the biological complexity of a microorganism can be translated into chemical simplicity and Raman can be used for the identification of biological pathogens. The developed assay has a low limit of detection due to the SERS effect, robust to commonly found white powders interferants, and stable at room temperature over extended period of time. This assay is being implemented into a user-friendly interface to be used in conjunction with the GE Homeland Protection StreetLab MobileTM Raman instrument for rapid, field deployable chemical and biological identification.
An evaluation of software tools for the design and development of cockpit displays
NASA Technical Reports Server (NTRS)
Ellis, Thomas D., Jr.
1993-01-01
The use of all-glass cockpits at the NASA Langley Research Center (LaRC) simulation facility has changed the means of design, development, and maintenance of instrument displays. The human-machine interface has evolved from a physical hardware device to a software-generated electronic display system. This has subsequently caused an increased workload at the facility. As computer processing power increases and the glass cockpit becomes predominant in facilities, software tools used in the design and development of cockpit displays are becoming both feasible and necessary for a more productive simulation environment. This paper defines LaRC requirements of a display software development tool and compares two available applications against these requirements. As a part of the software engineering process, these tools reduce development time, provide a common platform for display development, and produce exceptional real-time results.
Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L.
2013-01-01
This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and non-planar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically-functionalized and biomolecular interfaces, are described in this article at a level that can be easily understood by a non-expert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories. PMID:23347378
T-LECS: The Control Software System for MOIRCS
NASA Astrophysics Data System (ADS)
Yoshikawa, T.; Omata, K.; Konishi, M.; Ichikawa, T.; Suzuki, R.; Tokoku, C.; Katsuno, Y.; Nishimura, T.
2006-07-01
MOIRCS (Multi-Object Infrared Camera and Spectrograph) is a new instrument for the Subaru Telescope. We present the system design of the control software system for MOIRCS, named T-LECS (Tohoku University - Layered Electronic Control System). T-LECS is a PC-Linux based network distributed system. Two PCs equipped with the focal plane array system operate two HAWAII2 detectors, respectively, and another PC is used for user interfaces and a database server. Moreover, these PCs control various devices for observations distributed on a TCP/IP network. T-LECS has three interfaces; interfaces to the devices and two user interfaces. One of the user interfaces is to the integrated observation control system (Subaru Observation Software System) for observers, and another one provides the system developers the direct access to the devices of MOIRCS. In order to help the communication between these interfaces, we employ an SQL database system.
A Search Engine Features Comparison.
ERIC Educational Resources Information Center
Vorndran, Gerald
Until recently, the World Wide Web (WWW) public access search engines have not included many of the advanced commands, options, and features commonly available with the for-profit online database user interfaces, such as DIALOG. This study evaluates the features and characteristics common to both types of search interfaces, examines the Web search…
O'Callaghan, Sean; De Souza, David P; Isaac, Andrew; Wang, Qiao; Hodkinson, Luke; Olshansky, Moshe; Erwin, Tim; Appelbe, Bill; Tull, Dedreia L; Roessner, Ute; Bacic, Antony; McConville, Malcolm J; Likić, Vladimir A
2012-05-30
Gas chromatography-mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface.
BIRD: A general interface for sparse distributed memory simulators
NASA Technical Reports Server (NTRS)
Rogers, David
1990-01-01
Kanerva's sparse distributed memory (SDM) has now been implemented for at least six different computers, including SUN3 workstations, the Apple Macintosh, and the Connection Machine. A common interface for input of commands would both aid testing of programs on a broad range of computer architectures and assist users in transferring results from research environments to applications. A common interface also allows secondary programs to generate command sequences for a sparse distributed memory, which may then be executed on the appropriate hardware. The BIRD program is an attempt to create such an interface. Simplifying access to different simulators should assist developers in finding appropriate uses for SDM.
A database for TMT interface control documents
NASA Astrophysics Data System (ADS)
Gillies, Kim; Roberts, Scott; Brighton, Allan; Rogers, John
2016-08-01
The TMT Software System consists of software components that interact with one another through a software infrastructure called TMT Common Software (CSW). CSW consists of software services and library code that is used by developers to create the subsystems and components that participate in the software system. CSW also defines the types of components that can be constructed and their roles. The use of common component types and shared middleware services allows standardized software interfaces for the components. A software system called the TMT Interface Database System was constructed to support the documentation of the interfaces for components based on CSW. The programmer describes a subsystem and each of its components using JSON-style text files. A command interface file describes each command a component can receive and any commands a component sends. The event interface files describe status, alarms, and events a component publishes and status and events subscribed to by a component. A web application was created to provide a user interface for the required features. Files are ingested into the software system's database. The user interface allows browsing subsystem interfaces, publishing versions of subsystem interfaces, and constructing and publishing interface control documents that consist of the intersection of two subsystem interfaces. All published subsystem interfaces and interface control documents are versioned for configuration control and follow the standard TMT change control processes. Subsystem interfaces and interface control documents can be visualized in the browser or exported as PDF files.
The Schultz MIDI Benchmarking Toolbox for MIDI interfaces, percussion pads, and sound cards.
Schultz, Benjamin G
2018-04-17
The Musical Instrument Digital Interface (MIDI) was readily adopted for auditory sensorimotor synchronization experiments. These experiments typically use MIDI percussion pads to collect responses, a MIDI-USB converter (or MIDI-PCI interface) to record responses on a PC and manipulate feedback, and an external MIDI sound module to generate auditory feedback. Previous studies have suggested that auditory feedback latencies can be introduced by these devices. The Schultz MIDI Benchmarking Toolbox (SMIDIBT) is an open-source, Arduino-based package designed to measure the point-to-point latencies incurred by several devices used in the generation of response-triggered auditory feedback. Experiment 1 showed that MIDI messages are sent and received within 1 ms (on average) in the absence of any external MIDI device. Latencies decreased when the baud rate increased above the MIDI protocol default (31,250 bps). Experiment 2 benchmarked the latencies introduced by different MIDI-USB and MIDI-PCI interfaces. MIDI-PCI was superior to MIDI-USB, primarily because MIDI-USB is subject to USB polling. Experiment 3 tested three MIDI percussion pads. Both the audio and MIDI message latencies were significantly greater than 1 ms for all devices, and there were significant differences between percussion pads and instrument patches. Experiment 4 benchmarked four MIDI sound modules. Audio latencies were significantly greater than 1 ms, and there were significant differences between sound modules and instrument patches. These experiments suggest that millisecond accuracy might not be achievable with MIDI devices. The SMIDIBT can be used to benchmark a range of MIDI devices, thus allowing researchers to make informed decisions when choosing testing materials and to arrive at an acceptable latency at their discretion.
The Philosophy of User Interfaces in HELIO and the Importance of CASSIS
NASA Astrophysics Data System (ADS)
Bonnin, X.; Aboudarham, J.; Renié, C.; Csillaghy, A.; Messerotti, M.; Bentley, R. D.
2012-09-01
HELIO is a European project funded under FP7 (Project No. 238969). One of its goals as a Heliospheric Virtual Observatory is to provide an easy access to many datasets scattered all over the world, in the fields of Solar physics, Heliophysics, and Planetary magnetospheres. The efficiency of such a tool is very much related to the quality of the user interface. HELIO infrastructure is based on a Service Oriented Architecture (SOA), regrouping a network of standalone components, which allows four main types of interfaces: - HELIO Front End (HFE) is a browser-based user interface, which offers a centralized access to the HELIO main functionalities. Especially, it provides the possibility to reach data directly, or to refine selection by determination of observing characteristics, such as which instrument was observing at that time, which instrument was at this location, etc. - Many services/components provide their own standalone graphical user interface. While one can directly access individually each of these interfaces, they can also be connected together. - Most services also provide direct access for any tools through a public interface. A small java library, called Java API, simplifies this access by providing client stubs for services and shields the user from security, discovery and failover issues. - Workflows capabilities are available in HELIO, allowing complex combination of queries over several services. We want the user to be able to navigate easily, at his needs, through the various interfaces, and possibly use a specific one in order to make much-dedicated queries. We will also emphasize the importance of the CASSIS project (Coordination Action for the integration of Solar System Infrastructure and Science) in encouraging the interoperability necessary to undertake scientific studies that span disciplinary boundaries. If related projects follow the guidelines being developed by CASSIS then using external resources with HELIO will be greatly simplified.
Integrated circuit-based instrumentation for microchip capillary electrophoresis.
Behnam, M; Kaigala, G V; Khorasani, M; Martel, S; Elliott, D G; Backhouse, C J
2010-09-01
Although electrophoresis with laser-induced fluorescence (LIF) detection has tremendous potential in lab on chip-based point-of-care disease diagnostics, the wider use of microchip electrophoresis has been limited by the size and cost of the instrumentation. To address this challenge, the authors designed an integrated circuit (IC, i.e. a microelectronic chip, with total silicon area of <0.25 cm2, less than 5 mmx5 mm, and power consumption of 28 mW), which, with a minimal additional infrastructure, can perform microchip electrophoresis with LIF detection. The present work enables extremely compact and inexpensive portable systems consisting of one or more complementary metal-oxide-semiconductor (CMOS) chips and several other low-cost components. There are, to the authors' knowledge, no other reports of a CMOS-based LIF capillary electrophoresis instrument (i.e. high voltage generation, switching, control and interface circuit combined with LIF detection). This instrument is powered and controlled using a universal serial bus (USB) interface to a laptop computer. The authors demonstrate this IC in various configurations and can readily analyse the DNA produced by a standard medical diagnostic protocol (end-labelled polymerase chain reaction (PCR) product) with a limit of detection of approximately 1 ng/microl (approximately 1 ng of total DNA). The authors believe that this approach may ultimately enable lab-on-a-chip-based electrophoretic instruments that cost on the order of several dollars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, G.F. Jr.
1995-06-16
The purpose of this work scope is to identify a specific potential technology/device/instrument/ideas that would provide the tank waste data. A method is needed for identifying layering and physical state within the large waste tanks at the Hanford site in Washington State. These interfaces and state changes can adversely impact sampling and characterization activities.
Payload Instrument Design Rules for Safe and Efficient Flight Operations
NASA Astrophysics Data System (ADS)
Montagnon, E.; Ferri, P.
2004-04-01
Payload operations are often being neglected in favour of optimisation of scientific performance of the instrument design. This has major drawbacks in terms of cost, safety, efficiency of operations and finally science return. By taking operational aspects into account in the early phases of the instrument design, with a minimum more cultural than financial or technological additional effort, many problems can be avoided or minimized, with significant benefits to be gained in the mission execution phases. This paper presents possible improvements based on the use of the telemetry and telecommand packet standard, proper sharing of autonomy functions between instrument and platform, and enhanced interface documents.
Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William
2017-01-01
NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.
The SENSEI Generic In Situ Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayachit, Utkarsh; Whitlock, Brad; Wolf, Matthew
The SENSEI generic in situ interface is an API that promotes code portability and reusability. From the simulation view, a developer can instrument their code with the SENSEI API and then make make use of any number of in situ infrastructures. From the method view, a developer can write an in situ method using the SENSEI API, then expect it to run in any number of in situ infrastructures, or be invoked directly from a simulation code, with little or no modification. This paper presents the design principles underlying the SENSEI generic interface, along with some simplified coding examples.
Robot Control Through Brain Computer Interface For Patterns Generation
NASA Astrophysics Data System (ADS)
Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.
2011-09-01
A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.
Study of a module alignment measuring system for UARS
NASA Technical Reports Server (NTRS)
1982-01-01
An alignment measurement system (AMS) which precisely determines the boresights pointing directions of the Upper Atmosphere Research Satellite (UARS) instruments relative to the UARS attitude control system (ACS) was studied. The technology used in on the MAGSAT mission was considered. The AMS optical, mechanical, thermal and electrical system properties were defined. The AMS is constrained to interface with the UARS instrument module and spacecraft layout.
ERIC Educational Resources Information Center
School Science Review, 1990
1990-01-01
Presented are 29 science activities for secondary school science instruction. Topic areas include botany, genetics, biochemistry, anatomy, entomology, molecular structure, spreadsheets, chemistry, mechanics, astronomy, relativity, aeronautics, instrumentation, electrostatics, quantum mechanics, and laboratory interfacing. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, T.; Cai, Y.; Smellie, R.
1993-05-01
The basic features of the Superconducting Super Collider lattice are the two beamlines formed by superconducting dipoles (7736) and quadrupoles (1564). The dipoles constraint two 20 TeV proton beams into counterrotating closed orbits of 86.2 km. The quadrupoles (FODO) require cryogenic cooling the LHe temperatures. This requirement isolates the main magnets from the outside world. The interface required, the spool, is a crucial component of superconducting lattice design and machine operation. There are over 1588 spools in the Super Collider. We present hear SSCL spool designs which consist of (1) housing for superconducting closed orbit and multipole correction magnets, (2)more » cryogenic function, magnet quench protection, system power, and instrumentation interfaces, and (3) cold to warm transitions for ware magnet and warm instrumentation drift spaces.« less
NASA Astrophysics Data System (ADS)
Setscheny, Stephan
The interaction between human beings and technology builds a central aspect in human life. The most common form of this human-technology interface is the graphical user interface which is controlled through the mouse and the keyboard. In consequence of continuous miniaturization and the increasing performance of microcontrollers and sensors for the detection of human interactions, developers receive new possibilities for realising innovative interfaces. As far as this movement is concerned, the relevance of computers in the common sense and graphical user interfaces is decreasing. Especially in the area of ubiquitous computing and the interaction through tangible user interfaces a highly impact of this technical evolution can be seen. Apart from this, tangible and experience able interaction offers users the possibility of an interactive and intuitive method for controlling technical objects. The implementation of microcontrollers for control functions and sensors enables the realisation of these experience able interfaces. Besides the theories about tangible user interfaces, the consideration about sensors and the Arduino platform builds a main aspect of this work.
The University of Florida's next-generation cryogenic infrared focal plane array controller system
NASA Astrophysics Data System (ADS)
Raines, Steven N.; Boreman, Glenn D.; Eikenberry, Stephen S.; Bandyopadhyay, Reba M.; Quijano, Ismael
2008-07-01
The Infrared Instrumentation Group at the University of Florida has substantial experience building IR focal plane array (FPA) controllers and seamlessly integrating them into the instruments that it builds for 8-meter class observatories, including writing device drivers for UNIX-based computer systems. We report on a design study to investigate implementing an ASIC from Teledyne Imaging Systems (TIS) into our IR FPA controller while simultaneously replacing TIS's interface card with one that eliminates the requirement for a Windows-OS computer within the instrument's control system.
TFTR CAMAC systems and components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, W.A.; Bergin, W.; Sichta, P.
1987-08-01
Princeton's tokamak fusion test reactor (TFTR) utilizes Computer Automated Measurement and Control (CAMAC) to provide instrumentation for real and quasi real time control, monitoring, and data acquisition systems. This paper describes and discusses the complement of CAMAC hardware systems and components that comprise the interface for tokamak control and measurement instrumentation, and communication with the central instrumentation control and data acquisition (CICADA) system. It also discusses CAMAC reliability and calibration, types of modules used, a summary of data acquisition and control points, and various diagnostic maintenance tools used to support and troubleshoot typical CAMAC systems on TFTR.
A multi-channel instrumentation system for biosignal recording.
Yu, Hong; Li, Pengfei; Xiao, Zhiming; Peng, Chung-Ching; Bashirullah, Rizwan
2008-01-01
This paper reports a highly integrated battery operated multi-channel instrumentation system intended for physiological signal recording. The mixed signal IC has been fabricated in standard 0.5microm 5V 3M-2P CMOS process and features 32 instrumentation amplifiers, four 8b SAR ADCs, a wireless power interface with Li-ion battery charger, low power bidirectional telemetry and FSM controller with power gating control for improved energy efficiency. The chip measures 3.2mm by 4.8mm and dissipates approximately 2.1mW when fully operational.
Continued Development of in Situ Geochronology for Planetary Missions
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, B. A.
2015-01-01
The instrument 'Potassium (K) Argon Laser Experiment' (KArLE) is developed and designed for in situ absolute dating of rocks on planetary surfaces. It is based on the K-Ar dating method and uses the Laser Induced Breakdown Spectroscopy - Laser Ablation - Quadrupole Mass Spectrometry (LIBSLA- QMS) technique. We use a dedicated interface to combine two instruments similar to SAM of Mars Science Laboratory (for the QMS) and ChemCam (for the LA and LIBS). The prototype has demonstrated that KArLE is a suitable and promising instrument for in situ absolute dating.
Virtual Instrumentation for a Fiber-Optics-Based Artificial Nerve
NASA Technical Reports Server (NTRS)
Lyons, Donald R.; Kyaw, Thet Mon; Griffin, DeVon (Technical Monitor)
2001-01-01
A LabView-based computer interface for fiber-optic artificial nerves has been devised as a Masters thesis project. This project involves the use of outputs from wavelength multiplexed optical fiber sensors (artificial nerves), which are capable of producing dense optical data outputs for physical measurements. The potential advantages of using optical fiber sensors for sensory function restoration is the fact that well defined WDM-modulated signals can be transmitted to and from the sensing region allowing networked units to replace low-level nerve functions for persons desirous of "intelligent artificial limbs." Various FO sensors can be designed with high sensitivity and the ability to be interfaced with a wide range of devices including miniature shielded electrical conversion units. Our Virtual Instrument (VI) interface software package was developed using LabView's "Laboratory Virtual Instrument Engineering Workbench" package. The virtual instrument has been configured to arrange and encode the data to develop an intelligent response in the form of encoded digitized signal outputs. The architectural layout of our nervous system is such that different touch stimuli from different artificial fiber-optic nerve points correspond to gratings of a distinct resonant wavelength and physical location along the optical fiber. Thus, when an automated, tunable diode laser sends scans, the wavelength spectrum of the artificial nerve, it triggers responses that are encoded with different touch stimuli by way wavelength shifts in the reflected Bragg resonances. The reflected light is detected and a resulting analog signal is fed into ADC1 board and DAQ card. Finally, the software has been written such that the experimenter is able to set the response range during data acquisition.
DAS: A Data Management System for Instrument Tests and Operations
NASA Astrophysics Data System (ADS)
Frailis, M.; Sartor, S.; Zacchei, A.; Lodi, M.; Cirami, R.; Pasian, F.; Trifoglio, M.; Bulgarelli, A.; Gianotti, F.; Franceschi, E.; Nicastro, L.; Conforti, V.; Zoli, A.; Smart, R.; Morbidelli, R.; Dadina, M.
2014-05-01
The Data Access System (DAS) is a and data management software system, providing a reusable solution for the storage of data acquired both from telescopes and auxiliary data sources during the instrument development phases and operations. It is part of the Customizable Instrument WorkStation system (CIWS-FW), a framework for the storage, processing and quick-look at the data acquired from scientific instruments. The DAS provides a data access layer mainly targeted to software applications: quick-look displays, pre-processing pipelines and scientific workflows. It is logically organized in three main components: an intuitive and compact Data Definition Language (DAS DDL) in XML format, aimed for user-defined data types; an Application Programming Interface (DAS API), automatically adding classes and methods supporting the DDL data types, and providing an object-oriented query language; a data management component, which maps the metadata of the DDL data types in a relational Data Base Management System (DBMS), and stores the data in a shared (network) file system. With the DAS DDL, developers define the data model for a particular project, specifying for each data type the metadata attributes, the data format and layout (if applicable), and named references to related or aggregated data types. Together with the DDL user-defined data types, the DAS API acts as the only interface to store, query and retrieve the metadata and data in the DAS system, providing both an abstract interface and a data model specific one in C, C++ and Python. The mapping of metadata in the back-end database is automatic and supports several relational DBMSs, including MySQL, Oracle and PostgreSQL.
Imaging Sensor Flight and Test Equipment Software
NASA Technical Reports Server (NTRS)
Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa
2007-01-01
The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes at user-selected locations.
NASA Technical Reports Server (NTRS)
1996-01-01
This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.
Magnetic suspension and pointing system
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Groom, N. J. (Inventor)
1978-01-01
An apparatus is reported for accurate pointing of instruments on a carrier vehicle and for isolation of the instruments from the vehicle's motion disturbances. The apparatus includes two assemblies with connecting interfaces. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plase which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides attitude fine pointing and roll positioning of the instruments as well as six degree-of-freedom isolation from carrier motion disturbances.
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
2003-07-01
Technical Report WEB-BASED INTERACTIVE ELECTRONIC TECHNICAL MANUAL (IETM) COMMON USER INTERFACE STYLE GUIDE Version 2.0 – July 2003 by L. John Junod ...ACKNOWLEDGEMENTS The principal authors of this document were: John Junod – NSWC, Carderock Division, Phil Deuell – AMSEC LLC, Kathleen Moore
NASA Astrophysics Data System (ADS)
Yamada, Naoya; Wada, Masato; Kabir, M. Hasnat; Gong, Jin; Furukawa, Hidemitsu
2013-03-01
Gels are soft and wet materials that differ from hard and dry materials like metals, plastics and ceramics. These have some unique characteristic such as low frictional properties, high water content and materials permeability. A decade earlier, DN gels having a mechanical strength of 30MPa of the maximum breaking stress in compression was developed and it is a prospective material as the biomaterial of the human body. Indeed it frictional coefficient and mechanical strength are comparable to our cartilages. In this study, we focus on the dynamic frictional interface of hydrogels and aim to develop a new apparatus with a polarization microscope for observation. The dynamical interface is observed by the friction of gel and glass with hudroxypropylcellulose (HPC) polymer solution sandwiching. At the beginning, we rubbed hydrogel and glass with HPC solution sandwiching on stage of polarization microscope. Second step, we designed a new system which combined microscope with friction measuring machine. The comparison between direct observation with this instrument and measurement of friction coefficient will become a foothold to elucidate distinctive frictional phenomena that can be seen in soft and wet materials.
The PanCam Instrument for the ExoMars Rover
NASA Astrophysics Data System (ADS)
Coates, A. J.; Jaumann, R.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C. R.; Cross, R. E.; Grindrod, P.; Bridges, J. C.; Balme, M.; Gupta, S.; Crawford, I. A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J. L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G. R.; PanCam Team
2017-07-01
The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.
A SOAP Web Services Interface to ACE Data
NASA Astrophysics Data System (ADS)
Davis, A. J.; Hamell, G. R.
2005-05-01
Since early in 1998, NASA's Advanced Composition Explorer (ACE) spacecraft has provided continuous measurements of solar wind and energetic particle activity from L1, located approximately 0.01 AU sunward of Earth. ACE data from nine instruments are being used to measure and compare the elemental and isotopic composition of the solar corona, the nearby interstellar medium, and the Galaxy, and to study particle acceleration processes that occur in a wide range of environments. The spacecraft has enough fuel to stay in orbit about L1 until at least 2020. The ACE Science Center (ASC) provides access to ACE data, and performs level 1 and browse data processing for the science instruments. Available on-line are solar wind, solar energetic particle, and galactic cosmic ray intensity and composition data, as well as solar wind and magnetic field parameters on a variety of time scales. We describe our recent efforts to provide enhanced access to ACE data via a SOAP Web Services interface. The interface utilizes the Space Physics Archive Search and Extract (SPASE) dictionary, and will be compatible with emerging virtual observatories.
Shultz, Mary
2006-01-01
Introduction: Given the common use of acronyms and initialisms in the health sciences, searchers may be entering these abbreviated terms rather than full phrases when searching online systems. The purpose of this study is to evaluate how various MEDLINE Medical Subject Headings (MeSH) interfaces map acronyms and initialisms to the MeSH vocabulary. Methods: The interfaces used in this study were: the PubMed MeSH database, the PubMed Automatic Term Mapping feature, the NLM Gateway Term Finder, and Ovid MEDLINE. Acronyms and initialisms were randomly selected from 2 print sources. The test data set included 415 randomly selected acronyms and initialisms whose related meanings were found to be MeSH terms. Each acronym and initialism was entered into each MEDLINE MeSH interface to determine if it mapped to the corresponding MeSH term. Separately, 46 commonly used acronyms and initialisms were tested. Results: While performance differed widely, the success rates were low across all interfaces for the randomly selected terms. The common acronyms and initialisms tested at higher success rates across the interfaces, but the differences between the interfaces remained. Conclusion: Online interfaces do not always map medical acronyms and initialisms to their corresponding MeSH phrases. This may lead to inaccurate results and missed information if acronyms and initialisms are used in search strategies. PMID:17082832
NASA Astrophysics Data System (ADS)
Golightly, M. J.; McGarity, J. O.; Dichter, B. K.; Galica, G. E.
2015-12-01
The next generation U.S. geosynchronous weather satellite—GOES series R-U—will include for the first time a suprathermal plasma analyzer. The Magnetospheric Particle Sensor-Low (MPS-LO), an electrostatic analyzer utilizing triquadrispheric geometry (270° turn)deflection electrodes, will measure the flux of electrons and ions with energies between 30 eV - 30 keV in fifteen logarithmically-spaced differential energy channels and arrival direction in twelve angular bins. MPS-LO consists of two sensor heads mounted in a common electronics box. Each sensor head contains a set of deflection electrodes, microchannel plates, and segmented detector anodes. The common electronics box provides the power and I/O interface with a data processing unit, voltage supplies for all of the instrument's electronics, high voltage for the deflection electrodes, in-flight calibration pulsers, and the digital electronics to process signals from sensor heads' detector anodes. Great care was taken in the manufacture and mounting of the triquadrisphere deflection electrodes; each electrode was machined from a single piece of aluminum and specific electrode combinations were mounted with precision machined spacers and matched drilling. The precise fabrication and assembly resulted in near perfect spherical electric fields between the electrodes. The triquadrispheric electrode shape also prevents photons from reaching the detection elements-as a result, MPS-LO is solar blind. The combined field-of-view for the two sensor heads is 180° x 5°, with the larger angle in a plane perpendicular to the spacecraft's orbit and its central axis oriented anti-Earthward. An incident particle's arrival direction is determined in one of twelve 15° x 5° angular zones. A set of shielded anodes is used to measure the background caused by penetrating charged particles that reach the MCPs; this background data is used to correct the MPS-LO data. The instrument's energy resolution ΔE/E is 5.8%.
NASA Astrophysics Data System (ADS)
Modigliani, Andrea; Goldoni, Paolo; Royer, Frédéric; Haigron, Regis; Guglielmi, Laurent; François, Patrick; Horrobin, Matthew; Bristow, Paul; Vernet, Joel; Moehler, Sabine; Kerber, Florian; Ballester, Pascal; Mason, Elena; Christensen, Lise
2010-07-01
The X-shooter data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Product and Quality Control Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). X-shooter is the first of the second generation of VLT instruments. It makes possible to collect in one shot the full spectrum of the target from 300 to 2500 nm, subdivided in three arms optimised for UVB, VIS and NIR ranges, with an efficiency between 15% and 35% including the telescope and the atmosphere, and a spectral resolution varying between 3000 and 17,000. It allows observations in stare, offset modes, using the slit or an IFU, and observing sequences nodding the target along the slit. Data reduction can be performed either with a classical approach, by determining the spectral format via 2D-polynomial transformations, or with the help of a dedicated instrument physical model to gain insight on the instrument and allowing a constrained solution that depends on a few parameters with a physical meaning. In the present paper we describe the steps of data reduction necessary to fully reduce science observations in the different modes with examples on typical data calibrations and observations sequences.
A Tale of Two Regimes: Instrumentality and Commons Access
ERIC Educational Resources Information Center
Toly, Noah J.
2005-01-01
Technical developments have profound social and environmental impacts. Both are observed in the implications of regimes of instrumentality for commons access regimes. Establishing social, material, ecological, intellectual, and moral infrastructures, technologies are partly constitutive of commons access and may militate against governance…
Instrument Remote Control Application Framework
NASA Technical Reports Server (NTRS)
Ames, Troy; Hostetter, Carl F.
2006-01-01
The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.
Radial SI latches vibration test data review
NASA Technical Reports Server (NTRS)
Harrison, P. M.; Smith, J. L.
1984-01-01
Dynamic testing of the Space Telescope Scientific Instrument Radial Latches was performed as specified by the designated test criteria. No structural failures were observed during the test. The alignment stability of the instrument simulator was within required tolerances after testing. Particulates were discovered around the latch bases, after testing, due to wearing at the B and C latch interface surfaces. This report covers criteria derivation, testing, and test results.
User Interface Design for Dynamic Geometry Software
ERIC Educational Resources Information Center
Kortenkamp, Ulrich; Dohrmann, Christian
2010-01-01
In this article we describe long-standing user interface issues with Dynamic Geometry Software and common approaches to address them. We describe first prototypes of multi-touch-capable DGS. We also give some hints on the educational benefits of proper user interface design.
Techniques for the inorganic analysis in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
1983-01-01
Sample preparation, instrumental analysis, a direct injection device for IC/ICP interfacing, a hydraulic jet bend impaction device, monodisperse aerosol generator, and low gravity environments are discussed.
Time-resolved laser-induced fluorescence system
NASA Astrophysics Data System (ADS)
Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.
2006-02-01
Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.
The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data
NASA Astrophysics Data System (ADS)
Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex
2017-06-01
The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.
Common Calibration Source for Monitoring Long-term Ozone Trends
NASA Technical Reports Server (NTRS)
Kowalewski, Matthew
2004-01-01
Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.
US NDC Modernization Iteration E1 Prototyping Report: Common Object Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Jennifer E.; Hess, Michael M.
2014-12-01
During the first iteration of the US NDC Modernization Elaboration phase (E1), the SNL US NDC modernization project team completed an initial survey of applicable COTS solutions, and established exploratory prototyping related to the Common Object Interface (COI) in support of system architecture definition. This report summarizes these activities and discusses planned follow-on work.
ERIC Educational Resources Information Center
Machovec, George S., Ed.
1995-01-01
Explains the Common Gateway Interface (CGI) protocol as a set of rules for passing information from a Web server to an external program such as a database search engine. Topics include advantages over traditional client/server solutions, limitations, sample library applications, and sources of information from the Internet. (LRW)
Standardized Modular Power Interfaces for Future Space Explorations Missions
NASA Technical Reports Server (NTRS)
Oeftering, Richard
2015-01-01
Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but an essential part of defining physical building blocks of modular power. This presentation describes the AMPS projects progress towards standardized modular power interfaces.
NASA Technical Reports Server (NTRS)
Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip
2008-01-01
The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.
A vibro-haptic human-machine interface for structural health monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascarenas, David; Plont, Crystal; Brown, Christina
The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less
A vibro-haptic human-machine interface for structural health monitoring
Mascarenas, David; Plont, Crystal; Brown, Christina; ...
2014-11-01
The structural health monitoring (SHM) community’s goal has been to endow physical systems with a nervous system not unlike those commonly found in living organisms. Typically the SHM community has attempted to do this by instrumenting structures with a variety of sensors, and then applying various signal processing and classification procedures to the data in order to detect the presence of damage, the location of damage, the severity of damage, and to estimate the remaining useful life of the structure. This procedure has had some success, but we are still a long way from achieving the performance of nervous systemsmore » found in biology. This is primarily because contemporary classification algorithms do not have the performance required. In many cases expert judgment is superior to automated classification. This work introduces a new paradigm. We propose interfacing the human nervous system to the distributed sensor network located on the structure and developing new techniques to enable human-machine cooperation. Results from the field of sensory substitution suggest this should be possible. This study investigates a vibro-haptic human-machine interface for SHM. The investigation was performed using a surrogate three-story structure. The structure features three nonlinearity-inducing bumpers to simulate damage. Accelerometers are placed on each floor to measure the response of the structure to a harmonic base excitation. The accelerometer measurements are preprocessed. As a result, the preprocessed data is then encoded encoded as a vibro-tactile stimulus. Human subjects were then subjected to the vibro-tactile stimulus and asked to characterize the damage in the structure.« less
A Review and Comparison of Diagnostic Instruments to Identify Students' Misconceptions in Science
ERIC Educational Resources Information Center
Gurel, Derya Kaltakci; Eryilmaz, Ali; McDermott, Lillian Christie
2015-01-01
Different diagnostic tools have been developed and used by researchers to identify students' conceptions. The present study aimed to provide an overview of the common diagnostic instruments in science to assess students' misconceptions. Also the study provides a brief comparison of these common diagnostic instruments with their strengths and…
Teaching Music in the Age of MIDI.
ERIC Educational Resources Information Center
Jordahl, Gregory
1988-01-01
Explores the combination of the microcomputer and a digital synthesizer which use the Musical Instrument Digital Interface (MIDI). Discusses the evolution of MIDI, music classroom applications, and suggestions before purchasing a MIDI. (MVL)
An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.
1994-01-01
An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.
A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.
2007-03-01
This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.
Recent progress in microchip electrophoresis-mass spectrometry.
Kitagawa, Fumihiko; Otsuka, Koji
2011-06-25
This review highlights the methodological and instrumental developments in microchip electrophoresis (MCE)-mass spectrometry (MS) from 1997. In MCE-MS, the development of ionization interface is one of the most important issues to realize highly sensitive detection and high separation efficiency. Among several interfaces, electrospray ionization (ESI) has been mainly employed to MCE-MS since a simple structure of the ESI interface is suitable for coupling with the microchips. Although the number of publications is still limited, laser desorption ionization (LDI) interface has also been developed for MCE-MS. The characteristics of the ESI and LDI interfaces applied to the electrophoresis microchips are presented in this review. The scope of applications in MCE-MS covers mainly biogenic compounds such as bioactive amines, peptides, tryptic digests and proteins. This review provides a comprehensive table listing the applications in MCE-MS. Copyright © 2010 Elsevier B.V. All rights reserved.
INL Multi-Robot Control Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The INL Multi-Robot Control Interface controls many robots through a single user interface. The interface includes a robot display window for each robot showing the robotâs condition. More than one window can be used depending on the number of robots. The user interface also includes a robot control window configured to receive commands for sending to the respective robot and a multi-robot common window showing information received from each robot.
Design of the on-board application software for the instrument control unit of Euclid-NISP
NASA Astrophysics Data System (ADS)
Ligori, Sebastiano; Corcione, Leonardo; Capobianco, Vito; Valenziano, Luca
2014-08-01
In this paper we describe the main requirements driving the development of the Application software of the ICU of NISP, the Near-Infrared Spectro-Photometer of the Euclid mission. This software will be based on a real-time operating system and will interface with all the subunits of NISP, as well as the CMDU of the spacecraft for the Telecommand and Housekeeping management. We briefly detail the services (following the PUS standard) that will be made available, and also possible commonalities in the approach with the ASW of the VIS CDPU, which could make the development effort more efficient; this approach could also make easier the maintenance of the SW during the mission. The development plan of the ASW and the next milestones foreseen are described, together with the architectural design approach and the development environment we are setting up.
NASA Astrophysics Data System (ADS)
Pariser, O.; Calef, F.; Manning, E. M.; Ardulov, V.
2017-12-01
We will present implementation and study of several use-cases of utilizing Virtual Reality (VR) for immersive display, interaction and analysis of large and complex 3D datasets. These datasets have been acquired by the instruments across several Earth, Planetary and Solar Space Robotics Missions. First, we will describe the architecture of the common application framework that was developed to input data, interface with VR display devices and program input controllers in various computing environments. Tethered and portable VR technologies will be contrasted and advantages of each highlighted. We'll proceed to presenting experimental immersive analytics visual constructs that enable augmentation of 3D datasets with 2D ones such as images and statistical and abstract data. We will conclude by presenting comparative analysis with traditional visualization applications and share the feedback provided by our users: scientists and engineers.
A Global Repository for Planet-Sized Experiments and Observations
NASA Technical Reports Server (NTRS)
Williams, Dean; Balaji, V.; Cinquini, Luca; Denvil, Sebastien; Duffy, Daniel; Evans, Ben; Ferraro, Robert D.; Hansen, Rose; Lautenschlager, Michael; Trenham, Claire
2016-01-01
Working across U.S. federal agencies, international agencies, and multiple worldwide data centers, and spanning seven international network organizations, the Earth System Grid Federation (ESGF) allows users to access, analyze, and visualize data using a globally federated collection of networks, computers, and software. Its architecture employs a system of geographically distributed peer nodes that are independently administered yet united by common federation protocols and application programming interfaces (APIs). The full ESGF infrastructure has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the Coupled Model Intercomparison Project (CMIP) output used by the Intergovernmental Panel on Climate Change assessment reports. Data served by ESGF not only include model output (i.e., CMIP simulation runs) but also include observational data from satellites and instruments, reanalyses, and generated images. Metadata summarize basic information about the data for fast and easy data discovery.
Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer
NASA Technical Reports Server (NTRS)
Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.
2010-01-01
Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Cohen, Richard W.; Colson, Andrew; Gelino, Christopher R.; Good, John C.; Kong, Mihseh; Laity, Anastasia C.; Mader, Jeffrey A.; Swain, Melanie A.; Tran, Hien D.; Wang, Shin-Ywan
2016-08-01
The Keck Observatory Archive (KOA) (https://koa.ipac.caltech.edu) curates all observations acquired at the W. M. Keck Observatory (WMKO) since it began operations in 1994, including data from eight active instruments and two decommissioned instruments. The archive is a collaboration between WMKO and the NASA Exoplanet Science Institute (NExScI). Since its inception in 2004, the science information system used at KOA has adopted an architectural approach that emphasizes software re-use and adaptability. This paper describes how KOA is currently leveraging and extending open source software components to develop new services and to support delivery of a complete set of instrument metadata, which will enable more sophisticated and extensive queries than currently possible. In August 2015, KOA deployed a program interface to discover public data from all instruments equipped with an imaging mode. The interface complies with version 2 of the Simple Imaging Access Protocol (SIAP), under development by the International Virtual Observatory Alliance (IVOA), which defines a standard mechanism for discovering images through spatial queries. The heart of the KOA service is an R-tree-based, database-indexing mechanism prototyped by the Virtual Astronomical Observatory (VAO) and further developed by the Montage Image Mosaic project, designed to provide fast access to large imaging data sets as a first step in creating wide-area image mosaics (such as mosaics of subsets of the 4.7 million images of the SDSS DR9 release). The KOA service uses the results of the spatial R-tree search to create an SQLite data database for further relational filtering. The service uses a JSON configuration file to describe the association between instrument parameters and the service query parameters, and to make it applicable beyond the Keck instruments. The images generated at the Keck telescope usually do not encode the image footprints as WCS fields in the FITS file headers. Because SIAP searches are spatial, much of the effort in developing the program interface involved processing the instrument and telescope parameters to understand how accurately we can derive the WCS information for each instrument. This knowledge is now being fed back into the KOA databases as part of a program to include complete metadata information for all imaging observations. The R-tree program was itself extended to support temporal (in addition to spatial) indexing, in response to requests from the planetary science community for a search engine to discover observations of Solar System objects. With this 3D-indexing scheme, the service performs very fast time and spatial matches between the target ephemerides, obtained from the JPL SPICE service. Our experiments indicate these matches can be more than 100 times faster than when separating temporal and spatial searches. Images of the tracks of the moving targets, overlaid with the image footprints, are computed with a new command-line visualization tool, mViewer, released with the Montage distribution. The service is currently in test and will be released in late summer 2016.
Decision Aids Using Heterogeneous Intelligence Analysis
2010-08-20
developing a Geocultural service, a software framework and inferencing engine for the Transparent Urban Structures program. The scope of the effort...has evolved as the program has matured and is including multiple data sources, as well as interfaces out to the ONR architectural framework . Tasks...Interface; Application Program Interface; Application Programmer Interface CAF Common Application Framework EDA Event Driven Architecture a 16. SECURITY
User Interface for the ESO Advanced Data Products Image Reduction Pipeline
NASA Astrophysics Data System (ADS)
Rité, C.; Delmotte, N.; Retzlaff, J.; Rosati, P.; Slijkhuis, R.; Vandame, B.
2006-07-01
The poster presents a friendly user interface for image reduction, totally written in Python and developed by the Advanced Data Products (ADP) group. The interface is a front-end to the ESO/MVM image reduction package, originally developed in the ESO Imaging Survey (EIS) project and used currently to reduce imaging data from several instruments such as WFI, ISAAC, SOFI and FORS1. As part of its scope, the interface produces high-level, VO-compliant, science images from raw data providing the astronomer with a complete monitoring system during the reduction, computing also statistical image properties for data quality assessment. The interface is meant to be used for VO services and it is free but un-maintained software and the intention of the authors is to share code and experience. The poster describes the interface architecture and current capabilities and give a description of the ESO/MVM engine for image reduction. The ESO/MVM engine should be released by the end of this year.
Common command-and-control user interface for current force UGS
NASA Astrophysics Data System (ADS)
Stolovy, Gary H.
2009-05-01
The Current Force Unattended Ground Sensors (UGS) comprise the OmniSense, Scorpion, and Silent Watch systems. As deployed by U.S. Army Central Command in 2006, sensor reports from the three systems were integrated into a common Graphical User Interface (GUI), with three separate vendor-specific applications for Command-and-Control (C2) functions. This paper describes the requirements, system architecture, implementation, and testing of an upgrade to the Processing, Exploitation, and Dissemination back-end server to incorporate common remote Command-and-Control capabilities.
NASA Astrophysics Data System (ADS)
Bundke, Ulrich; Berg, Marcel; Franke, Harald; Zahn, Andreas; Boenisch, Harald; Perim de Faria, Julia; Berkes, Florian; Petzold, Andreas
2017-04-01
The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in-situ observational data by using commercial passenger aircraft as measurement platforms. The infrastructure is built from two complementary approaches: The "CORE" component comprises the implementation and operation of autonomous instruments installed on up to 20 long-range aircraft of international airlines for continuous measurements of important reactive gases and greenhouse gases, as well as aerosol particles, dust and cloud particles. The fully automated instruments are designed for operation aboard the aircraft in unattended mode for several months and the data are transmitted automatically. The complementary "CARIBIC" component consists of the monthly deployment of a cargo container equipped with instrumentation for a larger suite of components. The CARIBIC container has equipment for measuring ozone, carbon monoxide, nitrogen oxides, water vapor and airborne particles. Furthermore the container is equipped with a system for collecting air samples. These air samples are analyzed in the laboratory. For each sample measurements for more than 40 trace gases including CFC's prohibited by the Montreal protocol, and all greenhouse gases are performed. The Interface described in this work is designed to host one of IAGOS CORE (Package2) instruments. Available are: P2a, P2b, measuring { NO_y} and {NO_x} em P2c, measuring the aerosol size-distribution (0.25
NASA Technical Reports Server (NTRS)
Mckay, Charles; Auty, David; Rogers, Kathy
1987-01-01
System interface sets (SIS) for large, complex, non-stop, distributed systems are examined. The SIS of the Space Station Program (SSP) was selected as the focus of this study because an appropriate virtual interface specification of the SIS is believed to have the most potential to free the project from four life cycle tyrannies which are rooted in a dependance on either a proprietary or particular instance of: operating systems, data management systems, communications systems, and instruction set architectures. The static perspective of the common Ada programming support environment interface set (CAIS) and the portable common execution environment (PCEE) activities are discussed. Also, the dynamic perspective of the PCEE is addressed.
Cinfony – combining Open Source cheminformatics toolkits behind a common interface
O'Boyle, Noel M; Hutchison, Geoffrey R
2008-01-01
Background Open Source cheminformatics toolkits such as OpenBabel, the CDK and the RDKit share the same core functionality but support different sets of file formats and forcefields, and calculate different fingerprints and descriptors. Despite their complementary features, using these toolkits in the same program is difficult as they are implemented in different languages (C++ versus Java), have different underlying chemical models and have different application programming interfaces (APIs). Results We describe Cinfony, a Python module that presents a common interface to all three of these toolkits, allowing the user to easily combine methods and results from any of the toolkits. In general, the run time of the Cinfony modules is almost as fast as accessing the underlying toolkits directly from C++ or Java, but Cinfony makes it much easier to carry out common tasks in cheminformatics such as reading file formats and calculating descriptors. Conclusion By providing a simplified interface and improving interoperability, Cinfony makes it easy to combine complementary features of OpenBabel, the CDK and the RDKit. PMID:19055766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spires, S.
This code provides an application programming interface to the Macintosh OSX Carbon Databrowser from Macintosh Common Lisp. The Databrowser API is made available to Lisp via high level native CLOS classes and methods, obviating the need to write low-level Carbon code. This code is primarily glue in that its job is to provide an interface between two extant software tools: Macintosh Common Lisp and the OSX Databrowser, both of which are COTS products from private vendors. The Databrowser is an extremely useful user interface widget that is provided with Apples OSX (and to some extent, OS9) operating systems. One Apple-sanctionedmore » method for using the Databrowser is via an API called Carbon, which is designed for C and C++ programmers. We have translated the low-level Carbon programming interface to the Databrowser into high-level object-oriented Common Lisp calls, functions, methods. and classes to enable MCL programmers to more readily take advantage of the Databrowser from Lisp programs.« less
LYMAN - The far ultraviolet explorer
NASA Technical Reports Server (NTRS)
Moos, Warren; Osantowski, John F.
1989-01-01
The LYMAN FUSE mission concept for far ultraviolet astronomy is presented. The wavelength window from 100 to 1200 A provides access to a wide range of important scientific problems in cosmology, galactic structure, stellar evolution, and planetary magnetospheres, which cannot be studied in any other way. The LYMAN FUSE Phase A study is examining in detail mission operations, instrumentation technology, the construction of the instrument module, and the interfaces between the Instrument Module and the Explorer Platform Mission. Most of the mission observing time will be allotted through a competitive Guest Observer program analogous to that in operation for the IUE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allows semantic instrumentation to live in production codes without interfering with production runs.
Interaction design challenges and solutions for ALMA operations monitoring and control
NASA Astrophysics Data System (ADS)
Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar
2012-09-01
The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.
LabVIEW Interface for PCI-SpaceWire Interface Card
NASA Technical Reports Server (NTRS)
Lux, James; Loya, Frank; Bachmann, Alex
2005-01-01
This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.
Conceptualization and application of an approach for designing healthcare software interfaces.
Kumar, Ajit; Maskara, Reena; Maskara, Sanjeev; Chiang, I-Jen
2014-06-01
The aim of this study is to conceptualize a novel approach, which facilitates us to design prototype interfaces for healthcare software. Concepts and techniques from various disciplines were used to conceptualize an interface design approach named MORTARS (Map Original Rhetorical To Adapted Rhetorical Situation). The concepts and techniques included in this approach are (1) rhetorical situation - a concept of philosophy provided by Bitzer (1968); (2) move analysis - an applied linguistic technique provided by Swales (1990) and Bhatia (1993); (3) interface design guidelines - a cognitive and computer science concept provided by Johnson (2010); (4) usability evaluation instrument - an interface evaluation questionnaire provided by Lund (2001); (5) user modeling via stereotyping - a cognitive and computer science concept provided by Rich (1979). A prototype interface for outpatient clinic software was designed to introduce the underlying concepts of MORTARS. The prototype interface was evaluated by thirty-two medical informaticians. The medical informaticians found the designed prototype interface to be useful (73.3%), easy to use (71.9%), easy to learn (93.1%), and satisfactory (53.2%). MORTARS approach was found to be effective in designing the prototype user interface for the outpatient clinic software. This approach might be further used to design interfaces for various software pertaining to healthcare and other domains. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jester, Peggy L.; Hancock, David W., III
1999-01-01
This document provides the Data Management Plan for the GLAS Standard Data Software (SDS) supporting the GLAS instrument of the EOS ICESat Spacecraft. The SDS encompasses the ICESat Science Investigator-led Processing System (I-SIPS) Software and the Instrument Support Facility (ISF) Software. This Plan addresses the identification, authority, and description of the interface nodes associated with the GLAS Standard Data Products and the GLAS Ancillary Data.
Enabling High Performance Instruments for Astronomy and Space Exploration and ALD
NASA Technical Reports Server (NTRS)
Greer, Frank; Lee, M. C.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Dickie, M.; Monacos, S.; Nikzad, S.; Day, P.; Leduc, R.;
2012-01-01
Benefits of ALD for NASA instruments and applications: a) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area. b). High quality films (density, roughness, conductivity, etc.) . Angstrom level control of stoichiometry, interfaces, and surface properties: 1) Multilayer nanolaminates/nanocomposites. 2) Low temperature surface engineering. Flight applications enabled by ALD: a) Anti-reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors. b) Superconducting Films for Submillimeter Astronomy.
2017-03-03
biomechanical gait state changes within prolonged exercise or training events. II. MATERIAL AND METHODS A. Instrumented Insert Design We developed a...beginning and end of each data collection trial using a user interface designed specifically for this purpose in MATLAB. F. Calibration Proces:Static...consisted of walking for several minutes indoors (thin carpeted surface on concrete) and outdoors on several different surfaces ( pavement , gravel and
High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2
NASA Technical Reports Server (NTRS)
1990-01-01
The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.
Rushford, Michael C.
2002-01-01
An optical monitoring instrument monitors etch depth and etch rate for controlling a wet-etching process. The instrument provides means for viewing through the back side of a thick optic onto a nearly index-matched interface. Optical baffling and the application of a photoresist mask minimize spurious reflections to allow for monitoring with extremely weak signals. A Wollaston prism enables linear translation for phase stepping.
Computer Instrumentation and the New Tools of Science.
ERIC Educational Resources Information Center
Snyder, H. David
1990-01-01
The impact and uses of new technologies in science teaching are discussed. Included are computers, software, sensors, integrated circuits, computer signal access, and computer interfaces. Uses and advantages of these new technologies are suggested. (CW)
Clear air turbulence radiometric detection program.
DOT National Transportation Integrated Search
1971-07-01
The report presents a review of accomplishments for the Clear Air Turbulence Detection Program. The objectives, instrumentation, supporting hardware and interfaces leading up to and including the test flights for the reporting period are given. The u...
Propulsion Instruments for Small Hall Thruster Integration
NASA Technical Reports Server (NTRS)
Johnson, Lee K.; Conroy, David G.; Spanjers, Greg G.; Bromaghim, Daron R.
2001-01-01
Planning and development are underway for the propulsion instrumentation necessary for the next AFRL electric propulsion flight project, which includes both a small Hall thruster and a micro-PPT. These instruments characterize the environment induced by the thruster and the associated data constitute part of a 'user's manual' for these thrusters. Several instruments probe the back-flow region of the thruster plume, and the data are intended for comparison with detailed numerical models in this region. Specifically, an ion probe is under development to determine the energy and species distributions, and a Langmuir probe will be employed to characterize the electron density and temperature. Other instruments directly measure the effects of thruster operation on spacecraft thermal control surfaces, optical surfaces, and solar arrays. Specifically, radiometric, photometric, and solar-cell-based sensors are under development. Prototype test data for most sensors should be available, together with details of the instrumentation subsystem and spacecraft interface.
Power Distribution for Cryogenic Instruments at 6-40K The James Webb Space Telescope Case
NASA Technical Reports Server (NTRS)
Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim
2011-01-01
The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.
Power Distribution For Cryogenic Instruments At 6-40K The James Webb Space Telescope Case
NASA Astrophysics Data System (ADS)
Rumler, Peter; Lundquist, Ray; Alvarez, Jose Lorenzo; Sincell, Jeff; Tuttle, Jim
2011-10-01
The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) operates its instruments passively cooled at around 40 Kelvin (K), with a warm Instrument Electronic Compartment (IEC) at 300K attached to it. From the warm electronics all secondary signal and power harnesses have to bridge this 300-40K temperature difference and minimize the power dissipation and parasitic heat leak into the cold region. After an introduction of the ISIM with its instruments, the IEC with the electronics, and the harness architecture with a special radiator, this paper elaborates on the cryogenic wire selection and tests performed to establish current de-rating rules for different wire types. Finally failure modes are analyzed for critical instrument interfaces that could inject excessive currents and heat into the harness and cold side, and several solutions for the removal of such failures are presented.
NASA Technical Reports Server (NTRS)
Hersey, Mayo D
1923-01-01
This report is intended as a technical introduction to the series of reports on aeronautic instruments. It presents a discussion of those subjects which are common to all instruments. First, a general classification is given, embracing all types of instruments used in aeronautics. Finally, a classification is given of the various problems confronted by the instrument expert and investigator. In this way the following groups of problems are brought up for consideration: problems of mechanical design, human factor, manufacturing problems, supply and selection of instruments, problems concerning the technique of testing, problems of installation, problems concerning the use of instruments, problems of maintenance, and physical research problems. This enumeration of problems which are common to instruments in general serves to indicate the different points of view which should be kept in mind in approaching the study of any particular instrument.
Chelton, C F; Zakraysek, N; Lautner, G M; Confer, R G
1983-10-01
Two direct reading instruments, the H-Nu PI 101 photoionization analyzer and the J.W. Bacharach TLV Sniffer, were evaluated under laboratory conditions to determine their performance characteristics when challenged by vapors of common hydrocarbon solvent mixtures. Each instrument was evaluated against the manufacturer's recommended test solvent for rise time, fall time, noise, span drift, zero drift, position sensitivity, battery life, and recharge time. The precision, accuracy, and operating linear range were also determined for the test solvents and some petroleum solvent mixtures which are common refinery products. For these latter mixtures, correction factors are presented which allow for an improved estimate of ambient concentrations when monitoring with each of these instruments. All tests except operating humidity range were performed by challenging each instrument with a known concentration of hydrocarbon generated by evaporating calculated liquid volumes into a static chamber. Humidity tests were performed using a dynamic dilution apparatus generating a fixed concentration of hydrocarbon while relative humidity was varied. Concentrations in both systems were verified by gas injection into gas chromatograph. Each instrument performed well when challenged by manufacturers' recommended test solvents. Humidity was shown to influence each instrument's readings. Also, the instruments were shown to have application as monitors of airborne concentrations of common hydrocarbon solvent mixtures.
The Distributed Common Ground System-Army User Interface
2015-06-12
its perceived lack of effectiveness. Popular opinion of the DCGS-A user interface within the military is it is unfriendly to use and not intuitive...from members of the United States Congress due to its perceived lack of effectiveness. Popular opinion of the DCGS-A user interface within the
NASA Astrophysics Data System (ADS)
Nijenhuis, Jan R.; Visser, Huib; Kruizinga, Bob
2003-10-01
Measuring the wind speed from a satellite is not new. However measuring with great precision is by far not trivial. Various methods are available for that. A common method is to use the Doppler effect. A UV-laser on board of the satellite is used to "fire" to the earth atmosphere. Some photons will be reflected back to the satellite. Because of the speed of the particles in the air the photons will experience a small Doppler shift. Wind speeds of 1 m/s are hereby equivalent to a wave length shift of 1 femtometer. The paper presents the patented method of how to measure these small wavelength shifts without running into trouble concerning the mechanical design. It will understood that such instrument will be very sensitive to thermal variations (a challenging requirement was that a temperature change of 0.2° in 7 seconds was specified at the interface surfaces). The optical system makes use of a modified Michelson interferometer while the mechanical system automatically compensates for thermal expansion effects. Originally the idea was to make a complete Zerodur structure to eliminate the thermal effects. However it appeared to be possible to use a titanium structure with certain elements made from invar and aluminium. No need to say that this reduced risk and cost of the instrument drastically.
Design definition of the Laser Atmospheric Wind Sounder (LAWS), phase 2. Volume 2: Final report
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1992-01-01
Lockheed personnel, along with team member subcontractors and consultants, have performed a preliminary design for the LAWS Instrument. Breadboarding and testing of a LAWS class laser have also been performed. These efforts have demonstrated that LAWS is a feasible Instrument and can be developed with existing state-of-the-art technology. Only a commitment to fund the instrument development and deployment is required to place LAWS in orbit and obtain the anticipated science and operational forecasting benefits. The LAWS Science Team was selected in 1988-89 as were the competing LAWS phase 1/2 contractor teams. The LAWS Science Team developed requirements for the LAWS Instrument, and the NASA/LAWS project office defined launch vehicle and platform design constraints. From these requirements and constraints, the lockheed team developed LAWS Instrument concepts and configurations. A system designed to meet these requirements and constraints is outlined. The LAWS primary subsystem and interfaces - laser, optical, and receiver/processor - required to assemble a lidar are identified. Also identified are the support subsystems required for the lidar to function from space: structures and mechanical, thermal, electrical, and command and data management. The Lockheed team has developed a preliminary design of a LAWS Instrument System consisting of these subsystems and interfaces which will meet the requirements and objectives of the Science Team. This final report provides a summary of the systems engineering analyses and trades of the LAWS. Summaries of the configuration, preliminary designs of the subsystems, testing recommendations, and performance analysis are presented. Environmental considerations associated with deployment of LAWS are discussed. Finally, the successful LAWS laser breadboard effort is discussed along with the requirements and test results.
The PanCam Instrument for the ExoMars Rover
Coates, A.J.; Jaumann, R.; Griffiths, A.D.; Leff, C.E.; Schmitz, N.; Josset, J.-L.; Paar, G.; Gunn, M.; Hauber, E.; Cousins, C.R.; Cross, R.E.; Grindrod, P.; Bridges, J.C.; Balme, M.; Gupta, S.; Crawford, I.A.; Irwin, P.; Stabbins, R.; Tirsch, D.; Vago, J.L.; Theodorou, T.; Caballo-Perucha, M.; Osinski, G.R.
2017-01-01
Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars—ExoMars—Instrumentation—Geology—Atmosphere—Exobiology—Context. Astrobiology 17, 511–541.
Broadband Metamaterial for Nonresonant Matching of Acoustic Waves
2012-03-28
35898, USA. Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle ...metamaterial possessing a Brewster -like angle that is completely transparent to sound waves over an ultra-broadband frequency range with .100% bandwidth...Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle , but it is
NASA Technical Reports Server (NTRS)
Mckay, C. W.; Bown, R. L.
1985-01-01
The paper discusses the importance of linking Ada Run Time Support Environments to the Common Ada Programming Support Environment (APSE) Interface Set (CAIS). A non-stop network operating systems scenario is presented to serve as a forum for identifying the important issues. The network operating system exemplifies the issues involved in the NASA Space Station data management system.
NASA Astrophysics Data System (ADS)
Huang, Yong; Song, Cheol; Liu, Xuan; Kang, Jin U.
2013-03-01
A motion-compensated hand-held common-path Fourier-domain optical coherence tomography imaging probe has been developed for image guided intervention during microsurgery. A hand-held prototype instrument was designed and fabricated by integrating an imaging fiber probe inside a stainless steel needle which is attached to the ceramic shaft of a piezoelectric motor housed in an aluminum handle. The fiber probe obtains A-scan images. The distance information was extracted from the A-scans to track the sample surface distance and a fixed distance was maintained by a feedback motor control which effectively compensated hand tremor and target movements in the axial direction. Graphical user interface, real-time data processing, and visualization based on a CPU-GPU hybrid programming architecture were developed and used in the implantation of this system. To validate the system, free-hand optical coherence tomography images using various samples were obtained. The system can be easily integrated into microsurgical tools and robotics for a wide range of clinical applications. Such tools could offer physicians the freedom to easily image sites of interest with reduced risk and higher image quality.
Nano-Satellite Secondary Spacecraft on Deep Space Missions
NASA Technical Reports Server (NTRS)
Klesh, Andrew T.; Castillo-Rogez, Julie C.
2012-01-01
NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.
ERIC Educational Resources Information Center
Stein, Mary; Barman, Charles R.; Larrabee, Timothy
2007-01-01
This article describes the rationale for, and development of, an online instrument that helps identify commonly held science misconceptions. Science Beliefs is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. It utilizes a true or false, along with a written-explanation, format. The true or…
Feasibility study of the solar scientific instruments for Spacelab/Orbiter
NASA Technical Reports Server (NTRS)
Leritz, J.; Rasser, T.; Stone, E.; Lockhart, B.; Nobles, W.; Parham, J.; Eimers, D.; Peterson, D.; Barnhart, W.; Schrock, S.
1981-01-01
The feasibility and economics of mounting and operating a set of solar scientific instruments in the backup Skylab Apollo Telescope Mount (ATM) hardware was evaluated. The instruments used as the study test payload and integrated into the ATM were: the Solar EUV Telescope/Spectrometer; the Solar Active Region Observing Telescope; and the Lyman Alpha White Light Coronagraph. The backup ATM hardware consists of a central cruciform structure, called the "SPAR', a "Sun End Canister' and a "Multiple Docking Adapter End Canister'. Basically, the ATM hardware and software provides a structural interface for the instruments; a closely controlled thermal environment; and a very accurate attitude and pointing control capability. The hardware is an identical set to the hardware that flow on Skylab.
Architecture for fiber-optic sensors and actuators in aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Glomb, W. L., Jr.
1990-01-01
This paper describes a design for fiber-optic sensing and control in advanced aircraft Electronic Engine Control (EEC). The recommended architecture is an on-engine EEC which contains electro-optic interface circuits for fiber-optic sensors. Size and weight are reduced by multiplexing arrays of functionally similar sensors on a pairs of optical fibers to common electro-optical interfaces. The architecture contains interfaces to seven sensor groups. Nine distinct fiber-optic sensor types were found to provide the sensing functions. Analysis revealed no strong discriminator (except reliability of laser diodes and remote electronics) on which to base a selection of preferred common interface type. A hardware test program is recommended to assess the relative maturity of the technologies and to determine real performance in the engine environment.
Writing instrument interfaces with xf/tktcl
NASA Technical Reports Server (NTRS)
Henden, A. A.
1992-01-01
Tcl is an embedded control language written in C, running primarily under Unix and with an interpreted C look-and-feel. Tk is an X11 toolkit based on tcl. Xf is an application builder for tk. The entire package is public domain and available from sprite.berkeley.edu. This paper discusses the use of tk to develop a user interface for OSIRIS, an infrared camera/spectrograph now operational on the OSU Perkins 1.8m telescope. The good and bad features of the development process are described.
The detection of the coal roof interface by use of high pressure water
NASA Technical Reports Server (NTRS)
1981-01-01
A device whereby water jets can be used to detect the interface between coal and the overlying roof rock is described. Once this identification is made this distance can be measured using instruments such as the autofocus systems recently developed in the photographic industry. Experiments carried out show that the device can discriminate between coal and rock at coal thicknesses up to 8 inches. An autofocus system was examined which indicates accuracies of better than 0.1 inches.
Software handlers for process interfaces
NASA Technical Reports Server (NTRS)
Bercaw, R. W.
1976-01-01
Process interfaces are developed in an effort to reduce the time, effort, and money required to install computer systems. Probably the chief obstacle to the achievement of these goals lies in the problem of developing software handlers having the same degree of generality and modularity as the hardware. The problem of combining the advantages of modular instrumentation with those of modern multitask operating systems has not been completely solved, but there are a number of promising developments. The essential principles involved are considered.
NASA Astrophysics Data System (ADS)
Sakata, Kenichi
Aplasma-interface is considered the most mysterious part of an inductively coupled plasma mass spectrometer system in terms of understanding its operational mechanism. After a brief explanation of the basic structure of the inductively coupled plasma mass spectrometer and how it works, the plasma-interface is discussed in regard to its complex operation and approaches to investigating its behavior. In particular, the position and shape of the plasma boundary seem to be important to understand the instrument's sensitivity.
40 CFR 61.245 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential leak interfaces as close to the...
40 CFR 61.245 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential leak interfaces as close to the...
40 CFR 61.245 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential leak interfaces as close to the...
40 CFR 61.245 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential leak interfaces as close to the...
40 CFR 61.245 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... methane or n-hexane and air at a concentration of approximately, but less than, 10,000 ppm methane or n-hexane. (5) The instrument probe shall be traversed around all potential leak interfaces as close to the...
Nine Suggestions for Improving Sequences. Technology.
ERIC Educational Resources Information Center
Muro, Don
1995-01-01
Maintains that many educators are using sequences to create accompaniments and practice tapes geared to student abilities. Describes musical instruction using Musical Instrument Digital Interface (MIDI). Discusses eight suggestions designed to make the process of sequencing more efficient. (CFR)
Distributed Software for Observations in the Near Infrared
NASA Astrophysics Data System (ADS)
Gavryusev, V.; Baffa, C.; Giani, E.
We have developed an integrated system that performs astronomical observations in Near Infrared bands operating two-dimensional instruments at the Italian National Infrared Facility's \\htmllink{ARNICA}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/arnica/arnica.html} and \\htmllink{LONGSP}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/longsp/longsp.html}. This software consists of several communicating processes, generally executed across a network, as well as on a single computer. The user interface is organized as widget-based X11 client. The interprocess communication is provided by sockets and uses TCP/IP. The processes denoted for control of hardware (telescope and other instruments) should be executed currently on a PC dedicated for this task under DESQview/X, while all other components (user interface, tools for the data analysis, etc.) can also work under UNIX\\@. The hardware independent part of software is based on the Athena Widget Set and is compiled by GNU C to provide maximum portability.
The ASP Sensor Network: Infrastructure for the Next Generation of NASA Airborne Science
NASA Astrophysics Data System (ADS)
Myers, J. S.; Sorenson, C. E.; Van Gilst, D. P.; Duley, A.
2012-12-01
A state-of-the-art real-time data communications network is being implemented across the NASA Airborne Science Program core platforms. Utilizing onboard Ethernet networks and satellite communications systems, it is intended to maximize the science return from both single-platform missions and complex multi-aircraft Earth science campaigns. It also provides an open platform for data visualization and synthesis software tools, for use by the science instrument community. This paper will describe the prototype implementations currently deployed on the NASA DC-8 and Global Hawk aircraft, and the ongoing effort to expand the capability to other science platforms. Emphasis will be on the basic network architecture, the enabling hardware, and new standardized instrument interfaces. The new Mission Tools Suite, which provides an web-based user interface, will be also described; together with several example use-cases of this evolving technology.
SpectraPLOT, Visualization Package with a User-Friendly Graphical Interface
NASA Astrophysics Data System (ADS)
Sebald, James; Macfarlane, Joseph; Golovkin, Igor
2017-10-01
SPECT3D is a collisional-radiative spectral analysis package designed to compute detailed emission, absorption, or x-ray scattering spectra, filtered images, XRD signals, and other synthetic diagnostics. The spectra and images are computed for virtual detectors by post-processing the results of hydrodynamics simulations in 1D, 2D, and 3D geometries. SPECT3D can account for a variety of instrumental response effects so that direct comparisons between simulations and experimental measurements can be made. SpectraPLOT is a user-friendly graphical interface for viewing a wide variety of results from SPECT3D simulations, and applying various instrumental effects to the simulated images and spectra. We will present SpectraPLOT's ability to display a variety of data, including spectra, images, light curves, streaked spectra, space-resolved spectra, and drilldown plasma property plots, for an argon-doped capsule implosion experiment example. Future SpectraPLOT features and enhancements will also be discussed.
Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy
Bluhm, Hendrik; Crumlin, Ethan J.
2016-05-03
The Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) was held at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA, from December 7-9, 2015. It brought together more than 100 participants from 17 countries. The workshop followed the inaugural meeting at the French synchrotron SOLEIL in December 2014, which was organized by François Rochet. The strong interest in these workshops reflects the growth of the APXPS community over the last decade, with instruments now operational at more than 12 synchrotrons around the world (see SRN, Vol. 27, No. 2, pp. 14–23 (2014)), and a steady increase in themore » number of laboratory instruments. Finally, APXPS has established itself as an important method for the investigation of surfaces and interfaces under in situ and operando conditions, including liquid/vapor and liquid/solid interfaces.« less
NASA Technical Reports Server (NTRS)
Brenton, James; Roberts, Barry C.
2017-01-01
The purpose of this document is to provide an overview of instrumentation discussed at the Meteorological Interface Control Working Group (MSICWG), a reference for data formats currently used by members of the group, a summary of proposed formats for future use by the group, an overview of the data networks of the group's members. This document will be updated as new systems are introduced, old systems are retired, and when the MSICWG community necessitates a change to the formats. The MSICWG consists of personnel from the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC), NASA Marshall Space Flight Center (MSFC), NASA Johnson Space Center (JSC), National Oceanic and Atmospheric Administration National Weather Service Spaceflight Meteorology Group (SMG), and the United States Air Force (USAF) 45th Space Wing and Weather Squadron. The purpose of the group is to coordinate the distribution of weather related data to support NASA space launch related activities.
ViDI: Virtual Diagnostics Interface. Volume 1; The Future of Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Fleming, Gary A. (Technical Monitor); Schwartz, Richard J.
2004-01-01
The quality of data acquired in a given test facility ultimately resides within the fidelity and implementation of the instrumentation systems. Over the last decade, the emergence of robust optical techniques has vastly expanded the envelope of measurement possibilities. At the same time the capabilities for data processing, data archiving and data visualization required to extract the highest level of knowledge from these global, on and off body measurement techniques have equally expanded. Yet today, while the instrumentation has matured to the production stage, an optimized solution for gaining knowledge from the gigabytes of data acquired per test (or even per test point) is lacking. A technological void has to be filled in order to possess a mechanism for near-real time knowledge extraction during wind tunnel experiments. Under these auspices, the Virtual Diagnostics Interface, or ViDI, was developed.
Control and acquisition system of a space instrument for cosmic ray measurement
NASA Astrophysics Data System (ADS)
Prieto, M.; Martín, C.; Quesada, M.; Meziat, D.; Medina, J.; Sánchez, S.; Rodríguez-Frías, M. D.
2000-04-01
The PESCA Instrument Control and Acquisition System (PICAS) design, building and tests are presented. The purpose of the PESCA instrument is the study of the Solar Energetic Particles and the Anomalous Cosmic Rays. It is, therefore, a satellite on-board instrument. The PICAS is basically a computer, composed of a microprocessor with a memory block and a set of interfaces for the communication with the rest of the instrument and the satellite. The PICAS manages all the comunication processes with the satellite, that comprises the order reception from the ground station, and the telemetry sending, that includes scientific data and housekeeping data. By means of telecommands, the PICAS is completely controllable from the ground. The PICAS is also a reliable data acquisition system that guarantees the correct reception of the Cosmic Rays data collected in the ground.
Magnetic suspension and pointing system. [on a carrier vehicle
NASA Technical Reports Server (NTRS)
Anderson, W. W.; Groom, N. J. (Inventor)
1979-01-01
Apparatus for providing accurate pointing of instruments on a carrier vehicle and for providing isolation of the instruments from the vehicle's motion disturbances is presented. The apparatus includes two assemblies, with connecting interfaces, each assembly having a separate function. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing of the instruments by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plate around which a continuous annular rim is attached which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides six degree-of-freedom isolation from carrier motion disturbances.
GeoMEx: Geographic Information System (GIS) Prototype for Mars Express Data
NASA Astrophysics Data System (ADS)
Manaud, N.; Frigeri, A.; Ivanov, A. B.
2013-09-01
As of today almost a decade of observational data have been returned by the multidisciplinary instruments on-board the ESA's Mars Express spacecraft. All data are archived into the ESA's Planetary Science Archive (PSA), which is the central repository for all ESA's Solar System missions [1]. Data users can perform advanced queries and retrieve data from the PSA using graphical and map-based search interfaces, or via direct FTP download [2]. However the PSA still offers limited geometrical search and visualisation capabilities that are essential for scientists to identify their data of interest. A former study has shown [3] that this limitation is mostly due to the fact that (1) only a subset of the instruments observations geometry information has been modeled and ingested into the PSA, and (2) that the access to that information from GIS software is impossible without going through a cumbersome and undocumented process. With the increasing number of Mars GIS data sets available to the community [4], GIS software have become invaluable tools for researchers to capture, manage, visualise, and analyse data from various sources. Although Mars Express surface imaging data are natural candidates for use in a GIS environment, other non-imaging instruments data (subsurface, atmosphere, plasma) integration is being investigated [5]. The objective of this work is to develop a GIS prototype that will integrate all the Mars Express instruments observations geometry information into a spatial database that can be accessed from external GIS software using standard WMS and WFS protocols. We will firstly focus on the integration of surface and subsurface instruments data (HRSC, OMEGA, MARSIS). In addition to the geometry information, base and context maps of Mars derived from surface mapping instruments data will also be ingested into the system. The system back-end architecture will be implemented using open-source GIS frameworks: PostgreSQL/PostGIS for the database, and MapServer for the web publishing module. Interfaces with existing GIS front-end software (such as QGIS, GRASS, ArcView, or OpenLayers) will be investigated and tested in a second phase. This prototype is primarily intended to be used by the Mars Express instruments teams in support to their scientific investigations. It will also be used by the mission Archive Scientist in support to the data validation and PSA interface requirements definition tasks. Depending on its success, this prototype might be used in the future to demonstrate the benefit of a GIS component integration to ESA's planetary science operations planning systems.
Anderson, Patrick L.; Lathrop, Ray A.; Webster, Robert J.
2018-01-01
Introduction Conventional manual laparoscopic instruments for minimally invasive surgery have limited dexterity within the patient, making procedures challenging. Surgical robotic systems offer enhanced articulation, but at substantial financial costs. This has motivated the development of high-dexterity, low-cost laparoscopic instruments. Areas covered This article reviews both commercial and academic results on creating fully mechanical (i.e. non-robotic) laparoscopic instruments that provide wrists or wrist-like dexterity within the patient. We review the state of the art in the development of these mechanical instruments, focusing on the surgeon interface, wrist mechanism, and the kinematic mapping between the two. Expert commentary Current articulated mechanical laparoscopic instruments exhibit a wide range of designs, with no clear consensus on what makes such devices easy to use. As these technologies mature, user studies are needed to determine surgeon preferences. Articulated, low-cost instruments have the potential to impact the minimally invasive surgery market if they provide compelling benefits to surgeons. PMID:26808896
Anderson, Patrick L; Lathrop, Ray A; Webster, Robert J
2016-07-01
Conventional manual laparoscopic instruments for minimally invasive surgery have limited dexterity within the patient, making procedures challenging. Surgical robotic systems offer enhanced articulation, but at substantial financial costs. This has motivated the development of high-dexterity, low-cost laparoscopic instruments. This article reviews both commercial and academic results on creating fully mechanical (i.e. non-robotic) laparoscopic instruments that provide wrists or wrist-like dexterity within the patient. We review the state of the art in the development of these mechanical instruments, focusing on the surgeon interface, wrist mechanism, and the kinematic mapping between the two. Expert commentary: Current articulated mechanical laparoscopic instruments exhibit a wide range of designs, with no clear consensus on what makes such devices easy to use. As these technologies mature, user studies are needed to determine surgeon preferences. Articulated, low-cost instruments have the potential to impact the minimally invasive surgery market if they provide compelling benefits to surgeons.
HFI Bolometer Detectors Programmatic CDR
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2002-01-01
Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.
LANDSAT D instrument module study
NASA Technical Reports Server (NTRS)
1976-01-01
Spacecraft instrument module configurations which support an earth resource data gathering mission using a thematic mapper sensor were examined. The differences in size of these two experiments necessitated the development of two different spacecraft configurations. Following the selection of the best-suited configurations, a validation phase of design, analysis and modelling was conducted to verify feasibility. The chosen designs were then used to formulate definition for a systems weight, a cost range for fabrication and interface requirements for the thematic mapper (TM).
Tretto, P H W; Fabris, V; Cericato, G O; Sarkis-Onofre, R; Bacchi, A
2018-04-24
This systematic review evaluates the influence of the instrument used for the implant site preparation on the bone-implant interface. Any type of clinical or animal study were searched for in MEDLINE/PubMed, ISI Web of Science, and SciVerse Scopus. Two independent reviewers screened titles/abstracts of articles and the full-text of potentially eligible studies. Comparisons of bone to implant contact and crestal bone loss were estimated using pairwise meta-analysis. Twenty-nine studies met the inclusion criteria. The instruments identified in the articles were conventional drills (CDs), osteotome (OT), piezoelectric device (PD), Er:YAG LASER (LS) and osseodensification drills (ODs). The meta-analysis on bone to implant contact suggested no difference between CDs and other techniques and the meta-analysis on crestal bone loss suggested no difference between CDs and PD. The survival of implants in sites prepared with CDs vs. OT or PD presented no significant differences. The use of PD provided lower inflammatory response and earlier bone formation when compared to CDs. ODs provided significant biomechanical improvement in comparison to CDs. LS did not provide any relevant improvement in comparison to CDs or PD. The influence of the instrument used for implant site preparation depended on the property evaluated. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Multimodality Instrument for Tissue Characterization
NASA Technical Reports Server (NTRS)
Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)
2000-01-01
A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.
MOD Tool (Microwave Optics Design Tool)
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.
1999-01-01
The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac, or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD Tool server is written using Expect, and it resides on a Sun workstation. Client/server communications are performed over a socket, where upon a connection from a client to the server, the server spawns a child which is be dedicated to communicating with that client. The server communicates with other machines, such as supercomputers using Expect with the username and password being provided by the user on the client.
Scanning probe microscopy of biomedical interfaces
NASA Astrophysics Data System (ADS)
Vansteenkiste, S. O.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.
1998-02-01
The development of the scanning probe microscopes over the past decade has provided a number of exciting new surface analytical techniques making a significant progress in the characterisation of biomedical interfaces. In this review, several examples are presented to illustrate that SPM is a powerful and promising tool for surface investigations including biomolecules, cell membranes, polymers and even living cells. The ability of the SPM instrument to monitor adhesion phenomena and provide quantitative information about intermolecular interactions is also described. Moreover, the huge potential of the scanning probe microscopes to study dynamic processes at interfaces under nearly physiological conditions is highlighted. Novel applications in the field of biochemistry, microbiology, biomaterial engineering, drug delivery and even medicine are discussed.
SINBAD flight software, the on-board software of NOMAD in ExoMars 2016
NASA Astrophysics Data System (ADS)
Pastor-Morales, M. C.; Rodríguez-Gómez, Julio F.; Morales-Muñoz, Rafael; Gómez-López, Juan M.; Aparicio-del-Moral, Beatriz; Candini, Gian Paolo; Jerónimo-Zafra, Jose M.; López-Moreno, Jose J.; Robles-Muñoz, Nicolás. F.; Sanz-Mesa, Rosario; Neefs, Eddy; Vandaele, Ann C.; Drummond, Rachel; Thomas, Ian R.; Berkenbosch, Sophie; Clairquin, Roland; Delanoye, Sofie; Ristic, Bojan; Maes, Jeroen; Bonnewijn, Sabrina; Patel, Manish R.; Leese, Mark; Mason, Jon P.
2016-07-01
The Spacecraft INterface and control Board for NomAD (SINBAD) is an electronic interface designed by the Instituto de Astroffisica de Andalucfia (IAA-CSIC). It is part of the Nadir and Occultation for MArs Discovery instrument (NOMAD) on board in the ESAs ExoMars Trace Gas Orbiter mission. This mission was launched in March 2016. The SINBAD Flight Software (SFS) is the software embedded in SINBAD. It is in charge of managing the interfaces, devices, data, observing sequences, patching and contingencies of NOMAD. It is presented in this paper the most remarkable aspects of the SFS design, likewise the main problems and lessons learned during the software development process.
Electronic effects and fundamental physics studied in molecular interfaces.
Pope, Thomas; Du, Shixuan; Gao, Hong-Jun; Hofer, Werner A
2018-05-29
Scanning probe instruments in conjunction with a very low temperature environment have revolutionized the ability of building, functionalizing, and analysing two dimensional interfaces in the last twenty years. In addition, the availability of fast, reliable, and increasingly sophisticated methods to simulate the structure and dynamics of these interfaces allow us to capture even very small effects at the atomic and molecular level. In this review we shall focus largely on metal surfaces and organic molecular compounds and show that building systems from the bottom up and controlling the physical properties of such systems is no longer within the realm of the desirable, but has become day to day reality in our best laboratories.
Software platform for rapid prototyping of NIRS brain computer interfacing techniques.
Matthews, Fiachra; Soraghan, Christopher; Ward, Tomas E; Markham, Charles; Pearlmutter, Barak A
2008-01-01
This paper describes the control system of a next-generation optical brain-computer interface (BCI). Using functional near-infrared spectroscopy (fNIRS) as a BCI modality is a relatively new concept, and research has only begun to explore approaches for its implementation. It is necessary to have a system by which it is possible to investigate the signal processing and classification techniques available in the BCI community. Most importantly, these techniques must be easily testable in real-time applications. The system we describe was built using LABVIEW, a graphical programming language designed for interaction with National Instruments hardware. This platform allows complete configurability from hardware control and regulation, testing and filtering in a graphical interface environment.
NASA Technical Reports Server (NTRS)
Adams, Richard J.
2015-01-01
The patent-pending Glove-Enabled Computer Operations (GECO) design leverages extravehicular activity (EVA) glove design features as platforms for instrumentation and tactile feedback, enabling the gloves to function as human-computer interface devices. Flexible sensors in each finger enable control inputs that can be mapped to any number of functions (e.g., a mouse click, a keyboard strike, or a button press). Tracking of hand motion is interpreted alternatively as movement of a mouse (change in cursor position on a graphical user interface) or a change in hand position on a virtual keyboard. Programmable vibro-tactile actuators aligned with each finger enrich the interface by creating the haptic sensations associated with control inputs, such as recoil of a button press.
NASA Astrophysics Data System (ADS)
Fransen, S.; Yamawaki, T.; Akagi, H.; Eggens, M.; van Baren, C.
2014-06-01
After a first estimation based on statistics, the design loads for instruments are generally estimated by coupled spacecraft/instrument sine analysis once an FE-model of the spacecraft is available. When the design loads for the instrument have been derived, the next step in the process is to estimate the random vibration environment at the instrument base and to compute the RMS load at the centre of gravity of the instrument by means of vibro-acoustic analysis. Finally the design loads of the light-weight sub-units of the instrument can be estimated through random vibration analysis at instrument level, taking into account the notches required to protect the instrument interfaces in the hard- mounted random vibration test. This paper presents the aforementioned steps of instrument and sub-units loads derivation in the preliminary design phase of the spacecraft and identifies the problems that may be encountered in terms of design load consistency between low-frequency and high-frequency environments. The SpicA FAR-infrared Instrument (SAFARI) which is currently developed for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be used as a guiding example.
NASA Astrophysics Data System (ADS)
Swanson, Kenneth D.; Worth, Anne L.; Glish, Gary L.
2018-02-01
A simple design for an open port sampling interface coupled to electrospray ionization (OPSI-ESI) is presented for the analysis of organic aerosols. The design uses minimal modifications to a Bruker electrospray (ESI) emitter to create a continuous flow, self-aspirating open port sampling interface. Considerations are presented for introducing aerosol to the open port sampling interface including aerosol gas flow and solvent flow rates. The device has been demonstrated for use with an aerosol of nicotine as well as aerosol formed in the pyrolysis of biomass. Upon comparison with extractive electrospray ionization (EESI), this device has similar sensitivity with increased reproducibility by nearly a factor of three. The device has the form factor of a standard Bruker/Agilent ESI emitter and can be used without any further instrument modifications.
Digital interface of electronic transformers based on embedded system
NASA Astrophysics Data System (ADS)
Shang, Qiufeng; Qi, Yincheng
2008-10-01
Benefited from digital interface of electronic transformers, information sharing and system integration in substation can be realized. An embedded system-based digital output scheme of electronic transformers is proposed. The digital interface is designed with S3C44B0X 32bit RISC microprocessor as the hardware platform. The μCLinux operation system (OS) is transplanted on ARM7 (S3C44B0X). Applying Ethernet technology as the communication mode in the substation automation system is a new trend. The network interface chip RTL8019AS is adopted. Data transmission is realized through the in-line TCP/IP protocol of uClinux embedded OS. The application result and character analysis show that the design can meet the real-time and reliability requirements of IEC60044-7/8 electronic voltage/current instrument transformer standards.
IEEE 1451.2 based Smart sensor system using ADuc847
NASA Astrophysics Data System (ADS)
Sreejithlal, A.; Ajith, Jose
IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.
JWST Integrated Science Instrument Module Alignment Optimization Tool
NASA Technical Reports Server (NTRS)
Bos, Brent
2013-01-01
During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.
NASA Astrophysics Data System (ADS)
Paíga, Paula; Silva, Luís M. S.; Delerue-Matos, Cristina
2016-10-01
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 22 factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal.
Microvibrations on a GEO telecommunication satellite
NASA Astrophysics Data System (ADS)
Betermier, J. M.; Charmeau, M. C.; Rideau, P.; Garnier, C.
1993-11-01
Analyses carried out to assess the microvibration characteristics on a geostationary (GEO) satellite are reported. The aims of these studies were both to increase the knowledge of the levels of dynamic perturbations transmitted to the optical terminal on board the geostationary satellite, and to develop methods and tools able to deal with emerging applications such as SILEX (Semiconductor laser Intersatellite Link Experiment). The simulations and tests which were performed on the TDF1 satellite in order to characterize the microvibration levels at a simulated point of interface between TDF1 and a mounted instrument are summarized. The analysis of the complete transmission of the disturbances generated by onboard pieces of equipment such as momentum wheels and thrusters up to the instrument's line of sight is presented. A general simulation model was developed using JAMES software means to further investigate the coupled system: spacecraft and aerial part. Parameters which may affect microvibration transmission, such as unbalances, friction, gimbal configuration, were tuned and many simulations were run in order to quantify their impacts. A comparison between levels at the interface and on the instrument's line of sight was established for the main sources of disturbance. The adequacy of methods and tools developed for future applications is presented.
Virtual Engineering and Science Team - Reusable Autonomy for Spacecraft Subsystems
NASA Technical Reports Server (NTRS)
Bailin, Sidney C.; Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Thompson, Bryan; Day, John H. (Technical Monitor)
2002-01-01
In this paper we address the design, development, and evaluation of the Virtual Engineering and Science Team (VEST) tool - a revolutionary way to achieve onboard subsystem/instrument autonomy. VEST directly addresses the technology needed for advanced autonomy enablers for spacecraft subsystems. It will significantly support the efficient and cost effective realization of on-board autonomy and contribute directly to realizing the concept of an intelligent autonomous spacecraft. VEST will support the evolution of a subsystem/instrument model that is probably correct and from that model the automatic generation of the code needed to support the autonomous operation of what was modeled. VEST will directly support the integration of the efforts of engineers, scientists, and software technologists. This integration of efforts will be a significant advancement over the way things are currently accomplished. The model, developed through the use of VEST, will be the basis for the physical construction of the subsystem/instrument and the generated code will support its autonomous operation once in space. The close coupling between the model and the code, in the same tool environment, will help ensure that correct and reliable operational control of the subsystem/instrument is achieved.VEST will provide a thoroughly modern interface that will allow users to easily and intuitively input subsystem/instrument requirements and visually get back the system's reaction to the correctness and compatibility of the inputs as the model evolves. User interface/interaction, logic, theorem proving, rule-based and model-based reasoning, and automatic code generation are some of the basic technologies that will be brought into play in realizing VEST.
Validity of the Myotest® in measuring force and power production in the squat and bench press.
Comstock, Brett A; Solomon-Hill, Glenn; Flanagan, Shawn D; Earp, Jacob E; Luk, Hui-Ying; Dobbins, Kathryn A; Dunn-Lewis, Courtenay; Fragala, Maren S; Ho, Jen-Yu; Hatfield, Disa L; Vingren, Jakob L; Denegar, Craig R; Volek, Jeff S; Kupchak, Brian R; Maresh, Carl M; Kraemer, William J
2011-08-01
The purpose of this study was to verify the concurrent validity of a bar-mounted Myotest® instrument in measuring the force and power production in the squat and bench press exercises when compared to the gold standard of a computerized linear transducer and force platform system. Fifty-four men (bench press: 39-171 kg; squat: 75-221 kg) and 43 women (bench press: 18-80 kg; squat: 30-115 kg) (age range 18-30 years) performed a 1 repetition maximum (1RM) strength test in bench press and squat exercises. Power testing consisted of the jump squat and the bench throw at 30% of each subject's 1RM. During each measurement, both the Myotest® instrument and the Celesco linear transducer of the directly interfaced BMS system (Ballistic Measurement System [BMS] Innervations Inc, Fitness Technology force plate, Skye, South Australia, Australia) were mounted to the weight bar. A strong, positive correlation (r) between the Myotest and BMS systems and a high correlation of determination (R2) was demonstrated for bench throw force (r = 0.95, p < 0.05) (R2 = 0.92); bench throw power (r = 0.96, p < 0.05) (R2 = 0.93); squat jump force (r = 0.98, p < 0.05) (R2 = 0.97); and squat jump power (r = 0.91, p < 0.05) (R2 = 0.82). In conclusion, when fixed on the bar in the vertical axis, the Myotest is a valid field instrument for measuring force and power in commonly used exercise movements.
Marine Natural Product Chemistry and the Interim: A Novel Approach
ERIC Educational Resources Information Center
Bland, Jeffrey S.; Medcalf, Darrell G.
1974-01-01
Describes a course designed to strengthen a student's background in organic chemistry, demonstrate the interfacing of chemistry and biology, expose undergraduates to graduate research, provide familiarity with instrumentation, and provide a novel field experience. (Author/GS)
2012-01-01
Background Gas chromatography–mass spectrometry (GC-MS) is a technique frequently used in targeted and non-targeted measurements of metabolites. Most existing software tools for processing of raw instrument GC-MS data tightly integrate data processing methods with graphical user interface facilitating interactive data processing. While interactive processing remains critically important in GC-MS applications, high-throughput studies increasingly dictate the need for command line tools, suitable for scripting of high-throughput, customized processing pipelines. Results PyMS comprises a library of functions for processing of instrument GC-MS data developed in Python. PyMS currently provides a complete set of GC-MS processing functions, including reading of standard data formats (ANDI- MS/NetCDF and JCAMP-DX), noise smoothing, baseline correction, peak detection, peak deconvolution, peak integration, and peak alignment by dynamic programming. A novel common ion single quantitation algorithm allows automated, accurate quantitation of GC-MS electron impact (EI) fragmentation spectra when a large number of experiments are being analyzed. PyMS implements parallel processing for by-row and by-column data processing tasks based on Message Passing Interface (MPI), allowing processing to scale on multiple CPUs in distributed computing environments. A set of specifically designed experiments was performed in-house and used to comparatively evaluate the performance of PyMS and three widely used software packages for GC-MS data processing (AMDIS, AnalyzerPro, and XCMS). Conclusions PyMS is a novel software package for the processing of raw GC-MS data, particularly suitable for scripting of customized processing pipelines and for data processing in batch mode. PyMS provides limited graphical capabilities and can be used both for routine data processing and interactive/exploratory data analysis. In real-life GC-MS data processing scenarios PyMS performs as well or better than leading software packages. We demonstrate data processing scenarios simple to implement in PyMS, yet difficult to achieve with many conventional GC-MS data processing software. Automated sample processing and quantitation with PyMS can provide substantial time savings compared to more traditional interactive software systems that tightly integrate data processing with the graphical user interface. PMID:22647087
Development of the User Interface for AIR-Spec
NASA Astrophysics Data System (ADS)
Cervantes Alcala, E.; Guth, G.; Fedeler, S.; Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.
2016-12-01
The airborne infrared spectrometer (AIR-Spec) is an imaging spectrometer that will observe the solar corona during the 2017 total solar eclipse. This eclipse will provide a unique opportunity to observe infrared emission lines in the corona. Five spectral lines are of particular interest because they may eventually be used to measure the coronal magnetic field. To avoid infrared absorption from atmospheric water vapor, AIR-Spec will be placed on an NSF Gulfstream aircraft flying above 14.9 km. AIR-Spec must be capable of taking stable images while the plane moves. The instrument includes an image stabilization system, which uses fiber-optic gyroscopes to determine platform rotation, GPS to calculate the ephemeris of the sun, and a voltage-driven mirror to correct the line of sight. An operator monitors a white light image of the eclipse and manually corrects for residual drift. The image stabilization calculation is performed by a programmable automatic controller (PAC), which interfaces with the gyroscopes and mirror controller. The operator interfaces with a separate computer, which acquires images and computes the solar ephemeris. To ensure image stabilization is successful, a human machine interface (HMI) was developed to allow connection between the client and PAC. In order to make control of the instruments user friendly during the short eclipse observation, a graphical user interface (GUI) was also created. The GUI's functionality includes turning image stabilization on and off, allowing the user to input information about the geometric setup, calculating the solar ephemeris, refining estimates of the initial aircraft attitude, and storing data from the PAC on the operator's computer. It also displays time, location, attitude, ephemeris, gyro rates and mirror angles.
ECLSS evolution: Advanced instrumentation interface requirements. Volume 3: Appendix C
NASA Technical Reports Server (NTRS)
1991-01-01
An Advanced ECLSS (Environmental Control and Life Support System) Technology Interfaces Database was developed primarily to provide ECLSS analysts with a centralized and portable source of ECLSS technologies interface requirements data. The database contains 20 technologies which were previously identified in the MDSSC ECLSS Technologies database. The primary interfaces of interest in this database are fluid, electrical, data/control interfaces, and resupply requirements. Each record contains fields describing the function and operation of the technology. Fields include: an interface diagram, description applicable design points and operating ranges, and an explaination of data, as required. A complete set of data was entered for six of the twenty components including Solid Amine Water Desorbed (SAWD), Thermoelectric Integrated Membrane Evaporation System (TIMES), Electrochemical Carbon Dioxide Concentrator (EDC), Solid Polymer Electrolysis (SPE), Static Feed Electrolysis (SFE), and BOSCH. Additional data was collected for Reverse Osmosis Water Reclaimation-Potable (ROWRP), Reverse Osmosis Water Reclaimation-Hygiene (ROWRH), Static Feed Solid Polymer Electrolyte (SFSPE), Trace Contaminant Control System (TCCS), and Multifiltration Water Reclamation - Hygiene (MFWRH). A summary of the database contents is presented in this report.
Aircraft Power-Plant Instruments
NASA Technical Reports Server (NTRS)
Sontag, Harcourt; Brombacher, W G
1934-01-01
This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.
Lunar Reconnaissance Orbiter (LRO) Command and Data Handling Flight Electronics Subsystem
NASA Technical Reports Server (NTRS)
Nguyen, Quang; Yuknis, William; Haghani, Noosha; Pursley, Scott; Haddad, Omar
2012-01-01
A document describes a high-performance, modular, and state-of-the-art Command and Data Handling (C&DH) system developed for use on the Lunar Reconnaissance Orbiter (LRO) mission. This system implements a complete hardware C&DH subsystem in a single chassis enclosure that includes a processor card, 48 Gbytes of solid-state recorder memory, data buses including MIL-STD-1553B, custom RS-422, SpaceWire, analog collection, switched power services, and interfaces to the Ka-Band and S-Band RF communications systems. The C&DH team capitalized on extensive experience with hardware and software with PCI bus design, SpaceWire networking, Actel FPGA design, digital flight design techniques, and the use of VxWorks for the real-time operating system. The resulting hardware architecture was implemented to meet the LRO mission requirements. The C&DH comprises an enclosure, a backplane, a low-voltage power converter, a single-board computer, a communications interface board, four data storage boards, a housekeeping and digital input/output board, and an analog data acquisition board. The interfaces between the C&DH and the instruments and avionics are connected through a SpaceWire network, a MIL-STD-1553 bus, and a combination of synchronous and asynchronous serial data transfers over RS-422 and LVDS (low-voltage differential-signaling) electrical interfaces. The C&DH acts as the spacecraft data system with an instrument data manager providing all software and internal bus scheduling, ingestion of science data, distribution of commands, and performing science operations in real time.
NASA Astrophysics Data System (ADS)
Starodubtsev, Illya
2017-09-01
The paper describes the implementation of the system of interaction with virtual objects based on gestures. The paper describes the common problems of interaction with virtual objects, specific requirements for the interfaces for virtual and augmented reality.
Law as a fixture between the One Health interfaces of emerging diseases.
Phelan, Alexandra L; Gostin, Lawrence O
2017-06-01
A One Health approach calls for multisectoral and multi-institutional cooperation and partnership across the interfaces of human, animal and ecosystem health risks. Without strong governance, these interfaces risk detaching, leaving gaps in capacities to prevent, detect and respond to emerging and persisting public health threats. As a crucial component of governance, law can act as the fixture between interfaces. We examine some of the many forms and foci of law and propose that the process of law-making, implementation and evaluation can provide a benefit for strengthening law as a fixture between One Health interfaces. To demonstrate this, we discuss three current examples of international legal instruments for emerging infectious diseases: the International Health Regulations, the Pandemic Influenza Preparedness Framework and the Global Action Plan on Antimicrobial Resistance. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Extending the granularity of representation and control for the MIL-STD CAIS 1.0 node model
NASA Technical Reports Server (NTRS)
Rogers, Kathy L.
1986-01-01
The Common APSE (Ada 1 Program Support Environment) Interface Set (CAIS) (DoD85) node model provides an excellent baseline for interfaces in a single-host development environment. To encompass the entire spectrum of computing, however, the CAIS model should be extended in four areas. It should provide the interface between the engineering workstation and the host system throughout the entire lifecycle of the system. It should provide a basis for communication and integration functions needed by distributed host environments. It should provide common interfaces for communications mechanisms to and among target processors. It should provide facilities for integration, validation, and verification of test beds extending to distributed systems on geographically separate processors with heterogeneous instruction set architectures (ISAS). Additions to the PROCESS NODE model to extend the CAIS into these four areas are proposed.
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-01-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given. PMID:8580361
Teaching computer interfacing with virtual instruments in an object-oriented language.
Gulotta, M
1995-11-01
LabVIEW is a graphic object-oriented computer language developed to facilitate hardware/software communication. LabVIEW is a complete computer language that can be used like Basic, FORTRAN, or C. In LabVIEW one creates virtual instruments that aesthetically look like real instruments but are controlled by sophisticated computer programs. There are several levels of data acquisition VIs that make it easy to control data flow, and many signal processing and analysis algorithms come with the software as premade VIs. In the classroom, the similarity between virtual and real instruments helps students understand how information is passed between the computer and attached instruments. The software may be used in the absence of hardware so that students can work at home as well as in the classroom. This article demonstrates how LabVIEW can be used to control data flow between computers and instruments, points out important features for signal processing and analysis, and shows how virtual instruments may be used in place of physical instrumentation. Applications of LabVIEW to the teaching laboratory are also discussed, and a plausible course outline is given.
NASA Technical Reports Server (NTRS)
Sayfi, Elias
2004-01-01
MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.
Improving Spacecraft Data Visualization Using Splunk
NASA Technical Reports Server (NTRS)
Conte, Matthew
2012-01-01
EPOXI, like all spacecraft missions, receives large volumes of telemetry data from its spacecraft, DIF. It is extremely important for this data to be updated quickly and presented in a readable manner so that the flight team can monitor the status of the spacecraft. Existing DMD pages for monitoring spacecraft telemetry, while functional, are limited and do not take advantage of modern search technology. For instance, they only display current data points from instruments on the spacecraft and have limited graphing capabilities, making it difficult to see historical data. The DMD pages have fixed refresh rates so the team must often wait several minutes to see the most recent data, even after it is received on the ground. The pages are also rigid and require an investment of time and money to update. To more easily organize and visualize spacecraft telemetry, the EPOXI team has begun experimenting with Splunk, a commercially-available data mining system. Splunk can take data received from the spacecraft's different data channels, often in different formats, and index all the data into a common format. Splunk allows flight team members to search through the different data formats from a single interface and to filter results by time range and data field to make finding specific spacecraft events quick and easy. Furthermore, Splunk provides functions to create custom interfaces which help team members visualize the data in charts and graphs to show how the health of the spacecraft has changed over time.One of the goals of my internship with my mentor, Victor Hwang, was to develop new Splunk interfaces to replace the DMD pages and give the spacecraft team access to historical data and visualizations that were previously unavailable. The specific requirements of these pages are discussed in the next section.
Modular and Adaptive Control of Sound Processing
NASA Astrophysics Data System (ADS)
van Nort, Douglas
This dissertation presents research into the creation of systems for the control of sound synthesis and processing. The focus differs from much of the work related to digital musical instrument design, which has rightly concentrated on the physicality of the instrument and interface: sensor design, choice of controller, feedback to performer and so on. Often times a particular choice of sound processing is made, and the resultant parameters from the physical interface are conditioned and mapped to the available sound parameters in an exploratory fashion. The main goal of the work presented here is to demonstrate the importance of the space that lies between physical interface design and the choice of sound manipulation algorithm, and to present a new framework for instrument design that strongly considers this essential part of the design process. In particular, this research takes the viewpoint that instrument designs should be considered in a musical control context, and that both control and sound dynamics must be considered in tandem. In order to achieve this holistic approach, the work presented in this dissertation assumes complementary points of view. Instrument design is first seen as a function of musical context, focusing on electroacoustic music and leading to a view on gesture that relates perceived musical intent to the dynamics of an instrumental system. The important design concept of mapping is then discussed from a theoretical and conceptual point of view, relating perceptual, systems and mathematically-oriented ways of examining the subject. This theoretical framework gives rise to a mapping design space, functional analysis of pertinent existing literature, implementations of mapping tools, instrumental control designs and several perceptual studies that explore the influence of mapping structure. Each of these reflect a high-level approach in which control structures are imposed on top of a high-dimensional space of control and sound synthesis parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.
Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD
NASA Technical Reports Server (NTRS)
Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.
2011-01-01
Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors
Impact of the retained heat shield concept on science instruments
NASA Technical Reports Server (NTRS)
Kessler, W. C.
1974-01-01
Associated interface problems between the mass spectrometer and the actual probe design are considered along with the problem of producing a clean sample to the gas detection instrument. Of particular interest is the penetration of the heat shield by the mass spectrometer sampling tube, because it must be demonstrated that the sampling tube can penetrate the heat shield and that the mass spectrometer can be supplied with a contaminant-free gas sample, free of contaminants from out-gassing of the heat shield.
Thermal Performance of Capillary Pumped Loops Onboard Terra Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Butler, Charles D.; Swanson, Theodore; Thies, Diane
2004-01-01
The Terra spacecraft is the flagship of NASA's Earth Science Enterprise. It provides global data on the state of atmosphere, land and oceans, as well as their interactions with solar radiation and one another. Three Terra instruments utilize Capillary Pumped Heat Transport System (CPHTS) for temperature control: Each CPHTS, consisting of two capillary pumped loops (CPLs) and several heat pipes and electrical heaters, is designed for instrument heat loads ranging from 25W to 264W. The working fluid is ammonia. Since the launch of the Terra spacecraft, each CPHTS has been providing a stable interface temperature specified by the instrument under all modes of spacecraft and instrument operations. The ability to change the CPHTS operating temperature upon demand while in service has also extended the useful life of one instrument. This paper describes the design and on-orbit performance of the CPHTS thermal systems.
The instrument for investigating magnetic fields of isochronous cyclotrons
NASA Astrophysics Data System (ADS)
Avreline, N. V.
2017-12-01
A new instrument was designed and implemented in order to increase the measurement accuracy of magnetic field maps for isochronous Cyclotrons manufactured by Advanced Cyclotron Systems Inc. This instrument uses the Hall Probe (HP) from New Zealand manufacturer Group3. The specific probe used is MPT-141 HP and can measure magnetic field in the range from 2G to 21kG. Use of a fast ADC NI9239 module and error reduction algorithms, based on a polynomial regression method, allowed to reduce the noise to 0.2G. The design of this instrument allows to measure high gradient magnetic fields, as the resolution of the HP arm angle is within 0.0005° and the radial position resolution is within 25μm. A set of National Instrument interfaces connected to a desktop computer through a network are used as base control and data acquisition systems.
Liquid Crystal Based Sensor to Detect Beta-Sheet Formation of Peptides
NASA Astrophysics Data System (ADS)
Sadati, Monirosadat; Izmitli Apik, Aslin; Abbott, Nicholas L.; de Pablo, Juan J.
2015-03-01
Protein aggregation into amyloid fibrils is involved in the progression of Alzheimer's, typeII diabetes and Huntington's diseases. Although larger aggregates remain important for clinical determination, small oligomers are of great interest due to their potentially toxic nature. It is therefore crucial to develop methods that probe the aggregation process at early stages and in the vicinity of biological membranes. Here, we present a simple method that relies on liquid crystalline materials and a Langmuir monolayer at the aqueous-liquid crystal (LC) interface. The approach is based on the LC's specific response to β-sheet structures, which abound in amyloid fibrils. When the system is observed under polarized light, the fibrils formed by amyloidogenic peptides give rise to the formation of elongated and branched structures in the LCs. Moreover, the PolScope measurements prove that the LCs are predominantly aligned along the fibrils when exposed to a β-sheet forming peptide. In contrast, non-amyloidogenic peptides form ellipsoidal domains of irregularly tilted LCs. This method is capable of reporting aggregation at lipid-aqueous interfaces at nanomolar concentrations of the peptide, and much earlier than commonly used fluorescence-based techniques. We thank Prof. Oleg D. Levrentovich and Young-Ki Kim from the Liquid Crystal Institute of Kent State University for the use of their PolScope instrument. This work was partially supported by the Swiss National Science Foundation (P300P2_151342).
Marine Web Portal as an Interface between Users and Marine Data and Information Sources
NASA Astrophysics Data System (ADS)
Palazov, A.; Stefanov, A.; Marinova, V.; Slabakova, V.
2012-04-01
Fundamental elements of the success of marine data and information management system and an effective support of marine and maritime economic activities are the speed and the ease with which users can identify, locate, get access, exchange and use oceanographic and marine data and information. There are a lot of activities and bodies have been identified as marine data and information users, such as: science, government and local authorities, port authorities, shipping, marine industry, fishery and aquaculture, tourist industry, environmental protection, coast protection, oil spills combat, Search and Rescue, national security, civil protection, and general public. On other hand diverse sources of real-time and historical marine data and information exist and generally they are fragmented, distributed in different places and sometimes unknown for the users. The marine web portal concept is to build common web based interface which will provide users fast and easy access to all available marine data and information sources, both historical and real-time such as: marine data bases, observing systems, forecasting systems, atlases etc. The service is regionally oriented to meet user needs. The main advantage of the portal is that it provides general look "at glance" on all available marine data and information as well as direct user to easy discover data and information in interest. It is planned to provide personalization ability, which will give the user instrument to tailor visualization according its personal needs.
mzStudio: A Dynamic Digital Canvas for User-Driven Interrogation of Mass Spectrometry Data.
Ficarro, Scott B; Alexander, William M; Marto, Jarrod A
2017-08-01
Although not yet truly 'comprehensive', modern mass spectrometry-based experiments can generate quantitative data for a meaningful fraction of the human proteome. Importantly for large-scale protein expression analysis, robust data pipelines are in place for identification of un-modified peptide sequences and aggregation of these data to protein-level quantification. However, interoperable software tools that enable scientists to computationally explore and document novel hypotheses for peptide sequence, modification status, or fragmentation behavior are not well-developed. Here, we introduce mzStudio, an open-source Python module built on our multiplierz project. This desktop application provides a highly-interactive graphical user interface (GUI) through which scientists can examine and annotate spectral features, re-search existing PSMs to test different modifications or new spectral matching algorithms, share results with colleagues, integrate other domain-specific software tools, and finally create publication-quality graphics. mzStudio leverages our common application programming interface (mzAPI) for access to native data files from multiple instrument platforms, including ion trap, quadrupole time-of-flight, Orbitrap, matrix-assisted laser desorption ionization, and triple quadrupole mass spectrometers and is compatible with several popular search engines including Mascot, Proteome Discoverer, X!Tandem, and Comet. The mzStudio toolkit enables researchers to create a digital provenance of data analytics and other evidence that support specific peptide sequence assignments.
A simulator evaluation of an automatic terminal approach system
NASA Technical Reports Server (NTRS)
Hinton, D. A.
1983-01-01
The automatic terminal approach system (ATAS) is a concept for improving the pilot/machine interface with cockpit automation. The ATAS can automatically fly a published instrument approach by using stored instrument approach data to automatically tune airplane avionics, control the airplane's autopilot, and display status information to the pilot. A piloted simulation study was conducted to determine the feasibility of an ATAS, determine pilot acceptance, and examine pilot/ATAS interaction. Seven instrument-rated pilots each flew four instrument approaches with a base-line heading select autopilot mode. The ATAS runs resulted in lower flight technical error, lower pilot workload, and fewer blunders than with the baseline autopilot. The ATAS status display enabled the pilots to maintain situational awareness during the automatic approaches. The system was well accepted by the pilots.
The Mission Operations Planning Assistant
NASA Technical Reports Server (NTRS)
Schuetzle, James G.
1987-01-01
The Mission Operations Planning Assistant (MOPA) is a knowledge-based system developed to support the planning and scheduling of instrument activities on the Upper Atmospheric Research Satellite (UARS). The MOPA system represents and maintains instrument plans at two levels of abstraction in order to keep plans comprehensible to both UARS Principal Investigators and Command Management personnel. The hierarchical representation of plans also allows MOPA to automatically create detailed instrument activity plans from which spacecraft command loads may be generated. The MOPA system was developed on a Symbolics 3640 computer using the ZetaLisp and ART languages. MOPA's features include a textual and graphical interface for plan inspection and modification, recognition of instrument operational constraint violations during the planning process, and consistency maintenance between the different planning levels. This paper describes the current MOPA system.
The mission operations planning assistant
NASA Technical Reports Server (NTRS)
Schuetzle, James G.
1987-01-01
The Mission Operations Planning Assistant (MOPA) is a knowledge-based system developed to support the planning and scheduling of instrument activities on the Upper Atmospheric Research Satellite (UARS). The MOPA system represents and maintains instrument plans at two levels of abstraction in order to keep plans comprehensible to both UARS Prinicpal Investigators and Command Management personnel. The hierarchical representation of plans also allows MOPA to automatically create detailed instrument activity plans from which spacecraft command loads may be generated. The MOPA system was developed on a Symbolics 3640 computer using the ZETALISP and ART languages. MOPA's features include a textual and graphical interface for plan inspection and modification, recognition of instrument operational constraint violations during the planning process, and consistency maintenance between the different planning levels. This paper describes the current MOPA system.
ERIC Educational Resources Information Center
Chameides, William L.; Davis, Douglas D.
1982-01-01
Topics addressed in this review of chemistry in the troposphere (layer of atmosphere extending from earth's surface to altitude of 10-16km) include: solar radiation/winds; earth/atmosphere interface; kinetic studies of atmospheric reactions; tropospheric free-radical photochemistry; instruments for nitric oxide detection; sampling…
Protein interactions in 3D: from interface evolution to drug discovery.
Winter, Christof; Henschel, Andreas; Tuukkanen, Anne; Schroeder, Michael
2012-09-01
Over the past 10years, much research has been dedicated to the understanding of protein interactions. Large-scale experiments to elucidate the global structure of protein interaction networks have been complemented by detailed studies of protein interaction interfaces. Understanding the evolution of interfaces allows one to identify convergently evolved interfaces which are evolutionary unrelated but share a few key residues and hence have common binding partners. Understanding interaction interfaces and their evolution is an important basis for pharmaceutical applications in drug discovery. Here, we review the algorithms and databases on 3D protein interactions and discuss in detail applications in interface evolution, drug discovery, and interface prediction. Copyright © 2012 Elsevier Inc. All rights reserved.
XPI: The Xanadu Parameter Interface
NASA Technical Reports Server (NTRS)
White, N.; Barrett, P.; Oneel, B.; Jacobs, P.
1992-01-01
XPI is a table driven parameter interface which greatly simplifies both command driven programs such as BROWSE and XIMAGE as well as stand alone single-task programs. It moves all of the syntax and semantic parsing of commands and parameters out of the users code into common code and externally defined tables. This allows the programmer to concentrate on writing the code unique to the application rather than reinventing the user interface and for external graphical interfaces to interface with no changes to the command driven program. XPI also includes a compatibility library which allows programs written using the IRAF host interface (Mandel and Roll) to use XPI in place of the IRAF host interface.
Pizanis, Antonius; Holstein, Jörg H; Vossen, Felix; Burkhardt, Markus; Pohlemann, Tim
2013-08-26
Anterior bone grafts are used as struts to reconstruct the anterior column of the spine in kyphosis or following injury. An incomplete fusion can lead to later correction losses and compromise further healing. Despite the different stabilizing techniques that have evolved, from posterior or anterior fixating implants to combined anterior/posterior instrumentation, graft pseudarthrosis rates remain an important concern. Furthermore, the need for additional anterior implant fixation is still controversial. In this bench-top study, we focused on the graft-bone interface under various conditions, using two simulated spinal injury models and common surgical fixation techniques to investigate the effect of implant-mediated compression and contact on the anterior graft. Calf spines were stabilised with posterior internal fixators. The wooden blocks as substitutes for strut grafts were impacted using a "pressfit" technique and pressure-sensitive films placed at the interface between the vertebral bone and the graft to record the compression force and the contact area with various stabilization techniques. Compression was achieved either with posterior internal fixator alone or with an additional anterior implant. The importance of concomitant ligament damage was also considered using two simulated injury models: pure compression Magerl/AO fracture type A or rotation/translation fracture type C models. In type A injury models, 1 mm-oversized grafts for impaction grafting provided good compression and fair contact areas that were both markedly increased by the use of additional compressing anterior rods or by shortening the posterior fixator construct. Anterior instrumentation by itself had similar effects. For type C injuries, dramatic differences were observed between the techniques, as there was a net decrease in compression and an inadequate contact on the graft occurred in this model. Under these circumstances, both compression and the contact area on graft could only be maintained at high levels with the use of additional anterior rods. Under experimental conditions, we observed that ligamentous injury following type C fracture has a negative influence on the compression and contact area of anterior interbody bone grafts when only an internal fixator is used for stabilization. Because of the loss of tension banding effects in type C injuries, an additional anterior compressing implant can be beneficial to restore both compression to and contact on the strut graft.
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Farooq, Mohammad U.
1986-01-01
The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information.
Open ISEmeter: An open hardware high-impedance interface for potentiometric detection.
Salvador, C; Mesa, M S; Durán, E; Alvarez, J L; Carbajo, J; Mozo, J D
2016-05-01
In this work, a new open hardware interface based on Arduino to read electromotive force (emf) from potentiometric detectors is presented. The interface has been fully designed with the open code philosophy and all documentation will be accessible on web. The paper describes a comprehensive project including the electronic design, the firmware loaded on Arduino, and the Java-coded graphical user interface to load data in a computer (PC or Mac) for processing. The prototype was tested by measuring the calibration curve of a detector. As detection element, an active poly(vinyl chloride)-based membrane was used, doped with cetyltrimethylammonium dodecylsulphate (CTA(+)-DS(-)). The experimental measures of emf indicate Nernstian behaviour with the CTA(+) content of test solutions, as it was described in the literature, proving the validity of the developed prototype. A comparative analysis of performance was made by using the same chemical detector but changing the measurement instrumentation.
Blaettler, M; Bruegger, A; Forster, I C; Lehareinger, Y
1988-03-01
The design of an analog interface to a digital audio signal processor (DASP)-video cassette recorder (VCR) system is described. The complete system represents a low-cost alternative to both FM instrumentation tape recorders and multi-channel chart recorders. The interface or DASP input-output unit described in this paper enables the recording and playback of up to 12 analog channels with a maximum of 12 bit resolution and a bandwidth of 2 kHz per channel. Internal control and timing in the recording component of the interface is performed using ROMs which can be reprogrammed to suit different analog-to-digital converter hardware. Improvement in the bandwidth specifications is possible by connecting channels in parallel. A parallel 16 bit data output port is provided for direct transfer of the digitized data to a computer.
Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; ...
2014-09-24
Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid–fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. Moreover, the application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air–water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured propertiesmore » is quantified and compared to other scaling relationships in the literature. Our results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.« less
Usable Interface Design for Everyone
NASA Astrophysics Data System (ADS)
de Castro Lozano, Carlos; Salcines, Enrique García; Sainz de Abajo, Beatriz; Burón Fernández, F. Javier; Ramírez, José Miguel; Recellado, José Gabriel Zato; Montoya, Rafael Sanchez; Bell, John; Marin, Francisco Alcantud
When designing "interfaces for everyone" for interactive systems, it is important to consider factors such as cost, the intended market, the state of the environment, etc. User interfaces are fundamental for the developmental process in any application, and its design must be contemplated from the start. Of the distinct parts of a system (hardware and software), it is the interface that permits the user access to computer resources. The seven principles of "Universal Design" or "Design for Everyone" focus on a universal usable design, but at the same time acknowledge the influences of internal and external factors. Structural changes in social and health services could provide an increase in the well-being of a country's citizens through the use of self-care programming and proactive management/prevention of disease. Automated home platforms can act as an accessibility instrument which permits users to avoid, compensate, mitigate, or neutralize the deficiencies and dependencies caused by living alone.
Alignment and testing of critical interface fixtures for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
McLean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph; Ohl, Raymond; Osgood, Dean; Parker, James; Redman, Kevin; Roberts, Vicki; Stephens, Matthew; Sutton, Adam; Wenzel, Greg; Young, Jerrod
2017-08-01
NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus, the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
NASA Technical Reports Server (NTRS)
1991-01-01
Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.
Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph;
2017-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph;
2017-01-01
NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cupcone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
NASA Astrophysics Data System (ADS)
1996-04-01
Advanced Instrumentation in the Educational Laboratory The instruments that chemists use in their research have changed dramatically in the past decades. The explosion in new techniques and their instrumental counterparts has been made possible by two significant advances. The rapid propagation of computer chips and circuitry provides opportunities to collect more specialized and refined data than ever before. Computer-controlled instruments can detect events that a human researcher would never perceive and can record hundreds of data points in the time that a person could only observe one or two. Coupled with these advances in technology are advances in theory that allow more sophisticated interpretation of data. A hundred years ago a sophisticated instrument was a balance that could weigh minute quantities. Today a sophisticated instrument is one that can identify the composition of that minute sample, determine its molecular weight, or reveal a great deal about its energy states and bonding. This bonanza of new instruments is wonderful for the research chemist but a curricular headache for the chemistry teacher. It takes more time to learn how to run an NMR than to use a balance, and more sophistication on the part of the student is needed to interpret the data. And yet many courses that only a generation ago sported an expensive analytical balance as its prize instrument now require students to understand and operate a whole panoply of complex tools. Teachers faced with accommodating these curricular changes will find several articles in this issue helpful--either providing information on new techniques or descriptions of how to incorporate them into the classroom. Electrospray ionization mass spectrometry is one of the newest tools that has been added to the analytical arsenal. It is an extension of mass spectrometry that overcomes the old barrier that allowed only analysis of low molecular weight, volatile compounds. It is now possible to use MS for biomolecule and protein structure elucidation and it is becoming a routine biochemical tool. The explosive growth of this technique has stimulated the publishing of a three-part review in the Topics in Chemical Instrumentation feature. Part I, which covers instrumentation and spectral interpretation, is by Hofstadler, Bakhtiar, and Smith (page A82) and appears in this issue. They describe how the electrospray apparatus, which produces a fine aerosol of highly charged microdroplets, can be coupled with a mass spectrometer to analyze complex molecules. Next they show how the spectra achieved from this process can be interpreted using human hemoglobin as an example. This technique provides the ability to "weigh" large molecules in a manner unimaginable in the era of the two-pan balance and is thus a desirable addition to the curriculum. The appearance of so many new technologies in the curriculum poses a problem for many teachers. They want to teach not only the manipulations required to run the instruments but also provide an understanding of the ideas behind them. Paniagua and Moyano (page 310) tackle the problem of how to introduce the principles of pulsed NMR and answer the basic questions in ways that undergraduates will understand. They discuss these in terms of the classical model, the naive quantum model, and the density operator approach. Equally important to understanding the theory behind analytical instruments is understanding how they actually acquire and process data. Duffy and vanLoon (page 318) have designed an exercise to teach interfacing techniques in the instrumental analysis laboratory. Students use a relatively inexpensive interface unit and a PC to investigate the relationship among the signal generator, the detector, the signal modifier, and the output transducer in five real instrumental situations: temperature, light intensity, and potentiometric measurement; spectrophotometry; and redox titration. The ubiquitous use of instruments and computer acquisition of data has made these techniques desirable even at the high school level. Students who are used to surfing the Internet on their home computer are ready to collect information via PC in their school labs as well. Bindel (page 356) takes advantage of the Personal Science Laboratory, an affordable package of probes and software for PC interfacing, to provide an experiment using the eye-catching lightstick as its object. Students use two methods to determine the activation energy of the reaction that produces the luminescence and explore concepts of kinetics as well as learn about computer-interfaced experimentation. Addendum. The engaging photgraph of Linus Pauling on the cover of the January issue was taken by Joseph McNally and is copyright Joseph McNally Photography, 52 Villard Avenue, Hastings-on-Hudon, NY 10706.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Syed, Hazari I.
1995-01-01
This user's manual describes the installation and operation of TIA, the Thermal-Imaging acquisition and processing Application, developed by the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center, Hampton, Virginia. TIA is a user friendly graphical interface application for the Macintosh 2 and higher series computers. The software has been developed to interface with the Perceptics/Westinghouse Pixelpipe(TM) and PixelStore(TM) NuBus cards and the GW Instruments MacADIOS(TM) input-output (I/O) card for the Macintosh for imaging thermal data. The software is also capable of performing generic image-processing functions.
The Cold Dark Matter Search test stand warm electronics card
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Bruce; /Colorado U., Denver; Hansen, Sten
A card which does the signal processing for four SQUID amplifiers and two charge sensitive channels is described. The card performs the same functions as is presently done with two custom 9U x 280mm Eurocard modules, a commercial multi-channel VME digitizer, a PCI to GPIB interface, a PCI to VME interface and a custom built linear power supply. By integrating these functions onto a single card and using the power over Ethernet standard, the infrastructure requirements for instrumenting a Cold Dark Matter Search (CDMS) detector test stand are significantly reduced.
Measuring the surface tension of a liquid-gas interface by automatic stalagmometer
NASA Astrophysics Data System (ADS)
Molina, C.; Victoria, L.; Arenas, A.
2000-06-01
We present a variation of the stalagmometer method for automatically determining the surface tension of a liquid-gas interface using a pressure sensor to measure the pressure variation per drop. The presented method does not depend on a knowledge of the density of the problem liquid and obtains values with a measurement error in the range of 1%-2%. Its low cost and simplicity mean that the technique can be used in the teaching and instrumentation laboratory in the same way as other methods.
Using XML and Java for Astronomical Instrumentation Control
NASA Technical Reports Server (NTRS)
Ames, Troy; Koons, Lisa; Sall, Ken; Warsaw, Craig
2000-01-01
Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). ]ML is used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, and communication mechanisms. Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be generic and extensible so that it can be applied to any instrument.
MAISIE: a multipurpose astronomical instrument simulator environment
NASA Astrophysics Data System (ADS)
O'Brien, Alan; Beard, Steven; Geers, Vincent; Klaassen, Pamela
2016-07-01
Astronomical instruments often need simulators to preview their data products and test their data reduction pipelines. Instrument simulators have tended to be purpose-built with a single instrument in mind, and at- tempting to reuse one of these simulators for a different purpose is often a slow and difficult task. MAISIE is a simulator framework designed for reuse on different instruments. An object-oriented design encourages reuse of functionality and structure, while offering the flexibility to create new classes with new functionality. MAISIE is a set of Python classes, interfaces and tools to help build instrument simulators. MAISIE can just as easily build simulators for single and multi-channel instruments, imagers and spectrometers, ground and space based instruments. To remain easy to use and to facilitate the sharing of simulators across teams, MAISIE is written in Python, a freely available and open-source language. New functionality can be created for MAISIE by creating new classes that represent optical elements. This approach allows new and novel instruments to add functionality and take advantage of the existing MAISIE classes. MAISIE has recently been used successfully to develop the simulator for the JWST/MIRI- Medium Resolution Spectrometer.
An introduction to the COLIN optimization interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, William Eugene
2003-03-01
We describe COLIN, a Common Optimization Library INterface for C++. COLIN provides C++ template classes that define a generic interface for both optimization problems and optimization solvers. COLIN is specifically designed to facilitate the development of hybrid optimizers, for which one optimizer calls another to solve an optimization subproblem. We illustrate the capabilities of COLIN with an example of a memetic genetic programming solver.
Research the mobile phone operation interfaces for vision-impairment.
Yao, Yen-Ting; Leung, Cherng-Yee
2012-01-01
Due to the vision-impaired users commonly having difficulty with mobile-phone function operations and adaption any manufacturer's user interface design, the goals for this research are established for evaluating how to improve for them the function operation convenience and user interfaces of either mobile phones or electronic appliances in the market currently. After applying collecting back 30 effective questionnaires from 30 vision-impairment, the comments have been concluded from this research include: (1) All mobile phone manufactures commonly ignorant of the vision-impairment difficulty with operating mobile phone user interfaces; (2) The vision-impairment preferential with audio alert signals; (3) The vision-impairment incapable of mobile-phone procurement independently unless with assistance from others; (4) Preferential with adding touch-usage interface design by the vision-impairment; in contrast with the least requirement for such functions as braille, enlarging keystroke size and diversifying-function control panel. With exploring the vision-impairment's necessary improvements and obstacles for mobile phone interface operation, this research is established with goals for offering reference possibly applied in electronic appliance design and . Hopefully, the analysis results of this research could be used as data references for designing electronic and high-tech products and promoting more usage convenience for those vision-impaired.
Data acquisition system for chemical kinetic studies
Zhu, Yu-zhen; Zhou, Xin; Zang, Xiang-sheng
1989-01-01
A microcomputer-interfaced data acquisition system for chemical kinetics (interfacing with laboratory analogue instruments) has been developed. Analogue signals from instruments used in kinetics experiments are amplifed by a wide-range adjustable high-gain operational amplifier and smoothed by an op-based filter, and then digitized at rates of up to 104 samples per channel by an ADC 0816 digitizer. The ADC data transfer and manipulation routine was written in Assembler code and in high-level language; the graphics package and data treatment package is in Basic. For the various sampling speeds, all of the program can be written using Basic-Assembler or completely in Assembler if a high sampling rate is needed. Several numerical treatment methods for chemical kinetics have been utilized to smooth the data from experiments. The computer-interfaced system for second-order chemical kinetic studies was applied to the determination of the rate constant of the saponification of ethyl acetate at 35°C. For this specific problem, an averaging treatment was used which can be called an interval method. The use of this method avoids the diffcully of measuring the starting time of the reaction. Two groups of experimental data and results were used to evaluate the systems performance. All of the results obtained are in agreement with the reference value. PMID:18925219
Customizable scientific web-portal for DIII-D nuclear fusion experiment
NASA Astrophysics Data System (ADS)
Abla, G.; Kim, E. N.; Schissel, D. P.
2010-04-01
Increasing utilization of the Internet and convenient web technologies has made the web-portal a major application interface for remote participation and control of scientific instruments. While web-portals have provided a centralized gateway for multiple computational services, the amount of visual output often is overwhelming due to the high volume of data generated by complex scientific instruments and experiments. Since each scientist may have different priorities and areas of interest in the experiment, filtering and organizing information based on the individual user's need can increase the usability and efficiency of a web-portal. DIII-D is the largest magnetic nuclear fusion device in the US. A web-portal has been designed to support the experimental activities of DIII-D researchers worldwide. It offers a customizable interface with personalized page layouts and list of services for users to select. Each individual user can create a unique working environment to fit his own needs and interests. Customizable services are: real-time experiment status monitoring, diagnostic data access, interactive data analysis and visualization. The web-portal also supports interactive collaborations by providing collaborative logbook, and online instant announcement services. The DIII-D web-portal development utilizes multi-tier software architecture, and Web 2.0 technologies and tools, such as AJAX and Django, to develop a highly-interactive and customizable user interface.
A/C Interface: Expert Systems: Part II.
ERIC Educational Resources Information Center
Dessy, Raymond E., Ed.
1984-01-01
Discusses working implementations of artificial intelligence systems for chemical laboratory applications. They include expert systems for liquid chromatography, spectral analysis, instrument control of a totally computerized triple-quadrupole mass spectrometer, and the determination of the mineral constituents of a rock sample given the powder…
Transformations: Technology and the Music Industry.
ERIC Educational Resources Information Center
Peters, G. David
2001-01-01
Focuses on the companies and organizations of the Music Industry Conference (MIC). Addresses topics such as: changes in companies due to technology, audio compact discs, the music instrument digital interface (MIDI) , digital sound recording, and the MIC on-line music instruction programs offered. (CMK)
Mechanobiology by the numbers: a close relationship between biology and physics.
Schwarz, Ulrich S
2017-12-01
Studies of mechanobiology lie at the interface of various scientific disciplines from biology to physics. Accordingly, quantification and mathematical modelling have been instrumental in fuelling the progress in this rapidly developing research field, assisting experimental work on many levels.
ERIC Educational Resources Information Center
Beckstead, David
1996-01-01
Explores the educational possibilities inherent in combining Musical Instrument Digital Interface (MIDI) with communications technology. A MIDI system (a combination synthesizer and computer) allows students to compose, record, experiment, and correct at one site. A MIDI file can be sent via e-mail to others for comments. (MJP)
The Promise of MIDI Technology: A Reflection on Musical Intelligence.
ERIC Educational Resources Information Center
Ohler, Jason
1998-01-01
Describes MIDI (Musical Instrument Digital Interface) technology and music education; provides information on conducting a MIDI workshop for all ages; and offers guidelines for creating a MIDI workstation for the classroom. Hardware and software vendor contact information is provided. (PEN)
A Virtual Instrument Panel and Serial Interface for the Parr 1672 Thermometer
ERIC Educational Resources Information Center
Salter, Gail; Range, Kevin; Salter, Carl
2005-01-01
The various features of a Visual Basic Program, which implements the 1672 Parr thermometer are described. The program permits remote control of the calorimetry experiment and also provides control for the flow of data and for file storage.
INTEGRATED MONITORING HARDWARE DEVELOPMENTS AT LOS ALAMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. PARKER; J. HALBIG; ET AL
1999-09-01
The hardware of the integrated monitoring system supports a family of instruments having a common internal architecture and firmware. Instruments can be easily configured from application-specific personality boards combined with common master-processor and high- and low-voltage power supply boards, and basic operating firmware. The instruments are designed to function autonomously to survive power and communication outages and to adapt to changing conditions. The personality boards allow measurement of gross gammas and neutrons, neutron coincidence and multiplicity, and gamma spectra. In addition, the Intelligent Local Node (ILON) provides a moderate-bandwidth network to tie together instruments, sensors, and computers.
UCam: universal camera controller and data acquisition system
NASA Astrophysics Data System (ADS)
McLay, S. A.; Bezawada, N. N.; Atkinson, D. C.; Ives, D. J.
2010-07-01
This paper describes the software architecture and design concepts used in the UKATC's generic camera control and data acquisition software system (UCam) which was originally developed for use with the ARC controller hardware. The ARC detector control electronics are developed by Astronomical Research Cameras (ARC), of San Diego, USA. UCam provides an alternative software solution programmed in C/C++ and python that runs on a real-time Linux operating system to achieve critical speed performance for high time resolution instrumentation. UCam is a server based application that can be accessed remotely and easily integrated as part of a larger instrument control system. It comes with a user friendly client application interface that has several features including a FITS header editor and support for interfacing with network devices. Support is also provided for writing automated scripts in python or as text files. UCam has an application centric design where custom applications for different types of detectors and read out modes can be developed, downloaded and executed on the ARC controller. The built-in de-multiplexer can be easily reconfigured to readout any number of channels for almost any type of detector. It also provides support for numerous sampling modes such as CDS, FOWLER, NDR and threshold limited NDR. UCam has been developed over several years for use on many instruments such as the Wide Field Infra Red Camera (WFCAM) at UKIRT in Hawaii, the mid-IR imager/spectrometer UIST and is also used on instruments at SUBARU, Gemini and Palomar.
MICADO: first light imager for the E-ELT
NASA Astrophysics Data System (ADS)
Davies, R.; Schubert, J.; Hartl, M.; Alves, J.; Clénet, Y.; Lang-Bardl, F.; Nicklas, H.; Pott, J.-U.; Ragazzoni, R.; Tolstoy, E.; Agocs, T.; Anwand-Heerwart, H.; Barboza, S.; Baudoz, P.; Bender, R.; Bizenberger, P.; Boccaletti, A.; Boland, W.; Bonifacio, P.; Briegel, F.; Buey, T.; Chapron, F.; Cohen, M.; Czoske, O.; Dreizler, S.; Falomo, R.; Feautrier, P.; Förster Schreiber, N.; Gendron, E.; Genzel, R.; Glück, M.; Gratadour, D.; Greimel, R.; Grupp, F.; Häuser, M.; Haug, M.; Hennawi, J.; Hess, H. J.; Hörmann, V.; Hofferbert, R.; Hopp, U.; Hubert, Z.; Ives, D.; Kausch, W.; Kerber, F.; Kravcar, H.; Kuijken, K.; Lang-Bardl, F.; Leitzinger, M.; Leschinski, K.; Massari, D.; Mei, S.; Merlin, F.; Mohr, L.; Monna, A.; Müller, F.; Navarro, R.; Plattner, M.; Przybilla, N.; Ramlau, R.; Ramsay, S.; Ratzka, T.; Rhode, P.; Richter, J.; Rix, H.-W.; Rodeghiero, G.; Rohloff, R.-R.; Rousset, G.; Ruddenklau, R.; Schaffenroth, V.; Schlichter, J.; Sevin, A.; Stuik, R.; Sturm, E.; Thomas, J.; Tromp, N.; Turatto, M.; Verdoes-Kleijn, G.; Vidal, F.; Wagner, R.; Wegner, M.; Zeilinger, W.; Ziegler, B.; Zins, G.
2016-08-01
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instrument's observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. There is also a single object spectroscopic mode optimised for wavelength coverage at moderately high resolution. This contribution provides an overview of the key functionality of the instrument, outlining the scientific rationale for its observing modes. The interface between MICADO and the adaptive optics system MAORY that feeds it is summarised. The design of the instrument is discussed, focusing on the optics and mechanisms inside the cryostat, together with a brief overview of the other key sub-systems.
Yeung, Ka Yee
2016-01-01
Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface. PMID:27045593
Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee
2016-01-01
Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.
The New Meteor Radar at Penn State: Design and First Observations
NASA Technical Reports Server (NTRS)
Urbina, J.; Seal, R.; Dyrud, L.
2011-01-01
In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.
Implementing Ethernet Services on the Payload Executive Processor (PEP)
NASA Technical Reports Server (NTRS)
Pruett, David; Guyette, Greg
2016-01-01
The Ethernet interface is more common and easier interface to implement for payload developers already familiar with Ethernet protocol in their labs. The Ethernet interface allows for a more distributed payload architecture. Connections can be placed in locations not serviced by the PEP 1553 bus. The Ethernet interface provides a new access port into the PEP so as to use the already existing services. Initial capability will include a subset of services with a plan to expand services later.
NASA Astrophysics Data System (ADS)
Toresano, L. O. H. Z.; Wijaya, S. K.; Prawito, Sudarmaji, A.; Badri, C.
2017-07-01
The prototype of the EEG (electroencephalogram) instrumentation systems has been developed based on 32-bit microcontrollers of Cortex-M3 ATSAM3X8E and Analog Front-End (AFE) ADS1299 (Texas Instruments, USA), and also consists of 16-channel dry-electrodes in the form of EEG head-caps. The ADS1299-AFE has been designed in a double-layer format PCB (Print Circuit Board) with daisy-chain configuration. The communication protocol of the prototype was based on SPI (Serial Peripheral Interface) and tested using USB SPI-Logic Analyzer Hantek4032L (Qingdao Hantek Electronic, China). The acquired data of the 16-channel from this prototype has been successfully transferred to a PC (Personal Computer) with accuracy greater than 91 %. The data acquisition system has been visualized with time-domain format in the multi-graph plotter, the frequency-domain based on FFT (Fast Fourier Transform) calculation, and also brain-mapping display of 16-channel. The GUI (Graphical User Interface) has been developed based on OpenBCI (Brain Computer Interface) using Java Processing and also can be stored of data in the *.txt format. Instrumentation systems have been tested in the frequency range of 1-50 Hz using MiniSim 330 EEG Simulator (NETECH, USA). The validation process has been done with different frequency of 0.1 Hz, 2 Hz, 5 Hz, and 50 Hz, and difference voltage amplitudes of 10 µV, 30 µV, 50 µV, 100 µV, 500 µV, 1 mV, 2 mV and 2.5 mV. However, the acquisition system was not optimal at a frequency of 0.1 Hz and for amplitude potentials of over 1 mV had differences of the order 10 µV.
Paíga, Paula; Silva, Luís M S; Delerue-Matos, Cristina
2016-10-01
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
Compact Low Power DPU for Plasma Instrument LINA on the Russian Luna-Glob Lander
NASA Astrophysics Data System (ADS)
Schmidt, Walter; Riihelä, Pekka; Kallio, Esa
2013-04-01
The Swedish Institute for Space Physics in Kiruna is bilding a Lunar Ions and Neutrals Analyzer (LINA) for the Russian Luna-Glob lander mission and its orbiter, to be launched around 2016 [1]. The Finnish Meteorological Institute is responsible for designing and building the central data processing units (DPU) for both instruments. The design details were optimized to serve as demonstrator also for a similar instrument on the Jupiter mission JUICE. To accommodate the originally set short development time and to keep the design between orbiter and Lander as similar as possible, the DPU is built around two re-programmable flash-based FPGAs from Actel. One FPGA contains a public-domain 32-bit processor core identical for both Lander and orbiter. The other FPGA handles all interfaces to the spacecraft system and the detectors, somewhat different for both implementations. Monitoring of analog housekeeping data is implemented as an IP-core from Stellamar inside the interface FPGA, saving mass, volume and especially power while simplifying the radiation protection design. As especially on the Lander the data retention before transfer to the orbiter cannot be guaranteed under all conditions, the DPU includes a Flash-PROM containing several software versions and data storage capability. With the memory management implemented inside the interface FPGA, one of the serial links can also be used as test port to verify the system, load the initial software into the Flash-PROM and to control the detector hardware directly without support by the processor and a ready developed operating system and software. Implementation and performance details will be presented. Reference: [1] http://www.russianspaceweb.com/luna_glob_lander.html.
Influence of a forest canopy on velocity and temperature profiles under synoptic conditions
NASA Astrophysics Data System (ADS)
Pattantyus, A.; Hocut, C. M.; Wang, Y.; Creegan, E.; Krishnamurthy, R.; Otarola-Bust, S.; Leo, L. S.; Fernando, H. J. S.
2017-12-01
Numerous field campaigns have found the importance of surface conditions on boundary layer evolution. Specifically, soil properties were found to control surface fluxes of heat, moisture, and momentum that significantly modulated the atmospheric boundary layer (ABL) over flat and sparsely vegetated surfaces. There have been increasing numbers of studies related to canopy impacts on the boundary layer, such as CHATS, however few canopy studies over complex terrain have been performed with limited instrumentation. The recent Perdigão campaign greatly augmented the previous datasets available by instrumenting a unique, parallel ridge mountain in Perdigão, Portugal in unprecedented spatial and temporal resolution using traditional mast mounted sensors, instrumented aerial platforms, and remote sensing instrumentation. To aid the canopy studies, the Army Research Laboratory deployed sonic anemometers within the canopy transecting the ridges perpendicularly and placed five additional heavily instrumented meteorological masts on the northeast facing slope to investigate detailed slope flows. At each of these towers, there was an average of six levels of temperature, relative humidity, and wind sensors located above & below the canopy height which allowed a detailed study of the sub-canopy layer. In addition to the towers, two scanning Doppler LiDARs were oriented such that they performed synchronized dual Doppler virtual tower scans, extending from the canopy interface to several hundred meters above. Synoptically forced periods were analyzed to examine: the ABL structure of temperature, moisture, wind, and turbulent kinetic energy. Of particular interest are the shear layer at the canopy interface, recirculation events, as well as ejection and sweep events within the canopy and how these modify surface fluxes along the slopes.
Measures of Cultural Competence in Nurses: An Integrative Review
2013-01-01
Background. There is limited literature available identifying and describing the instruments that measure cultural competence in nursing students and nursing professionals. Design. An integrative review was undertaken to identify the characteristics common to these instruments, examine their psychometric properties, and identify the concepts these instruments are designed to measure. Method. There were eleven instruments identified that measure cultural competence in nursing. Of these eleven instruments, four had been thoroughly tested in either initial development or in subsequent testing, with developers providing extensive details of the testing. Results. The current literature identifies that the instruments to assess cultural competence in nurses and nursing students are self-administered and based on individuals' perceptions. The instruments are commonly utilized to test the effectiveness of educational programs designed to increase cultural competence. Conclusions. The reviewed instruments measure nurses' self-perceptions or self-reported level of cultural competence but offer no objective measure of culturally competent care from a patient's perspective which can be problematic. Comparison of instruments reveals that they are based on a variety of conceptual frameworks and that multiple factors should be considered when deciding which instrument to use. PMID:23818818
Gyroscopic Instruments for Instrument Flying
NASA Technical Reports Server (NTRS)
Brombacher, W G; Trent, W C
1938-01-01
The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.
Instrument Remote Control via the Astronomical Instrument Markup Language
NASA Technical Reports Server (NTRS)
Sall, Ken; Ames, Troy; Warsaw, Craig; Koons, Lisa; Shafer, Richard
1998-01-01
The Instrument Remote Control (IRC) project ongoing at NASA's Goddard Space Flight Center's (GSFC) Information Systems Center (ISC) supports NASA's mission by defining an adaptive intranet-based framework that provides robust interactive and distributed control and monitoring of remote instruments. An astronomical IRC architecture that combines the platform-independent processing capabilities of Java with the power of Extensible Markup Language (XML) to express hierarchical data in an equally platform-independent, as well as human readable manner, has been developed. This architecture is implemented using a variety of XML support tools and Application Programming Interfaces (API) written in Java. IRC will enable trusted astronomers from around the world to easily access infrared instruments (e.g., telescopes, cameras, and spectrometers) located in remote, inhospitable environments, such as the South Pole, a high Chilean mountaintop, or an airborne observatory aboard a Boeing 747. Using IRC's frameworks, an astronomer or other scientist can easily define the type of onboard instrument, control the instrument remotely, and return monitoring data all through the intranet. The Astronomical Instrument Markup Language (AIML) is the first implementation of the more general Instrument Markup Language (IML). The key aspects of our approach to instrument description and control applies to many domains, from medical instruments to machine assembly lines. The concepts behind AIML apply equally well to the description and control of instruments in general. IRC enables us to apply our techniques to several instruments, preferably from different observatories.
Implementation of Distributed Services for a Deep Sea Moored Instrument Network
NASA Astrophysics Data System (ADS)
Oreilly, T. C.; Headley, K. L.; Risi, M.; Davis, D.; Edgington, D. R.; Salamy, K. A.; Chaffey, M.
2004-12-01
The Monterey Ocean Observing System (MOOS) is a moored observatory network consisting of interconnected instrument nodes on the sea surface, midwater, and deep sea floor. We describe Software Infrastructure and Applications for MOOS ("SIAM"), which implement the management, control, and data acquisition infrastructure for the moored observatory. Links in the MOOS network include fiber-optic and 10-BaseT copper connections between the at-sea nodes. A Globalstar satellite transceiver or 900 MHz Freewave terrestrial line-of-sight RF modem provides the link to shore. All of these links support Internet protocols, providing TCP/IP connectivity throughout a system that extends from shore to sensor nodes at the air-sea interface, through the oceanic water column to a benthic network of sensor nodes extending across the deep sea floor. Exploiting this TCP/IP infrastructure as well as capabilities provided by MBARI's MOOS mooring controller, we use powerful Internet software technologies to implement a distributed management, control and data acquisition system for the moored observatory. The system design meets the demanding functional requirements specified for MOOS. Nodes and their instruments are represented by Java RMI "services" having well defined software interfaces. Clients anywhere on the network can interact with any node or instrument through its corresponding service. A client may be on the same node as the service, may be on another node, or may reside on shore. Clients may be human, e.g. when a scientist on shore accesses a deployed instrument in real-time through a user interface. Clients may also be software components that interact autonomously with instruments and nodes, e.g. for purposes such as system resource management or autonomous detection and response to scientifically interesting events. All electrical power to the moored network is provided by solar and wind energy, and the RF shore-to-mooring links are intermittent and relatively low-bandwidth connections. Thus power and wireless bandwidth are limited resources that constrain our choice of service technologies and wireless access strategy. We describe and evaluate system performance in light of actual deployment of observatory elements in Monterey Bay, and discuss how the system can be developed further. We also consider management and control strategies for the cable-to-shore observatory known as MARS ("Monterey Accelerated Research System"). The MARS cable will provide high power and continuous high-bandwidth connectivity between seafloor instrument nodes and shore, thus removing key limitations of the moored observatory. Moreover MARS functional requirements may differ significantly from MOOS requirements. In light of these differences, we discuss how elements of our MOOS moored observatory architecture might be adapted to MARS.
The Space Telescope SI C&DH system. [Scientific Instrument Control and Data Handling Subsystem
NASA Technical Reports Server (NTRS)
Gadwal, Govind R.; Barasch, Ronald S.
1990-01-01
The Hubble Space Telescope Scientific Instrument Control and Data Handling Subsystem (SI C&DH) is designed to interface with five scientific instruments of the Space Telescope to provide ground and autonomous control and collect health and status information using the Standard Telemetry and Command Components (STACC) multiplex data bus. It also formats high throughput science data into packets. The packetized data is interleaved and Reed-Solomon encoded for error correction and Pseudo Random encoded. An inner convolutional coding with the outer Reed-Solomon coding provides excellent error correction capability. The subsystem is designed with the capacity for orbital replacement in order to meet a mission life of fifteen years. The spacecraft computer and the SI C&DH computer coordinate the activities of the spacecraft and the scientific instruments to achieve the mission objectives.
An update on the development of IO:I: a NIR imager for the Liverpool Telescope
NASA Astrophysics Data System (ADS)
Barnsley, R. M.; Steele, I. A.; Bates, S. D.; Mottram, C. J.
2014-07-01
IO:I is a new instrument in development for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near infrared. Cost has been minimised by use of a previously decommissioned instrument's dewar as the base for a prototype, and retrofitting it with a 1.7μm cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller and JADE2 interface card. Development of this prototype is nearing completion and will be operational mid 2014. In this paper, the mechanical, electronic and cryogenic facets of the dewar retrofitting process will be discussed together with a description of the instrument control system software/hardware setup. Finally, a brief overview of some initial testing undertaken on the engineering grade array will be given, along with future commissioning plans for the instrument.
Generic System for Remote Testing and Calibration of Measuring Instruments: Security Architecture
NASA Astrophysics Data System (ADS)
Jurčević, M.; Hegeduš, H.; Golub, M.
2010-01-01
Testing and calibration of laboratory instruments and reference standards is a routine activity and is a resource and time consuming process. Since many of the modern instruments include some communication interfaces, it is possible to create a remote calibration system. This approach addresses a wide range of possible applications and permits to drive a number of different devices. On the other hand, remote calibration process involves a number of security issues due to recommendations specified in standard ISO/IEC 17025, since it is not under total control of the calibration laboratory personnel who will sign the calibration certificate. This approach implies that the traceability and integrity of the calibration process directly depends on the collected measurement data. The reliable and secure remote control and monitoring of instruments is a crucial aspect of internet-enabled calibration procedure.
NASA Astrophysics Data System (ADS)
Cleary, Kevin R.; Banovac, Filip; Levy, Elliot; Tanaka, Daigo
2002-05-01
We have designed and constructed a liver respiratory motion simulator as a first step in demonstrating the feasibility of using a new magnetic tracking system to follow the movement of internal organs. The simulator consists of a dummy torso, a synthetic liver, a linear motion platform, a graphical user interface for image overlay, and a magnetic tracking system along with magnetically tracked instruments. While optical tracking systems are commonly used in commercial image-guided surgery systems for the brain and spine, they are limited to procedures in which a line of sight can be maintained between the tracking system and the instruments which are being tracked. Magnetic tracking systems have been proposed for image-guided surgery applications, but most currently available magnetically tracked sensors are too small to be embedded in the body. The magnetic tracking system employed here, the AURORA from Northern Digital, can use sensors as small as 0.9 mm in diameter by 8 mm in length. This makes it possible to embed these sensors in catheters and thin needles. The catheters can then be wedged in a vein in an internal organ of interest so that tracking the position of the catheter gives a good estimate of the position of the internal organ. Alternatively, a needle with an embedded sensor could be placed near the area of interest.
Skyline: an open source document editor for creating and analyzing targeted proteomics experiments.
MacLean, Brendan; Tomazela, Daniela M; Shulman, Nicholas; Chambers, Matthew; Finney, Gregory L; Frewen, Barbara; Kern, Randall; Tabb, David L; Liebler, Daniel C; MacCoss, Michael J
2010-04-01
Skyline is a Windows client application for targeted proteomics method creation and quantitative data analysis. It is open source and freely available for academic and commercial use. The Skyline user interface simplifies the development of mass spectrometer methods and the analysis of data from targeted proteomics experiments performed using selected reaction monitoring (SRM). Skyline supports using and creating MS/MS spectral libraries from a wide variety of sources to choose SRM filters and verify results based on previously observed ion trap data. Skyline exports transition lists to and imports the native output files from Agilent, Applied Biosystems, Thermo Fisher Scientific and Waters triple quadrupole instruments, seamlessly connecting mass spectrometer output back to the experimental design document. The fast and compact Skyline file format is easily shared, even for experiments requiring many sample injections. A rich array of graphs displays results and provides powerful tools for inspecting data integrity as data are acquired, helping instrument operators to identify problems early. The Skyline dynamic report designer exports tabular data from the Skyline document model for in-depth analysis with common statistical tools. Single-click, self-updating web installation is available at http://proteome.gs.washington.edu/software/skyline. This web site also provides access to instructional videos, a support board, an issues list and a link to the source code project.
NASA Astrophysics Data System (ADS)
Freeland, S.; Hurlburt, N.
2005-12-01
The SolarSoft system (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data analysis environment for solar physics. The system includes contributions from a large community base, representing the efforts of many NASA PI team MO&DA teams,spanning many years and multiple NASA and international orbital and ground based missions. The SSW general use libraries include Many hundreds of utilities which are instrument and mission independent. A large subset are also SOLAR independent, such as time conversions, digital detector cleanup, time series analysis, mathematics, image display, WWW server communications and the like. PI teams may draw on these general purpose libraries for analysis and application development while concentrating efforts on instrument specific calibration issues rather than reinvention of general use software. By the same token, PI teams are encouraged to contribute new applications or enhancements to existing utilities which may have more general interest. Recent areas of intense evolution include space weather applications, automated distributed data access and analysis, interfaces with the ongoing Virtual Solar Observatory efforts, and externalization of SolarSoft power through Web Services. We will discuss the current status of SSW web services and demonstrate how this facilitates accessing the underlying power of SolarSoft in more abstract terms. In this context, we will describe the use of SSW services within the Collaborative Sun Earth Connector environment.
Design for gas chromatography-corona discharge-ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein
2012-11-20
A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes.
NASA Astrophysics Data System (ADS)
Nakatani, T.; Inamura, Y.; Moriyama, K.; Ito, T.; Muto, S.; Otomo, T.
Neutron scattering can be a powerful probe in the investigation of many phenomena in the materials and life sciences. The Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC) is a leading center of experimental neutron science and boasts one of the most intense pulsed neutron sources in the world. The MLF currently has 18 experimental instruments in operation that support a wide variety of users from across a range of research fields. The instruments include optical elements, sample environment apparatus and detector systems that are controlled and monitored electronically throughout an experiment. Signals from these components and those from the neutron source are converted into a digital format by the data acquisition (DAQ) electronics and recorded as time-tagged event data in the DAQ computers using "DAQ-Middleware". Operating in event mode, the DAQ system produces extremely large data files (˜GB) under various measurement conditions. Simultaneously, the measurement meta-data indicating each measurement condition is recorded in XML format by the MLF control software framework "IROHA". These measurement event data and meta-data are collected in the MLF common storage and cataloged by the MLF Experimental Database (MLF EXP-DB) based on a commercial XML database. The system provides a web interface for users to manage and remotely analyze experimental data.
Surgeon-tool force/torque signatures--evaluation of surgical skills in minimally invasive surgery.
Rosen, J; MacFarlane, M; Richards, C; Hannaford, B; Sinanan, M
1999-01-01
The best method of training for laparoscopic surgical skills is controversial. Some advocate observation in the operating room, while others promote animal and simulated models or a combination of surgical related tasks. The mode of proficiency evaluation common to all of these methods has been subjective evaluation by a skilled surgeon. In order to define an objective means of evaluating performance, an instrumented laparoscopic grasper was developed measuring the force/torque at the surgeon hand/tool interface. The measured database demonstrated substantial differences between experienced and novice surgeon groups. Analyzing forces and torques combined with the state transition during surgical procedures allows an objective measurement of skill in MIS. Teaching the novice surgeon to limit excessive loads and improve movement efficiency during surgical procedures can potentially result in less injury to soft tissues and less wasted time during laparoscopic surgery. Moreover the force/torque database measured in this study may be used for developing realistic virtual reality simulators and optimization of medical robots performance.
Graber, Zachary T; Kooijman, Edgar E
2013-01-01
Detailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR. Here, we describe a solid-state (31)P NMR procedure to construct pH titration curves to determine the degree of ionization of phosphomonoester groups in polyphosphoinositides. This procedure can also be used, with suitable sample preparation conditions, for other important signaling lipids. Access to a solid-state, i.e., magic angle spinning, capable NMR spectrometer is assumed. The procedures described here are valid for a Bruker instrument, but can be adapted for other spectrometers as needed.
Herrero, P; Bäuerlein, P S; Emke, E; Pocurull, E; de Voogt, P
2014-08-22
In this short communication we report on the technical implementations of coupling an asymmetric flow field-flow fractionation (AF4) instrument to a high resolution mass spectrometer (Orbitrap) using an atmospheric photoionisation interface. This will allow for the first time online identification of different fullerenes in aqueous samples after their aggregates have been fractionated in the FFF channel. Quality parameters such as limits of detection (LODs), limits of quantification (LOQs) or linear range were evaluated and they were in the range of hundreds ng/L for LODs and LOQs and the detector response was linear in the range tested (up to ∼20 μg/L). The low detection and quantification limits make this technique useful for future environmental or ecotoxicology studies in which low concentration levels are expected for fullerenes and common on-line detectors such as UV or MALS do not have enough sensitivity and selectivity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Appendices for the Space Applications program, 1974
NASA Technical Reports Server (NTRS)
1974-01-01
To achieve truly low cost system design with direct evolution for inorbit shuttle resupply, a modular building block approach has been adopted. The heart of the modular building block concept lies in the ability to use a common set of nonoptimized subsystems in such a way that a wide variety of missions can be flown with no detrimental impact on performance. By standardizing the mechanical configurations and electrical interfaces of the subsystem modules, and by designing each of them to be structurally and thermally independent entities, it is possible to cluster these building blocks or modules about an instrument system so as to adequately perform the mission without the need for subsystem redevelopments for each mission. This system concept offers the following capabilities: (1) the ability to launch and orbit the observatory by either the Delta, the Titan, or the space shuttle. (2) the ability to completely reconfigure the spacecraft subsystems for different launch vehicles, and (3) the ability to perform in-orbit resupply and/or emergency retrieval of the observatory.
Membrane Transport Phenomena (MTP)
NASA Technical Reports Server (NTRS)
Mason, Larry W.
1996-01-01
The development of the seal between the membrane and the Fluid Optical Cells (FOC) has been a high priority activity. This seal occurs at an interface in the instrument where three key functions must be realized: (1) physical membrane support, (2) fluid sealing, and (3) unobscured optical transmission.
MIDI-Assisted Composing in Your Classroom.
ERIC Educational Resources Information Center
Reese, Sam
1995-01-01
Describes a junior high school course in musical composition using Musical Instrument Digital Interface (MIDI) technology. Discusses course objectives and three composition projects. Includes a list of definitions and asserts that MIDI technology offers students and teachers a powerful method to study how music works. (CFR)
Exploring Music through Technology.
ERIC Educational Resources Information Center
Willard, Joanne B.
1992-01-01
Describes a high school music technology course that uses a project-oriented approach to teach students about hardware and software tools for sequencing, arranging, multitrack recording, and mixing. Course equipment is listed, and the MIDI (Musical Instrument Digital Interface) is briefly described. Copyright guidelines for educational uses of…
ERIC Educational Resources Information Center
Garcia, Lilia
2000-01-01
While arts facilities should be equipped with computers, color scanners, MIDI (Musical Instrument Digital Interface) labs, connective video cameras, and appropriate software, music rooms still need pianos and visual art rooms need traditional art supplies. Dade County (Florida) Schools's pilot teacher assistance projects and arts-centered schools…
New Styles, New Technologies, New Possibilities in Jazz.
ERIC Educational Resources Information Center
Kuzmich, John, Jr.
1989-01-01
Focuses on the growth of jazz-related ensembles and jazz education. Covers trends that parallel technological developments including electronic keyboards, Musical Instrument Digital Interface (MIDI) systems, the computer, computer assisted instruction, interactive video, and the compact disc. Urges teachers to update their knowledge and experience…
Real-Time, Sensor-Based Computing in the Laboratory.
ERIC Educational Resources Information Center
Badmus, O. O.; And Others
1996-01-01
Demonstrates the importance of Real-Time, Sensor-Based (RTSB) computing and how it can be easily and effectively integrated into university student laboratories. Describes the experimental processes, the process instrumentation and process-computer interface, the computer and communications systems, and typical software. Provides much technical…
NASA Technical Reports Server (NTRS)
Bechtel, R. D.; Mateos, M. A.; Lincoln, K. A.
1988-01-01
Briefly described are the essential features of a computer program designed to interface a personal computer with the fast, digital data acquisition system of a time-of-flight mass spectrometer. The instrumentation was developed to provide a time-resolved analysis of individual vapor pulses produced by the incidence of a pulsed laser beam on an ablative material. The high repetition rate spectrometer coupled to a fast transient recorder captures complete mass spectra every 20 to 35 microsecs, thereby providing the time resolution needed for the study of this sort of transient event. The program enables the computer to record the large amount of data generated by the system in short time intervals, and it provides the operator the immediate option of presenting the spectral data in several different formats. Furthermore, the system does this with a high degree of automation, including the tasks of mass labeling the spectra and logging pertinent instrumental parameters.
Hanssen, Lucien; Gremmen, Bart
2013-08-01
The Centre for BioSystems Genomics (CBSG) is a Dutch public-private partnership in plant genomics active in potato and tomato research and exploitation. Its Societal Interface Group (SIG) has been developed to inform its communication strategy and governance practice. This new instrument identifies and discusses early signals from society by bringing together people from different societal backgrounds with members of CBSG management. This interactive learning process facilitates the inclusion of public concerns and needs in scientific developments in the field of plant genomics, and simultaneously enables genomics scientists to search for more societal aims, meanings, and starting points for their research agenda. Analysis of the SIG sessions revealed that the input of public expertise is not threatening or irrational, but provides the opportunity to harness the creative potential of future users highly relevant for the development of societal practices in which plant genomics plays a role.
Remote Control and Data Acquisition: A Case Study
NASA Technical Reports Server (NTRS)
DeGennaro, Alfred J.; Wilkinson, R. Allen
2000-01-01
This paper details software tools developed to remotely command experimental apparatus, and to acquire and visualize the associated data in soft real time. The work was undertaken because commercial products failed to meet the needs. This work has identified six key factors intrinsic to development of quality research laboratory software. Capabilities include access to all new instrument functions without any programming or dependence on others to write drivers or virtual instruments, simple full screen text-based experiment configuration and control user interface, months of continuous experiment run-times, order of 1% CPU load for condensed matter physics experiment described here, very little imposition of software tool choices on remote users, and total remote control from anywhere in the world over the Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a set of simple robust tools that are highly reliable, resource conserving, extensible, and versatile, with a uniform simple interface.
ATLAS offline software performance monitoring and optimization
NASA Astrophysics Data System (ADS)
Chauhan, N.; Kabra, G.; Kittelmann, T.; Langenberg, R.; Mandrysch, R.; Salzburger, A.; Seuster, R.; Ritsch, E.; Stewart, G.; van Eldik, N.; Vitillo, R.; Atlas Collaboration
2014-06-01
In a complex multi-developer, multi-package software environment, such as the ATLAS offline framework Athena, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide the optimization work. The first tool we used to instrument the code is PAPI, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles, instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event results in a good understanding of the algorithm level performance of ATLAS code. Further data can be obtained using Pin, a dynamic binary instrumentation tool. Pin tools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is also possible. Pin tools can additionally interrogate the arguments to functions, like those in linear algebra libraries, so that a detailed usage profile can be obtained. These tools have characterized the extensive use of vector and matrix operations in ATLAS tracking. Currently, CLHEP is used here, which is not an optimal choice. To help evaluate replacement libraries a testbed has been setup allowing comparison of the performance of different linear algebra libraries (including CLHEP, Eigen and SMatrix/SVector). Results are then presented via the ATLAS Performance Management Board framework, which runs daily with the current development branch of the code and monitors reconstruction and Monte-Carlo jobs. This framework analyses the CPU and memory performance of algorithms and an overview of results are presented on a web page. These tools have provided the insight necessary to plan and implement performance enhancements in ATLAS code by identifying the most common operations, with the call parameters well understood, and allowing improvements to be quantified in detail.
Statistical Segmentation of Surgical Instruments in 3D Ultrasound Images
Linguraru, Marius George; Vasilyev, Nikolay V.; Del Nido, Pedro J.; Howe, Robert D.
2008-01-01
The recent development of real-time 3D ultrasound enables intracardiac beating heart procedures, but the distorted appearance of surgical instruments is a major challenge to surgeons. In addition, tissue and instruments have similar gray levels in US images and the interface between instruments and tissue is poorly defined. We present an algorithm that automatically estimates instrument location in intracardiac procedures. Expert-segmented images are used to initialize the statistical distributions of blood, tissue and instruments. Voxels are labeled through an iterative expectation-maximization algorithm using information from the neighboring voxels through a smoothing kernel. Once the three classes of voxels are separated, additional neighboring information is combined with the known shape characteristics of instruments in order to correct for misclassifications. We analyze the major axis of segmented data through their principal components and refine the results by a watershed transform, which corrects the results at the contact between instrument and tissue. We present results on 3D in-vitro data from a tank trial, and 3D in-vivo data from cardiac interventions on porcine beating hearts, using instruments of four types of materials. The comparison of algorithm results to expert-annotated images shows the correct segmentation and position of the instrument shaft. PMID:17521802
Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.; Handler, Louis M.; Hall, C. Steve; Mortensen, Dale J.; Johnson, Sandra K.; Briones, Janette C.; Nappier, Jennifer M.; Downey, Joseph A.; Lux, James P.
2012-01-01
This document contains the NASA architecture standard for software defined radios used in space- and ground-based platforms to enable commonality among radio developments to enhance capability and services while reducing mission and programmatic risk. Transceivers (or transponders) with functionality primarily defined in software (e.g., firmware) have the ability to change their functional behavior through software alone. This radio architecture standard offers value by employing common waveform software interfaces, method of instantiation, operation, and testing among different compliant hardware and software products. These common interfaces within the architecture abstract application software from the underlying hardware to enable technology insertion independently at either the software or hardware layer.
Privacy-preserving screen capture: towards closing the loop for health IT usability.
Cooley, Joseph; Smith, Sean
2013-08-01
As information technology permeates healthcare (particularly provider-facing systems), maximizing system effectiveness requires the ability to document and analyze tricky or troublesome usage scenarios. However, real-world health IT systems are typically replete with privacy-sensitive data regarding patients, diagnoses, clinicians, and EMR user interface details; instrumentation for screen capture (capturing and recording the scenario depicted on the screen) needs to respect these privacy constraints. Furthermore, real-world health IT systems are typically composed of modules from many sources, mission-critical and often closed-source; any instrumentation for screen capture can rely neither on access to structured output nor access to software internals. In this paper, we present a tool to help solve this problem: a system that combines keyboard video mouse (KVM) capture with automatic text redaction (and interactively selectable unredaction) to produce precise technical content that can enrich stakeholder communications and improve end-user influence on system evolution. KVM-based capture makes our system both application-independent and OS-independent because it eliminates software-interface dependencies on capture targets. Using a corpus of EMR screenshots, we present empirical measurements of redaction effectiveness and processing latency to demonstrate system performances. We discuss how these techniques can translate into instrumentation systems that improve real-world health IT deployments. Copyright © 2013 Elsevier Inc. All rights reserved.
A multi-frequency impedance analysing instrument for eddy current testing
NASA Astrophysics Data System (ADS)
Yin, W.; Dickinson, S. J.; Peyton, A. J.
2006-02-01
This paper presents the design of a high-performance multi-frequency impedance analysing instrument (MFIA) for eddy current testing which has been developed primarily for monitoring a steel production process using an inductive sensor. The system consists of a flexible multi-frequency waveform generator and a voltage/current measurement unit. The impedance of the sensor is obtained by cross-spectral analysis of the current and voltage signals. The system contains high-speed digital-to-analogue, analogue-to-digital converters and dual DSPs with one for control and interface and one dedicated to frequency-spectra analysis using fast Fourier transformation (FFT). The frequency span of the signal that can be analysed ranges from 1 kHz to 8 MHz. The system also employs a high-speed serial port interface (USB) to communicate with a personal computer (PC) and to allow for fast transmission of data and control commands. Overall, the system is capable of delivering over 250 impedance spectra per second. Although the instrument has been developed mainly for use with an inductive sensor, the system is not restricted to inductive measurement. The flexibility of the design architecture is demonstrated with capacitive and resistive measurements by using appropriate input circuitry. Issues relating to optimizing the phase of the spectra components in the excitation waveform are also discussed.
Training simulator for retinal laser photocoagulation: a new approach for surgeons' apprenticeships
NASA Astrophysics Data System (ADS)
Dubois, Patrick; Meseure, Philippe; Peugnet, Frederic; Rouland, Jean-Francois
1998-06-01
Retinal laser photocoagulation is a current practice in many eye diseases therapy. Its mastering requires a specific training usually made on actual patients with some risks. The authors present a new device aimed to deliver a complete training separated from the therapeutic practice. This training simulator is built around the actual instrument to comply with the required realism. The instrumental functionalities of the device give the residents the same operating conditions as in the actual practice. The eye fundus visualization is simulated by virtual images, based on actual fundus pictures. They are computed at the rate of 10-12 frames/second according to the adjustments and manipulations of the 3-mirror lens made by the operator. All the pictures are combined in a fundus database planned to collect a wide variety of pathologies. The pedagogical functionalities are gathered in the user's interface. The two major guidelines of the developed software was to achieve an easy to use interface and to enforce no 'school dependent' rules of valuation. This new pedagogical instrument runs on PC micro-computers which allows a low- cost technology and could provide a practical training to retinal photocoagulation without the patient. A clinical validation of its pedagogical efficiency is submitted in another abstract.
Image Understanding and Intelligent Parallel Systems
1991-05-09
a common user interface for the interactive , graphical manipulation of those histories, and...Circuits and Systems, August 1987. Yap, S.-K. and M.L. Scott, "PenGuin: A language for reactive graphical user interface programming," to appear, INTERACT , Cambridge, United Kingdom, 1990. 74 ...of up to a factor of 100 over single-workstation implementations. User interfaces to large multiprocessor computers are a difficult issue addressed
SearchGUI: A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines.
Barsnes, Harald; Vaudel, Marc
2018-05-25
Mass-spectrometry-based proteomics has become the standard approach for identifying and quantifying proteins. A vital step consists of analyzing experimentally generated mass spectra to identify the underlying peptide sequences for later mapping to the originating proteins. We here present the latest developments in SearchGUI, a common open-source interface for the most frequently used freely available proteomics search and de novo engines that has evolved into a central component in numerous bioinformatics workflows.
Lightweight concrete modification factor for shear friction.
DOT National Transportation Integrated Search
2013-10-01
This report describes the results of a study initiated to examine the influence of concrete unit weight on the direct shear transfer across an interface of concretes cast at different times. This type of interface is common with structural precast co...
Advanced liquid chromatography-mass spectrometry interface based on electron ionization.
Cappiello, A; Famiglini, G; Pierini, E; Palma, P; Trufelli, H
2007-07-15
Major progress in interfacing liquid chromatography and electron ionization mass spectrometry is presented. The minimalism of the first prototype, called the Direct-EI interface, has been widely refined, improved, and applied to modern instrumentation. The simple interfacing principle is based on the straight connection between a nanoHPLC system and a mass spectrometer equipped with an EI source forming a solid and reliable unicum resembling the immediacy and straightforwardness of GC/MS. The interface shows a superior performance in the analysis of small-medium molecular weight compounds, especially when compared to its predecessors, and a unique trait that excels particularly in the following aspects: (1) It delivers high-quality, fully library matchable mass spectra of most sub-1 kDa molecules amenable by HPLC. (2) It is a chemical ionization free interface (unless operated intentionally) with accurate reproduction of the expected isotope ion abundances. (3) Response is never influenced by matrix components in the sample or in the mobile phase (nonvolatile salts are also well accepted). A deep evaluation of these aspects is presented and discussed in detail. Other characteristics of the interface performance such as limits of detections, range of linear response, and intra- and interday signal stability were also considered. The usefulness of the interface has been tested in a few real-world applications where matrix components played a detrimental role with other LC/MS techniques.
A computer-controlled instrumentation system for third octave analysis
NASA Technical Reports Server (NTRS)
Faulcon, N. D.; Monteith, J. H.
1978-01-01
An instrumentation system is described which employs a minicomputer, a one-third octave band analyzer, and a time code/tape search unit for the automatic control and analysis of third-octave data. With this system the information necessary for data adjustment is formatted in such a way as to eliminate much operator interface, thereby substantially reducing the probability for error. A description of a program for the calculation of effective perceived noise level from aircraft noise data is included as an example of how this system can be used.
Capillary electrophoresis-MALDI interface based on inkjet technology
Vannatta, Michael W.; Whitmore, Colin D.; Dovichi, Norman J.
2010-01-01
An ink jet printer valve and nozzle were used to deliver matrix and sample from an electrophoresis capillary onto a MALDI plate. The system was evaluated by separation of a set of standard peptides. That separation generated up to 40,000 theoretical plates in less than three minutes. Detection limits were 500 amol using an ABI TOF-TOF instrument and 2 fmol for an ABI Q-TOF instrument. Over 70% coverage was obtained for the tryptic digest of α-lactalbumin in less than 2.5 minutes. PMID:19960472
Advanced capabilities for in situ planetary mass spectrometry
NASA Astrophysics Data System (ADS)
Arevalo, R. D., Jr.; Mahaffy, P. R.; Brinckerhoff, W. B.; Getty, S.; Benna, M.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Cornish, T.; Hovmand, L.
2015-12-01
NASA GSFC has delivered highly capable quadrupole mass spectrometers (QMS) for missions to Venus (Pioneer Venus), Jupiter (Galileo), Saturn/Titan (Cassini-Huygens), Mars (MSL and MAVEN), and the Moon (LADEE). Our understanding of the Solar System has been expanded significantly by these exceedingly versatile yet low risk and cost efficient instruments. GSFC has developed more recently a suite of advanced instrument technologies promising enhanced science return while selectively leveraging heritage designs. Relying on a traditional precision QMS, the Analysis of Gas Evolved from Samples (AGES) instrument measures organic inventory, determines exposure age and establishes the absolute timing of deposition/petrogenesis of interrogated samples. The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars 2018 rover employs a two-dimensional ion trap, built analogously to heritage QMS rod assemblies, which can support dual ionization sources, selective ion enrichment and tandem mass spectrometry (MS/MS). The same miniaturized analyzer serves as the core of the Linear Ion Trap Mass Spectrometer (LITMS) instrument, which offers negative ion detection (switchable polarity) and an extended mass range (>2000 Da). Time-of-flight mass spectrometers (TOF-MS) have been interfaced to a range of laser sources to progress high-sensitivity laser ablation and desorption methods for analysis of inorganic and non-volatile organic compounds, respectively. The L2MS (two-step laser mass spectrometer) enables the desorption of neutrals and/or prompt ionization at IR (1.0 up to 3.1 µm, with an option for tunability) or UV wavelengths (commonly 266 or 355 nm). For the selective ionization of specific classes of organics, such as aromatic hydrocarbons, a second UV laser may be employed to decouple the desorption and ionization steps and limit molecular fragmentation. Mass analyzers with substantially higher resolving powers (up to m/Δm > 100,000), such as the Advanced Resolution Organic Molecule Analyzer (AROMA) and multipass QMS instruments now under development, offer the potential to disambiguate key chemical signatures in complex mass spectra. Other innovative technologies being pursued include: ion inlet systems; tunable lasers; high-temp pyrolysis ovens; and, sample capture/enrichment techniques.
Immersive training and mentoring for laparoscopic surgery
NASA Astrophysics Data System (ADS)
Nistor, Vasile; Allen, Brian; Dutson, E.; Faloutsos, P.; Carman, G. P.
2007-04-01
We describe in this paper a training system for minimally invasive surgery (MIS) that creates an immersive training simulation by recording the pathways of the instruments from an expert surgeon while performing an actual training task. Instrument spatial pathway data is stored and later accessed at the training station in order to visualize the ergonomic experience of the expert surgeon and trainees. Our system is based on tracking the spatial position and orientation of the instruments on the console for both the expert surgeon and the trainee. The technology is the result of recent developments in miniaturized position sensors that can be integrated seamlessly into the MIS instruments without compromising functionality. In order to continuously monitor the positions of laparoscopic tool tips, DC magnetic tracking sensors are used. A hardware-software interface transforms the coordinate data points into instrument pathways, while an intuitive graphic user interface displays the instruments spatial position and orientation for the mentor/trainee, and endoscopic video information. These data are recorded and saved in a database for subsequent immersive training and training performance analysis. We use two 6 DOF DC magnetic trackers with a sensor diameter of just 1.3 mm - small enough for insertion into 4 French catheters, embedded in the shaft of a endoscopic grasper and a needle driver. One sensor is located at the distal end of the shaft while the second sensor is located at the proximal end of the shaft. The placement of these sensors does not impede the functionally of the instrument. Since the sensors are located inside the shaft there are no sealing issues between the valve of the trocar and the instrument. We devised a peg transfer training task in accordance to validated training procedures, and tested our system on its ability to differentiate between the expert surgeon and the novices, based on a set of performance metrics. These performance metrics: motion smoothness, total path length, and time to completion, are derived from the kinematics of the instrument. An affine combination of the above mentioned metrics is provided to give a general score for the training performance. Clear differentiation between the expert surgeons and the novice trainees is visible in the test results. Strictly kinematics based performance metrics can be used to evaluate the training progress of MIS trainees in the context of UCLA - LTS.
PROPAGATING DISTURBANCES IN THE SOLAR CORONA AND SPICULAR CONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, Tanmoy; Pant, Vaibhav; Banerjee, Dipankar, E-mail: tsamanta@iiap.res.in
Spicules are small, hairy-like structures seen at the solar limb, mainly at chromospheric and transition region lines. They generally live for 3–10 minutes. We study these spicules in a south polar region of the Sun with coordinated observations using the Interface Region Imaging Spectrograph (IRIS) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory. Propagating disturbances (PDs) are observed everywhere in the polar off-limb regions of the Sun at coronal heights. From these simultaneous observations, we show that the spicules and the PDs may have originated through a common process. From spacetime maps, we find thatmore » the start of the trajectory of PDs is almost cotemporal with the time of the rise of the spicular envelope as seen by IRIS slit-jaw images at 2796 and 1400 Å. During the return of spicular material, brightenings are seen in AIA 171 and 193 Å images. The quasi-periodic nature of the spicular activity, as revealed by the IRIS spectral image sequences, and its relation to coronal PDs, as recorded by the coronal AIA channels, suggest that they share a common origin. We propose that reconnection-like processes generate the spicules and waves simultaneously. The waves escape while the cool spicular material falls back.« less
Propagating Disturbances in the Solar Corona and Spicular Connection
NASA Astrophysics Data System (ADS)
Samanta, Tanmoy; Pant, Vaibhav; Banerjee, Dipankar
2015-12-01
Spicules are small, hairy-like structures seen at the solar limb, mainly at chromospheric and transition region lines. They generally live for 3-10 minutes. We study these spicules in a south polar region of the Sun with coordinated observations using the Interface Region Imaging Spectrograph (IRIS) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory. Propagating disturbances (PDs) are observed everywhere in the polar off-limb regions of the Sun at coronal heights. From these simultaneous observations, we show that the spicules and the PDs may have originated through a common process. From spacetime maps, we find that the start of the trajectory of PDs is almost cotemporal with the time of the rise of the spicular envelope as seen by IRIS slit-jaw images at 2796 and 1400 Å. During the return of spicular material, brightenings are seen in AIA 171 and 193 Å images. The quasi-periodic nature of the spicular activity, as revealed by the IRIS spectral image sequences, and its relation to coronal PDs, as recorded by the coronal AIA channels, suggest that they share a common origin. We propose that reconnection-like processes generate the spicules and waves simultaneously. The waves escape while the cool spicular material falls back.
Bai, Ge; Bee, Jared S; Biddlecombe, James G; Chen, Quanmin; Leach, W Thomas
2012-02-28
Agitation of small amounts of liquid is performed routinely in biopharmaceutical process, formulation, and packaging development. Protein degradation commonly results from agitation, but the specific stress responsible or degradation mechanism is usually not well understood. Characterization of the agitation stress methods is critical to identifying protein degradation mechanisms or specific sensitivities. In this study, computational fluid dynamics (CFD) was used to model agitation of 1 mL of fluid by four types of common laboratory agitation instruments, including a rotator, orbital shaker, magnetic stirrer and vortex mixer. Fluid stresses in the bulk liquid and near interfaces were identified, quantified and compared. The vortex mixer provides the most intense stresses overall, while the stir bar system presented locally intense shear proximal to the hydrophobic stir bar surface. The rotator provides gentler fluid stresses, but the air-water interfacial area and surface stresses are relatively high given its low rotational frequency. The orbital shaker provides intermediate-level stresses but with the advantage of a large stable platform for consistent vial-to-vial homogeneity. Selection of experimental agitation methods with targeted types and intensities of stresses can facilitate better understanding of protein degradation mechanisms and predictability for "real world" applications. Copyright © 2011 Elsevier B.V. All rights reserved.
A new drag spool for measuring basal sliding and till deformation
NASA Astrophysics Data System (ADS)
Truffer, M.; Pomraning, D.; Dushime, B.; Amundson, J. M.; Motyka, R. J.; Larsen, C.
2017-12-01
Direct observation of subglacial processes are challenging due to significant problems of access. A primary method of access are boreholes drilled through the ice with hot water. A variety of instruments have been developed to monitor ice deformation, till deformation, sliding of ice over subglacial till, water pressure in boreholes, and pore water pressure in subglacial till. It is not common to measure all of these parameters in one single borehole. However, ignorance about one of these parameters can hamper the interpretation of others. For example, it is desirable to monitor all components of basal motion (ice deformation near the base, till deformation, and sliding) simultaneously. Here we present a newly developed drag spool that attempts this. The spool consists of an anchor that is hammered into subglacial till. The anchor is instrumented with tilt sensors and a pore water pressure sensor. It is connected to a probe in the bottom part of the ice via a signal wire. This main probe measures the payout of the signal wire as well as tilt in the basal ice and water pressure in the borehole. A prototype of this instrument was tested on Taku Glacier, Alaska, under about 200 m of ice and operated successfully for several months. Data show deformation of ice and the upper till layer. Sliding at the interface is intermittent and accounts for less than 10% of the observed surface motion. Deformation of ice and till occurs more continuously but is interrupted by specific events. These events are sometimes - but not always - related to speed-up events at the surface. This indicates that occasionally the basal system evolves on spatial scales that are not sufficiently large to be observed at the surface.
Safehold Attitude Determination Approach for GPM
NASA Technical Reports Server (NTRS)
Fitzpatrick, Henry; DeWeese, Keith
2012-01-01
Spacecraft sating designs generally have minimal goals with loose pointing requirements. Safe pointing orientations for three-axis stabilized spacecraft are usually chosen to put the spacecraft into a thermally safe and power-positive orientation. In addition, safe mode designs are required to be simple and reliable. This simplicity lends itself to the usage of analog sun sensors, because digital sun sensors will add unwanted complexity to the safe hold mode. The Global Precipitation Measurement (GPM) Mission Core Observatory will launch into lower earth orbit (LEO) at an inclination of 65 degrees. The GPM instrument suite consists of an active radar system and a passive microwave imager to provide the next-generation global observations of rain and snow. The complexity and precision of these instruments along with the operational constraints of the mission result in tight pointing requirements during all phases of the mission. To ensure the instruments are not damaged during spacecraft safing, thermal constraints dictate that the solar pointing orientation must be maintained to better than 6.5 degrees. This requirement is outside the capabilities of a typical analog sun sensor suite, primarily due to the effects of Earth's albedo. To ensure mission success, a new analog sensor, along with the appropriate algorithms, is needed. This paper discusses the design issues involving albedo effects on spacecraft pointing and the development of a simple, low-cost analog sensor and algorithm that will address the needs of the GPM mission. In addition, the algorithms are designed to be easily integrated into the existing attitude determination software by using common interfaces. The sensor design is based on a heritage, commercial off-the-shelf analog sun sensors with a limited field-of-view to reduce the effects of Earth's albedo. High fidelity simulation results are presented that demonstrate the efficacy of the design.
GAIA virtual observatory - development and practices
NASA Astrophysics Data System (ADS)
Syrjäsuo, Mikko; Marple, Steve
2010-05-01
The Global Auroral Imaging Access, or GAIA, is a virtual observatory providing quick access to summary data from satellite and ground-based instruments that remote sense auroral precipitation (http://gaia-vxo.org). This web-based service facilitates locating data relevant to particular events by simultaneously displaying summary images from various data sets around the world. At the moment, there are GAIA server nodes in Canada, Finland, Norway and the UK. The development is an international effort and the software and metadata are freely available. The GAIA system is based on a relational database which is queried by a dedicated software suite that also creates the graphical end-user interface if such is needed. Most commonly, the virtual observatory is used interactively by using a web browser: the user provides the date and the type of data of interest. As the summary data from multiple instruments are displayed simultaneously, the user can conveniently explore the recorded data. The virtual observatory provides essentially instant access to the images originating from all major auroral instrument networks including THEMIS, NORSTAR, GLORIA and MIRACLE. The scientific, educational and outreach use is limited by creativity rather than access. The first version of the GAIA was developed at the University of Calgary (Alberta, Canada) in 2004-2005. This proof-of-concept included mainly THEMIS and MIRACLE data, which comprised of millions of summary plots and thumbnail images. However, it was soon realised that a complete re-design was necessary to increase flexibility. In the presentation, we will discuss the early history and motivation of GAIA as well as how the development continued towards the current version. The emphasis will be on practical problems and their solutions. Relevant design choices will also be highlighted.
Haptic-STM: a human-in-the-loop interface to a scanning tunneling microscope.
Perdigão, Luís M A; Saywell, Alex
2011-07-01
The operation of a haptic device interfaced with a scanning tunneling microscope (STM) is presented here. The user moves the STM tip in three dimensions by means of a stylus attached to the haptic instrument. The tunneling current measured by the STM is converted to a vertical force, applied to the stylus and felt by the user, with the user being incorporated into the feedback loop that controls the tip-surface distance. A haptic-STM interface of this nature allows the user to feel atomic features on the surface and facilitates the tactile manipulation of the adsorbate/substrate system. The operation of this device is demonstrated via the room temperature STM imaging of C(60) molecules adsorbed on an Au(111) surface in ultra-high vacuum.
ITOS to EDGE "Bridge" Software for Morpheus Lunar/Martian Vehicle
NASA Technical Reports Server (NTRS)
Hirsh, Robert; Fuchs, Jordan
2012-01-01
My project Involved Improving upon existing software and writing new software for the Project Morpheus Team. Specifically, I created and updated Integrated Test and Operations Systems (ITOS) user Interfaces for on-board Interaction with the vehicle during archive playback as well as live streaming data. These Interfaces are an integral part of the testing and operations for the Morpheus vehicle providing any and all information from the vehicle to evaluate instruments and insure coherence and control of the vehicle during Morpheus missions. I also created a "bridge" program for Interfacing "live" telemetry data with the Engineering DOUG Graphics Engine (EDGE) software for a graphical (standalone or VR dome) view of live Morpheus nights or archive replays, providing graphical representation of vehicle night and movement during subsequent tests and in real missions.
Data acquisition instruments: Psychopharmacology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartley, D.S. III
This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended.more » In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.« less